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FOREWORD

This report summarizes the results of Phase III of the Hypersonic Research

Facilities Study performed from 2 January 1970 through 26 June 1970 under National

Aeronautics and Space Administration Contract NAS2-5458 by McDonnell Aircraft Com-

pany, (MCAIR), St. Louis, Missouri, a division of McDonnell Douglas Corporation.

The study was sponsored by the Office of Advanced Research and Technology with

Mr. Richard H. Petersen as Study Monitor and Mr. Hubert Drake as alternate Study

Monitor.

Mr. Charles J. Pirrello was Manager of the HYFAC project and Mr. Paul A. Czysz

was Deputy Manager. The study was conducted within MCAIR Advanced Engineering,

which is directed by Mr. R. H. Belt, Vice President, Aircraft Engineering. The

HYFAC study team was an element of the Advanced Systems Concepts project managed by

Mr. Harold D. Altis.

The support of the following engine companies in the flight vehicle synthesis

is gratefully acknowledged: AiResearch Manufacturing Division of the Garrett

Corporation, The General Electric Company, The Marquardt Company, and Pratt and

Whitney Aircraft.

The basic task of Phase III was to refine the two attractive flight research

vehicles retained from Phase II and examine the feasibility of providing growth

capability to adapt to varying research goals in these vehicles. The Phase III

study has been conducted in accordance with the requirements and instructions of

NASA RFP A-15109 (HY-81), McDonnell Technical Proposal Report G970, and OART corres-

pondence received during the Phase III period.

This is Volume IV, Part i of the overall HYFAC Report, which is organized as

follows:

NASA CONTRACTOR

REPORT NUMBER

Volume I Summary CR 114322

Volume II Phase I Preliminary Studies

Part i - Research Requirements and Ground

Facility Synthesis

Part 2 - Flight Vehicle Synthesis

CR 114323

CR 114324

Volume III Phase II Parametric Studies

Part i - Research Requirements and Ground

Facility Synthesis

Part 2 - Fli_it Vehicle Synthesis

CR 114325

CR 114326

Volume IV

Volume V

Phase IIl Final Studies

Part i - Flight Research Facilities

Part 2 - Ground Research Facilities

Part 3 - Research Requirements Analysis and

Facility Potential

Limited Rights Data

CR 114327

CR 114328

CR 114329

CR 114330

Volume Vl Operational System Characteristics

MCDONNELL AIRCRAI_"

CR i14331
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SUMMARY

(U) The Phase III analyses of Flight Research Facilities performed as a

portion of the Hypersonic Research Facilities (HYFAC) Study are presented herein.

Two attractive flight research vehicle concepts, geared to the development needs

of future (1980-2n00) operational hypersonic aircraft systems, are defined. The

inherent research capability of each concept is further expanded by incorporating

provisions within the basic vehicle design to accommodate the testing of several

additional research options. The design feasibility of this approach to achieving

increased research flexibility is examined. Near term propulsion systems are

employed as the basic power plants to shorten acquisition time, reduce development

costs, and provide high confidence in attaining the performance capability desired,
Performance is determined for each basic vehicle and for the vehicles when incor-

porating several optional research packages. Total program cost estimates are

developed for each vehicle and for the various research options. This study pro-

vides the necessary framework for the formulation of an attractive and needed

flight research program which is a key element in the systematic development of an

overall advanced research plan.
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i. INTRODUCTION

(U) The Phase IIl results of an investigation of Flight Research Facilities,

performed as a part of the Hypersonic Research Facilities (HYFAC) Study, are pre-

sented herein. The primary objectives of the HYFAC Study are to assess the research

requirements associated with the development of future (1980-2000) operational

hypersonic aircraft and, based on these requirements, provide the NASA with descrip-

tions of a number of desirable facilities with which to accomplish the necessary

research. Flight research aircraft and new ground research facilities were evalu-

ated to provide an assessment of their capabilities, performance, cost, and acqui-

sition time. The capabilities of existing ground facilities were also assessed for

comparison.

(U) The HYFAC Study was performed in three phases. Phase I involved the

screening of a broad array of possible research facility concepts. Those concepts

appearing most attractive were retained for future trade studies during Phase II.

At the conclusion of Phase II, the field of candidate facilities was narrowed once

again. Only the most promising air and ground facilities were retained for further

refinement during Phase III. Two of these facilities were flight research vehicles,

namely a Mach 6 aircraft and a Mach 12 aircraft. It is the analysis of these

flight research vehicle concepts that is presented herein (Volume IV, Part i).

(U) Parallel Phase III efforts pertaining to ground research facilities are

presented in Volume IV, Part 2. An analysis of the anticipated research require-

ments and the potential of each Phase llI air and ground facility in satisfying

them is presented in Volume IV, Part 3.

(U) The major emphasis of the Phase III refinement studies of flight research

facilities concentrated on four elements.

o Basic Research Capability

o Optional Research Flexibility

o Design Feasibility

o Program Cost

These were considered to be the key elements in developing flight research aircraft

that would satisfy the basic premise employed throughout the HYFAC Study. Namely,

to provide a broad research program capable of expanding the current technology

base as a whole rather than in specific narrowly defined areas typical of singular

prototype testing.

(U) To accomplish this goal, two aircraft were selected; one representing in

a broad sense a near term technology prototype (Math 6), and the second providing

a quantum Jump in the current hypersonic technology base (Mach 12). The inherent

research capabilities of each vehicle were then expanded to provide optional

research flexibility by designing to accommodate testing in several additional

areas beyond the capabilities of the basic vehicles. To assure design feasibility,

installation provisions for the various test options were considered in the basic

vehicle design. Furthermore, near term propulsion systems were selected to power

MCDONNELL AIRCRAFT
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the two basic aircraft. This precludes pacing the research program to the develop-

ment of an advanced engine and also avoids the high costs associated with engine

development. At the same time, the option of testing future engines is retained by

utilizing the design concepts embodied in the Phase III analysis.

(U) These efforts have resulted in the definition of attractive and desirable

flight research facilities caoable of fu!fil!in_ the _forementioned HYFAC Study

goals. If the overall ob,_ective of developing hypersonic aircraft for o?erational

use in the 1980-2000 time period is to be met, the need for a flight research pro-

gram similar to that described herein is imperative.

I
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2. APPROACH TO PHASE III

(U) During Phase II a selected group of flight research vehicles were refined.

Parametric trade studies of a number of design and operational options were conducted

to determine the performance, research capability, and cost effects. As a result

of these studies, two distinctly different, attractive concepts were selected for

detailed refinement studies in Phase III, as illustrated in Figure 2-1.

(U) FIGURE 2-1

TWO FEASIBLE RESEARCH VEHICLES

QuantumJump

TRJ Rocket

M = 6 Cruise M = 12 Cruise

(U) To provide a near term technology prototype aircraft, a Mach 6 airbreathing

configuration was selected. This vehicle, a turboramJet powered aircraft, provides

capability for technology demonstration of advanced airbreathing propulsion systems,

as well as a broad spectrum of research applicable to the defined potential oper-

ational systems. The vehicle is designed for steady state cruise at Mach 6 for

five (5) minutes, operates in a conventional ground takeoff mode, and is manned.

It employs the existing Pratt and Whitney J58 JP fueled turbojet engine together

with a LH2 fueled wraparound ramjet modification. This will provide early research

on a near term turboramJet engine. At the same time, the aircraft can be designed

to accept an advanced compound airbreathing engine when It becomes available for

tests. Therefore, the development of this concept will not be paced by the parallel

development of an advanced engine, nor burdened by the associated costs.

(U) To provide a quantum Jump in performance, a Mach 12 rocket powered aircraft

was selected. This vehicle is manned, airlaunched by a C-5A, and designed to cruise

for five minutes at Mach 12. The engines employed are modified P&WA RL10-A-3-9 rock-

MCDONNELL AIRCRArr
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ets using LO2/LH 2 propellants. Five engines are employed for acceleration to cruise

s_eed and cruise is achieved on a single engine throttled to approximately 30_

tkz'u:;_, I_ke t_e '_!ach _ "_:n_ept, the use of exist_n_ engines will free the research

program of engine development costs and preclude pacin_ the aircraft development

to a parallel advanced engine development program. Providing the capability to

accommodate future testin_ of advanced airbreathin_ engines is an attractive o_tion
_v_i!atle with this vehicle.

2.1 OBJECTIVE

f
_U) The objective of the Phase III studies was to refine the more promising

vehicles and determine in greater depth their research c&pabilities, costs, and

development schedules.

(U) Specific emphasis was given to examining appr,_aches to expand the research

capability of each vehicle by adapting various research options to the basic vehicle.

in this manner, a significant improvement in overall performance capability can be

achieved and thus provide a broad degree of research flexibility and versatility.

(U) Particular areas of interest include:

o Engine Performance

o Flight Control

o Thermal Protection

o Armament Installation

o Launch Modes

o Staging Operations

(U) The fundamental design objective was to provide research capability over a

wide range of flight conditions using techniques which are feasible within current

day technology and can realistically be attained at low cost and high confidence.

2.2 GROUND RULES

(U) General study ground rules applied to all phases of this study are listed

below. Other ground rules which apply to specific segments of the study are pre-

sented in the appropriate sections of the report.

o All cost estimates are reported in 1970 dollars.

o The assumed state of the art is commensurate with initiation of facility

development during the time period from 1970 to 1975. Wherever feasible,

proven technology (or technology expected to be proven by the start date)

was utilized. Where such design was not feasible, conservative overdesi_n

practices, requiring minimum improvements in the state of the art, were

followed.

o Close coordination is assumed between the NASA and the contractors who are

building facilities or aircraft, thus minimizin_ the need for extensive

documentation and quality assurance programs.

o Aircraft construction is assumed to conform to experimental shop procedures.

I
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o The development costs for flight research vehicles include all necessary

engine and avionics development costs.

o It is assumed that engines need not be developed to the reliability

normally required for operational (non-research) use.

o The primary flight safety criterion is that no single component malfunction

shall cause a catastrophic situation.

Reliable rocket or airbreathing engine performance, consistent with that

required for JP fueled, single-engine aircraft, is required during takeoff

and climb to 25,000 ft (7630 m).

o The vehicle landing characteristics are to be suitable for unpowered

landing by a skilled pilot. Adequate fuel reserves are provided to compen-

sate for uncertainties in engine SFC, for meteorological and operational

dispersions in fuel consumption, and for powered emergency operations.

o Edwards Air Force Base is considered as the primary operational field for

flight research vehicles.

o It is assumed that maximum use will be made of existing or planned tracking

and communications facilities.

o The U.S. Standard Atmosphere - 1962 is used throughout the study.

2.3 DESIGN MISSION

(U) For consistency in performance evaluations, a design mission was established

for each of the two basic research aircraft concepts under consideration. These

design missions are based on providing steady state cruise capability in the flight

regimes illustrated in Figure 2-2 for future operational aircraft systems. The sel-

ected design missions are shown by superposition in Figure 2-3 and are discussed in

the following sections. Alternate mission profiles employed in study of the various

research options are discussed in the appropriate sections.

2.3.1 (U) MACH 12 AIRCRAFT - The following design mission profile applies for the

Mach 12 research aircraft con ept and is essentially the same as that used in Phase

II. The vehicle research instrumentation payload is 1500 lb (681 kg).

o Air launch at .8 Mach number and 35,000 ft (10,680 m)

o Climb and accelerate along the flight path for minimum fuel usage to Mach

12 and the equilibrium altitude for cruise at (L/D)ma x

o Cruise for five minutes at Mach 12 and (L/D)ma x

o Descend unpowered along the equilibrium glide path corresponding to

(L/D)max

o Land unpowered

MCDONNfLL AIRCRAF'r
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The low dynamic pressure climb profile employed in the rocket aircraft design mis-

sion is optimized for minimum fuel usage by the Method of Steepest Descent Tra-

Jectory Optimization Computer Program, Reference (!).

2.3.2 (U) MACH 6 AIRCRAFT - The following design mission profile applies tothe

Maeh 6 research aircraft concept and is essentially the same as that used in Phase

II. The vehicle research instrumentation payload is 1300 ib (590 kg).

o Horizontal takeoff

o Accelerate to .8 Math number

o Climb to 20,000 feet (6100 m)

o Accelerate to design dynamic pressure, 2000 ib/ft 2 (95,800 N/m) 2

o Climb and accelerate at design dynamic pressure to inlet duct pressure

limit, 150 ib/in 2 (103.h N/cm2)

I
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(U) FIGURE2-3

FLIGHT RESEARCHDESIGNMISSIONS

0
0 4 8 12

BachNumber

\

_--- Bach 12Aircraft

DesignMission

16 20

o Climb and accelerate at inlet duct pressure limit to Mach 6

o Climb at Mach 6 to the equilibrium altitude for cruise at (L/D)ma x

o Cruise for five minutes at Math 6 and (L/D)ma x

o Descend unpowered along the equilibrium glide path corresponding to

(L/O)max

o Land unpowered

As a result of the Phase II studies, a cruise time of i0 minutes and a payload of

1500 pounds was recommended for the Mach 6 concept. However, with the choice of

utilizing an existing fixed size engine, the weight and cost penalties of designing

to lO minutes cruise were Judged as not effective, and the cruise time at Mach 6
was reduced to five minutes. This value is identical with the cruise time employed

for the Mach 12 design mission. Further, designing the vehicle for a 1500 pound

MCDONNELL AIRCRAFT
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payload would have resulted in marginal performance, thus it was decided to reduce

the p_rload to 1300 pounds. The high dynamic pressure climb profile employed in

this design mission is Judged ss a reasonably optimum profile for an airbreathin_

accelerator and, therefore, extensive parametric trajectory studies were not deemed

necessary.

2.4 FINAL TRADE STUDIES

(U) Prior to initiation of the refinement of the two promising research air-

craft, a few trade studies were conducted to assure that the best initial design

approach was being used.

(U) Math 12 Vehicle - Prior to sizing the aircraft to meet the design mission

and initiating Phase Ill analyses, two interim refinement studies were performed.

An oxidizer to fuel (O/F) ratio trade study was conducted to determine the best

ratio from the standpoint of minimizing vehicle size and weight. The basis for th_

study was the Phase II configuration employing the rubberized LR-129 rocket engine.

The results are shown in Figure 2-4 based on constant design mission performance.

The minimum planform area (Sp) and operational weight empty (OWE) are obtained for

an O/F near 7.0 and the minimum takeoff gross weight(TOGW) occurs at an O/F of approx-

imately 6.5. Discussions with Pratt and Whitney indicate that the modified RLI0-

A-3-9 engines selected for use can be designed to operate efficiently at an O/F of

6.0, rather than the nominal value of 5.0 presently quoted for current versions of

the RLI0 engines. Therefore, an O/F of 6.0 was selected for the Phase III analysis.

(U) FIGURE 2-4
MACH 12 ROCKET

OXYGEN/FUEL VARIATION

T i _ I T l J (

) I l I Note: Constant performance;

Sp = In20(gt.8ftm2)2, _ 5 Tinl: CruisellI'@ Mach

Sp = 929 ft 2
(86.3 m2)

28

_24
!

o20
5.0

I

5.4 5.8 6.2 6.6 7.0 7.4

Oxygen/Fuel Ratio
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(U) A second interim study was performed to determine the best configuration

shaping with regard to fatness ratio (S_/Sp), defined as the ratio of maximum ve-

hicle cross section area to planform area. Three vehicle designs with varying

S_/Sp were investigated. The chordwise location of ST was fixed _t 75% of the wing

root chord; wing sweep, and lower surface compression contours were held constant.

Upper surface contours were shaped to obtain the variations in Sw/Sp sho_n in Figure

2-5. On the basis of constant design mission performance, OWE, TOGW, and Sp are

minimized at an SN/Sp of approximately 0.125. A comparison of propellant require-

ments by flight phase, in Figure 2-6, indicates that the acceleration climb is the

dominant influence in determining the optimum S_/Sp. Thus, in the Phase III analyses,

an S_/Sp of 0.125 is employed for the Hach 12 research aircraft concept. For an

operational vehicle with extended cruise times and/or a lower cruise Mach number

and altitude, lower values of S_/Sp may result in improved performance.

(U) FIGURE2-5
MACH12 ROCKET

FATNESSRATIO EFFECT ONOWEANDTOGW
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(U) Hach 6 Vehicle - Three inlet arrangements were investigated for use on

the Mach 6 configuration. These designs illustrated in Figure 2-7 included two lower

fuselage mounted inlet installations, one with vertical ramps and one with horizon-

tal ramps, and a shoulder mounted horizontal inlet ramp design which was finally

selected. The lower fuselage horizontal inlet ramp arrangement was somewhat more

attractive, on the basis of relative inlet weight and aircraft drag analyses, than

either the shoulder mounted inlet or the vertical ramp installation. However, both

lower fuselage inlets suffered from the standpoint of possible foreign object damage

during takeoff and ground operation. Furthermore, such an arrangement leaves very

little lower surface area free for use in providing additional research configura-

tion options. Therefore, the shoulder mounted design appeared most attractive and

was selected for the Phase III refinement analysis.
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(U) FIGURE 2-7

INLET DUCT VARIATIONS
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2.5 CONFIGURATION OPTIONS

(U) In order to expand the research potential of the two basic vehicle concepts

selected, several modifications are considered for incorporation as configuration

options. The research options investigated are noted below. In some cases, a

number of alternate approaches were examined. For such cases, the vehicle design

was developed for each approach and a selection of the most attractive approach was

made prior to proceeding with the refinement analysis. Each option examined is

Judged as being a feasible representative approach to provide the capability to per-
form the desired research.

Mach 12 Vehicle

o Rocket powered horizontal takeoff (HT0)

o Rocket powered vertical takeoff (VT0)

o ScramJet engine installation (SJ)

o Convertible scramJet engine installation (CSJ)

o Ramjet engine installation (RJ)

o Subsonic turbojet low speed research (TJ)

o Thermal protection system variations (TPS)
o Armament installations (ARM)

o Staging operations (STG)

o Alternate rocket engine installation (J2S)

Mach 6 Vehicle

o Convertible scramJet engine installation (CSJ)

o Thermal protection system variations (TPS)

o Armament installations (ARM)

o Advanced turboramJet installation (JZ6)

o Ramjet engine installation (RJ)

I
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3. STUDY METHODOLOGY

(U) The methods, techniques, and rationale employed to design, size, perform,

weigh, and cost the two basic vehicles and the selected options ere discussed in
the following sections.

3.1 DESIGN METHODOLOGY

(U) The Phase III design methodology is predicated on further refining two

basic flight vehicle concepts, each having inherent research applicability. These

concepts were evolved during Phase I and Phase II design studies. The goal in Phase

III was to further expand the research potential of these concepts by examining
design methods to include provisions in the basic vehicle to accommodate various

research options. The options considered were in the form of relatively simple and

complete research packages that could be incorporated on the basic vehicles. The

impact this approach has on basic vehicle design was examined from the standpoint

of added structural requirements, increased weight, performance capabilities, re-
search potential, and cost.

(U) The basic Mach 12 design is based on the all body, air launched, manned,

rocket powered vehicle concept developed during Phase II of the study. The all body

configuration is as described in Phase II insofar as the aircraft nose, forebody

shape, ramp angle, and aft fuselage underbody shape are concerned. However, the

fuselage upper shear line has been modified as a result of the fatness ratio study

discussed in Section 2.h resulting in a minor cross sectional shape difference.

A fatness ratio of .125 appears "near optimum" for the research aircraft design
mission selected and is employed in the design of the basic Mach 12 aircraft. The

propulsion system incorporates "off-the-shelf" RL10-A-B-9 rocket engines. Five

engines are employed and all are utilized during the acceleration and climb to test

altitude and Mach number. At this point, four engines are shut down and the center

one is throttled back to approximately 30% of full power for cruise flight.

(U) The basic Mach 6 vehicle evolved from the wing body, horizontal takeoff,

manned, turboramJet powered, concept of Phase I. The vehicle is designed around

the near-term compound turboramJet (STRJllA-27) engine. This engine employs the

existing JP fueled J58 turbojet engine as a core with a wraparound ramjet modifi-

cation fueled by liquid hydrogen. The inlet arrangement, fuel tank integration,

and inlet variable geometry have been refined to provide the vehicle with five
minutes of cruise time at Mach 6.

(U) To expand the research capability of each vehicle, techniques of providing

simple modification kits for various research cDtions were developed and investi-

gated for structural impact and test capability. For example, to install a con-

vertible scramJet on the basic Mach 12 vehicle will require providing hard points

in the basic structure which can be strengthened locally to carry and redistribute

the resultant highly concentrated loads. Such hard points and structural beef up

are required to accept the engine package as well as the engine actuators, ramp

actuators and thrust and drag linkages. The design objective was to develop a

structural configuration in the basic vehicle which would allow incorporation of

the various research packages with only minor aircraft modifications required.

Commonality of structural beef up and location of hard points was a fundamental

goal. This was accomplished for the scramJet and convertible scramJet installations.

MCDONNELL AIRCRAIrT"
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Furthermore, some of the same hard points will be usable in providing a horizontal
takeoff (HTO) and vertJ _al takeoff (VTO) modification for the air launched Mach 12

vehicle. Electrical, c._ogenic, and hydraulic provisions can be provided in a simi-

lar manner for each modification option by designing a disconnect panel and thus

provide easy access to the required power and fluids near the modified area.

3.2 AERODYNAMIC METHODOLOGY

(U) The methods employed to determine Phase III vehicle aerodynamic charac-

teristics are presented in the following sections. The Phase II methods of pre-

dicting lift and drag are again employed to generate the values used in performing

the Phase III vehicles. However, two computer programs not previously utilized in

the study, are employed to substantiate the lift and drag values used in the per-

formance analyses. These programs are the Gentry Arbitrary Body Program and the

Harris Wave Drag Program, References (2) and (3). The Gentry program is also used in

determining the supersonic and hypersonic static stability and control character-

istics of the basic Phase III vehicles. These, in turn are employed in dynamic

stability analyses to determine the unaugmented handling qualities of the bare

airframe.

3.2.1 (U) LIFT AND DRAG ESTIMATION - The basic methods utilized in determining

the lift and drag characteristics of the Phase III vehicles for performance analyses

are the same as those employed in Phase II. These procedures are described in

detail in Volume III of this report. Essentially, they consist of a component

buildup of lift and drag contributions as determined from design charts for various

configuration elements. In order to verify these Phase II methods, two additional

aerodynamic computer programs are employed.

(U) The Gentry Arbitrary Body Computer Program, Reference (2), is utilized to

substantiate the basic methods of predicting lift curves, induced drag, and skin

friction drag at supersonic speeds. The Gentry Program computes surface pressures

and skin friction forces. It then integrates these forces to obtain aerodynamic

coefficients and stability derivatives for the various vehicle components, as well

as the complete configuration. There are a wide variety of pressure calculation

methods provided with the program. The theories and assumptions given in Figures

3-1 and 3-2 have been selected for use in the Gentry analysis of the basic vehicles.

Orthomat plotter drawings employed to check the input geometry of each vehicle

are shown in Figures 3-3 and 3-4.

(U) The Harris Wave Drag Computer Program, Reference (3), is utilized to

verify the basic method of estimating zero-lift wave drag between Mach numbers of

1 and 3. This program is based on the supersonic area rule where the computed

drag is the integrated average of the drag on equivalent bodies of revolution. As

with the Gentry program, a complete description of the vehicle geometry is input to

the Harris program for the drag analysis. However, the vehicle geometry input can

be modified to include the effect of flow separation. This is accomplished by

terminating the input body geometry at the aft body station where it is estimated

that separation will occur.

I
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(U) FIGURE 3-1

MACH 6 TURBORAMJET

GENTRY PRESSURE THEORIES

Impact/Shadow

SRe f - 1103 ft2 Span - 37.2 ft

(102.47 m 2) (ll.3h m)

Component/Mach No.

Fuselage

Boundary Layer

Diverter,

Wing

Vertical Tail

Horizontal Tail

ire f - 913.0 in, (Body Length)

(23.19 m)

Theory Employed in Analysis

2.0 4.0 6.0

(q/q=) = ._

5/3 5/3 5/3

h/3 h/3 h/3

13/3 13/3 13/3

h/3 _/3 4/3

h/3 h/3 h/3

Theory Identification Code

Impact Areas

4 - Tangent Wedge Empirical

5 - Tangent Cone Empirical

13 - Delta-Wing Empirical

Shadow Areas

3 - Prandtl-Meyer Expansion

From Free-stream

Skin Friction

Laminar - Reference Temperature Method

Turbulent - Spalding - Chi Method
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(U) FIGURE 3-2

MACH 12 ROCKET

GENTRY PRESSURETHEORIES

Impact/Shadow

Sre f = 880 ft2, Span = 31.7 it, iref = 951 in (Body Length)

(8i.75 m2) (9.66 m) (24.15 m)

Component/Mach No.

Theory _hployed in Analysis

2.0 4.0 6.0 9.0 12.0

Fuselage 5/3 5/3 14/3
(Fwd., Mid. and Aft. )

Vertical Tail

Horizontal Tail

14/3 14/3

413 413 413 413 h13

413 413 h13 413 _13

Theory Identification Code

Impact Areas

4 - Tangent Wedge Empirical

5 - Tangent Cone _npirical

14 - Dahlem - Buck Empirical

Shadow Areas

3 - Prandtl - Meyer Expansion
From Free-stream

Skin Friction

Laminar - Reference Temperature Method

Turbulent - Spalding - Chi Method

r
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(U) FIGURE 3-3

ORTHOMAT PLOT OF GENTRY INPUT

Mach 6 Turboramjet

GEOMETRY

(U) FIGURE 3-4

ORTHOMAT PLOT OF GENTRY INPUT GEOMETRY

Mach 12 Rocket
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3.2.2 (U) STABILITY AND CONTROL ANALYSIS - The Gentry Arbitrary Body Ccmputer

Program is employed to determine the longitudinal and lateral-directional static

stability and control characteristics for the basic vehicles of Phase III at super-

sonic speeds. The effects of horizontal stabilator deflection are estimated using

this program and these data are employed to determine the trim requirements during

the climb and glide phases of flight. The Gentry program is also used to determine

the effect on stability of deflecting the rudders outboard symmetrically for use

as speed brakes. Subsonic stability and control characteristics are generated

using component build-up techniques and design charts, e.g., Reference (4).

3.2.3 (U) H_DLING QUALITIES ANALYSIS - The trim stability and control deriva-

tives obtained as output from the Gentry program, are utilized with the dynamic

stability computer programs of References (5) and (6) to obtain the vehicle unaugmented

longitudinal and lateral-directional handling qualities. These programs calculate

the coefficients of the three-degree-of-freedom, small perturbation, longitudinal

and lateral-directional equations of motion. These coefficients are then used to

determine the coefficients of the characteristic equation and the numerators of the

airplane transfer functions for the given control input. The characteristic equa-
tion and the transfer function numerators are factored and the factors are used to

compute several of the more pertinent flying qualities parameters. These parameters

are compared with the current military flying quality specifications, Reference (7).

3.3 PROPULSION METHODOLOGY

(U) The Phase III propulsion efforts required selecting and evaluating pro-

pulsion systems, and determining the installed engine performance for the

o Basic Mach 6 vehicle

o Basic Mach 12 vehicle

o Propulsion research options, both vehicles

Phase II results provided the general guidelines employed in selecting Phase III

propulsion systems, and these were as follows:

o Use of near term technology engines where available

o Identification of appropriate systems from engine company studies where

systems were not currently available (SJ and CSJ)

o Use of high performance engine air inlets consistent with available instal-

lation arrangements

o Selection of engine exhaust nozzles to match the engine operating char-

acteristics.

Specific methods and ground rules employed to select and evaluate the Phase Ill

propulsion systems are summarized in Figure 3-5. Where applicable, Phase II
methods were utilized to determine the installed engine performance. These methods

were supplemented when necessary by appropriate techniques, as noted in Figure 3-5.

I
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Propulsion

System

Rocket

Subsonic

TJ

TurboramJ et

ScramJet

CSJ

SJ, CSJ

" (U) FIGURE 3-5

SUMMARYOF PROPULSION TECHNICAL APPROACH

Component

Engine

Nozzle

Inlet

Engine
Nozzle

Inlet

Engine

Nozzle

Inlet

Nozzle

Selection

Criteria

Total program cost per

Phase II results

Preclude nozzle flow sep-

aration, using Phase II

Typical current design

Availability, thrust

To match engine oper-

atin_ characteristics
To match available instal-

lation

Total program cost, thrust

To match engine operating
characteristics

Retained Phase II design
Engine company study

Propulsion system effic-

iency, integration

Large expansion area, inte-
gration (as in Phase II)

Performance

Methods

Engine specification

Inlet recovery from test data,

as in Phase II; thrust & Isp
from engine specification,
corrected for installation

Inlet recovery from test data,

as in Phases I, II; thrust &

Isp from engine specification,
corrected for installation

Inlet efficiencies from

'inviscid, perfect gas analysis;

thrust & Isp from MCAIR cycle
analysis; drag of vehicle fore-

body assessed as vehicle drag

(all as in Phase II).

(U) Some refinements in vehicle performance were made by assessing the amounts

of inlet bleed and bypass drags more rigorously than in Phase II, using the method

of Reference (8). Likewise, mean values of inlet pressure recovery, includin_

angle of attack effects, were determined based on a compilation of test data.

The pressure recovery used for the turbojet and turboramJet flight profiles is shown

on Figure 3-6.

3.4 PERFORMANCE METHODOLOGY

(U) The basic Mach 6 and Mach 12 vehicles are sized to meet the design

missions described in Section 2.3 and thereby provide five minutes of cruise at

their respective design Mach numbers. The performance capability of these vehicles

is then determined for various modifications when they are added to provide selected

research configuration options. The methods and techniques employed are presented

in the following sections.

3.&.l (U) BASIC VEHICLES - The approach employed to size the two basic vehicles

consists essentially of matching vehicle fuel volume available with the fuel volume

required to meet the design missions described in Section 2.3. The techniques used

to accomplish this are the same as those employed during Phase I and Phase II, and

discussed in Volume II with one exception. In Phase III, the Mach 12 rocket vehicle

acceleration -climb trajectory was computed using the Method of Steepest Descent

Trajectory Optimization Program. Prior to this, a closed form trajectory solution,

described in Volume II was employed.

MCDONNELL AIRCRAFT
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3.4.2 (U) CONFIGURATION OPTIONS - To provide configuration options applicable to

various research needs, modifications to the basic vehicles were investigated•

These included various launch modes,propulsion systems, thermal protection systems,

armament systems and staging systems (two stage recoverable booster). The effect

these various modifications have on the performance of the basic vehicles is

determined in terms of test Mach number and test time. Where the research option

modifications dictate a change in mission profile trajectory studies were per-

formed to determine appropriate profiles•

I
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3.5 WEIGHT METHODOLOGY

(U) Weight estimation methods are unchanged from those previously reported.

However, refined scramJet and convertible scramJet weight estimation methods were

used in Phase III and are presented in Section 3.5.1. Structur_l weight increments

for accommodation of the modifications were calculated using the basic estimating

equations with allowance for the local structural differences associated wi_h each

modification. Weight changes to the various systems, such as electrical, hydraulic,

and armament, etc. were not based on a particular set of estimation equations be-

cause each modification was unique and limited in its scope. Therefore, each system

was analyzed in detail according to the appropriate design parameters. All weight

increments for each modification are discussed completely in Sections 4.10 (MACH

12 RESEARCH VEHICLE), and 5.10 (MACH 6 RESEARCH VEHICLE).

3.5.1 (U) SCRAMJET AND CONVERTIBLE WEIGHT ESTIMATION METHODS - Weight estimation

equations for the scramJet and convertible scramJet were derived from previous

studies conducted in support of the "Hypersonic ScramJet Vehicle Study", Reference

(9). In addition to the basic scramJet module weight, two more weight equations were

developed to account for the retractable forward ramp structure and its actuation

system which is unique to this study. A complete description of the scramJet in-

stallation and operation is contained in Section 4.2.

(U) For weight estimation purposes the scramJet structure was divided into

the internal compression duct, combustor section and expansion nozzle. Each of

these sections have distinct pressure and temperature profiles which directly

influence the weight as shown in Figure 3-7.

(U) For a given scramJet size the structural weight is primarily a function

of pressure since the structure is regeneratively cooled to 2000°F (1366°K). How-

ever, the regenerative cooling panels and plumbing weight are affected by the tem-

perature variation between the sections.

(U) Convertible scramJet weight was estimated similarly, but weight was

added for the thrust vector control surfaces and a slightly longer (approximately

15 inches (38.1 cm)) combustor section. Weight increments for the scramJet module

extension and retraction system as well as the structural modification to the

research vehicle are estimated from the equations previously presented in Volume II.

(U) ScramJet and convertible scramJet weights are derived from the following

equations:

8

y SJ/CSJ = E y.
i=l l

Y1
Structure

YIC (Internal Compression Duct)

YC (Combustor)

YEN (Expansion Nozzle)

= YIC + YC YEN

= K (Slc) (p)n (_)

= K (SC) (p)n (N)

= K (SEN) (p)n (N)

MCDONNELL AIRI_RAIrlr"
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(U) FIGURE 3-7

TYPICAL SCRAMJET WEIGHT DISTRIBUTION
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Y2

Y3

Y5

Y6

Y7

Y8

where:

K

LL

= Thrust Vector Control Surfaces

= Lip and Trailing Edge

= Fuel Injectors

= Fuel System Coolin_ Mechanism

= Actuated External Ramps

= Ramp Actuation

= Ramp Regenerative Cooling

= K (SD) (N)

= K (LL + LTE)

= 30 (N)

= K (ST) (N)

= K (SR) (p)n (N)

= K (y6)

= K (SR)

= Constant, Correlation (these values differ for each equation)

= Material Constant for Temperature and Failure Mode Distribution

= Length Lip

LTE = Length Trailing Edge

N = Number of Modules

n = Pressure Exponent

P = Pressure, Maximum (Ultimate)

SC = Surface Area, Combustor Section per Module

SD = Surface Area, Thrust Vector Control Surfaces

SIC = Surface Area, Internal Compression Section per Module

SEN = Surface Area, Expansion Nozzle Section per Module

SR = Surface Area, External Ramp, Total

ST = Total Surface Area per Module = SIC + SC + SEN

y = Estimated Weight

I_ICI)ONNELL AIRCRAIrI"

3-11



REPORT MDC A0013 • 2 OCTOBER 1970

VOLUME TE • PART 1

3.6 COST METHODOLOGY

(U) The methodology employed in the development of the total system costs

for both the Mach 6 and Mach 12 aircraft is essentially the same as that employed

in Phase I! with the exception of the development of the flight vehicle maintenance/

repair costs which have been modified.

(U) In addition to developing the costs for the basic aircraft, the incre-

mental costs of the various research options were also derived using the same cost-

ing methods. To provide visibility into the cost effects of each of the research

options, two cost increments were determined. These were: (i) the cost of the

basic vehicle resulting from incorporating the structural provisions to accept the

research package in the initial basic vehicle design and (2) the cost of develop-

ing and incorporating the research package as a field modification into the basic

vehicle. Furthermore, the cost estimating parameters for the scramjet and con-

vertible scramJet engine have been significantly modified.

(U) These costing refinements are presented in the following sections along

with a recap of the ground rules and assumptions used in the cost analysis.

3.6.1 (U) GROUND RULES AND ASSUMPTIONS - The following ground rules and assump-

tions define the framework within which the cost is determined. The basis for

their selection is two fold, namely, (i) to effect economy and (2) to establish

a basis for deriving the acquisition and operating costs. The majority of the

ground rules and assumptions appear reasonable and feasible within the scope of

past flight research programs.

(U) Ground Rules - Ground rules are those criteria specified in the work

statement and implied in the cost philosophy which were selected to develop the

flight research vehicle program costs. The ground rules used in Phase III are

essentially the same as those employed in Phase II and are as follows:

o Minimum cost-to-fly program (experimental shop approach similar to ASSET

program)

o Soft tooling

o Static and fatigue testing limited to element tests rather than full

scale models

o Limited reliability program

o "Zero Defects" program not employed

o Maximum use of existing equipment

o Maximum use of existing facilities

o Three flight research test vehicles in the program (similar to the X-15)

o A separate flight hardware airframe is provided for structural testing

I
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o Seven spare engine ship sets are allocated for configurations requiring

only one engine for both acceleration and cruise (for a total of lO engines)

o Five spare engine ship sets are allocated for configurations requiring

multiple acceleration and cruise engines (for a total of 40 engines)

o Five year operational test program

o The flight research program consists of 200 flights (similar to X-15
program)

o Limited pre-delivery flight test program

o All the research packages are installed at Edwards AFB

o All costs are in 1970 dollars and include allowance for prime contractor
earnings of lO percent

(U) Assumptions - Assumptions are defined as those criteria selected to aid

in the development of the flight research vehicle program costs. The following

assumptions were used in the development of the cost elements:

o The C-5A aircraft will be the carrier aircraft for the air launched con-
figurations

o Air launched configurations will be transported externally (pod) by the

C-5A carrier aircraft from the contractor's facility to Edwards AFB.

o HTO launched configurations will be ferried in the turbojet mode from the
contractor's facility to Edwards AFB.

o Air launched configurations will be transported by the C-_ carrier air-

craft from the recovery sites to the launch site (Edwards AFB).

o HTO launched configurations will be launched from Edwards or Holloman AFB.

o All air launched configurations will land at Edwards.

o Two C-5Acarrier aircraft will be assigned for transporting and launching
the air launched configurations.

o Maintenance/Repair of the flight research vehicles will be performed at
Edwards AFB.

o Air launched configurations will be launched from Cecil NAS (Naval Air

Station) and Eglin AFB for high Mach number tests and from Dyess, Holloman
and Perrin AFB for low Mach number tests.

o All vehicles will use their total propellant including reserves, during
each mission.

MCDONNELL AIRCRAIrr
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3.6.2 (U) MAINTENANCE/REPAIR COSTS - A significant change was made in Phase II! in

the derivation of the flight vehicle maintenance/repair cost, cost element 111-3 of

the operational cost category. In the previous two phases, maintenance/repair costs

were computed as percentages of the flight research vehicle's investment cost. i%ese

percentages varied with Mach number and ranged from 1.5 to 2.75% of the flight re-

search vehicle's investment cost per flight. However, in Phase III, a more detailed

approach was used to derive maintenance/repair costs. A refined approach was used in

Phase III in which the maintenance/repair costs were developed for each of the four

basic systems: namely, (i) airframe, (2) propulsion, (3) miscellaneous subsystems,

and (4) avionics. Costs were developed to reflect both material and labor costs and

are summarized in Figure 3-8.

(U) Maintenance and repair costs were significantly reduced in Phase III due

to the following criteria:

(I) No modifications will be performed on the basic vehicle other than those

planned for

(2) Well managed program.

(U) The basis for the methods were obtained from two major sources:

o MCAIR engineering estimates of spare requirements for the airframe components,

miscellaneous subsystems, and avionics shown in Figures 3-8 and 3-9.

o X-15 data presented in Figures 3-10 and 3-11 obtained from References (I0)

and (n).

(U) Mach 6 & 12 Vehicles - The sequence of steps employed in the development

of the maintenance/repair costs for the Mach 6 & 12 vehicles are presented in

Figures 3-12 and 3-13 and are discussed below.

(U) Step i: Airframe Material - Airframe material costs for items 2 and 3

shown in Figure 3-8 for the Mach 12 vehicle were derived on the basis of the number

of spares required, as obtained from Figure 3-9 and the cost per square unit shown

in Figure 3-8. For example, the number of sets of columbium alloy shingles, item

2A(a) in Figure 3-8, was based on the number of flights one set of shingles would be

expected to survive before replacement, which is 34 (shown in last column in Figure

3-9). Since each vehicle is scheduled to fly 67 missions, one set of columbium

alloy shingles is required per vehicle. The maintenance/repair material cost shown

in Figure 3-8 was developed from the following equation:

.20 x _ Airframe Investment Cost

(U) The Mach 6 vehicle does not have any shingles or leading edge surfaces that

have to be replaced prior to 67 flights, which is the number of flights allocated

per vehicle.

l
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(U) FIGURE 3-8

MAINTENANCE/REPAIR COST SUMMARY200 TOTAL FLIGHTS -3 VEHICLES

MAJOR SUBSYST_4S

I COMPON_{T AND

MATERIAL COST

A AIRFRAME MATERIAL

(ii Maintenance & Fepa_r

(2) Thermal Protection

(a) Shingles

Columbium Alloy

Tantalum Alloy

Subtotal

(3) Control Surfaces

(a) Columbium Alloy

(h) Leading Edges

(5) Expendables

(a) LemdlnK Skids

Tots/ Airframe Materla/

COMPONENT AND MATERIAL COST

(i) Engine Spare Ccaponents

(2) Miscellaneous Subsystems

(a) Fuel System

(b) A_U

(c) Englne Controls

(d) Instruments

(e) Hydraulics

(f) Electric_l

(g) ECS

Total

(3) Avi_ics

Total

(_) P_load

Grand Total Marl. Cost

IS LABOR COST

A AIRFRAME

B pROPULSION

C MISC. SUBS¥ST_

D AVIONICS

Grand Total Labor

GRAID TOTAL LABOR

& MATZ]_IAL COST

REFURBISHMENT COST

p_ FLIGHT

FLIGHT V_RICL£S

INVESTMEtlT COST

% OF PLIGHT VEHICL_

INVESTMENT COST PER PLIGHT

CONFIGUPATIC:_C

C233-I 1 C21O-I

,EHSUSANDS ,_F DOLLAP:C_

15,930 5,778

908

"3___/2

1,360

711

1,300

19,701 25578

8,375 9,104

700 903

3,600 2,6_

57 7_

975 1,257

250 58O

150 192

2,892 2,892

_,699

750 6k5

39,757(i] h_'_(2)

9,855 9,_50

2,025 2,700

675 _05

13,500(31 13,500(4)

53,257 '61,765

266 309

31538 _8,258

0.8_% 0.625

(i) 75% of Total Maintenance/Repair Cost

(2) 78% of Total Maintenance/Repair Cost

(3) 25% of Total MaintenLnce/Repair Cost

(4) _2% Of Total Maintenance/Repair Cos%

PASIJ

3 Sets Required for the C233-I Configuration

$500/Ib x 605 Ib x 3 Sets = $907,500

9 Sets Required for the C233-I Configuration

$600/ib X 80 Ib X 9 Sets • $h32,000

3 Sets Required for the C233-I Configuration

$500/Ib x 276 Ib x 3 Sets = $214,000

3 Sets Required for the C233-i Configuration

3 Sets x $500/ib 47h ib= $711,O00

197 Units Required for the C233-I Configuratlon

197 Units x STS/ib x 88 Ib= $1,300,200

Shl,880/Fli6ht for 3233-i Configuration

$45J20/Flight for C210-I Configuratlon

C233-I C210-I

2 Required, Unit Price - $350,000 $251,560

9 Required, Unit Price - h00,000 516,000

i Set Required, Set Price - 57,000 74,000

3 Sets Required, Set Price - 32_,000 hlg,000

3 Sets Required, Set Price - 150,OOO 193,300

3 Sets Required, Set Price - 50,000 64,670

3 Sets Required, Set Price - 100,000 129,000
Quantlties Obtained from Internal Estimates)

Sets Required, Set Price • $I,h26,000

Sets x 25% x $1,hh6,OO0/Set = $I,807,000

3 Sets x $50O,OOO/Set x 50% • $750,000 (C233)

:3 Sets x Sk30,000/Set x 505 = $2h5,000 (C210)
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(U) FIGURE 3-9

HYFAC AIRFRAME MAINTENANCE/REPAIR REQUIREMENTS

PROGRAM
STRUCTURAL CONSTRUCTION RELATED EXPERIENCE HARDWARE

COSTING BASIS

ELEMENT LAB COUPONS & PANELS EXPERIENCE NO. OF FLIGHTS

.010 TYPE GAGESSHINGLES

TITANIUM ALLOY

RENE 'kl

T.D. NiCr

COLUMB IUM ALLOY

TANTALUM ALLOY

CONTROL SURFACE

T.D. NiCr

COLUMBIUM ALLOY

NOSE

PENE '41

LEADING EDGE

T.D. NiCr

COLUMBIUM ALLOY

LA/[DING SKIDS

ABLATIVE COAT

HONEYCOMB-WELD

SINGLE-

FACED

CORRUGATED

SANDWICH

GAS TUNGSTE]

ARC WELD

RESISTANCE

WELD

ELECTRON

BEAM WELD

_'__ ELECTRON

BEAM WELD

.030 TYPE GAGE

SKIN STRINGER

(MECHANICAL)

SKIN STRINGER

(WELDED)

COOLED TO 1500°F

i" D.A. - .020 GAGE

SKIN STRINGER

SKIN STRINGER

COATED STEEL

AFFDL-TR-68-130

30 CYCLES @ 2200°F (MDAC)

AFFDL-TR-68-292

AFFDL-TR-68-210

MAC-RPT Ol_3 (I00 CYCLES

2bOO°F)

AF 33 (615)-3935,

BPSN 6(6313608-6240536h)

SAME

SAME

S_ME

SAME

SAME

F-4, GEMINI

GEMINI, ENGINE

COMPONENTS

FIN AND RUDDER PROGRAM

(MCAIH)

ASSET, BGRV

NONE

GEMINI

67

67

67

34

17

67

3h

67

67

34

I
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Air frame

(U) FIGURE 3-10
X-15 REFURBISHMENT COST

(Millions of Dollars)

Airframe Spares

Contractor Airframe Parts Repair

Airframe Engr. Support, Contractor

Shop Fabrication, Contractor

Shop Support, 3 Men, NASA

Engineering Support, NASA

Miscellaneous

Total

Propulsion STstem

YLR99 Engine Maintenance, USAF

Engine Component Spares

Engine Engr. Support, Contractor

Shop Support, NASA

Engineering Support, NASA
Miscellaneous

Avionics

Total

Instrumentation Maint., Contractor

Inertial Flight Data System Sup.

Shop Support, NASA

Engineering Support
Miscellaneous

Total

Miscellaneous SubsTstems

APU Unit Overhaul

Materials

Total

Grand Total

196____

Avg. Per Flight

1.334

1.287
2.482

0.011

0.O3O
0.026

0.060

5.230

0.200
o._oo
1.000

.030

.013

.030

1.673

0.040
0.220
O.010

O.013

0.010

O.293

0.092

0.092

196_ Total

7.288

.27O

0.870 2
1.030 2.

2.929 5.

0.041 O.

0.038 O.

0.040 O.

O.060 O.

5.008 i0.

0.200

0.921
0.092

0.025

0.020

0.030

1.288

0.026

0.220
0.012

0.020

0.010

0.288

0.133

0.001

O.13h

6.718

.210

.204

317
hll

o52
O68

o66

120

238

o.hoo
1.321

1.092

0.055

0.033

0.060

2. 961

0.066

0.4_0
0.022

0.033

0.020

0.581

0.225
0.001

0.226

14.006

Av__z_

i. 102

1.159
2.706
O. 026

0.034

0.033
0.O60

5 •120

0.200
O. 661

o. 546
o.o27
o. Ol7
0.030

i.481

O.033

0.220

0.011

o. o16
0.010

O.290

0.1125

0.0005

0.1130

7.00_

MCDONNELL AIRCRAIrI"
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(U) FIGURE3-11
X-15 REFURBISHMENTCOST

Airframe

1 ) Labor

2) Materials

Tot al

l) Labor

2) Materials

Total

Avionics

i) Labor

2) Materials

Total

Miscellaneous Subs_Fst ems

1 ) Labor

2) Materials

Tot al

Total Labor

Total Material

Total

Cost

MS

2. 585

2.645

5.230

i. 258

.415

1. 673

.293
--m

• 293

.092

.092

4. 228

3. O6O

i764
% of Total

49.43

5o. 57

i00.00

75.19
24.81

i00.00

I00.00

i00.00

i00.00

I00.00

58.01

41.99

Cost

MS

3.084

1.924

5.oo8

.355

.933

I. 288

.288

• 288

.133

•001

.134

3.860

2.858

1965

7.288 i00.00 6.718

% of Total

61.58

38.42

I00. O0

27.56

72.44

i00.00

i00.00

i00.00

99.25

.75

i00.00

57.45

42..55

I00.o0

Total Successful Flights - 59 (1964 and 1965)

Average Labor Cost Per Flight -

Average Material Cost Per Flight -

Average Labor and Material Cost Per Flight -

•137 M Dollars

.i00 M Dollars

.237 _ Dollars

I
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[TEM

HO.

I,

2.

.

4.

5.

6.

,

.

9.

10.

(U) FIGURE 3-12

ESTIMATING TECHNIQUE EMPLOYED IN THE

DERIVATION OF THE MACH 12 VEHICLE MAINTENANCE/REPAIR COST

ITEM

Materials

Airframe

a) Shingles, Control

Surfaces, Nose Cone

Leading Edges and

Landing Skids

b) Maintenance/Re-

placement Material

Engine

Miscellaneous

Subsystems
Avionics (Includes

Payload) ....
Total M_terial

Total Labor Cost

Labor

Airframe

Engine

Miscellaneous

Subsystem

Avionics and Payload

METHOD EMPLOYED BASIS

Cost of Spares Required

for These Components

CER

20% of Total airborne

investment cost based

on 200 flight program

CER

.002276 x Total Eng.

Inv. Cost

Cost of Spares Required

for These Components
Cost of Spares Required

for,,Thes e Components
Material Costs for Items

1 thru 4

CER

(150 men x $18,000/man-year

x _ years)

CER

73% of Total manpower

allocated for maint./

repair x $18,000 per man-

year x _ years
CER

15% of Total manpower

allocated for maint./

repair x $18,000 per man-

year x _ years
CER

5% of Total manpower
allocated for maint./

repair x $18,000 per man-

year x 5 years
CER

7% of Total manpower

allocated for maint./repair

x $18,000 per man-year x

5 years

MCAIR Engineering

Estimates (Fig.

3-8 & 3-9)

MCAIR Engineering
Estimate.

X-15 Data shown

in Fig. 3-11.

MCAIR Engineering

Estimates (Fig.3-8

MCAIR Engineering

Estimates (Fig.3-8)

MCAIR Engineering

Estimate and X-15

data.

MCAIR Engineering

Estimate and X-15

data.

MCAIR Engineering

Estimate and X-15

data.

MCAIR Engineering

Estimate and X-15

data.

MCAIR Engineering

Estimate and X-15

data.
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(U) FIGURE 3-13

ESTIMATING TECHNIQUE EMPLOYED IN THE

DERIVATION OF THE MACH 6 VEHICLE MAINTENANCE/REPAIR COST

ITEM

NO,

l.

ITEM

Materials

Airframe

a) Shingles, Control

b)

Surface, Nose

Cone, Leading

Edges and Landing
Skids

Maintenance/Re-

placement Material

lO.

2. Engine

3. Miscellaneous

Subsystems

4. Avionics

(Includes Payload)

5. Total Material

6. Total Labor Cost

7. Airframe

8. Engine

9. Miscellaneous

Subsystems

Avionics and Payload

METHOD EMPLOYED

No requirement for these

components

CER

20% of Total Airborne

Investment Cost Based

on 200 Flight Program
CER

.002276 x Total Eng.
Inv. Cost

Cost of Spares required

for these components

Cost of Spares required

for these components
Material costs for Items
1 thru 4

CER

(150 men x $18,000 per

man-year x 5 years)
CER

70% of total manpower

allocated for maint./

repair x $I8,000 per

man-year x 5 years
CER

20% of total manpower

allocated for maint./

repair x $18,000 per man-

year x 5 years
CER

3% of total manpower

allocated for maint./

repair x $18,000 per man-

year x 5 years
CER

7% of total manpower
allocated for maint./repair
x $16,000 per man-year x
5 years

BASIS

MCAIR Engineering

Estimate

X-15 Data shown

in Fi E . 3-11

MCAIR Engineering

Estimste(Fi_. 3-8

MCAIR Engineering

EstimAte (Fig. 3-8)

MCAIR Engineering

Estimate and X-15

data.

MCAIR Engineering

Estimate and X-15
data

MCAIR Engineering

Estimate and X-!5

data.

MCAIR Engineering

Estimate and X-15

data.

MCAIR Engineering

Estimate and X-15

data.

I
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(U) The item designated "maintenance and repair material" in Figure 3-8 includes

the material used for minor modifications, major and minor structural repairs and

scheduled and unscheduled maintenance and constitutes the largest material dollar

value of the total material cost.

(U) Step 2: Engine Material - Engine material component costs were derived

from the following equation:

.002276 x Total Engine Investment Cost

where: .002276 is the ratio of the engine material cost per flight to the total

engine investment cost based on the X-15 aircraft program.

The total engine investment cost of the Mach 12 vehicle is $18,400,000,

while it is $20,000,000 for the Mach 6 vehicle.

(U) Engine component material costs were derived on a cost per flight basis

using the X-15 background data presented in Figure 3-11. A total of 1.348 M dollars

was spent on engine components for the X-15 program for the years 1964 and 1965.
Ammortizing the total engine component cost of 1.348 M dollars over the number of

successful flights (59), the cost per flight of $22,847 was obtained. The cost per

flight was then divided by the investment cost of the X-15 engine ($10,040,000) to

obtain the fraction of the engine investment cost spent for material components per

flight which was .002276. This fraction was then multiplied by the engine investment

costs of the Mach 6 and 12 vehicles($20,000,O00 and $18,400,000) to obtain the mater-

ial component costs per flight of _h5,520 and $41,880 shown in Figure 3-8.

(U) Step 3: Miscellaneous Subsystems Material - Miscellaneous subsystem compo-

nent material costs were derived from the spares requirements and their associated

costs presented in Figure 3-8.

(U) Step 4: Avionics and Pa_load Material - The material costs for the

avionics and payload systems were derived from the spares requirements and their

associated costs presented in Figure 3-8.

(U) The quantities of airframe, avionics and miscellaneous subsystems compo-

nents required were obtained from internal and external sources based on F-4, ASSET,

BGRV, Gemini, Mercury, and X-15 data.

(U) Step 5: Total Material - Sum of material costs for the four basic systems.

(U) Step 6: Labor Cost - The total labor cost for the Mach 6 and 12 vehicles

was obtained by multiplying the number of NASA operations and maintenance personnel

estimated to be required (1_50 men) by the average annual salary per man ($18,000) by

5 years. A value of 13.5 M dollars was obtained for the total labor cost.

(U) Step 7: Airframe Labor Cost - The labor costs for the Mach 6 and 12 air-

frames were obtained by multiplying the total labor cost by 70% and 73% respectively.

A larger percentage labor factor was allocated to the Mach 12 vehicle than for the

Mach 6 vehicle because of the greater amount of wear associated with the Mach 12

vehicle. These percentage values were based on engineering estimates using X-15

data shown in Figure 3-11 as a background source.

MCDONNELL AIRCRAFT
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(U) Step 8: Engine Labor Cost - The labor costs apportioned to the Mach 6 and

12 engines were obtained by multiplying the total labor costs by 20% and 15% respec-

tively. The percentages used were based on engineering estimates. Since the turbo-

ramjet engine used in the Mach 6 vehicle is more complex than the rocket engines

employed in the Mach 12 vehicle, a larger percentage labor factor was allocated for

the Mach 6 vehicle than for the Mach 12 vehicle.

(U) Step 9: Miscellaneous Subsystem Labor - Labor costs attributed to the

miscellaneous subsystems for the Mach 6 and 12 vehicles were obtained by multiplying

the total labor cost by 3% and 5% respectively. The Mach 12 vehicle was allocated

the larger percentage for the same reason as was given in Step 7. Both percentage

labor factors were based on engineering estimates.

(U) Step i0: Avionics and Payload Labor Costs - A labor percentage factor of

7% was used for both the Mach 6 and 12 vehicles. This factor was based on engineer-

in_ estimates and was multiplied by the total labor cost to obtain the labor cost

associated with the miscellaneous subsystems.

3.6.3 (U) INSTALLATION PROVISIONS AND RESEARCH PACKAGES COSTS - The costs for

installation provisions and research packages were derived separately. Installa-

tion provision costs were derived manually while the research package costs were

derived by the same computer program used to derive the basic vehicle costs. The

differences in Defense Contractors Progress Report (DCPR) weight involved in the

basic airframe structure to provide the installation provisions were small; hence,

it was found to be more expeditious to compute these costs manually.

(U) The DCPR weights for the installation provisions were derived from the

respective weight statements. For a particular DCPR weight, a weighted material

density factor, a weighted production complexity factor, and a tooling complexity

factor were derived using the same parameters employed in the Phase II analysis.

The installation provisions DCPR weight was added to the DCPR weight of the basic

vehicle and the cost elements were derived in the following manner:

(U) Engineering - The engineering manhours for the new total DCPR weight were

derived using the Phase II parameters. From these manhours values were subtracted

the manhours for the basic vehicle, leaving the manhours for the added weight only.

The manhours for Airframe Engineering were then adjusted by the weighted material

density, for the added weight only, as was done in Phase ii and the total manhours

(Airframe and Subsystems) were converted to the price level using the Phase I!

parameters.

(U) Tooling - The Tooling manhours for the new total DCPR weight were derived

using the Phase Ii parameters. From these manhour values were subtracted the man-

hours for the basic vehicle, leaving the man_hours for the added weight only. These

manhours were then adjusted for the Tooling complexity introduced by the Advanced

Materials, which were derived for the added weight only, using the Phase II param-

eters. They were then converted to the price level using the Phase II parameters.

(U) Production - The Production manhours for the new total DCPR weight were

derived using the Phase II parameters. From these manhours values were subtracted

the manhours for the basic vehicle, leaving the manhours for the added weight only.

The manhours for Airframe Production were then adjusted by the weighted production

complexity.

I
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3.6.4 (U) SCRAMJET AND CONVERTIBLE SCRA/g/ET ENGINE COSTS - The scramjet and

convertible scramJet engine development costs were changed significantly in Phase

III from those employed in Phases I and II. In Phase III, 150 M dollars was used

for the scramjet development cost while 175 M dollars was employed for the con-

vertible scramJet development cost. These costs are for an engine module caoture

area of 14.3 ft 2 (1.33 m 2) as shown in Figure 3-14. A breakdown of these develop-

ment costs is shown in Figure 3-15 for the following elements: (1) engineering

design, (2) fabrication of test hardware and tooling, and (3) test program. The

development cost of the SJ engine was reduced 25 M dollars from that of the CSJ

engine to account for the more limited Mach number operating range. These costs are

derived from the AiResearch data presented in Section h of Volume V. The cost _f

ground test facilities for these two engines is also shown in Figure 3-15 (147 M

dollars). This cost is based on the E9 facility described in Volume IV, Part 2.

3OO

O_

O0

o 200
S

oz
_o
_._

_._

x i00

(U) FIGURE 3-].4

$] AND CS] DEVELOPMENT COSTS

0

i

0

Design

Fabricate Test Hardware

Test Pro_._./ CSJ

I i i I

20 40 60 £.t 2 80
I i I i I ,,, I I

i 2 3 4 5 6 2 7
m

Module Capture Area

(U) Investment costs for the SJ and CSJ engines are shown in Figure 3-16.

The investment cost for the CSJ was obtained from the AiResearch data prezented in

Section 4 of Volume V. The SJ investment costs are from the Marquardt hardpoint

data presented in Section 4 of Volume V.
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(U) FIGURE 3-15

SCRAMJET AND CONVERTIBLE SCRAMJET DEVELOPMENT COSTS

(Millions of 1970 DollarsX1)

Design

Test Hardware

Test Support

SJ

50

55

4A

CSJ

6O

65

TOTAL 150 (2) 175 (2)

Facilities lh7 147

(1)Through PFRT

(2)A c = 14.3 ft 2 (1.33 m 2)

I
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4. MACH 12 VEHICLE SYNTHESIS

(U) The basic Mach 12 air launched rocket vehicle is an all body shade and is

designed to provide a five minute steady state cruise capability at Math 12. This

vehicle is capable of conducting a broad scope of research. To expand the research

capability of the vehicle, the adaptability of various additional research options

by modification of the basic vehicle have been examined. The feasibility of initi-

ally designing the vehicle to contain structural provisions and thus accept such

research options has been confirmed. A vehicle initially desiKned in this manner

will provide the capability to obtain valuable test data in many interestin_ areas

of research.

(U) The vehicle configuration and general arrangement is illustrated in Figure

4-1. A summary of the vehicle capability and costs is Riven in Figure h-2. The

basis for these data is developed in the following sections.

