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DYNAMIC RESPONSES OF RAILROAD CAR MODELS
TO VERTICAL AND LATERAL RAIL INPUTS

By John L. Sewall, Russell V. Parrish,
and Barbara J. Durling
Langley Research Center

SUMMARY

Simplified dynamic models were applied in a study of vibration in a high-speed
railroad car. The mathematical models used were a four-degree-of-freedom model
for vertical responses to vertical rail inputs and a ten-degree-of-freedom model for
lateral responses to lateral or rolling {cross-level) inputs from the rails. Elastic
properties of the passenger car body were represented by bending and torsion of a uni-
form beam. Rail-to-car (truck) suspensions were modeled as spring-mass-dashpot
oscillators. Lateral spring nonlinearities approximating certain complicated truck
mechanisms were introduced. The models were excited by displacement and, in some
cases, velocity inputs from the rails by both deterministic (including sinusoidal) and
random input functions. Results were obtained both in the frequency and time domains.

Solutions in the time domain for the lateral model were obtained for a wide variety
of transient and random inputs generated on-line by an analog computer. Variations in
one of the damping properties of the lateral car suspension gave large fluctuations in
response over a range of car speeds for a given input. This damping coefficient was
significant in reducing lateral car responses that were higher for nonlinear springs than
for linear springs for three different inputs. Results showed that knowledge of car stiff-
ness properties is needed in order to locate system resonances which need to be avoided.

INTRODUCTION

The recent introduction of high-speed rail passenger service between metropolitan
areas has stimulated considerable interest in the effects of vibration on passenger com-
fort. Vibrations are caused by track irregularities, and reduction of these vibrations at
high speeds is a particularly difficult task.

References 1 to 5 report some of the analytical research directed toward under-
standing the parameters influencing the generation and transmission of vibrations in rail
systems. In all these studies, significant motions and structural characteristics in highly



complicated suspension mechanisms are represented by simple spring-mass-damper
models. In reference 1, accelerations and forces transmitted from the rails were studied
for ranges of spring constants and damping coefficients of a three-degree-of-freedom
model of vertical motion that included railbed flexibility. Lateral accelerations and
forces were studied for a seven-degree-of-freedom model that was also used to explore
yaw stability. Reference 2 is a study of the responses of a simplified model of an auto
ferry transport to transient inputs. In reference 3, a four-degree-of-freedom model is
utilized io show the advantages of a new suspension design over a conventional design in
reducing accelerations transmitted to the car. Reference 4 is a vibration-minimization
study of a three-degree-of-freedom model of an electrically powered railroad car subject
to vertical sinusoidal and random inputs from the rails. In reference 5 a four-degree-
of-freedom vertical model and a ten-degree-of-freedom lateral model were used to
examine a wide variety of parameter variations, including the effects of car bending
stiffness and spring nonlinearity on car response.

Topics not sufficiently considered in previous studies are lateral responses to both
transient and random inputs, optimization that includes the effects of truck-suspension
(equalizer) damping and stiffness, and damping effects in models which include spring
nonlinearities. None of these studies (including the present one) allows for rigid-body
pitch motion of the car; consequently out-of-phase vertical inputs to front and rear

suspensions cannot be considered.

The objectives of the present investigation were (1) to examine the relation between
car spring and damping parameters and car responses when the car is subjected to simu-
lated rail irregularities including sinusoidal and various transient and random inputs, and
(2) to demonstrate a method of minimizing car accelerations by appropriate choices of
spring and damping parameters for the vertical model. The minimization is more con-
cerned with damping than with stiffness because damping properﬁes are assumed to be
more easily adjusted in an actual rail car than stiffness properties.

The linear equations of motion were solved by digital computer programs for the
sinusoidal inputs to both models and for one random input to the vertical model. To
include nonlinearities in the lateral truck suspension system, a real-time simulation
(RTS) digital computer program was developed and utilized. This program involved
numerical integration of the equations of motion in scaled real time. Both linear and
nonlinear acceleration responses to transient deterministic and random inputs were
obtained for the lateral model by means of this program.



SYMBOL.S

Values are given in both SI and U.S. Customary Units. The measurements and
calculations were made in U.S. Customary Units.

Aq maximum acceleration response at steady state for qth degree of freedom
a(t) generalized coordinate for vertical car bending
B lateral distance between bolster springs (see fig. 13(b))
b(t) generalized coordinate for lateral car bending
I:C] damping matrix
Cq viscous damping constant for qth degree of freedom
D dissipation energy
d distance from end of car to center line of trucks (see figs. 1 and 13(a))
E Young's modulus
f forcing frequency, L
27
fq frequency of qth degree of freedom, -C;%
G modulus of rigidity
g acceleration due to gravity
g structural damping coefficient of car in bending or torsion
Srms root mean square of output spectral density in g units

hp vertical distance between car elastic axis and line of action of lateral trans-
former spring (see fig. 13(a))



vertical distance from traction-motor center of gravity to line of action of
lateral equalizer spring (see fig. 13(b))

vertical distance from traction-motor center of gravity to line of action of
lateral bolster spring (see fig. 13(b))

vertical distance between car elastic axis and line of action of lateral bolster
spring (see fig. 13(b))

vertical distance of car section center of gravity from car elastic axis, posi-
tive for center of gravity above elastic axis (see fig. 13(b))

flexural moment of inertia of car cross section

mass moment of inertia of traction motor in roll about its center of gravity
mass moment of inertia of car in roll about car elastic axis, per unit length
torsional constant of car cross section

stiffness matrix

spring constant for qth degree of freedom

length of car (see figs. 1 and 13(a))

mass matrix

traction-motor mass

car mass, mL

transformer mass

mass of car per unit length

viscous damping coefficient for qth degree of freedom

general displacement forcing function



Qo amplitude of forcing function
qlt) generalized coordinate

qq = quo amplitudes of sinusoidal motion in gth degree of freedom in terms of dimen-
dg = 45Q sionless quantities qq and gs

R lateral distance between equalizer springs (see fig. 13(b))

S(t) vertical displacement forcing function at rails (see fig. 1)
Sy(f) input spectral density of vertical model (see eq. (3))

Sq(f) output spectral density of vertical model (see egs. (7) and (8))
T kinetic energy

t time

U potential energy

v car speed

vix,t) lateral bending deformation of car (see eq. (B2))

Wi(x) car bending-mode-shape value at any x

w(x,t) vertical bending deformation of car (see eq. (A3))

X length along car, measured from rear of car

Y(t) lateral displacement forcing function at rails (see fig. 13(b))
Yi(f) spectral density of lateral input at rails

vy A(t) generalized coordinate of lateral translation of traction motor
Ve l(t) generalized coordinate of lateral rigid-body translation of car (see fig. 13(b))



Yg(t)
ZA(t)
zc(t)
zg(t)
OBy

(a2),

Ay (t)

Gco(t)

“q

Subscripts:
A

B

generalized coordinate of lateral transformer translation

generalized coordinate of vertical translation of traction motor
generalized coordinate of vertical rigid-body translation of car (see fig. 1)
generalized coordinate of vertical transformer translation

eigenvalue properties of beam in bending (see eqs. (A8) and (A9))

center-to-center distance between axles of a truck suspension system (see
egs. (11) to (14))

displacement relation in lateral bolster springs for nonlinear spring behavior
(see eqs. (15))

increment of vertical displacement at rails associated with cross-level (or
rolling ) displacement input (see fig. 13(b))

spectral density of cross-level input at rails

generalized coordinate of car in rigid-body yaw

generalized coordinate of traction-motor rolling degree of freedom
rigid-body roll and torsion of car (see eq. (B3))
generalized coordinate for rigid-car roil

wavelength for wave input
angular forcing frequency, 2uf, rad/sec

angular frequency of gth degree of freedom, waq, rad/sec

identifies properties associated with the traction-motor-equalizer system

denotes vertical car bending frequency



d associated with car

cl identifies structural damping coefficient of car in lateral bending; also,
lateral car acceleration (see table III)

cT identifies structural damping coefficient of car in torsion

cv identifies structural damping coefficient of car in vertical bending
f identifies forward trucks

g associated with transformer

L identifies energies and car bending stiffness of lateral model (see appendix B)
l identifies properties of traction-motor-lateral-equalizer system
B denotes lateral car bending frequency

lc identifies properties of lateral bolster spring-damper system

lg identifies properties of lateral transformer spring-mass system
m integer associated with mth car bending mode

o] identifies amplitude of forcing function

oT identifies bolster rigid-body damping coefficients and frequency

q identifies general degree of freedom

r identifies rear trucks

s identifies properties of vertical bolster spring-damper system

T associated with car torsion
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v identifies energies and car bending stiffness of vertical model
a identifies roll stiffness and damping properties of traction motor

Dots over quantities denote differentiation with respect to time. Bars over quanti-
ties denote maximum amplitude in acceleration transfer functions.

ANALYSIS OF VERTICAL MOTION

Equations

Mathematical model.- The mathematical model used in the analysis of the vertical
motions of the railroad car is shown in figure 1. The model consists of a uniform beam
representing the railroad car, a heavy mass Mg attached to the center of the car by a
spring and damper (this mass represents an electrical transformer used in powering the
railroad car), and two masses M, attached by springs and dampers to the car and to a
vibrating base representing the rails. The masses My represent the flexibly mounted
sections of the truck frame and traction motors in the suspension system of the railroad
car. For convenience in further discussions, each mass Mp with its attached springs
and dampers is referred to as a truck suspension, the mass M, is called the traction
motor, the spring-damper combination between this mass and the car is called the
bolster, and the spring-damper combination connecting the traction motor My to the
rails is called the equalizer. A schematic view of the truck suspension system is shown
in figure 2. The wheels, axles, and side frames (supporting the equalizer springs) are
considered to be part of the rails, and the connections between the axles and traction
motors are not taken into account in the model. In addition to the viscous dampers in the

transformer and truck suspensions, structural damping is included in the car. The
degrees of freedom considered are car rigid-body displacement, z.(t); car bending
motion, w(x,t) =a(t)w(); transformer displacement, zg(t); and traction-motor displace-
ment, zA(t). The model is symmetric about the middle of the car, and the same rail
input is applied simultaneously to both truck suspensions; therefore, both traction motors
have the same motion, and only one degree of freedom z, is required. With different
inputs to front and rear trucks, separate degrees of freedom are required o specify the
vertical motion of the front and rear traction motors, and rigid-body pitch would also
have to be included.

The equations of motion of the mathematical model are derived in appendix A. The
matrix equations of motion are of the form:

[(M]{a) +[c]{a) +[x{a} = (@} +{& (1)



where the column matrix {q} contains the displacements af(t), zq(t), g(t), and
z,(t). In equation (1) [M] is the mass matrix, [C] is the damping matrix, [X] i
the stiffness matrix, {Q} is the displacement input, and {Q} is the velocity mput

Rail inputs.- The time history of the rail input used in this analysis was either
sinusoidal or random. The sinusoidal input is

Q(t) = Sg sin wt

(2)
Q(t) = Sow cos wt

where w is the input frequency and S, is the displacement amplitude. The random
input is given by the spectral density variation identified as '"'middle estimate’ in figure 8
of reference 4 and is based on measured railroad roughness data. The spectral density
for this displacement is

46.9 % 10-5

5 64 cm?2/Hz
£2.

