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PRECEDING PAGE BLANK NOT FILME:
INTRODUCTION

Today as petrologists, mineralogosts and crystallographers, we are very
well equipped in our laboratories. We have refined instruments for chemical
analysis such as laser probe, electron microprobe and the ion microprobe mass
analyzer which can produce results within minutes, results which used to take
days and weeks. Besides x-ray methods, there are several spectroscopic tech-
iques, such as Mbsshbauer spectroscopy, which can be used to know the distribution
of cations over the nonequivalent structural sites in a crystal. The experimental
methods of synthesizing minerals assemblages in the laboratories have improved
very much. There are refined techniques to control the fugacities of gases and
create low to very high P and T conditions in o'.d' petrological experimentals,
These technical capabilities are further enchanced by the use of computers
wﬁich can take care of our numerical dzfa and with the help of suitable therimo-

dynamic theory tell us about the consistency or inconsistency of our experiments.

As a result of our augmented experimental capability, we have gathered a
lot of phase equilibria data both from our efforts to synthesize minerals assem-
blages in the labortory and from our chemical analysis of natural minerals
assemllages. In order to make a meaningful analysis of both these types of
data, it is imperative th‘é.t we have thermodynamic data on the rock-forming phases
and crystalline solutions. Unfortunately the progress in obtaining these quantilies
by thermochemical and calorimetric methods has been very slow and it is
desirable that we consider the- possibility of obtaining such quantilies by cther

methods.
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We may corsider in suitable cases of retrieving thermodynamic data from
the phase diagrams themselves. These quantilies may be considered significant,
if they are obtained consistently from different phase diagrams, However in
the case of crystalline solutions, thermodynamic functions of mixing cannot he
obtained without the use of certain solution models. Two types of phase diagrams
may be considered. The first type is the diagram with the solvus or binodal
curve hounding a4 binary two-phase region. The analytical methods have been
discussed by Thompson (1967), Thompson and Waldbaum (1969) and Green (1870),
These methods, however, are of limited use for rock-forming silicates, since
most Fe?*-Mg?* crystalline sclitions do not show any solvrs relationship. The
second type of phase diagram is the Roozeboom type figure where we plot the
concentration of a component in one phase against the concentration of the same
component in the a coexisting phase. Such distribution relationship, based on
simple ion-exchange reactions, were discussed initially by Ramberg and De Vore
(1951) followed by Kretz (1959) and Mueller (1960). It is possible to retrieve
useful thermodynamic information from such distribution data in ion-exchange
as coliected by Nafziger and Muan (1967), Larimer (1968) Medaris (19692 and

Schuiien et al, (1970) among others.

Useful thermodynamic information may also be obtained by considering

- distribution of cations _Within the crystalline solution., Ghose (1961) found the

interesting Fe2* —Mg-.distribution in cummingtonite. Since then such Fe?*-Mg
order-disorder has been studied in several silicates by crystallographers.
Theoretical framework for considering the homogeneous equilibria of intra-

crystalline cation distribution has been preéénted in severil papers by Mueller

(1962), Matsiii- and Banno (1965),_-Pefchuk. and. Rya‘bchikoir (1968),"Thqmpspn B

v




(1962), Matsui and Banno (1965), Perchuk and Ryabchikov (1968), Thompscn

(1969) and Griver and Orville (1969},

The purpose of this work is to discuss these methods of obtaining thermo-
dynamic quanlities and discuss some aspects of partitioning of elements in
coexisting phases. We do this by considering the definition of crystalline solu-
tions, the definition of components in a silicate miinerals and the definition of
chemicals potentials of these components. We also consider the solution models
involved. There are examples on calculating thermodynamic functions of mixing

in the systems CaWO,-SrWoO , olivine-chloride solution, and orthropyroxene.

It is hoped that this work will generaie enough interest among the experi-
mentalists to gather useful ion-exchange data on coexisting phases and among

the crystallogrphers to gather data on site-occupancies in the rock-forming

silicates.
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Notations

Superscripts are generally abbreviated naines of the minerals to which the

thermodynamic functions is ascribed. Subscripts refer to components of the

crystalline solution or the chemical system.
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Activity of component A in the phase «

Used as a subscript denotes components A, B and C

Energy constants used in equations describing the relation between
activity and mole fractions

Energy constants in equation for excess free energy of mixing
expressed as a polynomial in mole fraction

Activity coefficient

Molar Gibbs {ree energy

Excess molar Gibbs free energy of mixing

Ideal molar Gibbs free energy of mixing (= § RT In x,)

Total molar Gibbs free energy of mixing

Molar enthalpy |

Molar enthalpy of mixing

Molar entropy

Molar entropy of mixing

Excess molar entropy of mixing

Ideal molar entropy of mixing

Energy constant or the interchange energy used in the regular
solution model

Nw where w is independent of P and T

Nw where w is a function of P and T as in the simple mixture

model
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Section 1

THERMODYNAMIC RELATIONS IN CRYSTALLINE SOLUTIONS

Thermodynamic relations between the concentration of a component in a
solution and its chemical potential and other thermodynamic functions of mixing
are presented here. The details of the simplifying assumptions and the methods
of statistical thermodynamics have been given by Denbigh (1965), Guggenheim
(1950, 1967), Prigogine and Defay (1954) among others. Recently Thompson
(1967) also considered the properties of simple solutions. Besides presenting
a summary of thermodynamic relations in binary, ternary and multicomponent
solutions, we shall be particularly concerned with the difficuities encountered
in their application to silicate minerals. Some of these problems such as the
choice of a component and definition of its chemical potential in a silicate have

been aiscussed by Ramberg (1952a, 1963), Kretz (1961) and Thompson (1969).

Crystalline Solutions

Crystalline solutions considered here are the rock forming silicates form-
ing isomorphous series with one another. Such crystalline solutions have a
definite structural frame work with generally two or more kinds of nonequivalent
structural sites. The type of sites. and the ions that occupy them vary in different
crystalline solutions. The overall erystal symmetry of a solution does not change
as a function of the composition, though certain microscopic details within the
érystal i. e. the form and size of the individual structural sites may change with

changing composition.

We may consider orthopyroxene (Mg, Fe), Si, O as an example. Inthe

'cry_stal struéture there are single silicate chains parallel to the ¢ -axis held

1




together by the octahedrally coordinated Mg ?* and Fe?". There are two kinds

of structurally nonequivalent sites M1 and M2 occupied by Mg2?* and Fe?*. The

M1 octahedral space is nearly regular polyhedral but the M2 space is quite

distorted. As a result of varying Mg and Fe?® in the composition of the crystal,

the general symmetry of the crystal does not change but there are distinct .
changes in M1 and M2 polyhedra. The former becomes more regular and the

latter more distorted with increasing Fe/Mg ratio. Such microscopic changes

at the structural sites within the same crystal framework may be regarded as

continuous and the resulting energy changes a consequence of the mixing or

solution of the species to form a crystalline solution.

Choice of a Chemical Component
The definition of a component in a mineral is not unique. The components
in orthopyroxene muy be considered to be the molecules MgSiO, and Fe Si 0.,

or MgO, FeO, and SiO,, or the cations Mg ?*, Fe?", 8i** and O?". In petrologi-

v
A

cal studies, the czhoice of 2 component is determined by known or postulated
chemical reactions involving a mineral. In such studies, the choice of compo-
nents such as FeSiO, or FeO is convenient even though there are no discrete
units of this kind in the orthopyroxene crystal structure. However, while con~
sidering the thermodynamic properties of’silicate crystalline solutions, it is

only realistic to consider the ions as the components (see Bradley, 1962). In-

deed it can be noted that if the substitution of the catioh Fe?* by Mg %' in orthro- -
pyroxene does not induce any changes in the silicate framework or if there are -
any slight changes, they are directly a function of the changing Fe/Mg ratio, the f '

alternative methods of defining FeSiO, or Fe?! as a component are eQuivalent

(see also Saxena and Ghose, 1971).




Chemical Potential and Activity of a Component in a Mineral
A solution is ideal if the chemical potential of every component is a linear

function of the logarithm of its mole fraction according to the relation

gy =pt + RT Inw; (1.1)

where p.. is the chemical potential of i in a solution and .t is the chemical
potential of pure i. ' is a function of P and T only. In a binary solutionc,
whose composition is (A, B} M where M may represent the anion group or the
silicate framework, and A and B the eations which substitute for each other,
there is a choice betweci: adepting the cations A and B as components or the
end member molecules AM and BM. As noted before, under certain conditions,
the mole fractions may be calculated as

A _ AM

x 2= or % - __ ™
A ATEB M7 AMTBM

and these could be considered equivalent. We may write for chemical potentials.

pe=pdM LR T 1n xS (1.2)
or |
"‘LKM :FLAM—l-RTlnxg’M | (1.3)

where ;LAAM and .MM are chemical potentiais of A and AMina standard state, The
standard state AM is well defined but the standard state with reference to cation
A needs definition. In orthopyroxene, this is iike referring to the chemical
potential of Mg?* in pure (Mg, Mg) 8i, 0. Thé_G.ibbs iree energy for the pure
end member Mg8SiO; is defined and measurable experimentally but the meahing
of free energy of Mg?* in pﬁre ensfatite is littlé._l‘mderst'md and experimental
methods remain to be developed for its measurement. |

3




However in theoretical discussion, where we are not concerned with the
measured values of the potentials, the definition of chemical potential of a cation
in a crystalline solution is not only permissible buf also useful, Kretz (1961)

defines the chemical potential ¢f Mg in orthopyroxene as

, —f 96 1.4
’J‘Mg _(e ﬂMg)P'T‘ nFE’ nSi’ nO ( )

where n is the number of cations in the formula.

In many crystalline solutions, when their compositions are expressed in the
simplest form, there are two or more cations in one mole. Examples are oli-
vine (Fe, Mg), Si0 , and garnet (Fe, Mg), Al2 §i,0,,. The chemical potential

of a component using 'molecular' model is expressed as:

(1.5)

Fe,§i0
01 _ FeaSio,
HFe,sio, = H tRTInzg, sio,

Fe3Al,Si,0 ,

_ (1.6)

FegzAl,8i;0,,

where the first 1 is the chemical potential of the end member in the solution,
the second 1 is the chemical potential of the pure end member. If we choose to

consider the cation Fe?* as component, we have

Fe,Si0
ol =pp.® ' + 2R T lnx2l (L.7)
and
,_Lg‘:r :#§:3A125i3012 +3RTIn x%:r . (1.8)

where the first . is the chemical potential of Fe2* in the crystaiiine solution

and second u is the chemical potential of Fe?* in the pure end member. The



mole fractions » are the same quantities in both the 'molecular' or 'ionic'
models. It may be desirable to consider the chemical formula on one cation

basic i. e. we consider olivine as (Fea, Mg) Si 5O2 and garnet as (Mg Fe) Al ,,

€i0,. In these cases we may write

1 Fe, si0 1.9a
| peb = 2iga? SOV ER Ty, (1.92)

or
1 _ 1 Fe,S5i0, 1.9b
Fesiy (0, 5 uel '+ RT1nadl (1.9Db)

and
ar . 1 FejAl si.o . (1.10a)
‘U'ig?er - 5 'Fes 2-+3%12 +R7 1n x%gr
or
1 Fe,Al,_Si 0

FFeal,, sio, = g“pes T LR T In oy (1.100)

The usefulness of the above relations is mentioned later in connection with

the composition of coexisting minerals.

We shall be mostly concerned with the activities of the components., For
a binary ideal solution the activity is equal to its mole fraction, In olivine the

activity of fayalite (fa) molecule is

ag, = (x(;i)’ (1.11)
or for Fe?",
o = (*pe) (1.12)
Similarly for garnet we may have
. 1,13
aﬂlm - "g'll; ' ( )

Fe

Gge = (x827)3 (1.14)




L)L “r

R o

1% is desirable to consider many reactions, particularly the ion~exchange
reaction, on a one cation basis i. e. consider olivine as (Fe Mg) Si . 0, ete.
Activity of a cation is then equal to its mole fraction, It is necessary tc specify

that although in this situation =_ (mole fraction Fe2* /Fe2* + Mg) is numerically

Fe

the same as »; (percent of fayalite), the activities are different. »_ is equal

F
to (a5, )% in the 'ionic model' but =, is equalto s, i. e. activity of fayalite

in the solution,

Non-Ideal Binary Solutions
The relation between the chemical potential of a component j and its activity
in a solution is given by

p; =t +RT Ine, - (1.15)

ideal solution is the limiting case when a, is equal to thé mole fraction %, In
all other cases, one may express the relation between ¢, and x, as:

(1.16)
where f,; is the activity coefficient of the component i in the solution.

The free energy of mixing G, for a binary solution (A, B) M is giveu by

szxARTlnaA-}—xBRTlnaB (1.17)

=RT (%, Inx, + x5 Inx) +RT (x, Inf, +x5lnf))

=G

TIM + G

EM

The first term Gy is the ideal free energy of mixing and the second term

Gey 18 the excess free energy of mixing arising due to the non-ideality of the

system. G, is one of the functions of mixing termed 'excess functions’, Details




of the excess functions of mixing may be found in Prigogine and Defay (1954)

and Thompson (1967).

Regular Solution Model
We are often required to calculate the thermodynamic preperties of the
crystalline solutions from compositions of mineral assemblages either obtained
in experiments or occurring in rocks. In many situations the use of certain
models for the activity composition relationship helps to assess such properties
closely. Guggenheim's (1952) regular solution model is next in simplicity to

ideal solution model.