(Page 4-2 is Blank)
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PRECEDING PAGE BLANK NOT FILI_D

(U) FIGURE 4-2

CHARACTERISTICS SUMMARY- MACH 12 MANNED, AIRLAUNCHED, ROCKET VEHICLE
Fixed Size

Configuration
Description

BasicVehicle

ScramjetOption

Convertible

ScramjetOption

TPS Option

ArmamentOption

StagingOption

HT0 Option

VTO Option

TurbojetOption

Performance

Time
Math

(Minutes)

]2 5

113 O_
10.7 5

11.8 0
11.1 5 _

12 5

10.3 5

Varies -
with

Weight
of Staged
Vehicle

7.6

8.7 0
6.9 5 _

0.8 Extended

Weight- Lb(Kg)

OWE TOGW

23,340 79,65O

(10,584) (36,]29)

29,309 69,200

(13,294) (31389)

30,798 52,300

(]3,970) (23,703)

23,6]31 79,923]

(10,710) (36,252)

28,0382 84,3482

(12,710) (38,300)

24,53e3 eo,84e3
(11,130) 06,672)

23,423 79,733
(]0,624) (36,166)

23,682 79,992
(]0,742) (36,284)

42,305 52,3054

(]9,]89) (23,725)

Acquisition
Cost

(Million

Dollars)

262

3135

3206

268

2727

276

273

277

294

I Includes200 Lb (91 Kit) Allowancefor TPS ResearchPackage

2 Includes3300 Lb (1497 Kg) Allowancefer Missiles

3 ExcludesWeightof StagedVehicle

4 Includes10,000L.b(4536Kg) Allowancefor JP Fuel

5 -Excludes$150MIL Engineand$147 MIL GroundFacility

6 Excludes$]75 MIL Engineand$147 MIL GroundFacility

7 ExcludesMissile Cost

Note: RamjetOption- DesignConceptOnly,WasDeveloped
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4.1 DESIGN REQUIREMENTS

(U) As a result of the Phase II trade studies,some revisions were made in the

design criteria and ground rules as noted in Figure 4-3. During the Phase II trade

studies, the baseline Mach 12 aircraft structure was protected from the thermal

environment by a passive insulation system. However, the results of the thermal

protection system (TPS) trade study showed a significant gain in aircraft perform-

ance using a water wick cooling system in the design. Therefore, for the Phase III

refinements, the basic Mach 12 aircraft incorporated the water wick TPS. Other

additions to complete the Phase III ground rules are described in the following

paragraphs.

(U) Propulsion System - One result of the Phase II trade study was that

using off-the-shelf engines permits a significant reduction in program costs.

This result was employed in Phase III, in that near-term engines were used for
both the Mach 6 and Mach 12 aircraft.

(U) Fatness Ratio - The study of vehicle "fatness", described in Section

2.4 showed that using a fatness ratio of 0.125 resulted in good structural ef-

ficiency and volumetric utilization as well as the best vehicle performance. The

Mach 12 aircraft incorporated a 0.125 fatness ratio for all the refinement studies.

(U) 0xidizer/Fuel Ratio - Selection of the O/F ratio of 6:1 used in the

Phase III vehicle refinements was described in Section 2.4 and was used for the

Mach 12 rocket aircraft.

MCDOItI_iELL AIRCRAIrr
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(U) FIGURE 4-3

PHASE III CRITERIA AND GROUND RULES FOR MACH 12 AIRCRAFT

Payload Weight

Payload Density

Design Limit Load Factor (nz)
Taxi

Structure (Maneuvering)

Thermal Protection

Dynamic Pressure

Convertible ScramJet Inlet Pressure

Landing Speed

Landing Sink Speed

LH2 Tank Pressure

LO 2 Tank Pressure

LH 2 Temperature

LO2 Temperature

Ullage, All Body Configuration

1500 lb (.68 kg)

20 lb/ft3 (320 kg/m3)

2.0g

5.0 g

3.5g

2500 psf (ll.9 N/cm 2)

100 psi (68.9 N/cm 2)

200 kts (103 m/sec)

20 fps (6.08 m/sec)

lO psig (6.9 N/cm 2)

25 psig (17.2 N/cm 2)

30°R (16.65°K Subcooled

163°R (90°K) Normal Boiling Point

2.5%

Tankage Concept Integral

Thermal Protection

External Surfaces

Allowable Heat into Fuel

Fuel Reserves, Isp Reduction
Rocket

Flight Research Program Time
Number of Research Aircraft

Test Time

Operational Life

Crew Compliment

Max Angle of Attack, Approach Speed

Max Angle of Attack, Flight Speed

Active Insulation (Water Wick)

i00 Btu/ft2-hr (31.5 watt/m 2)

1%

(I)
(1)

5 yrs. (157.8 Msec)

3

5 Minutes (300 seconds)

200 Flights

1

15 ° (.262 rad)

20 ° (.3h9 rad)

(i)

(i) Changes from Phase II ground rules.

MCDONNELL AIRCIBArr
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4.2 CONFIGURATIONS - BASIC AND VARIATIONS

(U) The fundamental objective of the design studies was to refine the basic

vehicle design and to examine the feasibility of building into the basic vehicle

structural provisions which would allow a simple adaption of various optional

research capabilities. The specific modifications _resented are not implied

as being the only approach to meet the stated objective, but rather, as being repre-

sentative of how a modification kit concept could be applied. Descriptions of the

various configurations studied and the structural concepts employed, including

structural arrangement and materials, are presented in the following paragraphs.

4.2.1 (U) VEHICLE DESIGN - Configuration B233 has been carried over from Phase II

of this study as the basic Mach 12 class vehicle and is designated C233 for Phase

Iii studies and refinements.

4.2.1.1 (U) Basic Vehicle Design - The basic vehicle is a manned, air launched,

all body shaped vehicle powered by five near-term RLI0-A-3-9 rockets.

(U) At the beginning of Phase III, parametric studies were continued in order

to improve the performance of the basic vehicle. The results of these studies,

previously discussed in Section 2.4, showed that improved vehicle performance was

obtained by using a fatness ratio of 0.125 and a rocket oxidizer to fuel weight

mixture ratio of 6. These features were incorporated in the aircraft and the

vehicle was performed and sized to provide a five minute steady state cruise capa-

bility at Mach 12. A drawing of the resulting aircraft is shown in Figure h-4.

Volume and wetted area curves for the vehicle are given in Figure h-5.

(U) The vehicle is air launched from the right wing of a specially equipped

C-5A launch aircraft. A basic wing pylon, Figure 4- 6, which picks up hard points

on the C-5A wing spars, also picks un three hard points on the upper surface of the

vehicle. The alternate pylon shown indicates the changes required to incorporate in

the basic pylon design an interchangeable capability for use with the staging con-

figuration option. Both designs maintain the same research aircraft ground clear-

ance when mounted on the C-5A wing.

(U) The basic pylon and basic Mach 12 vehicle are installed on the C-5A wing

between the fuselage and the inboard engine nacelle as shown on Figure h.- 7. The

close proximity of the research vehicle to the C-5A engine indicates a C-5A modifi-

cation will be required to carry a vehicle of this size. Two possible modifications

are an engine relocation or redesign of the landing gear and fuselage housing. The

engine relocation could be accomplished either by moving the engine pylon outboard

or by relocating the engine pylon combination to the uDner surface of the wing at

the original wing station. Figure 4--7 shows the relationship of the vehicle and

relocated engines with an unchanged landing gear pod. Either engine relocation

approach appears feasible and will provide adequate clearance. The C-5A Jet engine

wake impingement on the test aircraft is shown for C-5A idle power and takeoff

power and was taken from the C-5A Operational Planning Document, MER 400A, pub-

lished by the Lockheed-Georgia Company, Marietta, Georgia. The C-5A cruise power

Jet engine wake data at test vehicle launch conditions were not available. However,

it is Judged that sea level takeoff power Jet engine wake is the most severe con-

dition that is encountered during the test vehicle carriage and launching operation.

I
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PRISC-_ING PAGE BLA_N'_ NOT _T,._D2I) (U) FIGURE 4-5

MACH 12 VEHICLE

Wetted Area and Volume Plot

Sp = 813 Ft 2 (75.5 m2)

WettedAreas Ft2

Fuselage 1910

Tips 148
VerticalTails 351

Total 2409

m__[
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(U) Figure h-8 illustrates the change required in the landing gear housing

pod. The clearances are adequate but not as great as with the engine relocation.

The C-5 landing gear would require rearrangement and possibly reduction in quantity

of wheels. H, wever, this appears feasible, since the landing gear redesign would

be made for the specific mission of launching the research vehicle and would be

operated from hard surfaced airfields, thus resulting in an appreciable reduction

in the load-carrying requirement for the gear. Again, the idle power and takeoff

power C-5A engine wake velocities and temperatures are shown impinging on the test

vehicle. The impingement is more pronounced, but not considered damaging under

these power settings. The takeoff power setting of the C-5A is Judged the most

severe conditions during carriage and launch operations.

(U) Each redesign will require a structural analysis trade study of the C-5A

aircraft to determine the advantages and the most economical solution. It is recom-

mended that the engine relocation be investigated as the primary alteration as it

is expected to require the least modification to major structure.

(U) Fuel tank pressurlzation, crew life support systems requirements, and men-

eral electrical check-out and power requirements will be furnished by the C-5A

aircraft to the research vehicle prior to launch through the wing pylon.

(U) At Mach 0.8 and at 35,000 ft (1068 m) altitude, with the C-5A aircraft

heading toward the landing base, the research vehicle is released. After release,

the five rocket engines are ignited and the vehicle climbs to cruise altitude

and Mach number, where four of the rockets are shut down and the centerline

engine is throttled back for cruise flight. During the cruise period all flight

data are recorded on board and telemetered to ground stations along the ground

track. After five minutes of cruise flight, the propellants are deoleted and an

unpowered glide and descent is m_de. Energy management to achieve a high key posi-

tion over the landing site is accomplished by modulating vehicle L/D. A 360 degree

overhead approach to a landing is made.

(U) The aircraft windshield and canopy are integral with the cockpit whfch

raises and lowers as required during the flight. To withstand the high thermal

environment and aerodynamic forces during the acceleration, cruise and descent por-

tion of the flight, the cockpit is retracted. The cockpit is raised during the

final portion of the unpowered glide to permit the Dilot to make the approach and
landing visually.

(U) Along with a normal complement of avionic equipment, the vehicle will have

a 1500 pound (680.h kg) instrumentation payload which can be utilized in a manner

best suited for the particular research. Instrumentation electronics may be partially

replaced by addition of other equipment deemed necessary for the flight. Each

research option modification kit will probably require some alteration to the pay-

load to best utilize the test capability of the aircraft.

(U) The exhaust plumes from the outboard engines of the five RL10-A-3-9

rocket propulsion system expand so as to impinge on the vertical tail surfaces during

climb/acceleratlon. During cruise the outboard engines are shut down and the single

center engine plume does not impinge on any vehicle surface. When the plume meets the

(Page 4-16 is Blank)
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vertical tail surfaces, it is along the rudder/speed brake panels, which have

columbium shingle structure. Total temperature of the plume gas is about 2000°R

(llll°K) less than the Mach 12 cruise air temperature for which this surface was

designed. Thus the plume impingement does not constitute the critical temperature

load on this component. In the event that the plume flow gasdynamics (shocks,

boundary layer separation, etc. ) create local heat transfer problems, additional

thermal protection such as ablative coatings or a higher temperature capability
material such as tantalum may be required.

(U) While the engine concept employed as the basis for the study refinement

uses five RL10-A-3-9 rockets, another attractive option is also available using a

single J2S off-the-shelf rocket. This design alternative, illustrated in Figure

h-9, would require different structural load paths to redistribute the basic thrust

loads because of its large physical size and thrust. Either deep throttling or

engine pulsing would be required to achieve cruise flight. Roll, pitch and yaw

control are available through gimballing of the RL10-A-3-9 rockets; however, an

additional roll control system would be required for the J2S concept. Such control

requirements are only necessary for the vertical takeoff demonstration and possibly

during maximum altitude pull up and recovery demonstrations. Performance synthesis

for this alternate engine concept was not determined, but it is Judged that the
weight and cost differences would not be significant.

4.2.1.2 (U) Horizontal Takeoff (HT0) Option - The ability to takeoff and land

horizontally from conventional air fields will provide additional valuable research

on the subsonic flight handling and landing characteristics of hypersonic vehicle
configurations.

(U) The basic test vehicle is designed for air launch and therefore uses main

landing gear skids positioned well aft on the aircraft to minimize strut length and

to provide the best weight distribution on the landing gears and is not influenced

by the normal aircraft takeoff rotational requirements. To convert the skids

directly to a wheeled main gear would require that the main landing gear be moved

forward and lengthened. When retracted this would cause a reduction in fuel tankage

volume. The forward positioning and lengthening of the main gear would be necessary

to permit aircraft rotation and aft fuselage ground clearance during ground takeoff.

The fuel volume would be reduced because the longer wheeled gear occupies more

usable volume than the shorter skid gear. Thus an approach was developed that would
not result in a penalty to the basic aircraft.

(U) The approach adopted,as illustrated in Figure 4-10,is to use a dolly type

gear attached to the under side of the fuselage at predetermined hardpoints util-

izing remotely controlled disconnect pins. The wheeled dolly is rolled under the

Jacked up aircraft and the gear cradle is attached to the lower fuselage. The air-

craft is lowered onto the fixed gear and the skid main gear is retracted. The nose

gear strut is extended to compensate for the added main gear dolly height. The

main gear must be designed to permit landing of the aircraft on the dolly after

dumping excess fuel if the remotely controlled fasteners fall and the gear dolly
cannot be separated.

MCDONNELL AIRCRAirT
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(U) FIGURE 4-9

MACH 12 J2SCONFIGURATION OPTION

J2S Rocket Engine
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(U) Normal HTO flight sequence includes take-off, separation of the gear

dolly, completion of the required cruise mission, and landing on the vehicle's normal
skid landing gear. The separation and recovery of the main gear dolly can be

accomplished in many different ways. The one illustrated is based on a pilot oper-

ated system over a designated ground area. A parachute recovery system on the gear

dolly is initiated on positive separation of the dolly and aircraft. A ground

recovery team locates and returns the dolly for inspection, refurbishment and reuse.

The extended nose landing gear is held in the extended position until the _ear dolly

is separated from the aircraft. At this time the strut is returned to the normal

extended position and then retracted. Normal nose gear extension is used for land-

ing with the skid main gear.

(U) The other basic change required for HTO capability is replacing the basic

aircraft RL10-A-3-9 rockets with RL10-A-3-9A rocket engines with a lower expansion

ratio of 7.4 required for ground level operation. A thrust reduction is accepted

and results in a shorter cruise time. The fairing around the engines is replaced

with a different fairing to accommodate the short engine nozzles.

h.2.1.3 (U) Vertical Takeoff (VTO) Option - The vertical takeoff option offers

research capability for possible operational systems. The ground level operation

requires the low expansion ratio engines used on the HTO modification. The engine
fairings will be the same for both modifications.

(U) To accomplish VTO, ground handling facilities are required to position the

aircraft and restrain it in the vertical position until takeoff. One method of ful-

filling these requirements is illustrated in Figure 4-11. An actuated tilt launch

beam hinged on the edge of a rocket exhaust cooling/deflector system is placed in
the horizontal position. The launch cart, which is a multiroller saddle for the

lower surface of the aircraft, is fastened to the aircraft by six remotely con-

trolled attachment pins. A set of ground handling wheels fitted to the main gear

skids allows the aircraft to be rolled into position and aligned with the tilt beam

rail. The aircraft positioning cables are connected to the cart and the nose gear
strut is pumped up to level the aircraft with the tilt beam rail. The aircraft

positioning winch pulls the launch cart back along the tilt beam rail. When the

launch cart is fully engaged with the tilt beam rail, the skid gear ground handling
wheels are removed and the skid gear and nose landing gear are retracted. The air-

craft positioning winch now moves the vehicle along the beam until the aft end

engages the hold back pins on the vertical portion of the horizontal tilt beam.

The aircraft positioning cables are disconnected from the launch cart and stowed.

(U) The tilt beam actuator erects the tilt beam assembly with the aircraft

and locks it in the vertical position. The aircraft is held vertically by the tilt

beam assembly at the hold back pins and horizontally by the launch cart rollers in

the tilt beam rails. Vehicle fueling and pilot ingress would be accomplished with

the vehicle in the vertical position. Both of these operations would be accom-

plished by a gantry or elevator type ground equipment mechanism.

(U) The launch procedure is ignition of the rockets and at a predetermined

thrust level, nozzle chamber pressure or other desirable parameter, release of the

hold back pins. The rocket thrust moves the vehicle and launch cart up the tilt

beam and off to a vertical takeoff. The control system is required to gimbal

the outboard rockets for roll pitch,and yaw control during the climb out.

(Page h-2h is Blank) MCDONNELL AIRCI_Alrr
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(U) After the launch cart clears the launch tilt beam rail, the cart is

Jettisoned manually at the oilot's option or automatically at some predetermined

height. When cart and aircraft separate, a parachute recovery system is deployed

from the launch cart. After recovery by a ground crew the cart _ inspected and

refurbished for reuse.

(U) Cruise flight, approach and landing are the same as for the basic

vehicle.

4.2.1.4 (U) Convertible Scram_et (CSJ) Option - The research value of air breath-

ing hypersonic propulsion systems development makes this oDtion, illustrated in

Figures 4-12 and 4-13, one of the more important variations achievable with a Mach

12 vehicle. The convertible scramJet is designed to operate efficiently between

Mach 3.5 and Mach 12. Subsonic burning in the scramJet is utilized between Mach 3.5

and Mach 6 with a switch-over to supersonic burning from Mach 6 to Mach 12.

(U) The important parameters required for this modification are the proper

inlet ramp angles, correct exit nozzle contour and proper positioning of the engine

modules with respect to Mach number. The variations of these parameters will con-

stitute a major segment of the research program.

(U) The forebody fuselage angle has been established as described in Phase II.

This conic lower surface acts as the first ramp of the CSJ inlet. The second ramp

is fixed and established by angles from the CSJ inlet lip. The third and final in-

let ramp is variable and as the CSJ modules are raised or lowered,the ramp, hinged

on the forward end, follows the upper edge of the CSJ inlet cowl. The CSJ module

consists of a short section of fixed inlet, the combustion section and a fixed

portion of the expansion nozzle. The entire module is regeneratively cooled and

moves as a unit. The exit nozzle is a defined contoured shape on the lower surface

of the vehicle aft body. The first portion of the nozzle is hinged at the upper

edge of the CSJ module exit nozzle and telescopes into the fixed portion of the exit

nozzle when the engine module is actuated. The aft portion of this nozzle is fixed

and created by re-shingling the fuselage with differently shaped shingles and stand-

off supports.

(U) Figure 4-14 shows the CSJ module in its various operational positions and

Figure 4-13 shows the support and actuation method. The basic CSJ module is posi-

tioned in the retracted position at launch. The rocket engines boost the vehicle

through the transonic drag rise at Mach 1.0 and on up to Mach 3.5. At any time after

the transonic drag rise up to Mach 3.5 the CSJ is lowered into the initial low speed

extended operating position. The engine module forward actuators extend to rotate

the engine into a horizontal position at which time the aft actuators extend at the

same rate as the forward actuators and vertically translate the engine module to its

lowest position. The third inlet ramp follows the upper cowl lip by separately pro-

grammed ramp actuators. The movable portion of the exit nozzle follows the engine

exit nozzle by mechanical linkage. This engine module lower position will permit

operation of the CSJ engine with subsonic burning up to Mach 6.0. Although the

shock wave is not on the inlet cowl lip, the inlet efficiency is acceptable during

this subsonic combustion mode of operation. At Mach 8.0, the bow shock wave falls

on the engine cowl inlet lip and the four module actuators and the two third inlet

ramp actuators are programmed with reference to Mach number to maintain the "shock

(Page 4-28 is Blank)
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(U) FIGURE 4-I3

CSJ/SJ ACTUATION AND SUPPORT MECHANISM

AFT POSITIONING

THRUST AND DRAG ACTUATOR AND SUPPORT--_

LOAD LINKAGE /
FORWARD POSITIONING
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EXIT NOZZLE

/
/

THIRD INLET RAMP

HINGE

MOVABLE INLET

RAMP ACTUATOR--
MACH 12 CRUISE

POSITION

LOAD LINKAGE
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(U) FIGURE 4-14

CSJ/SJ OPERATING SEQUENCE

Rocket Boost or Descent Position

_D ,_=_-_, J_v

Mach 8 Position
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Mach 12 Cruise Position
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on lip" condition from Mach 8.0 to Mach 12.0. The four engine module actuators will

retract the module to achieve the required inlet conditions up to Mach 12.0. The

Mach 12 condition is the uppermost module position and is maintained for the cruise

portion of the flight to fuel depletion. At this time the third inlet ramp is in a

fully retracted position and the engine module forward actuators rotate the engine

cowl lower lip up flush with the third inlet ramp and effectively close the inlet

for the glide and descent portion of the flight. This is the initial retracted posi-
tion of the CSJ module.

(U) Figure h-13 illustrates the method by which the thrust, drag, vertical

and side loads are transmitted from the CSJ engine module to the basic aircraft

structure. Four scissors type linkages are used to transmit the fore and aft

loads and the side loads to the aircraft structure. Vertical loads are reacted by

the four actuators. The engine module rotation to the closed position is accom-

plished by aligning the aft lower actuator attachment points and a secondary hinge

on the thrust load linkages to form a hinge line for module rotation. The secondary

hinge point is the load pickup point and these linkages are not attached to the CSJ

except through this hinge point. When the module is rotated sufficient clearance

is maintained between the linkage and CSJ module to oermit rotation of the module to

the closed position. The forward side load linkage is compressed when the forward
actuators retract and rotate the module to close the inlet.

h.2.1.5 (U) Scram_et (SJ) Option - This option, Figure h-15A, is very similar to

the convertible scramJet option described previously. The primary difference be-

tween the two systems is that the scramJet engine has no subsonic burning mode and
therefore is used only between Mach 8 and Mach 12. The internal modules are dif-

ferent in that the combustion chamber is shorter and the exit nozzle contour is

optimized for the Mach 8 to 12 operating range. The number and location of fuel

spray nozzles are also different.

(U) Figure h-15B shows the exit nozzle contour change and the shortened module

length. The module and ramp actuators,scissors linkage load transfer system and

module pivoting for retraction are the same as for the CSJ. The vehicle must be

accelerated by rocket to Mach 8 before the SJ module is lowered for operation. The
engine will then accelerate to and cruise at speeds approaching Mach 12 on the SJ
alone.

h.2.1.6 (U) Thermal Protection System (TPS) Ootion - The basic approach for thermal

protection system testing is to provide a complete peripheral test bay in the area of

the forward fuel bulkhead as illustrated in Figure h-16. The test bay extends 3 ft

(0.gm)aft and 2 ft(O.6m) forward of the forward fuel bulkhead. Use of this bay pro-

vides simultaneous cryogenic and non-cryogenic testing of various types of TPS. The

bay is created by recessing the basic vehicle structure from 2.5 inches (6.35 cm) to

6.0 inches (15.25 cm) inside the vehicle exterior mold line. Continuous load paths

are maintained by tapering the structural shell over a 5 foot (1.53 m) section for-

ward and aft of the TPS test bay.

(U) The TPS test area has the basic vehicle thermal protection system as the

primary design. This TPS includes radiation shin_les, passive insulation, an air

gap and then a blanket water wick, which all are external to the basic structure.

(Page h-3h is Blank)
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Different insulations, shingles and/or purging systems can be installed in the test

bay. An equipment bay is provided above the forward fuel tank for special equipment,

various cryogenic reservoirs, instrumentation, etc.

(U) This peripheral test bay provides good flexibility in testing systems for

long periods of time. Actual environmental conditions are encountered and monitored

throughout the flight. All tests will be full scale actual hardware specimens sub-

Jected to the temperature, pressure and air flow environment in cryogenic and non-
cryogenic structural applications.

(U) An alternate TPS system investigated is illustrated in Figure h-17. It

consists of a detachable pod on the aft end of the fuselage. The pod has a flat

surface test table, as a continuation of the 4° lower shear forebody line, in the

high temperature, high compression area of the pressure field. The test table is

four feet (1.22 m) wide and eight feet (2.44 m) long and is actuated by four screw

Jacks to position the table and specimen to the proper depth for a flush moldline.

The aft fairing of the modification is designed for minimum base drag at low speed

and can serve as a storage area for cryogenic reservoirs, pumps, instrumentation,

etc. The test table would require flat specimens of the TPS to be tested and posi-

tioned on the table which may or may not be cryogenically cooled.

(U) Failure of any TPS in this alternate arrangement does not endanger the

vehicle, however, other tests, such as aerodynamic, lower surface thermodynamics,

convertible scramJet or scramJet options could not be performed simultaneously with

this TPS testing arrangement. The reduced testing flexibility of the pod system

appears less desirable than the peripheral test bay system.

(U) The research required to develop a reusable, easily refurbished TPS is

best accomplished by the peripheral test bay. Additional research into hot struc-

ture, passively insulated structure, protective coatings, etc, can be made on the

vertical fins, movable wing tips or a section of the nose cone.

h.2.1.7 (U) Armament Optio n - Applicable Mach 12 operational systems include
tactical military aircraft with armament dispensing capability. The approach taken

is illustrated in Figure _-18 and is based on the premise that the primary arma-

ment to be tested is the guided missile. No detailed consideration has been given

to other types of weapons.

(U) The basic vehicle modification consists of the addition of two 20-inch

(51 cm) diameter, aft opening, missile launch tubes. Current missiles probably

could not survive launching into a Mach 12 environment and a completely new genera-

tion of missiles will have to be developed for operational use. Aft firing launch

tubes appear to be the most feasible firing system under these conditions.

(U) The launch tubes are mounted In a thermally protected structure attached

to the upper surface of the vehicle basic structure. The basic water wick system is
maintained between the launch tubes and the vehicle structure although the vehicle

shingles are replaced with new contoured shingles to blend the launch tube contour

into the fuselage shape. The buried launch tube nose reduces vehicle wave drag and

provides a missile trajectory well above the engine wake and vertical fin structure.
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(U) Test missiles will vary in size. The launch tube as designed can accept

missiles 20 feet (6.10 m) long and 20 inches (51 cm) in diameter. The same physical

envelope will accommodate several variations of the basic modification, one 30 inch

(76 am) diameter tube, three 15 inch (38 cm) diameter tubes or a four bomb upward

ejecting bomb bay.

(U) The basic dimensions of 20 inch (51 cm) diameter and 20 feet (6.10 m) long

will permit most missiles to be tested. Missiles would preferably be reaction con-

trolled for this type of mission and altitude,but could be a finned type if the fins

do not exceed or can be folded within the 20 inch (51 cm) diameter. The initial

testing will be ballasted, motorless shapes for separation data only. A second test-

ing stage could include motor firings as retro-firing missiles for io_ altitude

targets. The final testing would require a target acquisition system and lock-on

CaDability for a fully operational guided,powered missile.

(U) All missiles would be designed to fit the 20 inch (51 cm) tube diameter

with sabots to center and support the missile in the launch tube. The inside diam-

eter or shape of the sabot will depend on the individual missile to be supported.

The forward sabot includes a gas generatinK cartridge and the aft sabot incorporates

shear pins. Each sabot is designed in multiple segments for separation after

missile launch. The launching is accomplished by firing the gas generating cart-

ridge in the forward sabot. The gas pressure builds up in the forward chamber and

exerts a force on the aft sabot shear pins. When the pins are sheared, the missile

moves aft and out of the launch tube. When the sabots clear the launch tube, they

separate and fall away. The missile motor can be started in one of many way_

electrical contact after shearing the aft sabot shear pins, radio signal, umbilical

cord or firing the gas generating cartridge can initiate a time delay fuse. The

type of guidance systems testing could begin with inertial systems and evolve into

the more complex laser, radar or heat guidance systems.

h.2.1.8 (U) Stagin_ (STG) Option - The staging option illustrated in Figure h-19

can provide data on vehicle separations similar to reusable booster operations by

properly scaling weight, inertia, air load and velocity parameters. Aerodynamic,

thermodynamic and dynamic information of this nature is of high research interest

as indicated by the research requirements analysis.

(U) The staging modification mounts an expendable second stage on the upper

surface of the basic vehicle. The second stage picks up the C-5A pylon attach

fittings on the upper surface of the basic vehicle and acts as a load carry through

to the C-5A pylon attachment fittings. The second stage will be structurally

capable of transmitting loads from the basic aircraft to the C-5A pylon.

(U) The second stage, being expendable, is made of aluminum with heavy con-

ventional stringer, skin and frame construction. The vehicle has instrumentation

and telemetering equipment aboard to record and transmit the required data. The

basic vehicle trajectory does not generate a thermal build up problem but sealing

between the vehicles is required. An ablative material is bonded to the basic

vehicle and seals the gap between the vehicles but is not bonded to the second stage

vehicle. Positive separation of the vehicles is achieved by using gas generating

cartridges and kicker pistons. This system is similar to shuttle operational con-

cepts currently envisioned. Continuing design studies may result in a different

(Page h-hh is Blank)
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concept being selected for the final design. Simulation of other staging systems

concepts could be equally well accommodated in the research vehicle. The physical

shape of the second stage vehicle, Figure 4-20, is of a representative all body

shape of approximately 50% of the basic vehicle planform and appears consistent

with present space transportation system study concepts.

(U) The proposed alternate C-5A wing pylon, Figure 4-19 will have a removable

section which will permit installation of a typical two stage vehicle on the

shortened pylon with adequate ground clearance.

4.2.1.9 (U) Subsonic Turbojet (TJ) Option - The purpose of the option, Figure 4-21,

is to examine the subsonic realm of operations with an all body shape. The initial

thoughts were to utilize existing turbojets for landing and horizontal takeoff

studies. The alternate configuration shown in Figure h-21 was feasible but the

mounting pylons are so large that the aerodynamics during landing and takeoff will

be altered sufficiently to make it unattractive. The primary arrangement with two

turbojets in a single nacelle on a short pylon with subsonic pitot t._pe inlets is

more attractive. The location of the fuel for conventional JP burning engines is in

the L02 tank on the vehicle center of gravity. This tank is designed for a dense

fluid, and only minor fuel system changes are required such as fuel lines and pumps.

A complete purge and insulation removal is required in the LO2 tank before the

bladder hangers or lacing fittings are installed in the cavity. The JP bladder type

fuel cell complete with pumps, shut off system and lines will be installed. The aft

location of the turbojet engines shifts the c.g. and ballast will replace payload.

To simulate the flight characteristics of the basic vehicle, idle pc_er will be used

for lauding and the HT0 landing gear dolly will be employed as a fixed landing gear.

h.2.1.10 (U) Ramjet (RJ) Option - Conventional ramjet engines did not integrate

well with the all body shape. Various configurations were studied in Phase I.

None of the potential operational systems studied utilizes a pure ramjet for cruise

power and the most predominate use of this propulsion is for missile systems using

small engines.

(U) This modification, Figure 4- 22, provides a flying test bed for various

size missile powering ramjets up to 20 inches (51 cm) in diameter with fixed or

variable inlets. Fuel for the ramjets is carried in the mock missile body or is

taken from the vehicles fuel supply. Instrumentation would permit gathering a full

range of data on the ramjet operation up to flight speeds in excess of Mach 6.

(U) The thrust line is well below the center of gravity of the aircraft but

the relative thrust from these engines is small and the effect is easily trimmed out.

(U) The lower surface flow field for the basic vehicle was estimated to be

sufficiently uniform that special diverters were not needed. It was recognized that

shock waves from the ramjet would impinge on the basic vehicle, resulting in local

heating rates that are higher than design values. At the Intended maximum test con-

ditions for ramjet operation (Mach 6 - 6.5), total air temperature and hence the

maximum surface temperature possible is consistent with the use of columbium shingles.

Since the aft lc_er surface on the basic vehicle does not require the use of colum-

bium shingles (see Figure 4-76), some re-shingling of the aircraft in this area may

be required.
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(U) FIGURE 4-20
REPRESENTATIVE SECONDSTAGE VEHICLE
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4.2.2 (U) STRUCTURAL ARRANG_WENT - The structural arrangement employed for the

basic Mach 12 aircraft and the changes required to provide for the selected research

options are discussed in the following paragraphs.

4.2.2.1 (U) Basic Vehicle - _ efficient, reliable, structure has been provided

for the basic research aircraft by use of an external thermal protection system

(TPS), cryogenic fuel tankage which is integral with the primary structure, direct

load paths, and efficient materials. Wherever practical, conventional materials and

state-of-the-art construction methods have been used to minimize cost and develop-

ment risks. The basic aircraft structure arrangement is illustrated in Figure 4-23.

Important thermal/structural details are described below.

(U) Since the Mach 12 research aircraft is an all-body configuration, the

fuselage is the major structural component. All major systems, except control sur-

faces, are located in the fuselage and all loads applied to the aircraft have a

direct effect on the fuselage design. The fuselage is of stiffened skin construction

with integral multi-bubble fuel tanks. Major bulkheads which separate the fuel tanks

and the cockpit enclosure are primary load redistribution members. Fuselage rings

are located at 12 inch (30.5 cm) spacing and major longerons are located at tank

bubble intersections. The rings and longerons are located on the external surface

of the fuselage skin. This provides a smooth internal tank surface for application

of the cryogenic insulation (discussed below). The longerons and rings support the

external TPS and have internal, interconnected passages for supplying the water

which is essential to the water-wick TPS operation. Longitudinal internal shear

webs connecting tank bubble intersections redistribute tank fuel loads, carry

primary fuselage shear, stabilize longerons, and serve as fuel baffles. Extensive

use is made of commercially available aluminum alloys in the fuselage primary

structure.

(U) Internal insulation and vapor barriers are used in all cryogenic tanks

to minimize heat input to the propellants and prevent cryo-depositing of air on the

external surface. A cross-linked Polyvinylchloride foam insulation is used in the

liquid oxygen tank and a Polyurethane foam insulation is used in the liquid hydro-

gen tank. The insulation, in the form of tiles, is bonded to the tank walls with

polyimide adhesives. A multi-layer FEP Teflon coated Kapton-H liner is used in all

cryogenic tanks to minimize leakage of propellants into the cryogenic insulation.

The use of a multi-layer system improves the reliability. Impregnation of the cryo-

genic insulation with propellants reduces the effectiveness of the insulation and

can lead to an increase in boil-off and cryopumping on the tank external surface.

(U) The fuselage primary structure is protected from the thermal environment

by a water wick TPS. This system is comprised of an external surface shingle used

to radiate heat energy back to the atmosphere, a layer of Dynaflex insulation

wrapped in a reflective foil, and an encapsulated water saturated silica blanket

attached to the primary structure. The water wick TPS details are shown in Figure

4-24 and its operation is discussed in Section 4.6. The shingle is a single faced

beaded sandwich with continuous supports at each longitudinal edge and along its

longitudinal centerline as illustrated in Figure 4-24. The shingles are designed

to carry only local airloads. Expanding Joints are provided at the shingle edges

to permit free thermal expansion and reduce thermal stresses.
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(U) FIGURE 4-24
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(U) Landing Gear - The main landing gear consists of a cantilever air-oil

shock strut and a landing skid. The gear retracts into the fuselage with the

skid flush with the external surface. The shock strut is designed to restrict

landing loads to no more than 3 g at maximum design sink speed. Material used in

the strut and support structure is a high strength steel while the skid is a super-

alloy, T.D. NiCr. The skid heats up during flight to temperatures approaching the

adjacent shingle temperatures. However, just prior to landing the temperature of
the skid is at a maximum of 700°F (6h5°K).

(U) Control Surfaces - The vertical tail, rudder, and movable tip controls

on the research aircraft are constructed of structural beams covered with thin

skin or shingles for local air load support. This hot structure concept was

selected based on previous MCAIR studies on "operational" hypersonic aircraft

which indicated that uninsulated control surfaces provide a combination of weight

and drag that give the best vehicle performance. The vertical tails are made of

T.D. NiCr and the rudders and movable tips are constructed of coated columbium alloy.

However, several options are available when selecting the type of construction and

the materials to be used on these surfaces. Figure 4-23 shows the general struc-

tural arrangement of one concept of the tips. The movable tip controls provide

an excellent test bed for research and demonstration of high temperature structure,

materials, coatings, and construction combinations. Redundant load paths for the

majority of the structure provides the opportunity to do structural testing with
high confidence in aircraft safety.

(U) Nose Cone - The nose tip temperature of 5100°F (2540°K), based on a nose

tip radius of 2.5 inch (6.35 cm), requires that it be fabricated out of a ceramic

material or a regeneratively cooled metal structure. There are no available struc-

tural metals that have a reusable capability above tantalum, which is limited to

3200-3400°F (2030-2140°K). One applicable concept is a ceramic cap made of a maze

of zirconia rods, blocks, and tubes held in place with zirconia binder. This concept

was developed for the ASSET program and is flight proven. The other option is the

"Q-Ball" type nose that is designed to be used as an attitude sensor. For the Mach

12 aircraft the Q-Ball is regeneratively cooled to a temperature that will allow

use of superalloy metal. The difference in weight or cost of these two available

concepts has only a negligible effect on the aircraft. The Q-Ball concept is in-

corporated in the research aircraft because of its attitude sensing capability.

4.2.2.2 (U) Structural Modifications (Research Options) - The arrangement of the

major structural elements and load paths of the basic aircraft have been selected

considering the modifications that would be adapted to the aircraft. Location of

major bulkheads and major longerons have been established to provide a sound

structure in the basic aircraft and to provide for ease of modification for in-

corporating the research options.

(U) Horizontal Takeoff (HTO) Option - The primary structural modifications

for this option are in the fuselage bulkheads,to which the dolly gear is attached,

and in the nose gear. Additional loading conditions for taxi and take-off require

local strengthening of the gear support. The 2.0 g taxi loads in combination with

gear reaction resulting from rocket gimballing yields a main gear load of about

175,000 lb (79,400 kg) which is greater than the landing load, should the air-

craft have to land with the dolly attached. The shift in gear load to a bulkhead

I
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further forward requires a major redesign of the bulkhead. Local fittings in

the fuselage structure for attachment of the main gear dolly will be designed

to withstand surface temperatures. The water wick thermal protection system will

be modified in the local area to compensate for the increased direct heat path.

The design loads for the nose gear and the nose gear support structure resulting

from 2.0 g taxi and horizontal takeoff at maximum design gross weight are less than

the design loads for landing. Thus, no weight increase is required to the nose

gear support structure for the HTO option. However, the strut length is increased

to increase the aircraft angle of attack for HTO and this does impose a strut weight

penalty.

(U) Vertical Takeoff (VTO) Option - Local modification of the fuselage

structure made for the horizontal takeoff dolly will suffice for the launch cart

support for the vertical takeoff option. The aft end of the aircraft will have to

be modified locally to support the aircraft while in the vertical position. A

forward support for the launch cart will also be added and will require redesign

of a bulkhead to support a design normal load of 20,000 lb (88,900 N).

(U) Convertible ScramJet (CSJ) Option - Structural modification of the

basic aircraft is confined to the lower surface between the forward edge of

the third ramp and the aft edge of the movable part of the nozzle. Study of

the flight profile showed that the critical design condition (i.e., highest

pressure) occurs during a 5.0 g maneuver at Mach 6, at an altitude of 90,000

ft (27.4 km). This condition results in the loads and pressure distribution

shown in Figure 4-25. The CSJ module design is based on the results of the

analysis and design studies conducted for a CSJ powered cruise aircraft re-

ported in Reference 8. The basic concept is regeneratively cooled structure

with both the coolant tubes and the structural frames made of T.D. NiCr. An al-

ternate concept, in which the T.D. NiCr frames are replaced by titanium frames

and water wick cooling system, weighs nearly the same for the research aircraft

mission requirements. However, the alternate concept would have a lower weight

if the design pressure requirements were increased. The module is completely

supported by links, hinges, and actuators which allow relative expansion be-

tween the module and fuselage structure while allowing vertical movement of the

module and restraining fore and aft and side inertial loads. A schematic is

sho_ in Figure h-13. The foreward and aft ramps are hinged and actuated to

cooled T.D. NiCr structures which have been shown to be the lowest weight (Ref-

erence (9)). There are, however, other available options since the surface

temperature is within the limits of refractory metals (tantalum alloys). Also

applicable are ceramic and ablative coatings on various metal substructures. The

loads from the ramps and module are transmitted to four major bulkheads which will

require redesign for concentrated loads.

(U) ScramJet (SJ) Option - Structural modifications to the basic aircraft

for the SJ option are very similar to those required for adaptation of the CSJ.

The load paths are the same; however, the magnitude and distribution of the pressure

loads are somewhat different. The maximum or critical pressure condition occurs at

Mach 8 at an altitude of 89,000 feet (27.1 km) during a 5.0 g maneuver. The re-

sulting loads and distribution are shown in Figure 4-26; however, the temperatures

occurring during this condition are somewhat less than the maximum design temper-

atures. Structure of the SJ module and the movable ramps are conceptually the same
as the CSJ module.
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(U) FIGURE 4-25
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(U) FIGURE 4-26
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(U) Thermal Protection System (TPS) Option - The section of the fuselage

provided for research on thermal protection systems can be used for a wide variety

of TPS concepts with no revisions to the primary structure because sufficient space

was provided between the moldline heat shield and the fuselage shell in the basic

fuselage design. Were this space not provided,a major revision in structure or a

moldline extension would need to be made for a thermal protection system with a
thickness greater than 1 to l-l/2 inches (2.54-3.8 cm).

(U) Armament (ARM)Option - Modification of the primary structure for addi-

tion of the armament package requires minor redesign of the major bulkheads for

the missile tube attachment. Primary considerations in modifying the structure

of the basic aircraft are the inertial loads of the missile tubes, missile ejection

thrust reaction, and internal temperatures. The inertial load is approximately

18,000 ib (80,000 N) and the thrust reaction from ejection of the missiles is

14,000 ib (62,200 N) which results in a missile/aircraft relative velocity of i00

fps (30.5 m/sec) at separation. This reaction is transmitted into the major longer-

ons through intercostals between major bulkheads.

(U) Staging (STG) Option - Modification to the primary fuselage structure

will not be required for the adaptation of a second stage. The major second stage

loads will be transmitted through the hardpoints provided for attachment of the

research aircraft to the C-SAlaunch vehicle. Separation forces at these hard

points are much less than the 160,000 lb (712,000 N) design load that results from

the C-SA taxi condition.

(U) Subsonic Turbojet (TJ) Option - Structural modifications of the basic

aircraft include redesign of the main bulkheads for the engine and inlet mounting

supports with two bulkheads requiring major changes. A revision of the lower sur-

face structure will also be required for the 30,000 lb (133,500 N) thrust reaction.

(U) The JP fuel used in the TJ engine is stored in the refurbished LO 2 tank

which does not require any structural change since the density of the JP and its

required pressure are lower than those of I/32.

(U) The modification made to provide horizontal takeoff capability will also

be required since the launch cart is also used for this option.

(U) Ramjet (RJ) Option - The ramjet thrust and inertial loads are carried

through the same supports and mounts that are provided in the SJ modification. The

loads are low and the modifications are considered structurally minor.
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4.3 AERODYNAMICS

(U) The aerodynamic characteristics for the basic Mach 12 vehicle and several

configuration options are presented in the following sections. Aerodynamic efforts

have been primarily directed toward accomplishing three Phase III objectives:

o Substantiation of the lift and drag values employed in vehicle performance

analyses

o Determination of the basic vehicle static stability and control character-

istics

o Analysis of the unaugmented handling qualities of the basic vehicle.

(U) The lift and drag characteristics employed in determining the performance

data presented in Section 4.5 are shown to be well substantiated by two additional

prediction techniques (Gentry and Harris Programs) introduced in the Phase III

analyses. Static stability and control characteristics for the basic vehicle,

both longitudinal and lateral-directional, are defined throughout the Mach number

regime. They show the aircraft to be statically stable and aerodynamically con-
trollable in all modes. A redundant three-axis control augmentation system will

of course be required to tailor handling qualities to the desired levels. However,

the unaugmented handling qualities for the bare airframe are sufficiently good in

most instances to assure a safe termination of the mission in spite of an inopera-

tive augmentation system.

4.3.1 (U) LIFT AND DRAG CHARACTERISTICS - The lift and drag coefficients employed

in the performance analyses of the Mach 12 rocket vehicles are defined as

CL = CLma

CD = CDo + L'CL2

where the lift curve slope (CLa) , the zero-lift drag coefficient (CDo), and the

induced drag factor (L') are determined as described in Section 3.2.1.

4.3.1.1 (U) Basic Vehicle - The values of L' and CLm utilized in the basic

vehicle performance analysis are shown in Figure 4-27, where they are compared

with the values obtained from the Gentry Arbitrary Body Program. The agreement

obtained substantiates the Phase II methods of predicting the values of L' and

CLa which are employed in determining the Phase III vehicle performance.

(U) The values of CDo employed in the performance analysis of the basic

vehicle are also shown in Figure 4-27. Also shown are the results obtained from

the Gentry and Harris computer programs. The Harris CDo values shown include

the same skin friction, base, and vertical tail toe-in drag contributions as

employed in the basic Phase II method of analysis since only wave drag is com-

puted in the program. The fuselage geometry employed as input data to the Harris

program is terminated at 96% body length to account for flow separation effects

as described in Section 3.2.1.
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(U) FIGURE 4-27

MACH 12 ROCKET
LIFT AND DRAG CHARACTERISTICS
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(U) The CDo values for the Gentry program include the same base and pro-

tuberance drag contributions as employed in the basic Phase II method of analysis

since these are unaccounted for in the program computations. Although there are

obvious differences in the three methods of computing CDo , the results indicate

that the Phase II drag method employed in the basic vehicle performance analysis

yields estimates substantially consistent with other accepted prediction tech-
niques.

(U) Figure h-28 presents the effect of speed brake deflection in terms of

CDs as predicted by the Gentry Program together with measured X-15 test

data obtained from References (12) and (13). A maximum 30 _ symmetrical outboard de-

flection of the rudder panels is employed for speed brakes on the vehicle. The pre-

dicted values compare favorably with the measured X-15 data. The speed brake ef-

fectiveness employed in the performance analysis is shown in Figure h-29 together

with the Gentry predictions for the maximum 30° deflection. To achieve the per-

formed values used in the mission studies described in Section 6, a deflection of

approximately 15 ° is required.

h.3.1.2 (U) Configuration Options - Using the same methods as employed for the

basic vehicle, estimated values of CDo were obtained for the various modifications

and are presented in Figure h-30. These values are employed in determining the var-

iation in vehicle performance to be expected when incorporating each of the config-

uration options studied. The values of L' and CLa are....assumed to be unchanged by
the addition of the various options to the basic conrzgura_zon, since the vehicle

aspect ratio is unchanged, and are therefore the same as presented in Figure h-27.

Performance changes due to aerodynamic effects are reflected solely by variation
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(U) FIGURE 4-28
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in CDo. Because of the small values of lift required in performing the design mis-

sions, the effects of induced drag are also small and the foregoing assumption is
valid.

_.3.2 (U) STABILITY AND CONTROL CHARACTERISTICS - The longitudinal and lateral-

directional static stability characteristics of the basic vehicle were obtained at

Mach numbers of 2.0, _.0, 6.0, 9.0, and 12.0 using the Gentry program. The longi-

tudinal static stability characteristics are presented in Figures h-31 through

h-35. The reference moment center employed is located at 53.h% of the body length.

Also shown on these plots are selected climb and glide trim points correspondinK
to an anticipated aft center of gravity location of 6h% length (see Figure h-102

for cg envelope). The delta tip controls are shown to be quite effective in pro-

viding pitch control.

(U) Figure h-36 presents a tabulation of the pertinent longitudinal stability

derivatives for the trim points illustrated in Figures 4-31 through h-35. They

were obtained from the Gentry analysis using a body axis system. They are utilized

in the dynamic stability analysis discussed in Section h.3.3.

(U) The variation of neutral point with Mach number for the trimmed vehicle

is shown in Figure _-37 for the design mission. It will be noted that minimum

static stability, approximately 1% of vehicle length, occurs during the climb at

a Mach number of 9.0 for the presently configured vehicle.

(U) The effect on the longitudinal static stability of symmetrically deflect-

ing the rudders for use as speed brakes is shown in Figures &-38 and h-39. An

0rthomat Plotter drawing of the vehicle with the speed brakes deflected 30 ° is

shown in Figure h-hO. The analysis indicates that the use of the rudders as speed

brakes is quite feasible inasmuch as the basic vehicle stability is not seriously

MCDONNELL AIRCRAFT

h-63



REPORT MDC AOO13 • 2 OCTOBER 1970
VOLUME 1"_ • PART 1

-4.0

(U) FIGURE 4-29
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(U) FIGURE 4-34
MACH 12 ROCKET

LONGITUDINAL STATIC STABILITY AND CONTROL CHARACTERISTICS
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(U) FIGURE4-36
MACH12 ROCKET

LONGITUDINALDERIVATIVESAT TRIM FLIGHT CONDITIONS
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(U) FIGURE 4-40
MACH 12 ROCKET

SpeedBrakes Deflected 300

6SB

affected and the rudders are quite effective in reducing the vehicle L/D as was

shown in Figure 4-29.

(U) Figure h-41 shows the lateral-directional static stability characteristics

of the basic vehicle. The symbols indicate the selected climb and glide trim points

previously discussed. These data indicate that the vehicle is essentially neutrally

stable directionally at Mach 12.0. The static directional stability can be in-

creased by increasing the size of the vertical tails or by increasing the vertical

fin toe-in angles. The design toe-in angle is 5 degrees. Figure 4-42 presents a

tabulation of the pertinent lateral-directional stability derivatives for the

selected trim points which are employed in the handling qualities analysis. These

were obtained from the Gentry program.
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(U) FIGURE4-42
MACH12 ROCKET

LATERAL-DIRECTIONAL DERIVATIVESAT TRIM FLIGHT CONDITIONS
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4.3.3 (U) HANDLING QUALITIES - The bare airframe handling qualities of the

basic vehicle were examined briefly to provide some insight as to the behavior of

the unaugmented short period characteristics. These conditions are for the bare

airframe and are therefore representative of a totally inoperative augmentation

system. The trim flight conditions indicated in the preceding section were utilized

in the analysis. The results are compared to the requirements of the current

military flying qualities specification, Reference (7). Although this specification
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is not directly applicable to a research aircraft, the Level 2 and Level 3 require-

ments of Categories B and C for a Class IV aircraft, as stated therein, are em-

ployed to provide a frame of reference. Briefly, the class, category, and levels
referred to are defined as follows:

Class IV High maneuverability airplanes such as:

Fighter/Interceptor
Attack

Tactical Reconnaissance

Observation

Category B Nonterminal Flight Phases that are normally accomplished using

gradual maneuvers and without precision tracking, although

accurate flight-path control may be required.

Included in this category are:

Climb

Cruise

Descent

Emergency Descent

Category C Terminal Flight Phases (takeoff and landing)

Level 2 Flying qualities adequate to accomplish mission flight phase,

but some increase in pilot workload or degradation in mission

effectiveness, or both, exists.

Level 3 Flying qualities such that the airplane can be controlled

safely but pilot workload is excessive, or mission effective-

ness is inadequate, or both. Category B and C Flight Phases

can be completed.

(U) Figure 4-43 shows the longitudinal short period dynamic stability char-

acteristics for the unaugmented vehicle. The undamped short period natural fre-

quency, mnso, is plotted versus the normal load factor per unit angle of attack,

NZ/a , and tBe short period damping ratio, _sp" While the frequencies are within
acceptable limits throughout the mission profile it will be noted that the damping
ratio is less than the Reference (7) standards at all flight conditions. Artificial

damping will of course be required. This is typical and expected for high speed

flight in the upper regions of the atmosphere.

(U) Figures 4-44 and 4-45 show the unaugmented lateral-directional character-

istics of the basic vehicle. The Dutch Roll characteristics are presented in Figure

4-44 where the undamped natural frequency, mnd, is plotted versus the damping ratio,

_d. The results indicate that the dutch roll damping for all but the Mach 2 con-

ditions is less than that required for Level 3 and will of course require augmenta-

tion. Since the roll-sideslip coupling (@/B) is small, the product of frequency

and damping ratio, _dmnd, need only be greater than zero to meet the Level 3 re-

quirement. This is accomplished throughout the Mach range with the Mach 2 climb

and glide points meeting Level 2 requirements.
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(U) FIGURE 4-43
MACH 12 ROCKET

LONGITUDINAL SHORT PERIOD DYNAMIC STABILITY
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(U) The roll-sideslip coupling characteristics produced in rolling maneuvers

are examined in Figure h-h5. These data indicate that the sideslip excursions,

ASmax, are within the Level 2 requirements and that the roll-rate oscillation,

Posc/PAV, exceeds the Level 2 limit only for the initiation of glide at Mach 12.

5.3.4 (U) TAKEOFF AND LANDING CHARACTERISTICS - The longitudinal static

stability and control characteristics at takeoff and landing speeds are shown in

Figure 4-h6. The longitudinal short period dynamic stability characteristics

are shown in Figure h-h7. Although the damping ratio is less than Reference (7)

standards at takeoff, it is quite acceptable for landing.
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(U) The lateral control characteristics at takeoff and landing speeds are

shown in Figure 4-48. The delta tip controls are shown to be quite effective

when deflected differentially to provide roll control. Since the tip controls

are also used for pitch control, when they are operated collectively, the amount

of differential deflection available for lateral control is a function of the

pitch control requirements. This sharing is most critical during takeoff and

landing when large control deflections may be required in both control modes.

Two differential deflections, lO ° and 20 ° , are shown in Figure 4-48. These will

provide ample lateral control power and at the same time reserve sufficient pitch

control deflections, -20 ° and -lO ° respectively, to trim out the lift required

for takeoff and landing (a = 15°). See Figure 4-46.

(U) FIGURE 4-48
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h.h PROPULSION

(U) In the course of the study it was determined that it was feasible to use

near-term engines developed from existing hardware for the Mach 12 vehicle. Use of

such engines to achieve the high performance desired, results in costs considerably

less than those required for new engines. Thus the vehicle performance objectives

were satisfied at high confidence and low cost with readily available engines. Two

valid propulsion systems were identified. One system would use five advanced P&WA

RLIO-A-3-9 rocket engines, the other would use a single advanced Rocketdyne J2S

rocket engine. For the basic vehicle the system with five RLIO-A-3-9 engines was

selected, in order to acquire the multiple-engine reliability, to facilitate throt-

tling to low thrust levels for cruise, and to permit roll control without adding

separate reaction system.

(U) Five propulsion system options were investigated to extend the research

capability of the basic vehicle. For all of these options, the basic rocket pro-

pulsion system is retained. Modifications to the basic vehicle permit incorporat-

ing the options and accomplishing further significant research for moderate addi-

tional costs. In the following paragraphs the propulsion system of the basic

vehicle is described, followed by description of the propulsion system research

options added to the basic vehicle. Figure h-h9 summarizes the operating regimes

of the various propulsion systems.

(U) FIGURE4-49
PROPULSIONSYSTEMSANDOPERATINGREGIMES
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Mach No.

*Ground take-off; all others air launched.
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4.4.1 (U) BASIC VEHICLE - The basic Mach 12 vehicle uses five LO2/LH 2 P&WA RLIO-

A-3-9 rocket engines, an advanced version of the RLI0-A-3-3 used on the Centaur

vehicle, with chamber pressure of 450 psi and mixture ratio of 6.0. The engines are

installed spanwise at the trailing edge of the vehicle in a horizontal arrangement.

The basic propulsion system is compatible with each of four vehicle options; namely

the Thermal Protection System, Armament, Staging and Ramjet options.

(U) Two candidate off-the-shelf rocket engines were available for this ve-

hicle: the advanced P&WA RL10-A-3-9 and the Rocketdyme J2S. Both engines were

investigated in Phase II and are described in Volume III. Either five RL10-A-3-9

engines or one J2S engine could be used to perform the nominal flight profile. How-

ever, factors other than performance were considered, as summarized in Figure 4-50.

Operational aspects such as throttling, vehicle stability/control, reliability, and

weight advantages point to the five engine, RL10-A-3-9 arrangement which was chosen

for the basic vehicle. The engine is identical in all physical aspects to the engine

described in Volume III: length, diameter, weight, chamber pressure. The Phase III

engine, however, operates at O/F = 6.0 to improve vehicle performance as discussed in

Section 2.h. The O/F ratio is held constant with varying throttle settings.

(U) Thrust and fuel consumption characteristics of the RLI0-A-3-9 rocket en-

gine are presented in Figure h-51. The minimum operating altitude increases as the

engine is throttled, because throttling is accompanied by reduced chamber pressure

and thus reduced nozzle exit pressure.

(U) FIGURE 4-50
COMPARISONOF ENGINE ALTERNATES
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(U) FIGURE 4-51
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4.4.2 (U) PROPULSION OPTIONS - Five research options to the basic vehicle propul-

sion system were investigated, to extend the research capability of the Mach 12

vehicle. All of these modifications retain the basic rocket propulsion system. One

of the options involves a change in the nozzle expansion ratio of the engines, to

permit sea level operation. The other modifications do not change the engines, but

add various airbreathing engines as additions to the basic vehicle. Figure 4-52

summarizes the characteristics of the propulsion systems for these vehicle options,

and Figures 4-53 through 4-56 show the propulsion system configuration details and

the installed engine performances. Figures 4-9 through 4-15 and Figure 4-21 depict

the overall vehicle arrangements of these configuration options.

4.4.3 (U) RESEARCH VERSATILITY - The Mach 12 vehicle as evolved has extensive po-

tential for accomplishing useful research associated with hypersonic airbreathing

engines. This potential is beyond that associated with the specific modifications

Just discussed. The excess thrust available from the basic RL10-A-3-9 rocket en-

gines permits research testing of a wide variety of advanced airbreathers. Poten-

tial research falls into two categories:

o Component research and development (inlets, burners, nozzles)

o System test and evaluation Mach 12 flying test bed

MCDONNELL AIRCRAIr'I"
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(U) FIGURE 4-52

PROPULSION MODIFICATIONS TO MACH 12 VEHICLE
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(U) FIGURE 4-54
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(C) FIGURE 4-55
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(U) FIGURE 4-56

INSTALLED PERFORMANCE OF THE SUBSONIC TJ OPTION
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The component testing would follow exploratory development on the ground. A sequen-

tial program would be involved: inlet first, then use the inlet in burner develop-

ment, finally use the inlet and burner in nozzle development. With successful

flight verification of the components, the complete propulsion system would be as-

sembled and proven in flight test. The capability of this vehicle to permit testing

in a high dynamic pressure environment with very large air flow rates is unique.

It is not available in any existing or currently-planned facility.

(U) For most of the specific engine sizes currently envisioned for potential

operational systems, the vehicle could be used to test components and systems as

large as approximately 50% of full scale. This size would be of significant bene-

fit in providing high confidence for development of advanced propulsion system

elements. For certain engines the vehicle could test full-scale systems, such as

the tactical missile engines illustrated in Figure _-22.

(U) Regarding the SJ and CSJ engines, considerable in-flight development is

anticipated due to the lack of ground facilities. In this endeavor all of the de-

fining geometry could be open to change, as shown in Figure h-57. Inlet ramp angles

and ramp lengths could be varied to effect performance trade-offs, as could nozzle

contours. The benefit of sidewalls on the inlet and nozzle, and of boundary layer

diverters, could be assessed. Likewise different combustor internal geometries

could be investigated. The result of this parametric effort would be the integrated

scramJet engine best suited to the research vehicle mission plus a significant data
base for operational systems.
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4.5 PERFORMANCE AND TRAJECTORIES

(U) The performance and trajectories for the basic vehicle and several con-

figuration options are presented in the following sections.

4.5.1 (U) BASIC VEHICLE - The design mission trajectory for the basic vehicle, as

defined in Section 2.3, is shown in Figures 4-58 and 4-59. The climb trajectory is

optimized for minimum fuel usage. The end-of-boost constraints were to achieve

Mach 12 at the equilibrium glide altitude corresponding to (L/D)ma x and a glide

path angle of 0 degrees. Three modes of unpowered glide following the five-minute

cruise are illustrated in Figure 4-59. Maximum range is provided by gliding at

(L/D)max. Minimum range will be obtained by deflecting the rudder speedbrakes

(_SB = 15 °) and reducing the angle-of-attack to 3°. Lower angles-of-attack will

result in a trajectory that exceeds the design dynamic pressure limitation of 2,000

lb/ft 2 (95,800 N/M2). The pilot can modulate the use of the speedbrakes to provide

a variation in glide range as required for energy management purposes. The third

mode of descent shown is a gliding turn performed at a normal load factor of 3.5 g

following the five-minute cruise. A descent to an altitude of 125,000 ft (38 km)

is required to provide sufficient dynamic pressure to achieve 3.5 g.