Sy(f) =

(3)
_7.27%X 1079, o
=" es /M

f being the input frequency in hertz. The root-mean-square (rms) amplitude of this
spectral density is 1.113 mm (0.0438 in.) for a frequency range of 0.1 to 10 Hz.

Acceleration transfer functions.- With sinusoidal input (egs. (2)) and the assump-
tion of sinusoidal motion in the form

{q(t)} = {ql} sin wt + (qz} cos wt

equation (1) leads to the equations:
6] - 2] {ay) - @[€]{a,) = (@)
w[€]{a;) + K] - «?Di]] (55} =4(@y)
The elements of the matrices [K], [M], [C], {ql} () {Ql} and {Q,) are

given in appendix A. Equations (4) are solved for ql} and [y} by using standard
digital computer routines. From the solution of equations (4), the amplitude {q}
determined by use of the relation

= _ [-2 -2 .
q] = q1] + q2] sin (wt + d’]) (5)

(4)



Qo
where Q%j + 51%3 is the response amplitude and 11/]. = tan'1 -(_l—zi is the phase angle.
V 1i
In this paper, as in reference 4, no results are presented for the phase angle zl/j.

On the basis of equation (5), a general expression for the steady-state acceleration
response to sinusoidal input, or transfer function, may be written as
2 2

_ w2 |2 43 |
qu = wQq qu+q2]- 6)

The expressions for transfer function at different model locations are given in the fol-
lowing table:

Locatic‘)_rilr 1 - 'ch“celeravtt;onfrf.?sfer~fu;;:;ion B i
car A'ggs—(xo) - %_2\1 [51W(X) + 2, 1]2 ¥ I}ZW(X)+—Z;2jT2
Transformer g;ﬁo - %2_ E‘?gl + 222
Traction motors gi;% = %2_ ZAI . 2A2
o R B

The two car locations for which acceleration transfer functions were studied were the end
of the car (x = 0) and the middle of the car (x = L/2).

Spectral density.- The spectral density of the acceleration response at a given
model location is obtained from the transfer function and the spectral density of the
input Sp(f) by the equation

Ay
S =| —=
o =55 ) Si® (1)
The root-mean-square value of Sq(f) in g units is obtained from
1/2
fe
8rms = g Sq(f) df (8)
th

The integration limits f;, and f, were taken as 0.1 and 10 Hz, respectively, for this

study.
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Optimization Procedure

Sinusoidal input.- With the sinusoidal input, the objective of the optimization was to
minimize the largest value of the acceleration transfer function occurring between 0 Hz

and 20 Hz. The procedure used was the same as that used in reference 4. The first step
in this procedure is to generate transfer function curves such as shown in figure 3 for a
range of values of one of the system parameters. The next step is to plot the value of the
transfer function associated with a given peak (determined from curves such as those of
fig. 3) as a function of the varying system parameter. For example, figure 3(a) shows
that peaks occur at about 1 Hz and 8.3 Hz in the transfer function at the end of the car,
and figure 4(a) shows the variation of the transfer function associated with each of these
peaks as the transformer frequency is varied. Similarly, parts (b), (¢}, and (d) of
figures 3 and 4 show where the peaks occur for other positions in the model and how the
peak values vary with transformer frequency. The frequency range associated with each
peak is shown next to each curve in figure 4.

The next step in the optimization is to identify a curve which shows the largest
value of transfer function for each value of the varying parameter. Such a curve is
called a maximum acceleration function and is indicated for each model location in
figure 4 by the segments of the curves joining the circular symbols. A value of the
varying parameter that minimized the maximum acceleration function is then chosen.
Figure 4 shows that a transformer frequency of 6.5 Hz minimizes the maximum acceler-
ation function at both car locations but not at either the transformer or traction-motor
location. In the present study, a value was chosen that minimized the car location
accelerations because they were considered more important from the standpoint of
passenger comfort.

Finally, with the optimum value of the first system parameter, a second system
parameter is varied and the process described is used to determine an optimum value
of the second parameter. In the present study, this procedure was repeated through four
parameters and constituted an optimizing cycle. The cycle was repeated, as in refer-
ence 4, until the value obtained as optimum for a given parameter was the same as the
value obtained in the previous optimizing cycle. Fortunately, no more than two opti-
mizing cycles were required in this study. Figures 4 to 7 show the curves used to deter-
mine the optimum values of the varied parameters (with fo = 4.12 Hz) and are discussed
in the section '"Results of Vertical Motion Analysis."

Random input.- The objective of the optimization with the random input was to
minimize the value of the root-mean-square (rms) acceleration in the frequency band
from 0.1 to 10 Hz. The procedure was to obtain values of rms acceleration for each
model location by using equations (4), (7), and (8) for a range of values of a system

11



parameter. A value of the system parameter was chosen to minimize accelerations at
all locations, if possible, and the value chosen was then held constant while a second
system parameter was varied. Only a single optimization cycle was required to obtain
sufficiently accurate optimum values of the two parameters varied in this study.

Results of Vertical Motion Analysis

Two studies were carried out with the vertical model: (1) an optimization study
based on minimum response of the car and (2) a parameter variation study of the effect
on acceleration transfer function of two parameters that were not varied in the optimiza-
tion study. The full scope of both of these studies is indicated in table I. Table I(a)
contains the values of the constant parameters and table I(b) indicates the parameters
that were varied, along with the value of each parameter used for each figure.

Optimization for sinusoidal input.- The optimization procedure described for the
sinusoidal input was used to determine optimum values of the frequency of the trans-
former and the damping coefficients of the transformer, bolster, and equalizer. The
curves used to determine optimum values are shown in figures 4 to 7, and the values of
the remaining parameters are given in table I. The optimum transformer frequency was
chosen from figure 4 to be 6 Hz. Figure 5 shows that the tranformer damping value
of 0.25 minimizes the transfer function for both car locations and, in addition, results in
near-minimum values of transfer function for the transformer and traction-motor loca-
tions. Figure 6 shows that the transfer function is minimum at the end of the car for a
bolster damping coefficient ng of 0.09 but at the middle of the car for ng = 0.14. The
transfer function is sensitive to variations in bolster damping. In this case, ng was
chosen as 0.11. This value is good for the transformer location but not for the traction
motor, for which the minimum transfer function is obtained for ngz 0.5. Figure 7
shows that optimum equalizer damping is 0.03 for the end of the car but is 0.31 for the
middle of the car. The compromise value of np = 0.1 was chosen arbitrarily, between
the two minimizing values.

Figures 4 to 7 show that it was not possible to choose a value of the varying param-
eter that minimized the transfer function at all model locations simultaneously. This
result was also observed for the three-degree-of-freedom model of vertical car motion
studied in reference 4. Because of this result, care must be taken in a real rail car
situation that an optimum value of a system parameter chosen to minimize acceleration
at, for example, a car location does not result in excessive acceleration at another loca-
tion, such as the traction motors. The factors to be considered when the accelerations
at both car locations cannot be minimized together, such as those shown in figures 6
and 7, are discussed in reference 4.

12



The results shown in figures 4 to 7 were obtained by using an equalizer spring
value that resulted in an equalizer frequency of 4.12'Hz. The study represented by
these figures was repeated with an equalizer frequency of 5.53 Hz (a stiffer equalizer
spring). The values of the other nonvarying parameters were the same as those shown
in table I(a) for figures 4 to 7. The optimizing curves with the equalizer frequency
fa = 5.53 Hz were qualitatively very similar to the curves shown in figures 4 to 7; the
optimum values of the varied parameters are compared for the two equalizer frequencies
in table II. This table shows that the optimum values of only transformer and bolster
damping were different for the two equalizer frequency values. Moreover, the transfer
function with f, =5.53 Hz was insensitive enough to variations of transformer
damping ng to insure that a value of ny = 0.25 would be an acceptable value.
Figure 6 shows, however, that transfer function is very sensitive to variations of bolster
damping ng; therefore, the difference between ng =0.057 and ng =0.11 is signifi-
cant. These results indicate (as might have been expected) that the value of the equalizer
spring is important in determining one of the optimum damping values, bolster damping.
In this particular case, the equalizer spring value is not important for the other param-
eters fg, Ng, and Ny

Optimization for random input.- By using the optimization procedure previously

described for the random input, optimum values of bolster and equalizer damping coef-
ficients were determined. The results are presented in figures 8 and 9. The values of
all other parameters were the same as those for the sinusoidal input study of figures 4
to 7, as shown in table I. The values of transformer frequency and damping were not
varied; however, the optimum values from the sinusoidal input study were used.

Figures 8 and 9 both show that the rms acceleration, in general, was insensitive to varia-
tions of bolster and equalizer damping. Figure 8 shows that a bolster damping coeffi-
cient of about 0.3 is a good value for minimizing rms accelerations. In spite of the
insensitivity of rms acceleration to variations of bolster damping, the value of ng =0.11
as determined from the sinusoidal study has rms accelerations at the car location about
30 percent greater than those for ng = 0.3. Therefore, these rms studies indicate that
a higher bolster damping value is required to minimize rms accelerations than is
required to minimize peak acceleration transfer functions. This result is in agreement
with the results for the three-degree-of-freedom model of reference 4, where, with no
mass between the rails and the car, it was shown that the optimum suspension damping
values were larger for random inputs than for sinusoidal inputs. Figure 9 shows,
however, that rms acceleration is so insensitive to variations of equalizer damping (for
the particular values used for the other system parameters) that any value between

np =0 and np =0.5 may be chosen without penalty to rms acceleration.

13
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The rms values shown in figures 8 and 9 were obtained from spectral densities of
the type shown in figure 10. These particular spectral densities apply to the optimum
values of ng and np =0.30 from figure 9 and show a concentration of energy at the
low frequency range (around 1 Hz) for the two car locations and the transformer. For
the traction motors, the energy concentration occurred in the higher frequency range,
near 5 Hz.

Parameter variation.- Car bending frequency fp and car weight Mgg were held
fixed at 8 Hz and 574 kN (129000 1b), respectively, for the optimization studies, and the
structural damping coefficient g,y was taken equal to zero. To determine how these
properties might interact with other parameters in the model, including those chosen
for optimization, transfer functions were obtained for wide variations of car bending
frequency and car weight and for a nonzero structural damping coefficient. Maximum
values of the peak acceleration curves (maximum acceleration functions as described in
section ""Optimization Procedure') and their associated frequencies are plotted for the
two car locations as functions of bending frequency in figure 11 for an arbitrary non-
optimum configuration. Variations of acceleration transfer functions with car weight are
shown in figure 12 and were obtained by varying both car weight and bending frequency,
car bending stiffness being assumed to be fixed at a value corresponding to fg = 8.0 Hz
and Mqg = 574 kN (12500 lb). The values of all parameters used to generate fig-
ures 11 and 12 are shown in table I(b).

Figure 11 shows that the acceleration transfer function with no car damping has a
maximum value for both car locations for a car bending frequency value of 3 Hz. The
value of transfer function at its maximum is about 8.5 and 3.9 times the value at
frequencies above 6 Hz for the end of the car and the middle of the car, respectively.
This sensitivity suggests the need for knowing the bending frequency of a given rail car
and its possible variations in service so that large values of acceleration can be avoided
by proper design of the system. Figure 12 shows that car acceleration transfer functions
were relatively insensitive to wide variations in car weight.