Zeroth approximation.

The excess free energy of mixing G, in a regular solution with the zeroth
approximation i. e, approximation of complete disorder, is given by

_, (1.18)
G = %4 %g W

where A and B are components of a solution (A, B) M and y* is equal to Nw. N
is Avogadro's number. W' is often referred to as the ‘interchange energy'. We
. shall be very much concerned with regular solutions in this work. Therefore )
- we shall briefly discuss the parameter w. A simplified account of this parameter
is presented by Denbigh (1965). It is assumed that the cations A and B are of
roughly same size and can be interchanged between lattice'sites‘without' bhnge
of lattice structure and without ehzinge in the lattice vibrations. There is a | '_ o
certain interaction between A and B given by the energyw which is given by &

1.19
w=(2wab-=waa-wbb ) ( )




where w,, is the increase in potential energy when a pair of A ions are brought
together from ivfinite distance to their equilibrium separation in the solutinn,
Similarly w , and wu,, are pair potentials for A-B and B-B pairs, In spi . Of
the interaction energy, it is assumed that the mixing of A and B is random.
This means that the entropy of mixing is the same as that for an ideal solution

and deviations are expressed entirely in terms of the heat of mixing.

The thermodynamic equations for the regular solution model with zercth

approximation are:

- I 1.20
GEM_HEM'_xAxBW ( )

- 1.21
Sem = 0 ( ) ~

The 'interchange energy' ¥’ is independent of P and T'. As the excess eniropy
of mixing is zero, according to this medel, the predictions on the excess free
energy of mixing and the heat of mixing (which may often be different from the

Gen ) are not satisfactory.

Simple mixture model
In the regular solution model ¥’ is supposed to be independent of temperature
and pressure. In Gttggeﬁheim's (1967) latest version of the lattice theory W’

may be treated as an adjustable consi:ant required o fit the experimental data

to the model. Such an eﬂergy parémeter with a sy-‘-rﬁbol ¥ muy be célléd g

cooperatifre free-energ:y'. -2 ¥ is in a sense the free energy increase in the

whole system when an AA pair aad a BB pair are converted .into two AB pairs. ]
It is expected that if W is fitied to the free energy data at each temperature, the

large errors usually found in the predictions of Cen and i, with composition




may be at least partly eliminated, For a random mixing approximation, the

various excess functions are given by

1,22

Gy = ¥a %p i ( )

¢ = o OF 1.23
“ S T fa ¥ 3T (1.23)

_ -3¢ (1.24

Hoyy = %, % (lr-'r_ﬁ.) )

The activity coefficient is related to the mole fraction as:

(1.25)

Quasi-chemical model -

The main assumptions required for this model are similar to those of the
regular solution model in the preceding sections namely a) only configurational
partition function of the solution is contributing to the thermodynamic excess
functions and b) the intermolecular forces are central and short ranged and
therefore the internal energy at 0° K may be obtained by an addition of the pair-
potentials, The assumption of complete randomness is not required here. There-
fore any differences found in the calculated values of the excess functions of
mixing by the zeroth approximation and by the quasi-chemical approximation is

due to the effect of ordering considered in the latter.

In binary solutions where the two components A and B are of similar size,

the activity coefficients are given by the equations:

. (B +1-2xg '
_ (1.286)
o {x,, B+ 1) } |

(13




]

2
[ B=-1+2x, (1.27)
OGRS
where z is the coordination number and 5 is given by

B=A{1+4x, xy (W R _qyp172 (1.28)

B is unity for a perfectly random mixture. /3 >1 indicates a tendency for clus-

tering and 5 < 1 indicates a trend for compound formation.

The excess free energy of mixing and the heat of mixing are given by

Gy =

£ =

1-2x -1 x
zRT xAln’8+ BMB,'H/B t2xg (1.29)
v (B+ 1D X, (B+ 1)

g - 2 oW : 1.30
IIEM"5+13'AxB {l["—']‘W | ( )

The various equations of the quasi-chemical approximation may be expanded

as power series in 2% /zRT:

L 1{2rw . 1f2w¥
[;_.2‘1 = 1 - =
Ia "B{"Lz(zRT)xA( 3xB)+6(zRT) A

. (1—11x8+28x§-20xg)+...}

(1.32)

- Similarly f; may be obtained by replacing A by B in (1.32).

10
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For molecules which are not very similar in size, we find the necessity to
include a 'contact factor' (see Guggenheim, 1952 p. 186) in the above egquations to
take into account the size differences. The contact factors may he found
roughly proportional to the molar volumes or ionic radii, The activity coeffi-

cients are given by:

zq, /2
foalreBe oD (1.33)
P (B 1

8 - 1S5
/- E N ):\ (1.34)

TP B D)

where ¢, andq, are contact factors related o the contact fractions ¢, and ¢,

and the mole fractions x, andx, by the following equations

*a 94 b = - *p9p (1.35)

. - B
¥aqa t ¥ 9p ¥a9a T *g9p

P, =

For more details on the derivation and significance of the constants ¢ A and 95
and the fractions ¢ A and qu , veference may be made to Guggenheim (1952, p. 186)
and King (1969), p. 488), Sin (1.33) and (1.34) is obtained by replacing x, and

x, by @, and ¢, respectively in (1.28).

The other excess functions are given by

U by (B- 1)\ Py (B - D\ (1.36) "
GEM_izR]"{AgAlI’I(l+m)+quBln(l+m

11




X, X ¢, ¢ 3 1.37
/A _;".‘-..9 A '_B. (u' - 1__£) ( )

Sgy can be obtained by the standard equation

Cgy = Hgy ~ 1 SEM'

Some Other Methods for Representing the Activity-Compositicn Relations

In the case of a binary system of components A and B, the Gibbs-Duhem
equations is

1.38
mAdlan+delnfB:0 ( )

The changesdlnf:ﬂ and dlnfB when due to composition change dx, at constant

temperature we may write

d1lnf 3lnf
X, ._..__é.__A_ + g <__a_____.§) =0 (1.39)
A /T A /T

A solution to the above equation was proposed by Margules in ihe form of a

power series

‘ 1.40

lan:anBJ.-beg-;—c '\: +d xg.;. (1.40)
1.41

Infp=a, x, +ag x2 +ch +dB'\cA+---- ( )

when the series is terminated at «3, the foll'owing relations exist between the

»
coefficients aj _ : :

o _ (1.42) B E
a, = @a,= 0
b,+3¢,/2+2d, +...

Cg =~ () +8d,/3+..0)

12




Using the above relations, Carlson and Colburn (1942) expressed the activity

coefficients by the equations

log [, = (2B ~-d) (1 -x)% +2 (4 ~B) (1 -x,)3 (1.43)

log fp=(24~B)yx3 + 2(B-4) xd (1.44)

Relations similar to these have been used by Thompson (1967) and Thompson

and Waldbaum (1968, 1969).

Another two-constant equation is due to van Laar., The equation resulted
from a theory based on the van der Waals equation of state. This theory is
probably incorrect but van Laar's equation continues to be useful for represent-

ing the activity~composition relation. This equation is

log /[, = 4 (1.45)
A=, 2
1 b — .4..-."‘“
B(1-x,) :
similarly for the other component
B (1.46)

ldg[B: 5
{ B(l-xA)}
L=

For many chemical systems the van Laar's equation provides a better repre-
sentation of the data than is given by the Margules two-c onstant equation. The
relative merits of these two equations were discussed by Carlson and Colburn.

- It may be final_ly remarked that a2 power series expansion as (1.47 see later) for
the exCeSS free energy is now widely preferred and we shall, therefore, use

ohly such expressioﬂs and not the equatidns mentioned in this section. Expressing

13




the excess free energy as a power series is a means of giving empirical de-
scription to deviations from ideality which is a betfer alternative to the power
series expansions referring to individual activity coefficients mentioned above.,

G, ©¥pressed as a power series can be related more conveniently to the other

global properties of the mixture, such as the heat and volume change of mixing
than can the individual activity coefficients which represent the deviations divided

up, as it were, among the components,

-

General Relations for Binary, Ternary and Quaternary
Non-ideal Crystalline Solutions

Excess functions in non-ideal solutions may conveniently be expressed by

a power series in the mole fraction. Guggenheim (1937) suggested that Cen

can be expressed as a polynomial inx as
1.47
Gy = %, % {AO+A.1 (%, ~xg) -%Az(xA--g_gB)2+--'} ( )

where 4, 4, and/, ete. are constants. When odd terms in (1.47) vanish, the

(R
solution becomes symmetric. If 4, and other higher terms are also zero, we
have the simple mixture model with 4 as the energy constant ¥in (1.22). The

expressions for the activity coefficients are obtained from

RT1Inf, =6 |
A ' ' (1.48)

|

w2 {4y + 4, (3%, = %y) + 4, (3, ~ap) (53, = %) + +oror]

I

RTl1nfg
B (1.49)

T :
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Equations for other excess functions of mixing may be derived from (1.47)

4y BA.
el o (] o

9 A . 0 Al
HE‘A = %, % AO - T(—ﬁ— + {Al - T 5-’—1\-—)} (xA - xB)
(1.51) .
Pa; A
+ {A2 -T( )}(x —xB)2 + ]

The expression for the excess free energy of mixing in a ternary system

as:

!

according to Redlich-Kister equation (King, 1969) is

_ I . a -

G = %, 2 IbAB“f'cAB (n,A-xB) +dAB (;‘cA—;'n,B)2 F oo o)
TR, X {bpc + fac (Fy = %) v dyo (x, - x )%+ .0}
+Xg X {bBC + Cpe (xB -xc) + dBC (xB - acc)2 F oev e}

1.562
d +xAxBxC(F+HAxA+HBxB) ( )

whereb , ¢ and d represent 4 0 ’11 and A2 of equation (1.47). F ,HA and HB are
ternary constants and must be evaluated from ternary data. For silicaie c.rys-
talliﬁe solutions such data are rare. Therefore we may consider that only the
pairWise interactions ére important and adopt the following empirical expression

for Gy for a system containing any number of components:

> | | 1.53
Gy :in X, [bij + €y (J'ii---xj)+dij (xi_xj)2+ ) { )

where i # j.

15




Section 2

THERMODYNAMIC STABILITY OF A SOLUTION

Instrinsic and Extrinsic Stability

A crystalline solution when ideal adds a certain amount of negative free
energy of mixing to free energy of the system. Wiih increasing positive devia-
tions from ideality this contribution becomes less and less. Below a certain
critical temperature of unmixing, the solution unmixes to form two or more
solutions. These energetic changes obviously affect the stability of the entire
system of mineral assemblage., This instability of a crystalline solution, which
arises due to the positive excess free energy of mixing, may be termed intrinsic
instability (see, Mueller, 1964). Ideal solutions are always intrinsically stable.
A crystalline solution may also become instable if the physical-chemical con-
ditions change in such a way that certain reaction products become a lower
free energy assemblage than the crystalline solution. This instability could be
considered as extrinsic, A solution may be both intrinsically and extrinsically
instable. Thz division is essentially artificial. If, however, helps to understand

and describe certain petrological reactions as shown by Mueller (1964).

Olivine {Fe, Mg), 5iO, and pyroxene (Fe, Mg) SiO; may be considered as
ideal binary solutions at high temperature (~ 1100°C). In spite of their ideal
character, orthopyroxenes with more than 55 mole percent of ferrosilite were .
found unstable at liquidus temperatures by Bowen and Schairer (1'935). The iron
rich pyroxene is unstable due to the instability of ferrosilite relative to fayalite

and quartz. This is the extrinsic instability,

16




At low temperatures (~ 600°C), the situation is little different, Orthopyroxene
is somewhat non-ideal and high values of ¢, are associated with high ferrosilite
content of the solution. The extrinsic instability of the solution relative to oli-
vine and quartz is less since iron-rich pyroxenes (~ 86 percent FeSiO ) are
stable in metamorphic rocks. The instability of pyroxenes with higher ferro-
silite in metamorphic rocks may be both due to the extrinsic and intrinsic in-

stability of the orthopyroxene solution.

"Critical Mixing

General conditions: The conditions for critical mixing in terms of free energy

of mixing G, and the mole fraction » are

3G,/ xZ =0 (2.1)
3 G,/ x3=0 (2.2)
These may be expressed in terms of excess free energy of mixing ¢, as s
5
R G, /a2 =~ RT/x (1 -x) (2.3)
3 Gpy/3a% = = RT (2% ~ 1)/x2 (1 - x)2 (2.4)
Simple mixture: For a simple mixture we have
Coy =3 (L=x)W W= (T, P =% L
By successive differentiation of (2.5), we have |
| . Wk
R G /oxt =~ 2 W (2.6) }é
B Gy /353 = =1 a

By substituting (2.3) and (2.4) into (2.6) and (2.7) respectively, we have

17




1
H

-2 =~-R7T/x (1 -x) (2.8)
0=RT(2x ~-1)/x2 (1 ~x)° (2.9)

These give us the critical composition as + = 0.5 and 2 R 'l'c= e

General non-ideal soluticit: For a binary solution which is not a symmetric

3

solution, the excess free energy of mixing is given by

Cgg =% (L=2) 4l « A (1= 2x) . d,(1-2x)2 . ... (1.47)
Successive differentiation of (1.47) with respect tox gives
2
EM _ 2,10)
Bx'.r""'Q.'lo—-ﬁ.-'ll (1-2x) -1, 110 - 48 v (1 ~ 1)« ( ,
B
M 12 )48 0, (1 - 2 8) (2.11)
o 3 h

Substitution of (2.3) and (2.4) into (2.10) and (2,11) gives equations which are
transcendental and camnot be solved without 2 computer program using an iter-

ation method.