W-

(U)FIGURE 4-58
MACH12 ROCKET
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(U) FIGURE 4-59
MACH 12 ROCKET
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(U) The effect of trim stabilator deflections on glide range are shown in

Figure h-60 as a function of Mach number. The trimmed (L/D)ma x range capabilities,

based on Gentry data and assumed center of gravity locations of 6h% and 62% of body

length, are compared with the glide range achieved for the untrimmed (L/D)ma x

values determined by the basic Phase II methods. The more stable forward center of

gravity location requires more stabilator deflection for trim and therefore results

in a lower value of (L/D)ma x and less range. The small difference between the

trimmed and untrimmed range values indicates that trim drag losses are s_lall for

this configuration.

(U) The basic vehicle performance sensitivities to changes in vehicle physical

characteristics and flight environment were evaluated and are shown in Figures h-61

and h-62. OWE, propellant weight, rocket engine specific impulse, (L/D)ma x and CDo
are varied 10% in a direction that would reduce performance. The results are shown

in Figure h-61 in terms of the test time and test Mach number achievable. The sen-

sitivity of each parameter on performance can be determined by comparing to the

basic vehicle performance also shown in Figure L61.

(U) The effect of varying atmospheric conditions from the 1962 U.S. Standard

Atmosphere was also investigated. A Mil Std. 210 Tropical atmosphere was used in

the analysis. The changes in drag and pressure losses were found to be negligible

and the effects are insignificant relative to the basic vehicle performance. If

the vehicle were not air launched, these losses would be somewhat greater.
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(U) The effect of varying cruise altitude is presented in Figure _-62. In

this analysis, test altitudes lower than that required for equilibrium Mach 12

cruise at (L/D)max were selected. The cruise velocity is assumed constant and

equal to the velocity attained by the basic configurations upon attaining cruise

altitude. The required boost trajectories were optimized for minimum fuel usage in

each case. Figure 4-62 indicates the test time available when the cruise altitude

is lowered. The loss in performance indicated is the result of higher drag losses

associated with operation in the more dense lower atmosphere.

(U) FIGURE 4-62

MACH 12 ROCKET

EFFECT OF CRUISE ALTITUDE ON PERFORMANCE

Test Velocity = 12,690 ft/sec (3868 m/sec )

6 M = 12@ (L/D)ma x

Equil. Alt.

5 j
/

"" 4
E

t

E 3
-r,-

4-J
o_

2F-

./
/

/

]
0 ................................................'._/....... .........

120 124 128 132 136 140
Altitude @ Cruise Initiation _ 1000 ft

37 39404142 43
Altitude @ Cruise Initiation _Kilometers

(U) Typical power-off approach and landing characteristics for the basic

Mach 12 vehicle are shown in Figure _-63 in terms of flare altitude, time-on-final,

pre-flare approach speed, and touchdown velocity. The basic Mach 12 vehicle can

be operated within the boundaries shown which denote the envelope of satisfactory

pilot ratings (Cooper rating of 3.5) obtained in a MCAIR landing simulation study

(Reference (iT)) of power-off approach techniques. The preferred conditions indi-

cated correspond to the flight path for which the best pilot ratings were obtained.

h.5.2 (U) CONFIGURATION OPTIONS - The performance of the basic vehicle with in-

stalled configuration options to provide for the testing of various research con-

cepts is discussed in this section.
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4.5.2.1 (U) Horizontal/Vertical Takeoff (HTO/VTO) Options - The performance capa-

bility of the basic configuration when it is modified for ground launch in either

the horizontal or vertical takeoff mode is presented in Figure 4-64. Because of the

large back pressure losses associated with ground launched vehicles, the exhaust

nozzle expansion ratio employed for the 5 rocket engines is reduced from 32 to 7.L.

Engine Isp and vacuum thrust are therefore adjusted in the performance calculations

to reflec% these engine modifications. The performance results indicate that for

five minutes of test time, test Mach numbers of 7.6 and 6.9 can be achieved with the

basic vehicle when modified to operate in the horizontal and vertical takeoff modes,

respectively. In the vertical takeoff mode, vehicle control is provided by engine

gimballing. The HTO option has an additional use in subsonic research described in

Section 4.5.2.6.

(U) FIGURE 4-64

MACH 12 ROCKET HTO/VTO OPTIONS PERFORMANCE CAPABILITY
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4.5.2.2 (U) ScramJet/Convertible ScramJet (SJ/CSJ) Options - The performance cap-

abilities of the basic vehicle when modified to incorporate a scramJet or converti-

ble scramJet configuration were investigated employing the three flight paths and

four modes of engine utilization shown in Figure 4-65. In all cases the flight is

initiated from an air launch at .8M/35,000 ft (10,700 m) and the test time corres-

ponds to rocket-off cruise on the airbreather engine (SJ/CSJ) at (L/D)ma x equili-

brium altitude. The modes of operation and climb profiles employed are as follovs

and correspond to the alphabetical identification shown in Figures 4-65 and 4-66.

(A) Rocket boost along the rocket flight path (see Figure 2-3) to test Mach

number and (L/D)max equilibrium altitude.

I
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(B) Rocket boost along the rocket flight path to an altitude of 100,O00 ft

(30,500 m), constant altitude rocket acceleration to Mach 8; then either

(a)

or (b)

rocket plus SJ/CSJ boost along the airbreather flight path (Ref.

Volume Ill, Figure h-BO) to test Mach number followed by climb at

test Mach number to (L/D)ma x equillbriumaltitude.

SJ/CSJ boost (rocket-off) along the airbreather flight path to test

Mach number followed by climb at test Mach number to (L/D)ma x equili-

brium altitude.

(c) Rocket boost to airbreather flight path at Mach 3 (45,000 ft) (13,700 m),

CSJ boost (rocket-off) along the airbreather flight path to test Mach

number, climb at test Mach number to (L/D)ma x equilibrium altitude.

The available fuel volume for all versions is the same as that of the basic config-

uration. However, it was assumed that the volume could be proportioned as desired

between LO 2 and LH 2. This would require a variable tankage arrangement within the

vehicle.
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(U) The performance capabilities are presented in Figure h-66. For the modes

of operation investigated, the best performance is achieved with the CSJ providing

the acceleration and climb following a rocket boost to Mach 3. (Condition C) Op-

erating in this mode, the vehicle can provide nearly 26 minutes of cruise at a Mach
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number of 8, 5 minutes of cruise at a Mach number in excess of ii, and 0 test time,

Just reaching (L/D)max equilibrium altitude, at a Mach number of 11.8. By continu-

ing to accelerate along the airbreather flight path, rather than climbing to equi-

librium altitude, a Mach number of 12.3 can be achieved.

16

°r--

E

12
E

-r,-

I--

_ 8
I--

24 ! \' r

20 ....... _ B_-- .....

...... ._ ._._ ....

.... V--- V-"

,\

\ \

___ _ ......

i

_ !

(U) FIGURE4-66

MACH 12 ROCKET SJ/CSJ OPTIONS PERFORMANCE CAPABILITY

f ! ! ---T--]

.... "°
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7 8 9 I0 II 12 13 14
Test Mach Number

(U) The next best performance is achieved with the SJ/CSJ providing the accel-

eration and climb with, or without, rocket augmentation following a rocket boost to

Mach 8. (Condition B) In either case, i.e. with the rocket continuing to operate

throughout the climb, or shut down at Mach 8, results are essentially identical and

only one level of performance is shown. Approximately, 22 minutes of cruise time is

available at a test Mach number of 8, 5 minutes at a Mach number of 10.7, and

(L/D)max equilibrium altitude will Just be achieved with 0 test time available at a

Mach number of 11.5. If acceleration is continued along the airbreather flight

path, rather than climbing to equilibrium altitude, a Mach number of 12 can be ob-
tained.

(U) A third level of performance is obtained when the complete boost is ac-

complished by the rocket along the rocket climb profile and the SJ/CSJ is employed

only for cruise. (Condition A) Operating in this mode the vehicle is capable of

providing about 20 minutes of cruise at Mach 8, 5 minutes at a Mach number of 10.5

and 0 test time when equilibrium altitude is attained at Mach 11.3.

I
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(U) The performance levels achieved for the various modes of operation give

indication of the expanded test capabilities available to the Mach 12 vehicle. The

research potential of the basic aircraft will be significantly enhanced by the in-

corporation of these airbreathing configuration options.

h.5.2.3 (U) Thermal Protection System (TPS) Option - Modifications to provide for

the testing of thermal protection system options affect the basic vehicle perfor-

mance very slightly. No external configuration change is required and therefore,

the drag remains unchanged. Only the change in vehicle weight produces a variation

in vehicle performance. The effect on the basic vehicle weight due to this instal-

lation is an incremental increase of 273 pounds, (12h kg), or about 1% of OWE.

Figure h-61 (OWE weight sensitivity) indicates that for a constant 5 min. of test,

a 6.6% decrease in test Mach number results for a 10% increase in OWE. The per-

formance degradation for a 1% increase in OWE is therefore less than 1% and therer

fore negligible.

h.5.2.& (U) Armament (ARM) Option - The performance capability of the vehicle

when configured in the armament option is presented in Figure &-67. This option

requires a change to the upper fuselage moldline to provide an armament bay. The

performance effects resulting from the increased drag and weight associated with

this modification are shown in terms of test Mach number for a constant 5 min test

time in Figure _-67. The Mach number reduction from basic vehicle performance is

only 6% for the option alone (no missiles included). The effect of varying missile

weight is also shown.
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(U) FIGURE 4-67
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4.5.2.5 (U) Stage (STG) Option - Stage separation techniques similar to those

required for space transportation systems and recoverable booster operations can be

investigated by modifying the basic vehicle to accommodate an instrumented upper

stage. The performance capabilities of the STG option were investigated with re-

gard to attaining flight conditions at separation approximating those currently

anticipated for the space transportation system; 250,000 ft (76,000 m) and 11,500

ft/sec (3,500 m/sec). The maximum altitude trajectory that can be obtained for

separation studies without exceeding the basic Mach 12 vehicle thermal or structural

constraints during the recovery pullout is shown in Figures 4-68 and 4-69. Vehicle

angles of attack were arbitrarily limited to a maximum of 20 ° when the thermal load

factor of 3.5 was not constraining. The conditions shown in Figure 4-68 are for

the minimum STG option weight of 2,360 Ib (1170 kg). For simulation purposes, it

is desirable to vary the STG option weight and mass distribution. The effects of

va_jing the $TG option weight are illustrated in Figure 4-69 where the reduced

altitude and velocity at burnout are shown as a function of the upper stage weight.
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(U) FIGURE 4-69
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(U) To completely simulate the separation characteristics of a full-scale

system, it is necessary to duplicate the full-scale Mach number, Reynolds number,
and Froude number vith the scaled models, which in this case are the basic Mach 12

vehicle and the STG option. It is not possible to achieve all three similarity

conditions simultaneously. Of the three parameters, the Froude number, which

relates the vehicle mass and inertia forces to the air loads, is deemed the most

important insofar as separation characteristics are concerned.

Froude number = V_g 2

= --= --= SCALE FACTOR = SF

V2FULL_SCALE V2FS £FS
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If the centrifugal relief effects are neglected for simplification, the following

scaling laws apply:

VM = VFs(SF) I/2

PM (SF) 3 since V2 = W 2
WM = WFS PFS SC L P

PM (SF)5 since I = k2W
IM = IFS PFS

(k = radius of gyration)

These scaling relationships can be illustrated by an example. For instance, a

typical variation of the ratio of upper stage weight to lower stage weight (W2/W1)

is shown for a representative space shuttle concept during first stage boost in

Figure 4-70. The actual full-scale first and second stage weights are shown in

Figure 4-71 as a function of W2/W 1. A similar weight relationship can be provided
by the Mach 12 vehicle with the STG option as illustrated in Figure h-T1. Here it

is assumed that fuel will be off-loaded from the basic Mach 12 vehicle to achieve

the desired separation flight conditions at burnout and that the weight of the STG

option is adjusted to the value required as illustrated in Figure h-T1. The weight

scaling between the model and full-scale articles is also shown in Figure 4-71.

Using the numerical subscripts 1 and 2 to denote first and second stages respectively,

the weight scaling shown is based on the following:

wM (Wl+ w2)M
WFS (WI + W2)FS

WMl I1 + (w2/wl) 1
--_ I(Wl/W2)Fs+ 1]

= 22,538[_ + (w2)wl)_l]650,000 + (W2/WI)FS

i + (w2/wl)M w2
= .0377 (W2/Wl)FS + 1 (_I)FS

W2 W2 W2

= .0377 (_i-i)since (_I)FS = (_I-I)M

Knowing the geometric scale factor (SF) involved, the ratio of upper to lower stage

weights (W2/W l) at the separation point of interest, and the corresponding full-

scale velocity and altitude (Figure 2-70) permits the determination of the velocity

and altitude requirements for simulation. These are shown in Figure h-72 for

assumed geometric scale factors of 25%, 33%, and 40%. The recovery ceiling shown

I
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represents the maximum altitude from which the basic vehicle can negotiate a pull-

out without exceeding a 20 ° angle of attack, 3.5 g normal load factor, thermal

constraints, and design dynamic pressure limitations. The maximum velocity cap-

ability shown in Figure h-72 is computed on the basis of a full 14el load.
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(U) FIGURE 4-70

TYPICAL SPACE SHUTTLE BOOST TRAJECTORY
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(U) The mass distribution for the Hach 12 vehicle and the STG option must also

be the same as that corresponding to their full-scale counterparts.

h.5.2.6 (U) Subsonic Turbojet Research (TJ) Option - The capability of the basic

vehicle to operate in a subsonic research mode is desirable to provide for studies

involving low speed handling qualities relative to takeoff and landing performance.

Two concepts were considered. The first concept called for the addition of two

under carriage aft mounted turbojet engines (Figure h-21). These were to be uti-

lized in place of rocket power for subsonic investigations. However, because of the

rather poor simulation of the basic vehicle characteristics, high cost, and the

overall complexity of this design, an alternate concept appears much more attractive.

This alternate concept involves incorporating the horizontal take off option dis-

cussed in Section _.5.2.1. Operation in this mode will provide the takeoff and

landing capability and low speed research potential required.
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(U) Although normally air launched, the Mach 12 vehicle can perform horizontal

takeoffs and operate briefly at subsonic speeds when the HTO option is incorporated.

This configuration, when fully loaded with fuel, has the capability of performing

three rocket powered takeoffs and unpowered landings. The mission is accomplished

by employing a maximum performance takeoff, followed by an acceleration and climb

to Mach .8 at 20,000 ft (6100 m). During the climb a 180 ° turn is executed as illus-

trated in Figure 4-73 to intercept the downwind portion of a 360 ° high energy over-

head approach pattern. The engines are then shut down or throttled back to minimum

idle for the power-off glide to touchdown. A touch and go landing is performed and

the entire maneuver is repeated. This maneuver was investigated employing 2, 3,

and 4 engines, as well as all 5 available. Figure 4-74 presents a plot of the fuel

required to reach Mach .8 and 20,000 ft (6100m) as a function of the number of en-

gines employed and the TOGW. The use of all 5 rocket engines results in the least

fuel required to achieve the selected conditions.

(U) FIGURE4-73
MACH12 ROCKET

SUBSONICRESEARCHMISSION
40,000 ft

Climbing turn to 20,000 ft----7 _ X "_

(_ 100 m) /_ .
' / ! 30,000 ft _High energy 360 overhead

-_,140 _) approach path

( 'L \ /Accelerating climb to

_XI_ - , _A_/ Mach = 0.8

-" _ ,_._L_t_. /Take off

Cruise to \ J "_-/10,000 ft

intercept high \" _ / /(3,050 m)energy path "-
/

Ground track-- g turn
to landing

4.5.2.8 (U) Alternate Engine (J2S) Option - The J2S rocket engine is an existing

alternate propulsion system that can be employed to power the basic vehicle. It

was not selected as the primary propulsion system because the 5 RL10-A-3-9 rocket

engine arrangement appeared more attractive from several standpoints. Among these

are lateral control and longitudinal acceleration during boost, and throttling capa-

bility for efficient steady state testing during cruise. The multiple engine in-

stallation of the RL10-A-3-9 system will provide for lateral control when aerodyna-

mic control is insufficient, as for example during VTO operations. The large

thrust-to-weight ratio of the J2S will result in high longitudinal accelerations

whereas the selected engine configuration will provide a more favorable acceleration

environment for the pilot. During cruise, 4 of the 5 engines can be shut down with

the remaining engine throttled back to approximately 30% of full thrust providing

more efficient operation than that available with the J2S.
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(U) FIGURE 4-74
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4.6 THERMODYNAMICS

(U) An assessment of the local flow field has shown that the external flow

over the surface of the Mach 12 research vehicle is predominantly turbulent (trans-

ition based upon a value of 150 for the ratio of momentum Reynolds number to local

Mach number). However, aerodynamic heating rates are sufficiently low to allow

radiation cooling of external surfaces with extensive use of conventional and

superalloy materials and a small amount of coated columbium and tantalum shingles.

These material distributions enhance the performance capability of the aircraft,

allowing a normal 3.5 g maneuver at Mach 12, as well as recovery from a staging

altitude of 255,000 feet (78,000 m) at Mach 14.5 in performing stage separation

research applicable to current space transportation system concepts.

(U) The interior of the aircraft (crew, equipment, fuel, and structure) is

isolated from the external thermal environment by an active thermal protection

system (TPS). A water wick system which makes use of the integrated performance of

radiation cooled shingles, high temperature insulation, radiation barrier, water

evaporation, and cryogenic tankage insulation was selected on the basis of its low

unit weight, high volumetric efficiency and confidence in the attainment and reli-

ability of such a system.

(U) A ranking of research objectives by the scientific community has clearly

indicated the importance of re-usable TPS to future acquisition of operational hyper-

sonic systems. In addition, a number of specialists were contacted in order to

identify other potential thermal protection systems of interest and their ideas on

how the Mach 12 vehicle could be used in conducting research for such systems. As

a result, the selected approach provides a 5 ft (1.53 m) long, 6 inch (15.2 cm) deep

bay around the complete periphery of the aircraft plus adequate volume for storage

of associated equipment, expendables and special instrumentation. This option pro-

vides nearly unlimited flexibility to perform long term development and demonstra-

tion tests with full scale hardware. Both passive and active, cryogenic and non-

fuel systems can be subjected to the thermal and mechanical environment character-

istic of operational systems.

(U) Regenerative cooling studies show that the test engine sizes selected for

performing airbreathing propulsive research can be efficiently cooled (equivalence

ratio of one or less), using the liquid hydrogen fuel. Thus, flight test of research

vehicle engines will be a valid qualification for prototype and/or first generation

operational use.

4.6.1 BASIC VEHICLE

(U) Vehicle Temperatures - Moldline materials (shingles and insulation) for

the basic Mach 12 vehicle have been selected to be compatible with maximum temper-

atures anticipated for the flight profiles presented in Figure 4-75. No significant

change in moldline materials is required when the basic vehicle is reconfigured to

perform the various research options (TPS, propulsion, armament, staging, etc) con-

sidered during this study.
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(U) FIGURE 4-75

FLIGHT PROFILES FOR MACH 12 RESEARCH

(Basic Mach 12 Rocket Aircraft)
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(U) Maximum temperatures and corresponding shingle materials are presented in

Figure h-76. As showu by this figure, 79% of the surface experiences maximum tem-

peratures less than 2hO0°F (1590°K) permitting extensive use of conventional and

superalloy materials. 20% of the remaining surface area reaches temperatures that

are compatible with the use of coated columbium, and only 1% of the area requires

the use of higher temperature materials such as tantalum.

(U) Normal flight operations do not require maneuvering flight thus external

surface temperatures will be significantly less than the maximum design values pre-

sented herein. For example during a nominal Mach 12 test run the surface tempera-

tures are h00°F (h76°K) to 600°F (590°K) less than maximum design temperatures.

(U) Maximum surface temperatures (radiation equilibrium values with an emis-

sivity of 0.8) for non-stagnation regions were determined based upon the turbulent

heating correlation of Spalding and Chi. Upper surface and speedbrakes achieve

their maximum temperature during the minimum range descent at Mach ll.h and 107,000

feet (32,620 m). Lower surface and delta tip temperatures are a maximum during the

3.5 g turn, specifically at the Mach 12, ll0,000 feet (33,550 m) and 9 degree angle

of attack condition. Nose tip and leading edge heating rates, as predicted by the

Fay and Riddell correlation, are also a maximum at this 3.5 g turn condition.

(Page h-106 is Blank)
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The nose tip is a cooled superalloy Q-Ball attitude sensor of the X-15 type. It is

approximately 6.5 inches (16.5 cm) in diameter and will be subjected to a maximum

aerodynamic heating rate of ll0 Btu/ft2 sec (1.25 x l06 watts/m 2) at a wall temp-

erature of 1550°F (ll20°K). Tantalum leading edges (2 inch, 5.1 cm, radius) on the

vertical fins and delta tip controls will approach a maximum temperature of 3100°F
(1980°K).

(U) Thermal Protection System - Phase II tradeoff studies resulted in the

selection of an active TPS (water wick concept) to isolate the interior of the air-

craft from the previously defined Mach 12 environment. Even though external surface

temperatures experience large variations with vehicle location and flight conditions,

aluminum structural temperatures are uniform throughout the aircraft and nearly con-

stant (approximately room temperature) throughout the flight. The proposed system

takes advantage of the high heat of vaporization of water as a heat sink and the

Judicious u_age of surface coatings (_high external surface emissivity and low in-

ternal surface emissivities on both sides of a radiation gap). The combination of

high temperature insulation, radiation gap, and emissivity control significantly

reduces the heat transfer to the water, thereby resulting in an active cooling sys-

tem of low penalty in terms of weight and volume. The water wick system, is illus-

trated in Figure h-77 and indicates the heat flux distribution during steady state

Mach 12 cruise, for a typical lower surface, cryogenic fuel area. As indicated,

utilization of a high emissivity (0.8) coating enables 96.5% of the convective heat

flux to be radiated away. Of the 3.5% incident heat flux penetrating the high temp-

erature insulation, 3.25% is absorbed in boiling off water at the prevailing vapor-
ization temperature of approximately 80°F (300°K). 0nly 0.25% of the incident

heat flux passes through the primary structure and foam insulation to be absorbed

by the cryogenic fuel

(U) FIGURE 4-77
STEADY STATE THERMAL CHARACTERISTICS OF WATER WICK TPS

(Mach 12 Cruise)
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(U) As can be seen in Figure h-78, maximum structural temperatures (design

value of about 100°F, 311°K) upon landing are only 20°F (If°K) higher than the

steady state cruise temperature of 80°F (300°K). That is, even though the prevail-

ing vaporization temperature steadily increases during descent (2!2°F, 375°K, upon

landing), structural temperatures increase only slightly because of the compensatin_

decrease in the external heating environment.

(U) FIGURE 4-78
EFFECT OF INITIAL WATER BLANKET SATURATION LEVEL

ON MAXIMUMSTRUCTURAL TEMPERATURES
(3.5g FLIGHT PROFILE ONFIG. 4-75)
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(U) Even though the Mach 12 research vehicle is configured with a water wick

TPS, it can be used as a test bed for flight testing passive and active TPS con-

cepts for other aircraft and spacecraft (see Section h.6.2).

(U) A study was performed to determine the effect of initial water blanket

saturation level on structural (or fuel tank wall) temperatures. The heat pulse

imposed upon a representative lower surface location, during 5 minutes of Mach 12

cruise followed by a 3.5 g turn, was established. The system was sized to absorb

this heat load with a 30% safety factor in water weight. A design value of water

weight corresponding to 0.226 psf (i.i kg/m2) which represents a i00% blanket

saturation level was determined. As shown in Figure h-78, if the blanket is filled

to 70% of the design value or greater, sufficient water is available to absorb the

imposed heat load while holding the maximum structural temperature to about 100°F

(311°K). Figure h-78 shows the maximum structural temperatures that would be

attained from exposure to the same heat pulse with the blanket initially filled to

levels less than 70% of the design value. These temperatures were determined by

accounting for total evaporation prior to the conclusion of the heat pulse while no

consideration was given to heat transferred through the aluminum structure from the

dry area to adjacent areas where excess water exists. This latter effect would

minimize any locally sharp temperature increase. In the extreme situation, char-

acterized by a local absence of water in the blanket initially and no lateral heat

I
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transfer by conduction through the aluminum structure to adjacent areas, the struc-

ture conceivably could reach a local maximum temperature of h25°F (491°K) resulting

in permanent damage. If the blanket were initially filled to less than 38% of the

design value, structural wall temperatures in excess of 250°F (39&°K) result, which

in fuel tank areas is sufficient to degrade the cryogenic foam insulation. While

these effects are undesirable, isolated instances could be tolerated without cata-

strophic failure to the aircraft.

(U) Reduced test time effects at Mach 12 are reflected in Figures h-78 and

4-79. Three minutes of test time with structural temperatures not significantly

exceeding 100°F (311°K) can be achieved by filling the blanket to 52% of its design

saturation level. An initial saturation level of 37% is sufficient to absorb the

heat loads resulting from the boost, 3.5 g turn, and descent phases of the flight

profile (no sustained test time at Mach 12). Therefore, a reasonable learning

process associated with water refurbishment procedures could be tolerated, con-

sistent with normal flight test planning of gradually increasing test speed and

times to the design values. Figure h-79 depicts water requirements for 5 minute

test times at reduced speeds. Approximately 23% and h7% of the Mach 12 design

value of water would be sufficient to absorb the heat load associated with 5 min-

utes of testing at Mach 8 and Mach 10, respectively. Since the basic system is 30%

oversized, significant overshoots in speed could be tolerated. The 100% blanket

saturation level also permits extension of the allowable test time to more than 6

minutes at Mach 12.
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(U) FIGURE 4-79

RESEARCH CAPABILITY AS A FUNCTION OF INITIAL

WATER BLANKET SATURATION LEVEL

(3.51 FLIGHT PROFILE ONFIG. 4-75) 6

,ooo 
' t

70 ....

MCI)OItlItlILL AIRCRAI:T"

h-ill



REPORT MDC A0013 • 2 OCTOBER 1970
VOLUME_ • PART 1

(U) As mentioned previously, the above results are based upon the 3.5 g man-

euvering (180 degree heading change) descent of Figure 4-75. For those cases when

a head-on approach is possible (i.e., no 3.5 g turn), the descent will fall between

the two extremes, namely, the maximum range, (L/D)ma x glide, and minimum range,

speedbrake, descent defined in Figure 4-75. Following a minimum range descent path,

upon completion of a 5 minute Mach 12 test, results in a less severe (shorter)

heating profile and water blanket saturation level (see Figure h-78) than the 3.5 g

design case considered previously. The most probable head-on approach, that is,

a nominal descent, results in maximum structural temperatures that are approximately

50°F (28°K) higher than the results of Figure 4-78 and requires an initial satur-

ation of only 78% to limit the structure to 100°F (311°K). The most severe

(longest) heating profile occurs when the maximum range, (L/D)ma x glide, descent is

required. For this limiting condition, maximum structural temperatures are about

130°F (72°K) higher than the results of Figure 4-78 and a 93% water blanket satur-

ation level is required to limit the structure to 100°F (311°K).

(U) In summary, the results of this study show that the water wick system can

be oversized by 30% or more with a negligible effect upon vehicle performance.

This margin of safety enhances the vehicle design by allowing for growth capability,

unforseen emergencies, and incomplete filling of the water blankets. Concerning

the latter, it was found that initial water wick saturation levels would have to be

less than 30% of the design value to exceed a structural temperature of 300°F

(422°K), which is not an unrealistic design temperature for aluminum.

4.6.2 (U) CONFIGURATION RESEARCH OPTIONS - The thermal aspects of reconfiguring

the basic vehicle to extend its research capability are discussed below.

(U) Scram4et/Convertible Scram_et Options - Analytical studies were performed

to determine regenerative cooling requirements for the scramJet and convertible

scramJet test modules. The primary purpose of this study was to determine if the

test modules, once developed, could be applied to operational systems. Past

studies (Reference (18)) have shown that engine cooling has a significant impact upon

the design and operation of airbreathing cruise aircraft and hence it had to be

demonstrated analytically that the test modules could be efficiently cooled. For a

regenerative cooling system, where all of the fuel used as a coolant is available

for propulsion, the combustion equivalence ratio and the cooling equivalence ratio

must be equal. Therefore, to determine the operating point for a given vehicle, it

is necessary to match the coolant flow rate required to limit the temperature of the

regeneratively cooled surfaces with the fuel flow rate required to achieve the de-

sired thrust. Based upon results obtained from previous studies, for example,

Reference (18), a TD NiCr plate-fin heat exchanger (0.10 inch, 0.254 cm, square

core; 2200°F, 1480°K, maximum temperature) was selected as representative of the

cooling panels which will be employed on Mach 12 scramJet or convertible scramJet

engines. For such small core heat exchangers, overall cooling efficiencies of 80%

or better can be achieved. A value of 82% was used in obtaining coolant flow rates

during this study. As used herein, cooling efficiency is defined as the ratio of

actual to ideal coolant temperature rise. The ideal or maximum possible temperature

rise is that hypothetical case where the hydrogen temperature at the heat exchanger

exit is equal to the wall temperature. Although the research vehicle test modules

have more wetted area per unit capture _ea than some of the operational engines

studied in the past, they can still be cooled without exceeding an equivalence

ratio of 1.0 and a wall temperature of 2200°F (lhSO°K), as shown in Figure 4-80.
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This, then, results in efficient cruise economy and simulates operational system

usage. These equivalence ratios are for the 1 g cruise condition. The scramJet

and convertible scramJet test modules are retracted and inoperative during the man-

euver condition. The ramjet test module is not operated above Mach 6. Its equiv-
alence ratio is 0.5.

1.0

0.9

.2

0.8

.__

(U) FIGURE 4-80

PROPULSIVE RESEARCH/ENGINE COOLING REQUIREMENTS

(Mach 12, 140,000 Ft, 42,600 m)
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(U) The development of a regenerative cooling system will involve consider-

able testing activity. The two primary areas of attention are verification of

the hot gas heat transfer and thermal/structural performance of the heat exchanger.

Engine heating data would be obtained from scaled engine tests conducted in present

and planned wind tunnel facilities. Heat exchanger characteristics would be de-

termined by laboratory testing of full scale panels. Flight heating rates would

be simulated by the use of quartz lamps or other improved methods. Development of

a heat source capable of simulating a heating rate of 500 Btu/ft2 sec (5.67 x l06

watts/m2) has been initiated by McDonnell Aircraft. These panel tests would be

satisfactory for investigating manufacturing techniques, flow distribution, con-

trols, and performance.

(U) Although tunnel and laboratory testing are a necessary part of the scram-

Jet development cycle, present facilities cannot provide all of the necessary infor-

mation required for a proper assessment of the technical problems associated with a

MCDONNELL AIRCRAFT
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complete scramjet engine. The inlet, combustor, and nozzle should be tested as a

complete unit with actual hydrogen combustion to properly determine the complex flow

within the engine. Continuous operating times are required. Current tunnels cannot

provide simulation of the flow properties existing at high Mach numbers. The com-

plex shock boundary layer interactions may not scale properly from small scale models

to the full scale aircraft. Laboratory tests of full scale panels cannot account

for the inter-dependence of the hot gas heat transfer and the coolant side heat

transfer. The localized high heating rates due to shock interaction and combustion

phenomena cannot be duplicated in the laboratory panel tests. Thus, to insure suc-

cessful integration and operation of the complete engine cooling system, advanced

facilities (see Section 7 of VOLUME IV, Part 2) and/or flight test of a represent-

ative engine module is required.

(U) Thermal Protection System (TPS) Option - At the initiation of the

HYFAC program, and with the aid of the scientific community, research objectives

were identified to denote the areas where additional R&D effort is required to pave

the way for the acquisition of future operational hypersonic aircraft systems. A

number of research objectives, dealing with the development of reusuable thermal

protection systems were identified and were ranked quite high in importance. Al-

though much of the research required to develop such systems can be and would be

accomplished in ground facilities, final development and/or demonstration will re-

quire flight test.

(U) During Phase III, a number of specialists were surveyed and several thermal

protection systems of current interest were identified as noted in Figure h-81.

While not a complete list it does represent a rather significant cross-section of

different types of systems. The various vehicle modifications considered in order

to provide additional TPS research are indicated in Figure h-82. The recommended

option, (A), reserves a 5 foot (1.53m) long test section around the complete peri-

phery of the vehicle extending from 2 feet (0.61m) forward to 3 feet (0.92m) aft of

the forward LH 2 fuel bulkhead. The structure and tank wall were relocated in this

area to allow for a 6 inch (15.3cm) deep bay (external moldline to structure/tank

wall) for conducting TPS research. In addition, approximately 25 ft 3 (0.Tlm 3) of

volume is available on the upper surface immediately behind the test section for

storage of equipment, expendables, special instrumentation and controls. Two hundred

pounds (90.8kg) was considered an adequate weight allowance for the above provisions

and/or any changes relative to the basic system in conducting TPS research. Con-

siderations that lead to the recommendation of TPS option (A) are as follows:

o TPS testing capability in both cryogenic and non-cryogenic areas.

o Full scale testing with actual vehicle shapes, structure, loads, attach-

ments, gradients, etc.

o Exposure to actual variations in vehicle heating rates, i.e., lower surface,

sides, and upper surface.

o Capability of conducting TPS research throughout the program without re-

stricting vehicle operations or interfering with other research options.

This permits long term TPS tests of potential reusuable thermal protection

systems under actual operational conditions.

I
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(U) FIGURE 4-81
CONTEMPORARY TPS - RESEARCH APPLICATIONS
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(U) Other alternate TPS options that were considered include (see Figure

_-82).

o Replaceable nose cone - approach (B).

o Lower surface test panel - approach (C)

o Add-on TPS test package - approach (D)

Each of these alternate approaches may offer an advantage for conducting specific

TPS tests. For example, approach (B) may be preferred for conducting film and

transpiration cooling tests, whereas, approaches (C) and (D) which have a flat or

nearly flat &x8 ft (1.22 x 2._4m) test section may be preferred for screening

tests. Approach (D) would of course change vehicle aerodynamic characteristics

and preclude performing TPS and propulsive research on the same flight vehicle.

(U) In addition to its primary objective of conducting thermal protection re-

search, the TPS option provides a suitable test bay which could be used for con-

ducting boundary layer studies. For example, simultaneous measurements of heat

transfer and skin friction at controlled wall temperatures, boundary layer trip ex-

periments, and boundary layer surveys using retractable cooled temperature and

pressure probes.

(U) Stagin_ (STG) Options - A typical flight profile (from C-5 drop through

recovery of the basic vehicle) for performing staging investigations is presented

in Figure _-83. As shown in this figure, heating conditions for the simulated space

(Page 4-i16 is Blank)
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shuttle ascent are considerably lower than those experienced during the boost phase

for a nominal Mach 12 test flight. Because of these low heating conditions and

the relatively thick skins of the unmanned STG vehicle, skin temperatures will be

less than 200°F (367°K) at separation. Since these vehicles are designed as ex-

pendable boilerplates, no thermal protection of the STG vehicle is required and

conventional construction methods using lightweight materials such as aluminum or

fiberglass can be employed.

(U) FIGURE 4-83
FLIGHT PROFILES FOR SECOND STAGE SEPARATION RESEARCH
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(U) Although actual aerodynamic heating rates are low during the simulated

shuttle ascent, total air temperatures of the order of 7500°F (hh25°K) will be

experienced in regions where the flow is stagnated. As a precautionary measure to

insure against any overheating of the basic vehicle, an ablation fairing has been

added to prevent the possibility of locally high heating due to near total tem-

perature air flow in the gap between vehicles. As indicated in Figure h-83 no ad-

ditional thermal protection of the basic vehicle is required in that it can recover

without exceeding the design temperature limit.
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4.7 STRUCTURES

(U) A primary goal of the Phase III refinement effort was to identify struc-

tural concepts and materials for the research aircraft with ootential for satisfyin_

all operational and functional requirements with maximum reliability and minimum

development requirements. The structural concepts that meet these requirements in-

corporate maximum utilization of currently available materials which have a high

strength to weight ratio, a high toughness rating, and are readily fabricated. Ad-

ditional dominant considerations are weight, cost, methods of insoection, and ease

of field repair. Strength analyses conducted during this study and the results of

recently completed studies of similar vehicles were used as the basis for selection

of the research aircraft structural concepts and materials. The selected concepts

and materials do not necessarily represent the lowest structural weight, rather, they

are considered to provide low cost, reliable, conventional structure with high po-

tential for providing near minimum weight when optimized.

(U) A basic Mach 12 aircraft and several configuration options were considered

during the refinement studies. Basic configuration structural concepts and mater-

ials are described in this section. Aircraft components that received major con-

sideration were the primary fuselage structure, fuel tanks, thermal protection system

structural components, and control surfaces. Significant features of this vehicle

that influence structure selection are the all body shape, rocket engines, LH 2 fuel,

airdrop launch mode, and the cruise test speed of Mach 12.

4.7.1 (U) ENVIRONMENT - The aircraft structural design temperatures are based on

the flight trajectory shown in Figure 4-75. The maximum surface temperatures occur

during the 3.5g maneuver at Mach 12. Maximum design surface temperatures are shown

in Figure 4-76.

4.7.2 (U) LOADING CONDITIONS - Loads used for concept selection criteria are based

on the flight profile (Figure 4-75) and the loading conditions described in MIL-A-88_l

(ASG) and MIL-A-8862(ASG). These were used as a guideline in determining the design

loads used in Phase III evaluations. The loading conditions of greatest signifi-

cance are the ground loads during taxi (2 g), rocket engine gimballing during take-

off, landing at the design sink speed of 20 fps (6.08 m/sec), and the flight loads

during rocket boost (4 g longitudinal) and maneuvering (3.5 g at Mach 12 and 5 g at

low speed).

4.7.3 (U) MATERIALS - The materials used in the Phase III refinement were selected

on the basis of the following criteria: the material must (i) be capable of performing

• its design function, (2) withstand the expected structural loads, temperatures, and

acoustic environment for the vehicle's lifetime, (3) exhibit fabricability, and

(4) be presently available. Generally, when more then one material will satisfy

these requirements the selection criteria becomes minimum "system" cost which usually

means minimum weight of the structural element. Material and fabrication costs are

the significant factors in material selection when the choice is between alternates

of nearly equal weight. However, system cost analysis has shown that the reduced

vehicle cost resulting from lower structural weight is almost always more significant

than the cost difference between material options.
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(U) The results of a materials survey are summarily presented in the following

paragraphs which discuss the materials in relation to particular applications.

Relative tensi]_ and yield strength efficiencies of the competitive materials are

shown in Figures 4-84 and 4-85. These are indicative of the properties used in the

Phase III analyses• Comparison of these properties gives an indication of the

relative weight of equivalent structure. Additional material characteristics con-

sidered in the Phase III concept selection are shown in Figure 4-86.

(U) Selection of the materials used for radiation shingles and the high tem-

perature tails and control surfaces are influenced by the material "temperature

limits." For this study, "temperature limit" is defined as the maximum temperature

at which the material can perform its function in its specific application. These

limits have been estimated for material selection purposes as shown in Figure h-86.

(U) FIGURE4-84
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4.7.3.1 (U) Fuselage Materials - A variety of metal alloys are available for the

specific applications in the fuselage structure where the principal selection

criteria are strength, efficiency, and fabricability. Since long fatigue life and

high temperature capability are not major requirements, a broad choice of aluminum

alloys is available with an adequate variety of mill forms, tempers, and protective

surface treatments. Aluminum is preferred because of its cost and weight advantage

in low temperature applications involving compression or shear loading. Two par-

ticularly attractive alloys from the standpoint of yielding efficient lightweight

structure are 2024 and 7075. Titanium alloys such as Ti-6Al-hV and Ti-6A1-6V-2Sn

exhibit high strength-to-weight ratios up to about 900°F (755°K), have a sophisticated

level of fabrication technology and a history of successful hardware experience.

Ti-6A1-4V will be used where significant weight savings are achieved, compared to

aluminum, and where its high temperature capabilities are needed. Such applications

include highly loaded fittings, TPS support details, parts designed by tension

loading, and certain critical areas where the existance of heat shorts is possible

and would cause permanent damage to a lower temperature material. Very little

titanium is used on the Mach 12 vehicle.

I
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4.7.3.2 (U) Cryogenic Tankage Materials - Cryogenic (LH 2) tank material selection

is based upon weldability, corrosion resistance, strength, and toughness at both

ambient and cryogenic temperatures. The highest strength, weldable, commercial1_

available aluminum alloys are 2014 and 2219. The 2219 alloy has better weldabilit_

and greater resistance to stress corrosion cracking than 2014. The 2219 alloy would

be used in the T81 temper with alclad on one side, alodined, and treated with an

organic coating for maximum corrosion resistance. Titanium alloys Ti-5A1-2.5Sn ELI

and Ti-6AI-hV ELI exhibit higher stren_th-to-dens_t_ ratios than other candidate

alloys for cryogenic service and are weldable and corrosion resistant. However,

neither was selected because of the higher cost and the lack of conclusive exoeri-

mental data concerning the possibility of embrittlement by the environmental hydro-

gen. Inconel 718 has a strength efficiency comparable to that of 2219 alloy and is

weldable and corrosion resistant. However, the structure of Inconel 718 weighs more

than that of aluminum because the stability failure mode precludes the use of thin

gage design. Therefore, Inconel 718 was not selected. The 300 series stainless

steels do not compete sufficiently with 2219 alloy in terms of strength efficiency,

although they are weldable and corrosion resistant. Thus, the 2219-T81 alloy was

selected on the basis of low cost, adequate mechanical and physical properties,

and good fabricability.

4.7.3.3 (U) Heat Shield Materials - Sheet materials were evaluated for heat shield

applications to temperatures approaching 3000°F (1920°K). Considerations for selec-

tion included yield strength and stiffness efficiencies, temperature limitations

imposed by possible surface (oxidation), metallurgical and creep instabilities, and
fabrication characteristics. Ti-6A1-2Sn-4Zr-2Mo is the most attractive of the cur-

rently available weldable titanium alloys, which include Ti-6AI-hV and Ti-SAl-lMo-lV,

for reasons which include good strength retention, stability, and short time oxidation

resistance to about ll00°F (867°K). Rene' 41 has the highest strength-to-density

ratio of the superalloys for service to about 1550°F (ll5°K) to about 2h00°F (1590°K).

Although its strength efficiency is low at these temperatures, TD NiCr can be used

uncoated to about 2000°F (1377°K), whereas other suoeralloys _enerally are limited

to service below 2000°F (1367°K) even with oxidation resistant coatings. TD NiCr

cannot be fusion welded, but resistance weldinE and brazinE have been demonstrated.

Columbium alloys such as C129Y and FS85 show the best combination of material char-

acteristics from 2000°F (1367°K) to about 2800°F (1810°K). They also exhibit good

creep strength and are considered highly fabricable. C129Y has a hi_her strength-

to-density ratio than FS85, but costs more. Cb-752 also is comDetitive, but has low

elevated temperature creep strength. Tantalum alloys such as T-222 and ASTA? 811C

do not compete with columbium alloys in terms of strength efficiency, but do provide

a limited service life capability above 2800°F (1810°K) to about 2400°F (2140°K).

Refractory metal alloys can be electron beam and resistance spot or seam welded.

Both columbium and tantalum alloys require a protective coatin_ and have shown good

response to the Sylvania R512 series of fused slurry silicide coatings for oxidation
resistance.

4.7.3.4 (U) Control Surface Materials - Primary. applications for superalloys and

refractory metal alloys are on the vertical tail. In addition to the material candi-

dates discussed for heat shields in Section 4.7.3.3, Hastelloy X and Inconel 625

have application for components which are not as strength critical. Fabrication is

much less difficult with these materials than with Rene' 41. The movable surfaces,
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rudders and tip controls, require columbium alloys because of the high temperature.

C129Y and FS85, as on the heat shields, provide the most efficient structure.

_.7.3.5 (U) Non-Metallics - Non-metallic materials contribute to a relatively small

amount of the total weight of the aircraft, but have applications of major importance.

Some of the physical properties which describe the non-metallics are presented in

Figure h-87. Current optical materials, such as 96% silica glass, which is available

in flat panels for service to 2000°F (1367°K), can provide a more than adequate cap-

ability for the multi-glaze retractable windshield. The zirconia nose cap technolo_

developed for the ASSET vehicle would provide a limited service life capability to

about hl00°F (2530°K). High temperature insulations are required to protect the

structure from aerodynamic heating. Fibrous, powder, foam, and multi-layer foil in-

sulations were considered and Flexible Min-K was selected for service to 1800°F

(1250°K). Dynaflex insulation raadily conforms to complex shapes and because of its

low density is used where weight is a more important consideration than insulation

thickness. Flexible Min-K is less conformable. However, it is used most efficientl7

in applications with a restricted size envelope. Dynaquartz has a lower thermodynamic

efficiency, but has service temperature capability to 2700°F (1755°K). Sealed poly-

urethane foam insulation was selected for internal insulation in the liquid hydrogen

tank in conjunction with a laminated metallic foil/polyimide film (Kapton-H) vapor

barrier.

(U) FIGURE4-87
PROPERTIESOF NON-METALLICMATERIALS

Appli cat ion

Nose Cap

Windshield

_igh

Temperature
Insulations

Cryogenic

Insulation

Material

Maximum

Temperature
Limit OF (OK)

Zirconia hlO0 (2535)

96% silica 2000 (1367)

glass

FlexiSl_ 1800 (1256)
n-K

High Temp.

Flexible 1200 (922)
-K

Light Weight )

Dynaflex 2700 (1755)

Polyure- 250 (39h)
thane foam

Density
ib/ft3 (kg/m3)

27O (h320)

136 (2180)

Thermal

Conductivity

Btu in ( Joule )
hr-ft-°F (_--_K)

7.5 (1.08) 1

13.7 (1.97) 1

16 (256) 0.5 (0.072) 1

8 (128)

6 (96)

2 (32)

o:_6 (0.066) 2

2.31 (0.332) 3

0.12 (0.017) h

Specific Heat

Btu/ibOF (__oule)
(kg-°-_)

0.158 (656) 1

0.306 (1288) 1

0.27 (I130) 1

0.26 (1090) 2

0.27 (1130) 3

0.30 (1255) 4

1 Mean Temperature = 1600°F (II&3°K), Ambient Pressure

2 Mean Temperature = 1000OF (811°K), Ambient Pressure

3 Mean Temperature = 2000°F (1367°K), Ambient Pressure

Mean Temperature = -200°F (1440K), Ambient Pressure
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4.7.4 (U) CONCEPT COMPARISON - The following paragraphs discuss a comparison of

the alternates available for primary structure, including tankage and the heat shield

element of the thermal protection system.

4.7.4.1 (U) Fuselase Structure - Selection of the structure for the fuselage is

highly dependent on the choice of the thermal protection system used. If no external

TPS were used, the structure would reach temperatures of 2500°F _164C°K) to 2800°F

(1810°K) on the lower surface and require a coated columbium alloy. Protecting the

structure with a passive insuulation can reduce the structural temperature to any

level desired down to about 200-250°F (367-394°K). Trade studies on a variety of

aircraft configurations and missions show that when oassive insulation is used, the

performance is most improved by reducing the structural temperature to less than

800°K (700°K), which allows use of efficient titanium structure. When the dssi_n

mission requirements are considered, that is the relatively short (5-minute) cruise

at Mach 12, the least vehicle weight is realized by reducin_ the structural temp-

erature to 250-300°F (394-422°K). At this temperature both aluminum and titanium

are candidates. Application of an active TPS such as water wick will reduce the

structural temperatures to less than 200°F (367°K) thereby Dermitting either titan-

ium or aluminum structure.

(U) In addition to temperature, the aircraft fuselage structure selection is

most influenced by the loading level (inplane and normal) and geometric considerations

such as curvature, cutouts, and load path direction changes. Also influencing the

selection is the tankage/structure/thermal protection system combination. Concepts
considered were:

o Ring stiffened skin with longitudinal stringers - aluminum

o Ring stiffened skin with longitudinal stringers - titanium

o Single faced corrugated sandwich - aluminum

o Single faced corrugated sandwich - titanium

o Double faced corrugated sandwich - titanium

o Honeycomb - titanium face, aluminum core.

(U) Parametric analysis based on room temperature properties shows that stiffened

skin concept is limited to stress levels of about 75% of that of the sandwich struc-

ture concept because of the local instability mode of failure. The aircraft will,

however, employ both the stiffened skins and the sandwich conceots. The sandwich

structure will be used in the areas where the structure consists of larzer panels

uninterrupted by cutouts, whereas the stiffened skin concept is more efficiently

used in areas where there are cutouts, load path interruptions, and load redistri-

butions. A comparison of the single faced sandwich with other forms of sandwich

structure has shown that double faced corrugation, honeycomb, and single faced corru-

gation sandwich all result in nearly the same weight for this application (Figure

4-88). Single faced corrugation sandwich, however, is slightly lighter than either

honeycomb sandwich or double faced corrugation sandwich. Material comparison on

the single faced corrugated sandwich showed titanium to be slightly lighter than

aluminum.
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(U) General and parametric analyses show no specific trend on which to base

the selection of one of these options. Detailed analysis on each specific struc-

tural element is required to select the best combination of material and construction

concept. Such an analysis is beyond the scope of this study. However, history of

cost data shows titanium structure is about twice as expensive as aluminum. Since

both materials satisfy the functional requirements and are nearly equal in weight,

aluminum has been selected as the fuselage structure for costing and weight estim-

ation.

4.7.4.2 (U) Tankage - With the insulated structure concept, the option is provided

to use either integral or non-integral tanks. Integral fuel tanks, in which the

tank structure is also used to carry primary airframe loads, have a definite advan-

tage when the tank pressures are low, since the airframe, when designed for bending

and torsion loads, has an inherent capability for pressure loading. When the tank

pressures are high, a cyiindrical shape yields the lightest weight. However, this

usually doesn't match the aerodynamic shape of the fuselage. In this case, a non-

integral tank would have a weight advantage even though two independent structures

are required. The inherent pressure capability of the primary structure is depend-

ent on the size and shape of the fuselage and the design load factor requirements.

The basic aircraft has a large non-circular fuselage cross section which would,

under normal design, yield low pressure capability. For this reason the multi-

bubble integral tankage is used, since it offers the low weight advantage of cylin-

drical pressure vessels and retains the desired fuselage shape. The tank wall and

the webs at the bubble intersection are constructed of single faced corrugated alum-

inum.

4.7.4.3 (U) Heat Shield - The thermal protection system considered for the basic

aircraft, as a result of the Phase II trade study, employs a radiation shield. Of

all the elements of the TPS (i.e., heat shield, insulation, coolant, vapor barrier,

coolant distribution system), the heat shield presents the greatest structural

challenge and highest weight element. There are over 2000 ft (18.58 m 2) of surface

area on the aircraft that will be protected by some type of heat shield (Figure

4-76). Thus, a minor increase in weight of the shield would result in a significant

change in aircraft weight.

(U) The primary requirements of the shield are to radiate heat energy away

from the aircraft, protect the insulation system from airflow, and act as an aero-

dynamic surface. To satisfy these, the shield must be made of a material with

a high temperature capability and high emissivity and have structural capability to

transmit airloads at the elevated temperature.

(U) The study made for this application showed that a honeycomb sandwich panel

supported on four posts and a single faced corrugated sandwich panel supported on

two longitudinal edges and restrained in the center are very competitive, Figure

4-89. For normal loads at the elevated temperature, the honeycomb shield yields

the lowest weight and the smallest direct heat path to the substructure. When

used on a rapidly accelerating aircraft (e.g., rocket acceleration on a minimum

energy path), the thermal gradient through the honeycomb is about twice that of the

single faced corrugated sandwich. Figure 4-90 shows the thermal gradient for each

concept through the design mission. The high gradient of the honeycomb could result

in a thermal deflection as high as twice that of the single faced corrugation. The
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single faced corrugation, because of its lower gradient and geometric difference,

can be designed to have a lower thermal stress level. This has made the single

faced sandwich a more practical design than the honeycomb and, therefore, was

selected as the basic concept.

(U) FIGURE 4-89

HEAT SHIELD COMPARISON

HONEYCOMB

cm)

SINGLE FACED CORRUGATION

.008 in (.0204 cm)

_ cm

Material - T.D. NiCr

Density - .306 ib/in 3 (8.48 g/cm 3)

Design Temp. - 2200°F (1477°K)

Design Pressure - 3.0psl (2.06 N/cm 2) limit

@ Elevated Temperature

Brazed

Four Post

.62 (2.95)

.34 (1.62)

.n (.57)

.09 (.43)
•15 (.71)

<.62)
1.45 (6.9o)

I
Construction

Support

Weight-lb/ft 2 (g/cm 2)

Face Skin

Core

Edging

Attachments

Braze Matl.

Non-Ogtimum (10%)

TOTAL

I

--- E.B. Welded

--- Continuous End

z.00 (4.76)

.o9 (._3)

.29 (1.38)

1.52 (7.2_)
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h.8 PROPELLANT SYSTEMS

(U) The propellant system is designed to make maximum use of existing

cryogenic system technology, adapted to horizontal flight operation with redundancy

in critical elements. The result of this approach is a high confidence system

design. Redundancy is provided for critical flow system elements (such as boost

pumps, pressure regulators, and main flow distribution valves) to insure flow sys-

tem integrity in the event of any single component failure. These redundant areas

are noted in Figure 4-91 which illustrates major system functional elements and not

final system detailed design.

(U) Other safety features include vapor and fire detection/suppression systems

in conjunction with provisions for emergency propellant dumping in both the launched

and unlaunched condition. Proposed vehicle options do not require any major pro-

pellant system changes except for the J2S propulsion option. In order to provide

sufficient propellant flow significant increases in component size are necessary,

but these enable reductions in manifold complexity.

(U) FIGURE 4-91

PROPELLANT SYSTEM SCHEMATIC

ij'LH 2 LO 2 LH 2
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(U) A notable safety feature is the lack of need for top-off propellants in

the C-5A during the air-launched flight operations. Because subcooled LH 2 is used,

the boil off encountered with normal boiling point propellants during both ground

and airborne holds is eliminated. Instead the heat leak is absorbed by a bulk

fluid temperature rise. Previous air launched research aircraft have experienced

difficulty during propellant top-off operations while attached to the launch air-

craft.

(U) In Phase II the use of subcooled hydrogen was determined to be both

technically feasible and economically desirable. Significant performance gains are

possible without an attendant penalty in either airborne or ground systems. Other

related advantages of subcooled operation identified in Phase II include reduced

tank pressure, decreased ullage, and improved loading and ground hold procedures.

(U) The propellant system is comprised of the following major subsystem/

operational areas :

o Tankage

o Inter-tank Distribution

o Pressurization

o Feed System

o Boost Pumps

o Engine Feed

o Dump

o Safety Provisions

o Ground Support and C-SA Interface

o Flight Vehicle Options

Locations of the major system components and launch vehicle interface are shown in

Figure 4-1 for the basic flight vehicle.

4.8.1 (U) TANKAGE - The fore and aft internally insulated LH 2 tanks are connected

by two vacuum insulated lines to accommodate gravity transfer from the forward tank

to the aft tank. The aft LH 2 tank is the primary feed tank. LO 2 is contained in
the center tank located over the aircraft's cg to minimize cg travel.

(U) Pressurization systems for both the LH2 and the L02 tankage are shown

schematically in Figure 4-91. Liquid hydrogen, tapped off the high pressure

side of the rocket engine pumps, is heated to approximately 600°R (333°K)

and fed to the tankage at a regulated pressure of l0 psig (6.89 N/cm2). During

periods such as ground hold, rocket start up, and descent, wherein autogenous

gaseous hydrogen (GH2) is not available, gaseous helium (GHe) is used to pressurize

the LH2 tankage to a positive 2 psig (1.38 N/cm2). The helium is stored at 3000
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psia (2065 N/cm2) and at LH 2 temperatures by immersing the storage bottles in the

aft LH 2 tank. Autogenous gaseous oxygen (GO2) is used to pressurize the LO 2 tank
during rocket engine operation. An alternate method for pressurization is the use

of a full time CHe system. For the LH 2 tankage, use of GHe results in a small

weight increase due to its higher gas density, as compared to GH 2. For L02 tank

pressurization, a slight reduction in weight can be realized, less than 100 lb

(h5.4 kg), but the increased cost of pressurant and helium storage requirements will

more than offset this weight penalty.

(U) Other tankage system features not shown in Figures _-i and h-91 include

baffles to control sloshing, continuous monitoring and point level propellant

quantity probes, and other pressure, temperature, and flow control/sensing instru-
mentation.

h.8.2 (U) FEED SYSTEM - The propellant feed system, provides the necessary pro-

pellant flow and inlet pressure schedule to the rocket engines. Design NPSH for

the RL10-A-3-3 turbopump are 17.1 psia (ll.8 N/cm 2) and 27.9 psia (19.2 N/cm 2) for

the LH 2 and LO 2 pumps resoectively. These conditions were also assumed to apply to

the RL10-A-3-9 engines. This NPSH must be supplied by either increased tank pressure

or a boost pump. Incorporation of boost pumps provides the required pressure rise at

minimum weight penalties to the aircraft. Locations of these pumps are dictated by

the effective tank low points during boost and cruise. For the LH2 system it is
necessary to provide a different set of pumps for each flight phase. During boost

the large pumps, located on the aft bulkhead parallel to the thrust vector, provide

the necessary flow. During cruise or rocket engine idle, the smaller pumps, posi-

tioned at the tankage low points for horizontal flight conditions, are utilized.

LH2 boost pumps are not required in the forward tank. Acceleration forces are suf-

ficient for transfer to the aft tank during boost and normal gravity forces are

sufficient during cruise. For emergency dump conditions a single boost pump is

provided in the forward tank as gravity forces are not sufficient for high dump rates.

For the LO 2 feed system only a single set of boost pumps is required. These are

mounted on the lower portion of the aft LO 2 tank bulkhead. Dual boost pumps have

been incorporated in both systems to provide the degree of reliability necessary

to insure the capability of maintaining air worthiness in the event of a single

failure, each being capable of total flow demand. Submerged LH 2 cooled electric

motors drive the LH2 boost pumps while GHe purges the electric motors that drive

the L02 boost pumps. Turbine driven boost pumu_ w_re investigated as alternate

approaches but penalties were incurred in terms of increased complexity and weight
due to the necessity of routing hot gas lines to the tur0ine drives and an increased

number of tank wall penetrations.

(U) A fuel distribution manifold connects these pumps to the rocket engine

high pressure pumps via pre-valves and flexible metal bellows to accommodate

gimballing.

(U) In the event of premature flight termination, the remaining propellant

can be dumped overboard through lines routed out to the trailing edge of the wing.

The boost pumps provide necessary energy with the LO 2 and LH2 being dumped sequen-

tially; L02 first - to reduce weight as rapidly as practical while minimizing
hazards. This is discussed in more detail in Section 7.1.
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4.8.3 (U) SAFETY PROVISIONS - A major area requiring extensive design and develop-

mental effort is the detection of any LH 2 and L02 leaks in conjunction with rapid

response fire extinguishment systems. The requirement for investigation in this

area was recognized early in the study. This point is also brought out in the

Safety Studies, Section 7.1. Potential leak detection methods include thermocouple
networks located in the space between the tank wall and external moldline in con-

Junction with sniffers in equipment bays.

4.8.4 (U) GROUND SUPPORT AND C-5A INTERFACE - Provisions for ground servicing in-

clude LH2, L02, and GHe fill ports located on the lower surface of the aircraft.

Vent lines, connecting the research vehicle and C-5A launch vehicle permit remote

disposal of hazardous vapors during fill operations. During the captive portion

of the research vehicle/C-5A flight profile, the research vehicle is dependent on

the C-5A for helium pressurant and emergency dumping. Should it prove necessary

to abort the research vehicle flight prior to launch, the propellants can be dumped

utilizing pressurized (helium) transfer through the lines connecting the research

vehicle and C-5A. The propellants would be routed out the extreme aft portion of

the C-5A or possibly through the wing tip to minimize fire hazards.