Comparison in figure 11 of the solid curves for zero structural damping with the
dashed curve for structural damping (gcv = 0.05> shows that a small amount of structural
damping causes large decreases of acceleration transfer function within the frequency
range of resonance (<6 Hz). However, if, by proper design, this range can be avoided,
structural damping becomes of minor importance, as indicated by the virtual coalescence

of the curves of figure 11 away from resonance.
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ANALYSIS OF LATERAL MOTION

Mathematical Model

Views of the mathematical lateral model and its coordinate system are shown in
figure 13. Viscous damping representation is omitted for figure clarity. The motion of
the model is governed by equation (1), and the matrix elements for this equation are
derived in appendix B in the same manner as that used in appendix A for the vertical
model except for differences in certain strain-energy terms due to the nonlinear lateral
bolster springs. Car motion is represented by the torsional and lateral bending of a
uniform beam. As in the case of the vertical model, linear viscous damping is assumed
for the lateral truck and transformer suspensions and structural damping for the car
itself. Symmetry about the center of the car is assumed in lateral as well as longitu-
dinal directions.

Degrees of freedom.- The lateral model consists of ten degrees of freedom identi-
fied as follows:

Car lateral bending mode, b(t)

Car rigid-body lateral translation, y.(t)

Car rigid-body roll, 6,g(t)

Car first torsion mode, 6,1(t)

Car rigid-body yaw, 7(t)

Transformer lateral translation, yg ®

Lateral translation of rear traction motor, y Ar )

Lateral translation of forward traction motor, yAf(t)

Roll of rear traction motor, 6, (t)

Roll of forward traction motor, 6,¢(t)

The car is free to twist about a longitudinal elastic axis (designated in fig. 13(b)), and

the first torsion mode shape of the car is given by cos IX. The total bolster spring

constant kg and damping constant cg for each truck ;Jre divided equally between the
springs and dampers located symmetrically beneath each side of the car, as shown in
figure 13(b). Similarly, the total equalizer spring constant k A and damping con-
stant c, in each truck are each divided equally between the springs and dampers
connecting the traction motors to the rails. Both rigid-body roll and torsion (GCO(t) .
and Gcl(t)) are resisteg by the bolster springs and dampers. The spring constant A
and damping constant —— over each rail represent the combined stiffness and damping
of separate equalizers actually located near each wheel; that is, there are four equalizers
per truck. Traction-motor roll (eAr (t) and GAf(t)) is assumed to be resisted by this
spring-damper system. Additional stiffness and damping in the equalizer-traction-motor
system are provided by a rolling spring constant k, and a damping constant cy at
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the traction-motor center of gravity, as shown in figure 13(b). The introduction of this
additional stiffness and damping is intended to simulate the complicated linkage and gear
mechanisms between the traction-motor and wheel-axle system in an actual rail car
truck, as illustrated in figure 2.

Lateral stiffness and damping in the transformer and truck suspensions are given
by spring and damping constants that are assumed to approximate lateral shear stiffness
and damping in the vertical transformer suspension, the bolsters, and the equalizers.
The lateral transformer spring and damping constants are designated by klg and c lg
the lateral spring and damping constants of the bolster by k;. and c;., and the lateral
equalizer spring and damping constants are denoted by k; and c¢;. The transformer
properties are assumed to be linear, and the bolster and equalizer properties are also
assumed to be linear between the small solid semicircles in the truck suspension view
(fig. 13(b)). These semicircles represent compressible stops or bumpers, each having
the nonlinear spring function shown in figure 14. This function is based on measured
force-deflection data for an actual truck suspension.

Rail inputs.- The lateral model was excited by lateral and rolling, or rocking, inputs
from the rails as indicated by the horizontal and vertical arrows at the bottom of the
truck suspension view in figure 13(b). The lateral input is designated Ys(t) and Yy(t)
at the forward and rear trucks, respectively. The roll input is identified as cross level,
as in reference 1, and was generated by the differences &;(t) and O0r(t) between
unequal vertical inputs applied to each rail as shown in figure 13(b). This difference was
always applied as the displacement of the right-hand rail (with the car viewed from the
front). In general, these inputs may be written in vector form as

rYf (t; W
Y (1)

50
r

Q(t) =

g

rYf (tﬂ ?
Yo (t)
B¢ (t)
5y (t)

L

N

Q(t) =
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Three classes of input were applied to the lateral model: sinusoidal, transient,
and random as indicated in figure 15. The sinusoidal inputs (fig. 15(a)) may be written in
the general form:

Qf(t) = QOf sin wt 7

Qp(t) = Qor sin (Wt + k) (10)

Q(t) = Qopw cos wt

Qr(t) = Qg pw cos (wt + k)

where w is the input frequency and Qg¢, Quyr = Yofs Yor OF Oof, Oor depending

on whether the model is excited by lateral or cross-level inputs, respectively. The
quantity k represents the phase angle between forward and rear inputs, and the model
was excited with inputs either in phase or out of phase as illustrated in sketch (a). The
out-of-phase option allowed for the influence of car torsion and traction-motor rolling
effects to be examined.

In-phase inputs

Out-of-phase inputs

Sketch (a)
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The three nonsinusoidal deterministic inputs in figure 15 are transients repre-
senting different types of disturbances of finite length A along the rails. The first of
these inputs is a single square pulse (fig. 15(b)) with a constant displacement applied to
the front trucks Qg and rear trucks Qyr in a sequence of time intervals which intro-
duces car speed v as an additional variable through the simple relations

A+ (AL
tl—t0=t3-t2=—v—

L‘Zd-(Al)t—A
tg - tq = - (11b)

(11a)

where ty -t; is the time interval required for the forward truck to roll over the dis-
turbance, tg - t; is the time between when the front truck leaves the disturbance and
the rear truck encounters it, and tg - tg is the time it takes for the rear truck to

roll over the distrubance. If L— 2d - (AZ)t is less than A, corresponding to a long
disturbance, tg - t;{ becomes negative and indicates that the rear truck encounters the
disturbance before the front truck leaves it. The distance (Al)t is the center-to-center
distance between the axles of a truck. The velocity inputs Qg(t) and Q.(t) are
assumed to be zero. Lateral or cross-level inputs were applied in the directions indi-
cated in the foregoing in-phase sketch, and the only phase lag of the rear truck behind

the forward truck was due to car speeoi, in accordance with equations (11).

The second transient input is the square pulse train (fig. 15(c)) which is intended to
reproduce the effect of rail joints as illustrated in sketch (b):

@), —>] ’<— L - 2d -(a2), —ﬁ

S
f___‘i,_. - R
A—>He,\R/2—:q hy
o oo 00,
}(-—)\R——%
Sketch (b)

The length AR is the distance between joints, and A is the gap between the ends of the
rail joints. In the present paper, A was chosenas 2.54 cm (1in.) and AR as
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11.9 m (468 in. or 39 ft). This input is treated as a succession of square pulses applied
to one rail (the right-hand one for the front view of the car, consistent with the foregoing
in-phase sketch). The displacement inputs to each truck are constant and the velocity
inputs are assumed to be zero, as for the square pulse. In addition to equations (11),
two other time-distance relations are involved, namely

A+ (Al)t
tg -ty =—5— (12a)
and

where tg -ty is the time required for the forward truck to roll over the disturbance
due to the gap in the other (left hand) rail, and tg - t{ is the time required for a truck
to traverse the distance between gaps which occur on opposite rails.

The third transient input is a single-wave pulse (fig. 15(d)) which is intended to
simulate the effects of a lateral deviation of the track from a straight course or the bank
on a curve, depending on whether the inputs are lateral or cross level. This input is
governed by trigonometric relations of a form similar to those used in reference 2.

For the forward truck, the displacement input is

Qof 27rv<t - to)
Qf(t) = —2—-—|} - COSs m (133.)
and for the rear truck
Qo 2mv(t - to)
=—=11 - S S— 13b
Q) =— [ ©08 S A, (13b)
The velocity input for this case is
. 2mv(t - t
Qet) = O™ _ i m(t - o) (14a)
A+ (Al)g A+ (Al)
v 27v(t - ¢
Q.0 = o™ ip (- ta) (14b)

T+ (Al)t A+ (Al)t

Equations (11) apply for this input as well as for the square pulse. In the application
of equations (13) and (14), A was varied over a wide enough range to insure that
L - 2d - (Al); - 2 was both positive and negative.
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Random inputs to the lateral model included the functions illustrated in figures 15(e)
to 15(g). Spectral densities identified as 1 and 2 in figure 15(e) correspond to rms ampli-
tudes of 5.08 cm (2 in.) and 2.54 cm (1 in.), respectively. Spectral density 3 is based on
an experimental measurement of random vertical displacements along a 3.2-km (2-mile)
section of test track in the eastern United States, and the rms amplitude was 1.524 mm
(0.06 in.) for a vehicle speed of 49.2 m/sec (110 mph). This input was arbitrarily applied
to the lateral model with a 2.54-cm (1l in.) rms lateral amplitude. Figure 15(f) illus-
trates the square-pulse train input with random amplitudes. Figure 15(g) shows a time
history of a combination of this random-pulse train input with spectral density 4 in fig-
ure 15(e) for a 2.54-cm (1 in.) rms amplitude. This input was also applied arbitrarily
as lateral input to the lateral model. Spectral density and rms inputs are denoted
by Yi{f) and Y,pg for the lateral input and 6yf) and Oypg for the cross-level
input. All these random inputs were applied simultaneously to front and rear trucks.
Velocity random inputs were neglected.

Outputs.- Responses of the lateral model were obtained in the forms of acceleration
transfer functions for the sinusoidal inputs, absolute values of maximum accelerations
in g units for the transient inputs, and acceleration spectral densities and rms values
for the random inputs. Lateral acceleration responses were calculated in the car at
various stations distributed along the longitudinal center line of the car and also for the
transformer and traction motors. Vertical acceleration responses were determined in
the car just over the bolsters and in the traction motors over the equalizers. Accelera-
tion transfer functions for the sinusoidal input were obtained from equations (4) to (6) as
for the vertical model, and particular forms of equation (6) are listed in table ITI for the
lateral model.

Solutions of equations of motion.- Equations (4) and the transfer functions listed in
table IIT were programed on the Control Data 6600 computer system at the Langley
Research Center, as were the corresponding equations for the vertical model. This
program is restricted to linear spring elements. The solutions of equation (1) for the
transient and random inputs in figure 15 were programed, along with equations (11) to
(14), for another Langley computer facility, discussed in the following section, that was
also able to handle the nonlinear spring characteristics shown in figure 14.

Scaled Real-Time Simulation

The presence of the nonlinear springs and the wide selection of inputs previously
described prompted application of another method of solving equation (1) for the lateral
model. This method involved the numerical integration of this equation in time by use of
the real-time simulation (RTS) capabilities of the Langley central digital data recording
facility. In this approach, the ten simultaneous equations represented by equation (1)
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were integrated in the time domain on the Control Data 6600 computer system, and solu-
tions were fed through digital-to-analog converters (DAC) to give time histories of
displacements, velocities, and accelerations in various parts of the model. To insure
sufficiently accurate integrations, the independent variable time had to be slowed, or
scaled, during the computation. A time interval of 1.5625 msec was used in a second-
order Runge-Kutta integration scheme. Results from this program for sinusoidal
inputs were checked with those obtained from the digital transfer-function program. The
sinusoidal inputs of equations (10) could be applied in the RTS program for an arbitrary
phase angle k, whereas the digital solution was programed only for solutions with «
equal to integral multiples of 7 corresponding to in-phase and out-of-phase inputs to
the front and rear trucks, respectively.