Formation of miscibility gaps in a ternary simple mixture: Let us consider a
ternary simple mixture with components 1, 2 and 3. The ¥ for the three binary

systems are lf"12 Wa

and IV, . The chemical potentials of the componenis in
the solution are given by:
by~ B (T, Py + RT Inx, + RT1nf,, ete., (2.12)

where R T Ln [ may be expanded in terms of x andF as follows:

18




RTInf; = (x)? Wy, + (xg)? Wig + 3y 33 By =Wyy + )

RTIn[, = ()% Wy (x )2 Wiy + 553, (Wyy = Wy 4 W,,)
" : (2.13)
RTInfy=(2)2 Wiy 4 (202 Wyy + 3y 6, (W5 = Wy + W,y)

At equilibrium in the two separated coexisting phases ¢ and 8 we have

a o a m 2.14
py (x5, 2% 1) =8 (2B, x'g, Ty=0 (2.14)

and similarly for « , and »,. Substituting (2.12) and (2.13) in (2.14) and rearrang-

2

ing we have (see Kaufman & Bernstein, 1870, p. 226)

2

RT In (oG /xg) + Wy, (1~ aB)2 = (1 -2 + Wys ("gz -%3) A
SAW B -y - 22 (1 2] =0

]

+ a 2 28
RT Lo (+4/55) + Wy, (v = (39)%) + Wy, [(1 - 98)2 - (1 - 22)7]

(2.15)
~OW &5 (1-%8) =23 (1-2%)] =0
where AWisW =W, + W, - ¥, | =
With the help of equations (2.15) compositions of coexisting phases may be R

calculated and the miscibility gap may be plofied on a ternary diagram. How-

ever first, we require the compositions of the coexisting phases on three binary

edges.
In a binary solution, the miscibility gap can be calculated by finding the | .

- composition of the coexisting phases which together represent the minimum
free energy of the system, This may be done by the "Tangent method" graphic-

ally i. e. by drawing a tangeﬁt through the two points representing the two
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minima in the plot of the free energy of mixing against composition alternatively

we may consider the relations

For the binary regular solution, there is a symmetric miscibility gap and there-

fore .

x?-kx;: 1, xf+x§=1 and also m‘l":xf

and x% =2, We may therefore write

RTln(l_xl)+xfuf’=RTln(1_x2)+x§“-f (2.16)
RTln :cl-i-(l-xl)2 F=RTIn x2+(1-x2)2 14 (2.17)
Substituting B
} = 1-x, ;
in (2.16) we have
A | In (1-=%)) (2.18)
RT (1-2 xl) %,
Equation (2.18) may be solved by an iteration method to find the miscibility gaps
on the binary edges in a triangular diagram,
\ A computer program to solve the equations (2.15) numerically an 12
\'{t

method to form a miscibility gap have been presented by Kaufman and Bernstein

T R

*m,ggm Sl d R

(1970). Some examples to illustrate the possible sclutions of certain mineral-

ogical problems are presented elsewhere.
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Section 3

COMPOSITION OF COEXISTING PHASES

Ideal Solution Modei

Distribution of a component between two ideal hinary crystalline solutions

Although there are no strictly binary silicates, certain minerals such as
orthopyroxene and olivine may be assumed to be quasi-binary. In view of the
similarity of Fe 2* and Mg?2* in ionic charge and size, we may assume that
olivine and orthopyroxene are binary ideal solutions. This assumption is re~

examined later.

Ramberg and DeVore (1951) considered the following ion-exchange equilib-

rium between olivine and pyroxene:

o RSN | .
Mg Si 0, + > Fe, Si 0,8 Fe §i 0, + ~Mg, Si 0, (32)
en fa fs fo

The equilibrium constant for the above reaction at a certain P and! is

-Opx - .01
K _ :"Fe (1 2’E‘e)

3.1
3a =~ Opxy ..0) ©-
(l'xFe ).«vFe

The equilibrium constant X is a funcfion of P andT only, In the present case
K,, , however, is not found to be constant except at high temperatures (see Olsen

and Bunch, 1970).

It may be noted that (3a) is written cn one cation exchange basis. We may

also write

2 Mg Si 05 + Fe, Si 0,=>2Fe Si 0, + Mg, Si 0, (3b)
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The equilibrinm constant for the above reaction is

O (1 - %)

K., =
(-7 L :

3b

A Roozeboom figure with such K values has been presented by Kern and Weisbrod
(1967), p. 224). It is known empirically from the distribution data in several
mineral assemblages, that equilibrium constants or distribution coefficients
~such as K, are very cumbersome to handle and inconsistent with petrological
observations. One may, therefore, prefer to use the distribution data on one
cation exchange basis. It is obvious that in actual calculations of the energy
values, we shall be required to adjust for the activity-composition relations

(such as 1.7, 1.8, 1.12 and 1.14) as discussed before.

Generally olivine and pyroxene coexist with several other minerals of
fixed or Vafiable composition, If there is no significant change in the concen-
tration of the minor components changing the binary character of the two
minerals, K, is not a function of any changes in the number or proportion or
composition of other coexisting phases. This is generally true about equilibrium
constants in other systems also, At a certain P and ! the stahility 6f the as-
semblage olivine~pyroxene is a function of the presence or absence of quartz

but the value of r’<3a itself is not affected.

Kretz (1958) used Roozeboom plots extensively to show the orderly distribu-

tion of cation hetween coexisting silicate minerals in rocks. If chemical equil-
ibrium is closely approached in the distribution of a component between two

binary solutions at a certain # and 7, the distribution isotherm is a smooth
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curve and if at the same time both the solutions are ideal, it will be of the

form shown in Figure 3.1,

iZoexisting ternary ideal solutions

Consider two coexisting ternary phases o and 8 with the formulae (A, B, C)
M and (A, B, C) N. The pure components are AM, BM and CM in o and similarly
AN, BN and CN in 2. The chemical potentials of the components ina and 8
are

Pam = ML RT In % A (3.9)

;.LEN =u®N L RTIn J’fN (3.4)
ans similarly others. The potentials of the pure components A etc, are
A

k) functions of P and T only. We may also substitute x& for %% and xa for «8

4 without altering the results (see discussion before).

The distribution of A between « and 8 may be represented by the ion ex-

changes

i Ac+BBe=Ba+Ap - (3¢9)

Aa+CB=Ca+Ap (3)

Al We may write the equilibrium constants as

- %= xB x% xB

: ' K,.=_8 ® and g, =_C 4 _
: 3C xa'xﬂ 3d ﬂ-xﬁ . %"_.\
‘,.‘ ATB *a *c .

where X, is A/A + B + C etc.
Both K ;- and K,, will be constants for all ratios of A: B: C. A plot of =} agéinst

? will producé a symmetric ideal distribution curve.
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Non-ideal Solutions

Distribution of a component between two "simple mixtures"

For the ion-exchange equation

Ac+BB=AB+Ba (3e)
we have at equilibrinm
g+ =if g 9)
If (A, B) o and (A, B) 8 are 'simple mixtures', we have
jJ.g' =uB* Lt RTIn (l—xi) +W(xi)2 (3.6)
and similarly others.
Substituting such values (3.6) in (3.5) and rearranging we obtain
x‘B (1—37“) et v 8 “‘&GO i
1n A A - i (1-—2%:)"‘1" (1—2%{2)} = a (3.7)
(1 -8y xa \RT RT RT
where
A Gg :pBa .;.fu,Aﬁ ...,U.Bﬁ - jLAa
Or we may write
e (3.8)

. wh
InkK, = 1ok -~ a-zxp+ﬁ7(1~2ﬁ)

RT
where K, is exp (-AGg /RT)and K, is the distribution coefficient.

If we can obtain a good least squares fit for the distribution data by using
(3.8), it may also be found that both the minerals are close to being 'simple

mixtures’'.
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With increasing non~ideality in one or both of the minerals, the distribution
isotherms may attain different forms (see Mueller (1964). Figure 3.2 shows an
example where one of the minerals q is ideal and 8 non-ideal. A is assumed
to vary linearly with 1/7. The values of 8 and K at 673 and 1173°K are
2.75, 1.603, 0.77 and 1,518 respectively (see Saxena, 1869a), The forms of the

distribution isotherms are very different from the symmetric ideal curves.

Coexisting regular ternary solutions

The composition of two coexisting phases which obey the same equation of
state is considered here as an example. These phases are products of unmixing
in a ternary solution (A, B, ..) M. We assume that W:\B , Wx;c and W:\c are 1500,
7000 and 9000 cal/mole respectively and W's are not a function of p, 7 and com-
position (regular solution). Figure (3.3) shows the miscibility gap in the system .
and the tie lines for the coexisting phases. Let the phase rich in C be denoted
by a and the phase poor in C by 4. For the chemical potentials we have s

pe=uM 4 RT1Inf%xs (3.3)

#f =u™ L RT In fﬁxf etc., (3.4)

We may consider any one of the following ion-exchanges between o« and 3
AB+Baz=Aa+Bj (3f)

Ba+-C,L?=Bf9+Ca

Aa+CB=Ca+AB

The equilibrium constant for (3f) is | 3
i Thls_ ' (3.9) .
: (EWIRE
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In this particular case since a and £ obey the same equation of state we have

AGY= 0 and K,; is unity. In other cases where o and S8 are minerals with dif-

ferent crystal structures, the equilibrium constant is not unity, Thef terms

in equation (3.9) are functions of P, T and the A: B: C ratijo and therefore K -

(Xg Xf/Xi Xﬁ) also changes with P, T and A:B, B:C and A:C ratios,

Iet A:B:C change systematically as listed in Table 3.1. We find that a plot
of 7 against xg where « is either A/A +B or A/A +B +C shows a smooth distri-
bution curve (Figure 3.4). The form of the curve, however, is markedly different

from the ideal distribution curve.

The activity coefficients are given by

RT Inf, = (xp) Wig + (5002 Wae + 25 % (Fig = Who + Wa)

2,13
RTInf, = (202 Whe + (2% Whg + 5 %5 (Wie = Wie + Wig) (2.15)

RTIn[o = (%3)% Wae + (55)* Woe + x5 55 (Mpe = Wig + Tge)

where v, = A/A + B + C etc. It may be checked that substitution of / values

into (3.9) gives the equilibrium constant as unity.

Distribution of a Cation Between Two or More Multicomponent Minerals

Many rock~forming minerals are complex multicomponent crystalline
solutions. The distribution of cations in two or more coexisting minerals in
natural assemblages may still yield certain valuabie informationé. The method y
to be followed in such cases has been discussed by Kretz (1959). In silicates
there are at least two types of coordination for the cations. Si**, A13*, Fe®"
and less commonly Ti** are in tetrahedral coordination. Fe?', Mg **, Fe3",

Al3*, Mn? and Ti** are found in the octahedral coordination, Such differently
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coordinated ions may be regarded as forming sub-mixtures. The distribution

of Fe?" or Mg?' or any other octahedrally coordinated ion may be examined in
two or more such sub-mixtures forming parts of different minerals. It should
be noted, however, that the chemical potentials of a cation in octahedral coordi-
nation may also be a function of any chemical variation in the concentrations

of the tetrahedrally coordinated ions. Such information ran be usually obtained
before hand by considering the chemical composition of individual minerals.

For example the positive correlation between the concentration of tetrahedrally
coordinated A13* in amphiboles and biotite with the Fe?* /Mg ratio in the mineral

is now well known (Ramberg, 1952b, Saxena, 1968a).

It may be argued that the study of the distribution of a component between
only two of the coexisting minerals which are quasi-binary solutions out of an
entire assemblage of five or six minerals cannot he useful. In other words, the
presence or absence of a third or fourth mineral in the assemblage would affect
the distribution coefficient. This is not generally frue, The distribution co-
efficient changes only when the presence or absence of a third mineral is as-
sociated with a significant change in the concentration of one or more elements
in one or both of the coexisting minerals. TiO, is only sparingly soluble in
olivine and orthopyroxene. In such a case the chemical potential of TiO, may
increase or decrease in the rock and rutile may be added or removed from the

assemblage, K for the distribution of ¥e?* and Mg does not change. However

if the change inu.. o éhanges the concentration of TiO2 significantly in one of
2 L
, the two coexisting minerals, K, may also change. Thus it is only meaningful to =
' consider the concentrations of all the components in the two minerals and not ,fé

=
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the presence or absence of another phase or the change in the bulk composition

of the rock.