4.8.5 (U) CONFIGURATION OPTIONS - The design approach employed for integration of

the propellant system includes provisions for the various research configuration

options wherever practicable. This approach has resulted in configuration refine-

ments which minimize changes to the propellant system that affect structural sys-
tems.

(U) The HTOand VTO options do not require any airborne propellant systems

changes. Gronnd servicing units can be adapted to utilize existing research
vehicle/C-5A interface connections.

(U) CSJ and SJoptions will require minor rerouting of LH 2 distribution lines

to provide necessary fuel flow to the airbreathing engines. The small boost pumps

in the basic flight vehicle are utilized, as shown in Figure 4-91. Complex flow

control and regenerative cooling distribution systems will be incorporated into the

CSJ and SJ engine modules prior to installation into the basic aircraft.

(U) The TPSoption does not affect the propellant distribution system.

(U) A minor rerouting of research vehicle/C-5A interface connections is re-

quired for the ARMand ST__GGoptions.

(U) The TJoption requires the addition of a JP storage tank. This is

accomplished by installing a fuel bladder in the area of the basic vehicle's LO 2
tank along with associated JP distribution lines and boost pumps. Pressurization

of all tanks, JP and unused LH2 tankage, is accomplished by engine bleed air.

Pressurization of the unused LH 2 tankage is required to negate the effects of local

atmospheric pressure changes which may potentially cause structural damage to the
aircraft structure.

(U) Design flow rates for the J2Salternate engine option are approximately

twice that required for the basic _ehicle. Therefore, that particular option will

require significant rework of the propellant distribution system. Larger boost

pumps, removal of the distribution manifolds, and increased pressurant system flow

capacity are the major areas influenced. The resulting system, although with a

significantly larger flow capacity, is considerably less complex than the basic

vehicle system and should present no operational difficulty.
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4.9 SUBSYSTEMS

(U) The vehicle subsystems consisting of avionics and miscellaneous subsystems

are described in the following paragraphs.

4.9.1 (U) AVIONICS SYSTEMS - Both the Mach 12 and Mach 6 basic aircraft, described

in this report have essentially the same avionic systems. The missions of these two

aircraft are similar, as viewed from requirements placed on avionics. The avionic

system functions designed to meet these requirements are described in the following

sections. The details on the avionic equipment were established in Phase II and

were presented in Volume III.

(U) It is believed that current technology is applicable due to the similarity

of the missions postulated in the HYFAC study to the X-15 aircraft program. No new

avionic functions have to be developed to fly the HYFAC missions. It is planned

that, except for the automatic flight control systems (AFCS) and unique interface

the aircraft avionics will consist of off-the-shelf equipment current in that time

period. Also, the avionics will be compatible with the command and control environ-

ment operating at the time of the HYFAC flights. The environment may or may not

include satellites for communication/data relay and navigation up-date.

4.9.1.1 (U) Mission Description and Operational Sequence - The analysis of the

flight operational requirements are presented in Section 6. A brief summary of the

flight planning is pr&sented here to provide a basis of understanding of the avionics

system requirements. The basic flight plan for the Mach 12 vehicle calls for the

test vehicle to be carried to launch altitude, headed toward the landing site, and

released. Boost, acceleration to cruise velocity and climb to equilibrium altitude,

are followed by the 5 minute Mach 12 cruise. Having completed the cruise phase,

the vehicle begins an unpowered descent to the landing site. The major portions

of the flights are flown with the cockpit in the stream line position, which denies
the pilot visual contact with the earth.

(U) For the basic 5 minute cruise at Mach 12, the vehicle is launched near

Cecil NAS in Florida and flies a distance of approximately 1900 nm (3520 km)

to Edwards AFB in California. The navigation, guidance and control of the vehicle

are programmed to be completely automatic during the major part of the flight.

This flight requires about 30 minutes. During a typical flight, as illustrated in

Figure 4-92, the navigation system is in contact with navigation aids along the

entire route and may also receive position update information from navigation

satellites. The test vehicle has communication opportunities with Edwards through

communication satellites, an aircraft relay network or a ground link. For the

horizontal takeoff (HT0) and vertical takeoff (VTO) missions, the test vehicle is

launched and landed at the same base.

(U) For the missile launch tests (ARM option), the vehicle is launched within

the Edwards AFB tracking range, accelerates to Mach 12, the desired altitude, and

establishes a heading such that the missile will follow a ballistic path and impact

within the Pacific Missile Range. The test vehicle then executes a 3.5 "g" turn
and returns to Edwards AFB.
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(U) FIGURE 4-92

GENERAL NAVIGATION COMMUNICATION PLAN
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(U) A typical trajectory for accomplishing tests involving the STG module

includes air-launch at a point up-range of Holloman AFB, acceleration and climb to

a maximum altitude of about 250,000 ft (76,200 m) where the STG module is released.

This trajectory (flight path) is designed so that the STG module can land at Holloman

AFB and the Mach 12 test vehicle has the capability to proceed to Edwards.

h.9.1.2 [U) Functional Requirements Definition - The functional requirements im-

posed on the avionics subsystems are within the current "state-of-the-art",

or have reached a state of de_olcpment to indicate that "off-the-shelf" systems

will be available during the 1975 to 1980 time period.

4.9.1.2.1 (U) Navigation - The navigation system must include the capability to

provide accurate automatic guidance from all launching areas to a point within

the range of the localized navigation and landing aids at Edwards AFB or to the

alternate emerge_c_ landin_ sites. The Dilot will be flying IFR until the air-

speed is below Mach 6. The navigation system must provide automatic guidance to

these sites with an adequate steering display to allow the pilot to fly the IFR

mission as a back-up to the automatic system. The distance flown on some of

the proposed missions is longer than those accomplished on the X-15. Therefore,to
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enhance the safety of the research vehicle in emergency situations, the navigat-

ion system will maintain a file of emergency landing sites, continuously compute

the flight paths to them and, based on the energy management program, select

the optimum site for immediate utilization in an emergency situation. The

navigation system must therefore, provide programmed control of the on-board

avionic navigation aids (TACAN, NAV, and ILS) to assure continuous use of the

enroute ground stations. The accumulated cross range and down range errors

must be sufficiently small at TACAN acquisition so that turns greater than 30 °

are not required to accomplish the landing.

4.9.1.2.2 (U) Communications - Communications are required with the carrier

aircraft prior to launch and with the control center at Edwards during the

remainder of the flight. The communication requirements include two way voice

and data, plus the requirement to telemeter parametric and housekeeping data

for use at the control center. The communication route to the control center

at Edwards is beyond the horizon but can be established through

a. relay aircraft deployed along the range.

b. a combination of ground microwave links,

c. hard lines, or

d. through a communication satellite.

Constant contact is required with the preselected emergency landing sites to

assure communication for verbal landing instruction or automatic landing commands.

4.9.1.2.3 (U) Flight Sensors and Control - The research aircraft requires the

standard attitude and heading reference information for manual and automatic

control, an air data system adequate to provide measurements of dynamic pressure,

angle of attack and side slip angle for flight control at the high altitudes

and velocities encountered during the mission. A method for determining altitude,

an automatic landing system for blind mode operation, and adequate information

for the pilot to accomplish a normal landing are required.

4.9.1.2.4 (U) Controls and Displays - Control panels are required to provide

all necessary pilot interface with the aircraft systems, with the separation

module and with the test missile systems.

(U) The displays must provide the pilot with the capability to assess his

current flight conditions and to determine the action required for emergencies

occurring at any phase of the flight. This requirement applies to the blind

flying situation at high speed, the head-up or head-down landing situation, the

command guidance mode and the manual mode. Display of inertially derived para-

meters and of the footprint achievable with the energy management system in the

glide phase of flight and in emergency situations is required.

h.9.1.2.5 (U) Special Equipment - The research vehicle must have the capability

for initialization, monitor and control of the STG module and armament system

launches. The STG module, which is designed specifically to investigate the
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separation characteristics of high speed vehicles, requires the means for trans-

ferring alignment data, monitoring the status of the module itself and initiating

the separation. For armament system tests only the missile separation characteris-

tics are of interest, thus, a fire control system is not required and the missile

test launches require minimum avionics.

h.9.1.3 (U) Avionics Subsystems Functional Description - This section describes

the avionics functional subsystems included in the research vehicle. Figure h-93

is a functional block diagram which shows the interface between the individual

subsystems. These equipment were previously described in more detail in Volume III.

(U) FIGURE 4-93

AVIONIC FUNCTIONAL BLOCK DIAGRAM
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h.9.1.3.1 (U) Navigation System - This system is made up of the inertial navigatioz_
system (INS), automatic flight control system (AFCS), the energy management and

flight director computing system, and TACAN. The INS with NAV SAT update is the

primary navigation mode designed and programmed to operate automatically from

launch until final awproach. Radio navigation aids provide routine traffic control

plus a back-up to the automatic INS as shown in Figure h-94. For flight safety,

the navigation system includes the primary INS with a back up provided by the radio

navigation aids, the ground track radar and a data link. In addition, the pilot is

provided with sufficient displays so that manual override in the IFR situation is

aD emergency mode. An added feature of the basic navigation system shown in Figure

4-94 is its compatibility with navigation satellites. The equipment included in

this system is basically "off-the-shelf" for the 1975 to 1980 time period and with

the deployment of a network of navigation satellites, a cost and weight saving may

be possible by complete utilization of their capabilities.

(U) FIGURE4-94
GENERALNAVIGATION/CONTROLSYSTEM
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4.9.1.3.2 (U) Communication System - This system provides the direct link _o the

launch aircraft, the U}{F and HF voice and data systems, the instrumentation/

telemetry system and the communication satellite interface system.

(U) The instrumentation/telemetry system is included to handle housekeeping

data as well as the oarametric measurements indicating the performance of the

research vehicle throughout flight.
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4.9.1.3.3 (U) Flight Sensors and Control - The flight sensor and control system

includes the automatic flight control system which accomplishes the actual

control of the vehicle on the basis of inputs of the air data computer, the

attitude heading reference system, and the energy management and flight director

computing system. The overall flight control system provides altitude, speed,

attitude, heading and an_le of attack outer control loops and is mechanized

to include control augmentation inner loops. The flight control concept utilized

is a fly-by-wire system with three-axis control augmentation. It is designed to

operate if desired on a programmed trajectory with altitude and speed hold loops

in operation during cruise. The AFCS has three redundant channels to provide normal

operation following a first failure and a fail-operational action after the second

failure. This design provides the vehicle control system with redundant sensor

data, as shown in Figure 4-93, to provide a reliable and fail-operational system

for use in blind and visual flight.

4.9.1.3.4 (U) Controls and Displays - The display system presents, in addition

to the more standard flight parameters and aircraft conditions, unique displays

for energy management and horizontal situation, to permit landing at automatically

selected emergency sites. In addition, flight path angle, angle of attack,

and a digital data display of commands, responses, and projected performance are

provided.

4.9.1.3.5 (U) Special Equipment - The avionics to support the separation module

and missile launch tests includes the interface equipment to monitor the

auxiliary vehicles and to transfer alignment and other required initialization
data.

4.9.1.4 (U) Test Instrumentation - The test instrumentation will provide a

history of the flight and the means for continously monitoring the critical

parameters of the vehicle during flight. A generalized block diagram of this

system is shown in Figure 4-95. The data management block is the clock

timing, logic circuitry for programing and signal switching, and commands for

interval recording or telemetry.

(U) FIGURE 4-95
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(U) Data from the aircraft systems is status data such as, aircraft position,

velocities, attitude, rates, acceleration, fuel flow, engine parameters, etc.

These status signals are generated normally within the avionics or other air-

craft subsystems. Signals are tapped off and conditioned for recording or tran-

smission using standard instrumentation techniques.

(U) Data such as aircraft skin temperature, structural stress and vibration,

etc.,are also recorded. The sensors for these signals are installed specifically

for instrumentation and include thermocouples, strain gauges, pressure trans-

ducers, accelerometers, etc. These sensors are currently available off-the-shelf

over the range of interest for the proposed vehicles.

(U) Signals to be monitored are time shared on a single channel, i.e.,

sampled data, or monitored continuously via frequency modulation on a carrier

on a subchannel. The expected rate of change of the monitored signals determines

the type of modulation used. Selected signals are transmitted via telemetry.

Satellite or ground stations relay the telemetry data to the landing site.

(U) The components of the proposed telemetry system are in use today_ a

suitable antenna and location on the aircraft would be selected during the
vehicle design. The recorders proposed are lh channel magnetic tape record-

ers, currently available off-the-shelf.

h.9.1.5 (U) ERuipment Description - The size, weight, and power of the avionics

equipment are summarized in Figure 4-96. The weight estimates of the separation

module and test missile release system, and also the instrumentation/telemetry

system are included as part of the payload system. Although the equipment to

interface with navigation and communications satellites are shown in Figure h-93,

estimates of their size, weight, and power are not given. A trade-off between the

quality and weight of the primary INS with the flexibility, accuracy, and weight

of the satellite aided system is required to establish the weight of the navigation

system which includes satellite compatibility.

Subsystem

(U) FIGURE 4-96
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AVIONIC EQUIPMENT SUMMARY

Weight

(lbs) (kg)

76 3h. h

35 15.9

61 27.6
36 16.3
25 n.3
21 9.5

58 26.3
13 5.9

_7 21.3
9 _.l

27 12.2
8 3.6

5h 2_. 5

36 16.3

6o
257.

Volume

({-t 3 ) Gn3)

2.19 .o62
• 72 .020h

1.15 .0326

•70 .0198

.38 .0108
•3_ .0096

1.08 .0306
.28 .0079
•79 .0224

.ii .0031

•Sh .0153

.12 .003h

1.25 .035h

.69 .0195

• 87 .02h6
11.21 .318

Power

(watts)

675

550

236

2OO

120

250

8OO

85
33O

105

51

175
b8

32___6
3951
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4.9.2 (U) MISCELLANEOUS SUBSYSTEMS - The electrical, hydraulic, environmental

control and reaction control systems used in the research aircraft are described in

the following paragraphs.

4.9.2.1 (U) Electrical and Hydraulic Systems - Electrical and hydraulic power are

supplied by two (redundant) chemically fueled auxiliary power units (APU). Each

APU turbine shaft drives a gear box with two gear driven power take-off shafts.

One power take-off shaft of the gear box drives a 20 KVA Integrated Drive Generator

(IDG) which supplies electrical power for the avionics and test equipment, and the

second power take-off shaft of the gear box drives a 60 gpm (3800 cc/sec), 3000

psi (2068 N/cm 2) pump for the hydraulic system. The APU's use LO 2 as the oxidizer

and LH2 as fuel and are carried in separate tanks located adjacent to the power

units. The APU's are started Just prior to launching and run continuously to

landing. Peak power requirements, both electrical and hydraulic, are estimated

to be 155 hp (115.6 Kw) with average requirements of 50 hp (37.3 Kw) throughout the

flight. Before launch, all power required for ECS, systems checkout, etc., is

supplied by the C-5A launcher.

4.9.2.2 (U) Environmental Control System (ECS) - The ECS selected for the test

vehicle is a direct loop heat sink system which rejects heat through intermediate

fluid transport loops to the APU cryogenic fuel as a heat sink. Cockpit temperature

control and avionic and test equipment cooling are provided by the system. The ECS,

electrical and hydraulic heat loads are transferred to the APU cryogenic fuel via

heat exchangers located in the discharge lines of the fuel tanks. Cockpit pressur-

ization is provided by separate supplies of LO2 and LN2, which are mixed in a gas-

eous form, and are supplied to the cockpit under pressure to provide an acceptable

environment during the entire flight.

4.9.2.3 (U) Reaction Control System (RCS) - The staging modification of the basic

aircraft requires the use of a reaction control system to provide control in a high

altitude, low dynamic pressure environment of the staging mission. Control forces

are generated by H202 fueled rocket thrusters producing from 40 to ii0 pounds (178

to 489.5N) of thrust each. The system provides roll, pitch and yaw control. Each

control unit consists of a group of thruster nozzles and a pressurization/fuel tank

with control valves. Control units are installed in three locations, the aircraft

nose and at the outboard ends of the rocket propulsion system compartment. Vehicle

control is obtained by firing the thrusters in the proper combination to produce

the desired corrective forces. Thrust control is accomplished by an electro-mechan-

ical system added to the basic aircraft control system.
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4.i0 WEIGherS

(U) During Phase III the results of the parametric studies conducted in

Phase II were incorporated into the basic Mach 12 vehicle design and the configura-

tion was then further refined. When sized to meet the design mission (Section 2.3)

the vehicle requires a planform area (Sp) of 813 ft 2 (75.5 m2) and a TOGW of 79,650

ihm(36,129 kg). The key factors that affected the final refined vehicle weights

are discussed below and the associated weight increments are summarized in Figure
4-97.

(U) FIGURE 4-97

WEIGHT SUMMARY - PHASE II TO PHASE III

Item

Baseline Phase II Aircraft

Configuration Changes - Total

o Rocket Motor (5) RLI0-A-3-9

in Lieu of (i) LR-129

o Payload - Increase Payload

to 1500 ibm (681 kg) from

i000 ibm (454 kg)

o Thermal Protection System -
Active in Lieu of Passive

System

o Fatness Ratio Increase

S=/Sp to 0.125

o Mixture Ratio Increase

to 6:1 From 5:1

o Miscellaneous Design Changes

o Resizing-Reduce Vehicle Size

& Weight Based on Final Per-

formance Calculations

Mach 12 Research Vehicle

Weight

Operating

Weight Empty

ibm kg

24600 11159

-1260 -572

+4000 +1815

+ 900 + 408

-3600 -1633

-1060 - 481

-1300 - 590

+ 600 + 272

- 800 - 363

2334O 10587

Fuel

Weight

ibm kg

53350 24200

+2960 +1343

i+19900 +9027

+ 1990 + 903

- 7050 -319@

- 4500 -2041

- 3200 -1452

+ 700 + 318

!- 4880 -2214

56310 25543

Takeoff

Weight

ibm _g

7795O 35358

+1700 + 771

+23900 +10841

+ 2890 + 1311

-10650 -4831

- 5560 -2522

- 4500 -2041

+ 1370 + 621

- 5750 -2608

79650 36129
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(U) RLI0-A-3-9 Rocket Motor - The Phase II vehicles were configured with an

LR-!29 rubberized engine for preliminary studies, with the thrust requirements

tailored to the specific mission requirements. A trade study was made durin_ Phase

II to determine the impact on performance and cost of using near term. rockets

such as the RLI0-A-3-9 and J2S and it was determined that a significant cost reduc-

tion was available with either of these engines. Of the two available options the

RLI0 appeared more attractive than the J2S engine. The installation weight

for the (5) RLI0 engines is only 450 ibm _204 kg) more than for a single LR-129

motor. However, the RLI0's lower specific impulse, compared to that of the LR-129,

requires adding 19900 ibm (9030 kg) of propellant in order to complete the design

mission. The vehicle TOGW is therefore increased a total of 23900 ibm (10840 kg)

to meet the design mission (constant performance) with the use of the near term

RLI0 motors. However, in spite of the larger and more expensive airframe, there

is still a significant program cost reduction when using RLI0 engines, resulting

from the large decrease in development cost.

(U) Payload - Originally the payload weight was selected as i000 ibm (454 kg).

Trade studies showed that the program cost increased only 3% for a 50% increase in

data acquisition. Further s_udy of the vehicle showed that there was sufficient

volume available to contain 1500 ibm (681 kg) of payload. Therefore, the payload

weight was increased to 1500 Ibm (681 kg). This 500 ibm (227 kg) increment causes

the takeoff weight to grow by 2890 ibm (1312 kg). This takeoff weight change in-

cludes the additional mounts, racks, and wiring necessary to support the payload.

(U) Thermal Protection System - The orginial study configuration used a

passive thermal protection system as a base for comparison. However, tradeoff

studies showed that the weight/cost reduction, as well as the growth potential,

of the active system was very attractive. Replacing the passive system with an

active one reduced the takeoff weight 10650 ibm (4830 kg). It also decreased the

maximum cross-sectional area and planform area by approximately 9.5%. The features

of the active system which make it attractive weightwise are its ability to main-

tain a uniform maximum internal temperature of 100°F (311°K) and minimize heat-

shorts. Both of these items are prime candidates for weight growth. For example,

a non uniform structural temperature from the windward to the leeward surfaces,

which is inherent with a passive system, will produce undesirable thermal stresses.

If these stresses are high enough, additional structural weight will be required

to react them. Heat shorts would require additional insulation, structural depth

and standoff supports to isolate surrounding components from locally high tempera-

tures. In addition to those factors the controls, systems and equipment bays

operate in a cool environment. This eliminates any further weight penalties for

system operation at high temperatures.

(U) Fatness Ratio - In Phase Ill the fatness ratio (Sn/Sp) was investigated

to determine the best value of maximum cross-sectional area to planform area ratio.

Figure 4-98 illustrates the rapid weight reduction from Sn/Sp = 0.085 to about

0.ii at which point the slope lessens with the minimum weight occuring at S_/Sp =

0.125. The physical significance of this study may be interpreted as follows: As

the fatness ratio increases, the structural weight decreases because there is less

wetted area for a given volume.
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(U) FIGURE4-98
FATNESSRATIO OPTIMIZATION
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(U) Mixture Ratio Optimization - The RLI0 Rocket engine was orginally selected

to operate at a mixture ratio of 5:1. Because of the relatively low bulk density of

the liquid oxygen/liquid hydrogen propellant system it is desirable to operate the

engine at as high a mixture ratio as practical to minimize the airframe size and

weight. Increasing the mixture ratio increases the propellant density which then

allows the aircraft size and weight to be reduced. However, the specific impulse

decreases with increasing mixttLre ratio. A trade study was made between the struc-

tural weight and fuel required to determine the optimum mixture ratio. Figure _-99

illustrates operating weight and fuel weight variation with mixture ratio. Minimum

takeoff weight occurs at 6.5:1.0 but the upper operating limit of the RLI0-A-3-9
is 6:1. Therefore, 6:1 was selected as providing minimum weight within the con-

straints of the system.
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(U) FIGURE 4-99

MIXTURE RATIO OPTIMIZATION
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(U) Miscellaneous Design Chan_es - As Phase III progressed, more detailed

design definition was available. As a result the OWE increased 600 lbm (272 kg)

to account for later design data. Most of the weight increments associated with

the design changes were minor, amounting to 100 lbm (45 kg) or less. The largest

single weight increase was 195 lbm (89 kg) and occurred in the landing gear group.

This resulted from a closer analysis of the landing conditions which revealed loads

higher than those previously assumed.

(U) Resizin_ the Vehicle - Final Performance Calculations - After all of

the previously discussed design refinements were incorporated into the Phase II

vehicle it was re-performed. Propellant weight was calculated to be 56310 lbm

(25500kg) which is 2960 lbm (1342 kg) more than the Phase II baseline vehicle.

OWE decreased 1260 lbm (572 kg) in spite of the increased fuel weight due to in-

corporation of the design refinements which resulted in a smaller sized vehicle.

The refined Mach 12 research vehicle takeoff weight increased 1700 lbm (771 kg)

to 79650 lbm (36129 kg). Figure 4-97 is a tabular weight summary showing the

key changes from the Phase II vehicle to the refined configuration.

4.10.1 (U) GROUP WEIGHT SUMMARY - Figure 4-i00 is the weight summary by func-

tional groups for the basic Mach 12 vehicle. These weights do not include the

effects of the research options which are presented in Section 4.10.5. Heat

protection weight includes the radiation shingles, insulation, water blanket and

nose cap. The active coolant, water, is an expendable item and is therefore

carried as useful load. Wing and body weight are entered as a single item since

there is no clear dichotomy between the two for this type of configuration. Rotat-

ing tip weight includes the moveable surfaces and bearings but not the actuators.

All actuators, hydraulic lines from the reservoir to the actuators, valves and con-

trols are coded to the surface controls group. An aircraft development allowance

of 422 lbm (192 kg) or about 2% of the weight empty is provided as a contingency.
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(U) FIGURE 4-100

GROUP WEIGHT SUMMARY - BASIC MACH 12 VEHICLE

Group

Wing/Body

Structure

Heat Protection

Rotating Tips
Vertical Tails

Landing Gear

Surface Controls

Rocket Motors (5) RLI0-A-3-9

Fuel System

Auxiliary Power

Motor Controls

Instruments

Hydraulics
Electrical

Electronics

Furnishings

Environmental Control

Contingency

Weight Empty

Crew and Equipment

Payload

Ullage

Pressurant

Auxiliary Power Propellant
Coolant (Water)

Operating Weight Empty

Propellant
Boost -

Cruise -

Hydrogen/Oxygen

Hydrogen/Oxygen

Takeoff Gross Weight

lbm

(9978)

6297

3681

887

1868

1225

393

1605

1055

43o

5o

175

373

3OO

715

4O0

25O
422

20126

24O

1500
241

123

150

_6o

23340

7431/44615

609/3655

7965O

kg

(4526)

2856

1670

4o2

847

556

178

728

479

195

23

79

169

136

324

181

ll3

191

9127

109

681

109

56
68

43_

10585

3371/20237

276/1658

36129

4.10.2 (U) CENTER OF GRAVITY - The aft center of gravity limit for takeoff and

landing was set at 66% of the body length. For high speed flight (M > 6) the aft

limit moves forward to 64% of the body length. Body length is defined as the

distance from the front of the nose cap to the intersection of wing trailing edge

and vehicle center line, as shown in Figure 4-i01. The 2% forward movement in the

aft limit assures a positive static margin during all flight conditions. See

Figure 4-37. A forward center of gravity limit of 62% of body length was estab-

lished to insure adequate control power for takeoff rotation and inflight maneuver-
ing.
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(U) FIGURE 4-101
BODY LENGTH DEFINITION

Reference

I _ Body

-- Length

(U) Both the propellant tank location and propellant sequencing were selected

to insure that the vehicle c.g. was within the aerodynamic limits at all times.

In addition, the c.g. was positioned to provide the best compromise between stab-

ility and control throughout the flight profile. For example, Figure h-102 shows

that the c.g. is as far aft as possible at launch to keep control forces at a

minimum when the vehicle was heaviest. As fuel is used, the c.g. goes forward

to meet the high speed (M > 6) aft limit as well as provide increased stability

during cruise at Mach 12. The c.g. then moves aft directly between the limits to

provide good stability as well as good handling characteristics at landing.

(U) FIGURE 4-102

CENTER OF GRAVII:Y TRAVEL

MACH 12 AIRCRAFT

Weight

35

30

25

2O

l0

lO00 lO00

kg

Forward Aft Limit Aft Limit
Limit M • 6 M < 6

Mach 6 /Weight_

Mach 9

WeightJ k

•Landing

Weight

_-Launch

Weight

lbm ........ 60 ....... 62 ¼, I, 66 '"'68"

% Body Length

I
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(U) Because liquid oxygen is 86% of the total propellant weight, the L0X

tank was situated near the vehicle's center of gravity to minimize its effect on

the overall balance. Liquid hydrogen tanks were then placed fore and aft of the

liquid oxygen tank. Both the forward liquid hydrogen tank and the liquid oxygen

tank were further divided into two separate cells so that the c.g. travel could

easily be tailored to the flight profile. A brief description of the fuel sequence
is shown below.

Phase of Flight LOX LH 2 Total

i.

.

,

Launch & Accelerate to Mach 6:

Empty Aft L0X Cell and Part of

the Aft LH2 Tank

Accelerate to Mach 9:

Use Part of Fwd L0X cell, Empty

Aft Cell of Fwd LH2 Tank

Accelerate to Mach 12, Cruise

5 Minutes, Descend and Land:

Empty Fwd Cell of F_d LH 2 Tank,

Use Remaining LH 2 in Aft Tank,

Use Remaining LOX in F_d Cell

Total

28,760 ibm

(13,o45 kg)

8,657 ibm

(3,927 kg)

10,840 ibm

(4,917 kg)

_8,257 ibm

(21,889 kg)

4,800 ibm

(2,177 kg)

1,443 ibm

(655 kg)

i ,810 ibm

(821 kg)

8,053 ibm

(3,653 kg)

33,560 ibm

(15,223 kg)

i0,i00 ibm

(h,581 kg)

12,650 ibm

(5,738 kg)

56,310 ibm

(25,542 kg)
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4.10.3 (U) MOMENTS OF INERTIA - Moments of inertia for takeoff and operating weight

conditions were calculated for the basic vehicle and are shown in Figure 4-103. The

low value of the product of inertia when compared to conventional vehicles is a re-

sult of the low aspect ratio wing/body. This design concept inherently gives low

products of inertia and a very shallow principal axis inclination. The roll moment

of inertia is also uncommonly low for the weight. Again, this is characteristic of

the shape.

(U) FIGURE 4-103

BASIC MACH 12 VEHICLE

Momentsof Inertia

Item

IXX Roll

Iyy Pitch

IZZ Yaw

IXZ Product

¢ Principle Axis

Operating Weight _mpty

Slug-Ft 2

20310

Kg-M 2

27540

Takeoff Gross Weight

Slug-Ft 2

542hh

Kg-M 2

73555

373153

384985

I042

0° I0'

5O5995

5220L0

ILl3

459629

478871

2518

0° 20'

623257

649349

34!2_

4.10.4 (U) BASIC MACH 12 VEHICLE MATERIAL SUMMARY - A material breakdown by weight

was prepared to aid in costing the airframe. Material types and amounts were deter-

mined by temperature and location on the vehicle. The majority of the airframe

structural weight is designed in aluminum. Materials were tailored to the temper-

ature distribution to save weight and cost. Figure 4-104 presents the material dis-

tribution by functional group. "Other" includes insulation, transparencies, rubber,

etc.

4.10.5 (U) WEIGHT INCREMENTS FOR MACH 12 DESIGN OPTIONS - Several design options

to the basic vehicle were investigated to enhance its research value. These options

were designed as "add-on" kits. However, some modification to the basic vehicle is

necessary to easily accommodate installation of these options. For example,

strengthening of major bulkheads, hardpoints for attaching research kits, inter-

costals for distributing loads into the primary structure, etc., should be built

into the basic structure. Down time and cost for incorporating the design options

are then minimized.

(U) Weight increments for the design options were estimated in two categories,

installation provisions and the research package. Installation provision weight

accounts for local strengthening of structural members, cutouts, hardpoints, load

introduction and redistribution members, fuel lines, valves, wiring, etc. Research

package weight is the total weight of the particular design option. It includes

the weight of the test article such as a scramJet, as well as the installation pro-

vision. Both weight increments are shown so that the total weight change for the

I
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(U) FIGURE 4-104

MACH 12 PHASE III AIRCRAFT MATERIAL DISTRIBUTION - Ibm
Structure FixedEquipment ThermalProtectionSystem

..... _" i[. "= = _ I - _ -z
I

WinUBedy 434] 574 i 388 474 520
RotatinI Tips 798 89
VerticalTails 1681 187
NoseGear 158
Main Gear 837
Co_lrols
Entines-(5)RL!0A-3-9

I Fuel System
AuxiliaryPowerSystem
En|ine Controls
Instruments
Hydraulics
Electrical
Electronics
Furnishinzs 20
EnvironmentalControl

Contingency 2]2 ]26 84

Weilht Empty

CrewandEquipment
Payload
Ullal_eandVentFuel
Pressumnt
APU Propellant
Water

Operatinl[Weisht

Propellant - L.H2
Propellant- LO2

TakeoffGrossWeish*

50 588 1517 605 80 150 691

60 57
[O3
3_3

373

1605
]O55
430
50

]75

300
715
330
250 S0

240
1500

0,978
887

1,868
285
940
303

] .8O5
1,055

430
50

175
373
300
715
400
250
422

20,126

240
1,500

241 241
123 123
150 150!
960 960

23,340

8.O10 8,040

I 48,270 482704573 700 3956 750 520 60 926 6650 50 588 1517 605 80 150 741 57,784179.650

Wins/Body
Rntatin8Tips

MACH 12 PHASE III AIRCRAFT MATERIAL DISTRIBUTION - Kg
(Presented in International StandardUnits)

Structure Fixed Equipment ThermalProtectionSystem

__ - _ - - _ ,.
1969 260 177 215 6 23 7 688 274 36 60 3]3 4,526

362 40 402
VerticalTails
NoseGear
Main Gear
Controls
Enllines- (5)RLI 0A-3-9
Fuel System
Amiliary PowerSystem
EnsineControls
Instruments
Hydraulics
Electrical
Electronics
Fmnishirqls
Envir_mentalCentTol
Continllency

WeishtEmpty

CrewandEquipment
Payload
Ulla|e andVent Fuel
Precsurant
APU Propellant
Water

Operatin|Wei_t

Propellant- LH2
Propellant - LO2

9

96 57 38

762 85
76

380
27 26

47
178

728
479
195
23
79

169
136
324
IS0
113

109
681

847
129
427
178
728
479
195
23
79

169
136
324
181

23 113

l�l

9,127

109!
881

56 56
68 68

435 435

10,585

3,648 3,648
21,896 21,896

TakeoffGrossWerllht 2074 317 1794 340 236 27 420 3017 23 267 688 274 36 68 336 26212 38,129
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option, as well as the modification required to the basic vehicle, can be identi-

fied. Any changes in fuel or in the fuel to oxidizer relationship is not reflected

in the basic package weight. Figure h-105 is a summary of the design option weights
for the Mach 12 vehicle.

(U) FIGURE 4-105

DESIGN OPTION WEIGHT SUMMARY

Mach 12 Vehicle

Design Option

Horizontal Takeoff

Vertical Takeoff

Convertible ScramJet

Scramjet

Thermal Protection

System

Armament

Staging

Subsonic Turbojet

Installation

Provisions-Basic

Vehicle Only

lbm

339

598

3O0

275

5

189

180

653

kg

154

271

136

125

2

86

82

296

Research

Package -

Total Weight

lbm

79733

79992

52300

69200

79923

84348

83208

52305

lbm kg

831 38

342* 155

7458 3383

5969 2708

273 124

4698 2131

3558 1614

18965 8603

Takeoff

Weight

kg

36167

36284

23723

31389

36253

38260

37743

23726

*Note that installing the research package actually lowers the vehicle weight

below that of the vehicle with the installation provisions. This of course is

a result of the reduced engine and fairing weights.

(U) HORIZONTAL TAKEOFF (HT0) OPTION - The rocket motor weight was reduced

205 lbm (93 kg) by replacing the existing nozzles, which have an expansion ratio

E = 32, with ones that have an e = 7.4. This modification was required to reduce

back pressure losses for low altitude operation. Because of the shorter nozzles

the existing fairing around the rockets was removed and replaced with a shorter

one. A horizontal takeoff requires conventional main gear. Replacing the skids

with a conventional running gear would require extensive structural rework and

relocation of the main gear. This was circumvented by designing a wheeled dolly

which is attached by quick release pins to hardpoints provided in the primary

structure. It was also necessary to strengthen the bulkheads to react the loads

from the dolly. Placing the dolly underneath the vehicle rotated the aircraft to

I
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a nose down position. Therefore, the nose gear strut was lengthened 14 inches

(35.6 cm) to reduce the nose down static altitude for takeoff. This change added

179 lbm (81 kg) to the aircraft. Figure 4-106 is a summary of the weight changes
required for t_¢ horizontal takeoff option.

(U) FIGURE 4-106

HORIZONTAL TAKEOFF OPTION WEIGHT SUMMARY

Group

Wing/Body

o Beef-Ups

Bulkheads

NLG Back-Up

o Shorten Fairing

Remove Fairing

Quick Access

Landing Gear-

Lengthen Nose Strut

Rocket Motors

io Delete _ = 32

o Add _ = 7.h

Total

Installation

Provisions Only

ibm

(339)

(329)

279

50

(lO)

i0

m

339

Total Research

Package

k_

(154)

(149)

126

23

(5)

5

15h

Ibm

(159)

(329)

279

5O

(-170)

-180

l0

(129)

(-2o5)

-1605

1400

83

k_

(72)

(149)

126

23

(-77)

-82

5

(59)

(-93)

-728

635

38

(U) VERTICAL TAKEOFF (VTO) OPTION - The weight increments are quite similar

to those of the horizontal takeoff option. A main gear dolly is used to transport

the vehicle to the gantry where it is rotated into launch position, Beef-ups to

attach the dolly and react the taxiing loads amount to 329 lbm (lh9 kg). The _ =

7.4 rocket nozzles are also used because of the sea level operation. Launch fit-

tings were added to the lower vehicle surface to aid in launching. Figure 4-107 is

the vertical takeoff option weight summary.
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(U) FIGURE 4-107

VERTICAL TAKEOFF OPTION WEIGHT SUMMARY

Group

Wing/Body

o Beef-Ups

Bulkheads

NLG Back-Up

o Shorten Fairing

Remove Fairing

Quick Access

o Launch Fittings

Installation

Provisions 0nly

lbm

(598)

(364)

314

kg

(271)

(i65)

142

5O

(i0) (

I0

(224)

23

5)

5

(iOl)

Total Research

Package

ibm

(_18)

(36h)

314

5o

(-17o)

-18o

lO

(224)

kg

(189)

(165)

142

23

(-77 )

-82

5

(lOi)

Landing Gear-

Lengthen Nose Strut

Rocket Motors

o Delete e = 32

o Add e = 7.4

Total 598 271

(129)

(-205)

-1605

140o

(59)

(-93)

-728

635

342 155

(U) CONVERTIBLE SCRAMJET (CSJ) OPTION - 3539 ibm (1604 kg) was added for in-

stalling the convertible scramJet option. Figure 4-108 summarizes the weight

increments. Primary structural modifications were limited to local attachments and

load transfer fittings. Weight was removed for the thermal protection system in the

area occupied by the scramJet. 100 lbm (45 kg) was added for fuel lines to the con-

vertible scramJet and regeneratively cooled ramp panels. The propellant mixtures

were varied according to the climb profiles and modes of operation shown in Figure

4-65 to achieve the performance shown in Figure 4-66 The propellant weights shown

in Figure 4-108 were determined for climb profile (Ai of Figure 4.65. Propellant

weights for climb profiles (B) and (C) with the resulting net research package

weights are shown below.

I
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Item

INSTALLATION SUBTOTAL

Propellant Utilization

Climb Profile (B)

(Figure 4-65)

lbm kg

7458 3383'

(-16419) -(-7448)

Climb Profile (C)

(Figure 4-65 )

lbm

7_8
(-34818)

kg

3383

(-15793)

o Rocket - LH 2

- LOX

o CSJ - LH 2

- LOX

-2316

-13922

3474

-3655

-1051

-6315

1576

-1658

-5594

-33593

8024

-3655

-2537

-15238

3640

-1658

, . ,. ,

TOTAL RESEARCH PACKAGE -8961 -406h .-27360 -12hll

(U) SCRAMJET (SJ) OPTION - The weight increment for this option is similar

to the convertible scramJet option. The scramJet and movable ramps are shorter

and therefore lighter. Figure h-i09 summarizes the weight increments to install

the scramJet option. Propellant was adjusted as required by the climb profiles

and modes of operation shown in Figure 4-65 to achieve the performance shown in

Figure 4-66. Propellant weights shown in Figure 4-109 were determined for climb

profile (A) of Figure 4-65. Propellant weights for climb profile (B) and the

resulting scramJet research packages are shown below.

Item

INSTALLATION SUBTOTAL
_rope±±an_ U_illzazlon

o Rocket - LH 2

- L0X

o CSJ - LH 2

- LOX

Climb Profile (B)

(Figure 4-65)

_989_
(-±b_x_)

-2316

-13922

3474

-3655
.,, , , .

kg .
• 2YP_.

-1051

-6315

1576

-1658

TOTAL RESEARCK PACKAGE -10450 -4740
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(U) FIGURE 4408

CONVERTIBLE SCRAMJET OPTION WEIGHT SUMMARY

Group

Wing/Body

o Remove TPS

o Add Hard Points

o Add Hinges/Fittings
for Actuation

Fuel System

CSJ Installation

o CSJ Primary Structure

o Accelerator Door

o Forward Ramp

o Aft Ramp

o Injectors and Cooling

o Actuation

o Heat Protection-Exit

iINSTALLATION SUBTOTAL

Propellant Utilization

o Boost (Rocket) - LH 2

- LOX

o Cruise (CSJ) - LH2

- LOX

Installation

Provisions 0nly

lbm

(200)

200

m

k_

(91)

91

(45)

Total Research

Package

lbm

(35)

-&25

200

260

(zoo)

(7323)

3781

135

1348

982

187

517

373

(lOO)

7458

(-3919J

-83

-522

341

-3655

kg

(16)

-193

91

i18

(45)

(3321)

1715

61

611

445

85

235

169

3383
(-1775)

-38

-237

155

-1658

TOTAL 300 136 3539 1604

NOTE: Propellant weights are given for Climb Profile (A) of Figure 4-65.

I
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(U) FIGURE 4-109

SCRAMJET OPTION WEIGHT SUMMARY

Group

Wing/Body

o Remove TPS

o Add Hard Points

o Add Hinges/Fittings
for Actuation

Fuel Systems

ScramJet Installation

o ScramJet

o Accelerator Door

o Forward Ramp

o Aft Ramp

o Injectors and Cooling

o Actuation

o Heat Protection-Exit

INSTALLATION SUBTOTAL

Installation

Provisions Only

ibm kg

(79)

Total Research

ibm

(56)(175)

Package

kg

(26)

Propellant Utilization

o Boost (Rocket) - LH 2

- L0X

o Cruise (SJ) - LH 2

- LOX

TOTAL

NOTE:

175

(lOO)

79

-413 -188

175 79

298 135

(45)

(2637)

(i00)

(5813)

275 124

3040 1379

135 61

986 447

744 337

180 82

376 171

352 160

5969
(-3919)

-83

-522

341

-3655

2050

2708
(-1778)

-38

-237

155

-1658

93O

Propellant weights are given for Climb Profile (A) of Figure 4-65.
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(U) THERMAL PROTECTION SYSTEM (TPS) OPTION - 73 ibm (33 kg) was estimated for

provisions for all equipment bay and mounting brackets in the TPS option. The in-

ternal structure was already recessed so that a fairing was not necessary when

the option was installed. An addition 200 ibm (91 kg) was estimated for the

thermal protection system being investigated. Figure 4-110 summarizes the TPS

option weight.

(U) FIGURE 4-110

TPS OPTION WEIGHT WEIGHT SUMMARY

Group

Wing/Body

o Equipment Bay

o Equipment Bay Provisions

TPS Equipment

Total

Installation

Provisions Only

Total Research

lbm

(73)

68

5

(2oo)

273

lbm kg

(5) (2)

5 2

5 2

Package

kg

(33)

31

2

(9l)

124

(U) ARMAMENT (ARM) OPTION - Two 20 inch (51 cm) diameter missile launch

tubes were mounted on top of the vehicle. The weight added covers the missile

tubes, support structure and firing system. The missile tubes are constructed of

steel because of the pressure and temperature generated by the ejectors. The tubes

are insulated from the support structure to prevent structural damage. External

heat protection weight is based on the basic vehicle active TPS concept. Missile

tube door actuation uses a hydraulic system. Each missile weight is assumed to be

1650 lbm (748 kg). Figure h-lll is the weight summary for the armament option.

(U) STAGING (STG) OPTION - The addition of a second stage and a reaction con-

trol system to the basic vehicle compose the primary weight elements for this

option. Weight for the second stage is 2360 lbm (1070 kg) and is based on con-

ventional aluminum sheet stringer construction which yields the lowest cost

design. Internal instrumentation weight is predicated upon a minimum of data

pickups and transmitters. Additional instrumentation can be added at the expense

of weight. Considerable latitude in second stage weight is possible as is indi-

cated in Figure 4-69. 1198 lbm (543 kg) is added to the basic vehicle to accom-

modate the second stage. This weight includes 950 lbm (43 kg) for the hydrogen/

peroxide reaction control system (RCS). The RCS was added because the second stage

launch altitude is anticipated to be beyond the realm of aerodynamic control
effectiveness.

(U) A fairing is added between the stages in order to prevent severe local

heating problems. Figure 4-112 summarizes the staging option weights.
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(U) FIGURE 4-111

ARMAMENT OPTION WEIGHT SUMMARY

Group

_ing/Body

Installation

Provisions 0nly

lbm

(123)

kg

(56)

Total Research

Package

lbm

'o Add Missile Tubes

o Support Structure

o Missile Bay

o Heat Protection

Electronics-

Fire Control System

Armament

o Ejectors/Sabots

o Supports

o Wiring/Controls

o Door Actuation

o Insulation

Missiles (2)

Total

a

123

(13)

(53)

15

38

m

56

(6)

(22)

7

lT

m

189 86

(1026)

276

123

&o2

225

(63)

(309)

108

39

8O

3O

52

(3300)

2698

kg

(265)

125

56

182

102

(29)

(12o)

h9

18

36

14

23

(1_97)

2131
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(U) FIGURE 4-112
STAGING OPTION WEIGHT SUMMARY

Group

Wing/Body

o Attach Fittings

o Fairing

Electronics

Installation

Provisions 0nly

kg

(23) (223)

Total Research

Package

lbm kg

(i0!)

23

78

(ll)

(_3l)

77

59

295

(lO7O)

998

38

Ii

23

Reaction Controls

o Thruster

o Installation

o Propellant

lbm

(5o)

23 5O

173

(25)

Second Stage

o Structure

o Instrumentation

o Ejector

o Miscellaneous

5O

(59)(130)

m

59

(95o)

170

130

650

Total

13o

82

(2360)

22Ol

85

2h

5O

3558180 1613

(U) SUBSONIC TURBOJET (TJ) OPTION - Subsonic performance and handlin_

characteristics can be determined by incorporating two P&WA JThA-11 turbojets

into the basic vehicle. The rocket motors were not removed. The landing gear

is modified for conventional takeoff and landing operations. This requires 205

lbm (93 kg) additional structural weight to introduce and distribute the loads

from the relocated main gear. Ground clearance angles dictate a longer main

gear which in turn requires the nose strut be lengthened to reduce the nose

down static attitude during takeoff. The largest increment is the 10200 Ibm

(h627 kg) engine weight. Most of the added weight, as shown in Figure h-ll3,

is aft of the basic vehicle center of gravity. 7200 lbm (3266 kg) of ballast

is required in the payload bay to keep the vehicle within the center of gravity

limits.
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Group

Wing/Body

o Main Gear Backup

o Nose Gear Backup

o Nacelle Fittings

o Heat Protection

(U) FIGURE 4-113

SUBSONIC TURBOJET OPTION WEIGHT SUMMARY

o Nacelle

,Landing Gear

o Main

o Nose

Propulsion

o (2) PWA JT4A-11 Engines

o Thrust Deflectors

o Fuel System

Miscellaneous

Remove Payload

Add Ballast

Total

m

Installation

Provisions Only

lbm

(_17)

2O5

5O

262

k_

(235)

93

23

119

m

(62)

m

(136)

m

136 62

Total Research

Package

lbm

(lh!l)

205

50

262

-82

976

(1089)

96O

129

(lO565)

10200

16h

201

(200)

(-i5oo)

(7200)

kg

(620)

93

23

119

-37

222

(292)

235

59

(2792)

2627

T4

9l

(91)

(-68o)

(3266)

653 297 18965 8603

(U) COMBINATION OF COMPATIBLE MODIFICATIONS - The Phase III Mach 12 aircraft

can incorporate all modification packages in one airframe except for the subsonic

research kit. The subsonic research package contains too many major modifications
to the aircraft to be compatible with the others.
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(U) Installation provisions for these packages are shown in Figure 4-114.

Any redundancy between combined modifications has been eliminated through analysis

of critical loadings and common structural requirements. Incorporation of all these

modification provisions in the vehicle would only result in an increase in the

vehicle O.W.E. of 1272 lhm (577 kg).

ITEM

FUSELAGE PROV.

FJEL SYSTEM

EQUIPMENT BAY PROV.

ARMAM_ PBOV.

ELECTRONICS INSTL.

REACTION CONTROLS INSTL.

TOTAL

HORIZONTAL i VEN %AL

TAKEOFF I TAK )FF

ibm kg I Ibm kg
i

598 271

INCLUDED

IN

VERTICAL

TAKXOFF

I
I

l
598 271i300

(U) FIGURE4-114
COMBINEDMODIFICATIONS

CONVERTIBLE _HEP.MAL

SCRAMJET SCRA.MJET PROTECTION

Ibm ! kg !bin "kg ibm I _g
k

200 I 91

i

i00 55

; :::CL_EO !5 I 2
i

COr_JERTI_LEI

SC_AMJET :

l '
J

136 "[ 5 2

ARMAMENT STAGING

ibm kg I lbm kg
P

1 ;

I

i

53 S_

; r
13 6[

I

130

t

189 i 861!5c

TOTAL

!bm kg

971 5_i

I lO0 _5
]

5 2

= 53 25

i i3 6

59 130 59

22 1272 577
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h.ll COSTS

(U) Total system costs were derived for the basic Math 12 vehicle and several

configuration options designed to accomplish research in ar__easof specific interest.

The acquisition cost for the basic Mach 12 vehicle is 263 M dollars, while the 5

year operating cost for 200 flights is 88 M dollars. When the operating cost is

amortized equally over the 200 flight program, the operating cost is .hh _ dollars.

"The a__cquisition costs represent approximately 75% of the total system cost which is

351 M dollars. The cost format used in presenting the total system cost is essen-

tially the same as the one employec in Phase II,

(U) In order to provide maximum visibility to the effects of each of the

various research vehicle configuration options two distinct incremental cost

effects were determined. The effect of initially building into the basic vehicle

the structural provisions necessary to accommodate the eventual installation of an

optional research package was developed individually and designated "installation

provisions". The costs involved with the actual development and installation of

the particular option in the basic vehicle was also determined and designated
"research package".

(U) The development of the basic vehicle costs with an explanation of the

important factors which influence the costs is presented in the following sections

and is followed by development of the costs associated with the research options.

4.11.1 (U) BASIC VEHICLE COSTS - The basic Mach 12 vehicle detail cost breakdown

is presented in Figure 4-115 along with a bar chart illustrating the distribution

of costs. The results reflect the refinements discussed in Section 3.6.

(U) The maintenance/repalr cost development was significantly changed from the

method employed in Phase II as previously discussed in Section 3.6. In Phase III,

the vehicle maintenance/repair cost (Item III-3 of Figure 4-115) per flight for the

Mach 12 vehicle is 0.84% of the flight research vehicles investment cost,Item II-I
of Figure 4-115 . It can be readily seen from the bar chart distribution in

Figure h-ll5 that the airframe costs are predominant in all three major cost

categories. The "other" cost segment shown in the three major cost categories
includes the following cost elements:

o Tooling - RDT&E

o Support equipment design and system integration - RDT&E

o Support costs - Investment

o Launch platform - Investment

o Range user cost - Operating

o Escort aircraft and logistics - Operating

o Propellant and pressurant cost - Operating

o General purpose maintenance support - Operating
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(U) FIGURE 4-115

TOTAL PROGRAM COST SUMMARYAND COMPARISONFOR THE BASIC MACH 12 VEHICLE

(200 Flight Program- 5 Year Duration)

Total ProgramCost = 351 M Dollars

L60
Basic

Vehicle

Colt Cate_ories and El_ents Costs Ill 150
I, P_Y_ COltS

i. Alrfrm Design end Development

A. AirfTLme Design 51.5

B. Mlscellaneous Subr_tm Design _ Development 5.7 140'

C. Develo_aQnt Tests (Including Wind Tunnel) 2.9

D. Test Hardware 5.5 130.
E. Fre-Dellve_ Flight Test _.i

Sub-Total

2. Tooling 9.8 120,

3. Avionics Developmen_ 16-7

k. Propulsion Development 2h.O

5. Support Equlpaen¢ Design and System Inte_atlo_ 17.5 L10.

6. Ground Test Facilities

Total 12_.6 100.

II. Investsent Costs

i. FliKht Vehicles

A. Air fraae 26.6 9O
B. Miscellaneous Subsystem 1.h

C. Propulsion 2.3

D. Avionics I._ --_ 80.

Unlt Cost (i) Vehicle 31.7 _--

Unit Cost (3) Veblclel 95.2

2. Support Costs _ 70.

A. AGE I_.3 ,

B. Trsintn_ Equ/pment 0.8

C. Initial Stocks (_Kines & AGE Spares) 12.9 _ 60.
D. Initial Training 1.0

E. Initial Transportation i._
50.

Sub-Tot al 30 .J6

3. Laumch Platform Cost 11.9

_. Modification Inst. Cost

1_._, 40.Total

III. Operatin_ Cost (200 Fli_hts - 5 Years)

1. Reuse, User Cost 5.6 30

2. Escot_ /_rcraft and Logistics 2.2

3. Vehicle ReD_rblshme_t Colt

A. Air frsae 20

a. Material 19-7

b. Labor 9.9

B. Miscellaneoul Subsystems 10
a. Material 6.2

b. Labor .7

C. Propulsion Systems 0
a. Material 8._

b. Labor 2.0

D. Avionics

a. Material 5. L

b. Labor -9

Total Melntensnce/Repalr Col¢ _3.2

_. P_ellsn¢ _nd Press_t Coat 1.0

5- AGE Me/ntensnce Cost 2.5

6. General Purpose Maintenance Support 1.0

7. Transportation Cost 0.6

8. Pilot Pay _d Support Personnel P_Y 19.2

9- Launch Platform Operation Cost

Total Operattn_ Cost 87.8

Grand Total 350.9

(I) Costa In Milllons of 1970 Dollars

INVEST_.MT

I AVIONICS _l. _"_

RDT&E _' |y

AVIONICS #,3.7X_PROPULSION I

MISC.
SU BSYSTEI"I _4"5_1 13.4% J

PROPULSION !

19.1X

OT_m I

22.6X I

OTII_

21.8X

A:_'R.,U4E klam_u_ I

50.9X $7.9¢ I

(I) '_rerati_ Cost _u:mmarv

1) Fixed Cost 2L.9

2) Variable Co_t 63._

Total _TY_T

OPE.4ATING(1}

AVI(]_IICS

7__

SUBSYSTEMS

P_OPULSION

|1.8_

OTHER

)9.4_

AIRFRAME

33.6_

,(-7._
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o Transportation cost - Operating

o Pilot pay and support personnel pay - Operating

o Launch platform operating cost - Operating

4.11.2 (U) PROGRAM COST INFLUENCES - A number of the factors which influence

the total program cost are discussed in the following sections.

4.11.2.1 (U) Airframe Cost Influence - Of all the flight research vehicle

systems, the airframe exerts the greatest influence on the RDT&E, Investment and

Operating costs. Approximately 49% of the total program cost is attributed to

the airframe, and it is the dominant factor in the total program cost.

(U) The basic elements that drive the airframe acquisition cost are:

(1) Material type such as Aluminum, Titanium, Columbium, etc.; (2) amount of each

type of material used (% DCPR weight); (3) airframe size which is represented by

DCPR weight; and (4) construction method. These are primarily influenced by the

operating temperatures which is a function of the aircraft speed, a factor also

contributing to the operating cost.

(U) The influences of the cost elements are reflected in the cost through

use of a "weighted complexity factor" which includes the effect of construction

type and fabrication difficulty associated with the material, for example, hot

forming of titanium, brazing T.D. NiCr, or coating Columbium. The amount of

material and the type used is reflected in the DCPR weight and the associated

"material type" distribution is given as a % DCPR. These factors are employed in

cost estimating for all three previously defined cost categories (RTD&E, Investment,

and Operating).

(U) The DCPR weight composition for the Mach 12 basic vehicle is shown in

Figure _-ll6, while the development of the weighted production complexity factor

is shown in Figure 4-117. The weighted complexity factor is used to compare the

cost of fabricating the basic Mach 12 airframe relative to the cost of an equal

size and weight all-aluminum airframe. For the total basic aircraft airframe

which is composed of 49% advanced materials, the relative fabrication cost is

3.9 to 1. The estimation procedure for establishing the cost of the aluminum

airframe is reliably established through historical experience and the material

cost and fabrication complexity factors are established on MCAIR manufacturing

experience as well as data from Battelle Memorial Institute and the Air Force

Machinability Center.

(U) Although the weighted complexity factor is used for the airframe as a

whole, the elemental fabrication complexity factors can be used to establish rela-

tive costs between individual structural elements. In applying the estimation

factors to structural elements,we have found, contrary to popular belief, that

materials with the higher temperature capability are not always the most expensive.

The following paragraphs show an example of this in a comparison between materials

for a highly loaded structure, in different environments and between material costs

for a lightly loaded structure also,in different temperature environments.

Figure 4-118 gives an example of the relative cost of a section of fuselage
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(U) FIGURE 4-116

DCPR WEIGHT COMPOSITION BASIC MACH 12 VEHICLE

Material Basic Structure

Type lb kg

Aluminum

Titanium

Steel

Rene' 41

T.D. NiCr

Columbium

Tantalum

Nose Cone

Insulation

Other

Equipment

4,573

75O

1,477

588

3,996

1,355
8O

150

741

52O

2,074
34O
670

267

1,812

614

36
68

336

236
m

Total 14,230 6,453

Equipment

Ib kg

3,207 1,454

3,207 1,454

Tot al

lb

4,573

750

i, 477

588

kg

2,075

340

67O

267

3,996

1,355

8O

150
741

52O

3,207

17,437

1,812

614

36
g8

336
236

1,454

7,907

Material

Advanced

i ) Tantalum

2 ) Columbium

3) T.D. NiCr

4) Rene' 41

5 ) Titanium

6) Nose Cone

Sub-t otal

Conventional

i ) Insulation

2) Aluminum

3) Other

4 ) Steel

Sub- tot al

Total

Total/100

(U) FIGURE 4-11_

AIRFRAME PRODUCTION COMPLEXITY - BASI(

DCPR Wei6ht
ib kg

80 36

1,355 614

3,996 1,812

588 267

750 340

150 68

_,919 3,137

741 336

4,573 2,074

520 236

670
7,311 3,31g

14,230 6,453

% of DCPR Wt.

.56

9.52
28.O8

4.13

5.27

1.o5

48.61

5.22

32.14

3.65

lO.38

51.39

i00.00

MACH 12 VEHICLE

Fabrication

Complexity

Factor

4.0

4.0

9.0

7.5

2.0
4.0

1.O

1.0

1.0

1.0

Weight ed

Complexity

2.24

38.08
252.72

30.98
0.54
4.2o

338.76

5.22

32.14

3.65

10.38

51.39

390.15

3.9

I
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(U) FIGURE 4-118

RELATIVE FABRICATION COSTS- AIRFRAME

Mat e ri al

_pe

Aluminum

Titanium

Rene' 41

T.D. l;iCr

Columbiu_

Fabricated Material (_)

Cost

$/lb $/k_

37 82

5O ii0

50 ii0

75 165

500 1102

(Material and Labor)

Relative

Material

Cost

1.00

1.36

i. 36

2.04

13.59

Fabrication (2)

Labor Cost

S/it $1k_

240 529

h20 926

1275 2811

1035 2282

448 988

Relative

Labor Cost

(Complexity

Pae£or,

1.O

2.0

7.5

9.0

4.0

Fabrication

Cost

Labor & Materia]

$/ib $/k_

277 611

470 1036

1325 292i

iii0 2447

948 2090

_eiativ; 3)

gelght

1.O

1.23

2.08

6.80

7.13

(4
Relative

Structure

Cost

1.00

2.09

9.94

27.20

24.38

(I) Based on avg. material price with allowances for scrap and offal

(2) Labor rate is based on the following DCPR weights

a) Aluminum - 30,000 ib (13,605 kg)

b) Titanium - 36,900 ib (16,734 kg)

c) Rene' 41 - 62,400 ib (28,298 kg)

d) T.D. NiCr- 204,000 ib (92,514 kg)

e) Columbium - 213,900 ib (97,004 kg)

(3) This factor represents relative structural weight for a constant size fuselage designed by

loads occurring at the following temperatures:

Aluminum - 250°F T.D.NiCr- 2000°F

Titanium - 600°F Columbium - 2500°F

Rene' 41 - 1500°F

(4) Relative to an aluminum fuselage structure (fixed size, variable weight)

structure designed to operate in different temperature environments and compared

on the basis of equal strength. A different result occurs when comparing

structural elements that are influenced by minimum material gage limitations.