An important feature of the RTS approach is the on-line random input capability
represented in the flow chart of figure 16. In this arrangement, band-limited white
noise, which was generated by an analog computer, could be introduced directly through
a cut-off filter, or through a desired shaping filter, into the RTS computer program for
solving equation (1). Outputs of this program and the random input were both fed on-line
into a time series analysis digital program (TSA), in which statistical properties of input
and output were calculated. Spectral density and rms value were the two properties of
interest in this investigation. By appropriate choices of shaping filters, reasonable
approximations to the spectral-density shapes for inputs 3 and 4 in figure 15(e) could be
generated for any desired input amplitude.

Real-time simulation system.- The real-time simulation (RTS) system used to
solve the ten equations of motion provides console control combined with digital accuracy
and convenience. (See ref. 6.) The ten second-order derivatives in equation (1) were
formed and numerically integrated twice during each machine iteration to yield the
velocities and displacements. These operations are indicated on the flow chart of
figure 17. During most of this study, 32 iterations per second (20-to-1 slow) was the
normal iteration rate, whereas 64 iterations per second (10-to-1 slow) were used when-
ever possible.

Random studies.- An Electronic Associated, Incorporated (EAI) 231-R analog
computer was programed with appropriate filters and a mean and rms control circuit to

produce desired random inputs to the mathematical model from an analog Gaussian

noise generator. This equipment is represented by the random-input (or noise gener-
ator) box in the flow chart of figure 16. Outputs from the mathematical model were
directed to an on-line TSA program located at a separate control point of the RTS system.
This program computes mean values, standard deviations, chi-square tests for normality,
histograms, autocorrelation functions, and power spectral density functions (PSD) for its
input channels. These statistical properties are discussed in detail in reference 7. A
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CDC-250 cathode ray tube (CRT) was used to display linear or log-log plots of the PSD
values generated by the TSA program. Control stations such as those used for solving
the equations of motion, operation of the TSA program, and operation of the CRT are
shown in figure 18. Also shown are a CRT console and the time-history recorders, each
capable of displaying 8 different displacements, velocities, or accelerations.

Visual car display.- An oscilloscope display showing a front cutaway view of the
car at the forward truck was driven by a program on the GPS 10000 iterative analog
computer. As indicated in figure 16, this analog program transformed DAC outputs from
the mathematical-model solution into signals for the scope display. This display was of
small analytical value because of the 20-to-1 or 10-to-1 time scales but was useful for

demonstration purposes.

Results of Lateral Motion Analysis

The presence of eight spring elements and eight dampers in the lateral model
requires the use of a computerized algorithm for minimizing vibration levels in the
system. The trial-and-error cycling approach utilized in a limited optimization of the
vertical model, with eight system elements at most, was considered to be impractical
for the lateral model. Instead, the analytical tools previously described were exploited
to obtain trends of acceleration responses to inputs involving realistic ingredients for
lateral and cross-level rail disturbances. Parameter variations included realistic rail
car values, and the widest variations were made for the sinusoidal inputs utilizing the
transfer-function digital program. The RTS capabilities were employed to explore
(1) relations between car speed and damping coefficients in the truck suspension and
(2) nonlinear spring effects for the transient and random inputs. Some effects of input
wavelength were also considered. The full scope of this study is given in tables IV
and V. The fixed properties are listed in table IV, and the values of the variable prop-
erties and inputs in each of the figures are presented in table V. Inputs in table V are
identified according to the appropriate parts of figure 15.

Results for sinusoidal input.- Typical acceleration transfer functions for various
stations in the lateral model are shown in figure 19. With all damping coefficients
reduced to 0.001 and the car structural damping coefficients set equal to zero, peak
acceleration responses occurred near the uncoupled frequencies of the system. The
existence of only a few peaks in figure 19 is attributed to the moderate to high damping
levels indicated by the values listed in table V for this figure. A dominant peak
at 0.44 Hz occurred frequently in the car and transformer responses as shown in
figures 19(a) and 19(b). The response was sensitive to the magnitude of the lateral
bolster damping coefficient nj.. Other parts of the model experienced dominant peak
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accelerations at higher frequencies for the cases considered, as is evident, for example,
in figures 19(c) to 19(e).

All ten degrees of freedom were retained in nearly all the studies; however, the
effects of deleting traction-motor rolling degrees of freedom (GAr (t) and OAf(t)) and of
changing traction-motor stiffnesses (kar and kaf) were given limited attention. The
effects of these parameter variations are compared in the transfer-function plots of
figures 20 and 21. Figures 20(a) and 20(b) show only a 7-percent reduction in maximum
lateral car accelerations to lateral in-phase inputs because of the complete elimination
of these rolling degrees of freedom and about 4-percent reduction with traction-motor
rolling stiffnesses increased from kg, =kgs = 26.8 to 101.5 MN-m/rad (corresponding
to 2.375 x 108 to 9.00 x 108 in-1b/rad and to a frequency increase from f, = 18 Hz to
35 Hz). Somewhat larger effects on the vertical bolster responses are evident in fig-
ure 20(e). Figure 21 shows still larger effects of traction-motor rolling stiffness on
maximum acceleration responses to cross-level out-of-phase inputs. Lateral end-of-
car response (fig. 21(a)) and the vertical response over the bolster (fig. 21(c)) are each
reduced by about two-thirds with f, increased from 18 to 35 Hz; however, these
maximum responses occurred close to 18 Hz, and at lower frequencies within the range
of interest of this study, these effects are seen to be much smaller. In general, changes
in car accelerations due to these variations in traction-motor stiffness and rolling
degrees of freedom in figures 20 and 21 are considered to be small by comparison with
the effects of other parameters in the model.

Maximum values of peak acceleration curves are shown as functions of frequency
(that is, spring) and damping parameters in figures 22 to 29 for sinusoidal inputs.
Frequencies associated with these peak accelerations are identified at points along the
curves. Figure 22 reveals a resonant region of significantly increased lateral car
accelerations due to lateral car bending frequencies (eq. (Bl6a)) falling within range of
other frequencies of the model. These trends are similar to those observed in figure 11
because of vertical bending frequencies. The great reduction in lateral car accelerations
due to car structural damping in this resonant region is similar to that observed in
figure 11 for the vertical model. Likewise, with lateral car bending frequencies well
removed from the other frequencies of the system, lateral car accelerations were
greatly reduced and were insensitive to variations in structural damping, as were verti-
cal car accelerations in figure 11. For a lateral bending frequency of 8 Hz, the maxi-
mum transfer function was about 0.25 g per inch at both the end and middle of the car and
occurred at a frequency of 0.44 Hz. The results in figure 22 were obtained with lateral
in-phase inputs from the rails.

Maximum lateral car acceleration responses to out-of-phase lateral and cross-
level inputs are plotted as functions of car torsional frequency in figure 23. Lateral
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responses in figure 23(a) are seen to be constant over a wide range of torsional fre-
quencies and significantly reduced with fp less than about 5 Hz. The effect of cross-
level inputs in figure 23(b) is somewhat reversed, maximum acceleration responses
increasing as fp is moved beyond the range of other system frequencies. It may also
be observed that the lateral car responses to lateral inputs were higher than the lateral
car responses to cross-level inputs, and this result is a general one of this study not
only for the sinusoidal inputs but for the other inputs as well. Higher car responses to
lateral than to cross-level inputs were also obtained in reference 1. The large varia-
tions in response shown in figures 22 and 23 indicate the need for accounting for car
lateral bending and torsional stiffnesses in analyzing car vibrations. Comparison of the
trends in figure 23, particularly figure 23(b), with those in figure 22 suggests that tor-
sional stiffness plays a smaller role than bending stiffnesses in car vibrations.

Variations in acceleration transfer functions with car weight are shown in figure 24
for out-of-phase inputs. These variations were obtained by varying car weight, rolling
moment of inertia, lateral bending frequency, and torsional frequency with car bending
and torsional stiffness assumed to be fixed at values corresponding to f; g = 8.0 Hz,
fp = 16.0 Hz, Mg = 574 kN (129000 1b), and Igp = 3090 kg-m (695 lb-sec2). Although
the trends differ from those shown for the vertical model in figure 12, the effects of a
wide variation in car weight on lateral car transfer functions are small, as these effects
were for the vertical car transfer functions.

The flexibly mounted transformer beneath the middle of the car acted as a vibration
absorber for reducing lateral car accelerations in an analogous manner to its role in
reducing vertical car accelerations in the vertical model. The peak responses in
figures 25 and 26 show reductions that were obtained for a wide range of transformer
frequencies and damping coefficients with all other parameters held constant at the
values listed in tables IV and V.

A vibration-absorber role can also be assumed for the lateral truck suspension.
However, the present trend study was limited to the effects of damping with fixed spring
parameters. Thus, with fixed lateral bolster and equalizer frequencies, lateral bolster
and equalizer damping coefficients were varied and reductions in peak acceleration
curves obtained as in figures 27 and 28. The results in figure 27 show relative minimum
lateral car accelerations at different car locations for different bolster damping coeffi-
cients due to lateral in- and out-of-phase inputs. In this case, structural damping has
the effect of widening these differences in the bolster damping values for minimum
acceleration responses. Similar results are shown in figure 28 for the equalizer damping
variation, except for the effect of structural damping which is not included. Figure 29
shows the relative minimum of peak lateral car accelerations at different values of
bolster roll damping coefficient for in-phase and out-of-phase cross-level inputs. With
car torsional structural damping included, out-of-phase responses were sharply reduced

24



with a minimum lateral response indicated at ngT = 0. This reduction in response due
to structural damping is consistent with that shown in figure 23. These results indicate
the joint influence of both car and suspension damping on lateral car acceleration
responses.

Results for transient and random inputs.- In utilizing RTS capabilities to examine
linear car responses to various transient deterministic and random inputs, the main
variables of interest were car speed v, input disturbance length 2, and lateral bolster
damping coefficient njc. Some effects of bolster roll damping coefficient n,r were
also explored. Most of the results are presented in plots of peak lateral car acceleration
responses as functions of car speed, as shown in figures 30 to 35. Some variations of
peak responses with car length are shown in figure 36 for the square-pulse train input of
figure 15(c).

These results show wide differences in peak lateral car responses due to changes
in input and changes in car speed for individual inputs. Lateral inputs generally produced
higher lateral car responses than did cross-level inputs, as was noted in figure 23 for
sinusoidal inputs. Mid-car responses were lower than end-of-car responses for tran-
sient deterministic inputs (figs. 30 to 33) and for the combined random input (fig. 35). In
some cases, such as those illustrated in figure 36, minimum car responses along the
length of the car occurred at about 25 percent and 75 percent of the car length. More-
over, the spread between front and rear responses of the car was considerably larger for
the wave-pulse inputs than for the other inputs. Figures 32 and 33 show responses at the
rear of the car that are significantly higher than those at the front of the car. Sample
time histories in figures 30 and 32 further illustrate differences in the character of the
car responses for square-pulse and wave-pulse inputs for two widely different distur-
bance lengths. Initial accelerations due to a pulse input for A =0.305 m (12 in.) in fig-
ure 30 were more erratic than those due to a wave input for A =76.2 m (3000 in.) in
figure 32. Peak accelerations were about 0.047g for both time histories.