One of the important results of the study of cation partitioning is the recog-
nition of how closely chemical equilibrium may be approached in the rocks.
Irrespective of whether the minerals are ideal or not, the distribution of a com-
ponent hbetween two coexisting binary phases at a certain P and T will be repre-
sented by a smooth distribution curve provided chemical equilibrium is closely
approached. If the minerals are not binary, the concentration of other compo-
nents because of the diadochic or substitutional relationships may affect the
orderly distribution as discussed before. In fact, the approach to chemical
equilibrium can be studied with respect to each component individually. Figure
3.5 shows the distribution of Mn in coexisting minerals from charnockites T
(Saxena, 1968b), In other rocks as well as such orderly distribution of Mn is
common. The distribution of Fe2?' and Mg?" between coexisting olivine and
orthopyroxene at 800°C and 900°C was experimentally studied by Medaris
(1969). Although Medaris made repeated grinding and heating of the reaction
products, Figure 3.6 shows that the distribution points both at 800 and §00°C
show some scatter, The difficulties are related to the kinetics of the ion-exchange
reaction as equilibrium is approached particularly when the distribution approaches
1:1 ratio in the two minerals, In cohtrast to these experimental results, the
partitioning of Mg 2* and Fe?" between orthopyroxene and Ca-pyroxene in meta-
morphic rocks as studied by Kretz {1963) is remarkably orderly. Most distri-
bution points fall on a smooth curve (Figure 3.7) and the distribution curve
representing igneous rocks is clearly separated from the distribution curve for

the metamorphic rocks.
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Studies of partitioning of cations between coexisting minerals in natural
rocks by several petrologists such as Albee (1965), Annersten (1968), Binns
(1962), Butler (1969), Mueller (1960), Kretz (1959}, Gorbatschev (1969), Hietnan
(1971) among many others are attempts to rationalize the concept of metamorphic
facies on a mineral-chemical basis. In experimental systems similar attempts
have been made by Nafziger and Muan (1967), Larimer (1968) and Medaris (1969)
among others. The results of such partitioning studies have generally confirmed
the usefulness of the approach and the need for more thermodynamic data on

crystalline solutions.

In essence problems of phase quilibria are distribution problems and a
statistical approach to such problems may be made to avbid the consideration
of the thermodynamic properties of solution in individual minerals. Such ap-
proaches have been made principally by Greenwood (1967) and Perry (1972) and
should be applicable in solving the petrogenetic. problem of incompatible as-
semblages and the recognition of chemical equilibrium in natural or experimental

systems.

29




Composition of Coexisting Phases in Ternary Regular Solution

Table 3.1

o 18
B A C B A C x B K,

010  .082 .98  .043  .868 .089  ,108 .047 .406
040 079  .881  ,174  .718  ,109  .336 .195 478
080 071 .849 339 522 140  .530  .394  .576
100 .066 834  .413 4381 156,602  ,489 .32
180 .056 .814 512  .30%  .179  ,699  .624  .715
270,037 793,625 A71 205 821 .785 796
200,020 780,700 081  .219  ,908  .,896 .862
_ _*h %4

"BYA KD_xa.xﬁ
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Figure 3-1. Distribution of a component A between two ideal crystalline solutions aand .
The numerical velues are equilibrium censtants. =
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L co cal/male respectively. The temperature is assumed to be Gk

- 1573°K.

33




1.0 | ) ; I i T T ; r
@
= 0.5 _
L ! 1 ! I l ! | !
0 0.5 1.0

a
Xg

Figurc 3-4. Distribution of a component B between two ternary regular solutions n

plotted on a Roczeboom diagram, 'x is B/(A + B). <

7

o Sl ot i e

g



MnO INOTHER MINERALS

60

151 —

Lol [

MnO IN HORN
wBi XCapx &Opx oOGar

Figure 3.5. Distribution of Mn in coexisting
minerals in charnockites of Yor-

berg, '_Sweden {Saxena, 1968h).
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Section 4

MEASUREMENT OF COMPONENT ACTIVITIES BY
ANALYSIS OF PHASE DIAGRAMS

An experimental measurement of activities of components in a crystalline
solution particularly the silicates is beset with large difficulties and the meas-
ured values are subject to large errors, Therefore, it is an attractive proposi-

tion to obtain such activity-composition relations from phase diagrams.

However, here again there is no direct method of doing this without iavolving
some kind of a solution model. ThQ use of a solution model brings in certain
uncertainties in the activity values which depend in extent and form on the
choice of the model. The attempts to obtain the thermodynamic functions of

‘“ mixing through the use of various solution models is still useful. For some
crystalline sclutions it may be possible to experimentally determine such
properties. A comparison between the experimental values and the values
based on a particular model would provide a greater understanding of the

interrelationship of the crystal structural parameters on which the model is

oy,

based and the thermodynamics of the crystal phase, In other cases where
experimental determinations cannot be made, the empirically derived functions
- of mixing may be tested for their physical significance by their success in ap-

plication to problems of petrogenesis.

Symmetrical Mixtures

Simple mixture

The thermodynamics of a simple mixture or regular symmetric solution

has been discussed before, Let us consider that the solution (A, B) M unmixes
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into two coexisting solutions a rich in AM and 8 rich in BM. At equilibrium we

have
p;: = }'.L-ﬁ and ‘u.g :‘u,g (4.1)
so that according to 'simple mixture' model

4R A RTInzg+ W (1 =207 (4.2)
=pB0 R T1n sk + W (1 - 2R)2
where o andj stand for the same pure endmember structure AM. Eliminating

120 anduR® and substituting =% = 1 - xwe have
a , a 4.3
RTInzS +W(1=-2)2=RT1In(1-23) + W (x5)? (2.3)
or

In {(1 - xi)/;‘ﬁi} (4'4)

i
RT 1- 248
This expression is similar to the one obtained by Thompson (1967). The equa-
fion for the curve of coexistence of two phases may also be written in terms of

critical temperature T, of unmixing and the mole fractions by substituting
W=2RT,

in (4.4)

1-2:&:;L

T=2T, , (4.5)
In {(1 - x%) /22

C

If we have daia on {he composition of coexisting phases at different temper-
atures and the form of the solvus is symmetric, the value of ¥ and the activity-

composition _relatioﬁ.s can be calculated.
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Symmetrical mixture of higher order

Symmetrical crystalline solutions may not be simple mixtures and require

a two or more constant expression for representingé,, as follows:

Gy = %5 (1 =5 {dy + 4, (1 - 225H% (4.6)

For such a solution the relation (4.3) is

RT Inxf + {A) + A (1=235H2 (1 -x5)?
(4.7)
=RTInaf + {4y + 4, (1 - 25532 (1 - xB)2

/

Using the relat:ion,u]3 =;.L§ , we can write a similar relation as {4.7) and then
solve the two equations simultaneously to obtain 4 and 4, and the activity-

composition relation

Asymmetrical Solutions

Sub-regular model

As mentioned before the excess free energy of mixing may be cxpressed as
a polynomial in the mole fraction x, or xy for the con:pound (A, B) M according
to Guggenheim's equation:

Cpy = %y %g Ay + Ay (%, = 2) + 4, (55 = 55)% + +o0} (1.47)

If we put 4, = 0 in (1.47) we have a two constant equation for an asymmatrical
2

solution, Proceeding as in the previous sections we have

RTl_nx;ut_Tlnfgzk'Tlnx§+RT1nf§ - (4.8)

RTInsf+RTInfg=RTInxf +RT1nf} (4.9)

Substituting values of R T 1nf from (1.48) and (1.49) we have

-

RT Inxg+ (xp)? (g +4; 325 -x) =R T Inaff + ()2 {4y + 4, (3xﬁ-x§)}(4-10) |
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RTln x;. + (x:)2 {AO + A’l (3 x;’ - x:}} =R7TI1n xg + (xﬁ)ﬂ (4.11)

{4y ¥ 4; (3 x5 - x5y}
The two independent relations (4.10) and (4.11) now can bz solved simultane-

ously to yield the values of the two constants 4 0 and /4 .

The method of calculation presented above is equivalent to that used by
Thompscn (1967) and Thompson and Waldbaum (1969), Thompson's (1967)

equation for the excess free energy of mixing is
~ 4,12
Opy = %5 Gy + %5 Gy (2.12)
where

G

i
2 =%, %g Wgy

énd
G ==, 3, Wy
This is as if the crystalline solution is composed of x, moles of a simple mixture
with P, and » moles of another simple mixture with¥;, . We have then
Cen = (Wgy %g + Wgy %) %4 %y

= Wy (1= x) + ¥y (1 - %)} %, 2y

~ (2-~2x,) (2 = 21y) 4.13
= Vg t ¥ T o *a%p (=33)
substifuting 1 = %, + "B in (4.13), we have
Vo Va2 : |
Cen = 5" (1 %yt %p) ""5— (1 +x, "':xn): *A%B
(4.14)

_ Moo + Wa1 Wgo ~Woy '
3 + 3 (%, -.x. ) ?Axn



which is of the same form as Guggenheim's equation with two constants AO and

Al'

Therefore

u 4 i -
etetTo gy, 2 te Y (4.15)

A

A, /R T and Ay /R T would correspond to the notations B, and Cg respectively

used by Thompson (1967) following Scatchard and Hamer (1935).

For the activity coefficient, we have

RTIn [, = (x5) (4 + 4, (3w, =5,) + -] (1.48)

Substitution of relations (4.15) in (1.48) gives

Woo + Wax Wgo = W,

RT'an=<xa>”[ 7 T3 “‘ch-xB+2xAJ

V., + W F., -
2l "e2 " Ya1 "aa T "o
xB{ 3 + 3 (xA - xs)} + (II*'G2 - WGI) X,

= 20 {(Wg, gt Wag %) + (Wgp 24 = Wgy %07

I
®
= )

Was (Xg = %40 + 2 Wg, x,)-

RN

(Woy (1= 22,) +2W, x,]
| (4.16)

li
»
o

(W +2x, G/ A

which is the same as used by Thompson (1967).

Substituting the calculated values of A, and 4, in (1.47), the excess free
energy of mixing can be estimated. We can then determine the solvus bounding
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the two phase region by the graphical tangent mnethod or by a suitable iteration
numerical method, The calculated values of « NS x:ﬁ and xg are then compared
to the observed mole fractions to test the applicability of the model. Other |
excess functions of mixing may be calculated by using the relations (1.50) and

(1.51).

Quasi-chemical approximation

This model has been discussed before. Green (1970) used the model to
study the halite-sylvite solvus. Let us consider two coexisting phases M and

N with components A and B. We have at equilibrium at a certain p and/ .

M _,N -
pi =y and pd -j.Lg
or

. AM +RTIn M + RT In /Y ,u,AN+RTlnx§+RTlnf§

and

BM M . BN | (4.17)
FMLRTIno + RTIn f¥ =/ PN 4 RTIn sl 4+ RT In £Y

Since both M and N obey the same equation of state the chemical potentials of

pure A in M and A in N and B in M and B in N are cancelled.

Substituting values of N and fg from (1.33) and (1.34) in (4.17) we have

P

2 M e N 't B
In M 4 2‘11 In I’I ¢y (B })Al = In a4 Z 9y In 1+ ¢g (B - 1) (4.18)
. qu (ﬁ < 1)} 2 C;blx (5, + 1) .

| N ) | .
inxM 4 71 In l1 +_L @ . 1). = inx g S 0 In |1 4 qs_._(_ﬁ__..ﬂ (4. 19)
2L #@-bn 2z 3 (B +
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where 8 andB’ correspond to phases M and N respectively and along ¢'s are
defined by equations (1.28 using ¢, instead of x, etc.) and {1.35) presented be-
fore. 7, and 4 , are contact factors discussed before. They are not independent
and should approach unity simultaneously. Green (1979) assumed ;/E;J_; =1,
The two independent relations (4.18) and (4.19) contain two unknowns ¢ . /q2 and

¥ and can be solved by an iteration process. The ratio, ) / 9, is a function of

the geomeiry of the substituting chemical species and therefore may be regarded
as almost independent of temperature, Substitution of 4 . / 9, back in equations
(4.18) and (4.19). gives two independent values of W at each temperature, Any
difference noted in the two values of ¥ would be due to the inadequacy of the

soluticn model to fit to the experimental data.,

The solvus bounding the two phase region may as before be determined
graphically by the double tangent inethod on a plot of free energy of mixing
against mole fraction or by a numerical iteration method. The excess functions

of mixing can be calculated using (1.56} and (1.37).