The radiation shingles, which comprise 14% of the DCPR weight, are examples of

minimum gage (i.e., thickness is governed by manufacturing limits rather than

strength) structure. The complexity factors can also be used in making comparisons

in this type structure as shown in Figure 4-119. It is interesting to note that

when highly-loaded structure is compared the total cost increases as the environ-

mental temperature increases, which is due to lower strength allowables requiring

greater thickness materials. However, when strength is not as great a factor the

environmental temperature has less influence on the material gage and the material

with low fabrication complexity cost results in the lowest overall cost. In the

example shown,Columbium shingles cost less than superalloy shingles because of fabri-

cation complexity; however, superalloy structures (highly loaded) cost less than

Columbium because of their high strengths at elevated temperature. These results

are different than expected and valid within the accuracy of the factors used. In

the final analysis,the maintenance, repair and replacement costs (directly related

to structural life) must be considered and may change the ordering illustrated in

Figures 4-118 and 4-119.
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(U) FIGURE 4-119
RELATIVE FABRICATION COSTS - HEAT SHIELD (1)

Material

Type

Aluminum

Titanium

Rene' hi

TD NiCr

Columbi=

Tant alum

Fabrication

Material

cost(2)
$/lb $/_

37 81

5O ii0

5O ii0

75 165

50O I102

600 1323

Relative

Labor

Relative Cost

Material (Complexity

Cost Factor)

1.00 !.0

1.36 2.0

1.36 7.5

2.04 9.0

13.59 h.0

16.31 4.o

Fabrication

Labor

cost (3)
$/ib $/kg

240 529

480 i058

1800 3969

2160 4763

960 2117

960 2117

Fabrication

Cost

(Labor &

Material

Cost)

$/lb $/k,_

277 610

53O 1168

1850 4079

2235 4928

1460 3219

1560 3440

Weight Per

Unit Area

ib/ft 2 kg/m 2

•70 3.42

.68 3.32

1.41 6.88

1.45 7.o8

1.5T 7.67

4.5o 21.97

Fabrication

Cost

Per Unit

Area Labor

& Material

$/ft 2 $/m z

194 2086

360 3878

2609 2806h

3241 3h89o

2292 24690

7020 75576

Relative

Heat

Shield

Cost

Labor &

Materi_ _

1.00

z.86

13.47

16.74

11.84

36.25

(i) Based on 2 ft x 2 ft (61 cm x 61 em) heat shield.

(2) Based on the average price of material.

Includes: pan stock, castings, forgings, extrusions, purchased parts, sheet and bar stock and tubing

The cost also includes allowances for scrap and offal

(3) Labor rate is based on an aluminum airframe of 30,000 lb (13,605 kg) DCPR weight.

(h) Relative to aluminum.

4.11.2.2 (U) Engine Cost Influence - It was found in Phase I, that engine

development costs for some vehicle designs required large dollar expenditures. In

some cases, more than half of the program development costs were attributed to engine

development. This was the case for turboramJets, scramJets, ramJets and convertible

s cramJ ets.

(U) The propulsion development cost for the Mach 12 basic vehicle is relatively

low because a modified RL10 rocket propulsion system is used which requires only

a 24 _[ dollar development expenditure. In Phase II, it was found that appreciable

savings could be realized by using RL10 engines instead of rubberized versions of

the LR-IR9 rocket engine. The engine development costs for the Phase II B233

configurations emp_loying rubberized versions of the LR-129 rocket engine ranged

from 77 M to 195 M dollars while the engine development cost of the Phase II B233

configurations employing the RL10 engine was 24 M dollars.

(U) The in__vestment cost of_the 5 RLIO-A-3-9 engines employed in the Mach 12

vehicle is 2.3 M dollars or .46 M dollars per engine. The total acquisition (RDT&E

plus investment) cost attributed to the propulsion system for the Mach 12 basic ve-

hicle is 42.4 M dollars which is approximately 16% of the total acquisition cost.

Engine investment costs are based on the procurement of 40 engines: 15 installed

in 3 aircraft and 25 spare engines.

4.11.2.3 (U) Miscellaneous Subsystems and Avionics System Cost Influence - The

acquisition costs associated with the avionics and miscellaneous subsystems are

not significant_due to the fact that only off-the-shelf hardware was employed. They

amounted to 19 M dollars, which is approximately 7% of the total acquisition cost.
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4.11.2.4 (U) 0i0eratin_ Cost Influences - The Mach 12 basic vehicle maintenance/

repair cost is 53 _ dollars and is the largest of all the operating cost elements,

being 60% of the total operating cost. A breakdown of the Mach 12 basic vehicle

maintenance/repair cost is shown in Figure 4-120.

The operating cost for the Mach 12 basic vehicle (87.9 _ dollars) ammortized over

the 200 flight research program is .440 M dollars per flight.

(U)FIGURE 4-120

MACH 12 VEHICLE MAINTENANCE/REPAIR COST SUMMARY

FOR 200FLIGHTS

MAJOR SYSTEM

i. Airframe

2. Propulsion Sys.

3. Avionics

4. Misc. Subsystems

Total

% of Total

COST - MILLIONS OF DOLLARS

Material

19.7
8.4

5.4

6.2

39.7

75.0

Labor

9.9
2.0

.9

.7_

13.5

25.0

Total

29.6

lO.4
6.3

6.9

53.2

i00.0

4.11.3 (U) RESEARCH VEHICLE OPTIONS - Seven major research vehicle option programs

are priced for the Mach 12 basic vehicle and are as follows:

o SJ - ScramJet

o CSJ - Convertible ScramJet

o ARM - Armament

o STG - Staging

o HT0/VTO - Horizontal/Vertical Takeoff

o TPS - Thermal Protection System

o TJ - Subsonic Turbojet

The modification costs for each of the seven major options were separated into the

installation provision's cost and the cost of the research package and are presented

in Figure 4-121. It was found that installing the vehicle option provisions on the

basic vehicle at the contractor's manufacturing facility resulted in lower costs than

installing them at the test center. In Figure 4-121, the installation provisions

costs for options 1 thru 6 are based on installation at the contractor's facility.

When each of the six installation provisions are installed separately at the test

facility, an increase of .6 M dollars results.

(Page 4-170 is Blank)
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PRECEDING PAGE BLA_ NO2
4...

(U) FIGURE 4-121

DETAILED TOTAL SYSTEM COST BREAKDOWN FOR MACH 12 VEHICLE AND ASSOCIATED OPTIONS

Cost - Millions d Oollars

0pUons

Cost Catelories and Elements Basic Option No. 1 Option No. 2 Option No. 3 Option No. 4 Option No. 5SJ CSJ S'FG Arm, HTO'VTO
Vehicle

Cost Installation Research Installation Reneach Installation Resealch Installation Research Install Provisions Research

Provisions Packages Provisions Packages Provisions Packales Provisions I Pockalies HTO VTO Packates

I, RDT&E Costs INo. of Fli|hts - 200

1. Airframe Oesien and Oevelopment

A. Airframe Oesiln 5]..502 0.623 6.12"7 0.722 7.705 0.179 4.874 0,585 4.136 1.676 2.600 1.947

8. Miscellaneous Subsystem Oesi|n & Development 5.673 0.129 0.8_) 0,129 1.082 0,164 0.588 0,040 0159

C. Oevelopment Tests dncludin| Wind Tunnel) 2.366 0.031 0.738 0.033 0.901 0.007 0.052 0.020 0.016 0.018 0.082 0.251

O. Test Hardware 5.494 0.055 3.875 0,062 4 .928 0.022 0.420 0.036 0.065 0.024 0.089 -

E. Pre-Delivery Fli_t Test 4.080 - - "- - -

5ub-Tolal 60.823 0.847 L] .630 0.946 14.616 0,372 .S.740 Q.690 4.425 1.716 2.721 2.098

2. Toolinl 0.776 0,110 4.950 0,191 6188 0.061 0.913 0.118 0256 0.049 0.[90 0064

3. Avionics Development 4.669 - - -

4. Propulsion Development 24.000 - tS0.(X)O 175.000 - - 2.400

5. Support Equipment Oesi|n & System Inteiration 1733] 0.094 2.585 0.094 3.196 0.047 1.034 0.047 2.060 0.141 0235 0.188

6. Ground Test Facilities - 15.000 - 30.000 - -

Total [25.599 L.051 184.165 123[ 229.000 0.480 8.607 0._5 6.749 1.905 3.146 4.750

II. Investment Costs

L. FI i|ht Veh ic Ins

A. Airframe 26.560 0.249 19.194 0.282 24.422 0.077 0.205 0.172 0.292 0.318

B. M[scellaneons Subsystems 1.132 0 037 0.251 0.037 0.304 0.047 0.150 0.014 0.044

C. Propulsion 2,300 2.8_) 3.500 -

O. Avioni cs 1.44_ - 0.043 -

Unit Cost !l! Vehicle 3].738 0.285 22245 0.329 28.226 0.124 n390 0.186 0.336 0.118

Unit Cost (3) Vehicles 95.214 3.980(I-

2. Support Costs - -

A, AGE 14.2.82 1.668 2.]17 - 0.060 0,050

8. Trainin9 Epoidpment 0.750 - - -

C. Initial Stocks rEnginen & AGE SI)ares) 12.9_8 0.447 0.561 0.006 0.005

D. Initial Traininz 1.000 - -

E. initial Transportation 1.375 0.042 0.054 - 0.002 0.001

Sub-Total 30.335 2.157 2.732 0.0_ 0.0,%

3. Launch Platform Cost 11.873 0.895 1.110 0,354 o.7rK

4. Modification Installation Cost - 0.036 0.083 0.042 0.055 -

Total 137.422 0.295 25.380 0.319 32.160 0.124 4,444 0.136 1.152 0.U.8

Iit. Operatinl Cost

I. RanlPe User Cost 5.566

2. Escort Aircraft & Lollistics 2.220

3. Vehicle Maintenance/Repair Cost

A. Airframe

a. Material 19.701

b. Labor 9.855

B. Miscellaneous Subsystems

a. Material 6232

b. _ 0.675

C. Prpo,ulsion Systel'_S

a. Material 0.375

b.L._w Z.0_

D. Avionics
5.440

a. Malerial
0.945

b. Labor

Total Maintenance 'Repair Cost 53.257

4. Propellant and Prevswant Cost 1.014

5. AGE Maintenance Cost 2.880

6, General Purpose Mainlenance 5oppprt 1.000

7. Tram_pprtation Cost 0.605

9. Pilot Pay & Support Per Pay 19.200

9. Launch Platform Operation Cost 2540

Total Oparatiq Cost 87.18111

Grand Total 350.907

(D TeoU..,_i .FRAME (
(Page h-172 is Blank)

0.447 0.L_7

2.300

0.447 2.567

- 0.385

- 0.039

0.000

0.152 0296
°

0.447

0A32

2.W0

0.037

5.036

I_36

0.152 " 0286

0250 0.318

°

0.402 - 0.604

209.947 1.550 261 364
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-

- 0.005

0.504

0.009

]3J40

- 0.008

1.011

0.01

7.101 2.093

0.058

0.100

0.158

3.5_8 5.944



Kion No. 6 Oplioe NQ. 7 installation

TPS T J Pvm_isions

ation Research InstzlL_tioi Research tot Options

;iOns Packzfesl Provisions Packqes I t_'ou|h 6

1,014 1.82,1 ]4.889 4.332

0.176 040 0.361

1.041 O.03Z 0.860 0,088

0309 0.043 054Z 0.210

2,364 2.07Z 16.521 4.992

0.653 0.078 0.851 0.616

0.141 0.240 4.277 0._:_$4

3.150 Z.39_ 7.] .613 6.!.7Z

1,,545

1.545

0.232

_ 0.023

0.0_

0,260

0.).80 2.852 0.981

0.049 0.042 0.100

- 0.468

03.29 3.362 1.081

3.243

- 0.504

0.097 -

0.012

0.61;]

0.04! - Z.&I5 0.19L

O,OJg - 0.020 -

L.865 0229 6.648 3.4._

0.037

0.035 - 0._76

0.035 - O.ll3
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(U) The engine option research package costs shown in Figures 4-122 and 4-123

include the engine development and ground test facilities costs in order to show the

impact of the engine development cost, which is significant. The incremental costs

associated with the six options are shown in bar chart form in Figure 4-123 to show

the impact of their respective costs. The developm__ent costs_associated with the

scramJet and convertible scramJet engines are 150 M and 175 M dollars, respectively.

The ground test facility costs are obtained from Volume IV, Part 2, Section 7.7.

(U) FIGURE 4-122

TOTAL SYSTEM COSTS FOR THE BASIC MACH 12 CONFIGURATION

AND ASSOCIATED OPTIONS

(Millions of 1970 Dollars)

Cost Categories

i.

2.

3.

RDT&E

Investment

0p=.ratlng

TOTAL

BASIC
VEHICLE

125.6

137.4

87.9

350.9

OPT:
i. 2. 3.
SJ (2) CSJ (3) STG

185.2 230.2 9.2

25.7 32.5 4.6

•5 .6

211.h 263.3 13.8

:oNs (i)
4. 5.

_o/vTo

7.6 7.9

1.3 5.5

-- .2

8.9 13.6

6.

TPS

3.2

1.9

5.1

BASIC
7. VEHICLE
TJ Plus (4)

Inst. Prov.
24.0 131.8

7.1 lhO.8

.i 87.9

31.2 360.5

(i) Includes cost of provisions in the basic vehicle plus the research
option package.

(2) Propulsion Dev. Cost - 150 M engine, 15 M ground facilities.

(3) Propulsion Dev. Cost - 175 M engine, 30 _ ground facilities.

(4) Installation provisions for options 1 thru 6.

convertible scramJet engine options. The most expensive options are the engine

and staging options, while the least expensive options are the ARM, HTO/VTO, and

TPS options. All research option package costs were based on one unit, except the

STG option, which was based on ten units. This is the reason why the STG option

is one of the higher-priced research vehicle options. Three of the seven options

required incremental material costs to allow for the maintenance/repair of the addi-

tional engines: namely, the SJ, CSJ, and TJ options. The maintenance/repair material

cost increments for the SJ, CSJ, and TJ options are: .152 M, .206 M, and .037 M

dollars, respectively. These incremental material costs were computed on the

following basis.

o SJ - $2,800,000 (Eng. Inv. cost) x .002276 x 24 (No. of flights)

o CSJ - $3,500,000 (Eng. Inv. cost) x .002276 x 36 (No. of flights)

o TJ - $468,000 (Eng. Inv. cost) x .006828 x 12 (No. of flights).

MCDONNELL AIRCI_AF'r
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800"

(U)FIGURE 4-123

OPTION COST COMPARISONSUMMARY

o

=E

760-

720-

680"

640-

600-

560-

520-

480-

440 -

360

320

280

Options

CSJ

Propulsion

i

GroundFacilities
Airframe

SJ

Propulsion

Airframe

GroundFacilities

Stg.

, ! I
,lq

InstallationProvisionsfor Options1 Thru6

Operation

HTO/VTO Armament TPS
!

Investment
200

160

120"

80"
RDT&E

40-

MCDONNELL AIRCRAirr

_-174



REPORT MDC A0013 • 2OCTOBER 1970

VOLUME Iv" • PART 1

The factors of .002276 and .006828 used in the above computations represent the

ratio of the material cost to the total investment cost of the engine on a per flight

basis. The factor of .002276 was obtained from the X-15 data presented in Figure

3-11. This factor was increased by a factor of 3 for the turbojet engines employed

in the TJ option to account for the added complexity of a turbojet engine. Labor

costs were not increased because it was assumed that the number of engine maintenance

personnel located at the refurbishment center allocated for the basic vehicle's

propulsion system would be sufficient for the refurbishment of the additional engines.

(U) An estimate of the manhours required and the respective costs for the seven

modifications associated with the Mach 12 vehicle are presented in Figure 4-124.

These estimates are based on all work being accomplished by NASA personnel at the

flight research center at Edwards AFB and pertain to the installation of the research

packages. The installation provisions are installed on the basic vehicles at the

contractor's manufacturing facility.

(U) FIGURE 4--124

OPTION INSTALLATION COSTS

Time No. of Hr/Rate Total Total Opt. Inst.

Options (Mos) Men S/Man Hr (i) Man Hrs (2) Cost (3)

SJ

CSJ

STG

ARM

TPS

HTO

VTO

TJ

6

6

3

4

2

2

2

2

12

12

12

12

8

8

8

12

6.66

6.66

6.66

6.66

6.66

6.66

6.66

6.66

12,456

12 ,h56

6,228

8,30_

2,768

2 ,T68

2,Y68

h,152

83,000

83,000

_1,500

55,300

18,500

18,500

18,500

27,700

(i) Based on $13,000/yr (1970) NASA shop personnel cost and 1,952 working hrs per yr.
(2) Based on 173 manhours per month.
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4.12 DEVELOPMENT SCHEDULE

(U) The development schedule for the Mach 12 flight research vehicle is pre-

sented in Figure 4-125 which is a milestone chart depicting the important events

and their time of occurrence measured from "go-ahead".

(U) The schedule reflects the cost ground rules stated in Section 3.6.1, that

is, (1) minimum cost-to-fly program, (2) soft tooling, (3) limited reliability pro-

gram, (4) "Zero Defects" program not employed, (5) five year operational test pro-

gram, (6) limited pre-delivery flight test program and (7) maximum use of existing
equipment.

(U) The time allocated for the engineering design of the airframe is 36 months

with design freeze occurring 12 months after "go-ahead". Development tests are con-

ducted for a period of 18 months and terminate at the mid-point of the airframe

engineering design phase. Three major categories of tests are performed during the

18 month development test period: namely, (1) wind tunnel tests, (2) structural and

thermal tests and (3) component and subsystems tests. The assembly of the struc-

tural test article begins 16 months after "go-ahead" and is completed 28 months

after "go-ahead". Assembly of the three vehicles begins 19 months after "go-ahead"

and terminates with the completion of the third vehicle 51 months after "go-ahead".

(U) The engine development is concurrent with airframe development; hence, the

schedule is not paced by the development of the RL10-A-3-9 rocket engine.

(U) Due to the use of soft tooling, the tool design and fabrication program is

only 15 months in duration.

(U) The pre-delivery flight test program is also 15 months in duration. All

three aircraft require powered flights while the first two aircraft require captive

flights. Only aircraft number 1 requires glide flights. The first captive flights

are performed on the number 1 vehicle, 37 months after "go-ahead".

(U) Three months later (40 months after go-ahead) the first glide flight

takes place. The first powered flight occurs 48 months after "go-ahead". Upon

completion of the first powered flight, the flight research vehicle undergoes four

months of flight tests prior to being delivered to NASA. The remaining two vehicles
are also delivered at this time.

(U) Twenty five flights are conducted during the pre-delivery flight test

program: 3 captive flights, 2 glide flights and 20 powered flights. During the

pre-delivery flight test phase, the envelope of the flight vehicle is expanded

from sub-sonic to Mach 6 speed. Upon completion of the pre-delivery flight test

phase, the envelope expansion phase is initiated. In this phase, 45 powered flights

are scheduled to expand the envlope from the Mach 6 to Mach 12 regime. These 45

flights are flown without any test time alloted; that is, the entire mission is

dedicated to the expansion of the Mach No. envelope. An additional 30 flights are

required for: (1) structural thermo research at sustaining Mach numbers, (2) aero-

dynamic research, and (3) subsystems research. Test time is allocated for these 30

flights and is expanded with Mach No. Hence, 95 powered flights and 5 unpowered

flights are accomplished by the basic vehicle(s) prior to the modification research

phase of the program. For the modification research program, 100 powered flights
are allocated.

MCDONNELL AIRCRAIrr
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Definition Program

&GTiVITY

RFP - Proposal and Evaluation

_in-_ Oe---_ a-_ _ment (Phase !B)

Go-Ahead

EngineeringDesign

Design Freeze

DevelopmentTesting

ConfigurationDevelopment(Wind Tunnel Tests)

StructuralThermal Protection Tests

Componentand SubsystemTesting_ (Note 1)

Engine DevelopmentProEram

Definition and Evaluation

Design and Development

First PFRT Available

Manufacturing

Tool Design and Fabrication

Start Detail Parts Falxication

Assemblyand Preflight

StructuralTest Article, AssemblltandTest

Aircraft No. ]

Aircraft No. 2
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C-5 Modification

Aircraft No. I

First Captive FighL_

First Glide FliEht

First Powered
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First Captive Flight

First Powered FlirL__
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(Page-h-178 is Blank

(U) FIGURE 4-125

MACH 12 VEHICLE

DEVELOPMENT SCHEDULE
Years 0
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5. MACH 6 VEHICLE SYNTHESIS

(U) The basic Mach 6 research aircraft concept selected for Phase III refine-

ment consists of a wing body configuration powered by a near-term turboramJet

(STRJllA-27) propulsion system. It is manned and is designed for conventional

aircraft horizcntal takeoff and landing. The vehicle, shown in Figure 5-1, was

sized to meet the design mission described in Section 2.3. Configuration options

were then investigated to provide added research capability, and to determine what

effect these design modifications would have on cost, weight, and performance.

These data are summarized in Figure 5-2. The substantiating analysis is given in

the following sections.

5.1 DESIGN REQUIREMENTS

(U) Design criteria and ground rules selected for the Phase II refinement of
the Mach 6 research aircraft are based on the results of the Phase I and Phase II

concept selections and trade studies. All of the Phase II ground rules remain

applicable in Phase III. However, additional ground rules have been employed as a

result of the Phase II conclusions. The design criteria and ground rules for the

Phase III Mach 6 aircraft are presented in Figure 5-3.

5.2 CONFIGURATIONS - BASIC AND VARIATIONS

(U) In the following sections, the design, structural arrangement, and mater-

ials selection for the basic Mach 6 vehicle and various configuration options are

presented. The configurations and concepts shown are considered representative.

They are not intended to imply design optimization, nor to infer that the Mach 6

aircraft is capable of incorporating only the research options shown.

5.2.1 (U) VEHICLE DESIGN - The Mach 6 research aircraft concept, though differing

significantly from the Mach 12 vehicle, employs the same design philosophy. The

aircraft is designed from the standpoint of making provisions, within the basic

vehicle structure, to accommodate any of several attractive research configuration

options by relatively simple modifications. The modifications considered are in

the form of essentially complete research packages or kits.

5.2.1.1 (U) Basic Vehicle - The basic vehicle selected for Phase III study and

refinement is a variation of the -210 concept from Phase I. The selection of a

near term turboramJet engine in lieu of an advanced technology engine was based

primarily on cost considerations. The engine selected is the P&WA STRJllA-27,

which employs an existing, currently in use, JP fueled, J58 turbojet engine modified

to include a wraparound hydrogen fueled annular ramjet. The selection of this

engine provides high confidence in the propulsion concept and will not require an

extensive development program prior to initiating the research program.

(U) Se_ral engine inlet configurations were studied and three designs were

investigated, as discussed in Section 2.4. The shoulder mounted design with hori-

zontally oriented inlets and ramps forming a bifurcated duct was selected. It

offered more versatility than the lower fuselage inlets by keeping the under surface

(Page 5-2 is blank) MCDONNELL AIRCRAFT"
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(U) FIGURE 5-2

CHARACTERISTICS SUMMARY - M = 6, MANNED, HTO, TRJ VEHICLE - FIXED SIZE

CONFIGURATION

DESCRIPTION

PERFORMANCE
LB

WEIG_ (KG)

ACQUISITION COST

MILLION DOLLARS

BASIC VEHICLE 398

TIME

MACH (MIN)

6.0 5.0

5.7 o

6.0 1.8

6.0 3.2

6.o 5.o

6.0 0.3

6.0 2.2

ALL LH 2 STRJIIA-27

LH 2 TANK STRJIIA-27

OWE TOGW

48456 61426

(21980) (27863)

48456 53406
(21980) (24225)

48956 55506

(22206) (25178)

50648 63618

(22974) (28857)

48792 61762

(22214) (28015)

46144 51504

(20931) (23362)

46644 53604

(21158) (2hB15)

ARM OPTION

TPS OPTION

ADVANCED TURBORAMJET

JZ6 (96.5% SCALE)

JZ6 + _ LH 2 TANK

402

405

0 hh3

Q EXCLUDES $500 _,_L. ENGINE ANDS376 MIL. GROUND DEVELOPML_ COSTFACILITY

NOTE: RAMJET AND SCRAMJET OPTIONS - DESIGN CONCEPTS ONLY WERE DEVELOPED.

open for modification options. The selected design also creates lower inlet air

turning angles and reduces possibilities of foreign object damage during ground oper-

ations. As a restL_t of this arrs.ngement, the TRJ inlet was located in the free stream

rather than within the vehicle pressure field, as in previous phases. For this

reason, a new inlet configuration was generated to ensure high performance. Figure

5-3 illustrates the basic Mach 6 vehicle design and Figure 5-4 presents the wetted

area and volume plots for the vehicle.

(U) A passive thermal protection system is utilized on the basic vehicle. The

high wing, bifurcated inlet duct made a passive system more attractive than an active

TPS (initially recommended in Phase II) to reduce structural thermal gradients

from the inlet duct to the outside moldline and from the inlet duct to the engine

compartment. The inside walls of the bifurcated inlet ducts are regeneratively

cooled strucuure. The airframe structure is basically aluminum with titanium used

in the inlet area where advantageous.

(U) The design mission of the Mach 6 aircraft is described in Section 2.3.

To reduce base drag, the hydrogen fueled ramjet is started at Mach .8 and continues

to operate to fuel depletion. The turbojet and ramjet operate together over the

speed range of Mach .8 to Mach 3.5. At Mach 3.5 the turbojet is shut down and the

(Page 5-6 is blank) MCDONNELL AIRCRAFT
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WettedArea Ft2 M2

Fuselage 1650. 15328
RampFace 180. 16.75
BLD 35. 325

_ Wing 748. 69.49
0 Tips 204. 18.95

Vert. Tail 448. 41.62

18

. 12

(U) FIGURE 5-4

MACH 6 VEHICLE

Wetted Area and Volume Plot

Sp - 1103 Ft 2

Deductions Ft2 M2

Ramp 180. ]6.72

Exp. Eng. 136. 12.63

Total 316. 29.35

Fuel TankWettedArea

Propel. Ft2 M2

Ft

LH2 667 61.96
J.P. 410 38.09

i , ,

Fus. AboveWine618. Ft2 (57.41 M2)
I I I

Exp. Eng. 136. 12.63 /-- Fuselage /--JP /---Fuselage AboveWing

To.i Ramp _ _- -' .

Fa_e_ _ _'- LH2 L ...... ,-_/ _ Eng.

.-"- r-" ,BCO -_,','/ _" 'l...-'__-\-, _.- /., _- ,,, __ ,,
' I - /" , ,iL . .=-, I /I

2 3 4 5 6 7 8 10

100 inches
I I I I I

500 1000 1500 2000 2500
(Centimeters)

FuselageStation

80

6o

.85124 R240

2020

0

Volumes Ft3 M3 Fuel Tank Volume Deductions Ft3 M3

Fuselage 279--'0. 78.--_ Propel. Ft3 M3 Ac 840. 23.77

Ramp 150. 4.24 LH2 941 _ Ramp 150. 4.24

Bleed 75. 2.12--J.P. 145 4.10 l,'- -_ I Exp. Eng. 225. 6.37-

Wing 273. 7.73 I i_ / _ Total 12-1"_. 3_'_8
Tips 20. .57 I

"Exp. Eng. 225. 6,37 /'_; I / I I _1 /--Exp.

To,,i
Fuselage% ._ I1_". Wing _- I !

\/'.I.,_ I'l Ir"_l__,..,..._ X ! IF-Vert"
'1" I II __f"'-- Tio,l_",_ i /,' Tail

.. I _" v ,

1 2 4 5 6 7 8 10

100 Inches
I I i I I I
0 500 1000 1500 2000 2500

(Centimeters)

FuselageStation
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ramjet accelerates the aircraft to cruise Mach number and is then throttled to

maintain constant Mach number until the fuel is exhausted and an unpowered glide

and descent is made. The ramjet operates at stoichiometric conditions over the

entire acceleration speed range. Energy management to achieve a high key position

over the landing base is accomplished by modulating the vehicle L/D as done with

the Mach 12 vehicle. A 360 degree overhead approach and landing is made.

(U) Along with the normal complement of avionic equipment, the vehicle carries

a payload of 1300 lb (589.7 kg) instrumentation which can be utilized in a manner

best suited for the particular research. While a payload of 1500 lb (680 Kg) was

selected as a result of the Phase II trade study the point design study of Phase III

resulted in a better vehicle integration with a smaller payload while providing

adequate research capability. Instrumentation may be altered as required for spe-

cific research flights. Each research option will probably require some alteration

in the payload to best use the test vehicle capability.

5.2.1.2 (U) Armament (ARM) Option - The armament for possible military applica-

tions of a hypersonic vehicle is assumed to be guided missiles or warheads

of various sizes. The Mach 6 aircraft utilizes a bomb bay type pod with clam shell

doors on the undersurface of the aircraft as shown in Figure 5-5. If desired the

pod could be Just as easily located on the upper surface of the vehicle. However,

previous studies have indicated that for this speed class vehicle the lower surface

is probably a better choice for the armament system.

(U) The purpose of this modification is to provide research in the deployment

and separation of such weapons, the thermal shock on the weapon, and in the inter-

nal heating of a bomb bay type cavity. The use of deflectors and shields to divert

airflow and prevent high heat impingement on the inner walls of the o_en bomb bay

are also of interest.

(U) After the deployment methods are defined, missile shapes, weighted

appropriately, could be ejected for separatlbn characteristics.

(U) Missile guidance systems will require avionic modifications to the air-

craft electronic systems. Initial tests can be made using inertial guidance systems.

The aircraft inertial system can be updated by ground tracking systems and the data

then fed to the missile guidance system computer for the target acquisition and

weapon release. Radar guidance systems will require development of a high temper-

ature radome material for both aircraft and missiles. Such a development program

could be incorporated into the Mach 6 test program.

(U) The illustrated missile pod will accommodate a missile or warhead uo to

180 in (h57 cm) long and 20 in (50.8 cm) in diameter with missile fins folded to

fit this envelope. An alternate system, similar to that employed for the Mach 12

aircraft, is shown with two aft firing 15 in (38.1 cm) diameter, 165 in (419 cm)

long launch tubes. The centering sabots and gas generating cartridge propulsion

system are the same as discussed in Section 4.2.1.7.

5.2.1.3 (U) Thermal Protection System (TPS) 02tion - The TPS test section is

located aft of the forward fuel bulkhead in a cryogenic fuel tank area. The test

bay extends around the periphery of the fuselage except in the area behind the inlet

ducts. The test bay permits testing thermal protection systems up to 6.0 in (15.2

cm) thick, active or passive systems, regeneratively cooled panels, or any similar

type systems required. For thicknesses less than 6.0 in (15.2 cm), special shingle

MCDONNELL AIRCIfArr
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support stand off intercostals can be used to maintain a flush outside contour.

Two equipment bays for instrumentation, cryogenic reservoirs, pumps, etc. are loca-

ted over the inlet ducts and in the area of the fuselage hidden by the inlet ducts
as indicated in Figure 5-6.

(U) This peripheral test bay provides good flexibility in testing systems
for long periods of time. Actual environmental conditions are encountered and

monitored throughout the flight. All tests will be full scale actual hardware

specimens subjected to the temperature, pressure and air flow environment in cryo-
genic structural applications.

(U) To maintain continuous load paths, the basic structure is tapered from

the normal depth of 2.5 in. (6.35 cm) inside the external mold line to a depth of

6.0 in (15.2 cm) inside the mold line. This depth is held constant across the test

bay and then tapers the load paths back out to the 2.5 in (6.35 cm) depth inside

the mold line of the basic structure. The normal vehicle TPS will be used in this

area when no alternate system is being developed or tested.

5.2.1.h (U) Advanced Turboram_et (JZ6) Option - The GE5/JZ6 hydrogen fueled

turboramJet engine was originally considered for the basic aircraft but because of

its advanced technology status, cost, and unavailability it was not pursued. How-

ever, the feasibility of installing this engine when it becomes available in the

Mach 6 research vehicle was investigated. Figure 5-7A illustrates a proposed

installation of a JZ6 engine sized to the existing inlet airflow capability. Figure

5-7B provides a comparison of the GE 5/JZ6 and the STRJll-27A engine installations

indicating the inlet duct extension moldline changes and tankage alterations. The

hydrogen tankage is expanded, the JP fuel provisions are removed, the regeneratively

cooled inlet duct is extended to accommodate the shorter engine and the beef-uo of

the basic structure makes this an extensive, but feasible, modification. The vehi-

cle, as shown, requires additional liquid hydrogen fuel to obtain a satisfactory

test time at test Mach number. It can be provided by adding an external LH 2 fuel
tank to the centerline station, as shown in Figure 5-8. The external tank fuel is

used to gain altitude and speed to Mach .8 where the emoty tank is Jettisoned.

Internal fuel is then used to accelerate and cruise at the test Mach number for the
available test time.

(U) This optional capability to test advanced turboramJets in a proven

airframe appears to significantly enhance the long range utility of the basic air-
craft concept.

5.2.1.5 (U) Convertible Scram_et (CSJ) Option - The forward inlet ramp angle and

the exit nozzle contour establish the additional fuselage depth required to accomo-

date this modification as shown in Figure 5-9. This propulsion system is effective
from Mach 3.5 to Mach 6, which is the design Mach number for the aircraft. The

modification extends over the entire length of the vehicle lower surface. The

extreme depth of the package creates the need for an extended landing gear but the

additional volume is used to house the CSJ fuel tankage and actuators that retract

the modular engines during acceleration through the transonic drag rise.

(U) Integration of this option on the vehicle is difficult and not attractive

for research because of the limited range of operation. Therefore, performance and
weights were not calculated for this modification.

(Page 5-1h is blank)
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Inlet Duct
Extension

r "GES/JZ6
t-- -- Installation

BL 98.0

F ContourModification

/,,:,

GE5/JZ6 Inlet
Extension--.,"

ContourModification

Requiredfor JZ6

1 Turboramjet Engine Installation
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5.2.1.6 (U) Ramjet (RJ) Option - The proposed option concentrates on flight

testing small ramjet engines, such as fixed inlet ramjets for missile applications

and subscale (20 inch, 50.8 cm inlet diameter) variable geometry engines. However,

data and experience gained from these tests would be applicable in advancing the

state-of-the-art of designing larger ramjet and turboramJet systems.

(U) This option, Figure 5-10, utilizes a shock wave generator and a boundary

layer diverter to produce predictable inlet conditions. JP fuel for the missile

application is carried in the dummy missile shape. The variable inlet subscale

ramjet could be hydrogen fueled from the basic vehicle fuel supply. Locally high

heating due to ramjet shock waves impinging on the basic vehicle would require the

use of Columbium shingles or an ablative coating in the interference region sur-

rounding the ramjet option.

5.2.2 (U) STRUCTURAL ARRANGEMENT - The arrangement, material, and fabrication

methods of the structural elements have been selected to provide a low weight high

reliability structure and to provide the capability to economically modify the air-

craft for selected research options.

5.2.2.1 (U) Basic Vehicle - The basic Mach 6 aircraft structure is significantly

different from the Mach 12 vehicle primarily because of the airbreathing engine and

inlet (Figure 5-11). In the forward part of the aircraft the fuselage structure

is integrated with the cryogenic fuel tanks. In the aft part it is integrated with

a high temperature inlet and engine.

(U) Inlet and engine compartment temperatures at Mach 6 are in the 2500 -

2600°F (1640-1700°K) temperature range. The inlet is regeneratively cooled and

therefore also provides the capability for a dash to higher speed. The heat ex-

changer on the inner surfaces of the inlet is designed to hold temperatures below

1550°F (lllS°K) to allow the use of the most structurally efficient superalloy,

Rene' hl. Passive insulation behind the liner protects the primary structure from

the 1550°F (lll5°K) heat exchanger temperatures. The insulation was sized to main-

tain the primary structural (titanium frame and skin) temperature at 300°F (422°K).

(U) The cryogenic tank structure is similar in concept to the Mach 12 fuse-

lage tank arrangement. It is of aluminum stiffened skin construction with mechanical

fasteners and is integral with the primary fuselage structure. The fuel tank takes

the shape of the fuselage moldllne rather than a multl-bubble shape, like the Mach 12

aircraft, because vehicle weight is more sensitive to the inlet/engine integration

than to tank shape. Fuel tank structure, as in the non-fueled areas, is protected

with a passive thermal protection system. Although there is a slight weight advan-

tage in using the water wick system, the passive system was selected to be consistent

in concept with the engine/inlet area. Structural temperature is limited by the

insulation thickness to 250°F (394°K) or less which is dictated by the temperature

limit of the internal tank insulation. The LH2 tank has a layer of polyurethane

insulation and a multi-layer FEP Teflon coated Kapton film vapor barrier inside the

tank similar to that employed on the Mach 12 aircraft (Ref. 4.2.2.1).

(U) The wing is an integral extension of the primary fuselage structure. It

houses the landing gear and JP fuel tank and supports the vertical tail and all con-

trol surfaces. It is of multi-stiffened skin construction with spars corresponding

to major fuselage bulkhead locations. Due to the extremely short wing span, ribs
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and intercostals are used only where required to close the landing gear well and

the JP fuel tank. The fuel tank is integral with the structure. Spanwise stiffening

members are simply extensions of the fuselage stiffening rings.

(U) Landing Gear - Landing gear is of conventional design. Struts and

supports are high strength steels, brakes are a low weight high heat capacity

material such as beryllium and they are retracted into insulated compartments.

(U) Control Surfaces - Like the Mach 12 aircraft the control surfaces are

hot structure and are of sheet metal construction as shown in Figure 5-11. The

1300°F (978°K) to 1500°F (1090°K) temperature requires that a superalloy be used.

Rene' hl and TD NiCR have been selected since they represent the most efficient

structural materials available in this temperature range.

(U) Leadin_ Edges and Nose Cone - Leading edges are lightly loaded structure

and are subject to temperatures near 1500°F (1090°K). The structure is constructed

of Rene' _l formed and stiffened sheet that is segmented to reduce thermal stresses.

They are made easily removable since this location is excellent for performing

flight evaluations of various high temperature alloys and coatings.

(U) The nose cone is an X-15 type Q-Ball which is used as an attitude sensor

as well as a thermal shield. Rene' hl superalloy is the leading material candidate

for the nose cone because of its temperature capability, strength and corrosion
resistance.

5.2.2.2 (U) Structural Modifications _Research Options) - The basic aircraft

structure provides the capability to adapt vehicle changes for additional flight

research. Modifications to the structure for selected research options are

described in the following paragraphs.

(U) Armament (ARM) Option - Modifications to the structure of the basic

vehicle to accommodate an armament research capability are required on the lower

surface. The structure of the armament bay consists of titanium material protected

on the external surface by a passive thermal protection system (shingles and

insulation). The bomb bay doors are guided and actuated with superalloy tracks and

mechanisms. Structure to provide additional strength for the main supports will be

required in the bulkheads at the attach points. Longitudinal intercostals must be

added to transmit fore and aft loads into the fuselage.

(U) Thermal Protection System (TPS) Option - There is no change required in

the primary structure to provide for research on various thermal protection systems.

The modification requires minor changes for attachment of the TPS and instrumenta-

tion in a manner similar to that employed for the Mach 12 vehicle.

(U) Advanced Engine (JZ6) Option - Incorporating the GE5/JZ6 TRJ into the

basic airplane in place of the STRJllA-27 engine requires a significant modifica-

tion. All structure aft of the rear LH 2 bulkhead with the exception of the

vertical tails and the movable tip controls will have to be revised. This is

primarily due to the change in size and shape of the engine and inlet together

with the change in magnitude and location of the concentrated loads. It is

possible to incorporate this option without modifying the structure forward of

the aft LH 2 bulkhead. However, should the airframe load distribution be changed
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significantly, it is possible that a reduction in the maneuvering load factor

capability would be required to avoid overloading the unmodified section of the

fuselage structure.

(U) Structural concepts for the GE5/JZ6 would be the same as those for the

STRJllA-27 engine, inlet, and supports. A redesign of the regenarative cooling

system may be required because of the increased surface area of the lengthened
inlet.

(U) Convertible Scram_et (CSJ) Option - Adding the CSJ to the basic vehicle

requires reshaping the lower surface. Changes in the primary structure would be

local for attachment only. The added surface consists of support frames and

shingles similar to those removed from the original moldline.

(U) The CSJ engine module is similar to that designed for the Mach 12

vehicle and it is supported in the same manner. Local bulkheads will require

extensive modification to accommodate the hardpoint loads from the movable ramps

and engine module. Intercostals for longitudinal load distribution must also be

provided locally. The majority of the thrust loading will be transmitted through

these into the fuselage structure.

(U) The critical design pressure condition, 5.0 g maneuver at Mach 6,'for

the CSJ engine is similar to that of hhe Mach 12 aircraft. Therefore, the design

pressures are considered the same as shown for the Mach 12 vehicle in Figure
4-25. Internal temperatures in the scramJet module and on the aft movable

ramp is made of titanium structure and superalloy shingles.

(U) The additional fuselage depth requires that both the nose and main

landing gear be lengthened. This requires, in addition to longer gear, a strenth-

ened landing gear bulkhead.

(U) Ramjet (RJ) Option - Addition of a ramjet module on the lower surface

of the fuselage requires that the primary structure be strengthened to transmit

the thrust load into the fuselage and to support the boundary layer diverter and

engine inertial loads. A major revision of the lower moldline is required to

provide a boundary layer diverter (BLD). Shingled and insulated structural frames

are employed. Local areas in the BLD require columbium shingles, since the

temperatures will approach stagnation values.

MCDONNELL AIRCRAFT

5-26

I



REPORT MDC A0013 • 2 OCTOBER 1970

VOLUME ]3;E • PART 1

5.3 AERODYNAMICS

(U) The aerodynamic characteristics for the basic Mach 6 vehicle and several

configuration options are presented in the following sections. Aerodynamic efforts

were directed toward accomplishing the same Phase III objectives for the Mach 6

aircraft, as for the Mach 12 vehicle, namely:

o Substantiation of lift and drag values employed in vehicle performance

analys is

o Determination of the basic vehicle static stability and control
characteristics

o Analysis of the unaugmented handling qualities of the basic vehicle

(U) The lift and drag characteristics employed in determining the performance

data presented in Section 5.5 (Phase II methods) are substantiated by two addi-

tional prediction techniques (Gentry and Harris Programs). Static stability and

control characteristics for the basic vehicle are presented for both longitudinal

and lateral-directional modes throughout the Mach regime. They show the aircraft

to be statically stable and aerodynamically controllable in all modes. A redundant

three-axis control augmentation system will of course be required to tailor handling

qualities to the levels desired. However, the unaugmented handling qualities for

the bare airframe are sufficiently good in most instances to assure a safe termina-

tion of the mission in spite of an inoperative augmentation system.

5.3.1 (U) LIFT AND DRAG CHA/L_CTERISTICS - The lift and drag coefficients employed

in the performance analyses of the Mach 6 turboramJet vehicles are defined as

CL = CLa

CD = CDo + L'CL2

where the lift curve slope (CL_), the zero-lift drag coefficient (CD o) , and the
induced drag factor (L') are d_termined as described in Section 3.2.I.

5.3.1.1 (U) Basic Vehicle - The values of L' and CLa utilized in the basic

vehicle performance analysis (Phase II methods) are shown in Figure 5-12, together

with the values obtained from the Gentry Arbitrary Body Program. The values of L'

and CLa employed in determining basic vehicle performance are in good agreement
with the Gentry predicted values.

(U) The values of CDo employed in the performance analysis of the basic

vehicle are also shown in Figure 5-12 together with the results obtained from the

Gentry and Harris Computer programs. The Harris CDo values shown include the same
skin friction, base, and vertical tail toe-in drag contributions as employed in

the basic Phase II method of analysis since only wave drag is computed in the

program. No aft body flow separation is assumed for this configuration and the

complete fuselage geometry is therefore input to the Harris program.

(U) The CDo values shown for the Gentry program include the same base and

protuberance drag contributions as employed in the basic Phase II method of
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.04

(U) FIGURE 5-12

MACH 6 TURBORAMJET

LIFT AND DRAG CHARACTERISTICS

Power On

CL=_Per
Degree

.O2

l
i r

.O2

CDo .Ol ----'J

I 0 Gentry
A Harri s

--'_ _---._._ , .

........................

0 1 2 3 4 5 6

Mach Number

analysis since these are unaccounted for in the program computations. Although

there are obvious differences in the three methods of computing CDo , the results
indicate that the drag method employed in the basic vehicle performance analysis

yields estimates substantially in keeping with other accepted prediction techniques.

(U) Like the Mach 12 rocket vehicles, a symmetrical outboard deflection of

rudder panels is employed for speed brakes on the Mach 6 configuration. The

speed brake effectiveness employed in the performance analysis of the Mach 6 vehi-

cles is the same as that shown for the Mach 12 vehicles in Figure _-28.

5.3.1.2 (U) Configuration Options - Estimated values of CDo obtained for the

armament option to the basic vehicle (Figure 5-5) are presented in Figure 5-13.

These values were employed in determining the variation in vehicle performance to

be expected when incorporating this configuration option. The values of L' and

CLa are assumed to be unchanged and are therefore the same as shown in Figure 5-12.

(U) A second option requiring an external configuration change is the use

of a centerline LH2 fuel tank (see Figure 5-8). This store is employed only at

subsonic speeds and the additional drag is estimated as ACDo = .0015.
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CDo

.O2

.Ol

(U) FIGURE 5-13
MACH 6 VEHICLE ARMAMENT OPTION

ZERO-LIFT DRAG COEFFICIENT

Power On

,_('_,, ARM_

Basic J

Mach Number

5.3.2 (U) STABILITY AND CONTROL CHARACTERISTICS - The longitudinal static

stability characteristics for the basic vehicle are presented in Figures

5-1h and 5-15. The reference moment center employed is located at approximately

55% of the body length. Also shown on these plots are selected climb and glide

trim points corresponding to an anticipated aft center of gravity location of

67% length.

(U) The delta tip controls are shown to be quite effective in providing

longitudinal control at all Mach numbers. However, as presently configured, the

vehicle exhibits a nose down zero-lift pitching moment coefficient (Cm o) which

requires large control deflections to trim out. This in turn results in signifi-

cant trim drag as shown in Figure 5-16. The nose down Cmo is produced by the nose

droop incorporated in the present design to improve the pilot's over-the-nose

view during landing. The effect of removing this nose droop insofar as trim drag

is concerned is illustrated in Figure 5-16. Another means of reducing trim drag,

as illustrated in Figure 5-16, is to reduce static margin. This can be accom-

plished through cg control or by adding variable controls forward of the cg, e.g.

canards, to reduce the rather significant high speed static stability margin

shown in Figure 5-17.

(U) Figure 5-18 presents a tabulation of the pertinent longitudinal stability

derivatives corresponding to the trim points shown in Figures 5-1h and 5-15.

They were obtained from the Gentry analysis using a body axis system. They are

employed in the handling qualities analysis presented in Section 5.3.3.
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(U) FIGURE 5-14

MACH 6 TURBORAMJET

LONGITUDINAL STATIC STABILITY AND CONTROL CHARACTERISTICS
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(U) FIGURE 5-17

MACH 6 TURBORAMJET
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(U) FIGURE 5-i8

MACH 6 TURBORAMJET

LONGITUDINAL DERIVATIVES AND

TRIM FLIGHT CONDITIONS

Climb Glide
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(U) Figure 5-19 shows the lateral-directional static stability characteristics

of the basic vehicle for a stabilator deflection of 0° (untrimmed). The symbols

indicate the selected climb and glide trim points previously discussed. These data

indicate that the vehicle is statically stable directionally at all Mach numbers.

Figure 5-20 presents a tabulation of the pertinent lateral-directional stability

derivatives for the selected trim points which are employed in the handling quali-

ties analysis. These were obtained from the Gentry program.
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(U) FIGURE 5-20

MACH 6 TURBORAMJET

LATERAL-DIRECTIONAL DERIVATIVES

AT TRIM FLIGHT CONDITIONS
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5.3.3 (U) HANDLING QUALITIES - The" unaugmented handling qualities of the basic

Mach 6 vehicle were examined in a manner similar to that described for the Mach 12

vehicle in Section 4.3.3. The trim flight conditions investigated are those shown

in the preceding section. Comparisons of the results attained are again made with
the Level 2 and Level 3, Category B and C, Class IV handling qualities requirements

of Reference 6. These requirements, although not directly applicable to a research

aircraft, provide a frame of reference. The bare aircraft flying qualities shown

are representative of an inoperative augmentation system.

(U) Figure 5-21 presents the longitudinal short period dynamic stability

characteristics of the unaugmented vehicle. This plot indicates that the undamped

short period natural frequency, mnsp, versus normal load factor per unit angle of
attack, Nz/a, is well within limits throughout the Mach range of the vehicle. As

with the Mach 12 vehicle, however, the short period damping ratio, _sp, is less

than Level 3 in all cases and the vehicle will require artificial damping in pitch

as would be expected. The strong effect of density (altitude) on _sp is apparent

in Figure 5-21 when the differences in climb and glide altitude are compared.

(See Figure 2-3• )

(U) Figures 5-22 and 5-23 show the lateral-directional characteristics of

the unaugmented vehicle. The Dutch roll characteristics shown in Figure 5-22 are

generally quite good• The plot of undamped natural frequency, rand, versus the

damping ratio, _d, indicates that Level 2 requirements are met by all but the

Mach 6 points. This is also true for the criteria relating the product of frequency

and damping to roll-sideslip coupling, ¢/8.

(U) The roll-sideslip coupling characteristics produced by aileron rolls are

examined in Figures 5-23. The sideslip excursions, ABma.x, are well within the
Level 2 requirement. The roll-rate oscillations, Posc/Pav, for this vehicle are

negligible and, therefore, meet all requirements.
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(U) FIGURE 5-21

MACH 6 TURBORAMJET

LONGITUDINAL SHORT PERIOD DYNAMIC STABILITY
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5.3.h (U) TAKEOFF AND LANDING CHARACTERISTICS - The low speed longitudinal static

stability and control characteristics are presented in Figure 5-2h. It is evident

that the longitudinal control effectiveness is sufficient to trim the aircraft

at an angle of attack of 15 °, the maximum value anticipated to be required for

landing.

(U) The longitudinal short period dynamic stability characteristics are

presented in Figure 5-25. The low speed longitudinal handling qualities for the

unaugmented airframe are indicated to be quite acceptable.

(U) In Figure 5-26, the low speed lateral control characteristics are pre-

sented. The Mach 6 aircraft, like the Mach 12 vehicle, employs differential deflec-

tions of the delta tip controls to provide required rolling moments. The deflec-

tion authority must be shared with the pitch control mode and this sharing is

most critical at low speeds. Two differential deflections, l0 ° and 20 °, are

shown in Figure 5-26 and it is apparent that ample lateral control effectiveness

is available. With the differential control deflections shown, the collective

deflections available for longitudinal control are -20 ° and -10 ° respectively.

It is evident in Figure 5-25 that with proper sharing of control mode authority

sufficient longitudinal control, as well as lateral control, can be provided.

i
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5.4 PROPULSION

(U) The Phase III propulsion efforts, with regard to the Mach 6 vehicle, were

directed to the following areas:

o Engine selection

o Definition of inlet design and operating characteristics

o Inlet-engine matching

o Definition of engine operating characteristics

o Determination of installed engine performance

o Analysis of propulsion research options.

In the following paragraphs, the propulsion system of the basic vehicle is discussed,

followed by a description of the propulsion system research options added to the

basic vehicle. Figure 5-27 summarizes the Mach number capabilities of the various

propulsion systems.

5.4.1 (U) BASIC VEHICLE - The basic Mach 6 vehicle uses a single P&WA STRJllA-27

wraparound turboramJet engine installed at the rear of the vehicle. Air is supplied

by a bifurcated inlet arrangement shown in Figure 5-3. The TJ and RJ engine sub-

systems are operated simultaneously at speeds above the RJ minimum operating limit,
and below the TJ maximum operating limit, to minimize acceleration time. The

synthesis of the turborsmlJet and inlet, and the matching of these components

for the propulsion system of the Mach 6 vehicle, are described in the following

sections.

(U) FIGURE5-27
PROPULSIONSYSTEMSANDOPERATINGREGIMES
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5.4.1.1 (U) Engine Selection - In selecting the engine for this vehicle, two se-

quential tasks were involved. First, a choice was made between using an advanced

technology TRJ engine, or an engine which would incorporate an existing TJ core

and require developing only the RJ subsystem (near-term technology). Phase I results

indicated that the selection of an advanced TRJ engine would necessitate large

engine development costs and thereby increase the cost of the overall program sig-

nificantly. At the same time, both Phase I and Phase II results point to the research

value to be gained by flight experience with advanced airbreathing systems. To

reduce the engine development costs and preclude pacing the aircraft development to

that of an advanced engine, the near-term technology approach was selected.

(U) Having made this decision, the second task involved selecting the TJ core

to be employed from existing TJ engines. Five candidate TJ engines were considered:

J58, F-100, GE h/J5P, J93, and J97. The selection was based on thrust-to-weight

ratio, thrust, availability, and maximum Mach number capability. Figure 5-28 pre-

sents a comparison of these engines and an evaluation of their suitability. Three

engines--the GE h/J5P, J93, and J97--were eliminated due to the considerations noted

in Figure 5-28. In choosing between the J58 and F-100, a comparison was made of the

thrust-to-weight characteristics of the two engines across the applicable speed
range, Figure 5-29. The J58 was selected as the core TJ for the basic Mach 6 based

on the combination of a higher T/W at high supersonic speeds and a higher maximum

Mach no. capability.

ENGINE USE

J58 YF12,

SR71

FI00 FI_

GE h/J5P SST

J93

J97

B70

(Class-

ified)

(C) FIGURE5-28
NEAR-TERMTJ COMPARISON

SLS THRUST MAX.

MACH

3.3+

2.7

3.0

3.2

2+

klb

3h (150)

23 (i01)

67 (295)

28 (123)

7 (31)

REMARKS EVALUATION

Uses large ejector nozzle Continued
not suitable for TRJ.

Uses convergent-divergent Continued
nozzle.

Thrust large for research

vehicle application.

No engines or tooling
available.

Capability above M = 2.2

not substantiated.

Dropped,

thrust

Dropped,

availability

Dropped, Mach

caoability

(U) The resulting TRJ engine is designated the P&WA STRJllA-27 and is comprised

of a modified P&WA J58 (JTll) afterhurning turbojet, with a new design wraparound

ramjet. The TJ engine burns JP fuel. Engine modifications include using a fixed-

geometry convergent nozzle and closure doors to seal off the TJ at flight speeds

above Mach 3.5. The regeneratively cooled RJ burns LH 2 fuel and uses a variable

geometry convergent-divergent nozzle. The RJ size as defined in the engine speci-

fication was used for the propulsion system of the Mach 6 vehicle, and resulted in

satisfactory performance without need for scaling.
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Engine
Thrust-to-Weight

Ratio
(Uninstalled)

(C) FIGURE 5-29

TJ THRUST-TO-WEIGHT COMPARISON FAVORS J58

Along Flight Path of Figure 5-38

58ln,

8

6

4
JP Fuel

2 l i l

(1 1 2 3

Hach No.

5.h.i.2 (U) Inlet Sznthesis - A two-dimensional, mixed compression, inlet config-

uration was defined for the Mach 6 TRJ propulsion system. A bifurcated arrangement

was chosen for efficient integration of inlet and airframe. The design point for
inlet contours is Mach 6 at 0° angle of attack and freestream conditions as a

result of the inlet installation selected for the Mach 6 vehicle. The inlet bow-

shock angle relative to the ramp surface has a minimum value within the anticipated
range of angles of attack. By picking the design point at this minimttm (e = 0)

ingestion of the inlet bowshock is prevented throughout the range of angles of attack.

The inlet has two horizontal external-compression ramps. Design ramp angles were

selected to provide equal total pressure drop across the two external oblique shocks

in order to maximize the design point pressure recovery of the external supersonic

diffuser, per Reference (19).

(U) Geometry of the Mach 6 TRJ inlet was based on several two-dimensional

mixed compression inlets, with design Mach numbers up to 5.0, obtained from Ref-

erences (20) and (21). From these references, a data base was established for the

Phase III inlet design. By extrapolating the trend of contraction ratio as a function

of design Mach number, the design point external contraction ratio of h.O and the

overall geometric contraction ratio of 22 were established for a Mach 6 inlet. A

first ramp angle of 8° and second ramp angle of l0 ° satisfied the dual design point

requirements of equal pressure drop plus specified contraction ratio. The second

ramp is hinged at its leading edge and is varied from 0° to l0 ° relative to the fixed

first ramp to provide the turning angle required to maintain high pressure recovery

at off design conditions. The leading edge of the cowl was located at the design

point intersection of the two oblique shock waves generated by the external ramps.

An initial cowl turning angle of 6° was selected on the basis of the data shown in

Reference (22) for low supersonic speed operation of a started, mixed-compression

inlet. Sideplates were provided to reduce lateral spill.

(U) The overall length of the mixed compression supersonic diffuser is

dependent on the design Mach number. On the basis of the Reference (22) data, a

value of h.75 was established for the ratio of the supersonic diffuser length to

I
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the inlet capture height on the Mach 6 inlet. For Phase III, an aspect ratio

(height to width) of 2.0 was chosen on the basis of fuselage/inlet integration.

The subsonic diffuser design reflects reasonable goals based on MCAIR inlet investi-

gations. Figure 5-30 shows the Phase III Mach 6 inlet design in comparison with

the Mach h.5 inlet design employed in Phase II.

(U) FIGURE 5-30
PHASE III TURBORAMJET INLET

8° ,-- Starting ,__4_ Bvoass

Pos [tion __ - - -_--_RJ

..---.....7- - o / __I__
M_ = b ,' . "'-i- --

-Shocks Slots or Louvers-- \

PHASE III

PHASE II

(U) The TRJ inlet boundary layer bleed airflow schedule used in Phase III was

based on a collection of experimental data, Figure 5-31. Since data were not avail-

able beyond Mach 4.5, the bleed airflow used in Phase III was assumed constant from

Mach h.5 to 6.

5.4.1.3 (U) Inlet/En_in e Matching - This matching was accomplished to define the

minimum inlet size that would be compatible with the engine airflow requirements.

The turbojet core engine airflow demand at maximum power was determined, as a function

(C) FIGURE 5-31
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of Mach number, along the acceleration/climb path for a = 2° (See Figure 5-38). In

addition, the minimum airflow demand on the ramjet engine (at minimum burner Mach

number of 0.05) was similarly determined. The sum of these two airflows represents

the minimum value that the inlet must supply. The inlet capture area required to

supply the net airflow, (captured airflow less ramp bleed airflow) needed to meet

this minimum d :rand, was established as 25.6 ft 2 (2.38 m2). With this size, the

airflow supply exactly equals the minimum demand at Math 3.5. At all other speeds

the supply exceeds the minimum demand. The excess airflow is used in the ramjet to

provide more thrust, until the RJ burner Mach number exceeds 0.50. At conditions

where the inlet supply airflow exceeds the sum of ramp bleed plus TJ demand on maxi-

mum power plus RJ demand at burner Mach number of 0.50, the excess air is bypassed
through a louvre system and ducted aft where it is dumped overboard in an axial

direction. Bypass drag was assessed as described in Section 3.3. Figure 5-32

shows the apportionment of the airflow as a function of flight speed.

Freestream

Airflow

Area,

Ao

(U) FIGURE5-32
INLET SIZINGFORP&WASTRJ11A-27

_=2 °

3

0
2 ,

Bypass / /7"-

TJ Max.

0 0 i , , , , ,

0 2 4 6

Mac h No.

5.4.1.4 (U) _gine Operation - The turbojet core engine operates on JP fuel,

through the speed range of Mach 0 to 3.5, Figure 5-27. At Maeh 3.5 and above, the

turbojet is shutdown, protected from the environment by closure doors, and windmill_d

with a small amount of inlet air which is cooled to lO00°F (S1OOK) in a hydrogen/air

heat exchanger. The wraparound ramjet engine operates on LH 2 fuel through the speed

range of Mach 0.8 to 6. For the basic flight profile, the TJ engine operates at

maximum afterburning power throughout its speed range, with fuel-rich combustion in

the primary burner and lean operation in the afterburner so that the overall amount

of fuel consumed corresponds to the stolchiometrlc amount for the engine airflow.

The RJ operates at stoichiometric conditions over the entire acceleration speed

range. To regeneratively cool the engine and inlet at Mach 6 requires a stoichiomet-

ric fuel flow rate (¢ = 1.0). To match cruise thrust to drag, a portion of the fuel

is used to operate the engine in a throttled condition while the remainder is used

for cooling only, and dumped without burning, thus degrading effective specific

impulse.