Other indications of how dependent these results were on the nature of the input are
afforded in comparisons of rms accelerations in table VI for two different random inputs,
and in comparisons of acceleration responses for deterministic and random pulse
train inputs in figure 34. The table compares rms lateral responses for the test track
input, corresponding to input spectral density 3 in figure 15(e), and the combined input of
figure 15(g) for a 2.54 cm (1 in.) rms amplitude. The results are taken from figures 35
and 37 for the same car speed 49.3 m/sec (110 mph) and lateral bolster damping coeffi-
cient (nlc = 0.11). Responses to the test track input are seen to be 22.5 to 39 percent
higher than responses to the combined input, and mid-car responses are higher than
responses at the truck locations in contrast to the combined-input responses. In
figure 34, n;. was 0.057, and the lateral-input amplitudes were 2.54 cm (1 in.) for the
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deterministic pulse train input and 2.54 cm (1 in.) rms for the random pulse train input.
As the figure shows, lateral responses due to random input were larger than those due to
deterministic transient input, and differences in lateral responses between the trucks and
the middle of the car were greater for the random than for the deterministic transient
inputs. The lateral responses to random pulse train inputs (A = 2.54 cm (1.0 in.))
followed about the same trends and were about the same magnitudes as the lateral
responses to the deterministic pulse inputs (A = 0.305 m (12 in.)) in figure 30. However,
rms accelerations at rear and forward truck locations tend to be more nearly equal in
figure 34 than do the corresponding peak accelerations in figure 30; thus, the effects of
input variation on car response are also apparent in this comparison. These results
further support the recommendations in references 1 and 4 which point out the need for
obtaining measured input spectra for studies of this kind.

Effects of wavelength A were explored for the wave-pulse inputs, and figure 33
shows the variation of peak lateral car accelerations with car speed for two different
values of A, both less than that of figure 32. Comparison of the results in these two
figures indicates that lowering A from 76.2 m (3000 in.) to 19.05 m (750 in.) substan-
tially reduced the speed range bounding the wide spread in end-of-car acceleration
responses to lateral inputs. The much smaller lateral response to cross-level inputs
behaved in a manner somewhat similar to that of the lateral-input responses; however,
the spread in end responses still extended over about the same speed range regardless
of X value, and cross-level responses for X = 38.1 m (1500 in.) are shown in
figure 33 to be nearly indistinguishable from those for X = 19.05 m (750 in.).

In addition to the effects of input variations and disturbance length, variation of
damping in the lateral bolster (nlc> also caused large fluctuations in lateral car accelera-
tion response. For example, localized increases in response were observed at particular
car speeds for the deterministic pulse train and combined random inputs in figures 31
and 35; however, the effects of this damping are reversed. That is, increased damping
for the deterministic input tended to increase responses near 53.7 m/sec (120 mph,
fig. 31), whereas increased damping for the random input not only gave reduced responses
but also caused them to be largely invariant over the speed, range (fig. 35). It should be
noted that car speed variations for the combined random input of figure 35 are due solely
to the pulse train part of the input. By contrast with these effects, the wave-pulse input
caused steep increases in lateral car peak responses to maximum values near 44.7 m/sec
(100 mph) and slight decreases at higher speeds (fig. 32). Within the 35.8 to 44.7 m/sec
(80 to 100 mph) speed range, increased lateral bolster damping coefficients were more
effective in reducing lateral car acceleration responses than at other speeds. These
damping effects clearly indicate that no fixed damping value would reduce lateral car
accelerations at all speeds or at all locations in the car for any of the inputs considered.
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Effects of bolster roll damping on lateral car acceleration responses were much
smaller for cross-level inputs than the effects of lateral bolster damping were for lateral
inputs. An indication of these effects may be seen in figure 30 where responses for
noT = 0.30 are higher than those for ngt = 0.20 at nearly all car responses from
17.88 to 71.52 m/sec (40 to 160 mph). Other results (not included) show still higher
responses for n, = 0.40. As observed for the lateral bolster damping effect, the effect
of bolster roll damping was also very much a function of car speed.

Nonlinear spring behavior.- All the results presented thus far are based on linear
spring characteristics in the model. In addition to its application to the simulation of
various rail irregularity inputs, the RTS method was also used to explore the effects of
spring nonlinearity in the lateral bolster suspensions. The nonlinear spring characteris-
tics shown in figure 14 were assumed for this purpose, and the deflections in the
abscissa of the figure are related to the degrees of freedom in the model through the
equations™

AVE®) = -b) WA - 7, @ + (5 - @) 10 + 75,0 - by 65,0

- hg [Oco(t) + ch(t) cos -TLE:\ (15a)
AE(t) = b WL - @) - 5@ - (5 - a) 00 +y5(0) - oy 0,40
- hg E%co(t) +601() cos ﬂLL—'—dl] (15b)

Through these equations, nonlinear behavior in the bumpers directly below the car is felt
in the car and the traction-motor suspension.

With the nonlinear spring characteristics allowed for in equation (1), acceleration
responses to sinusoidal inputs failed to reach a steady-state condition but varied in
amplitude for a finite number of cycles of oscillation in repeated sequences in time. This
response behavior ceased after termination of the sinusoidal forcing function. With band-
limited lateral white-noise amplitude of 2.54 cm (1 in.) rms input (no. 2 in fig. 15(e))

* Additional relations are included in reference 5 for an assumed nonlinearity in the
lateral equalizer springs. However, these relations (eqs. (6) of ref. 5) have been found
to be incorrect because of the omission of lateral inputs from the right sides of the equa-
tions. Consequently, the "'nonlinear" curves in figure 11 of reference 5 are incorrect and
have been omitted from figure 37 of the present paper. In addition, the terms -hgyp(t)
and -h2¢fa¢(t) in equations (15) were erroneously omitted from equations (5) of refer-
ence 5 but were included in calculations for the nonlinear spectral density in figure 7 of
this reference.
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to equation (1), output spectral densities and rms values, such as those shown in figure 38,
were obtained and are seen to be considerably higher for the nonlinear case thanfor the
linear case. Figure 38 also shows large reductions in responses due to increasing
lateral bolster damping from nze = 0.057 to 0.11.

Similar effects of the nonlinear springs were observed in lateral acceleration
responses along the length of the car due to wave pulse inputs as shown in figure 39.
Here the input wavelength A was 9.52 m (375 in.), and the car speed 35.8 m/sec
(80 mph). The solid curve identified as "linear' applies to lateral acceleration responses
for which k;, was linear and is included for comparison with the other curves for
which k;., was nonlinear. As may be seen, increasing n;., from 0.057 to 0.30
resulted in drastically reduced responses, as in figure 38 for the random input. With
nze = 0.30, the responses were reduced to the levels of the linear responses over the
length of the car.

It thus appears that higher car accelerations can be obtained with nonlinear springs
than with linear springs in the model and that this result is not likely to change when the
input changes. It is also evident that a moderate amount of damping can be very effective
in reducing nonlinear acceleration responses.

CONCLUDING REMARKS

Simplified vertical and lateral dynamic models of a high-speed rail passenger car
have been developed and studied to obtain dynamic response information which is relevant
to the problem of passenger comfort. Vertical responses of the car to vertical inputs
from the rails have been obtained in a four-degree-of-freedom model, and lateral
responses o lateral and rolling (cross-level) rail inputs have been obtained in a ten-
degree-of-freedom model. Elastic properties of the passenger car body were repre-
sented by the bending and torsion of a uniform beam, and the rail-to-car (truck) suspen-
sion systems were modeled as simple spring-mass-dashpot oscillators. Lateral spring
nonlinearities approximating certain complicated truck mechanisms were introduced and
their effects on car response were explored. The models have been excited by displace-
ment and, in some cases, velocity inputs from the rails, and a wide variety of deter-
ministic (including sinuscidal) and random input functions have been used. Results were
obtained in the form of acceleration responses in various parts of the models, particular
attention being given to car responses. From this study, the following observations are

made.

A trial-and-error optimization procedure for minimizing acceleration responses
in the car has been shown to be feasible for a dynamic system with a few spring and
damping elements. This feasibility was demonstrated for the vertical model, in which a
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systematic variation of stiffness and damping properties showed that larger optimum car
suspension damping was required for random than for sinusoidal inputs and that it was
not possible to choose values of system parameters that simultaneously minimized
accelerations in the car and in other parts of the model. The lateral model contained
too many spring and damping elements for a practicable optimization by this approach
and would require instead the application of a computer algorithm.

The stiffness of the equalizer in the truck suspension was found to be important in
determining optimum damping in the vertical car suspension (bolster) but was not impor-
tant for the optimum equalizer damping nor the optimum stiffness and damping of a
simulated transformer mounting beneath the middle of the car.

Knowledge of car stiffness and weight properties is needed so that with proper
design its natural frequencies are sufficiently removed from other frequencies in the
system to avoid resonances characterized by high car acceleration responses. Torsional
stiffness properties appeared to be less important than either vertical or lateral bending
stiffness. Structural damping in the car was shown to be important at car bending and
torsional frequencies within range of other frequencies in the system. However, car
responses at car frequencies well removed from this resonant region were insensitive to
variations in car structural damping. Car responses were also shown to be relatively
insensitive to wide variations in car weight.

Car acceleration responses to sinusoidal input (transfer functions) were shown to be
sensitive to variations in vertical and lateral bolster damping and relatively insensitive to
variations in transformer stiffness (frequency) and damping.

Rolling stiffness and displacement of the traction motor in the truck suspension
were shown to have minor effects on car acceleration responses in the lateral model.

Results of the study for the lateral model indicate that the real-time simulation
(RTS) method could be used in preliminary design and troubleshooting of rail car config-
urations. Wide differences in lateral car response were shown for different car speeds
and the various transient and random inputs that were available with this method, and
results further showed that no fixed value of lateral bolster damping would reduce lateral
car accelerations at all car speeds or in all car locations.

Lateral car acceleration responses were higher for nonlinear than for linear springs
for two different inputs, and these responses are shown to be particularly sensitive to
variations in lateral bolster damping.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., June 30, 1971.
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APPENDIX A
DERIVATION OF EQUATIONS OF MOTION FOR VERTICAL MODEL

This appendix presents the derivation of the matrix elements of equations (1) and (4)
for the vertical model. These equations were obtained from Lagrange's equation in the

g/eT 8D aU
—f—\+—=—+ 5= 0 (Al)

form

where T is the kinetic energy which is assumed here to be a homogeneous quadratic
function of the velocities, D is the dissipation energy, U is the potential energy,

and q; is a generalized coordinate. These energies are given in terms of the degrees
of freedom of the mathematical model of figure 1. Pitching and rolling motions of the car
are neglected, and small displacements are assumed throughout the model, consistent
with linear theory. Performance of the indicated operations in equation (A1) for each
degree of freedom leads to a set of simultaneous equations of motion represented by the
general matrix equation (4).