Calculation of Functions of Mixing Example:
The System _CaWO4 - SI'W_O4

Chang (1967), bresented the data én the two phase regions with solvus in
the binary tungstete RT! WO, type crystalline solutions, Table 4.1 shows
the data on the composition of the coexisting phases o and 8 rich in CaWO, and
SrWO, respectively. Calculated vélues of 4, /RT and A4, /RT according to the
subregular model are listed in Table 4.2. The relationship between 4, /4, and

T is linear and given by

4y = 22212.0 - 16,7278 T © (4.20)

Rk, o6 S
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A, = 3476.67 - 4.4379 T (4.21)

We may then calculate excess free energy of mixing from the relation

= j W —_ hY
Cem = #scyo, *cawo, {dy + a4y (*sewo, "Cawo4!}

and the activity coefficients from the relations

—_ a2 I .
RT in fSrWO4 = "cawo4 [Ao +4; (3 jbsrwo4 - ”cﬂwoq)]

= x2 .
RTInf oy, = *sewo, My = 4y (3 *cawo, jl‘s.rwc)4ﬂ

Figure 4.1 shows the activity-composition relation at 800 and 1000°C, We
may also plot free energy of mixing against composition and find the 'tangent
method! the composition of the coexisting phases. In the present case the dif-
ferences between compositions calculated by the model and the observed com-

positions in Table 4.1 are found to be small,

As mentioned before the activity-'cbmposition data and other thermodynamic
functions as calculated from phase diagrams are sensitive to the nature of the
assumptions and the model used. For the system CaWO 4 — SrtWO 4 it is found
by actual calculations that the use of quasi~-chemical approximation predicts
solvus with slimilai' accuracy as does the sub-regular model. The use of quasi-
chemical approximation requires the values of 4 1292 and the coordination z.

z is the number of the nearest Ca or Sr ions surrounding each other. In CaWO 4
there are four Ca?* surrounding each Ca?* at distance of approximately 3.9A.
There are four nioré Ca2* at a distance of 5 X We may assume 2 as 4 and solve
the two eqﬁé,tions of the quaSi—chemiéa_l approximation (4.18 and 4.19) simultane~

ously to find ¢ 1-/9-2 .
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In the present case, however, we inay assume either that ¢, +4, =2 or
Y4, ¢, = 1. The differences in the calculations of W using either of the two as-
sumptions are small (see also, Green, 1970). A computer program now may be
used which solves each of the two equations independently by using various values
for q, and q, and compares the ¥ values so obtained untii it finds the best set of
¥ values which match each other. Such values with Z as 4 are listed in Table
4.3. ¢, and ¢, are 1.20 and 0.80 corresponding to SrwO2*and CawOQ?*
respectively. The atomic radii (R) for sr’" and Ca*- are 1.12 and 0.99 (Ahrens,
1952). We have then 4 /5, as 1.50 and R (Sr *')/R (Ca?’) as 1.13 which are

not similar,

The following equation describes the relation between the calculated
(average of the two values listed in Table 4.3, second column) and T:

R T=34.64 - 0.05506 T + 0.000G25 T2 (4.22)

Figure 4.2 shows a comparison of G at 800°C calculated according to the
sub-regular model and according to the quasi-chemical model. The excess
free energy of mixing according to the latter is nearly twice of that calculated
according to the former. Differences between the other calculated functions of
mixing Hey and Spy 2re even more marked (Figure 4.2). Unfortunately we do
not have data on experimentally determined H, and S, for the ZaWoO ,~SrWo 4
system and, therefore, no way to know which model predicts the thermodynamic

functions better in this particular c;ase.

For the system NaCl-KCl, Green (1970) provided the comparison in the

thermodynamic quantities calculated by using the sub-regular model and the
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quasi-chemical model and those determined by experiments. The thermodynamic
guantities predicted by quiasi-chemical model are closer to those measured ex-

perimentally,

A comparison of the predictions of the functions of mixing in several binary
alloys by regalar solution model and by the quasi-chemical model (Lupis and
Elliott, 1967) shows that generally the predictions by the latter for the excess
free energy are closer in agreement with experimental determinations than
those by the former. The prediction for the excess entropy by the quasi-chemical
model are not satisfactory. This may be in part due to the neglect of the non-
configurational.excess entropy in many «f the binary alloys. For the halite-
sylvite system, Green (1970) finds that the nonconfigurational contributions are
unimportant and suggests that the positive excess entropy of mixing found in the
NaCl-KCl system may result from the introduction of vacancies or other defects

into a crystalline solution.,

This approach of calculating thermodynamic functions of mixing by the
analysis of phase diagrams is relatively new in the field of mineralogy and
deserves more attention from the minerzlogists and petrologists. - The fact
that there is no unique analysis of a solvus and two ore more sélution models
may be applicable to the same solvus data need not deter us from acquiring
more phase data a.nd interpretin'g the same with the help of various solution
models. Experimental verification of fnany of these results may not be possible
- in the near future. However it may be possible to test such thermodynamic
data by their application to petrogenetic problems and by getting in fetu;'n some

physically meaningful results.
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Coexisting Phases with Different Crystal Structures

In minerals such as pyroxenes and amphiboles, one often finds a pair of
minerals whose composition lies on a binary compositional join but whose
structures differ more or less from each other. A case in point is the enstatite~
diopside pair. The compositions in this series lie on the binary Mg8iO, ~CaSiO 3
join., The solvus on this join is not comparable to the solvus for the NaCl-KCl
system or for the CaWOQ, -SrWO, system. The important difference is that
enstatite and diopside do not obey the same equations of state as do the NaCI
and KC1 or CaWO, and SrWwO,. Phase equilibrium data on the ensfatite—diOpside
solvus such as that of Boyd and Schairer (1964), therefore, cannot be used for

evaluating the activity-composition relations by the methods of previous sections,

Let us consider two coexisting phases o« and 8 with different structures but

the same composition (A, B) M, We have

P":M =ph (4.23)
and

mE = g‘l (4.24)
where

4.25
pay =M L RT Inxy + W (1 - 23,2 (4.29)

and similarly others.

Substituting relations such as (4.25) in (4.23) and (4.24), we have

__ | 4.26
pMe L RT In xgy + W (1= x5)2 =B L RT Inx£, + W (1 - xBAM)Q( )

HBMS 4 RT In xG, + We (1-x35,)7 = u®8 L RT 1n x§, + WA (1 - x£)2 (427
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Since a and 8 do not have the same structure and, therefore, do not obey the
same equation of state generally ,AMe # jAMS and BN #uBMS . As such we need
to know the values of these chemical potentials at the given P and T to be able
to solve the two equations (4.26) and (4.27) simultaneously to find ¥ and WA,
The free energy diagram in Figure 4.3 shows this situation. In a binary system
at a given P and 7, we may have two coexisting phases with compositions repre-

senting the minimum of free energy.

The enstatite-diopside system may be similar to the example shown in
Figure 4.3. The binary join is (Mg, Mg) 81206 - (Ca, Mg) Si 205‘ There are
further complications here since (Ca, Mg) Si 206 with orthopyroxene structure

and (Mg, Mg Si,O,) with diopside structure are unknown.
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Table 4.1

Chemical Coicposition oi Unmixed Phases in the System CaWO,-SrWO,

T°C X gr Xga Xgr Xga

y 550 0.005 0.995 0.995 0.005

600 0.010 0.990 0.980 0.020

650 0.025 0.975 0.955 0.045

700 6.035 0.965 0.905 0.095

a 750 0.067 0.933 G.800 0.200

&

800 0.120 0.880 0.63G 0.370 .
% a and 3 are coexixting phases rich in CaWO, and SrWO , respectively. The compesitions are 1
'*7 from Figure 3 in Chang (1967}. .
§ *
& .
b G
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Tzble 4.2 .

The Calculated 4 /R Tand 4 I/RT in (Ca, Sr) WO4

T°C A,/RT A,/RT

600 4.411 | -.278 | E
650 3.596 ~.269

700 3.113 -.455 J
750 2.537 -.514
800 2.015 ~-.611
: 900* 1.106 -.743 K
1000% 352 . -.860
* From equations (4.20] and (4:21) |
Note: An error of 5 percent in the mole fractions (Table 4.1) results in 3200 cal/mole error '
in determining Ay and 4,. &

TP st S i T
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Table 4.3

2V
zRT

For the System CaWO A -SrW04

T,

T°C z=4, q, = 1.20, q,= 0.80

3

600 5.883 9.361
650 5.173 4.821

700 4,919 4.460

iy SRR e ik e g B

750 4,495 4,301

800 4,183 4,386
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Section 5
MEASUREMENT OF COMPONENT ACTIVITY USING

COMPOSITION OF COEXISTING MINERALS

Experimental data on the distribution of a component between two coexisting
crystalline solutions at a fixed P and T for systems such as olivine and pyroxene
have been collected by Naiziger and Muan (1967), Larimer (1968) and Medaris
(1969). Distribution data are also available for naturzl assemblages but the P
and T of their formation are indefinite. The distribution data from natural
assemblages in many cases may be found fo represent ion-exchange eﬁuilibrium
clusely. If we are not concerned with precise P and T, we may use such data
to obtain useful information on the thermodynamic nature of mixing in the
minerals, For this purpose, the thermodynamic equations according to various

solution models for binary solutions presented in this section may be used.

The composition of coexisting phases which do not obey fhe same équation
of states may be used to tind the activity-comnozition relations in each phase
in suitable cases., Comsider « and 8 with chemical formulae (A, B) M and (A, B) N
respectively which are in ion-exchange equilibrium at a certain 7 and T', We

have
Aa+BBéBa+Aﬁ ' (5?‘-) :

The equilibrium constant K., is given by

P xﬁ a ' . -
GRS e
T IAUTI T IR
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The term in the first bracket is the distribution coefficient K- Depending on the

nature of the data available, the following cases may be considered.

Compositional Data Available on 2 Complete Distribution Isotherm
We have the choice among simple mixture model, the two constant asyibmetric
model and the regular solution model witl: yaasi-chemical approximation. As
discussed before, according to simple mixture model, we have

_ e WA 3.8
1nK53_1nKD-ﬁ(1_2x§)+ﬁ(1_2x§) (3.8)

A non-linear least squares fit using the data on %y and x:ﬁ finally yields K.,

we and WA,

According to Redlich and Kister equations (King, 1969, p. 326) we have

Rodnfy=xl {4y + A (B, ~x5) + Ay (5, = %) (5%, ~5g) ++), (5.2)
RTInf =22 {4 -4 (Bx,~=,)+ . p (5.3)
E: A 0 1 B "A Ag(“-B—xA) kaB-—xA) feea}
and therefore
RTlnf_A—-A (% = % A, (6 1 ' (5.4)
Tl Gamm) + A (Bx, % - 1) + Ay (35 - 5,y) (1-8x, 2p)

B

Substituting the values of f¢/f# and f#/ff by using (5.4) in (5.1), neglecting

the constants A2 's and rearranging in logarithmic forin we have
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Ag AT

InK,, _anD+——-(A-xB)+ (6x A -1

6 b by o AL 6 a8 a8 5.5
tm (o = #) + o (6 g - 1) (5.5)

The equation (5.5) is of the form

N=M+A % +A X, FA X 0o

where N and x's are known quantities. It may be solved by a numeric least
squares method yielding M(= In X sa) and other constants. We must have a mini-

mun;: of five distribution points.

According to the quasi-chemical approximation, {, is given by

_ zq, /2
fa= {1 +-——-—¢B #-D (1.33)
qu B+1)

and siwmilarly f, as in (1.34). Substituting these values of f's in (5.1) we have

z% < BB
% ¢a. (ﬁq,_ 1)} qB/2{'1 (’t)ﬁ (,Bﬁ—l)} qA/2
L e B+ L MR BFe }

K
KD 28q% 2 ﬁ ﬁ/z Sa

g/
95 (B*- 1)), ’ {1 qsﬁ(ﬁﬁ-l)}

L PhF*+ I)J B (BE + 1)

(5.6)

where B and A’ are f._:‘or phéses: a and A respectively and are given by (1.28) with
x, replaced by ¢, ete. qd’ and qf“ are contact factors for phases o and 8

respectively. A numerical least squares method may be used to solve (5.6).
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Compositional Data Available on a Complete Distribution
Isotherm And The Activity-composition Relation in

One of The Two Coexisting Phases

Depending on the accuracy of the data, we may use equations (3.8), (5.5)
(5.6). If necessary we may use all the three constants in equation (5.4). We

may write (5.4) as

fa
RTlnT;;:xB (24,+6 4, +10 4,) - 22 (6 4, + 24 4,)) +x3 (16 Ap) = (A + 4, +z12()5
| )

Transforming (5.1) in logarithmic form and substituting values for fﬁ / fg-

from (5.7) we have

anD+ln_[_B inx +AO+A1+A2)-$ 24, +6 4 + 10 4,
fa Sa " RT B RT

¢

i 64, + 244 16 A
. + x2 ,1 2} _ x3 2 (5-8)
® RT B\RT

Equation (5.8) is of the form

= 2 3
Y a, +a; x+a, x +§33x doeae

If we know the activity-composition relation in 'a, we may solve (5.8) by least

squares analysis.

If sufficient number of distribution points are available one may use (5.5) with

the third constant 4, a-lid compare the results with those obtained by using (5.8).
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As an example of calculating the activity-composition relation in binary
solutions using the distribution data, we consider the olivine-chloride solution

system,

Activity-composition And (j, in Olivine (MgQSiO2 — Fe, 5i0,)
Schulien, Friedrichsen and Hellner (1970) studied the distribution of Fe?2*
and Mg2* between a 'chloride' solution and olivine at 450 ° to 650°C. These
data may be used for calculating the activity-composition in both olivine and
in the 'chloride' solution. The nature of the 'chloride' solution in the exper;-
ments may not be clearly known. This need not concern us for the present and
we assume that it is a homogeneous solution phase and present the ion-exchange

equilibrium as done by Schulien et, al. as

1 . \ _ 1 .
FEC12 + "2' Mg281041-\—- MgC12 + EFEQSLO“ (5b)
solution olivine solution olivine

The equilibrium constant is given by

sol ol sol fgol
K ?ng Tre fMg fFe

5b — ——
sol Lol sol gol
Xpe  *Ng fFe frag

We may now use one of the three methods represented by equations (3.8), (5.5)
and {5.6). In the present case, it was found by actual computations that consistent
thermodynamic parameters for the isotherms at 500, 550, and 650°C are given
by only the 'simple mixture' model. Obviously the datz accurate as they are from

an éxperimental point of view, are not accurate enough for needing a two or more

constant equation (5.5) or the quasi-chemical approximation (5.6).
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. the activity-composition relation in olivine (Fe,8i0, — Mg, SiO,) at 500 and 550°C.