I
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5.4.1.5 (U) Installed Performance - The installed propulsion system performance used

in the basic vehicle is based on the P&WA STRJllA-27 engine and the 25.6 ft 2 (2.38 m2)

capture area, Mach 6 inlet design discussed in the preceding section. The engine per-

formance (Reference 23) was based on the use of hydrogen fuel in both the TJ and RJ

subsystems. These data were adjusted to reflect the use of JP fuel in the TJ. The

fuel specific impulse was adjusted by the ratio of the lower heating value of the

fuel,

18,500 Btu/ib (for JP-air) (4.29 x l07 Joules/kg )
(Isp)jp = (ISP)H2 x 51,500 Btu/lb (for H2-air) 11.95 x 107 Joules/kg

The thrust was adjusted by the ratio of the mass flows, and the square root of the

ratio of the afterburner temperatures,

(FN) = (F N) x m _ (for JP-air) = .975 x (FN)H2 (at ¢ = 1.0)
JP H 2 _ V_ (for H2-air)

(U) Engine thrust was reduced by the amount of inlet drag due to bleed, bypass,

and supersonic spill. The net installed thrust and fuel consumption characteristics

of the basic vehicle's propulsion system were calculated, Figure 5-33, based on the

nominal inlet pressure recovery factors of Figure 3-6.

(C) FIGURE 5-33
P&WASTRJ11A-27INSTALLED ENGINEPERFORMANCE
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5.4.2 (U) CONFIGURATION OPTIONS - Three modifications to the basic vehicle propul-

sion system were investigated, to extend the research capability of the Mach 6

vehicle. All of these modifications retain a turboramjet as the primary propulsion

system. One of the modifications maintains the basic vehicle propulsion system

(STRJIIA-27), and adds a CSJ as an addition to the basic vehicle. The other two

modifications replace the basic TRJ engine. One option incorporates an all-hydrogen-

fueled version of the basic STRJIIA-27 TRJ. The other replaces the near-term TRJ

with an advanced technology TRJ engine, the GE5/JZ6C, to permit research on the

hydrogen-fueled TJ core of the advanced engine. Figure 5-34 summarizes the charac-

teristics of the propulsion systems for these vehicle modifications, and Figures 5-35

and 5-36 show the propulsion system installation and installed engine performance for

the modifications. Figures 5-7 and 5-9 depict the overall vehicle arrangements for

these modifications.

(U) In addition to these propulsion modifications, two other configuration

options were investigated. They were an armament installation and a thermal pro-

tection system variation. Neither of these require a change in the basic vehicle

propulsion system.

(U) FIGURE 5-34

PROPULSION MODIFICATIONS TO MACH 6 VEHICLE

Type of

Modification

Status of

Basic STRJIIA-27

System

Operating

Speed

Range

Characteristics of Added Propulsion System
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Configuration Performance

Source Presented

Remarks
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to H 2
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CSJ M=l-6 Same as for CSJ

on Mach 12 ve-

hicle; instal-
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pulsion hicle
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(C) FIGURE 5-35

GE5/JZ6C TRJ INSTALLED ENGINE PERFORMANCE
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(U) FIGURE 5-36
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5.5 PERFORMANCE AND TRAJECTORIES

(U) The oerformance and trajectories for the basic vehicle and several con-

figuration options are presented in the following sections.

5.5.1 (U) BASIC VEHICLE - The design mission trajectory for the basic vehicle as

defined in Section 2.3 is shown in Figures 5-37 and 5-38. Following the accelera-

tion - climb and cruise, three modes of unpowered glide are illustrated. Maximum

range is provided by gliding at (L/D)_^ . Minimum range will be obtained by de-

flecting the rudder speedbrakes and r_cing the angle-of-attack to 3°. Lower

angles-of-attack would result in a trajectory that exceeds the design dynamic pres-
sure limitation of 2000 ib/ft2 (95,800 N/m2). The pilot can modulate the use of

the speedbrakes to provide a variation in glide range as required for energy man-

agement purposes. The third mode of descent shown is a gliding turn performed at a

normal load factor of 5 g following the five-minute cruise. A descent to an al-

titude of 78,000 ft (2h,O00 m) is required to provide sufficient dynamic pressure

to achieve 5 g.

(U) FIGURE 5-37
MACH 6 TURBORAMJET
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(U) FIGURE 5-38

MACH 6 TURBORAMJET
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(U) In Figure 5-39, the glide range obtained when employing the untrimmed

(L/D)max values determined by the basic Phase II methods is compared with the glide

range obtained using trimmed (L/D)ma x values from the Gentry analysis. Two center

of gravity locations are utilized for the Gentry data to indicate the effects of

static stability on trim drag as discussed in Section 5.3.2. The more aft center

of gravity location results in less static stability and therefore, requires less

stabilator deflection to trim. This results in a higher value of (L/D)__ and

more range. It also indicates the further configuration refinement requzred to re-

duce trim drag, as discussed in Section 5.3.2.

(U) FIGURE 5-39
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(U) The basic vehicles performance sensitivities to changes in vehicle

physical characteristics are shown in Figure 5-40. OWE, propellant weight, rocket

engine specific impulse, (L/D)ma x and zero lift drag are varied 10% in a direction

that will degrade performance. The results are shown in Figure 5-_0 in terms of

test time and test Mach number achievable.

(U) The sensitivity of each parameter on performance can be determined by

comparing to the basic vehicle performance also shown in Figure 5-_0. The most

sensitive parameters are OWE, engine specific impulse, and propellant volume. The

aerodynamic parameters are of greater impact to the Mach 6 configuration than to the

Mach 12 rocket because of the higher q climb profile employed for the airbreather.

I
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(U) FIGURE 5-40

MACH 6 TURBORAMJET PERFORMANCE SENSITIVITIES
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However, the performance sensitivity to variations in the aerodynamic parameters

remains significantly less than for other variations investigated. The rapid de-

cline of test time with increasing Mach number is due to the fall-off of engine Isp

resulting from cooling requirements.

5.5.2 (U) CONFIGURATION OPTIONS - Figure 5-41 presents the performance capabili-

ties in terms of test time vs test Mach number, for three research options avail-

able to the basic configuration. They are the armament modification, the all hy-

drogen STRJIIA-27 modification, and the all hydrogen advanced technology GE 5/

JZ6C engine modification. A fourth option involving changes to the thermal protec-

tion system has no effect on the basic vehicle performance.

(U) The armament modification increased the OWE by 2192 ib (993 kg) and in

creased CDo as shown in Figure 5-12. The resulting performance of the configura-

tion is 3.2 minutes of cruise at Mach 6 and 10.7 minutes of cruise at Mach 5.

(U) The performance of the all hydrogen fueled engine modifications can be

increased by employing an external drop tank to provide increased fuel volume as

shown. The drop tank carries sufficient LH 2 to climb to an altitude of 20,000 ft
(6100 m) at .8 Mach number.

(U) Converting the JP/LH 2 STRJIIA-27 to all hydrogen involves no external
changes to the basic vehicle. Internally, however, 30 ft3 (.85 m3) of fuel volume

in the wings is unusable for LH 2. Operating on the internal fuel volume, the all

hydrogen STRJIIA-27 version can attain a Math number of 5.7 and can provide 2.4

minutes of test time at a Mach number of 5. Operating with a drop tank, 1.8 min-

utes of cruise time is available at Mach 6 and 8.3 minutes at Mach 5.

(U) The installation of the GE 5/JZ6C in the vehicle reduces the OWE by

2312 ib (1048 kg) and increases the available fuel volume by 43 ft3 (1.21 m3). With

internal fuel, the GE 5/JZ6C version can attain a Mach number of 6 and can provide

7.2 minutes of cruise at Mach 5. With the drop tank, the vehicle provides 2.2

minutes of cruise at Mach 6 and 11.6 minutes at Mach 5.

(U) All of the above performance is computed utilizing maximum turbojet power

from takeoff through shutdown. A slight improvement can be obtained by using mili-

tary power from takeoff up to 20,000 ft (6100 m) and Mach .8. This will yield a

35% saving in fuel consumed to that point. In the case of the STRJllA-27 JP fueled

turbojet, this amounts to 600 lb (272 kg) or only 12 ft3 (.34 m3). For the LH 2

turbojet, however, 200 lb (91 kg) or 43 ft 5 (1.22 m3) less fuel is required to reach

Mach .8 and 20,000 ft (6100 m). With the hydrogen fueled STRJllA-27 as an example,

the performance capability will be increased from 0 time at Mach 5.7 to 14 sec at

Mach 6.

5.5.3 (U) TAKEOFF AND LANDING CHARACTERISTICS - Due to its high fineness ratio

and low VOL 2/3/Sp, the subsonic performance is comparable to conventional fighter

aircraft in terms of takeoff and landing characteristics. Liftoff at the design

gross weight of 61,426 lb (27,860 kg) is accomplished at 230 knots (ll9 m/sec) with

approximately a 4500 ft (1870 m) ground roll. The power-off approach and landing

characteristics in terms of calibrated airspeed prior to flare initiation, flare

altitude, time on final, and touchdown velocity are presented in Figure 5-42 as a

function of touchdown angle-of-attack. The boundary conditions shown for the Mach

I
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(U) FIGURE 5-41
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(U) FIGURE 5-42
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6 aircraft are a function of (L/D)max, CLa, CLOPT, CLTD, and W/S and are obtained
from the Reference (17) study. The preferred conditions shown correspond to the

power off approach conditions receiving the best pilot ratings in the Reference (17)

study for an aircraft exhibiting characteristics similar to the Mach 6 vehicle.
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5.6 THERMODYNAMICS

(U) An assessment of the thermal environment for the basic Mach 6 research

aircraft and its options has shown that radiation cooled external surfaces can be

constructed of long life titanium and superalloy materials and do not require the

use of refractory metals. The general decrease in external moidline temperatures

experienced at Mach 6, relative to the Mach 12 vehicle, results in only a slight

weight advantage (3% OWE) with the use of an active TPS and, hence a passive TPS

was selected. Although uncooled refractory metal inlet liners could be utilized

at Mach 6, regenerative cooling is employed because of a nominal weight advantage

plus vehicle enhancement by allowing dash capability to speeds greater than Mach 6.

(U) Configuration options to increase the vehicle's research capability were

found to have an insignificant effect upon the thermal characteristics of the basic

vehicle. Like the Mach 12 version, provisions for conducting TPS research (pas-
sive and active systems) with the Mach 6 aircraft are recommended.

5.6.1 (U) BASIC VEHICLE - Maximum external temperatures, moldline materials,

and thermal protection requirements for the basic Mach 6 research vehicle are

discussed in the following paragraphs.

5.6.1.1 (U) Vehicle Temperatures - Moldline materials (shingles and insulation)

for the basic Mach 6 vehicle have been selected to be compatible with maximum temp-

eratures anticipated for the flight profiles presented in Figure 5-38. No signif-

icant change in moldline materials is required when the basic vehicle is reconfigured

to perform the various research options (TPS, propulsion, armament, etc.) considered

during this study.

(U) Maximum temperatures and corresponding shingle materials are presented in

Figure 5-43. As shown in this figure, maximum external surface temperatures are

below 2400°F (1590°K) so that conventional and superalloy materials can be used

exclusively. Furthermore, since these are maximum temperatures they are only ex-

perienced for short times during those flights when the vehicle is pushed to

design limits. Temperatures experienced during a nominal Mach 6 test rut. will

range from 150°F (338°K) to 250°F (395°K) less than the maximum values presented
herein.

(U) With the exception of stagnation regions, maximum surface temperatures

were determined based upon the turbulent heating correlation of Spalding and Chi,

and reradiation with a surface emissivity of 0.8. The Fay and Riddell heating

correlation was used in predicting nose tip and leading edge equilibrium tempera-

tures. Lower surface and delta tip temperatures are maximum during the 5 g turn

condition. During the turn, the delta tips are deflected -30 degrees with maximum

temperatures occurring on their upper surface. Speed brake temperatures are a maxi-

mum at initiation of the minimum range descent, Mach 6 at 98,000 feet (29,850 m).

Maximum upper surface temperatures were determined for a push over angle of attack

of -4 ° (-0.5 g) upon completion of the Mach 6 test run.

5.6.1.2 (U) Thermal Protection System (TPS) - Results of a trade study conducted

during Phase II have shown that incorporation of an active TPS would not signifi-

cantly enhance 3% reduction in OWE)the performance capability of the Mach 6
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Glass
(

_- Q-Ball Superalloy

(Cooled)
R = 325 In. (8.24cm)

(U) FIGURE 5-43

MAXIMUM SURFACE TEMPERATURES

(Basic Mach 6 TRJ Aircraft)
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research vehicle and, hence, a passive TPS has been selected. The general arrange-

ment and insulation thickness requirements for typical locations on the vehicle are

presented in Figure 5-4h. Flexible Min-K type insulation was used whenever prac-

ticable (maximum temperature capability of 18000F, 1260°K) to minimize insulation

thicknesses and the length of shingle attachments. The passive TPS defined in Figure

5-44 has been designed to limit maximum structural temperatures to the following:

o Aluminum fUselage structure; 250°F (39h°K) in fUel tank areas, 300°F (h22°K)

in non-fuel areas.

o Titanium inlet and engine support structure; 300°F (422°K).

5.6.1.3 (U) Inlet Cooling - During ramjet operation, internal inlet walls are

regeneratlvely cooled to 1550°F (III8°K) using the liquid hydrogen fuel as a coolant.

Regenerative cooling of the inlet avoids the need for a refractory metal inlet liner

(uncooled inlet walls reach a temperature of about 2600°F, 1700°K, at Mach 6),

reduces insulation requirements, reduces total inlet weight by approximately i0%,

and provides growth capability to higher Mach numbers. The Pratt and Whitney
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STRJIIA-27 turboramJet selected for the Mach 6 research aircraft presently is

throttled to an equivalence ratio of about 0.5 to match thrust equal to drag at

Mach 6. However, operation at an equivalence ratio of 1.0 (in terms of hydrogen

flow rates) is still required because of inlet (¢ = 0.25) and engine (¢ = 0.75)

cooling requirements. Hydrogen flow, in excess of thrust requirements, by-passes
the combustor and is dumped overboard.

5.6.2 (U) CONFIGURATION OPTIONS - The thermal aspects of reconfiguring the basic
vehicle to enhance its research value are discussed below.

5.6.2.1 (U) Armament (ARM) Option - Research in the area of high speed weapon de-

livery can be accomplished with the addition of a missile bay on the lower surface

of the aircraft as described in Section 5.2. During these tests (doors open), the

interior of the bay will be subjected to locally high heating rates due to separation

and re-attachment of the boundary layer. In the extreme situation, weapon delivery

at Mach 6, it was estimated that local heating rates would approach lO0 Btu/ft2 sec

(ll40 kw/m2). If unprotected, these heating rates would seriously overheat the air-

craft's structure and test bay in considerably less time than the 30 to 60 seconds

that the armament doors are open. Addition of a 0.125 inch (0.318 cm) layer of

ablation material (0.55 psf, 2.68 kg/m2) was determined to be adequate to maintain
structural temperatures within design limits.

4.6.2.2 (U) Thermal Protection System (TPS) Option - The need for conducting

TPS research, contemporary thermal protection concepts, and aircraft modifications

required to conduct TPS research were discussed previously in Section 4.6. Although

aerodynamic heating rates are considerably lower on the Mach 6 vehicle than on the

Mach 12 aircraft, meaningful TPS research can still be conducted at this lower Mach

number. As indicated in Figure 5-45, the recommended research option for the Mach

6 aircraft reserves a 5 foot (1.53 m) long test section around the periphery of

the vehicle aft of the forward LH2 fuel bulkhead. As shown in this figure, a 6 inch

(15.3 cm) deep bay for testing various TPS concepts plus an additional 9 cubic feet

(0.255 m3) for equipment storage has been provided. Two hundred pounds (90.8 kg)

of provisions have been allocated for conducting TPS research and are included in

performance calculations. Considerations leading to the recommendation of this

TPS modification concept over alternate concepts are essentially the same as those

listed in Section 4.6 for the Ma2h 12 vehicle. However, the location available for

TPS modification on the Mach 6 aircraft exhibits two disadvantages relative to the

Mach 12 aircraft. Inlet duct structure adjacent to the fuselage moldline on both

sides at this location reduces the area available to obtain meaningful TPS research.

Also, since basic fuel requirements necessitate utilizing as much fuselage volume

for cryogenic fuel storage as possible, the TPS modification is located solely in

a cryogenic tankage area. However, if it is desired to conduct such research it

appears that reasonable alternative concepts could be developed without compromising
the basic airplane.

4.6.2.3 (U) Propulsive Research Options - Three engine modifications have been

considered for the Mach 6 aircraft. These are:

o GE 5/JZ6 TRJ

o CSJ

o RJ
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The first two modifications results in minimal changes in mo!dline geometry, surface

temperatures, and shingle material distributions presented in Figure 5-43. Major
modifications to the lower surface of the Mach 6 aircraft result with the CSJ modi-

fication to achieve the necessary ramp angles. In comparison with similar fuselage

stations on the basic aircraft, the resulting maximum lower surface temperatures

are increased by 60°F (33°K) along the first ramp and by II0°F (61°K) along the

second ramp. A slight alteration of shingle material distribution given in Figure
5-43 also results.

(U) The shorter length of the JZ6 is accommodated by the addition of a con-

stant section of inlet to fill the gap between the STRJllA-27 engine face and the

GE5/JZ6 engine face. This additional surface areas must be regeneratively cooled

and this increases the inlet coolant flow requirements by about 15%. However, the

shorter length of the GE5/JZ6 proportionately reduces engine coolant flow rate.

The combined inlet plus engine cooling requirement is 4.4 lb/sec (2.0 kg/sec), re-

sulting in a cooling equivalence ratio of 0.8.

(U) The convertible scramJet module has a ratio of wetted area to capture

area approximately one half that of the bifurcated TRJ inlet on the basic aircraft.

The associated heating rates, while operating in the supersonic combustion mode at

Mach'6, require an equivalence ratio of 0.3 to maintain internal CSJ wall temper-
ature below 1550°F (lll8°K).

(U) The ramjet module for the Mach 6 aircraft is identical to that for the

Mach 12 aircraft. Adequate cooling of the inlet plus engine is achieved at an

equivalence ratio of 0.5.
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5.7 STRUCTURES

(U) The goals, scope, and depth of the structural analysis of the Mach 6

aircraft are the same as those described for the Mach 12 aircraft in Section 5.7.

Primary consideration was given to the fuselage structure, thermal protection

system, and engine inlet. The basic vehicle structural arrangement shown in Figure

5-1 was used to make concept selections and structural comparisons. Some of the

important considerations in the basic concept selections are integration of the

engine/inlet and the airframe, the LH 2 fuel tank, and the flight environment.

5.7.1 (U) ENVIRONMENT r The loads and temperatures used in the Phase III evalu-

ations were based on the flight profile in Figure 5-h6. The most severe temper-

atures and loads for most of the structure occur during the 5.0 g wind-up turn at

Mach 6. This maximum temperature condition results in temperatures as shown on

Figure 5-h3.

(U) FIGURE 5-46
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(U) Loads used for structural comparisons are based on a loading environment

resulting from the conditions described in MIL-A-8861(ASG) and MIL-A-8862(ASG).

These are used as a guideline. However, some variations have been made for purposes

of simplification of analysis and comparison. The variations to these specifications

are the same as shown for the Phase II trade studies and are noted in Figure 5-3.

(U) For the Mach 6 aircraft, as for the Mach 12 aircraft, the significant

loading conditions are taxi, takeoff, and landing for fuselage bending and gear loads,

whereas the high speed maneuver is the major contributor to inlet pressure loads
and control surface loads.

5.7.2 (U) MATERIALS - This aircraft uses the same material and fabrication tech-

nology as the Mach 12 aircraft described in Section 4.7.3. The material candidates

used in the structural concepts comparisons were selected on the basis of material

efficiencies. It is understood, however, that in actual design the material selected

is dependent also on the specific application, gage, type of construction, local
environment, weight, and cost.

5.7.3 (U) FABRICATION METHODS - The fabrication methods and basic ohilosophy for

material application described for the Mach 12 aircraft in Section 417.3 are also

applicable to the structural concepts of the Mach 6 aircraft.

5.7.4 (U) CONCEPT COMPARISON - The following paragraphs discuss the concept com-
parisons used as the basis for the selection of the structure for the basic research
aircraft.

5.7.4.1 (U) Primary Structure - The fuselage structure in the LH 2 fuel tank area

is very similar to that of the Mach 12 aircraft. The major exception is that the

tank surface area has very few large uninterrupted panels and, therefore, is fabri-

cated of stiffened skin construction rather than the corrugated sandwich. The

stiffened skin results in lower weight for this application than the sandwich,

primarily because the fuselage loads are more localized and highly concentrated

than those of the Mach 12 vehicle. This is due to the many cutouts, concentrated

masses, and load path direction changes. There will be greater radial bending in
the Mach 6 fuselage structure because of the internal pressure in the non-circular

tanks. This requires very little additional structure because of the relatively

small cross sectional area (low bending moment) and the pre-existence of a highly

loaded structure (dual function). Selection of aluminum over titanium is, as for

the Mach 12 aircraft, based on lower cost, and slightly lower weight. The selection

was also influenced by cryogenic propellant compatibility considerations and the

greater experience background with aluminum cryogenic tanks than with titanium.

(U) Non-fuel tank areas of the fuselage are integrated with the engine/inlet

and the selection of the structural concept is influenced primarily by the inlet
environment.

5.7.4.2 (U) Wing Structure - The main wing box is located above the engine/inlet

cavity where the material selection, as in the fuselage, is influenced by the high

temperature in the inlet. The wing structure is insulated titanium rib and spar

construction. Because of the high sweep angle there is no single major carry-through;

rather, the spars are located parallel to fuselage station lines and are continuous

between wings.
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5.7.4.3 (U) Engine Inlet - The engine inlet is the most challenging of the struc-

tural development programs on the Mach 6 research aircraft. The combination of

high temperature, high loads, movable structure, and integration with the fuselage

requires structurally sophisticated concepts for low weight design. Selection of

the structural concept and thermal protection system are based on the load and temp-

erature conditions occurring during the 5.0 g maneuver at Mach 6 _nd 90,000 ft

(27.h km) altitude. Temperature of the liner (uncooled) in the inlet approaches

the total temperature of 2600°F (1700°K) during the Mach 6 flight. During the

maneuver, the inlet pressure reaches a peak of 150 psi (103 N/cm 2) as shown in

Figure 5-h7, which is over three times the pressure, 40 psi (27.6 N/cm2), at normal

cruise conditions.

(U) The two basic concepts considered for inlet were hot structure of columbium

alloy and insulated structure of titanium alloy. For the insulated structure there

are two concepts that were considered: passive insulation with columbium shingles

and passive insulation with a regeneratively cooled liner made of a superalloy.

During the preliminary consideration, the hot structure columbium concept was dis-

carded for two primary reasons. First, the weight was over six times greater for
structure of 2500°F (1640°K) columbium than for structure of cooled titanium.

Second, thermal deflections and distortions are a severe detriment to the efficient

operation of the inlet because of the movable ramps and the geometric tolerances of

the throat.

(U) FIGURE 5--47
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(U) A comparison of the insulated concepts required consideration of the trade-

offs of structural temperature vs insulation weight, and fuel cooling capacity vs

heat exchanger temperature. A summary of the results is shown in Figure 5-h8. The

comparison shows that there is about a 20% difference in total system weight between

the regenerative cooled surface and the shielded concept. The major difference in

weight is in tne protective shield which must transmit the high inlet pressures

into the cooled substructure. Reduced temperature of these load bearing surfaces

due to cooling is the main factor contributing to the reduced shield and insulation

weight. The regeneratively cooled concept has been selected for the inlet on the

basis of weight and growth capability. The shingled concept is limited to about

2800°F (1810°K) because of the temperature limit of the columbium shingle which

limits the speed to no higher than Mach 6.4. The regeneratively cooled liner is

made of Rene' 41 tubular construction having a wall gage of .004 inch (.0102 cm).

This is based on an independent study comparing several shapes and materials for

heat exchanger design (Reference (9)). Reducing the temperature of the substructure

in the cooled concept to 300°F (422°K) from 800°F (700°K) not only reduced the struc-

tural weight 18%, but reduces the thermal deflection of the inlet shape as wel±.

However, the increased insulation weight resulted in a similar total weight for the

inlet structure/thermal protection system. Because of the lower deflection, slightly

lower weight, and higher structural confidence, the 300°F (422°K) system was selected.

(U) FIGURE 5-48
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5.7.4.4 (U) Thermal Protection System - The TPS study performed in Phase II showed

that the active system (water wick) is lower weight than the passive system by about

.2 lb/ft 2 (8.41 kg/m2). However, the Phase III investigation of the inlet structure

concept for the Mach 6 aircraft indicates that it may be advantageous to have a

passive TPS on the external surface. This provides an internal insulation concept
(protecting the structure from the inlet air) that is the same as the external insu-

lation concept (protecting the structure from the boundary layer air). The result

is a uniform temperature in the structure with a maximum of about 300°F (h22°K).

The water wick system, if it were used on the outer surface of the inlet structure,

would result in temperature gradients of 200-300°F (366-422°K) with the cool side

on the outside. In the area where the structural mass is relatively large, this

would not allow maximum use of the available heat sink (max structural temperature

would be about 100°F (310°K) in the outer cap).

(U) 'Tb.e heat shield analysis and selection for the Mach 6 aircraft is the same

as described for the Mach 12 aircraft. The critical condition for both aircraft

occurs during the 5 g maneuver at the maximum allowable shingle temperature.

5.7.4.5 (U) Control Surfaces - Load intensity for the control surfaces is similar

to that of the Mach 12 aircraft, since they both are capable of 5.0 g maneuvers.

Size and thickness relationships are also similar and, therefore, as on the Mach 12,

the hot structure, stiffened skin concept is selected for the basic vehicle cost

and weight estimates as discussed in Section 4.2.2.
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5.8 PROPELLANT SYSTEMS

(U) The propellant system design is a combination of a current technology JP

system and adaptation of existing cryogenic technology to horizontal operations for

the LH 2 system. Redundancy is provided in critical elements such as boost pumps and

pressure regulators. This approach has resulted in a high confid=_ce definition of

major system functional areas as illustrated schematically in Figure 5-49. Location

of the major system components is shown in Figure 5-1.

(U) Safety features are incorporated for the LH 2 system similar to those dis-

cussed for the Mach 12 vehicle. The use of nitrogen pressurization for the JP tank-

age provides inert atmosphere, thereby minimizing fireand explosion hazards.

(U) The propellant system is comprised of the following major subsystem/

operational areas:

JP System

o Tankage

o Feed System

o Pressurization

LH 2 System

o Tankage

o Feed System

o Pressurization

5.8.1 (U) BASIC VEHICLE - The propellants for the basic Mach 6 flight vehicle are

JP and subcooled LH 2. JP is utilized in the turbojet propulsion mode for takeoff
and acceleration to Mach 3.5. LH2 is employed in the ramjet mode for acceleration
from Mach 0.8 to cruise.

(U) JP Fuel System - The turbojet core engine (J-58) is designed for opera-

tion with a high thermal stability fuel. Currently JP-7 is an available fuel which

meets the stringent requirements imposed by the J-58 environment. Attractive

alternate fuels currently under development for this application are hydrotreated

JP-5 or hydrotreated JET A-l, both middle distillate kerosenes. The major advan-

tages of using the hydrotreated JP's (HT-JP) as compared to JP-7 include increased

density and availability and a resultant reduction in cost. These fuels have been

produced in pilot plant operations and are currently being investigated by both

government and private agencies for thermal stability and characterization factors.

HT-JP was selected for application on the basic vehicle_ Use of this fuel will pro-

vide valuable fuel system design and operational data relative to advanced military
and commercial aircraft.

(U) Details of both the HT-JP and LH 2 fuel systems are presented schematically

in Figure 5-49. The HT-JP is carried in the wing tanks with flow toward the center

feed tank. Because of the flat design, the tanks are compartmented to permit pres-

sure transfer to the feed tank. The feed tank is equipped with an electric drive

boost pump to provide fuel flow to the engine. Should this pump fail, emergency

operation will permit pressurized fuel feed to the fuel system/englne interface.

Such an occurrence would require an emergency return to base, but would not endanger

either aircraft or personnel.
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(U) FIGURE5-49
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(U) Nitrogen is used to pressurize the tankage during all flight phases with

air as an emergency backup. The nitrogen, stored as a liquid, is heated to 530°R

(285°K) and fed to the tankage at a regulated l0 psig (6.89 N/cm2). Advantages of

nitrogen pressuization include complete inertion of the vapor space, thereby

minimizing fire/explosive hazards, and reduction of fuel deposit formations through

reactions between the fuel and oxygen.

(U) LH? System - The high speed acceleration and cruise LH2 fuel system is

also shoe in Figure 5-49. Basic design philosophy as to tank pressure, boost

pumps, and pressurization system are the same as for the basic Mach 12 vehicle;

subcooled LH2, redundant boost pumps, and autogenous GH 2 pressurization. The LH 2

storage tank is an internally insulated, straight walled, single tank. Electric

powered dual boost pumps provide engine fuel flow and provide sufficient redundancy

in the event of failure. LH2 dump is accomplished by opening the engine feed bypass

valve and dumping out the aft portion of the vehicle. Pressurization is by <3H2
bleed from the engine/inlet regenerative cooling loop, regulated to l0 psig

(6.89 N/cm2), and introduced into the high point of the tank. Required control

information includes fuel quantity, flow rate, and tank/boost pump outlet oressure.

Leak detection provisions are essentially the same as for the Mach 12 vehicle.

Vapor detectors, sniffers and fire suppression equipment will be located in tankage

and flow component areas.
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5.8.2 (U) CONFIGURATION OPTIONS - The armament option will not result in any pro-

pellant system changes.

(U) The JZ6 TRJ Modification is an all LH 2 configuration which incorporates a

centerline drop tank to provide increased fuel volume for acceleration and cruise.

This tank, consisting of a rather small diameter cylindrical section, can effi-

ciently utilize pressure transfer to the main feed tanks. Operationally, the fuel

in the drop tank is used first and the tank is then dropped prior to transonic

acceleration to minimize drag and weight.

(U) The CSJ option includes integral LH 2 tanks, pumps, and distribution lines

as part of the research pod. This integral feature precludes any impact on the

basic flight vehicle propellant system. This fuel system is similar in design and

operational aspects to the basic LH 2 system and uses regenerative hydrogen for tank

pressurization.

(U) The RJ modification includes two distinct approaches. The fixed inlet

ramjet missile application utilizes a self contained, pressure feed JP type fuel

system. LH 2 is used for the variable inlet ramjet which requires a LH 2 takeoff

downstreQm from the basic flight vehicle's boost pump. The high pressure fuel

pump for the LH2 ramjet is an integral part of the propulsion research pod.

MCDOIIIIUELL AIIFCRAIri "

5-71



REPORT MOC A0013 • 2 OCTOBER 1970

VOLUME rv" • PART 1

5.9 SUBSYSTEMS

(U) The vehicle subsystems consisting of avionics and miscellaneous subsystems

are described in the following paragraphs.

5.9.1 (U) AVIONICS SYSTEMS - The avionic systems for the Mach 6 turboramjet test

vehicle are fundamentally the same as for the Mach 12 rocket vehicle, as discussed

in Section 4.9. The principal differences are identified in the following para-

graphs. Because no Staging Module tests were considered for the Mach 6 vehicle,

the avionic support equipment required for staging is omitted.

5.9.1.1 (U) Mission Description and Operational Sequences - The Mach 6 research

aircraft operates in a conventional takeoff and landing mode and follows a normal

powered acceleration and climb to test Mach number and altitude (approximately

i00,000 ft (30,500 m)). The aircraft can take off Holloman AFB in New Mexico, com-

plete a straight line cruise at Mach 6 for 5 minutes, and then descend and land

unpowered at Edwards AFB. Tests in the opposite direction can also be performed.

The duration of the long distance flights is approximately 30 minutes. The pilot

can perform visible flight throughout the entire mission.

(U) Unlike the Mach 12 vehicle, the Mach 6 aircraft is not air launched, is

not required to accomplish VTO, nor handle the Staging Module.

(U) For missile launch tests, this vehicle will also take off within the

Edwards AFB tracking range, accelerate to test speed and altitude, release the test

missile,'turn, and return to Edwards. This flight path is designed to allow the

test missile to follow a ballistic path and impact within the Pacific Missile Range.

5.9.1.2 (U) Functional Requirements Description - The functional requirements of

the avionic subsystems are essentially the same as for the Mach 12 vehicle. Some

of the performance requirements may be somewhat less stringent, but the use of

common equipment is a desirable system feature. The avionics subsystems are basic-

ally the same as those described in Section 4.9.1.3 and described by the functional

block diagram of Figure 4-93. The instrumentation equipment is essentially the
same as discussed in Section 4.9.1.4. The equipment summary of Section 4.9.1.5 will

meet the requirements of the Mach 6 vehicle.
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5.9.2 (U) MISCELLANEOUS SUBSYSTEMS - The electrical, hydraulic, and environmental

control systems are described in the following paragraphs.

5.9.2.1 (U) Electrical and Hydraulic Systems - Electrical and hydraulic power are

supplied by two (redundant) power distribution gear boxes driven by a single trans-

fer gear box. Each power distribution gear box provides a power takeoff shaft to

drive one 20 KVA Integrated Drive Generator (IDG) and one 60 gpm (3800 cc/sec),

3000 psi (2068 N/cm 2) hydraulic pump. Each power distribution gear box is driven

by a power takeoff shaft from the transfer gear box, which in turn is driven by a

gear train connected to the power source. Depending upon the flight mode, one of

three power sources or combination of power sources are used aboard the test air-

craft. During the turbojet flight mode, a power takeoff shaft from the turbojet

engine is clutched to drive the transfer gear box. When the ramjet mode of opera-

tion is initiated, the high pressure, high temperature engine inlet air is bled off

the inlet subsonic diffuser and used to drive an air turbine motor (ATM). The drive

shaft of the ATM is clutched to the transfer gear box and when the turbojet power

decreases the ATM power shaft takes over and powers the transfer gear box. After

the ramjet fuel is expended, a chemically fueled auxiliary power unit (APU) is star-

ted and the APU power takeoff shaft is clutched into the transfer gearbox drive gear

train. As the engine inlet air pressure and temperature decrease during the high

speed glide, the ATM power decreases and the APU will take over and drive the trans-

fer gear box. The APU is operated until the aircraft is landed and shut down. The

three power drive systems insure the transfer gear box has power during all aircraft

modes of flight from takeoff to shut down. The APU is fueled by LH 2 and uses LO 2

as the oxidizer. Both components are stowed in separate tanks adjacent to the APU.

(U) The estimated peak hydraulic and electrical power is 155 hp (115.6 Kw)

with an average requirement of 100 hp (74.6 Kw) throughout the flight. The two

20 KVA generators furnish the electrical power for the avionics and test equipment.

The two hydraulic pumps furnish the required hydraulic power for the hydraulic

systems of the aircraft such as the flight controls, landing gears, and engine

inlet ramp actuation and control system.

5.9.2.2 (U) Environmental Control System (ECS) - The ECS is a direct loop heat

sink system which rejects heat through intermediate fluid transport loops to the

cryogenic fuel system of the engine or APU as a heat sink. During the air turbine

motor drive mode for electrical and hydraulic power and after the ramjet engine

LH 2 fuel is echausted, the cryogenic fuel of the APU is used as a heat sink for the

ECS. This condition requires the APU to be started when the ramjet engine LH 2 fuel

supply is depleted. The ECS electrical hydraulic and avionic heat loads are trans-

ferred to the cryogenic fuels by heat exchangers located in the discharge lines of

the fuel tanks. Cockpit temperature control and liquid cooling of avionics and

test equipment are provided by this system. Cockpit pressurization is provided by

separate supplies of LO 2 and LN2 mixed in gaseous form and supplied to the cockpit

under pressure to provide an acceptable environment during the entire flight.
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5.i0 WEIGHTS

(U) The results of the parametric studies conducted during Phase II have been

incorporated into the Phase I 210 Mach 6 aircraft. This configuration was then

refined to a vehicle size of Sp = ll03 ft2 (102.5 m2) and a takeoff gross weight

of 61426 lbm (41450 kg). In Figure 5-50 a summary of the incremental weight

changes is presented to show the progression in weight growth from Phase I to

Phase III starting with the engine change and progressing to the larger vehicle

structure required to maintain aircraft performance.

(U) FIGURE 5-50

WEIGHT SUMMARY- PHASE I TO PHASE III

Operating Weight Empty, Phase 1-210 Sp=895 ft2 (83.2 m 2)

Engine

Air Induction

Fuel System

Systems

Structure

Wing/Body

Tails and Landing Gear

Operating Weight Empty, Phase III C210 Sp=ll03 ft2 (102.5 m 2)

lbm kg

36450 16533

6804 3086

-ii00 -499

656 298

300 136

(5376) (2439)

4100 1860

1276 579

48456 21993

5.10.1 (U) MACH 6 BASIC VEHICLE - The basic Mach 6 vehicle studied in Phase Iii

is derived from the concept formulated for configuration 210 in the Phase I study

effort. This concept is a manned, horizontal takeoff, wing body, turboramJet

vehicle. The Phase I aircraft propulsion utilized a rubberized GE5/JZ6C all hydro-

gen stoichiometric engine sized to achieve thrust requirements for acceleration and

5 minutes of Mach 6 cruise time. The Phase III aircraft is a point design sized

for 5 minutes of cruise with a JP/LH 2 fuel P&WA STRJIIA-27 turboramJet engine.

This engine is basically a J58 JP fueled turbojet with a LH2 fueled wraparound

ramjet.

(U) The best inlet concept was determined through trade studies on various

inlet designs and their integration to the aircraft. The three inlet configurations

studied consisted of two inlet concepts which were located underneath the fuselage

and one horizontal ramp, bifurcated, shoulder configuration. The two concepts

carried underneath the body were a single inlet with horizontal ramps and a bifur-

cated vertical ramp inlet.

(U) During the inlet trade study, all design concepts investigated utilized

passively cooled structure. For the Phase III study effort however, a regenera-

tively cooled inlet was used. This produced a small weight savings, as compared to

hot inlet structure, and also enabled a growth in Mach number capability by being

able to tailor the added heat load with the cooling fuel available. In future pro-

grams weight savings through regenerative cooling will play an important role in the

overall weight of an aircraft. Figure 5-51 illustrates the relative weight varia-

tion for the primary inlet structure over the various temperature ranges

investigated.
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(U) FIGURE 5-51
AIR INDUCTION RELATIVE WEIGHT vs VARIOUS STRUCTURAL

TEMPERATURES
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Cooled Structural Temperature

The design cooling point of 1550°F (III6°K) for the regeneratively cooled inlets

is the maximum for Rene' hl usage. Maintaining lower temperatures would increase
the fuel flow schedule and thus require a larger aircraft to obtain the increased

fuel volume required.

(U) Figure 5-52 is the group weight statement for the Phase III aircraft.

The structural weight is greater than that of the Phase I Mach 6.0 vehicle because

the length and diameter of the P&W STRJllA-27 engine are greater than the Phase I

engine. The accommodation of this engine requires a longer aft fuselage with a

larger fuselage cross section than the Phase I vehicle. When the aircraft was

resized to maintain constant performance a planform area of ll03 ft2 (102.5 m 2)

was required. The increased planform area, 208 ft2 (19.3 m 2) over the Phase I

vehicle, requires growth in vertical tails to maintain stability. A larger, stronger

landing gear is required for added vehicle size and strength requirements. Oper-

ation of larger, heavier vehicle requires more power and hence subsystems such as

surface controls, hydraulics, and electronics must be increased, since they are a

function of size and weight of the vehicle.
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(U) FIGURE5-5Z
GROUPWEIGHTSUMMARY- BASICMACH6 VEHICLE

Group ibm kg

Wing/Body

Rotating Tips

Vertical Tails

Landing Gear - Nose

Main

Surface Controls

Propulsion Group

Engine

Air Induction

Fuel System
ADS

Controls

Lube and Cooling

Instruments

Hydraulics
Electrical

Electronics

Furnishings

ECS

Contingency

Weight Empty

Crew and Equipment

Payload

Vented and Trapped Fuels
Fuel Pressurant

APU Fuel

Operating Weight Empty

Fuel - LH2
JP

Z5900

1231

2331

295

1276

598

(21621)

11604

8447

lO56

394

5o

7O

175

553

3oo

715

4o0

25o

929

46574

240

129o
162

4o

150

48456

4310

866O

7212

558

I057

133

579

271

(9807)

5263

3831

479

179

23

32

79

251

136

324

182

113
421

21123

i09

585

73

18

68

21976

1955

3928

Takeoff Gross Weight 61426 27859
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(U) Propellant tankage locations and sequencing were selected to maintain

the vehicle c.g. forward of the aft aerodynamic c.g. limit throughout the flight

profile. At the takeoff and landing conditions, where control requirements are
the most critical, the aircraft c.g. is far aft as permissible for minimal control

forces. The JP fuel is located in two wing tanks and one fuselage tank. Liquid

hydrogen is located in two fuselage tanks. Figure 5-3 depicts the Mach 6.0 vehicle

tank available for hydrogen which for fuel sequencing is partitioned at F.S. 470.

The c.g. travel which, through fuel sequencing, spans but .8% body length, is as

follows. The takeoff c.g. is at 66.8% body length. The vehicle c.g. is moved

forward as far as possible as all _P fuel is expended, first from wing (2650 Ibm

(1202 kg)) and then from the fuselage tank, 6010 ibm (2726 k_), to arrive at the

Mach 3.5 condition, 52,766 ibm (23,935 kg), at a c.g. of 66.2% body length The

aft hydrogen tank fuel, 1840 Ibm (835 kg), and 800 ibm (363 kg) from the forward

hydrogen tanks is expended to obtain the 62.3% body length e.g. at the Mach 6.0

begin cruise weight 50,126 Ibm (22,735 kg). The c.g. moves aft as the remaining

hydrogen, 1670 ibm (758 kg) is expended from the forward hydrogen tank with the

vehicle landing c.g. at 67% body length, which is the aft aerodynamic limit.

(U) Moments of inertia and principle axis results for the basic Mach 6

aircraft are presented below.

Condition

I Roll
X

I Pitch
Y

I Yaw
Z

I Product
XZ

¢ Principle Axis

Slux- ft2

OWE

22223

464819

511808

16233

1°54 '

TOGW

67990

508733

562767

18763

2°i0 '

OWE

k_ - m2

TOGW

30134

630295

694012

22012

1°54 '

92194

689842

763112

25443

2o10 '

(U) The Mach 6.0 aircraft uses protected primary (load carrying) structure

because of its thermal environment. The passively insulated structural concept

features radiation shingles on the vehicle surface with insulation in between the

shingles and the primary structure. However, because of cooling problems, struc-

tural depth limitations, and general vehicle integration, the following structural

components are designed as unprotected hot structures:

o Direct access engine doors and shrouds

o Rotating tips

o Vertical tails

o Air induction primary structure

o Air induction internal ramps.
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(U) FIGURE 5-53

CENTER OF GRAVITY TRAVEL
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These components are constructed of high temperature materials such as Rene' 41.

Thermal stresses and attachment methods are calculated into the overall structure

to account for "hot" and "cold" structural compatibility.

(U) A material breakdown for the main structural components, wing/body,

rotating tips, vertical tails, landing gear, and air induction is presented in

Figure 5-54.

(U) In summary, the Phase III Mach 6 aircraft concept is larger in size and

weight than the Phase I design because of the larger and heavier STRJllA-27 engine.

However, the lower development costs of the P&WA STRJllA-27 in the Phase III air-

craft makes it more attractive. Of the total weight change, 12,006 lbm (5440 kg),

the engine accounts for 6804 lbm or B085 kg of the weight difference.

5.10.2 (U) MACH 6 DESIGN OPTION WEIGHTS - Several modification kits were pro-

posed for the Mach 6 vehicles. Incremental weights were derived for both the

installation provisions and the basic research package. Figure 5-55 summarizes

the changes in operating weight and the empty balance effect on the basic Mach 6

configuration.

(U) ARMAMENT (ARM) OPTION - The ARM option concept utilizes a lower fuselage

fairing consisting of the basic shell structure, insulation and shingles. An

ablation material is applied to the inside walls of the fairing shell to protect

the structure from the high temperatures and thermal shock that are incurred as

the missile is fired. During missile ejection, the door is open for a cycle time

of 30 seconds which allows temperatures to reach 2600°F (1716°K) inside the pod.

The missile door is designed to sustain the added air loads that it is subjected

to during its operating cycle. Actuation of the door is accomplished hydraulic-

ally. Weight for fuselage mounting provisions, electronic missile initialization,

and thrust ejection provisions are added to complete the installation. Figure

5-56 summarizes the weight increments for the armament modification and its in-

stallation.

(U) THERMAL PROTECTION SYSTEM (TPS) OPTION - This modification consists of

taking a 60 inch (152.5 cm) length of fuselage structure and designing it to accept

various thermal protection systems. Systems or concepts with depths of up to 6

inches (15.25 cm) can be accommodated for test times consistent with the aircraft

flight time. Each system will be designed as a removable package concept thereby

necessitating installation provisions in the aircraft.

(U) The installation weight is calculated on a maximum thermal protection

package weight of 200 lbm (91 kg). The actual installation weight of 136 lbm

(62 kg) is for cutouts, kickload and equipment mounting loads that are encountered

and is in addition to the 200 lbm(91 kg) package weight. 126 lbm (57 kg) is in-

stalled at the same time as the basic package. A tabular summation of the TPS

modification is shown in Figure 5-57.
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(U) FIGURE 5-55

RESEARCH PACKAGE OPTIONS

Item

Armament

Thermal Protection (TPS)

GE5/JZ6C Engine

Armament and TPS Combined

Installation Combined

Provisions Res__rch Package

Weight

ibm kg

97 44

i0 5

**

107 49

*ACG

in cm

! 2.54

0 0

0 0

Weight

ibm kg

2192 994

336 152

-2312 -1048

2528 1147

*ACG

in cm

2 5.08

2 5.08

3 7.62

o 0

* CG change taken at the operating weight empty conditions.

** Not separately defined since the modification involves rework of the aft fuselage

and no separate provisions are initially installed in the aircraft.

(U) FIGURE 5-56

ARM OPTION WEIGHT SUMMARY

Item

Btructure and Heat Protection

*Installation

Provisions

lbm kg

61 28

Complete
Research

PackaGe
lbm

654

kg

297

Electronics

Armament Group

Hydraulics

Subtotal

Missile (useful load)

Tot al

13

23

97

97

6

I0

44

44

63 29

13o 59

i0 5

857 390

1335 606

2192 996

* Included in research package weight.

I
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(U) FIGURE 5-57

TPS OPTION WEIGHT SUMMARY

Item

Structure

Equipment Bay

Equipment Bay Provisions

TPS Equipment

Total

Installation

Provisions Only

ibm

l0

l0

kg

Total Research

Package

ibm kg

126 57

I0 5

200 91

336 153

(U) ALTERNATE ENGINE (JZ6) - The stoichiometric GE5/JZ6C engine is the basis

for this modification. The physical geometry of the GE5/JZ6C is smaller than the

P&WA STRJllA-27 and the capture area requirement is less for its air induction

system. Installation of the engine entails the reworking of the rear fuselage.

Since the GE5/JZ6C engine is an all hydrogen burning design, the JP fuel system is

replaced with a LH 2 system. Figure 5-58 presents the weight changes involved in

installing the GE5/JZ6C engine.

(U) FIGURE 5-58

JZ6 OPTION WEIGHT SUMMARY

Item

A Engine Provisions

A Basic Structure

A Engine

A Air Induction

A Fuel System

Total A Weight

lbm

-463

1149

-4434

1795

- 359

-2312

Wei6ht

kg

-210

522

-2010

815

-163

-1046
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(U) The basic aircraft does not contain adequate fuel volume to provide

5 minutes of test time at Mach 6. Therefore, an external fuel tank, designed for

liquid hydrogen fuel, is installed. Thus, in addition to the previous changes,
an additional 500 ibm (227 kg) is added for the tank sund its installation on the

aircraft. The capacity of the tank is 236 ft3 (6.7 m3) or ii00 ibm (499 kg)

of hydrogen. All of the external fuel is consumed by the time the aircraft climbs

to 20,000 ft (6100 m) at Mach 0.8 and the tank is then dropped. The incremental

weight is shown in Figure 5-59.

(U) FIGURE 5-59

EXTERNAL FUEL TANK INSTALLATION

It em

Initial Engine and Installation Change

External Tank and Installation

Final Increment to OWE

Base OWE

Resulting OWE

(U) COMBINED OPTIONS -

Ibm

-2312

50O

-1812

48456

46644

Weight
kg

-1048

227

- 821

21976

21155

The Phase III aircraft was designed to have the

capability to incorporate both the ARM and TPS modifications if required. In this

case, both of the systems installation provisions must be incorporated in the
basic vehicle. Figure 5-60 lists the overall combination of installations.

(U) FIGURE 5-60

ARM AND TPS MODIFICATIONS COMBINED INSTALLATION WEIGHT

Item Modification

Armament TPS

Fuselage Armament Provisions

Armament Ejector System Provision

Electronics Equipment Installation

Equipment (Test) Bay Provisions

Subtotal

Total Combi_t_oD

ibm

61

23

13

m

97

i0

6

44

ibm kg

i0 5

i0 5

i07 ibm 49 kg
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5.11 COSTS

(U) Total system costs were derived for the Mach 6 vehicle _-nd several ccnfig-

uration options designed to accomplish research in areas of specific interest.

The acquisition cost for the basic Mach 6 ve_hicle is 398_ dollars, while the

5 year operating cost for 200 flights is 92M dollars. On a per flight basis, the

operating cost is 46M dollars respectively. The acquisition costs represent approx-
imately 81% of the total system cost which is 490M dollars.

(U) The costs associated with the selected configuration options were developed

in the same manner as described in Section _.ii while the cost format employed is the
same as the one used for the Mach 12 basic vehicle. The Mach 6 vehicle does not re-

quire a launch platform; hence, the cost associated with this element has been

eliminated from the investment cost category.

(U) The development of the basic vehicle costs with an explanation of the

important cost factors is presented in the following section and is followed by

development of the costs associated with the research options.

5.11.1 (U) BASIC VEHICLE COSTS - The Mach 6 vehicle costs are shown in tabular

and bar chart form in Figure 5-61 and were derived in accordance with the methods,

data and CER's used in the development of the Mach 12 vehicle costs discussed in
Section 4.11.1.

(U) The refurbishment cost development is discussed in Section 3.6.2 and is

0.6h% of the flight research vehicle's investment cost shown in Item II-I of Figure

5-61. This percentage is based on the refurbishment cost per flight as a percent-

age of the flight vehicle's investment cost.

(U) The major cost segments of the Mach 6 program cost are depicted in bar

chart form shown in Figure 5-61 together with their respective percentages of their

major cost categories. The airframe is the dominate cost in all three major cate-
gories of costs. This was also true for the Mach 12 vehicle.

5.11.2 (U) PROGRAM COST INFLUENCES - A discussion of the factors which in-

fluence the total program cost of the Mach 6 vehicle is presented in the following
sections. These factors are the same as those discussed in Seciton 4.11.2 All of

the factors presented exert essentially the same impact on the total program cost

for the Mach 6 vehicle as for the Mach 12 vehicle with the exception of the pro-

pulsion system for the Mach 6 vehicle which is approximately 3 times more expensive

than the propulsion system for the Mach 12 vehicle. This is due to the type of

propulsion system employed by the Mach 6 vehicle which is a turborsmJet propulsion
system.

5.11.2.1 (U) Airframe Cost Influence - The RDT&E, investment and operating costs

associated with the airframe represent 48% of the total system cost of the Mach 6

flight research vehicle. As was the case for the Mach 12 vehicle, the airframe is

the dominant factor in the total program cost.
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(U) FIGURE 5-61
TOTAL PROGRAMCOST SUMMARYAND COMPARISON FOR BASIC MACH 6 VEHICLE

(200 Flight Program - 5 Year Duration)

Total ProgramCost = 490 M Dollars

Cost Categories and Elements

_asic

Vehicle

Cnnhs (_
I. RD"f&'_ Costs

{. Airfra;ne Desi,-n ;_nd Devplo_ment

A. Airframe D,_siJ*r 56.5

B, M_sc_l! _n_,;s ;'_'_ys*_l [_eGicn & beveiop_ent v.!

C. Develonment Tests (including Wind Tunn_li h.l

D. Test H_rdw_re _,?

E. Pro-Delivery Flight Test 3.3
Zub-T_ital 79,R

2, Toolin_ 19.8

3, Avionics Develorm_nt h.7

_. Pronulsion DeveloPment @O.0

5- SUPpOrt E_uipme_t De_i_!n _ _]ystem Int_6r_tion 27.h

g. Ground Test F_:!!it[es

Tot_l 2!1.7

If. Investment Costc

I. Flight Vehicles

A. Airfr_e h3.0

B, Miscell_neous Subsystems I.@

C. Propulsion 2.0
D. Avionics l.h

Unit Cost (i) Vehicle h8.3

Unit Cost (3) Vehicles lh_,_

2, Support Costs
A. AGE 21.7

B. Trainin_ Equipment 0._

C. Initial Stocks (Engines & AGE Spares) ig.2

D. Initial TralninR ].0

E. Initial Transportation 1.7

Sub-Total hl.6

3- Launch Plat form Cost
Total

III. Operating Cost

i. Range User Cost 5.6

2. Escort Aircraft & Logistics 2.2

3. Vehicle Maint./Repalr Cost

A. AirfrLme

a, Material 25._

b. Labor 9.b

B. Miscellaneous Subsystems

a. Material 8,0

b. Labor .h

C. Propulsion Systems

a. Materi_l 9.1

b. Labor 2.7

D. Avionics
&. Material 5.h

b. Labor .9

TOt_I Maintenance/Repair Cost

h. Propelllnt and P_essurant Cost 0._

5. AGE Maintenance Cos_ 2.5

6. Genera/ _rpose M_in%ena_nce Support 1.0

7. Transportation Cost

8. Pilot P_y & Support Personnel P_y 18.6

9. Launch Platform O_er_tlon Cost -.-..-t
Total 0peratin_ CoSt 92.0

Grand Total _89.9

(i) Costs In Millions of 1970 Dollars

E

21_

19@

v_

L_

@

Rr_AE

PRO-

PUL_ION

37.7%

OTHER

22.2_

AIRFRAME

34.4t

INVESTMENT

._

PRO-

Pl_ION

10.8%

OTHER

14.0%

A_IO_IC _-6.8_

Wr_c,......._W-_._s
I_ORILSIO

12.8___m_.__g

32_

ArPcRAP_

38. ]Ji
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(U) Approximately 60% of the Mach 6 vehicle's airframe structure is made

up of advanced materials while the corresponding percentage for the Mach 12 vehicle

is 49%. Thus, the percentage of advanced materials exerts a greater degree of

influence on the Mach 6 airframe's weighted production complexity factor than on

the Mach 12 airframe. The weighted production complexity factor is 4.0073 for the

Mach 6 vehicle whereas it is 3.9015 for the Mach 12 vehicle. Another important

parameter that influences the acquisition cost of the Mach 6 vehicle is the DCPR

weight. The DCPR weight of the Mach 6 vehicle is approximately twice the DCPR

weights of the Mach 12 vehicle. The airframe structure for the Mach 6 vehicle

accounted for 91% of the DCPR weight whereas the shingles accounted for the re-

maining 9% of the DCPR weight. The comparable percentages for the Mach 12 vehicle

are 86% and 14% respectively.

(U) The DCPR weight composition and the development of the weighted produc-

tion complexity factor for the Mach 6 vehicle are shown in Figures 5-62 and 5-63.

Material

Type

Aluminum

Titanium

Steel

Rene 41

ITDNiCr

Columbium

Nose Cone

Insulation

Other

Equipment

(U) FIGURE 5-62

DCPR WEIGHT COMPOSITION - MACH 6 CONFIGURATION

We i_ht

Basic Structure

lb

4,212

4,637

3,564

11,957

5O2

282

8O

3,255

52O

kg

i, 910
2 ,i03

1,616

5,422
226

128

36

1,476

236

Equipment Total

ib kg ib kg

4,380 1,986

4,212

4,637

3,564

11,957

5O2
282

8O

3,255

520

4,380

i ,910

2,103

1,616

5,422
266

128

36

i, 476

736

1,986m

Total 29,009 13,155 4,380 1,986 33,389 15,142
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(U) FIGURE 5-63

PRODUCTION COMPLEXITY - AIRFRAME

Material

Advanced

l)Columbium

2)T.D.Nickle

3)Rene 41

4)Titanium

5)Nose Cone

Sub-Tot al

Conventional

l)Insulation

2)Aluminum

3)Other

4)Steel

Sub-Total

Total

DCPR Wt.

lb

282

502

11,957

4,637

8O

17,458

kg

126
226

5,422

2,103

36

7,917

% of DCPR Wt.

.97

1.73

41.22
15.98

.28

60.18

Complexity

4.00

9.00
7.50

2.00

1.25

3,255

4,212

520

29,009

1,476

i ,910

236

i ,616

5,238

13,155

11.22

14.52

1.79

12.29

39.82

100.O0

1.00

1.00

1.00

1.00

Weighted

Complexity

3.88

15.57

309.15

31.96

.35

360.91

11.22

14.52

1.79

12.29

39.82

400.73

ITotal/lO0 4. 0073

5.11.2.2 (U) Engine Cost Influence - The propulsion development cost for the

STRJllA-27 turboramJet is 80 M dollars while the investment cost is 2 M dollars

for one engine. Acquisition costs attributed to the propulsion system accounted

for lO0 M dollars which is 25% of the total acquisition cost. The propulsion

system exerts a greater influence on the acquisition cost for the Mach 6 vehicle

than for the Mach 12 vehicle. This is due to the fact that the Mach 6 vehicle

employs an airbreathing propulsion system whereas the Mach 12 vehicle emDloys a

rocket propulsion system. There are l0 engines required in the Mach 6 vehicle pro-

gram, 3 installed and 7 spares. Currently, there are a number of J-58 engines
available in the government inventory (Air Force and NASA). The J-58 overall line

at the Pratt and Whitney Aircraft facility in West Palm Beach, Florida is presently
in operation.

5.11.2.3 (U) Miscellaneous Subsystems and Avionics System Cost Influences - Acqui-

sition costs for the avionics and miscellaneous subsystems are not significant as

was the case for the Mach 12 vehicle. This is due to the use of off-the-shelf hard-

ware. The total acquisition cost for these two systems amounted to 22 M dollars.

5.11.2.4 (U) Operatin5 Cost Influences - The maintenance/repair cost is the
largest of all the operating cost elements and is 61.8 M dollars. This cost accounts

for 67% of the total operating cost and is shown in summary form in Figure 5-64.
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(U) FIGURE 5-64

MACH 6 VEHICLE MAINTENANCE/REPAIR COST SUMMARY
('200 FLT_WPS)

Cost-Millions of Dollars

Major System

i. Airframe

2. Propulsion

3. Avionics

4. Misc. Subsystems

Total

% of Total

Material

25.8

9.1

5.3
8.0

48.2

78.0

Labor

9.4
2.7

1.0

.4

13.5

22.0

Total

35.2

ii. 8

6.3

8.4

61.7

i00.0

The operating cost for the Mach _ vehicle (92.0 M dollars) ammortized over 200

flight research program is .460 M dollars per flight.

5.11.3 (U) RESEARCH VEHICLE OPTIONS - Three major options were priced for the
Mach 6 basic vehicle and are as follows:

(a) ARM - Armament

(b) TPS - Thermal Protection System

(c) JZ6C - LH 2 TurboramJet Engine

The Mach 6 vehicle option costs are shown in Figures 5-65 and 5-66. It can readily

be seen that options 1 and 2 add a small increment to the basic vehicle's program

cost. However, option 3 requires a substantial increment to the basic vehicle's

program cost which is due to the engine development cost of 647 M dollars.

(U) The costs associated with the installation provisions were derived on the

basic of installing them at the contractor's facility and at the flight research

center. The last column in Figures 5-65 and 5-66 shows the costs of installing the

installation provisions for options 1 and 2 at the contractor's facility. The dif-

ference in cost between installation at the contractor's facility and at the flight

research center is insignificant. Options 1 and 2 add approximately ll M dollars

to the basic vehicle's total program cost which is approximately 2% of stated cost.