Energies of the Vertical Model

Kinetic energy.- The kinetic energy of the four-degree-of-freedom model in figure 1

is given by
L
Ty =% 50 [o(x,t) + 2, (t)] ?ax + %Mg Eg(t}] 2, Ma EA@Z (42)

where m is the mass of the car per unit length L, Mg is the mass of the transformer,
and Mp is the mass of the traction motor in each truck. The bending deformation of the

car is given by
w(x,t) = alt) W(x) (A3)
where af(t) is the generalized coordinate having the units of displacement and W(x) is

the mode shape. The vertical traction-motor displacement =z is the same for both for-
ward and rear trucks.
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APPENDIX A — Continued

Potential energy.- The potential energy of the vertical model is

2
Uy = (Ezl)v goL EZ:;; ﬂ dx + %‘S'{E(d’t) - 2t " [T - a0 - ZA@Z} '

+ k—;gE(zL,t) - zg(§l2 +kpfza(® - S(t) 2 (A4)

where (EI)V is the bending stiffness of the car in the vertical direction, z(d,t) is the
vertical displacement of the rear trucks, z(L - d,t) the vertical displacement of the
forward trucks, z(%“—,t) is the vertical displacement of the middle of the car, and S(t) is
the displacement input from the rail to both trucks. The truck and mid-car displacements
are related to the four degrees of freedom by

z(d,t) = w(d?t) + zo(t) = a(t) W(d) + z(t)
z(L - d,t) = w(L - d,t) + zc(t) = a(t) WL - d) + z(t) (A5)

z(zk,t) = W%,t) + zc(t) = a(t) W(zé) + zc(t)

Substitution of equations (A5) into equation (A4) gives

(EI) L 9 2
- fo E(t)%&ﬂ dx + I;_S {E(t) W(d) + z(0) - 24 ()] 2

Uy, =
+ E(t) W(L - d) + z¢(t) - ZA('Q] 2}

+ k—ng(t) W(2£> + zg(t) - zg(tﬂ 2, INEXCERG! 2 (A6)

Dissipation energy.- The dissipation energy is given in terms of viscous and struc-
tural damping constants by

D, = %::’—{E(t) W(d) + z(t) - zA(tﬂz + E(t) W(L - d) + 2, (t) - zA(tjz}
+ SZEE(t) W(%>+ ze(t) - z'g(tjlz +cplzalt) - S'(tjz

18 LT, d2w 2
+s =LV (E1), Xo E,(t)ﬁ% dx (AT)
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APPENDIX A — Continued

where g, is the structural damping coefficient of the car in vertical bending. By
following the approach of reference 8, structural damping is introduced in equation (A7)
with its magnitude proportional to the elastic restoring forces in the car and in phase with
the velocities of oscillation of the car. The presence of the frequency w in the denomi-
nator of the last term of equation (A7) limits the use of the structural damping concept to
systems with sinusoidal motions. In this investigation, structural damping was included
only in the acceleration transfer-function computer program for equations (4).

Car Bending Mode

The bending mode shape of the car in equation (A3) is taken as the bending mode of
a uniform free-free beam and is given by

W(x) = W (%) = cosh B X + cos BmX - @p,(sinh By + sin ByX) (A8)

where By, and a,, are obtained from the equations

cosh B L cos L =1

cosh B, L - cos ,BmL (A9)
am = —_—
sinh L - sin B, L
for m=1,2,... Solutions of equations (A9) are given in various places in the liter-

ature. (See, for example, ref. 9.) Since it was assumed that the motion of the car could
be adequately represented by using only the fundamental mode, it was sufficient to con-
sider m =1, for which ;L =4.730 and o« = 0.9825. This assumption is essentially
the same as that made in reference 4, except for the different approximation made for the
mode shape. Mode-shape values for different stations along the car are given in table VII.

Matrix Elements of the Mathematical Vertical Model

The elements of the matrices [M:], [C], and [K:] of equations (4) were obtained
by carrying out the operations indicated in Lagrange's equation (A1) for each degree of
freedom in the model and these elements are listed in tables VIII and IX. All matrix ele-
ments of equations (4) were obtained by dividing through each of the equations by the car
mass M, and the sinusoidal input amplitude S,. The elements of {ﬁ_l}, ( q_z}, {Ql},
and (Qy} are as follows:

32



APPENDIX A — Continued

fal'w N

{al} =< zgl >

()=

(A10)
.

Qy =

LMC </

Qo) =

My
4dn, Wy ——
CATA M,

J

In the matrix elements, the natural frequencies of various parts of the model con-

sidered separately (wB, wg, Wg and w A), and the dimensionless viscous damping coef-
ficients, are related to the spring mass and damping constants by
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APPENDIX A — Continued

First vertical bending frequency of car:

wR = (B]_L)2 (E—I)‘:; (Alla)
M, L

Bolster rigid-body vertical translation frequency:

wg = /_2_1\/1[%8 (A11b)

Transformer frequency:

W, = .—g- (A].].C)

Equalizer spring-traction-motor frequency:

KA

Bolster damping coefficient (for both trucks):

°s (Alle)
Ng = e
5 Mewg

Damping coefficient for the transformer suspension:

__%g (A1
ng = 1f)
g
2Mgu.>g
Damping coefficient of equalizer suspension in each truck:

CA A
"A " EWA9a I

where M =mlL is the mass of the rail car. The equation for wpg is a reduced form

La%w \2
(EI)VS ( 2‘“) dx
Y0 \ax®/

L
m §0 Wy 2dx

of the equation

(A12)

O)B—
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APPENDIX A — Concluded

L
Using equation (A8) for Wm(x) leads to S.O sz(x) dx =1L and
2
Wm(X) 4 sy e . . .
— = L. Substitution into equation (A12) of these values of the integrals
dx

leads to equation (Alla). It should also be noted that in the derivation of equations (4),

L
there is an off-diagonal element Mg = mS\ W (x) dx. However, by virtue of conserva-
0

tion of momentum in a free-free beam, this integral vanishes, and the mass matrix
reduces to a diagonal matrix. Evaluation of the three foregoing integrals is found in
reference 10.
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APPENDIX B
DERIVATION OF EQUATIONS OF MOTION FOR LATERAL MODEL

This appendix presents the derivation of equations (1) and (4) for the lateral model.
These equations were obtained in the same manner as those for the vertical model,
beginning with Lagrange's equation (eq. (Al)). The derivation of equation (1) also involved
the introduction of terms into the potential energy to allow for the presence of nonlinear
lateral bolster springs, and these terms were different from those corresponding to the
linear lateral bolster springs. The lateral model is further assumed to be uncoupled
from the vertical model.

Energies of Lateral Model

Kinetic energy.- The kinetic energy of the ten-degree-of-freedom model shown in

figure 13 is:
2

Ty, = _r2£ S;)L l:{,(x,t) + ifc(t) - h4éc(x,t) - (142- - x> nt)| dx
.- 3:4 [acte.0] ax + ot [ig6]% + Loy [

+ My E"Af(t)]z + %IAr [:éAr(t)J2 + 11y l:éAf(ﬂ:[z (B1)

where I. 1is the mass moment of inertia of the car cross section in roll about the section
center of gravity. The lateral bending deformation of the car is given by

vi,t) = b() W) (B2)

with b(t) the generalized coordinate for the car and W(x) the bending mode shape
given by equations (A8) and (A9). Rigid-body roll and torsion of the car are contained in

the following expression for 6,(x,t):

b ®,t) = 6,0 (t) + 61(t) cos %— (B3)
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APPENDIX B — Continued

Potential energy.- The general expression for the potential energy of the lateral

model with linear springs may be written as

2
Up - (EI)LS‘ [ v(xgjl &+92£S;L[aeca§:,t)]

~ | 2
+ Sler Yar® - 7,0 - hopf, .(6) - h3 (d,t)]

Kper - 2
+ 2Ly b - Y@L - dt) - hygby () - hgf, (L - d,t):]

%@[ o-ofs > ]

kg 2 [ B B

2

2
+[§9 @ - dt - B (t):l +r--9 @ - dt)+—9 (t):l
2°C ’ 2 Af ¢ Af

—

K 2 2
_ﬁtﬁ [%eAr(t) - S.() - ér(t):] +|:— -1;5 Op,®) - Sr(t):l

k 2 2
+ —gf— [%GM(t) - S¢t) - af(t)] {- fz‘—eAf(t) - Sf(t)}

k 2 k
+ —lér [YAr(t) + hlreAI‘(t) - Yr(t):l + %I}Af(t) + hlfQAf(t) - Yf(t)Jz

kaf 2

k
ar 2 Af(t)

5 9 Ar ) +

(B4)
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APPENDIX B — Continued

The lateral and torsional displacements of the car at the trucks and the middle of the car

are given by

YEO = V@D + 0 - (% - ) 70 = o) WE + 3.0 - (3 -4) n® )

YO -0 L - 0.0 4360 + (5 - a) 0 = 5O W - )+ 5,0 + (5 - a) 100

y(%.t) - v(%.t) +y,(0 =b w(%)»r % (55)
€A1 = Go(1) + 0 () cos T4

bo(L - d.t) = 6,0 (0) + 6,1 () cos ”(LL' d

A}
HC(%.[) 1o J

Substitution of equations (B2), (B3), and (B5) into equation (B4) gives the following
expression for potential energy as a function of the generalized coordinates:

2

(EILS-[ dW(x):] < GJS' (Vclt)‘sme dx

2

k
i L d
+ ;r(}’Ar(t) - b(H) W) - (0 + (5 - d) D) - hyy0, (0 - h3<eco(t) + 6,1 cos ﬂLﬂ

2
k
+ ——gd%Mm - b(O) WL - d) - 5, - % - d) M)~ gy (t) - hg ﬁco(t) + 6,40 cos ) ﬂ}

2
k
+ Tlg[ygm - b W<%> - el - hTeco(t)}

9 2 2
LB l[@co(t) + 8.1(b cos —d - eAr(t)J + l})co(t) + 6,0 cos f‘ﬂ*L‘—d) - GAI(t)]

8

2 2
Kap
s 2L [259“(0 -5, - ér(t)jI +|:%9Ar(t) ¥ Sr(t)]

2 2
K
+ izi{[%om(t) - 8¢ - 6f(t)] + [%eﬂ(t) . sf(ﬂ

—

2 2

k k Kor K
+ —%{[yAr(t) +hy a0 - Y,~(t)} + %[VM(U +hygfap© - Yf(t)j{ =5 TV + S a0 (B6)
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APPENDIX B - Continued

With nonlinearities allowed in the lateral bolster springs, k... and k;.;, areno
longer constant, and the potential energy terms associated with these variable spring con-
stants must therefore be replaced. The replacement terms are derived by first defining
a variable spring function k(£) such that the restoring force is k(£) &£, where £ is
the spring deformation. The work done by this force moving through a differential
displacement df is [k(g) gldf;, and the potential energy developed in the spring
stretched to some displacement Ay is then obtained from the integral

UnL = SOAY NGEEE (B7)

The displacement Ay is a function of the degrees of freedom of the system, and in this
investigation, Ay 1is given by equations (15). Thus, the potential energy due to the non-
linear lateral bolster springs is

UNL = S(‘)AYI‘ E{lcr(g) ﬂdg + S(.)AYf E{Zcf(g) tf:ldg (B8)

which replaces the second and third terms in equation (B6).