W /RT values calet:lated by using the 'simple mixture' model are listed in
Table 5.1. The data at 600°C was not considered because of several scattered
points. It is noted that W /R T for olivine at 450°C is greater than 2,0 and is
unrealistic. If we consider a linear relation between ¥°' and 1/T (Figs. 5.1 and
5.2), we find that wel/RT at 450°C is 2.0 and similarly Ws°!/R T and K5b are

0.91 and 0.76 respectively.

Figure 5.3 shows the distribution isotherms calculated by using the data
in Table 5.1 at 500, 550 and 650°C. The isotherm at 450°C is plotted using fthe
linearly extrapolated values of K, , weland wsel, The model does not fittothese

distribu,tioﬁ data for the Mg-rich chloride solution and olivine, Figure 5.4 shows

At 650°C olivine is close to ideal solution.
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Tabkle 5.1

Inter-change Energy W and the Standard Free Energy Change AG®
in Olivine-chloride Solution System

ToC  sel gl -RT,/nK
RT R T =Ang . cal/mole
450 1.86 2.32 1433
500 0.87 1.28 723
550 0.59 0.73 421 ﬁ
650 0.52 -0.014 181 |
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Figure 5-2. In K, for the distribution of Mg?* and Fe2* between chioricde
solution and olivine, plotted against 1/T. '
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triangles 500 °C, and open circles 450 °C. ' The curves are least squares
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Figure 5-4. ' Activity-composition relation in olivine (Mg, Fe) Siy 5O2 at 500 and 550 °C.
At 650 °C, olivine is found to be nearly ideal. Results are based on data by
Schulien et al. (1970).
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Section 6
ORDER-DISORDER IN fe?*-Mg?* SILICATES

Long-range order—dizorder phenomena in ferromagnesian silicates differs
from that in alloys in several imr~ortant respects. First, as opposed to alluys,
only a certain numtor of cations take part in the site exchange while the silicate
framework remains more or less inert. Second usually a compleiec crystalline
solution exists between the Mg and Fe end-members. Third since Fe 2" and
Mg ¥ are similar in gize, charge and other characteristics, the site preference
energies (corresponding to the difference in binding energy of the ion between
the nonequivalent sites) arc not strongly dependent on the degree of order as is
usual in many binary alloys. Order-disorder or the intracrystalline cation
distribution in silicates is measurable by x-ray (see Ghose, 1961) and other
spectroscopic techniques. The energy of the intracryStal]ine ion-exchange is
part of the Gibbs free snergy of the crystal and is, therefore, a very us=sful |

thermodynamic quantity (see Mueller, 1969, Thompson, 1969).

Intracrystalline Ion-Exchange and Site Activities
A crystalline solution (A, B,__) M may have the two cations A and B dis-
tributed between two nonequivaien: sites o and 8. M ig the 'inert’ silicate frame-

work, Following Dienes (1955) and Mueller (1961, 1962, 1969) the disordering

pre¢2ess may be represented by the emlian.ge reaction

' , | 6a
A (a) +B(ﬁ)#ﬁ (B) + B (a) ©=)

In terms of kinetic theoi*y -the'rt'ime‘ rate of change of A'i'ﬁ site 3 i”s 'gi_'v;én .by
=, = Kpa Bpa 7 5g = Kop bop A x5 o (6

LA
;);i‘:f




where « refers to the mole fractions, K and K_, are rate constants and are

functions only of P and T, ¢s are analogous to activity coefficient products in

macroscopic chemical system and are functions of P, ' and ¢». At equilibrium

we have

dxﬁ o

dt i
and

15 %5 /5

Kag  xB18a2fg

>]
>
£

Ksa = Kﬁa = (6.2)

{
<)
o
&
> [Wa

where f is the 'partial' activity coefficient and ¢ the 'partial' activity. The
A product of the { s appear as ¢ in (6.1). The term 'partial' is used to distinguish

= between the activity of A on the site from the activity of A in the crystal.

The distribution coefficient is .y

[« 4
K _x xB
xBx

=T

A

K has sometimes been referr.ed to as the ordering parameter. The distribution
coefficient, however, should not be confused with the ordering parameter S used

to describe qrdering in all_oys. S equa]. to unity corresponds the highest possible

corder and S equal to zero tec complete disorder. This is opposite in thé case of .

K. . Further K, will be used to describe order-disorder in non-stoichiometric

)
silicates forming complete crystalline solution series. In such silicates the
formation of a fully ordered or disordered periodic stiucture is not possible.

" Even with the greatest tendency towards ordering some of the excess atoms of
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one component must inevifably occupy sites belonging to the other which leads
to a lower order or disorder. The distribution coefficient is a function of T and
the varying A:B ratio in the crystal and, therefore, it is of little thermodynamié

significance.

The equilibrium constant K¢, is a function of P and I only. However, as the
volume changes involved in the ion-exchange are negligible, we ignore the de-

penidence of K 6o ON P and consider it only as temperature dependent.

The definition of chemical potential of a cation on a site presents certain
problems (Mueller, Ghose and Saxena, 1970), One may write, as done by Grover
and Orville (1969), for the chemical potential of a cation A on the sites a and 8:

pi=p +RT1ln af (6.3)

ph =phoL R T 1n of (6.4)

where the "'s are the standard chemical potentials, and the e¢'s are the cor-
regs_ponding 'partial' activities. According to classical thermodynamics, how-
ever, it is incongruent to define two different chemical potentials for one species
in a single homogeneous phase. In such a case we have:

6.5
pg=pf and p =pf0 (6.9)

To avoid the above difficully Borghese (1967) regards A in site a as a dis-
tinct species from A in site 5. This is somewhat analogous td speaking of the
chemical potentials of O, and.O'3 ina homogeneoué gas phase. The idea of de-
fining a new potential analogous to chemical potential called a site preference

potential (Greenwood in Grover and Orville, 1970) could also be considered.
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The use of a 'site preference potential' may be avoided in practice, partic-

ularly as we are rarely concerned with its quantitative use in thermodynamics.

The standard site preference energy or the infracrystalline ion-exchange

energy AG? for the reaction (6a) is given by

AG®=-RTInk, (6.6)

where K, is the equilibrium constant and is a funiction of 1 only unlike K, which

is a function of both T and composition.

Thermodynamic Functions of Mixing
One of the principal aims of the study of order-disorder phernomenon is to
investigate the thermodynamic properties of the crystalline solution as a whole.

In case of an ideal macro-phase the activity-composition relation is given by

(6.7)
ai = ('xi)N
where N is the number of structural sites in the crystal. In the case when
there are two sites we may have
a; = (x;) (%;)
and if these sites are different we can write
’ 6.8
a; = {Gxf + #D)/2) e
or '
ai - ‘(xi)a. (.xi)ﬁ (6.9)

where a and 8 are two nonequivalent structural sites. The latter method has
been g_enérally_used (Mueller, 1962, Thompson, 1969). Extending the .a-bove

method to the non-ideal case, we may write

70



a, = (ai)a (ai)ﬁ (6.10)

where ¢ ¢ and af.f are 'partial' activities referring to the sites. In an orthopy-
roxene (Mg Mg Si,0, - FeFeSi,0,), where we have two sites M1 and M2, the

activity of Fe?* in the crystal may be expressed as

Lopx - M1 gu2 (6.11)
2+ 7 2+ 2+
Fe Fe Fe

If we consider the activity on one cation basis i. e. for the crystal (Mg Si0,)

Fe Si0;) we have

Opx _ M1 M2 \1/2 (6.12)
a = a @
F32+ ( F82+ F52+)

The 'partial' activity ] is equal to f;* ;" where [ is the partial activity coef-
ficient. At a certain temperature the atomic ratiox, in the two sites a and S
can be determined by x-ray or other resonance techniques. The next problem

involves the evaluation of the 'partial' activity coefficients.

Several crystals of suitable composition (A, B) M between the endmembers
AM and BM may be chosen and heated at a certain temperature for time long
enough to attain equilibrium for the intra-crystalline ion exchange (6a). Several
such distribution isotherms may be obtained. We chall be required to find a
suitable model for interrelating the partial activity coefficient with the atomic
fraction at the site. The 'simple mixture' or regular solution model may be

found useful in cases where the form of the distribution isotherms do not indi-

.pﬁﬁf_

cate two much non-ideality of mixing A and B at cand 5. We may wrife L
_ e wA b
E InK, =1n Ky - = (1= 225 + = (1 =22 (6.13) g
?I . w%
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where W is related to the partial activity coefficient by

RTInf%=W (1 -x%)? (1.25)

At this point certain other partial functions of mixing may be considered.
The partial free energy of mixing at the sites is given by

GﬁzxiRTln ai+ngTln a; (6.14)

:xiRTlnfi+ngTlnfg-i-T(xﬁRlnxi«i-ngln.x;) (6.15)

Substituting §% = -R (x§ Inx % +x% in %) and (1.25) in (6.15) we have

=W x.i xg-TSg (6.16)

The term W* x3 xg . is also the partial excess free energy of mixing.

A

In a crystalline solution such as AAM - BBM the total free energy of mixing

is given by
| x"'+xﬁ x“-{-xﬁ

Gy :(—-—A—-—z—é—) RTl1ln ai"af +(—B—2—E RTI1ln ag--atg (6.17)

which can be finally shown to be
x5 = %4 (6.18
= ART InK, + GE + G (6.18)
=%k " 6,19
=R RTInK, - T (S48 + Ve wgai+ WEafaf OO0

This is a similar expression as derived by Grover and Orville (1969} for ideal
mixing at the sites. Note that the above expression K, is equilibrium constant

and not the distribution coefficient as in the case of ideal mixing.
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Substituting AG?=- R Tln K, in (6.19) we have

xﬂ-—x"'

A A a
Gy =50 GO - T(SE + 5By + (GEy + CEp (6.20)

Thus the free energy of mixing in the crystal as a whole is a result of a)
energy due fo the distribution of the cation between s and 3 sites ) entropy
change due to the distribution of A and B within a and 3 sites and finally c) the

excess energy of mixing arising due to the non-ideality of solution in o and 3,

The partial excess free énergy of mixing at the sites are

6g, = HE, - T SE, (6.21)
and

B (6.22)

GE, =HE, - T S&,

Substituting (6.21) and (6.22) in (6.20) we have
xB — xa

_"A A 6.23
GM-——T—AG“+(H;;&+H%,)-T(S?+S§M+Slﬁ+8€m) ( )

The use of the thermodynamic relations presented in this section &nd before

will be made in analyzing the data on site occupancies in orthopyroxene later.

Kinetics of Order-Disorder
Virgo and Hafner (1969) made an important observation that there is an
apparent cut-off or transition rcegion on the temperature scale below which no

more ordering or disordering occurs,, This transition temperature in orthopy-

roxene was estimated to be approximately 480°C., Above this temperature the
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activation energy required for diffusion to start in the direction of disordering
is of the order of 20 kilocalories (Virgo and Hafner, 1969). Below this tempera-
ture the activation energy should be very high. This is confirmed from the
measurement of order-disorder in metamorphic pyrsoxenes which cooled slowly
through geological time, Figure 6.1 shows the data on the KD values for the
distribution of Fe2* and Mg 2* between M1 and M2 sites in matamorphic ortho-
pyroxene. From these data and the experimerntal results shown in Figure 8.4
later, it is noted that nc orthopyroxene shows a degree of order representing

temperatures lower than 450°C,

Mueller (1970) proposed a two-step mechanism for order-disorder kinetic
in silicates, This involves a low temperature process with high activation
energy and a high temperature process with a lower activation energy. This
mechanism may be responsible for ordering characteristics distinguishing
metamorphic, igneous plutonic and voleanic pyroxenes. The intracrystalline
'ion—exchange equilibria in igneous plutonic rocks is not ordinarily quenched in
at any temperature because of slow cooling rate. The same applies to such
equilibria in metamorphic rocks. However in these rocks attainment of such
equilibria is possible below the transition temperature if crystallization or re-
crystallization occﬁrs at these temperatures. In volcenic rocks because of
rapid cooling, there is a high possibility that the intracrystailine equilibria is
quenched in and the temperature indicated by order-disorder is not very much

lower than the original temperature of crystailization.
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more ordering takes place due to a'potential barrier.
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Section 7

ORTHOPYROXENE CRYSTALLINE SOLUTION

Orthopyroxene is one of the few important roék forming minerals which can
be considered as quasi-binary without significant loss of accuracy. Usually
more than 95 percent of the mineral is a crystalline solution of the endmembers
enstatite: (MgSiO,) and ferrosilite (FeSiO,). Fe?* and Mg?2* are distributed
between two nonequivalent sites M1 and M2, With the use of X-ray or Mdssbauer
spectroscopic technique, it is possible to determine the proportion of Fe?" in the
two nonequivalent sites (Evans, Ghose and Hafner, 1967). These data can be
used with the help of suitable solution models to determine the thermodynamic

properties of the solution (Virgo and Hafner, 1969, Saxena and Ghose, 1971).