The magnitude of the cost increments related to the basic vehicle's program cost

incurred by the two options is shown in the bar chart in Figure 5-67.

(U) It was found that no additional refurbishment costs would be incurred by

adding options 1 through 3 to the basic Mach 6 vehicle.

(U) The cost to install the options is shown in Figure 5-68. All costs are

based on installation at the flight test center by NASA personnel.
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(U) FIGURE 5-65

DETAILED TOTAL SYSTEM COST BREAKDOWNFOR BASIC MACH 6 VEHICLE

AND ASSOCIATED OPTIONS (MILLIONS OF 1970 DOLLARS)

Options

Cost Categories and Elen'ents

I. ROT&E Costs

]. AirframeDesignand Development

A. AirframeDesien
B. Misc. Subsyste._nOesilln and Development
C. DevelopmentTests (Including WindTunnel)

D. Test Hadwae

E. Pro-DeliveryFli[ht Test

Sub-Total

2. Tooling

3. Avionics Development

4. PropulsionDevelopment
5. Support Equipmnt Oesiin & System Int_ration

6 GroundTest Facitities

Total

II, InvestmentCosts

L Fli|ht Vehicles
A, Aittame

8, MiscellaneousSubsystem

C. Propulsion
D. Avionics

Unil Cost ([)Vehicle
Unit Cost 131"Vehicles

2. $opportCosts
A. AGE

B. Trainint Equipment

C. Init_l Stocks !Enlioss & AGE Spaces_

D. Initial Traininl
E. Initial Transportation

$,_-TQtat

3. ModificationInstallationCost

Total

IlL 0peeati_ Cost f200 Flights - 5 Yrsl

[. Ronle User Cost
2. EscortAircraft and Logistics

_,.Vehic|e Nhinteraecn Repair Cost
A. Airframe

o. Material

b. Labo_

B. MiscellaneousSubsystems
a. Material
b. Labor

C. _OlXl_ioft Systems
a. Malarial

0. Labor

O. Avionics

o. Material
b. Labor

Basic OptionNo. 1 Option NO.2 Option NO.3 _nstallahon

Vehicle ,,, ARM TP_ JZ6C Provisions

Cost installation Research Installation Rese=ch tnsta(latton Reseach f_' Oplions

It) PTovistoes Package Provisions Package Provisions Packa,_e [ and2

56.47[ 0JGS
7,]47 0,029

4,043 0.005
8,833 0,016

3.334

79.848 0215

L9.755 0.0[5
4.659

80.000

27.401 0.047

:[2[1:673. 0277

42,_o3
1.849

2.000

1.446

I
i

1.401 0.020 t 0.811

0.050

0.072 O.OOl [.3]2

0,113 0.002 0.452

1.636 0.Q23 2.575

0.520 0.007 0.996

0.705 0.O94

2.86l 0030 3.665

0229 [l,790 0,183
0,195 0,029

0.017 2.405 0,006

0.028 2,813 0.018

0.274 17.Z_ 0236

0.0_ 5.133 0055

500,000
0.235 0.940 0._7

[47 .OB5

0.602 670.366 0.338

0.075

0,009

48.258

N4.774 !

21.716

0.750

16.17G
1.000
1.746

41308

l_.l 6,?I

5-566

2.220

0.6_ i:
o,o[41

i

0.0L2 2.2E2 0.139 [4._8 0.047

0.034 00O9

3.500

25,778

9.450

0.084

0.084

J

8.G39
.405

1

9.104 1
2,700

5.344

.945

Total Maintenance'Repair Cost 61.765 i

4. Pi'opel_M a_ PressurantCost 0398 I
5. AGE Maimne_e Cost 2.498 0.015
6. General PurposeMaintenance Supoml t.O00
7. TransportationCost

8. Pilot Pay & Support Per Pay 10.600

9. Launch Platform Operation Cost

Total Opa.ratinI Cost 92.047 0.015

C_andTotal 489.882 0361 ,3.752
I| _Millions of 1970 Dollars

0.713

0.L07

0.0l[

i
0.002 !

0.[26

0.042

0.875 i

r

0012 2.262

0.012

0.042

0339

0.034

0.007

0,139 17.572 0.0%

0.2_

Z.636

0.614

0.065

0380 3.315

0.019

,2._1 0139 20.887 0.288

0.05I
0.395

°

O.OSl - 0.395 -

5.377 0,741 691.648 0.526

MCDONNELL AIRCRAFT

%90



REPORT MDC AOO13 • 2OCTOBER 1970

VOLUME _ • PART 1

(U) FIGURE 5-66
TOTAL SYSTEM COSTS FOR THE MACH 6 CONFIGURATION

AND ASSOCIATED OPTIONS

(Millions of 1970 Dollars)

COST

CATEGORIES

l,

2.

3.

BASIC

VEHICLE

RDT&E 211.7

OPTIONS

1. 2.

TPS ARM

3.7 2.9

INVEST-

MENT

OPERAT-

ING

TOTAL

186.2 2.7 .8

92.0 - -

489.9 6.4 3.7

INSTALLATION

PROVISIONS

FOR OPTIONS

1 & 2

.4

.3

.7

OPTION 3

RESEARCH INSTAL.

PACKAGE PROV.

670.h .6

20.9 .2

.4

691.7 .8

TOTAL

671.0

21.1

.4

692.5

BASIC VEHICLE

PLUS

INSTALLATION

PROVISIONS

FOR OPTIONS

l& 2

212.1

186.5

92.0

490.6
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(U) FIGURE 5-67

OPTION COST COMPARISONSUMMARY

1500 -

m

==
o

m

5

.5

¢.J

1400

1300

1200

1100

1000

900

8OO

7OO

600

500

400

300

200

100

Operat-
ing

Invest-
ment

m

_ RDT&E

Options (l)

TPS ARM

JZ6C

(1) IncludesInstallation
Provisions
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(U) FIGURE 5-68

OPTION INSTALLATION COSTS

Time No. of Hr/Rate Total Total Opt. Inst.
Options (Mo's) Men S/Man Hr(l Man Hrs (2) ($)

TPS 2 8 6.66 2,768 18,500

_M 3 12 6.66 6,228 41,500

JZ6C 12 6.66 12,456 83,000

(I) Based on $13,000/yr (1970) NASA shop personnel cost and 1,952 working hrs per yr.
(2) Based on 173 manhours per month.
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5.12 DEVELOPMENT SCHEDULE

(U) The development schedule for the Mach 6 flight research vehicle is pre-

sented in Figure 5-69 which is a milestone chart depicting the important events

and their time of occurrence measured from "go-ahead".

(U) The schedule reflects the cost ground rules stated in Section 3.6.1.1;

that is, (1) minimum cost-to-fly program, (2) soft tooling, (3) limited reliability

program, (4) "zero defects" program not employed, (5) five year operational test

program, (6) limited pre-delivery flight test program and (7) maximum use of exist-

ing equipment.

(U) The time allocated for the engineering design of the airframe is 36 months

with design freeze occurring 12 months after "go-ahead". Development tests are

conducted for a period of 18 months and terminate at the mid-point of the airframe

engineering design phase. Aircraft No. 1 undergoes a series of taxi tests during

the 39th month after "go-ahead" which lasts for a period of 1 month. Taxi tests

are required for HTO (Horizontal-Take-Off) aircraft.

(U) Three major categories of tests are performed during the 18 month devel-

opment test period; namely, (1) wind tunnel tests, (2) structural and thermal tests

and (3) component and sub-systems tests. The assembly of the structural test

article begins 16 months after "go-ahead" and is completed 27 months after "go-

ahead". Assembly of the three flight research vehicles begins 18 months after

"go-ahead" and terminates with the completion of the third vehicle 52 months after

"go-ahead".

(U) Due to the use of soft tooling, the tool design and fabrication program

is only 13.5 months in duration.

(U) The pre-delivery flight test program is ii months in duration. Only two

of the three flight research vehicles participate in the pre-delivery flight test

program. The first flight occurs at the beginning of the 40th month after "go-

ahead". Vehicle No. 2 participates in the program during the last four months of

the program.

(U) Delivery of the first two flight research vehicles to NASA occurs

50 months after "go-ahead" while the delivery of the third vehicle occurs two

months later.

(U) The flight research program is 5 years in duration during which 200

missions are flown. The program starts 51 months after go-ahead and terminates

5 years later.

(U) The pre-delivery flight test phase consists of 18 powered flights in

which the envelope is expanded to Mach 3-3.5 to verify the ramjet operation. For

the envelope expansion phase, hh powered flights are scheduled to expand the Mach

number envelope from 3 to 6. In this phase, no tests are conducted other than

those associated with the expansion of the Mach number. The 4h flights consist of:

(1) 20 flights allocated for inlet development, (2) 20 flights allocated for
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expansion of q with Mach number and (B) h flights allocated for maneuvering tests.

During the research phase, 38 flights are scheduled to be flown by the basic

vehicles in which the test time is varied with Mach number. All flights conducted

by the Mach 6 vehicles are powered flights. There are I00 flights allocated for

the modification phase of the research program.

(Page 5-96 is blank)
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_CEDING PAGE BLA_K NOT FI_,f_

6. MISSION STUDIES

(U) This section presents the mission studies for the two basic research vehi-

cles and the modification option versions. Volumes II and III discussed some of the

aspects related to mission studies for the various candidate hypersonic research ve-

hicles, and identified other areas for future consideration. The results reported

here reflect: (1) a refinement in vehicle design and performance; (2) a more de-

tailed analysis of research missions; (3) investigation of areas previously identi-
fied for further study; and (4) treatment of some new areas.

(U) Basing and test ranges are recommended which can accommodate a wide spec-

trum of flight profiles during the speed buildups to the maximum design missions for

the basic as well as the optional vehicle configurations. The Mach 12 vehicle mis-

sion will require test ranges up to 1900 nm (3520 km) in length which will span

the continental United States from Florida to California as depicted in Figure 6-1.

Test ranges were selected across the southern portion of the country in order to

take advantage of the best year round weather conditions, less population density,

existing tracking and communication stations, and available emergency landing sites.

The Mach 6 vehicle mission, illustrated in Figure 6-2, with its less demanding range

requirements can be operated in the southwestern area where the weather and popula-
tion density conditions are even more attractive.

(U) The Mach 12 vehicle has good mission flexibility because of the airlaunch

mode of operation. Three main operating bases can be used to accommodate many

launch sites encompassing a wide variety of test missions. Flight operations with

the Mach 6 vehicle will be more conventional because of the turbojet engine and HT0

mode of operation. This vehicle has good single base mission potential, particu-

larly for its lower speed flights, if additional JP fuel is provided to extend the

outbound cruise range. This subject is treated in more detail in Section 6.1.

(U) Candidate emergency landing sites, identified during earlier studies, were

re-evaluated to determine their suitability to the Phase III vehicles, mission pro-

files, and test ranges. Study results show that the research vehicles have a high

probability of reaching an emergency landing site from any point in the flight pro-
file.

(U) Pilot escape and survivability were included in the mission studies.

Various escape concepts were evaluated with respect to the vehicle designs and mis-

sion profiles, including the research vehicle optional configurations. The study

results indicated that the open ejection seat afforded the most reasonable concept

considering the probable ejection envelope, simplicity of design, experience level,
and cost factor.

(U) The following subsections discuss these and other considerations pertain-

ing to the vehicle flight operational program.

6.1 BASING

(U) Preliminary basing studies performed during Phases I and II established

the basing and operating philosophies for the HYFAC research vehicle concepts under

consideration. The Phase III basing study involved the investigation of the re-

quirements for the two final candidate vehicles to conform to the established philo-
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(U) FIGURE 6-2
MACH 6 VEHICLE - TYPICAL MISSION
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sophies, including the ramification of testing research options• These require-

ments were :

o Define the minimum number of bases and test ranges capable of accommodating

incremental expansion of the flight envelope and design mission.

o Permit test missions to be flown inbound toward the landing site using a

nominal glide range without the requirement for high Mach number turn.

o Provide good emergency landing sites along the test range.

o Permit maximum utilization of existing facilities (maintenance, tracking,

communications, etc).

These requirements were met for all the research missions except for the Mach 12 and

Mach 6 armament modes which could require a high Mach turn to return to base. The

following paragraphs present the results of the basing study•
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6.1.1 (U) MACH 12 VEHICLE - The recommended basing and operating plan for the

Mach 12 - all rocket - air launched vehicle is essentially the same as that reported

in Phase ii, i.e., perform initial flights on the X-15 test range at Edwards AFB

followed by two-base operations as the requirement for increased Mach No. and/or

test time dict_÷e. Some of the bases and test ranges recommended for certain mis-

sions in Phase II have been revised reflecting the results of the refinement of the

vehicle design and performance. The nominal range of the 5 minute Mach 12 mission

which previously required approximately 2,000 run (3710 km) has been revised in

Phase III to 1,900 nm (3520 km). This range is best accommodated by launching near

Cecil NAS which is in northeast Florida, approximately 6 nm (!i km) southwest of

Jacksonville, Florida and is located in restricted zone (R-2903A). Facilities in-

clude a 12,500 ft (3800m), hard surface runway, surveillance and precision radar,

and conventional navigation aids (VOR, TACAN, UHF/DF). This base appears more at-

tractive than Homestead AFB, Florida which previously was recommended as the candi-

date launch site for this mission, and provides an improved situation in regards to

available emergency landing sites.

(U) The recommended basing and operating plan for the Mach 12 research air-

craft shown in Figure 6-3 is designed to accommodate test missions over a wide range

of test Mach numbers and test times. Test ranges that offer mission versatility are

necessary in order to incrementally expand the flight envelope, and to obtain re-

search data throughout the flight envelope. The basing and operating plan selec-

tions were based on the following considerations:

o Edwards AFB, California is the main base of operations and the intended

landing site for all missions.

Staging bases, from which the C-5A with the test vehicle aboard takes off,
were selected on the basis of available facilities, personnel familiar with

test operations, and location both with respect to remoteness and within

nominal ferry range to suitable drop zones for various missions.

Air launch sites were selected on the basis of providing a suitable landing

site should the mission be aborted immediately following the drop, remote-

ness of location, and the availability of emergency landing sites along the

ground track between the drop point and Edwards AFB.

(U) The basing plan shows that the air launch mode of operation gives flexi-

bility to mission planning and test range utilization. Three main staging bases can

accommodate many launch sites and provide test missions over a wide range of Mach

numbers and/or test time. The three recommended staging bases are all Air Force
test facilities.

(U) In general, the recommended bases and test ranges of the basic vehicle

will also accommodate missions with the vehicle optional configuration installed.

With some mods all missions can be flown using a single base operations; other vehi-

cle options require the full complement of test ranges. The recommended basing

plans for the vehicle options, also shown in Figure 6-3, are discussed in the fol-

lowing paragraphs.
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(U) FIGURE 6-3
MACH 12 CANDIDATE BASING AND TEST RANGE PLAN
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6.1.1.1 (U) HTO/VTO Vehicle Options - Flight operations for the HTO/VTO vehicle

options can be single based since they function only to demonstrate and compare

launch methods. This decision was based on the following considerations:

o The primary research objectives can be achieved from the take-off and imme-

diate climb out profile (field level to 30,000 feet (9150 m)).

o Gross weight considerations, particularly for the VTO operation, could pro-

hibit sufficient fuel loadings to accomplish a dual base mission.

o Missions to maximum or near maximum capabilities would not add significantly

to the research objective to warrant the added costs and constraints of dual

base operations; these objectives can be obtained with the basic configura-

tion.

6.1.1.2 (U) SJ and CSJ Vehicle Options - The SJ and CSJ research options can uti-

lize the same test ranges as the basic vehicle. The SJ/CSJ installations reduce the

vehicle maximum performance capability somewhat which results in shorter range re-

quirements. Therefore, maximum Mach number missions can be flown on some of the

intermediate test ranges from Dyess AFB and Perrin AFB. The longer test ranges

(from Eglin AFB and Cecil NAS) will be required on missions flown for extended test

time at lower Mach number. The SJ test vehicle would be relegated to dual basing

early in the program because Mach numbers above 6 are required to sustain flight

with the SJ engine. The CSJ test vehicle is not as constrained since it can he sus-

tained at Mach 3 on the CSJ engine which would permit some single base testing.

6.1.1.3 (U) TPS Vehicle Option - The thermal protection system test section does

not effect the basic vehicle mission capabilities. Therefore, basing and test range

requirements for this option are the same as for the basic vehicle.

6.1.1.4 (U) ARM Vehicle Option - The armament option, wherein research will be

conducted involving the separation of missiles or other stores from the test vehicle,

presents a number of additional considerations to the basing and operational plan.

These considerations result from the premise that the missile should be separated

at conditions, and at a location, such that the missile will impact in a controlled

zone suitable for that purpose. It will also be necessary to launch the aircraft

near an emergency landing site, have range available to climb and accelerate to the

desired launch conditions (Mach number, altitude, and geographic location), and be

able to effect a return to Edwards AFB for landing after the separation. It is an-

ticipated that research on missile separations from a hypersonic aircraft would re-

quire testing over a range of release conditions encompassing different speeds, alti-

tudes, and aircraft attitudes. Figure 6-4 presents a candidate flight plan which

could be employed for a level flight release of a non-powered missile shape at Mach

12 from near equilibrium altitude. The test plan utilizes the existing facilities

of the X-15 test range and the nearby Pacific Missile Range (PMR). A turn is re-

quired following the missile release in order to land the test vehicle at Edwards

AFB. This general test plan could also be used to accommodate launches over a range

of Mach numbers and altitudes.

6.1.1.5 (U) STG Vehicle Option - The basing and test range requirements of

the staging option are similar to the armament option in that a suitable impact zone

for the staged vehicle is required. However, the same test range cannot be used be-
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(U) FIGURE 6-4
MACH 12 ARM OPTION CANDIDATE TEST RANGE
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cause the high trajectory flight profile of the staging mission, shown in Figure

4-67 puts the vehicle recovery position almost over the stage impact point. This,

combined with the fact that all available fuel is consumed during the mission would

make it difficult for the vehicle to reach Edwards AFB from a turn initiated over

the PMR. Therefore, a straight line type profile was considered more practical for

this mission. _ne only other impact zone considered suitable was the White Sands

Missile Range (WSMR) in New Mexico. Figure 6-5 shows a candidate flight plan uti-

lizing the WSMR with Holloman AFB serving as the takeoff base.

6.1.1.6 (U) Subsonic TJ Vehicle Option - This modification can be single based at

Edwards AFB for all missions. Flights can be flown in the local area and no speci-

fic test ranges will be required.

6.1.2 (U) MACH 6 VEHICLE - The basing and test ranges for all candidate vehicles

defined during Phase II were based on a glide range nominally between the maximum

L/D glide range and the minimum glide range. A more attractive basing plan that

reduced total range requirements was found available for the Mach 6 test vehicle

during Phase III. Range reduction was afforded by reconsidering the glide segment

of the profile since the accel/climb and cruise ranges are relatively fixed. The

Phase III profile utilizes the near minimum glide range for total range requirement

as shown in Figure 6-6.

(13) The ability to perform missions over shorter ranges will increase the

single base test capability thereby permitting a greater number of the total mis-

sions to be single based. Shorter range requirements will also permit the design

mission (Mach 6 for 5 minutes) to be flown on the Holloman AFB to Edwards AFB test

range which would eliminate the need for a third operating base. Using the near

minimum glide range reduces the pilots flexibility in range control; however, the

following factors tend to offset this.

o TJ engine is available for landing.

o Pilot has visual reference of the ground throughout the mission.

o Previous Mach 6 operational experience available from the X-15 program.

o Good single base test capability permitting build ups while obtaining in-

cremental performance experience.

o Problem not as critical with Mach 6 as with Mach 12 because of shorter range

involved.

(U) The Mach 6 vehicle has greater single base mission flexibility than the

all-rocket vehicles because the TRJ engine provides a more economical subsonic

cruise capability. Figure 6-7 illustrates that single base missions using the

inbound test profile permit testing to near 50 percent of design Mach number.

The limiting factor for single based missions is the amount of JP fuel available.

This capability could be increased if additional JP fuel were provided to increase

the subsonic outbound cruise range. Two approaches for providing additional JP

fuel were considered and are discussed in the following paragraphs.
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(U)FIGURE 6-5
CANDIDATE TEST RANGE
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(U) FIGURE 6-6

MACH 6 VEHICLE TYPICAL PHASE III FLIGHT PROFILE
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(U) FIGURE 6-7

MACH 6 VEHICLE-SINGLE BASE FLIGHT PROFILE

TAKEOFF FUEL LOAD- 8600 LB JP+ 1000 LB LH2

Mach 3

44,000 ft (13,400 M) Begin Acceleration

_Ci .8 Mach/20,O00 ft

(6, I00 M)
Imb &

Accele_'-- - - "

Unpowered _ ,,
G IIde Descend Ing

1 Turn

//  oo,- ___oJ
I i _,_" _i

<_
Edwards AFB

MCDONNELL AIII_RAIrr

6-zo



REPORT MDC A0013 • 2 OCTOBER 1970
VOLUME_ • PART 1

(a) Increased Internal Tankage - This approach has the advantage of providing

the fuel without an increased drag penalty; however, a portion of the LH 2 fuel

tankage space must be converted to carry it as illustrated in Figure 6-8. Subse-

quently when dual base missions are flown, the space would have to be reconverted

for LH 2.

(b) External Fuel Drop Tanks - This method would permit mission versatility

for a minimum of effort (easy on, easy off). The primary disadvantage of external

tanks is the requirement to provide a suitable drop zone. Furthermore, several of

these zones would be required in order to accommodate a variety of missions. This

presumes that the logical time to drop the tanks is at the end of the outbound

cruise Just pricr to accelerating for the test.

(U) FIGURE 6-8
MACH 6 ADDITIONAL JP FUEL CONFIGURATION

LH2 Fuel Tank

I Temporary .

I i Capacity
Approximately

L. V---- 6000 ro(2720kz)
I J_'_
I z
i i

I
_ _.u -Existing LH2 Fuel Bulkhead

I

I

TemporaryBulkhead
InsideFuel Tank

(U) Figure 6-9 shows the increase in single base mission capability with

additional JP fuel. It can be seen that the additional fuel is attractive from the

vehicle development standpoint since near design Mach number can be achieved with

6000 lb (2720 kg) of additional JP fuel. This capability enables approximately 80

percent of the total flight program to be conducted with single base operations.

Without additional JP fuel, probably only 20 percent of the missions could be single

based.
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FLIGHT PROFILE:

(U) FIGURE6-9
EFFECT OF ADDITIONALJP FUEL ON

MACH6 VEHICLE SINGLE BASEMISSIONCAPABILITY

(i) T.O AND SUBSONIC CRUISE OUTBOUND ON JP FUEL

(2) ACCELERATE TO TEST MACH NO. INBOUND

a. JP + LH 2 FUEL UP TO MACH 3.5

b. LH 2 FUEL ONLY BEYOND MACH 3.5

(3) CRUISE AT TEST MACH NO.

a. ON JP FUEL UP TO MACH 3.5

b. ON LH 2 FUEL BEYOND MACH 3.5

(4) UNPOWERED GLIDE TO BASE
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(U) Basing plans for the research vehicle optional configurations discussed in

the following paragraphs.

6.1.2.1 (U)ARM Vehicle Option- The Math 6 armament mission will have the same require-

ments to use a controlled weapons impact r_nge similar to the Mach 12 vehicle. How-

ever, the Mach 6 mission is afforded several options in the basing and test plan

considerations. These options were based on the PNER and WSMR being considered as
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the only acceptable impact ranges. Two candidate plans were identified which uti-

lize the PMR. Figure 6-10 shows the most attractive plan, from an operational stand-

point, which involves single basing the mission from Edwards AFB. Weapons separ-

ations from subsonic to Mach 6 speeds can be accommodated; however, these missions

require that additional JP be carried for the outbound cruise segments. The other

plan using the PMR (not illustrated) requires dual basing and employs a straight

line flight profile from the takeoff base (Nellis AFB, Nevada) to the launch point.

A tight 180 degree turn and glide to landing at Edwards AFB is required. The plan

using the WSMR employs the same profile as the dual base PMR mission. Dyess AFB,

Texas would be the takeoff base and Holloman AFB, New Mexico the landing site.

Weapon separations for dual base missions would be limited to the Mach 5 to 6

envelope in order to have sufficient energy to affect the turn and glide to landing.

6.1.2.2 (U) TPS Option-The thermal protection system test section does not effect

the basic vehicle mission capability. Therefore, the basing and test range require-

ments are the same as for the basic vehicle.

6.2 FLIGHT OPERATIONS

(U) Flight operation studies performed during Phases I and II treated the op-

erational requirements and identified operating constraints for numerous hypersonic

research vehicle design concepts. This study describes the operational considera-

tions for the two Phase III basic vehicles and the research option configurations of

these vehicles. Some of the options consist of design concepts which when studied

as individual concepts during the preliminary phases presented operational problems

and constraints. These problems and constraints are reduced by incorporating the

concepts as options on the premise that the basic vehicles will have undergone a

flight development effort prior to incorporation of the options. Thus, a degree of

confidence and reliability as well as operation experience will have been estab-

lished for the basic vehicle and its systems.

(U) The primary concern in flight development of the Mach 12 vehicle will be

the high Mach number�temperature environment of the flight envelope; therefore, the

structures and TPS considerations are anticipated to be a dominant and pacing factor

in the program. The Mach 6 vehicle development effort will probably be dictated by

the airbreathing TRJ propulsion system. The following paragraphs present the re-

sults of the flight operation study.

6.2.1 (U) MACH 12 VEHICLE - Flight operations for the Mach 12 airlaunched test ve-

hicle will be similar so that of the X-15 program. Figure 6-11 presents the recom-

mended flight operation plan consisting of contractor predelivery flight tests fol-

lowed by the government's research phase.

(U) The mission profile for the Mach 12 - airlaunched - all rocket vehicle

was discussed in Section 6.1. The aircraft will be released from the C-5A carrier

within pover off glide range of a suitable landing site in the event the mission has

to be aborted shortly after drop. Aborts due to propulsion failures can be mini-

mized by prestarting the engines in idle mode. After release, the aircraft will be

accelerated, using a prescribed pitck program for the climb, until near test alti-

tude is reached. At test altitude, the aircraft will be leveled off and the power

reduced to that required to sustain the desired cruise velocity. Reduced power on

MCDONNELL AIKRAIrr
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(U) FIGURE 6-10
MACH 6 ARM OPTION CANDIDATE TEST RANGE
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(U) FIGURE 6-11
MACH 12 VEHICLE RECOMMENDED FLIGHT OPERATIONS PLAN
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speed handling, glide, and

landing characteristics.

Evaluate flight and handling

characteristics. Verify

systems/subsystems operation.

Verify structural integrity.
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ture environment. Satisfy
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able with transient flight.

Satisfy research objectives

requiring sustained hyper-

sonic flight.

one of the engines will be sufficient for cruise on most missions. At fuel burn-

out (or intentional shutdown), the speed brakes will be extended (approximately half

way) to provide the nominal glide range to reach the intended landing site. On-

board systems will inform the pilot of actual versus desired position so he can mod-

ulate the glide range by further extension, or retraction of the speed brakes.

Ground tracking stations will also monitor the flight profile to verify the on-board

systems, and to provide emergency backup in the event of on-board system failures.

Once the aircraft has decelerated below Mach 6, the cockpit can be raised permitting

visual acquisition of the landing site.

(U) The most significant operational differences between these vehicles and

the X-15 vehicles will result from the long ranges involved. Mach lO and 12 mis-

sions require launches from northern Florida which presents several problems or

constraints to the program. These constraints include:

IIfCI)OI_IPIELL AIRCRAI::'r
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(U) Weather factor - One of the criteria for test missions will be suitable

weather conditions, primarily little or no cloud cover. The clear sky conditions

will have to exist along the entire test ra/_ge in order to permit landing at an

emergency site if necessary. Missions from Florida will require good weather con-

ditions along 1200 to 1900 na. mi. (2220 - 3520 km) of test range. Based on 1967

survey of weather conditions along the test range, approximately 60% of the days

were probably unsuitable for test missions. This could create delays in the re-

search program; however, proper program pianning could minimize the problem. During

periods of adverse weather in the east, intermediate missions could be flown on the

southwestern test ranges where the conditions are suitable most of the time.

(U) Population density factor - Missions flown from eastern launch sites will

over-fly more densely populated areas than missions flown in the southwest. Based

on 1967 data, the states of Florida, Georgia, Alabama, Mississippi, and Louisiana

contain 60% of the population and only 34% of the land area of the states over-

flown. The over-flown states would be the probable impact zone if a major failure

occurred; however, the potential impact area should also be considered. This area

could encompass 30 states plus Mexico for a Mach 12 mission from Cecil NAS, Florida.

(U) Tracking, Communications_ and Time Zones - Another problem associated with

the long test ranges concerns tracking requirements. It will be necessary to trans-

fer from one tracking station to another several times during the mission. This is

also true for the telemetry data and voice communications. The three-hour time

differential between eastern launch sites and the western recovery site could reduce

the number of ds_ylight hours if they were needed to accomplish the mission.

(U) The impact of testing various research modification packages on flight

operations was also studied and the results are reported below.

6.2.1.1 (U) HTO/VTO Vehicle Options - A significant change to the basic vehicle

associated with the HT0 and VTO options is the installation of a modified configu-

ration of the rocket engine. This change would probably require a preliminary.

evaluation of the flight characteristics, particularly controllability from vectored

thrust at low airspeeds, using the airlaunch mode of operation prior to HTO or VT0

flights. Another preliminary test might be required for the VTO launch cart. If it

were found that Jettison of the cart is a necessary operation, it would be advisable

to perform preliminary tests to functionally check the system and evaluate separation

characteristics. These tests could be performed during the airlaunched missions

flown to evaluate the modified rocket engines. Jettison tests for the }{TO wheeled

cart cannot be accommodated in this manner because there is not enough ground clear-

ance to install the cart with the vehicle aboard the C-5A carrier aircraft.

(U) Prior to an HT0 mission, taxi tests should be made in order to evaluate

thrust management, braking, and directional control during ground roll. Accom-

plishment of these tests on the large lake bed at Edwards AFB would permit taxi to

near liftoff speed. Initial flights of the HTO/VTO vehicles should be made at light

gross weights. Subsequent flights could be made with incremental increases in fuel

loadings. Launch gross weight will be especially critical to VTO operations where

the loss of one engine during the first few seconds after lift off could be criti-

cal. It is recommended that the gross weight for VT0 missions be limited such that

MCDONNELL AIRCRAIrr
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adequate T/W ratio is available with one engine out. A single engine failure could

also present another problem for the VTO mission. Flight control (pitch, roll, and

yaw) is obtained by vectored thrust from the five rocket engines until sufficient

airspeed is achieved for the aerodynamic control surfaces to become effective (30 to

40 seconds after lift off). The magnitude of the effects of an engine failure would

depend on its location; an outboard engine would be most critical, the center engine

the least critical. Controllability problems from an engine failure would probably

not be as critical for HT0 missions because aerodynamic control would be available

at, or shortly after, lift off. Missions which are aborted after lift off will

require the dumping of propellant in order to reduce the vehicle weight to an accept-
able level for landing. Aborts involving the loss of thrust could be a critical

problem for the HTO/VTO mode of operation if the abort were to occur during the

climb segment at altitudes which would not provide sufficient time to expel the

fuel. It will be necessary to establish a minimum altitude for safe recovery for

each mission depending on available fuel dump rates and fuel loading.

_.2.1.2 (U) SJ and CSJ Vehicle Options - Testing an SJ or CSJ propulsion system on a

developed vehicle should minimize the risks associated wlth new propulsion concepts.

This occurs primarily because the rocket engines can be used to accelerate the air-

craft to the test conditions. The airlaunch mode of operation also affords mission

versatility for incremental buildup in the flight envelope which should expedite the

research program on the propulsion systems. Incorporation of the SJ or CSJ options

will make a significant change to the vehicle configuration. It is anticipated that

at least one power-off glide flight would be required to evaluate low speed handling,

glide, and landing characteristics prior to research flights. Flights with the SJ

engine will require mostly two base operations since Mach 7 or 8 is the minimum

operating speed for SJ operation. Little more than startup characteristics could

be evaluated on the X-15 test range. The rlsk of _nltlal fl_ghts on the longer two

base test ranges would be minimized by the availability of rocket engines if pro-

blems with the SJ were encountered. Testing the CSJ option permits some single base

missions because it can operate at speeds as low as Mach 3.

(U) The mission profiles and operating procedures for the SJ/CSJ will be

similar to that of the basic configuration. Some additional versatility in the mis-

sion profile is available because both the rocket and airbreather engines can be

used in a variety of combinations during the acceleration to test Mach number as

shown in Figure 4-64.

6.2.1.3 (U) TPS Vehicle Option - Incorporation of the thermal protection system

test section will not effect the basic vehicle flying qualities or mission capabil-

ity. Flight profiles and operational missions would be the same as the basic vehi-

cle. The TPS should be evaluated on an incremental envelope expansion basis in

order to acquire data over a range of flight conditions. If the design is such that

a failure of the TPS test section would not Jeopardize the vehicle integrity, the

testing can be accelerated by larger incremental increases in Mach number/test time.

If a failure cannot be tolerated, then the envelope expansion would have to be com-

mensurate with standard flight safety practices.

6.2.1.4 (U) ARM Vehicle Option - Missions involving the separation of weapons/stores,

particularly at high Mach numbers and high altitudes, present an exacting task in

space positioning requiring a great deal of pre-mission planning and coordination.
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Prior to a weapons separation mission, one or more practice missions (dry runs)

should be flown in order to:

o Coordinate the efforts and timing between the pilot and the ground tracking

and range control personnel.

o Verify the planned flight profile.

o Give the pilot experience in flying the mission.

6.2.1.5 (U) STG Vehicle Option - The staging mission requirements are similar to

those of the armament option with respect to exacting space positioning. The staging

mission presents additional complexities because of the very high altitude ballistic

profile. Dry runs (without the stage vehicle aboard) would also be required for this

mission for the same purpose as the armament mission. Additional pre-mission devel-

opment test should include captive flight to evaluate the compatibility between the

carrier aircraft and the staging cnffiguration.

6.2.1.6 (U) Subsonic TJ Vehicle Option - Incorporation of turbojet engines on the

basic vehicle to perform low-speed flight research should not present any particular

operating problems. Fly rates for this configuration should be substantially higher

than other configurations because it would not be constrained by the factors associ-

ated with hypersonic flight, carrier aircraft operations, and a large quantity of

instrumentation parameters.

6.2.2 (U) MACH 6 VEHICLE - Flight operations for the Mach 6 test vehicle will be

somewhat similar to conventional aircraft because of the turbojet engine and hori-

zontal takeoff capability. Figure 6-12 presents the recommended flight operation

plan consisting of contractor predelivery test flights, followed by the government's

research phase.

(U) The primary goal of the initial test phase will be to develop the aircraft

to the point where flight can be sustained on RJ operation. Once this goal has been

achieved, the vehicle will be ready to enter %he research test phase. It is antici-

pated that most of the test effort during the predelivery and envelope expansion

test phases will be directed toward the propulsion system and the TRJ operation in

particular. The subsonic flights and initial supersonic flights will be flown with

the TJ using JP fuel. RJ testing using LH2 fuel can be phased in once experience

and confidence has been established for TJ operation. Propulsion system testing

will encompass the following:

o TJ operation using JP fuel

Engine/afterburner handling

Engine/afterburner operation and control

Airstarts

Engine - inlet compatibility and performance

Variable inlet and bypass systems operation
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(U) FIGURE 6-12

MACH 6 VEHICLE RECOMMENDED FLIGHT OPERATIONS PLAN

PROGRILM

PHASE

Pre-Delivery

Research

FLIGHT

ENVELOPE

Ground

Subsonic

to

Supersonic

Supersonic
to

Hypersonic

Hypersonic

TEST METHOD

Taxi

(Low and

High Speed)

Accelerations

(Low to Max q)

Maneuvering Flight
(Neg. to Max g)

Sustained Cruise

Accelerations

(Low to Max q)

Maneuvering Flight

(Neg. to Max g)

Sustained Cruise

(Low to High g)

TEST OBJECTIVES

Evaluate Braking, Control and

Ground Handling Characteristics

Evaluate flying qualities and

T.O./landing performance.

Verify systems/subsystems

operation.

Verify structural integrity.

Evaluate propulsion system

operation and performance.

Establish operating procedures

and piloting techniques.

Expand envelope to design speed.

Verify structural integrity at

design speeds.

Develop propulsion system to

design speed.

Satisfy research objectives
obtainable with transient

flight.

Satisfy research objectives

requiring sustained hypersonic

flight.

TRJ operation using JP/LH 2 fuel

RJ starts

RJ handling and operation

Effects of RJ operation on TJ operation

Engine-inlet compatibility and performance

Variable inlet and bypass systems operation

Transition from TRJ to PJ only operation

Transition from RJ to TRJ to TJ operation

Inlet cooling performance.
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(U) Flight operations for the two most feasible research options incorporated

on the Mach 6 vehicle, were examined and the results are reported.

6.2.2.1 (U) A_M Vehicle Option-Flight operations with the Mach 6 armament option
pose the same considerations as the Mach 12 armament option. The constraints

are less severe because of the shorter ranges involved, and as pointed out in the

basing study, more mission versatility is available. The single base mission capa-

bility would depend on providing additional JP fuel.

6.2.2.2 (U) Tp_ Vehicle ODti0n-incorporation of a TPS test section will not effect

the basic vehicle flying qualities or mission capability. Therefore, flight opera-

tions and mission profiles would be the same as those employed for the basic vehicle.

The TPS will be evaluated using the philosophy of incremental envelope expansion

testing in order to establish reliability in the system by extrapolating the test

results. The rates of envelope expansion with Mach 12 vehicle TPS option was pre-

dicted to be a function of survivability if the TPS failed. This is also true for

the Mach 6 vehicle; however, another aspect must be _onsidered which concerns the

airbreathing engines and inlets. The vehicle could be designed to survive a TPS

test section failure from the structural standpoint, but ingestion of debris into

the inlet would present an additional hazard. Therefore, the location, as well as

the design philosophy could have an effect on the operational test plan.

6.3 SONIC BOOM

(U) The sonic boom far field characteristics of the two basic configurations

are determined for the acceleration-climb and cruise phase of flight. The computer

program of Reference (24) is employed to determine the sonic boom overpressure that

will be experienced at ground level. The computer program includes both climb and

acceleration effects. The results of the analysis for the acceleration-climb are

presented in terms of sonic boom ground level overpressures in Figure 6-13. The o

m_ximum_onic boom ground level overpressure pro@uced durin5 the climb is 3.0 lb/ft _
(144 N/M _) for the Mach 6 aircraft and 1.6 lb/ft _ (76.5 N/M_-) for the Mach 12

vehicle. The peak overpressure for the Mach 12 aircraft occurs at a higher Mach

number due to the higher flight path angle. The Mach 12 vehicle will therefore

produce ground level overpressures comparable to those associated with current

operational supersonic aircraft. The Mach 6 aircraft can be expected to cause some

damage to large plate glass windows if the peak pressure is generated over a popu-

lated area. The soni_ boom ove_pressures obtainsd during _he cruise portion of
flight are 0.20 lb/ft _ (9.6 N/M _) and 0.08 ib/ft _ (3.8 N/M _) for the Mach 6 and Mach

12 aircraft, respectively.

6.4 EMERGENCY DESCENT AND LANDING

(U) A major consideration in the selection of test ranges was the emergency

landing requirements. Candidate emergency landing sites were identified during the
Phase I and II studies. These studies were continued in Phase IIi in order to

acc_modate changes in the recommended test ranges and to re-evaluate the adequacy

and suitability of the candidate sites. The Phase III study was expanded to define

the requirements and identify the problems associated with the execution of emer-

gency landings. The following paragraphs present the results of the study.
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(U) FIGURE 6-13
SONIC BOOMEFFECTS
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6.h.l (U) EMERGENCY LANDING SITES - One of the criteria for selecting the launch

sites identified in the basing and operating plan for the Mach 12 vehicle was the

availability of emergency landing sites along the flight path. The study was pri-

marily concerned with the dual base missions. Single base missions on the X-15 test

range will utilize dry lake beds which were f6und suitable as emergency landing

sites for the X-15 program.

(U) One objective of the study was to show that a suitable emergency landing

site could be reached if an emergency occurred at any point along the flight path.

The following criteria were used to achieve this objective:

(1) The site must be an existing government-owned military airfield.

(2) The test vehicle should be able to reach an intended site from an

unpowered glide utilizing 80 percent or less of the _Kximum-minimum glide

range. If fuel is available a reduced power cruise may be used to increase

range capability.

(3) The heading change from the initial flight path to line up on the emer-

gency site should not exceed 30 degrees.
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C5)

The site location should be remote enough from nearby communities to

avoid flying over the community during final approach.

The site should have at least one hard surface runway of !0,000 feet

(3050 m) or longer.

(6) The site facilities should have some standard navigation aids such as

TACAN, VOR, UHF/DF, or Radar.

Sites meeting criterion (i) were identified for the selected test ranges. The

reduced po_er glide consideration of criterion (2) differs from the Phase iI study

where only unpowered glide capabilities were considered. Subsequent studies have

shown that the limited glide ranges from lower Mach numbers during the early accel-

eration segment of the flight were insufficient to reach the nearest site in the

event of complete loss of thrust. However, the probability of such a failure is

low. Investigation shows that one RLI0-A-3-9 engine operating at 35 percent thrust

is sufficient to maintain level flight. Data showed that the probability of three

of the five engines firing is .99995 or 20,000 flights between a failure to get

three engines operating. Thus, the probability that at least one of the five en-

gines would not ignite is miniscule. In addition, a redundant (dual) propellant

control and feed system has been incorporated in the vehicle design thus assuring

a very low probability of loss of engine thrust due to propellant system failure.

(U) Criterion (3) was established to minimize the turn requirements in the

event of an emergency. It applies primarily to emergencies occurring at higher

Mach numbers (above 1.5 for Mach 12 vehicle and above Mach 3 for the Mach 6 vehi-

cle). For emergencies at lower Mach numbers a 180 degree turn is required for re-

turn to the take-off/launch base. The available landing footprints for the Mach 12

and Mach 6 vehicles are shown in Figure 6-i_. These footprints were developed from

various trajectories utilizing maneuvers which would provide high emergency landing

site capability.

(U) The study also shows that not all candidate sites met the criteria

items (_) and (5) above. Any base which did not meet criterion (h) was rejected

because it would present an additional safety hazard. All bases with runways less

than i0,000 ft. (3080 m) (criterion 5) were rejected as primary sites. Some bases

with less than i0,000 foot (3050 m) runways were retained as alternate sites because

they offered the nearest site attainable from a particular point in the mission.

These bases are equipped with arresting gear on the runway over-runs which could

make them acceptable if an arresting hook were incorporated on the test vehicle.

Figure 6-15 presents the emergency landing sites available for the Mach 12 vehi'cle

on a Mach 12, 5 minute mission from Cecil NAS, Florida, to Edwards AFB, California.

The bases identified as primary are those which are the nearest attainable base from

a particular Mach number, or the most attractive landing sites when several sites

can be reached. The alternate sites are those available if the primary site is un-

available for any reason. All emergency site acquisitions are from an unpowered

glide unless otherwise noted. In some cases, a site is considered primary until the

next attractive site can be reached and it then becomes an alternate site. Edwards

AFB, which is the intended landing site for the Mach 12, 5 minute mission, is also

shown as an emergency site since it can be reached after 1.5 minutes of cruise at

Mach 12.
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(U) FIGURE 6-14
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(U) FIGURE 6-15

MACH 12 VEHICLE EMERGENCY LANDING CAPABILITY

Test Range: Cecil NAS to EdwardsAFB

Mission: Mach 12/5 Min
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(U) The emergency landing site requirements for the Mach 6 test vehicle are

considerably less than the Mach 12 vehicle. Using the recommended two-base test

range between Holloman and Edwards AFB, there are only two candidate emergency sites,

Luke and Williams AFB. These bases are located 40 nm (7h kin) apart approximately

midway between Holloman and Edwards AFB. Figure 6-16 presents the emergency landing

capability during a Holloman to Edwards mission. The figure shows that emergency

landing capability is more dependent on having thrust available than for the Mach 12

vehicle. The single engine Mach 6 vehicle may not have the high probability of

thrust available for emergency landing like the five engined Hach 12 vehicle. The

emergency itself could be created by a propulsion system malfunction.
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(U) FIGURE 6-16

MACH 6 VEHICLE EMERGENCY LANDING CAPABILITY

Test Range: Holloman AFB to EdwardsAFB
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(U) Edwards AFB would be the primary landing site for emergency landing sit-

uations occurring during single based missions on the X-15 test range. The ability

to reach the site, however, is dependent on the use of the TJ engine if the emer-

gency occurs farther out than the maximum glide capability of the vehicle at the

time of the emergency. Since single based missions will be utilized extensively

during the early stages of the program, the reliability and confidence level in the

engine will be considerably lower than that for dual base mission downstream in the

program. Therefore, it will also be necessary to rely on the dry lakes as alter-

nate emergency sites.

(U) Reliance on the TJ for return on aborted missions has an impact on the

test missions. It would not be advisable to 1_erform a mission suck that the vehicle

would not have sufficient JP fuel available to return to base from any point in the

flight. This does not effect the basic vehicle whalck is limited to Mack 3 on single

based missions; however, if the JP fuel capacity is increased in order to extend the

single base capability, it would be possible to fly missions wherein aborted returns

could not be accomplished.

6.h.2 (U) EMERGENCY LANDING OPERATIONS - The operational aspects of emergency

landing were studied in order to determine the requirements necessary for the suc-

cessful execution of the landing; and to define any problem areas. The following

paragraphs describe the major elements of concern for an emergency landing.

(U) Recognition - The initiation of an emergency landing would necessarily

begin with the recognition that the requirement exists. This recognition could

come from two sources for the research vehicle. The pilot would he the primary

source from either physical or sensible anomilies, or onboard instrument indications.
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Ground station flight monitors would be the other source from the telemetry data.

Once a problem dictating an emergency landing has been identified, it will be

necessary to assess the urgency of the situation. The assessments may be classed
as follows:

o Urgent Action - problem necessitates an emergency landing at the nearest

attainable site

o Deferrable Action - problem requires an emergency landing but the situation

permits the pilot to be more selective in the site.

(U) Site Selection - Once the decision to abort the mission and make an

emergency landing has been made, the primary consideration concerns the selection

of the landing site. The site selection will depend on the vehicle capability and

the ability to assess the capability. Factors effecting vehicle capability are:

o Range Capability - A function of speed, altitude, thrust availability and

maneuvering limitation

o Vehicle Position - distance frQm emergency sites

o Nature of the Emergency - urgent or deferrible.

(U) Heading and Descent - Initiation of the landing would commence with a

heading change (if required) toward the landing site. Candidate sites were

selected along the test ranges to minimize turning requirements which would permit

the pilot to concentrate on other tasks. Proper management of the descent profile

would be critical to reaching the intended site. This would involve control of

angle of attack, speed brake modulation, and thrust management (if required).

The capability to control the critical parameters would be available to the pilot

from on-board systems. Ground station monitoring of control and position data will

be available to back-up and verify on-board systems.

(U) Approach and Landing - The basic problem in accomplishing the final

approach and landing will be to arrive at the desired high key conditions over the

landing site. This is particularly critical _here the site is an airfield runway

and thrust is not available to permit range or control changes. The use of naviga-

tion aids would be essential to assuring the success of the landing. Another con-

sideration for landing assist would be standby chase aircraft employed in a manner

similar to the X-15 flights.
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6.5 PILOT ESCAPE SYSTEM

(U) A prerequisite to any manned aeronautics system is crew safety and sur-

vivability in the event of unpredictable system failures. Obviously, crew survival

is the primary consideration. Secondarily, the information received from a sur-

viving crew member provides invaluable data which cannot normally be attained by

other means. In a research program in which high supersonic and hypersonic flight

regimes, as well as state-of-the-art technologies, are being explored, crew recovery
is essential.

6.5.1 (U) ESCAPE SYSTEM SURVEY - To achieve the desired level of crew surviva-

bility necessary for this research program over a wide range of operational environ-

ment, a study was conducted of candidate escape systems. Consideration was given

to the relatively small number of research vehicles and the requirement to restrict

escape system development costs to a level compatible with the overall program.

Several escape systems from similar studies and operational systems shown in Figure

6-17 were examined and evaluated to select a reasonable escape "system concept for

the research vehicles proposed in this study. The applicability of each of these

systems is illustrated in the Preferred Escape System column of Figures 6-18 and

6-19 for the existing operational condition.

6.5.2 (U) ESCAPE SYSTEMS EVALUATION - Five escape system concepts were examined

and evaluated as to their relevant merit in this research program.

6.5.2.1 (U) Cockpit Module (CM) - The cockpit crew module escape system, Figure

6-20, severs and ejects the entire cockpit from the disabled aircraft. The pres-

surization, life support systems, and crew station comforts are retained throughout

the escape sequence. The module protects the pilot from the high altitude, wind-

blast, and thermal hazards of the environment. Automatic recovery parachute deploy-

ment lowers the module to the ground at a prescribed rate of descent, and the landing

shock attenuation mechanism absorbs the final landing energy. For water landings,

self-righting inflation bags and flotation bags maintain the proper module orien-

tation. The cockpit serves as a foul weather shelter on land and a life raft on

water until rescue is completed. Pressure suits and survival suits are not normally

required for the crew because of the protection afforded by the module and available

survival equipment aboard. The cockpit can be designed more efficiently without

hampering the pilot's visibility or mobility and maintain a higher standard of crew

comfort than any other escape system. A typical example of a production crew

module escape system is that used in the F-111 aircraft. Reliability and service

experience wlth this system has been excellent.

6.5.2.2 (U) Separable Nose (SN) - The separable nose module escape system, Figure

6-21, is similar in concept to the previously discussed cockpit crew module. In

this system the entire nose section of the aircraft is separated behind the crew

compartment and recovered. When compared to the cockpit crew module, this system

presents a considerable weight penalty in the vehicle design because of the increased

size and weight of the recoverable section. An extensive design study for the F-8A

aircraft with this type escape system has been completed and development sled test-

ing has been performed on a nose module of the F-104, References (25) and (26).
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IU) FIGURE 6-17

SUMMARYOF TYPICAL ESCAPE SYSTEMS
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(U) FIGURE 6-18
MACH 12 ESCAPE SYSTEM UTILIZATION
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Climbing to

Cruise Altitude

Cruise Altitude

Descending

from Cruise

Altitude

60,000 ft

(18,290 m) or

Below

fU_ FIGURE 6-19

MACH 6 ESCAPE SYSTEM UTILIZATION

Vehicle Speed

0 - h0 kt

(o - 7_ ]m/br)

Less Than

600 kt

(nl2 _/_)

Accelerate to

Mach 6

Cruise Mach

Number

Decelerating
from Cruise

Mach N'amber

Mach 3 or

Below

Vehicle Altitude

Oft

Less Than

60,000 ft

(18,290 m)

Climb to

Cruise Altitude

Cruise Altitude

Descending

from Cruise

Altitude

60,000 ft

(18,290 m) or

Below

Preferred*

Escape System

OES

OES

CM, SN, or SN/OES

CM, SN, or SN/OES

CM, SN, or SN/OES

OES

Preferred

Escape System

OES,

OES

CM, SN, or SN/0ES

CM, SN, or SN/OES

CM, SN, or SN/OES

OES
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(U)FIGURE 6-20

SYSTEM 1 COCKPIT CREW MODULE - FULLY RECOVERABLE
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(U)FIGURE 6-21
SYSTEM 2 SEPARABLE NOSE CONE
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6.5.2.3 (U) Encapsulated Seat (ES) - The encapsulated ejection seat, Figure 6-22,

like the two previously discussed systems, provides full protection from high alti-

tude, thermal and windblast hazards. It also provides the added survival equipment,

shelter from adverse weather conditions, and flotation during water landings.

(U) FIGURE 6-22
SYSTEM 3 ENCAPSULATED SEAT

(U) The encapsulated seat systems presently developed require additional cockpit

volume. The crew escape system of the B-70 required a considerable increase in

crew station volume to provide good crew visibility and mobility. The encapsulating

device was behind the crew seat and the seat moved aft and tilted into the encap-

sulating device before ejection. The Stanley seat used in the B-58 aircraft does

not require any lateral or rotational motion of the crewman before encapsulation,

but the crew visibility and mobility are reduced. The physical size of the encap-

sulated seat requires a larger cockpit and tends to limit the cockpit arrangement

possibilities. Weight of the existing systems average approximately twice that of

the open ejection seat, Reference (26).

6.5.2.4 (U) Separable Nose with Open Ejection Seat (SN/0ES) - A fourth escape

system consists of a separable nose module equipped with a low speed ejection seat,

Figure 6-23, for the recovery phase of the escape. This system could provide

maximum crew safety for minimum weight penalty.

(U) Pyrotechnic severance of the nose module would be followed by ignition of

two solid motor rockets to propel the module from the damaged aircraft. Module

stabilization devices would be deployed at separation. Drogue parachutes and stab-

ilization devices would slow the module to a safe speed and altitude for the low

speed open seat ejection. The seat would be about 100 lb (45 kg) heavier than a

non-ejectable seat and would be ejected automatically at a preset altitude or speed.

The pilot is parachuted to earth in a conventional manner. At low altitude and

low speeds, the escape sequencing time is reduced by providing immediate seat ejection

without nose module separation.
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(U) FIGURE6-23
SYSTEM4 SEPARABLENOSECONE- OPENSEAT

AvionicsEquipmentBay

orTest EquipmentBay

Parachute_D_ - TX .... 1_

RocketJ_

: ', + )

._J

6.5.2.5 (U) Open Ejection Seat (OES) - The final system investigated was the open

ejection seat, Figure 6-24. The ejection seat designed for the X-15 experimental

aircraft was to be used from a low speed (90 kt, 167 km/hr), low altitude condition

to Mach 4.0 at 120,000 ft (36,580 m). A study of the X-15 accident potential re-

vealed that 98% of the X-15 accidents would occur within the ejection seat safe es-

cape envelope and that the 2% beyond the envelope could be countered by staying with

the aircraft until it descends and/or decelerates to the ejection envelope. Although

the HYFAC research vehicle mission profile exceeds the X-15 performance envelope, the

similarity of missions would indicate an accident potential comparable to the X-15.

This comparison could Justify the use of an ejection seat for the research vehicle.

(U) Various open ejection seats have been considered, but the two most likely

candidates for the research vehicle would be the North American X-15 seat modified

to provide zero altitude, zero speed escape capability, or the Lockheed SR-T1 ejection

seat. The McDonnell Douglas Advanced Concept Ejection Seat (ACES) system could

possibly be made adaptable to the flight vehicle requirements.
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(U)FIGURE 6-24

SYSTEM5 OPENSEAT

I

/I

6.5.2.6 (U) Pressure Suit Requirements - In operational aircraft utilizing encap-

sulated seats or separable cockpit module crew escape systems, pressure suits are
not required because the normal mission altitudes do not exceed the altitude at

which decompression would present a crew hazard. However, the cruise altitude of

the Mach 12 and Mach 6 research vehicles demands instant protection from depres-

surization, regardless of the escape system selected.

6.5.3 (U) ESCAPE METHOD RATIONALE - During the test flight, there are several

time periods that present unique conditions for escape, as indicated in Figures 6-18

and 6-19. These times correspond to the periods of acceleration, cruise, or initial

unpowered glide when the speed conditions exceed the limits of existing operational

open ejection seat systems. Except for cockpit fires, the cockpit module protects

the crewman from all hazards if cockpit pressure integrity is maintained. Conven-

tional standards of fabrication used on modern aircraft and spacecraft to limit

cockpit fires would be used to minimize this problem. The cockpit module would also

provide safe descent and landing without the hazards of a personnel parachute land-

ing. Additional survival equipment is carried and inherent flotation is achieved

for water landings. The cockpit module also acts as a foul weather shelter. How-

ever, the nature of the test operations would tend to reduce the required ground

survival time before rescue. The major portion of the Mach 12 test flight is routed

over the southern states of the continental United States and no major bodies of

water are crossed. A complete radar tracking network will be in operation along the

entire flight path with continuous ground communications. In event of an in-flight

emergency necessitating ejection at any point along the test flight path, rescue

teams would be dispatched instantaneously to the predicted impact area. With a

concerted search effort, radio beacons and brightly colored parachutes, an early

rescue could be anticipated. This reduces the need for a sheltering structure and

additional survival gear other than that carried in an ejection seat survival kit.
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(U) The reasons for a module escape system, except for high speed escapes, do

not appear to be worth the severe weight, complexity, and cost penalties to the

basic vehicle when compared with other systems. The module system testing and

development costs would be prohibitively high for the limited number of research
vehicles.

(U) Statistics reveal that most accidents occur at the start or end of the

flight with the majority of ejections occurring below 10,000 ft (3040 m) and 250

knots (h63 km/hr). A similar projection statistic can be made for the research

vehicle concepts developed during this study on the basis of the X-15 accident study

in which it was indicated that the ejection seat design envelope was capable of

countering 98% of the projected accidents. On this assumption, an open ejection

seat would operate most efficiently in the high risk area of the flight profile at

a reduction in cost, weight, and complexity.

(U) The encapsulated seat extends the open seat ejection envelope only slightly

and at an increase in cost, weight, and _omplexity, which is not considered to be

Justified.

(U) A cost evaluation of four escape concepts investigated in this study were

previously compiled in Reference (27). A quantitative economic evaluation was made

of the crew cockpit module O, separable nose module Q , the encapsulated seat Q,
and the open ejection seat (_ . The results show a relative cost of the separable

module systems Q , Q , an_'d_ to be approximately 7 times greater than for

the open ejection seat system _. Also indicated is a weight increase of approxi-

mately 5 to 1 over that of the open seat ejection system. Although the encapsulated

ejection seat system penalty was less, it was considered significant. Another

study reported in Reference (28), indicates a large savings in weight and cost for

a single place open ejection seat system when compared to a cockpit module type

escape system. The cockpit module weight was 837 pounds or 2.7 times heavier than

the selected open ejection seat. The cockpit module was also rated as approximately

ten times more costly than the open ejection seat.

(U) All systems considered have a zero altitude and zero speed survival cap-

ability which is most easily incorporated into the open ejection seat system. The

modular and encapsulated escape systems with this capability require large rocket

motors with reasonable acceleration limits to eject the large mass of the module

safely. The additional complications of a pyrotechnic severance system and self

righting flotation and shock attenuation equipment create severe cost, weight,

and structural penalties for the aircraft when compared to the open ejection seat and

pressure suit system.

(U) One alternate condition presenting a problem to an open ejection seat

survival, other than high speed, is a major fuel tank rupture while in the vertical

takeoff (VTO) position. If all tanks rupture and the fuel and oxidizer mix immed-

iately, the resulting fire ball could be as large as 450 ft (137 m) in diameter and

could last for as long as 38 seconds, Reference (29). A crew module escape system

could be lofted high enough and far enough away from the fireball to permit a safe

recovery for the pilot. With the pilot only 40 ft (12 m) above the ground and 65 ft

(20 m) above the fireball center, a horizontal seat ejection while on the VTO pad

would not permit pilot survival. The seat recovery system would not have time to

operate before impacting the ground.
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(U) A possible alternate system for a single vehicle which would be configured

for VT0, is a rocket powered escape tower, a separable nose module, and an open

ejection seat. The tower would be used only during VTO operation and would normally

be ignited and released after a successful VT0 was accomplished. The separable nose

module would be accomplished by a pyrotechnic severance of a splice plate at the

forward fuel bulkhead and forward fuselage aft ring. The escape would be made by

severing the splice plate and igniting the escape tower rocket to lift the module

up to altitude sufficient for a safe seat ejection with adequate recovery time.

(U) Another alternate system would be to design the cockpit and seat to provide

for a lofted seat trajectory from the VTO launch position. The seat rails would be

canted forward to provide the proper lofted trajectory and would result in a longer

cockpit, larger ejection clearance envelope requirement, and an inefficient use of

aircraft volume. The special seat, rails, and seat attachment fittings would entail

additional weight and cost penalties over the basic cockpit design.

(U) The probability of the catastrophic failure occurring using normal launch

precautions and inspections is remote and does not warrant the required weight and

cost penalties associated with the crew module for the basic configuration. Pro-

viding a separation tower and a nose separation capability for one vehicle which

would be designated for VTO operations could prove feasible, but the development

costs to demonstrate the flight article would be excessive.