Dissipation energy.- The dissipation energy of the lateral model in terms of both
viscous and structural damping constants is written as follows:

2
Cc o . .
Dy, - TLC{["'M - b W@ - §,0 + (% - d> () - hgpbs () - hg(HcO(t) + 6a1(t) cos "—Ldﬂ

: 2
{&M(t) - BO W - d) - 7,0 - (% - d) PO - hggy O - h3<éco(t) 48,40 cos “(LLQ)] }

2
C . .
+ _12_5 [g,g(n - B w(%) SACE hTeco(t)]

2 2 2
" Csf {[écom +8,q cos 18- 9Ar(t)] {éco(t) + 69 cos =) éAf(t):l }
CAr R : . . 2 R - . 2
¢ I 000 ® - 800 - 20|+ F oar ) + 8,0
Caf )R - . . 2 R » N 2
+ 2 I:E 8ac® - (0 - afm:l +[§ By ) + sf(t):'

Cz R . 2 ¢ . . 2
2 l}'fAr(t) #hypdy (O - Yr(t):l + %[gm(t) + hy g0 - Yf(t):l

2
. . g L g2
+ 28T, 0+ 22 g0+ 1 (EI)LS;) [b(t)ia‘:—z‘xl] dx

w

2
\:-écltt) I sin %] ax (B9)

EeT L
+ —w—GJS

0

[
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APPENDIX B - Continued

where g.; is the structural damping coefficient of the car in lateral bending, and 8o
is the structural damping coefficient of the car in torsion. These coefficients have been
introduced in the same manner as the bending structural damping coefficient of the car in
the vertical model. (See appendix A.)

Matrix Elements of Mathematical Lateral Model

The elements of the square matrices of equations (1) and (4) were obtained by
carrying out the indicated operations in Lagrange's equation for each degree of freedom
in the lateral model in the same manner as for the vertical model in appendix A. For
the nonlinear springs, the Lagrange operation 9UNL reduces the integrals in equa-

o]
tion (BT) to functions of Ay; that is, 9
au. Ay
L 8 g Eg(g) g]dg - E{(Ay) A}Zl 2y) (B10)
qj 4 0 Q;

Thus, the integrals in equation (B8) reduce to

v ooy o)
NL _ by Yt
by [kk r(Ayr] (Ayf) 8q; * [klcf (Ayf)] (Ayf) 8q N
where 9 = b(t),y.®, . . . GAf(t). The elements of the stiffness matrix obtained from

this operation for equation (1} are identical in form with those obtained for the linear

springs on the basis of equation (B6).

Matrix elements for the lateral model are given in tables X to XII. Each matrix is
symmetric about its principal diagonal. The mass matrices are given in table X, the
upper matrix being for the general form of equation (1) and the lower matrix, for the
frequency-domain form of equations (4). The stiffness and damping matrices are given
in table XI for equation (1) and in table XII for equations (4), the upper matrices being the
stiffness (K) matrices and the lower matrices the damping (C) matrices. The moment
of inertia of the car per unit length about the car elastic axis is given by Igp =1c + mhz.
The matrix elements corresponding to equations (4) were obtained by dividing each equation
by the car mass M, (or mlL) and sinusoidal input amplitude Q, in a manner similar
to that done for the vertical model in appendix A.

The rearward and forward lateral bolster spring constants <klcr and klcf in
table X1> were kept equal throughout the investigation. However, the distinction between
them is necessary when these springs are nonlinear, in order to relate the nonlinear
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APPENDIX B — Continued
deflections properly to the motion throughout the system in accordance with equations (15)

during the numerical integration of equation (1). Since there is no nonlinear damping
in the system, Crer = Cicf = C1e in the damping matrix of table XI.

The input matrices of equation (1) for the lateral model are

(0 w ro \

(@ =(° | & =("° (B12)

kp, Y. () ¢y Yy )
Ky Ye(t) ¥ ®
k, R c A R
Ky Yel) + —7— 4 oy (t) cpphy Y 0 + =— 8.0
k AfR
L KaghygYe® + = 8 X ¢y ¥ ® s 5f(t) )

Equations (4) were programed for either lateral or cross-level rail inputs, and the input

amplitudes Y and b, to the forward trucks were chosen as reference displacements

of
in defining the dimensionless degrees of freedom for the <d1> and {dz} matrices.

The complete sinusoidal relations involving these input amplitudes are
Yf(t) =Y sin wt w
6f(t) = 8¢ sin wt

(B13)
Y, () = Y4 sin (wt + K1>

Y;(t) = 6 Sin (wt + K2>

where Ky and ko are phase angles which, in this study, were each an integral multiple
of 7. Even multiples imply in-phase inputs to front and rear trucks, whereas odd
multiples imply out-of-phase inputs. The quantity o6,() or 5f(t) represents the
difference in vertical inputs to left and right rails under each set of trucks (see again

fig. 13(b)) and completely defines the cross-level input. The quantities S.(t) and §;(t)
disappear in the derivation of the equations of motion. The matrix elements for {dl} ,
{C_lz}, {Ql} , and {Qz} for these inputs are as follows:
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Yo

9 My, sin (wt + Kl)
ir M,

w ,
sin wt

o2 Mp¢
it M,

o My, by sin(wt + Kl)

w —

Ir M, R  sinowt
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- by N
?o—f
Ye2
Yot

6c02B

YAr2

o w My, cos(wt+fc2)
irir M.

cos wt

M
Af
20, W, ———
ARl Mc

My hy,. cos <wt + K2>

ML R

cos wt

M, h
Af “1f
L Zanwlf _Mc = )

(B14)



APPENDIX B — Continued

for the lateral rail input. The {611} and { 512} matrices for the cross-level input
are of the same form as those for the lateral input except that Gof replaces Yof‘ The
cross-level input matrices are

1 0 W g 0 B

@ @4 1 fes

g I, sin (wt + Kl) Iy, cos (wt + Kz)

2 w
“Ar M,R2  sinwt TAr“Ar McR2 cos wt
1 1
2 Af Af
ws, 2 2N, Wy o ——
Af 5 Af“Af ) J
L M.R J L MR

As in the case of the vertical model, the natural frequencies and viscous damping
coefficients of the lateral model appearing throughout the matrix elements in tables X
to XII and equations (B14) and (B15) are related to the spring and damping constants by
the following expressions:

First lateral car bending frequency:

(ED)y,
M,L3

w;p = (BlL)Z (B16a)

Lateral shear bolster rigid-body translation frequency:

[k +k
w0, = ’M (B16b)
le Mc

Bolster rigid-body rolling frequency:

’ kS
= B1
WoT B ( 6c)

First torsional frequency of car:

G (B16d)
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Lateral transformer frequency:

k
wlg = \‘% (Bl 66)

Lateral equalizer frequency:

k

Rear equalizer rolling frequency:

k
N _B |"Ar (B16g)
T2 \JMAr
Front equalizer rolling frequency:
k
_R |TAf

Roll frequency of rear traction motor:

. .
l ar .
- | @r B
“ar T\ T Ar (B161)

Roll frequency of front traction motor:

k
_ ' of .
(.L)a,f = —I—— (B16])

Bolster lateral damping coefficient (for both sets of trucks):

Cle 16k
_ B
nk wchc ( )

Lateral transformer damping coefficient:

c;
"g T 3w, M (B161)
lg™g
Bolster rigid-body roll damping coefficient:
2
B
°s (B16m)

"oT = 4w qIgaL
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APPENDIX B — Concluded

Lateral shear equalizer damping coefficient:

€1
2wlMA

nl=

Rear equalizer roll damping coefficient:
2
o cArR
AT Bwprlay
Front equalizer roll damping coefficient:
2
ny = ALY
Af T Bwpglg
Roll damping coefficient of rear traction motor:

2
ar - 2wyrlar

Roll damping coefficient of front traction motor:

n

o = Caf
of = 2uw,fTas

(B16n)

(B160)

(B16p)

(B16q)

(B16r)
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TABLE I.- PROPERTIES AND INPUTS FOR VERTICAL MODEL

(a) Fixed properties

Property

Value

Car length, L, m (in. or ft)

Truck attachment distance,

Transformer weight, Mgg, N (b}

d,m (in.orft) .....

Traction motor weight, M,g, N (Ib)

25.9 (1020 or 85)
3.81 (150 or 12.5)
57800 (13 000)
53000 (11908)

Bolster (car) rigid-body frequency, fg, Hz . ... .. 1.0
(b) Variable properties
J [— \ : T T 4 -
Fi Car weight, M8 Car bending . Transformer ‘ Equalizer Car d.ax_nping 3%%2?12 ’ Trg:;%g;er %(gg‘glflegr
lgure T ' rgauency, | frequency, fg, | frequency, coeffg“"‘e“t’ | coefficient, | coefficlent, coefficient,  1"PU
| kN i 1b Bs | A cv : ng ng ny
‘ 3 574 l 129000 8.0 6.0 4.12 " 0 0.11 : 0.25 0.10 Sinusoidal
T 4 574 129 000 8.0 Variable 4.12 ! 0 11 .18 .10 Sinusoidal
5 574 129000 8.0 6.0 4.12 } 0 A1 Variable .10 Sinusoidal
6 574 129000 8.0 6.0 4.12 ‘ 0 Variable .25 .10 Sinusoidal
7 574 129 000 8.0 6.0 4.12 ] 11 .25 Variable Sinusoidal
8 574 - 129000 8.0 6.0 4.12 0 Variable .25 .10 Random”*
9 574 | 129000 8.0 6.0 4.12 0 .30 .25 Variable Random*
10 574 129000 8.0 6.0 4.12 0 .30 .25 .30 Random™®
11 574 129000 Variable 5.0 4.12 Variable .057 ; .18 .03 Sinysoidal |
12 Variable | Variable Variable 5.0 L 4.12 l 0 057 L .18 .03 Sinusoidal J

Ly

*Spectral density given by equation (3).



TABLE IL.- OPTIMUM PARAMETER VALUES
FOR TWO EQUALIZER FREQUENCIES

Values for equalizer
Parameter frequency, fp, of —
4.12 Hz 5.53 Hz
Transformer frequency, fg, Hz . . 6 (or 6.5) 6
Transformer damping, Ng. ... 0.25 0.18
Bolster damping, ng. . . . . . . . 0.11 0.057
Equalizer damping, np . . . . . . 0.10 0.10

TABLE III.- TRANSFER FUNCTIONS FOR LATERAL MODEL

Location Acceleration transfer function
L 2
A 2] - hy /= - 5%
AR L - hg ( _'m_() 2 -
ng = b1W(x) +%1 -3 Bc01 + G111 €O8 1, T M
Car 9 1/2
L
- _ hy =\ 2 x
+| W) + Yop - 'B—("coz + &1 cos f) -y
A 2
gl _ w2 ,-2 2
Transformer o, € g1 +¥g9
_ I I I ]
Traction A 2 A 92
Af _ w® (=2 =2 Ar _ w?® (-2 -2
to —_—= —_
motors 7, € VAf1 * YAf9 gQ, € ‘)YArl + JAr
9 2 1/2
A 2
Bf _w 3 3 (L - d) 5 3 oL - d)
_ng = % I:OCOI + 8,11 cos T +1 802 + 612 COS I
In cartover
bolsters
(vertical) 1/2
SBr_w? (3 Lg 1\’ (g . d nd) 2
gQO —E— c01+ c11 COST + c02 + c12 COS'IT
Equalizers Mgt _w? [ 52 Er _w? ;2 52
(vertical) gQ, 2 Af1 ™ VAf2 gQ, 28 Arl T "Ar2




TABLE IV.- FIXED PROPERTIES FOR LATERAL MODEL

Property

Value

Car length, L, m (in. or ft)

Truck attachment distance, d, m (@n.orft) . . . ... ... ... .. ... .....