Inter-site Jon-exchange
Thermodynamics of the intracrystaliine ion-exchange was discussed in the
preceding section (6). M1 and M2 sites may be regarded as two interpenetrating
subsystems, each with its own thermodynamic properties of mixing. In analogy
with heterogeneous ion-exchange equilibria, we may write the ion-exchange

weaction as

FeZ* (M2) + Mg?* (M) Fe?™ (M1) + Mg®* (M2) (7a)

The equilibrium constant for the above reaction at a certain P and T is

1 M1 2 M2 ‘
_ )#Q fFE_ 4 flle; (7.1) .

T

e

K.
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K,, is mainly a function of I'. P has little influenice. The standard free

energy for ior-exchange at a certain T is
AG?,, =-RTInKk,, (7.2)

we have noted before that this energy is part of the fotal Gibbs free energy of

the crystal and is, therefore, an important thermodynamic quantity. To determine
AG;’E or K7a , we need first, the determination of the atomic fractions ""éi and

x';;g and second, the determination of the partial activity coefficients f's which

are functiong of T and composition. While the atomic fractions or the site
gccupancies can be determined guantitatively by using X-ray or Mossbauer fech-
nique, the partial activity coefficients cannot be determined without the use of a

certain solution model.

Order-disorder on Individual Sites And The Choice of a Solution Model
Figure 7.1 (Figs. 1 and 2, Ghose, 1965) shows a scheme of ordering in o
orthopyroxone crystal as a whole. In hypersthene (Fs., En_ ) we have the possi-

hility of complete occupation of M1 sites by Mg?" and of M2 sites by Fe?*, For

all other compositions, one of the two ions must inevitably occupy the sites other
than they normally prefer. In fact, as suggested before we except that the two
o ions will always show some kind of equilibrium distribution over the two sites as
a function of temperature and composition. Although hypersthene has t.he right
composition to be completely ordered, kinetics of the ion-exchange below a certain 3

transition temperature precludes the ordered structure shown in Figure 7.1,

For considering the ion-¢xchange (7a) we are required to consider M1 and

M2 individually as sub-systems. Complete order in the crystal as a whole as
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shown in Figure 7.1 also means complete ¢rder on the sites themselves, For all
other compositions, we may consider whether iwo neighboring M1 sites or M2
gites are both occupied by the same cationﬁ; or by two diiferent cations. We may
assume that the occupancy of M1 and M2 sites by Mg 2* and Fe”" is disordered
and that the solutions at tke two sites approximate to 'simple mixture' medel.
We shall later consider the effect of ordering on the sites by using the quasi-

chemical approximation and con:pare the results.

Determination of Site Occurancy in Heated Orthopyroxenes

By using MOssbauer spectroscopy, Virgo and Hafner (1969) determined a
distribution isotherm at 1000°C. Saxena and Ghose (1971) similarly determined
isotherms between 500 and 800°C (¥'ig. 7.2). Orthopyroxene crystals are heated
for a length of time sufficient to bring about the inn-exchange equilibrium. The
samples are then quenched and the site occupancy is determined. Note that the
site occupancy is averaged over all the sites present in the crystals and ir, a
fenction of the changes that take place not only in the neighboring cation but

also in the remaining Si-O struccural frameworl,

Sites as Simple Mixtures

Equilibrium Constant, W¥! and #¥2

The distribution isotherms can be represented by the following equation

WMQ

_ SR . 3 . _ .
Ink,, =1nKj g (1-2x%0) - = (1 - 2442

whers K is xgé (1 - ’%2)/’#3 (1~ "gi)'

o8

a
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x.. the site occupancy and f the energy constant of the simple mixture model.
A non-linear least squares program is used ip calculate X, , FM! and WM?

by simultaneous iterations on all the three unknown variables. Figure 7.3 shows
a plot of ACY, the standard free energy of ion-exchange (= - RT In K o) i3]

and M2 against 1/7. There is a linear relation between 1/ and all the three

variables at 600, 700 ard 800°C, ThLe equations to the three straight lines are:

3
WMl = 3525 (1%) - 1667 (1.3)
v 10
W2 - 2458 (12} - 1261 (7.4)
3 o
GO = 4479 - 1948 (Lg_) (7.5)

The values at 500°C, however, do not fall on the straight lines. This may ‘?:\‘
be due to a low degreée of accuracy in determining the M1 site occupancy par-
ticularly in Mg-rich samples at 500°C. We may exirapolate and calculate the
constants at 1000°C. An isotherm at 1000°C plotted with these constants is

consistent for the most part with Virgo and Hafner's (1869) data. .

Thermodynamic functions of mixing

The 'partié.l' functions of mixing in M1 and M2 may be calculated by using - | o

the following » al_a-tibns:,

G!éhll = xgi M; WMI - o | . (1.22) )W
R LV S @)
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/
5 M1
”MI - le M" (WMI - OBWT ) (1.24)
similarly for the M2 site.

The excess free energy of mixing for the crystal as a whole is given by

G%{;x =RT (xOpx 1n fOpx + xOpx In fOpx) (7.6)

The values of the activity coefficients f may be obtained by

1/2 1/2
W WM2
le exp—- 1 - x 2} {xM2 exp —— (1 - xM2 2}
=3

similarly for f gg".
It is useful to represent the excess free energy of mixing as a polynomial

in x as suggested by Guggenheim (1937):

(;Opx - xggx xopx {A + A (xOPx xgp"\ + A OPx - 9501”‘)2 e}

which may also be written as

0 Opx ,Opx _ . 0px o - '
GEr?{x/ng -xu‘;" =4y + A (*pe = ”‘opx) + A (*pa = xﬁ‘;")z + o3 (7.8)

Equation (7.8) is of the form

- . 2,
4—a0 ta; %Xy + 8, x7 + -
!
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and may be solved by a least squares program. To determine the constants 4,
4, and 4,, we first obizin G98* by using (7.6) and (7.7). The constants listed

in Table 7.1 are used in (7.7). These values of excess free energy are then used
to calculate by using a least squares program on equation (7.8) the three constants
Ays A and A, shown in Table 7.2. Figure 7.4 shows three curves at 600, 700

and 800°C fitted to the data on reduced excess free energy { GEM /x &) VETsus

(*pe — %yg ). This method of determining 4, 4, and 4, is more reliable than

the Redlich and Kister method followed by Saxena and Ghose (1971).

The three constants as a function of 1/7 (Fig. 7.5) are given by

4, = 10802 - 33862 (12) +35135( 2) - 11202 (1‘;) (7.9)

2
3
A, = 1789 - 3612 (”;,) 2008 (“;) | (7.10)

3\ 2 3
4, = - 13863 + 41051 (?) - 40299 (H;_) + 13426 (12 (7.11)

The heat of mixing and the enfropy of mixing can now be readily calculated
using the following equations:
94, 94

- S%ﬁx;-’ Opx Opx [

*Fe “Mg |37 T BT (x Opx)+

A
0 o 7.12
3T * (208X - xQpX)2 +..Zi( )

| " 34\
g = 405 w00 [AO—T(—-BT) - (52} e -

- r (Gl e -y
tYa - Tlso (xp_ P) (7.13)
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The free energy of mixing is given by
Gﬁpx = H%ﬁx -7 Sghgx +RT (xg.gx In xggx + xgg" 1n xgg") (7.14)

It may be useful to write an expression for the free energy of mixing of the
crystal as a whole in terms of partial thermodynamic functions of mixing

referring to the sites. We bhave for (Mg, Fe) 8i,0, according to (6.23)

Gopx :(___xgi 2_ e A cga> + (HYgy + HEg) = T (St 4 sM2 4 sML 4 gM2y (7,15)
Note that H3E* # (¥ + HYZ) and similarly 75%* # (41 +SM2 ), The ex-
pression (7.15) divides the total free energy of mixing into three terms. The
term in the first bracket is the potential due to the difference in site occupancy
energy. It includes both the contributions of the standard enthalpy and entropy
of the exchange, The terms in the second and third brackets include the heat of

mixing and the entropy of mixing respectively at the individual sites.

This division of the free energy of mixing is artificial. It_ may be useful in
understanding the change in free energy as a function of temperature and order-
disorder. Figuers 7.6 and 7.7 show a comparison of the various functions of
mixing at 600 and 800°C, The values of H,, and TS, for the crysial as a whole

are obtained by using equations (7.12) and (7.18). It may be noted that the first

M1 M2
2 T
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along with the entropy terms increase the negative Gg"" and make the solution
stable. The negative value of the first energy term decreases somewhat with
increasing temperature indicating that the disordering works against stability

of the solution. This effect is, however, limited and is overridden by the positive

excess heat of mixing at the sites,

At 800°C the contributions of the 'partial' energies of mixing at the sites
to the energies of mixing in the crystal as a whole are somewhat asymmetric.
The mixing energies Hg;" and TS‘;;" have more or less symmetric values.
With decreasing temperature, the energies of mixing at the sites increase, those
for the M1 site increasing relatively more than those for the M2 site. The H%ﬁx

and § %‘éx , therefore, become more and more asymmetric.

Sites as Solutions With Quasi-chemical Approximation

Equilibrium constant, WM! and M2

As shown in section (5), the relation among K., , WM, M2 and the site

occupiincies may be expressed by the following equation:

1. M2
4’1 Gl (B - 1)} { $M2 (B — 1)} Tue’?
1 2 ’ 1
) L @D s 5+ 1) =K (7.16)
/2

: M2 7a
- Y . cb:g B -1y Tre”
ML (B - 1) R

where 3 and',B’ are for M1 and M2 respectively and given by:

B= 11+ 441 gL (ezW '/RT _yyare
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. M
B = {1+ 4 pH2 g2 (e W/RT _ qy1a70

¢'s are, as before (1.35),-

xFe qu

)
xl-‘e 9 Fe + ng qu

" z and z' are the number of neighboring cations in M1 and M2 respectively and

g 's are contact factors.

z and ¢ for M1 and M2 sites

As the silicate framewsiek ¢ Jes not significantly change its character as a
function of temperature or Felt /Mg?* ratio, the sites M1 and M2 have definite
configurations and the polyhedral geomefry changes 6n1y somewhat with changing
Fe?* /Mg ratio. We may, therefore, assume that the numher of sites which are
neighbors of any one M1 site are two or four other M1 sites and qm is equal
to ¢Ml and both are unity. A reference to Figure 7.1 shows that two of the
four M1 sites are somewhat nearer fo a central M1. If may be noted that the

two inner strips with M1 sites and two outer strips with M2 sites lie more or

less in a plane, Since the two M2 strips are separated by the intervening M1
sites, it is only realistic to consider that numbe> of neighboring M2 sites to any
one M2 site is only two. We may also assume that ¢}2 = ¢i2 =1 and substitute

in (7.16) z = z' = 2 and all ¢ 's as unity.

Results of caléu’latio_ns

The intracrystalline distribution data presented in Figure 7.2 was used to

" determine the quasi-chemical parameters ¥*! and ¥"? and the equilibrium
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constant K, by using least squares analysis on equation (7.16). The distribution
data at 500°C was not used and the number of data point at 700°C was not found
sufficient for a satisfactory convergence., The values ofll”m, "2 and K,. at 600
and 800°C are listed in Table 7.3. Chi square values for the simple mixture

model and for the quasi-chemical approximation are not significantly different.

Activity-composition relation at 600°C

We may calculate the 'partial' activity coefficients at the M1 site by using

the relations

M1
S5 1 2q gl /2
£M1 {1 PR ( )
Fe ™~ M1
Ppe (B+ 1)

and similarly for f - and finally determine the activity-composition relation in

the crystal as a whole by the eguation:
Opx = (xl\l‘gl fM1)1/2 /xa{‘!z fmz)l/z

The regults of such calculations are presented in Figure 7.8. The figure
shows that there is very little difference between the activities calculated by
assuming sites as "simple mixtures' or as solutions with quasi-chemical

approximation.
Unmixing
Although no data on unmixed orthopyroxenes are available, a possible un-

mixing can be predicted theoretically. Due to kinetic reasons, data on actual

unmixing may not be available. However orthopyroxenes of suitable compositions
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heated at temperatures close to the critical temperature of unmixing may show

certain structural characters such as domains by the use of electron microscopy.

The conditions of critical mixing are

P GE/ox2==RT/x(1-x) : (2.3)
a2 GE/3x3=-RT (2x - 1)/X2 (1 - x)z (2,4)

Successive differentiation of eyvation (7.10) leads to equations which are
transcendental in character and cannot be solved without an iteration procedure.
For the present purpose it is enough to find an approximate temperature where
the activity-composition diagram shows the same activity over a small composition
interval (Figure 7). From Figure 7.9 we find that the critical temperature is

in the vicinity of 450°C and the critical composition is about :éggx = (.83,

At 450°C, the values of ¥"'/RT and ¥™* /RT are 2.23 and 1,49 respectively.