(U) Another critical condition for research vehicle crew escape occurs during

an airlaunch mission after C-5A takeoff and during climb out to launch altitude and

speed. All ejection systems would be designed to clear the C-5A (primarily the

wing leading edge), Figure 6-25, if actuated while the research vehicle is still

mounted on the C-5A wing pylon.

6.5.2 (U) MACH 6 RESEARCH VEHICLE CREW SAFETY - The rationale presented is basic

to the Mach 12 research vehi61e, but is also applicable to the Mach 6 vehicle.

There is no VTO requirement for the Mach 6 vehicle and the test flight path is

shorter. The time required to slow the aircraft to a speed and altitude compatible

with an existing ejection seat system envelope is greatly reduced.

6.5.5 (U) RECOMMENDATIONS - An open eJectiom seat similar to that used in the X-15

research vehicle or the SR-71 aircraft with the pilot dressed in a full pressure

suit is the preferred escape system for this program. The majority of the accidents

which will cause the pilot to abandon the aircraft occur at the lower end of the

flight spectrum. The seat zero altitude and zero speed to 600 kts (lll2 km/hr)

ejection capability will provide pilot escape in this phase of flight and cover most

accidents. The small percentage of accidents occurring outside the ejection envelope

can be countered by remaining with the vehicle until the ejection envelope is attained.

Although the crew module would provide a slightly improved escape capability, the

cost and weight penalties are prohibitive for the limited number of vehicles required.

6.6 UNUSUAL SUPPORT OR MAINTENANCE REQUIR]_4ENTS

(U) The hypersonic research flight facilities including the research option

configurations will require a normal amount of support and maintenance to operate.

Most of the equipment and facilities required for the support and maintenance are
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(U) FIGURE6-25
MACH12 AIRCRAFT INSTALLATIONONC-5A
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either currently available or are not unique to test fligh t programs. This section

identifies those few significant items considered to be unusual.

(U) The VTO research option of the Mach 12 vehicle will require a launch

complex consisting of support mechanism and launch pad. The launch pad will require

a flame deflector and exhaust disposal system to channel the hot exhaust gases away

from the launch pad area.

(U) The fly-by-wire flight control system concept, if employed in either ve-

hicle, would require the use of a test set employing an analog computer to check

out the closed-loop performance of the control system. The analog computer is re-

quired in order to represent the airframe dynamics and sensor outputs in the closed-

loop performance test.

(U) All vehicle configurations employ cryogenic propellants which can be

trucked in, and the aircraft fueled directly from the trucks. Provisions may have

to be made to handle off-loaded fuel in the advent of aborted missions, or following

ground runs.
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7- SAFETY STUDIES

(U) Safety studies were performed to evaluate the safety aspects of each

flight research concept. The studies encompassed the two basic vehicles, i.e., Mach

12 and Mach 6 concepts, and the configuration options studied in adapting these

vehicles to accommodate various research packages. The purpose of these studies

was to identify hazardous conditions which must be eliminated from the vehicle

concept or adequately controlled. The scope of the safety studies consisted of

the following.

o Identification of possible safety interface problems.

o High-lighting special areas for safety consideration, such as system

limitations, risks, and man-ratlng requirements.

o Defining areas requiring further safety investigation during advanced

development activities.

(U) The safety studies were limited to those considerations which are unique

to the design and operation of the candidate hypersonic flight research facilities.

Safety aspects which are universal or common to flight vehicles in general were

not considered unless they produced more drastic effects because of the hypersonic

flight regime. Safety studies were performed for each of the major vehicle systems,

i.e., structure, thermal protection, propulsion, and propellants. The following

paragraphs describe the study methods.

(U) Hazard Identification - Potentially hazardous conditions were identified

that could cause injury or death to flight/ground personnel, or damage to or loss

of equipment/property.

(U) Hazard Effects - The effects of the potential hazards on system operation,

interfacing systems, vehicle, and flight/ground operations were studied to determine

their relative severity.

(U) Hazard Causes - The most probable causes or conditions which could create

the potential hazards were identified for each hazard.

(U) Action Required - Action(s) required to eliminate or reduce the hazard

were identified. These actions, in order of preference, were as follows:

o Design for minimum hazard - Select appropriate design features; e.g.,

fail safe, redundancy, etc., throughout the design phases.

o Safety devices - Reduce known hazards which cannot be eliminated to an

acceptable level through the use of appropriate design safety devices;

e.g., fire suppression, self sealing tanks, etc.

o Warning devices - Employ warning devices for the timely detection of the

condition and the generation of an adequate warning signal where it is not

possible to preclude the existence or occurrence of a potential hazard.

MCDONNELL AIRCRAIrr
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Special procedures - Develop special procedures, e.g., operating/maintenance

instructions, etc., where it is not possible to reduce the magnitude of an

existing or potential hazard through design, or the use of safety and

warning devices.

(U) The results of this study indicate that all of the identified hazards and

their effects can be either eliminated or reduced by the actions described above.

These actions should be implemented to provide the optimum degree of safety within

the constraints of operational effectiveness, time, and cost. A systems safety

program should be integrated into all phases of the system design, development, _ro-

duction, and operations in order to provide a disciplined approach to control safety

aspects.

(U) The identified hazards associated with the various vehicle systems were

analyzed to determine their probable effects, should they occur during a mission.

The results of these evaluations are summarized in Figures 7-1 and 7-2 for the Mach

12 and Mach 6 vehicles, respectively. The hazards produce a variety of effects which

are identified in the second column. These effects in turn require emergency actions

which then lead to the final results shown in the last column. The analysis was

performed for the vehicles during self sustained flight, i.e., after airlaunch of
the Mach 12 vehicle and after takeoff of the Mach 6 vehicle. Malfunctions occurrin_

prior to that time would abort the mission.

7.1 FIRE AND EXPLOSIONS

(U) Fire and explosive hazards have been investigated for both the Mach 6 and

Mach 12 basic flight vehicles. The result of this investigation is a high level of

confidence in respect to minimizing the hazards associated with cryogenic propellants.

(U) It is anticipated that, given close attention to fire and explosion hazards

from the initiation of vehicle design, a total system concept can be established

which will provide the required level of flight system and personnel safety. Specific

guidelines which should be considered are:

o Eliminate closed compartments where vapors can collect; provide for air

circulation to dilute small leaks (7.1.2).

o Incorporate vapor and fire detection and suppression systems in tankage,

flow, and propulsion system areas (7.1.2).

Provide redundancy where practical for those components whose failure would

be catastrophic; design to "fail-operational" mode where redundant approaches

are not satisfactory (7.1.2).

o Minimize potential sources of leakage through techniques such as minimum

flanged Joints, tank passthroughs (7.1.2).

o Provide for remote servicing (7.1.1).

o Eliminate handling of propellants in the C-5A (ap;licable to Mach 12 vehicle

only) except during emergency procedures (7.1.2).
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(U) The cause and effect of potential fires and explosions are discussed in

the following section together with required safety considerations. The hazards are

categorized in the following major areas:

o Ground Hazards

LH 2 Spills

LO 2 Spills

Simultaneous LH2/LO 2 Spills

Tank Rupture

Vapor Vent ing

o Flight Hazards

Engine Fires/Explosions

Feed System Failures/Leakage

Propellant Dumping.

7.1.1 (U) GROUND HAZARDS - Hazards associated with handling of LH 2 and LO 2 impact

both the research vehicle and the associated ground support facilities and personnel.

(U) LH2 spills pose hazards due to their wide flammability range (4% to 7L% by

volume in air) and low required ignition energy. Ignition energy for a LH2/air

mixture is approximately 1/10 that required for a gasoline/air mixture at one atmos-

phere. If the hydrogen/air mixture is not confined, detonation is not likely, but

should the spill occur in a four sided enclosure (for example in a U shaped bay on

the ground), detonation is probable. Normal procedure for handling a hydrogen fire

is to let it burn under control until the flow of hydrogen can be stopped. If the

fire is extinguished without eliminating the flow of hydrogen, a hazardous combus-

tible mixture will form which very probably will re-lgnite and cause additional

damage. Standard fire fighting procedures established in support of hydrogen

fueled vertical launch vehicles must be employed.

(U) An L02 spill is very dangerous in the presence of any combustible material,

although L02 is not a flammable liquid. The use of asphalt runways or servicing

areas can become extremely shock sensitive if sufficient oxygen is absorbed, and

many other normally "safe" materials become flammable in the presence of high oxygen
concentrations.

(U) For either spill, L02 or LH2, the required safety procedures are essen-

tially the same. Vapor and fire detection equipment is essential for determination

of leaks at critical areas and rapid detection of fires. Attention must also be

given to servicing hardware and procedures to prevent accidental spills during

connect and disconnect of servicing lines and associated hardware in addition to

eliminating combustible materials in or near the servicing area.

(U) In order to eliminate the potential of simultaneous spills, the propellants

should be loaded sequentially (L02 first) to eliminate simultaneous handling of the

propellants. Applicability of a dual or LO 2 spill is limited to the Mach 12 vehicle.
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7-5



REPORT MDC A0013 • 2 OCTOBER 1970

VOLUME T_ • PART 1

(U) The simultaneous release of LH 2 and LO 2 resulting from tankage rupture

or similar large failures discussed in Section 7.3, present the greatest danger to

both the vehicle and personnel during ground operation. Such a failure woul_ in

all probability, result in fire and explosion. Severity of the hazard is a function

of quantity and nature of the spill. For a spill of h8,270 lb (21,950 kg) of LO 2

and 8,0h0 lb (7,650 kg) of LH2, which is the full propellant load for the Mach 12

vehicle, the potential yield is equivalent to 17,h00 lb (7,900 kg) of TNT (Ref-

erences (29 and (30)). For that yield, the minimum safe operating distance for non-

protected personnel and conventionally constructed buildings is approximately 2100

ft (6h0 m). By providing explosion resistant structures and personnel protection,

the minimum safe distance can be greatly reduced dependent on the degree of protection

and surrounding terrain. Design criteria, such as presented in Figure 7-3, must be

used to establish required distances between a loaded vehicle and surrounding build-

ings and personnel.

(U) Similar fire/explosion hazards exist if vapor venting is permitted near

the aircraft. This potential danger can be alleviated by using remote vent lines

exhausting to the atmosphere through flare stacks or into controlled burn ponds.

Quick disconnect couplings would be provided to allow rapid vent line removal.

1OO
METERS

(U) FIGURE7-3
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7.1.2 (U) FLIGHT HAZARDS - Airborne fire and explosion hazards are mainly con-

cerned with propellant feed, propulsion, pressurization, and tankage system leakage.

The location and extent of leakage determines the relative danger to aircraft and

personnel.

(U) Two of the more serious hazards are engine ex_.losions or fires in the

engine area. These hazards are applicable to all of the vehicles. Causes of an

engine explosion or fire include failure of a flow system component or leakage.

Response to a critical-level explosion would be to abort the mission and land as

soon as possible, to preclude further or secondary damage. Resoonse to a cata-

strophic-level explosion requires that the crew abandon the vehicle. Response to

fires should include a crew warning system and countermeasures such as automatic

fire extinguishments. Further response might require engine shutdown, for which

the direct effect is loss of thrust with the resulting effects discussed in Sec-

tion 7.2, Vehicle Control.

(U) Feed system failures and leakage hazards can be minimized by designing

with the ground rule of providing for self containment of leakage; e.g., Jacketing

components or providing purge capabilities to disperse/dilute vapor concentrations.

Sensing equipment in closed equipment bays and near flow system components would

include temperature monitoring and vapor detection sensors in conjunction with pro-

visions for automatic fire suppression. Actual quantity, type, and location of

sensors would require a detailed experimental investigation as to vapor dispersal

rate and sensor response rate. Critical components, such as feed pumps, control

valves, and pressure regulators, will require sufficient redundancy to permit system

operation with a single failure. The extent of redundancy is also dependent on

demonstrated component/subsystem reliability which is in a continual state of

improvement. 02 monitors will be located in each LH 2 tank to permit detection of

hazardous vapor concentrations.

(U) Propellant dumping presents fire and explosion hazards to both the air-

craft and ground installations, depending on dump rate, vehicle speed, and altitude.

The greatest hazard to ground personnel will occur if the propellants must be rapidly

dumped before the flight research vehicle or the vehicle/C-_combination has gained

sufficient altitude to permit vaporization and dispersal of the propellants before

they contact the ground. It is anticipated that the potential of danger to ground

personnel/facilities is greater for a L02 dump than for a LH 2 dump due to the high

vaporization rate of LH 2 and its buoyancy effect in contrast to the cold 02 vapor

(heavier than air). It is also likely that LH 2 will ignite when dumped from the

aircraft. Because of the very low radiative energy of an LH 2 flame, the hazards

associated with the flame front will be minimal if the LH 2 is dumped near the aft
end of the aircraft (flight research vehicle or C-5A if in the unlaunched condition).

For the Mach 12 vehicle, LO 2 would be dumped first to reduce the weight within

acceptable limits for landing. Dumping LH 2 is not required from a weight standpoint

for the Mach 6 vehicle, but will greatly reduce hazards. For the Mach 12 vehicle

only 50% of the LH 2 need be dumped prior to landing, but total dumping would be

desirable. Accurate determination of the hazards requires actual flight testing to

establish allowable dump rates and operational procedures as a function of altitude

and flight speed.
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7.2 LOSS OF VEHICLE CONTROL

(U) The hazard created by loss of vehicle control, i.e., the ability to main-

tain a desired flight path without exceeding structural limitations, was an essential

consideration in the safety study. The many potential malfunction, which could

cause a control problem require an extensive analysis of design details, which is

beyond the scope of this study. The results presented herein were limited to control

problems caused by basic malfunctions or anomalies in the vehicle's major interfacing

systems. Two general types of control problems were considered. First, those caused

by the inability to control the vehicle due to failures such as loss of rocket gim-

balling, engine thrust, or aerodynamic surface control. Second, those which are

more transient in nature caused by some initial disturbance such as control system

hardovers, inlet unstarts, or natural phenomena (gusts, wind shear, etc.). The

primary consideration in the analysis was to determine whether or not the control

problems could end in catastrophic results such as structural failure from excessive
load factor or non-correctible out-of-control situations. The results indicate that

recovery is probable from control problems (assuming single failures). The causes

of control problems were grouped into three areas for discussion as follows:

o Inlet unstarts

o Engine thrust loss

o Flight control system malfunctions.

7.2.1 (U) INLET UNSTARTS - Effects of the moments produced by inlet unstart of

the airbreathing propulsion systems were studied. Inlet unstart is a phenomena of

external airflow spillage, and occurs when the inlet airflow supply exceeds the

sum of the engine demand plus maximum bypass capability. Some of the major causes

are pitch excursions to large positive angles such that captured airflow increases

beyond demand, or bypass system failure, or engine transients which decrease demand.

Design techniques to preclude this event might include bypass systems able to handle

very large airflows, and propulsion system controls able to rapidly increase engine

airflow demand (such as by opening the engine nozzle throat) in response to an
imminent inlet unstart.

(U) The turboramJet of the Mach 6 vehicle and the CSJ and SJ modifications to

both the Mach 12 and Mach 6 vehicles are the only candidate propulsion systems that

have potential for causing significant moments due to unstart. An inlet unstart

of the turboramJet inlet of the Mach 6 vehicle would cause an increase in drag on

the unstarted side of the bifurcated inlet and a decrease in gross thrust, while

maintaining nominal drag on the started side of the inlet. The primary effect of

this event would be a yaw moment pulling the nose toward the unstarted inlet.

A simplified analysis indicated that approximately l0 ° of rudder deflection would

counteract this moment at any supersonic speed. An inlet unstart of any module on

the CSJ and SJ engines was estimated to propagate to the other modules and thus

unstart the complete engine. The effect of this action would be a nose down pitching

moment. Analysis indicated that this moment could be counteracted by very small

elevator deflections at all hypersonic speeds.
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7.2.2 (U) ENGINE THRUST LOSS - Effects of the moments produced by loss of engine

thrust were studied. This phenomena could occur on any of the various vehicles,

as a result of fuel system malfunction which would terminate propellant flow, or of

engine component failure which would terminate propellant flow, or ignition fail-
ures.

(U) The basic Mach 12 vehicle uses five rocket engines instalSed in a span-

wise row at the vehicle trailing edge for propulsive power. The most severe moment

would result from either of two conditions: (1) both engines on one side inop-

erative, or (2) both engines on one side plus the center engine inoperative. A

combination of gimballing the operative engines +h degrees side to side (square

pattern), and deflecting the rudders approximatel--y 80% could handle condition 2,

while approximately 55% of the available rudder could handle condition 1. For the

J2S powered alternate of the basic Mach 12 vehicle, with a single rocket engine

mounted on the vehicle centerline, thrust loss would not cause any moments.
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(U) The basic Mach 6 vehicle uses one turboramJet for propulsive power, in-

stalled on the vehicle centerline. Thrust loss of this engine would thus not cause

any noticeable moments.

(U) Modifications to the basic vehicles involve a variety of propulsion

systems. Effects of the moments produced by thrust loss in these systems is sum-

marized in Figure 7-4. The effects indicated in that figure are for the unique

controllability aspects of the modified vehicle.

(U) FIGURE 7-4 THRUST LOSS ON MODIFIED VEHICLES

Basic

Concept

Mach 12

Mach 6

Modification

HTO, VTO

CSJ, SJ

TPS, Armament,

Staging

Subsonic TJ

RJ

Armament, TPS

JZ6C

csJ

RJ

Propulsion

System

Description

Same as basic vehicle

except shorter nozzles

Same as basic vehicle

plus CSJ or SJ added

Same as basic vehicle

Same as basic vehicle

but rockets inoperative,

with 2 x JTE TJ added

Same as basic vehicle

plus test bed RJ added

Same as basic vehicle

Basic TRJ replaced with

1 x JZ6C TRJ (all H 2)

Same as basic vehicle

plus CSJ or SJ added

Same as basic vehicle

plus test bed RJ added

Cause of

Severest

Moment

Same as basic vehicle

CSJ or SJ inoperative

Same as basic vehicle

One TJ inoperative

Same as basic vehicle

Same as basic vehicle

Same as basic vehicle

CSJ or SJ inoperative

Same as basic vehicle

Vehicle

Controllability

Requirements less than

basic vehicle, since

thrust with short nozzleE

is less

Small stabilator deflec-

tion needed (=3 °)

Same as basic vehicle

Very small rudder de-

flections needed (=2 ° )

Same as basic vehicle

Same as basic vehicle

Same as basic vehicle

Small stabilator deflec-

tion needed (=10 °)

Same as basic vehicle

7.2.3 (U) FLIGHT CONTROL SYSTH_4 MALFUNCTION - The control of the vehicle is crit-

ical throughout all phases of the flight. Positive control is required during

separation from the launch vehicle to prevent collision and possible loss of both

vehicles. Precise control is also required during landing. Between these times,

control must be adequate to modulate the flight path as desired and to prevent the

occurrence of excessive loads upon the vehicle. The potential malfunctions that

may occur in the aircraft flight control system are generalized in Figure 7-5. The

flight control system is designed to remain operational with these failures. These

design features are described further in the following paragraphs.

(U) The principle controls of both the Mach 6 vehicle and the Mach 12 vehicle

are the aerodynamic surfaces. Both concepts employ a fly-by-wire (FBW) control

system. The Mach 12 vehicle, in addition to the aerodynamic surfaces, can also be

controlled in attitude by thrust vector (gimbal the rocket engines during boost).

The thrust vectoring is governed by the FWB system in order to have an integrated

flight control scheme. The aerodynamic surfaces have greater authority than the

thrust vector, which is used as a delta to obtain larger attitude changes, if

necessary, during boost.
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(U) FIGURE7-5
POTENTIAL FLIGHT CONTROLMALFUNCTIONS

Potential Design Features Inhibiting

System Malfunction Failure Effects

Hydraulic

Electrical

Avionic

a. Pump failure

b. Ruptured lines

or components

a. Generator failure

b. Broken wire or

circuit breaker

a. Failed component

causing circuit

malfunction

Separate primary and

secondary systems

Separate generators and

primary and secondary
busses

Triple redundancy and

fail operational circuits

(U) The components of the FBW system, e.g., sensors, transducers, hydraulic

and electrical sources, actuators, and avionics, must be designed to achieve the

utmost in reliability with redundancy employed to the degree necessary to provide

fail operational performance. Built-in-test (BIT) should be provided to detect and

isolate malfunctioning components prior to and during flight. In-flight continu-

ous performance monitoring advises the pilot on system status. Redundancy is

required such that component malfunctions cause the affected channels to "fail-to-

zero", thereby precluding system "hardovers."

7.3 LOSS OF STRUCTURAL INTEGRITY

(U) Flight safety is one of the major influences in selecting design criteria,

design philosophy, structural concepts, and redundancies in the design of aircraft

structure. Weight and cost elements presented herein are based on primary struc-

tural elements incorporating present day operational aircraft flight safety features.

Several discrete elements of hypersonic aircraft structure that are distinctly dif-

ferent than any of the present day aircraft and will require unique design solutions

to obtain required structural integrity. Specific elements peculiar to hypersonic

aircraft that fit into this category are: cryogenic propellant tanks, thermal pro-

tection system heat shield, and heat exchangers (inlet and engine).

7.3.1 (U) BASIC AIRFRAME AND CRYOGENIC TANKAGE - Individual structural elements

that must be designed with "fail safe" requirements are those that could cause

vehicle loss if structural failure were to occur. Possible causes of cryogenic

tank structure failure include foreign object penetration and initiation and propa-

gation of cracks originating at manufacturing defects or stress concentrations.

Incorporation of longitudinal stiffeners and circumferential rings assures a fail-

safe design by preventing growth of cracks to catastrophic proportions. The possi-

bility of fire and explosion due to extensive fuel leakage is minimized by providing

a double seal against fuel leakage. A bladder is used to contain the fuel and, in

addition, the tank structure is sealed as additional protection against leakage.
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Potential problems arising due to fuel leakage are discussed in greater depth in

Section 7.1.2. Leakage in the common bulkhead between the LO 2 and LH 2 tanks would

result in a catastrophic failure, and therefore would require a redundant leak pro-

tection system.

7.3.2 (U) TPS COMPONENT FAILURES - A study of the TPS has shown _hat if the heat

shield is lost from the aircraft at high speed, a cataszrophic failure could occur.

For this reason, the heat shields must be of fail safe design. The attachment

pattern is designed to provide adequate strength with 20-25% of the attachments

broken or removed. Also, the panels are designed to stay in place, even though

cracks or small foreign object damage should be introduced. The probability of

significant TPS component failures during flight is considered remote, assuming

proper preflight and postflight inspection procedures are conducted. Since the

only TPS concept incorporated in the Mach 12 aircraft is the active system, poten-

tial in-flight failures are limited to the water supply, hot side insulation blanket,

and/or external shingle. Investigating the effects of variations in water blanket

saturation level on structural temperatures has been a major Phase III effort and

is discussed in detail in Section 4.6.1. In summary, it was concluded that the

probability of depleting the water supply is remote and any such occurrences would
be local effects with resultant structural damage in terms of loss of strength, but

not of catastrophic proportion. However, incorporation of a water sensing system

is still deemed desirable. Damage to the'hot side insulation blanket, resulting

from either loss of material or severe degradation of material properties, would

result in locally higher internal heat transfer rates. This would cause the pre-

mature depletion of water resulting in similar structural _ge. Unless the area

subjected to insulation damage is extensive, it is probable that heat transfer

through the internal structure from the prematurely dry area to adjacent, still

wetted, areas would maintain structural temperatures to levels where little perma-

nent damage would result. Minor damage to the shingles (dents, etc.) could be

tolerated as such damage would merely impose slightly higher heating rates to the

interior and lead to effects such as those discussed above. However, if the shingle

completely failed to the point of becoming detached, a serious condition would

exist. It is likely that loss of a shingle would cause immediate loss of insulation

and, as no conceivable warning system could furnish adequate reaction time, the alu-

minum structure would attain temperatures sufficient to yield the material. Conse-

quently, the shingle design precludes the possibility of shingle detachment during

high speed flight. Through the normal process of systematic flight envelope expan-

sion, a high confidence level in shingle design should be established.

(U) Mach 6 aircraft external moldline areas incorporate passive TPS concepts

to protect primary structure. Insulation and minor shingle damage on this aircraft,

as on the Mach 12 aircraft, would not prove catastrophic, but could significantly

reduce the design structural safety factors. In cryogenic fuel areas, fuel tank

wall temperatures in excess of the design value would degrade the cryogenic foam

insulation, boiling off significant quantities of fuel. JP fuel tank liners would

suffer permanent damage from excessive wall temperatures created by a TPS component

failure. Shingle detachment must be avoided on the Mach 6 aircraft as well as the

Mach 12, although, at the lower speed, it would take the internal structure at least

a few seconds of total exposure to aerodynamic heating to reach the yield point of

the metal.

I
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7.3.3 (U) INLET DUCT REGENERATIVE COOLING PANEL FAILURES - Structural failures

involving regenerative heat exchangers are applicable to research vehicles equipped

with airbreathing propulsion systems, e.g., the Mach 6 TRJ and the Mach 12 SJ or

CSJ configurations. The potential causes of failure in the regeneratively cooled

inlet structure of these vehicles is from the loss of coolant flow, either by system

malfunctions or local failures.

(U) The loss of LH 2 coolant flow throughout the heat exchanger (at speeds of

Mach 6 or greater) would result in heat rise causing structural damage which, if

left unchecked, could spread causing complete loss of the inlet structural continu-

ity. The loss of coolant flow could be caused by a flow stoppage, or by a local

failure resulting in LH 2 spillage into the inlet. Spillage should not damage the

inlet by reason of hydrogen burning, since the flow is limited; however, the do_rn-

stream coolant passages could overheat because of the lack of a heat sink. Poten-

tial causes of local failures include inlet overpressure or excessive stress levels

due to excursions outside the operating limits or inlet unstarts. The necessity to

operate within specified limits, and to implement design features which provide the

ability to do so, are applicable to all aircraft and are not unique to hypersonic

research vehicles. Inlet overpressure from unstarts can occur within the safe oper-

ating envelope.

(U) As long as design coolant (LH 2 fuel) flow rates pass through the regen-

erative cooling pane_ temperatures are maintained below 1550°F (lll8°K). However,

if an adverse condition severely inhibits fuel flow through one of these panels,

temperatures would increase sharply and in the extreme case, result in burn through

of the panel, creating a severe hydrogen leak and potential fire hazard. Such an

overheat condition could be caused by a flow regulator valve failing in a closed or

partially closed position, pump failure, blocked passage, or supply line/component

rupture. Thermal and pressure sensors can be used to monitor cooling circuit per-

formance which could automatically alert the pilot and activate a fire suppressant

system if overheating occurs. With rapid deceleration to low supersonic or subsonic

conditions and a fire suppressant system to prevent or minimize fire damage, it is

felt that this type of failure can be controlled without unduly Jeopardizing the

safety of the pilot and aircraft. During the emergency deceleration, hydrogen

coolant flow rates would be maintained to prevent overheating of undamaged areas.

(U) Inlet failures are potentially more serious for the Mach 6 TRJ vehicle

because the inlet structure is integrated more directly into the airframe struc-

ture. Vehicles with inlets provided as an "add-on" modification, e.g., the SJ or

CSJ options, could probably sustain failures which are catastrophic to the SJ/CSJ

propulsion system without causing the loss of the aircraft.

(U) Design provisions required to eliminate or reduce the hazards associated

with regenerative heat exchangers would include a failure detection system which

would permit engine shutdown or fuel cutoff before the failure can propagate into

catastrophic proportions. It is unlikely that a completely redundant coolant sys-

tem could be installed because of the weight and complexity involved. Inlet over-

pressure problems might be alleviated by incorporating pressure relief devices such

as blow-out doors.
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7.3.h (U) ENGINE COOLING - Potential structural damage to the research vehicle's

various engines due to inadequate cooling was studied. Inadequate cooling could

result from a wide variety of conditions discussed for each of the research vehicles

below. Primary engines of the Mach 12 and Mach 6 basic vehicles are discussed first.

This is followed by discussion of the engines of the CSJ and SJ modifications to

both of the baic vehicles, for which the safety aspects are identical. None of

the other engines have potential cooling failures that are unique to the candidate

vehicles.

(U) Mach 12 Vehicle - This vehicle uses liquid propellant rocket engines of

conventional design, cooling the nozzle and combustion chamber by circulating all

of the hydrogen fuel flow through these components. Inadequate local cooling could
result from reduced coolant flow due to blockage in the coolant passages or from

leaks. Insufficient cooling could be tolerated for short periods of time, however,

if not checked by shutting down that engine, serious structural damage would result

to the engine. Overheat detectors could be used to warn of impending failure and

allow time for corrective action. On the other hand, loss of all hydrogen flow to

the engine would not cause overheating, since the heat load (due to combustion)
would be removed at the same time as the coolant flow.

(U) Mach 6 Vehicle - The primary propulsion system of the Math 6 research ve-

hicle consists of a turboramJet engine and a mixed-compression inlet. The turbojet

engine is aircooled during operation. At flight speeds above the TJ shut down speed

(Mach 3.5) this component is shielded from the environment by closure doors, and

windmilled by a small amount of air taken from the inlet and cooled with ramjet

hydrogen fuel to approximately 1000°F. All elements of the inlet and ramjet engine

are cooled with ramjet hydrogen fuel, except the foremost inlet ramp and wall sur-

faces which are radiation cooled.

(U) At flight speeds above Mach 3.5, an increase in the temperature of the

windmilling air could damage the TJ components. The increased temperatures could

result from improper operation of the air cooling heat exchanger, from leaks in the

RJ inner wall heat protection. Extent of this damage would depend on the temp-

erature reached.

(U) Two types of ramjet engine structural damage are related to heat protection.

The first concerns the primary engine cooling system. This uses hydrogen heat ex-

changer panels similar to those of the inlet, and thus would be subject to the same

type of panel failure discussed with the inlet thermal protection system, Section

7.3.3. Another type of RJ damage could arise as secondary damage due to a heat

exchanger panel detaching in the inlet or RJ air duct. Such a panel could damage

any of the RJ components in its path--fuel injectors, flame holders, nozzle--while

it moves to the exit. It is estimated that duct overpressures would not occur from

such a panel plugging the air passages, since the RJ nozzle control system would

respond to any pressure rise by increasing the nozzle throat area.

(U) CSJ and SJ Modifications - Two types of CSJ or SJ engine structural damage

are related to heat protection. The first concerns the primary engine cooling

system. This uses hydrogen heat exchanger panels similar to those of the inlet,

and thus would be subject to the same type of panel failure discussed with the

inlet thermal protection system, Section 7.3.3. Another type of damage could arise

I
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as secondary damage due to a heat exchanger panel detaching from the inlet. Such a

panel could damage any of the CSJ or SJ components in its path--fuel injectors,

walls, nozzle--while it moves to the exit. It is estimated that duct overpressure

could only occur from very large pieces (on the order of one foot (.3 m) across)

plugging the air passages. Such large pieces are not likely.

7.4 GROUND HANDLING HAZARDS

(U) Postflight ground handling of these aircraft will not require extensive

safety precautions particularly since rapid turnaround times are not a prime con-

sideration in research aircraft. Structural temperatures at landing have been

determined to define areas on the research vehicles that would require special

handling while conducting postflight inspection and maintenance procedures. Certain

safety precautions presently used when servicing high speed aircraft such as avoiding

landing gear areas and wearing gloves while reaching into compartments inside the

aircraft's moldline immediately.after landing will still be necessary.

(U) Mach 12 aircraft external surface temperatures at landing are primarily

a function of the surface structural mass. Lightweight shingles cover the majority

of Mach 12 surface areas where the TPS is used to protect the internally located

load-carrying structure. These shingles respond rapidly to aerodynamic cooling

effects encountered during descent. Upon landing, these shingles are near mmbient

temperature and rise only 5-10°F (3-6°K) above ambient while dissipating internally

stored heat. Hot structure areas such as the delta tip controls and vertical tails,

because of their greater mass, do not respond as rapidly to external cooling effects

and are quite dependent on the descent profile as reflected in Figure 7-6. This

figure shows the temperature response of a typical hot structure area (delta tip

control) subsequent to Mach 12 cruise for two descent profiles. The nominal descent

shown includes a 3.5 g windup turn at the conclusion of cruise, which significantly

increases the temperature above its cruise level. However, the descent is suffic-

iently long to cool the surface down to essentially ambient temperatures at landing.

If a minimum range (speedbrake) descent is conducted, structural temperatures at

landing would be approximately 200°F (367°K). It can be deduced that hot structure

areas will be hot enough to require handling with gloves following a landing when

the descent has been conducted in less than 12-13 minutes.

(U) Internal areas of the Mach 12 aircraft protected by the active TPS will

not present a problem following flight. The only significant internally stored

heat is located in the thin insulation blanket behind the shingles which cools down

considerably during descent.

(U) External surface temperatures at landing on the Mach 6 aircraft will be

less severe than those experienced on the Mach 12 aircraft. Again, hot structure

areas should be handled cautiously following a napid descent profile. Mach 6

internal temperatures will produce a handling problem, since the aircraft uses a

passive TPS concept. That is, internal structural temperatures will be near their

maximum design value at landing with fuel tank walls near 250°F (394°K) and struc-

ture in non-fuel areas approaching 300°F (422°K). These areas will require handling

precautions for extended periods following a landing. Engine inlet duct and engine

cavity areas would be in excess of 300°F (422°K) after landing and would cool down

even slower than moldline areas. Since rapid turnaround times are not a strong

consideration in research aircraft, it would appear that waiting for the Mach 6
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(U) FIGURE7-6

MAXIMUMPOSTFLIGHT SURFACETEMPERATURES
(Mach12 Rocket Aircraft)

2400

2000 \

  oo,I,,\

I :\_ / Nominal

(D

_.m 1200 Turn)

Speedbrake-J
I--

800 Descent

\\
' \ /_ ,_.di.g

4oo...........'-N \',

00 4 8 "12 15 20

I I I I
Typical Hot Structure 1500

Descent (Including 3.5 g Windup

Time from End of Cruise - Minutes

1300

-1100

o

I

E

I-.

500

30O

aircraft internal structure to cool down following a flight until it can be handled

easily would be a logical safety precaution that would not impose an unrealistic

restriction. An operational Mach 6 aircraft utilizing a passive TPS design could

contain provisions for ram air cooling of the structure during descent to improve

turnaround time requirements.

I
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8. RESEARCH AREAS REQUIRING SPECIAL EMPHASIS

(U) This study has provided the characteristics of a number of attractive

facilities capable of conducting the research required for future operational

airbreathing hypersonic cruise aircraft. Evaluation of the research potential

of each of these facilities is presented in Volume IV, Part 3.

(U) Attractive Mach 12 and Mach 6 research vehicles have been defined

which will provide substantial verification of design and analytical techniques

necessary for high confidence design of future operational hypersonic systems.

A carefully planned flight research aircraft test program will enable demon-

stration of integrated configuration, structural, and subsystems concepts

in a realistic aero/thermodynamic and operational environment. Such a program

offers the potential to obtain a high confidence level in all flight systems

and their component technologies. In addition, the operation of a test vehicle

enables exploration of non-quantified factors such as maintenance, refurbishment,

and system flexibility - all intangible without the benefit of vehicle operational

experience.

(U) However, in such a program, part of the aircraft development would

include a comprehensive program of ground testing. This research and development

effort would be directed toward the specific system selected and would be conducted

to provide substantiation of the design concepts selected for the system. This

part of the flight research aircraft program is a significant element of the

research contribution of the total program.

(U) Prior to receipt of the Authority to Proceed with such a program and

selection of a final vehicle configuration there is much work that can even now

be initiated in order to achieve a usable flight research aircraft in a timely

manner. The various technological areas that should receive special emphasis

for the two vehicles refined in Phase III are given in the following sections.

The basis for this effort is, of course, the selected final configurations

previously presented. However, much of the recommended research is generalized

in nature and would contribute to a wide variety of research aircraft configurations

as well as to operational systems.

8.1 MACH 12 RESEARCH AIRCRAFT

(U) Early _cquisition capability of this aircraft is enhanced by incorpor-

ation of "off-the-shelf" rocket engines. Thus this is a particularly important

area to initiate research and development. Areas which are especially important

to the basic Mach 12 flight vehicle are:

o Configuration Development

Performanc_ stability and control configuration refinement

Separation studies

Surface heating anomalies
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o Structural/Thermal Protection Systems

Radiative shingle

Insulation systems

Materials characterization

o Component and Subsystems Demonstration

Cryogenic propellant systems

Flight data acquisition systems

(U) Establishment of concept feasibility does not require specific solutions

in these areas, since the basic technologies are relatively well understood. The

major area of effort lies in substantiation of specific design/operational details

in conjunction with subsystem/vehicle integration for the Mach 12 design. Sub-

stantiation and high confidence verification will come with actual vehicle experience

during'the logical speed buildup of the research aircraft, and minor modifications

may be incorporated where a need is indicated by initial flight data.

(U) In addition to the basic Mach 12 airlaunched rocket vehicle, several re-

search options are provided by vehicle modifications as discussed in detail in

Section h.2. For these, only the SJ/CSJ systems require special development emphasis.

Candidate development items include inlet and nozzle integration, basic combustion

technology (currently underway), regeneratively cooled component and fuel control

system development. Specific requirements for SJ research are discussed in Volume

IV, Part 3. Integration of the research options into the basic Mach 12 vehicle

will of course require additional effort in each of the areas outlined below.

8.1.1 (U) CONFIGURATION DEVELOPMENT - The selected basic flight vehicle concept

for Mach 12 research is an air launched, rocket powered, all-body configuration.

The wide excursions in Mach number and altitude provide an inherent versatility for

hypersonic research. To realize the full potential of the research vehicle, con-

figuration refinement will be required during the engineering design and development

phase to provide for the substantiation of performance and stability and control

characteristics. Specific investigative areas are noted and their relationship to
each research task is identified in Volume IV, Part 3.

Performanc% Stability and Control Confisuration Refinement - The aerodynamic data
base used for the study incorporates empirical data from industry and Government

high-speed wind tunnel facilities, coupled with vehicle design requirements from

past studies. The result is an accepted high confidence level technique for pre-

diction of aircraft drag and flight performance, as well as a representative evalu-

ation of stability and control characteristics. As with any new aircraft design,

a certain amount of wind tunnel verification and developmental effort is required to

enable more exact determination of vehicle shape for the substantiation of performance

and stability and control characteristics. Specific items which must be addressed

include configuration shaping studies to increase L/D, reduce neutral point travel,

and reduce trim drag; determination of component lift, drag, and stability contri-

butions to the boost, cruise, descent, and landing phases; and definition of flow

field interaction areas to allow better definition of pressure distribition, aero-

dynamic loads, and thermal profiles.
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Separation Studies - Air drop of a rocket powered vehicle from a large subsonic air-

craft has been a conventional operation with research aircraft for twenty years.

Although no technological breakthrough is required, concentrated definition of

vehicle flow field and flow field interactions is a necessity for the specific ve-

hicle shapes involved. Past program results can provide high confidence design

and operational guidance, and when added to a thorough wind tunnel separation test

program, will provide the necessary analytical definition.

Aeroheatin5 Anomalies - Current analytical methods used for prediction of vehicle

temperature profiles will be complemented by thermal mapping tests. Both will be

integrated with the configuration development work outlined earlier. Existing

prediction techniques in interference regions (such as control surface intersections

where shock/boundary layer interactions occur) are not fully definitive and require

concentrated flow testing. Further complications are introduced by radiation inter-

ference between intersecting surfaces and control surface gaps. This interference

does not permit the surfaces to cool by radiating freely to space. Wind tunnel

testing is required to properly indicate the locations and magnitude of these high

temperature regions as well as to provide a thermal map for the specific research

vehicle configuration. Test objectives include an iterative evaluation of changes

in vehicle shape with regard to configuration performance to obtain an optimum com-

promise between aerodynamic and thermodynamic considerations.

8.1.2 (U) STRUCTURAL/THERMAL PROTECTION SYST_S - The structural/thermal pro-

tection systems chosen for the Mach 12 aircraft represent high confidence, near

state-of-the-art concepts. Because flight into the thermal environment associated

with Mach 12 can result in some local equilibrium skin temperatures near stagnation

values (as high as 3000°F, 1923°K) it is necessary to utilize advanced concepts for

radiative shingles and active cooling of the primary structure. Cool primary struc-

ture is maintained by means of a thermal protection system which consists of coated

external shingles, insulation, air gap, and an active water wick cooling system.

The feasibility of this concept has been established by laboratory and flight tests

of various system components and a structural element representative of the complete

system.

(U) Subsequent improvements in composite materials technology could be incor-

portated into the research vehicle, and performance of the advanced composite mater-

ials verified as these materials attain hardware status, i.e., satisfactory demon-

stration of manufacturing, fabrication, and inspection techniques. If advanced com-

posite structures were incorporated in all or a portion of the primary structure, they

would require special emphasis in development.

Radiative Shingles - Protected primary structure was selected for the Mach 12 vehicle

concept because of the pronounced effect on overall structural weight efficiency.

The radiation shingles are designed to provide a smooth external moldline with

adequate strength and stiffness at all flight temperatures to prevent panel flutter

or excessive deflection under design air loads. A major consideration in shingle

design is the large temperature gradient imposed during boost, which has the po-

tential to warp the shingle and open gaps allowing hot boundary layer air to leak
into the interior. Local burnthroughs could be catastrophic. As a result, focused

development activity should be concentrated on thermal stress relief within the
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panel and assessment of heat shorts through attachments. Initial steps to verify

the shingle concept in a simulated operational environment may be conducted on a

laboratory scale (two or three panels). Evaluations should include investigation

of panel strength and deformation characteristics and the effects of thermal expan-

sion on panel interaction and surface gaps. The intent is to verify the structural

concept when exposed to representative airloads and heating cycles. Additional

effort should be directed toward an assessment of fabrication and inspection tech-

niques including an evaluation of lifetime and maintainability requirements. Def-

inition of techniques for fabrication, Joining, and mounting to primary structure

cequires relatively large scale systems to evaluate interface parameters; but this

can be accomplished most expediently by fabrication of a typical fuselage section.

Insulation System - The Mach 12 vehicle concept utilizes insulation and a saturated
water wick blanket as basic insulating elements of the thermal protection concept.

This enables protection of the substructure to temperatures corresponding to the

boiling point of water at the local ambient pressure. Concept feasibility has been

demonstrated through numerous laboratory experiments at MCAIR and in flight on

advanced reentry vehicles. These tests have allowed evaluation of wicking materials,

methods of wick containment, operating efficiencies, and water retention under both

static and acceleration conditions. It is recognized that continued laboratory

development activity is desirable to fully explore the operational effects and

potential recycle/refurbishment requirements associated with numerous thermal

cycles. Additional techniques may be investigated to integrate the concept with

the entire thermal protection system, support system heat shorts, and to further

reduce wicking thickness, hence, total system weight.

Materials Characterization - The selected Mach 12 concept is designed on the basis

of existing structural/mat'erial concepts representative of a near term development

status. An integral part of the structural/thermal protection system is the use

of coated refractory alloys necessary to provide oxidation resistance when ap-

proaching 3000°F (1923°K). Current coating investigations have proven the feasibility

of the concept on a laboratory scale, but have been rather limited in scope as to

configuration, duty cycles, and complete environmental simulation. Design allowables

and performance characteristics must be established by test before efficient design

of reliable, reusable coated columbium alloy structures can be assured for the con-

cept. The performance of a protective coating on a columbium or tantalum alloy

structure is strongly influenced by the design of that structure and by the con-

ditions of its service environment. An orderly test program designed to simulate

the anticipated hypersonic environment will provide the necessary design confidence

level to permit the incorporation of reusable coated radiative shingles into the

Mach 12 flight research facility. In conjunction with an evaluation of coatings,

the bare metal must also be characterized at temperatures approaching 3000°F (1923°K).

The testing can be accomplished on a relatively small (laboratory) scale leading to

material selection and comparative evaluation with coated specimens.

(U) Although not specifically required to provide structural integrity for the

Mach 12 vehicle, advanced composite materials, both resin matrix and metal matrix,

can provide significant performance improvements through increased strength/weight

ratios. A similar development effort can be applied as highlighted above for the

coated refractory shingles. Verification may be attained later in the flight pro-

gram by replacement of conventional structural components on the Mach 12 research

vehicle with components fabricated from advanced composite materials.

I
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(U) A number of recent studies have been conducted of other attractive thermal

protection system concepts. Work as described above as well as alternate systems

would be extremely valuable, particularly in consideration of the high research

value placed on development of thermal protection systems for operational aircraft.

8.1.3 (U) COMPONENT AND SUBSYST_4S D_40NSTRATION - Major subsystems and compo-

nents incorporated into the research vehicle design represent demonstrated hardware

concepts (particularly in the case of the cryogenic propellant systems), although

demonstration may have been performed in a different operating mode and thermal

environment. The initial effort during the engineering design and development phase

should be directed toward demonstration of relatively long life, reusable concepts

in an operational environment representative of sustained Mach 12 flight.

Cryogenic Propellant S_stems - Current analytical modeling for cryogenic tank pres-

surization is based on vertically positioned tankage with continuous high outflow

rates and applied thrust loads. Experimental coefficients must be determined for

analysis of heat and mass transfe_ with horizontal tank orientation, relatively low

flow rates and aircraft dynamic environment. An integral part of the aircraft cryo-

genic requirements includes demonstration of reusable integral tank concepts in

concert with demonstration of the structural/thermal protection concepts discussed
earlier.

(U) One of the principal elements in the tankage system which requires con-

centrated emphasis is the reusable internal insulation/vapor barrier system. Loss

of insulation integrity can result through leaks in the vapor barrier. If leaks

develop cold gas will be trapped between the vapor barrier and tank wall. After

the tank is empty, these cold gases will heat up and expand, potentially separating

the vapor barrier from the insulation. Additionally, leaks in the vapor barrier

can degrade the insulation performance to a point where ambient air will condense

on the exterior of the tank. These problems are being actively investigated by

numerous investigators.

Data Acquisition- Data acquisition plays a major role in any research/development

program. For the Mach 12 vehicle, sensors must be capable of operating at or near

temperatures of 3000°F (1923°K). Current capability under these conditions is

limited to short duration boost glide vehicles or ground applications. Specific

tasks which must be performed include investigations of methods to obtain boundary

layer heat transfer and transition data as well as methods to provide dynamic pres-

sure, angle-of-attack, and yaw data to both the pilot and a telemetry/on-board

flight recorder.

8.2 MACH 6 RESEARCH AIRCRAFT

(U) Areas which are especially important to the basic flight vehicle are:

o Configuration Development

Performance, stability and control configuration refinement

Surface heating anomalies
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o Structural/Thermal Protection Systems

Radiative shingle

Regeneratively cooled panels

o Propulsion integration

Inlet integration

Ramjet engine development

o Component and subsystems demonstration

Cryogenic propellant systems

Flight data acquisition systems.

(U) Establishment of concept feasibility does not require specific solutions

in these areas, since the basic technologies are relatively well understood. The

major area of effort lies in substantiation of specific design and operational details

in conjunction with subsystem/vehicle integration. Substantiation and high confi-

dence verification will come with actual vehicle experience during the logical speed

buildup of the research aircraft, and minor modifications may be incorporated where

a need is indicated by initial flight data.

8.2.1 (U) CONFIGURATION DEVELOPMENT - The selected basic flight vehicle concept

for Mach 6 research is a ground takeoff, turboramJet powered, wing/body configuration.

Excursions in Mach number and altitude provide an inherent versatility for research

in the high supersonic and low hypersonic flight regime. The full potential of the

research vehicle can only be achieved by configuration refinement and performance

substantiation during the engineering design and development phase. Specific inves-

tigative areas are noted and their relationship to the research tasks is identified

in Volume IV, Part 3.

Performanc_ Stability and Control Configuration Refinement - The aerodynamic data

base used for the study incorporates empirical data from industry and Government

high speed wind tunnel facilities, coupled with vehicle design requirements from

past studies. The result is an accepted high confidence level technique for pre-

diction of aircraft drag and flight performance, as well as a representative evalu-

ation of stability and control. As with any new aircraft design, a certain amount

of wind tunnel verification and developmental effort is required to enable more

exact determination of vehicle shape for performance substantiation and identifi-

cation of stability and control characteristics. Specific items which must be

addressed include configuration shaping studies to reduce both neutral point travel

and zero lift pitching moments and thereby reduce trim drag at high speed; deter-

mination of component lift, drag, and stability contributions in all flight phases;

and definition of flow field interaction areas to allow better definition of pres-

sure distribution, aerodynamic loads, and thermal profiles.

Aeroheatin_ Anomalies - Current analytical methods predict vehicle temperature with

varying degrees of accuracy and complement the thermal mapping studies related to

the configuration development work outlined earlier. However, existing prediction

I
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techniques in interference regions (such as wing/body intersections or in the engine

inlet where shock/boundary layer interactions occur) are not fully definitive and

require concentrated flow testing. Further complications are introduced by radi-

ation interference between intersecting surfaces and control surface gaps. This

interference does not permit the surfaces to cool by radiating freely to space.

Wind tunnel testing is required to properly indicate the locations and magnitude

of these high temperature regions as well as to provide a thermal map for the

specific research vehicle configuration. Test objectives include an interactive

evaluation of changes in vehicle shape with regard to configuration performance to

obtain an optimum compromise between aerodynamic and thermodynamic considerations.

8.2.2 (U) STRUCTURAL/THERMAL PROTECTION SYST_S - The structural/thermal pro-

tection systems chosen for the basic vehicle represent minimum risk, near state-

of-the-art concepts. Because flight into the thermal environment associated with

Mach 6 can result in some local equilibrium skin temperatures near stagnation

( 2500°F, 16h5°K) values, incorporation of advanced concepts for radiative shinales

and active cooling of the engine inlet structure may offer a high degree of flex-

ibility for the vehicle concept. Primary structure is maintained at design oper-

ating temperature by means of a thermal protection system which consists of external

shingles and passive insulation. The feasibility of this concept has been estab-

lished by laboratory and flight tests of various system components and a structural

element representative of the complete system. The potential exists to restructure

sections of the flight vehicle with advanced composite structure to verify the

level of flight performance as confidence increases in the utilization of composite

materials.

Radiative Shingles - Protected primary structure was s_lected for the basic vehicle

concept because of the pronounced effect on overall structural weight efficiency.

The radiation shingles, primarily Rene' 41, are designed to provide a smooth exter-

nal moldline with adequate strength and stiffness at all flight temperatures to

prevent panel flutter or excessive deflection under design air loads. Focused

development activity should be concentrated on thermal stress relief within the

panel and assessment of heat shorts through attachments. Initial steps to verify

the shingle concept in a simulated operational environment may be conducted on a

laboratory scale (two or three panels). Evaluations should include investigation

of panel strength and deformation characteristics and the effects of thermal ex-

pansion on panel interaction and surface gaps. The intent is to verify the struc-

tural concept when exposed to representative airloads and heating cycles. Additional
effort should be directed toward an assessment of fabrication and inspection tech-

niques for the superalloy, including an evaluation of lifetime and maintainability

requirements. Definition of techniques for fabrication, Joining, and mounting to

primary structure requires relatively large scale systems to evaluate interface

parameters; but this can be accomplished most expediently by fabrication of a typical

fuselage section.

Re_enerativelz Cooled Panels - Regenerative panels are used for internal inlet sur-

face cooling (in areas where radiation cooling is not practical) during operation

of the ramjet. These panels must possess a high degree of reliability to protect

the primary structure from temperatures which approach the stagnation environment.

Recently, two governmental contracts have been performed by industry with the goals
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of fabrication and test of LH2 regeneratively cooled panels. ._ne contracted efforts,

in conjunction with related MCAIR studies, have provided for probable solutions.

It is apparent from regenerative panel modes of failure (loss of bonding between

vertical webs and face sheets) that fabrication techniques require additional in-

vestigation. Two promising methods, which should provide superior bonding over

conventional furnace brazing, are salt bath brazing and diffusion bonding. Salt

bath brazing provides very accurate and uniform temperature control, thereby elim-

inating the cold spot and warpage problems which are encountered in furnace brazing

_rocesses. The present limit on salt bath brazing is one of available salt bath

_ize, but larger baths can economically be achieved. Extensive diffusion bonding

investigations illustrate that structural integrity of the bond is excellent, since

there is a diffusion of the parent material which alleviates the need for a braze

or welding alloy. High temperature heat exchanger panels will utilize superalloys,

such as Rene' hl, Inconel, TD Nickel, or Hastelloy. As a result, substantial fab-

rication and process development work is required to assure the structural integrity

of the superalloy Joint. In conjunction with the fabrication development effort,

flow testing must be performed under typical flight heat loads and panel flow rates.

Factors requiring investigation include flow distribution and control, warpage

effects, and useful operating life. Graphite radiant heaters have recently been

developed which operate in an inert atmosphere and are capable of providing heat

fluxes in excess of 300 Btu/ft2-sec (3h0 W/cm2) for extended periods of time. These

heaters will permit close duplication of environmental heat loads.

8.2.3 (U) PROPULSION INTEGRATION - Two aspects of the Mach 6 airbreathing engine

development which require emphasis are the mixed compression inlet and integration

of the wraparound ramburner with the J=58 gas generator core.

Inlet - There has been only modest operational use of mixed compression inlets on

supersonic cruise aircraft. For example, the XB-70 incorporates a two-dimensional,

variable internal ramp geometry designed for nominal Mach 3 operation, while other

aircraft have successfully employed a translating spike. The inlet operational and

control problems encountered have been identified and, in many cases, solutions

effected. Inlet unstarts were common in early flight test and inlet control require-

ments have been identified as a primary element in the successful usage of mixed

compression inlets. Operation of the vehicle with a mixed compression inlet in an

environment 2000°F (ll00°K) hotter than current operational weapon systems will

require solutions of these same problems in addition to satisfaction of high temp-

erature seal and actuator requirements. The pressure recovery characteristics used

for the inlet were based on a compilation of experimental data. Demonstration of

a mixed compression inlet designed to operate at flight speeds from takeoff to Mach

6.0 to verify the performance levels characterized by these data is a valid research

objective.

R_Jet - The ramjet portion of the turboramJet engine for the basic Mach 6 vehicle

is a new system, designated the STRJllA-27. The engine, considered specifically

for this vehicle program, is suitable for flight test to Mach 7 above ll0,000 ft

(33.5 km) and utilizes the JTllD (J-58) as the gas generator core. Development of

the ramjet mode will be accomplished in existing ground facilities and is based on

demonstrated technology. In order to maintain the high confidence approach recom-

mended for the basic program, Pratt and Whitney Aircraft has recommended a 40 month

engine development program resulting in an engine configuration substantiated for

I
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initial flight test operation to Mach 4, including demonstration of transition to

the ramjet mode. Structural integrity and durability of the ramjet will be verified

throughout the flight regime. Vitiated air is considered for structural tests into

the speed regime above Mach 4. Engine performance (thrust and SFC) can be demon-

strated in ground tests with PFRT to Mach 4, followed by flight test verification

for speeds above Mach 4. This flight test can be accomplished with relatively high

confidence as a result of the demonstration engine structure through a simulated

aerothermal environment.

8.2.4 (U) COMPONENT AND SUBSYSTEMS DEMONSTRATION - Major subsystems and components

incorporated into the vehicle design represent demonstrated hardware concepts (par-

ticularly in the case of the cryogenic propellant systems) although demonstration

may have been performed in a different operating mode and thermal environment. The

initial effort during the engineering design and development phase should be directed

toward demonstration of relatively long life, reusable concepts in an operational

environment representative of sustained Mach 6 flight.

Cryogenic Propellant Systems - Current analytical modeling for cryogenic tank pres-

surization is based on vertically positioned tankage with continuous high outflow

• rates and applied thrust loads. Experimental coefficients must be determined for

analysis of heat and mass transfer with horizontal tank orientation, relatively low

flow rates and aircraft dynamic environment. An integral part of the aircraft

cryogenic requirements includes demonstration of reusable integral tank concepts in

concert with demonstration of the structural/thermal protection concepts discussed

earlier, and reusable internal cryogenic insulation systems.

Data Ac%uisition - Data acquisition plays a major role in any research/development

program. For the Mach 6 vehicle, sensors must be capable of operating at or near

temperatures of 2500°F (1645°K). Current capability under these conditions is

limited to short duration boost glide vehicles or ground applications. Specific

tasks which must be performed include investigations of methods to obtain boundary

layer heat transfer and transition data as well as methods to provide dynamic pres-

sure, angle-of-attack, and yaw data to both the pilot and a telemetry/on-board flight

recorder.
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9. OBSERVATIONS AND CONCLUSIONS

(U) A significant amount of research must be accomplished in order zo proceed

confidently with the development of future (1980-2000) operational high speed air-

craft systems. This is particularly true in the areas of propulsion, propulsion

system-airframe integration, structural materials, thermal protection, structural

design concepts, and fabrication and refurbishment techniques. Much of the knowledge

needed can only be acquired through flight experience.

(U) Historically, two alternate avenues of approach have been pursued in

accomplishing flight research. One approach is to accomplish only that research

necessary to develop a particular operational system through prototype testing within

the development program. This is a direct approach. The test results obtained

have specific and immediate applicability. However, they are often so narrowly de-

fined that the data base cannot be extrapolated with confidence to other potential

systems. Hence, in practice, the development of each system requires a prototype

and the associated research testing. There are overlapping areas of interest and,

in general, this approach, though direct, is inefficient from an overall point of

view. It is also very expensive.

(U) A second approach is to expand the technology base as a whole by under-

taking a broad flight research program well in advance of initiating the development

of potential operational systems. This route is not so direct. Such a program

must be geared to the development needs of all foreseeable future systems. It re-

quires careful planning and timely execution. The research results obtained will

be only as valuable as the anticipation of requirements and the forethought employed

in formulating the program. But when properly carried to completion, this approach

will yield results that are applicable to the development of not Just one, but sev-

eral advanced systems. Overall, it represents the most fiscally responsible means

of providing the research needed.

(U) The initial planning required to successfully undertake the latter approach

is needed now. The HYFAC Study results provide the necessary foundation.

(U) The flight research facilities studied during Phase III and described in

the foregoing zections of this report have wide applicability in meeting the develop-

ment needs foreseen for future operational aircraft. It has been shown that a broad

spectrum of research objectives can be satisfied by utilizing the concept of two

basic flight research vehicles, each designed with sufficient flexibility to accom-

modate a variety of research options. This is illustrated in Figure 9-1 in com-

parison with the nine previously defined potential operational aircraft aystems and

is summarized in detail in Volume IV, Part 3 of this report.

(U) It has also been shown that it is feasible to include provisions within

the basic vehicle design to accommodate the future testing of these several advance

research options. This serves to further enhance the inherent research capability

of each vehicle. These designs can be initiated with confidence using today's

technology base.
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(U) FIGURE9-1
FLIGHT RESEARCHFACILITIES SATISFYFUTUREAIRCRAFT DEVELOPMENTNEEDS

INCA j High Capability

ModerateCapability

LowCapability

Not Applicable

PotentialOperational
HypersonicAircraftSystems

Description

HYFAC PhaseIII Flight ResearchFacilities
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ReusableLaunchVehicle

HypersonicTransport

HypersonicTransport

Military - AMI

Military - Strike

Military - Interceptor

Mach6 ResearchAircraft Mach12 ResearchAircraft

Prop. _ Arm TPS Adv. HTO VTO CSJ S.I Arm TPS STG TJ

Sys. I Basic OptionOptio_ TR.I Basic OptioeOption,Option OptionOption Option Option Option
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:'":':"'-'-:': ,, - .... :'::i::;:':::':;

SJ :.:.:.:.:.:.;.:,

•"_',=_ _ _ _ Iiiii., iii iiiiiiiiiiiiiiilii.,i!ii!ii

(U) Summaries of the aerodynamic and propulsion characteristics, weights,

costs, and performance for each basic vehicle are presented in Figures 9-2 and 9-3.

The basic power plants suggested are modifications of presently existing engines.

The performance they provide is significantly greater than any known proposed near-

term aircraft system. The costs are moderate in comparison with the scope of the

undertaking. The eventual savings in development costs will be substantial.

(U) The key factors in realizing these benefits in the development of future

(1980-2000) operational hypersonic aircraft are expediency in initiating such a

research program and flexibility in the design of the research aircraft. The latter

must provide not only for a broad research capability, but for versatility in adapting

to currently unforeseen research requirements, as well.
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