‘For x%*= (.83, we have s}i1 = 0,75 and +¥2 = 0,92,

If M1 site was an independent phase, it would have unmixed into two coexist-
ing phases with the following compositions and proportions approximately:
Mi (Fe) 0.80 M1 {Fe) 0. 20] '

~927, >8%
M1 (Mg) 0.20 M1 (Mg) o.sof

I

For the above values of x¥1, xM2 remains nearly the same and we have
F

FeM1 -0.80 M20.928

>02%
Mg M1 0.20 M20.072

. e e .
RO U T el A R e

R
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FeM1 0.20 M20.92

8%
Mg M1 0.80 M20.08

The first of the above tvio represents the right direction towards unmixing,
However, we cannot explain wit: above model, kow a complete unmixing results
at this critical temperature and composition. If the unmixing takes place via
domain formation, it is obvious that the best experiments would be to examine
the crystals with x %P between 0.80 to 0.85 and which are heated between 450

Fe
to 500°C.
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Table 7.1

Values of Equilibrium Constant X,,, AG;, and the Constants W MU ang "2

Cal/mole

r°c K, a wni WM 6G7,

500 279 2893 1919 1959

600 277 2390 1577 2233

700 273 1916 1215 2509

800 289 1641 1057 2646 -
. 900 .298 1338 834 2818 -
1000 311 1102 670 2949
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Table 7.2

The Three Constants 4,, 4; and 4, Obtained by a Least Squares Fit
to Equation (7.8). The Values in Brackets are Values
Calculated by Using (7.9-7.11)

T°C Ao Al A2
500 1542 (1544) 494 (478) 871 (867)
600 1277 (1278) 233 (287) 454 (461)
’ 700 976 (951) 251 (199) 321 (335) B
] 800 652 (693) 165 (168) 298 (260)
900 548 (529) 159 (170) 143 (163)
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Takiz 7.2

Quasi-chemical Parameiers #¥* and ¥"? and X, as Calculated by (7.16)

— ;
Chi?
, M1 M2 Simple

T°C K. L Lol QC "D

RT RT mix,
\ 600 0.293 1.71 1.26 .027 017 -
800 0.272 6.733 0.469 .007 004 -

Y 2w /K {colculated) - K {by least squares)} %
i K (by least squares)
o ;
\
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M2 M1 M1 M2

OMg?* @Fe?t

Figure 7-1. Mg?*Fe2*order-
' ing scheme in an
orthopyroxene

(Ghose, 1985).
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- M1
. . x Fe j':..
Figure 7-2. Distrikution iso’therms'f,er the Mg2*-Fe2™ parfitioning between M1 and M2 sites P

in heated natural orthupyroxenes (Saxena and Ghose, 1971). The curves are
least squares fit to the experimental data using ‘simple mixture’ model for the
sites. '
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Figure 7-6. Thermodynamic functions of mixing in orthopyroxene at 600 °C,

both ot the sites and in the crystal as a whole plotted against

xg:". The functions of mixing at the sites correspond to the

: atomic fractions at M1 and M2 which in turn correspond to an

equilibrium distribution at 600 °C in the crystal with xfgp" as -
R PR T . “e

measured on the abscissa. AG' is

% | {0cM) - xM2/2y 169,
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Figure 7-7. Thermodynamic functions of mixing in orthopyroxene
ot 800 °C plotted similarly as in Fig. 7-6.
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Figure 7-8. Activity compesition relation for FeSiQ 4 in orthopyroxene crystalliie
solution using "simple mixture’ and quasi-chemical models for the sites.
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Figure 7-9. Activity-composition relation in orthopyroxene at 450 "C which is close ﬁj‘
to the temperature of unmixing the critical composition is estimated to ;

be X =0.83.
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Section 8
CRYSTALLINE SCLUTIONS AND GEOTHERMOMETRY
The concept of metamorphic facies evolved through the attempts of the
petrologists to distinguish the mineral assemblages formed at different P and
T in the field. In several cases, the experimentalists have simulated the physical-
chemical conditions of the formation of rocks in the laboratory. However, relevent
thermodynamic data on the rock forming minerals is meagre and causes difficulties
in making 2 meaningful interpretation and in checking the validity of most experi-
ments. From our existing knowledge, it is only possible to obtain certain quali-
tative to semi-guantitative estimates of P and T of the formation of a mineral
assemblage. Such methods are based on the knowledge of the chemical reactions
which ocecur as a resuit of changing P and T within ard in between the crystalline

solutions.

This section is not a review of the methods of geothermometry. Ingerson
(1965) has made an excellent review of such methods, We shall be iainly con-

sidered here with coexisting crystalline solutions and their thermodynamic

properties of mixing as a function of £ andT.
P )

Inter-crystalline Equilibria

Distribution of 4 component between coexisting simple mi;ctures

Let us assume that we have data on the distribution of a component A betWeen
two binary phases (A, B) M and (A, B) N. The distribution data covers a large
compositional range in both the phases. Let (A, B) M be a simple mixture whose
activity-composition relations are known at several different temperatures but

the activity—comp'osition relation in (A, B) N is unknown, If the form of the
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distribution isotherm, whose temperature is unknown, does nut indicate (A, B) ¥
to be too non-ideal, we may assumec that the distribution follows the following
equation:

e

’ We
ln[\::anD-i-;_\:T(1-2xge)-—ﬁ(1-2x€e)

(8.1)

where K is the equilibrium constant, Kn the distribution coefficient and a and 8

represent (A, B) M and (A, B) N respectively.

To find the temperature of the distribution isotherm (considering that the
effect of P is negligible on the equilibrium constant K), we may assume the
temperature to be T X and solve equation (8.1) by a least squares method. We
repeat this work by assuming various temperatures T . T3 etc. In practice we
could rely on geologic evidence to fix the limits 7, and T, within which the
actual temperature of the ion-+xchange equilibrium mighs; lie, These calculations
vield a set of 2 and¥# values at temperatures T, and r,. Such values of g«
at Ty and T, differ from the experimental values of ¥* at these temperatures
because of the actual temperature of the isotherm being different from the
assumed T, or T,. We may, therefore, plot the calculated values cf ¥ and the

experimental values of W* against T s in Figure 8.1. The intersection of the

- two lines yields the temperature of the disiribution isotherm.

This method was used by Saxena (1971} in estimating temperature of crys-
tallization for coexisting pyroxenes in the metamorphic rocks. Unfortunately:
most minerals are not binary solutions and many of those which are quasi-binary

may not be strictly symmeiric simple mixtures.
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Distribution of NaAlSi, O, between coexisting plagioclase and alkali feldspar

Barth (1956, 1962) proposed that the ratio mole fraction of allite (Ab) in
alkali feldspar: mole fraction of albite (Ab) in plagioclase varies linearly with
inverse of absolute temperature. This is true if mixing of the end members
Ab and Or (orthoclase, KAISi O,) and Ab and An (anorthrite, Ca Al Si O,) is

ideal or nearly ideal in the compositional range.

The properties of sanidine crystalline solution has been studies by Tucmpson
and Waldbaum (1968, (1969) and by Thompson (1969a). Even in the high temperatu
range 700 to 1000°C, the solution deviates significantly from ideal mixture.
Similarly it is expected that there will be sigrificant deviation from ideality

in the plagioclase feldspars.

Plagioclase and sanidine may be ¢onsidered as twe térnary solutions at a

certain P and 7, we have the following ion-exchange reactions

Plagioclase, Sanidine
NaAlSi 0, ©NaAlSiQ, (8.2)

b4 A p - (8|3)
K A].Slsos TK f\lSlaos

- \ v * - 8-4
CaAl,Si,0,& CaAl,Si0, , (8.4)

The corresponding equilibrium constants are

. S r8
%y f
S'/aPl _ TAb J Ab

K.=a =

2 Ab” T Ab xPl fpl

“Ab 1 Ab

- S s

_ .5 pl _ OrloOr
K3 = am/i’or =

Pl sP1
xOr fOr
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S s s

K. = aAn . % An fAn
s = -

Pl Pl Pl

Tan  Zan | An

where x = Ab/Ab + An + Or. The activity coefficients / are functions of P, T and

the ratio of two of the other mole fractions.

In actual practice, we may simplify the situation somewhat by assuming

that both sanidine and plagioclase are binary solutions., Therefore we write K,

as

S S
K = Ab “fAb
275 1
P P

%ab  [ib

where x5 = Ab/Ab + Or in sanidine and &1 = Ab/Ab + An, (S is now a function
of P,T and xib , and similarly f 1;‘13 . Even in the simplified case, we have to know
the activity-composition relations in bothsanidine and plagioclase solutions, |
The activity-composition data on sanidine crystalline solution is available

= (Thompson and Waldbaum 1968, 1969b) but we have yet to learn about the pla-

' gioclase crystalline solution, Only sanidine and high temperature plagioclase |
have been considered above, The temperature estimate at lower range of

temperatures is further complicated by the structural changes in the feldspars

as a function of T and composition.

Distribution of Fe and Mg in Coexisting Minerals

The use of the distributibn coefficient involving two multicomponent minesals

: - ..
Tane o U RRTETE L L EERRTINS
.3»,,‘%;}@"“1'?%?42‘{3-" R v E .

P>

in problems of petrogenesia is severely limited. The distribution of Fe** and

5
b

. "ﬁ

Mg?* between coexisting garnet and biotite is one example. Such a distribution
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is a function of 7, T and the concentrations of Mn and Ca in garnet and of A1%",
Fe®" and Ti in biotite (Kretz, 1959, Albee, 1965, Sen and Chakraborty, 1968,

Saxena 1968c).

Fortunately garnet-biotite pair is one of the most investigateqd pairs and
several chemical analyses are available in literature, It is, therefore, possible
te improve the usability of the K, by analyzing its compositional depen.deiz.ce by
a multivariate statistical analysis. Saxenz (1969b) used the 'principal compcnent

analysis' and obtained the 'transformed distribution coetficient' as

Transf. K, = 0.5013 K}, - 0.4420 x§2" + 0.1506 x5! - 0.3474 xEAF
+0.0865 x&2* ~ 0.0333 x;iw - 0.3165 x‘;iw
+0.5488 =21
where x, is Fe?* /(Fe?* + Mg), K, is xpi gar /xgar z2% and the other 's rep-
resent ions on 12 O basis in garnet and 22 O basis in biotite, The transformed
K, could be shown to vary systematically with temperature inferred on geologic
evidence. Figure 8.2 shows the use of such a transformed K, in estimating the
temperature of crystallization of rocks containing garnet and biotite. Using
this method of estimating temperature, Dennen, Blackkurn and Quesada (1970)
obtained an average temperature of 650°C for certain Grenville gneisses which
agrees well with their independent estimate based on the _concerz-ﬁration of A1%*
in quartz. Some of the garnet compbsitions pafticularly from low grade met-

amorphic rocks may represent zoning. Therefore, there is further possibility

- of improving the quality of the transformed K|, as a temperature indicator. It

is assumed that P variation between 4 to 8 Kb does not change X and other

substitutional relations significantly.
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Concentration of Ca®’ in clinopyroxene

The concentration of Ca?* in clinopyroxene coexisting in equilibrium with
orthepyroxene may be used to estimate the P and T of crystallizstion of the
rock., The solvus relations in the systems enstatite diopside (Davis and Bovd,
1966, Warner, 1971) and ferrosilite-hedenbergite (Lindsley and Munoz, 1969) may
he used for this purpose. Change in P has only slight influence on this relation-
ship (Davis and Boyd, 1966a, Warner, 1971). The main uncertainty in such esti-
mates arise due to the fact that climopyroxene in natural assemblages are not
binary solutions. Even if the concentrations of A1%*, Fe3* and Ti*" are neglected,

we still have to reckon with a ternary solution with Fe2t, Ca?2t and Mg 2+,

Intra-crystalline Equilibria

i Order-disorder -

Chiemical reactions within the crystal involve the order-disorder phenomena
or the distribution of cations in the nonequivalent structural sites. The distri-
bution isotherms for Fe 2*-Mg distribution between M1 and M2 sites in ortho-
pyroxene shown in Figure 7.1 may be used to estimate the temperature of

equilibrium for the intracrystalline ion-exchange reaction. Figure 8.3 shows

a geothermometer for this purpose. A knowledge of the distribution coefficient i
K, for the ion-exchange equilibrium
Fe?* (M2) + Mg?* (M1)= Fe2* (M1) + Mg2* (M2)

and x%‘; in the orthopyroxene is enough for estimating the equilibrium temperature,

The intracrystalline ion-exchange is a rapid process. The ion-exchange,
therefore, -continﬁes even after the crystallization has been completed and untii

the rock has cooled below a certain critical temperature. If the rock is quenched
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as certain meteoritic bodies and some voleanic lavas, the intracrystalline
equilibrium temperature would correspond to the temperature of the formation
of the rock, In all other cases this temperature will be much lower than the
actual temperature of crystallization. More information on the cooling rates of
the rocks and the kinetics of ion-exchange process is necessary for estimating

the temperature of crystallization of the mineral assemblage.

The peristerite solvus

Many crystalline solutions show unmixing below a certain critical temperature.
This property may sometimes be used as an indicator of P and 7. Plagioclases
(An, to An,g) unmix into two phases with comppsitions in the range An,_, and
An,._,; below a certain critical temperature. This temperature has not been
determined but it probably lies below 600°C which is the {emperature of Al-Si
ordering in the plagioclase (see Ribbe 1960, 1962, Brown, 1960, 1962). An ex- '
perimental determination of peristerite solvus could be very useful for estimating
temperature of crystallization. Crawford (1966) has made a useful study of the
composition of plagioclases in rocks of varying metamorphic grade. Such pet-
rologic studies should be useful to those who are attempting to fix the peri_sterite

solvus experimentally,

In the system FeS-znS, the amount of FeS in sphalerite is a function of T of

formation (Kullerud, 1953) when FeS coexists as a phase with sphalerite.

Sub-solidus compositional relationships between coexisting phases such as
caleite-dolomite (Goldsmith and Newton, 1969) and forsterite-monticelite (Warner,

1971) may also be used for temperature estimates. It should be possible to
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consider unmixing in some other crystalline solutions such as magnetic (see

Rumble, 1970) as probable indicators of P and 7' in natural assemblages.
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Figure 8-3. Estimation of temperature of intersite ion-exchange equilibrium in orthopyroxene,
Kp is x"él ng/xm; ng' In certain rocks quenched quickly such as some mete-
* orites and vg'cunir:s, the temperature estimated by this method is close to the

temperature of rock formation.
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