Lateral distance between bolster springs, B, m {(in). ... ... ... .......

Lateral distance between equalizer springs, R,m (in). . . .. .. ... .. ....

Distance of traction motor to lateral equalizer, hy,, and hyg, m (in.)

Distance of traction motor to lateral bolster, hgp and hge, m (in.). ... ... ..

Distance of lateral bolster to car elastic axis, hg, m (n) . ... ... .. ... ..

Distance of lateral transformer to car elastic axis, hp,m (in.) . . . . .. ... ..

Distance of car elastic axis to center of gravity, hy, m (in.y . o oo oo oo

Center-to-center distance between truck axles, (Al)t, m (in.)
Transformer weight, Mgg, KN (Ab). . .« o o v e e e e e e e e e
Traction-motor weight, My.g and Mpeg, kKN (Ib) . . . . . . . ..o oo 0oL

Traction-motor mass moment of inertia, Ipy and Iuyg, kg-m2 (in.—lb-secz) e

Lateral bolster spring constant, kj., and k., N/em (lb/in.)

Vertical bolster spring constant, kg, N/cm (lb/in.).

Lateral equalizer spring constant, k;. and ky, N/cm (1b/in.)

Vertical equalizer spring constant”, kap and kpp, N/em (Ib/in.)

Lateral bolster frequency, fz,, Hz. . . . .. ... ... ... o 0oL,

Bolster rolling frequency, fy7, Hz

Lateral equalizer frequency, f;. and f;f, Hz

r

Equalizer rolling frequency, fp, and fae, Hz . . o o oo oo oo oo oL

Equalizer roll damping coefficient, njp;, and npy¢

Traction-motor roll damping coefficient, n

or = Nof

25.9 (1020 or 85)
3.81 (150 or 12.5)

2.34 (92)
(79)
21
(12)
(12)
(12)
(24)
2.595 (102)
57.8 (13000)
53.0 (11908)
2100 (18600)
5250 (3000)
11520 (6570)

2.01
0.534
0.305
0.305
0.305
0.610

7000 (4000)
36300 (20 680)
0.674

0.997

1.81

6.62

0.10

0.60

*Total of four springs per truck at 9070 N/em (5170 1b/in.) each.
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Figure

19
20, 21
22
23
24

25

27
28
29

30

31, 36 !
32

34
35

37

38
39

50

Traction-motor
rolling frequency,
for = {of,
Hz

18.0
Variable
18.0
18.0
18.0

18.0
18.0
18.0
18.0
18.0
18.0

18.0
18.0
18.0
18.0
18.0

18.0
18.0
18.0

Car lateral bending
{requency, I;p,
Hz

8.0
8.0
Variable
8.0

Variable

8.0
8.0
8.0
8.0
8.0
8.0

8.0
8.0
8.0
8.0
8.0

8.0
8.0
8.0

Car torsional
frequency, fr,
Hz

15.0
15.0
15.0
Variable
Variable
15.0

15.0
15.0

15.0
5.0 |
15.0

15.0
15.0
15.0
15.0

15.0
15.0
15.0
15.0 j

Lateral transformer
frequency, flg’
Hz

6.0
6.0
6.0
6.0
6.0

Variable
6.0
6.0

6.0 !
6.0
6.0

6.0 .

6.0 .

6.0

6.0

6.0

5.0 l

6.0 ‘
|

6.0 I

Car weight,

kN

574
574
574
574

Variable

574
574
574
574
574
574

574
574
574
574
574

574
574
574

Mg
1b

129000
129000
129000
129000

Variable

129000
129000
129000
129000
129000

129000

" 129000
129000
129000
129000

I 129000

| 129000
|

129000
\129000{
|

Car mass moment
of inertia per
unit length, Igp
kg-m | lb-sec?
3090 695
3090 695
3090 695
3090 695
Variable| Variable
3090 695
3090 695
3090 695
3090 | 695
3090 ) 695
3090 695
3090 695
3090 695
3090 695
3090 , 695
3090 | 695
3090 | 695
3090 |, 695
3090 1 695

TABLE V.- VARIABLE PROPERTIES

Car structural damping
coefficient in lateral
bending, gg;

0

0
Variable

0

0

0

o}
Variable

0

0

© ©o o o o

o

damping coefficient

Car structural

in torsion, g,

0

0

0
Variable

0

0

0
Variable

0
Variable

0

© o o o o

=]



AND INPUTS FOR LATERAL MODEL

Lateral transformer Lateral bolster Bolster roll Lateral equalizer Sinusoidal lateral Sinusoidal c¢ross-level Transient and
damping coefficient, ] damping coefficient,| damping coefficient,| damping coefficient, | input {fig. 15(a)) in-phase,| input (fig. 15(a)} in-phase, random inputs
ng e n,T ng. = ngg out-of-phase: «; =0 or 7| out-of-phase: kg =0orm (figs. 15(b) to 15{(g))
0.25 0.057 0.20 0.10 0 [ e,
.25 .057 .20 .10 0, -- S e T T
.25 .057 .20 .10 0 [
.25 .057 .20 .10 T L S
.25 .057 .20 .10 n O
.25 " .057 .20 .10 0 e,
Variable ' .057 .20 .10 0 — e ,
.25 Variable [ .20 .10 0, ——_—
.25 : .20 : .20 Variable 0, .- mmmeeeen
.25 .057 Variable | .10 ' - | o,7 | eeeeeas
.25 i Variable Variable | .10 i .- --- fig. 150)
.25 I Variable ' .20 .10 . - fig. 15(c)
.25 Variable .20 ' .10 .- ! - i fig. 15(d)
.25 .057 .20 . .10 - : - . fig. 15(d) !
.25 057 .20 .10 - | --- I fig. 15(c). fig. 15(f)
.25 Variable .20 1 10 ‘ I | - fig. 15(z)
25 Variable ' .20 1 .10 ‘ - - fig. 15(c)
.25 ' Variable 5 .20 .10 - --- fig. 15()
.25 ‘ Variable | 20 .10 --- --- fig. 15() J
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TABLE VI.- ROOT-MEAN-SQUARE ACCELERATIONS
FOR TWO DIFFERENT LATERAL RANDOM INPUTS

Car location

TO LATERAL MODEL

RMS accelerations, g, for —

Rear trucks
Forward trucks

Middle of car

Eastern U.S. railroad

No. 3

test track (fig. 37)

0.0416
.0416
.0465

Combined input
(fig. 35)
0.0342
.0342
0334

TABLE VII.- CAR BENDING MODE SHAPE

L | W)
0 ~2.000
1 1.0743
147 .6509
2 .1954
3 ~.5440
4 ~1.040
5 -1.2156
.6 -1.040
7 -.5440
8 1954
853 .6509
9 1.0743
1.0 2.000




TABLE VIII.- MASS MATRIX FOR VERTICAL MODEL

1

2

4

= ng |
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TABLE IX.- STIFFNESS AND DAMPING MATRICES FOR VERTICAL MODEL, ]Q:

[From table VII, W(d) = W(L - di]

1

1 2 3 4
9 2
w]23+°’75[w2(d) *W2(L - di\ wz—s[w(d) +W(L - dﬂ M w2
w2 _gw<_L2_> ; T[W(d)+W(L-di| 1
+ wé %W2<%> - + wé %W(%> Me
\ \
. !
w% + w%—ﬁc—g- i - wéM—i - wg 2
wé% 0 3
nsws[wz(d) + WL - dﬂ
2
. M, w
+2ng —gwng (%) + gcv—wE M
Me wg+2—M?Awi 4
ngwg |:W(d) +W(L - dEI Mg
2 —_—
g o wL <nsws+ng Me wg>
TEEN, Y8\ 2

M
A
_nstEW(dnw(L-d] - 2ngwg 0 2G5w5+2nAMC wA>




TABLE X.- MASS MATRICES FOR LATERAL MODEL, .‘
-, - - -
; sinh 4L sin 4L~ ‘cosh BlL"'l cos 61L+1‘I .

L e (A A

1 2 3 4 5 6 7 8
I :
L M, -Mchy 0— _ —
1 Igal 0— - _ -
1 1 Z
L pa g 2mh4<—) -  —  —
2 0 1 ot )
I ‘ 12 - S —
h
3 0 .4 _EAz
B mB M o L
L g
h I
RYO. 0 0 B 1
2mB
| | | m { MAr o
By /102
o S
: B \r 12
I
M
6 0 0 _£
! [ M,
M
" P
‘ Iy |10
M
8 ‘ ‘ 0 _Af
' M,
i
| ‘ l ‘ 0
9
| | j
\:
10 0 ‘ 4 ‘ b ! ¥ 3 ¥ i
W




(ED), A3 +xy Wha)

WAL - d) +kng2(2£)

L

56

ck[wz(d) Wl - dﬂ

+¢ ng?‘ (-;“-)

ckl:w(dn»W(L-dﬂ

+C lgw (%)

hack[wmnwu_-d]
*hTCLgW(%;

h3ck|:w(d) cos @

+W(L-d) cosﬂ%l}
Lo
ck(-z——d} W{d) + W(L - d)

L\
~“ig¥\2)

-eWid)

-cka(L -d)

hzrckw(d)

hoe e WL -d)

Kpo W) +kpefW(L -d)

g (3)

Kper+kpe+Ke

ZcLC+ch
2hgcye *hTCLg

ad a(l -d;
hgck,:cos T+ cos =+ :,

-Cpe

harCie

hatCe

thclch(d)a,kMW(L-d)]

L
"‘klghTw(f)
3 (ke +yer) gy

2
kB2 5
"+ 5 (yer Yhicg)

+klgh2T

cSB2

+ Zhgck +h?rch

2
B, 2 m
< I + hge, I| cos T

h

-haCye

'hSClc

- Czchzrh3>

<CSB2
N4

csBZ
-\ - cacharhsy,

TABLE XI.- GENERAL STIFFNLESS AND DAMPING

hS[klcrw(d) cos %

+kpeW(L -d) cos —"—%ﬂ

7d (L - d)
h3|}lcr cos T + kyop cO8 —(L—l}

2
kB -
54 [cos"—f—+cos-"—0‘Tg{|

2 ad
+h3|}lcr cos T
a(L -d}

+ klcf cos =5
2
kgB ( )
= l:cosz 1, cos? T L'd:l
4 L L

+ hg Kor cos2 %

1
|
2
| 2 a{l -d GJL /7
+kk{cos —(—I:’L—lJ-f T(f)

2
¢sB 2 2 7d
< ) +cmh3>[cos T

+ cos? (L. - d) LL‘ d:l

h3ck<%— d) |:-cos %

+c0s ﬂli;dl]

-h3cy, cos %

-hgc,, cos ﬂ%l

e

/c B2

5
\ 4

. ad
-~ ‘Zcthh3> cos T~

2
(CsB a(l-d)
N ckhth3> €08

L
(2 - d> [_kmw(d) + g WL )]

(% - d) (rer + Kyer)

L
h3<§— - al)(-kLcr + ku\

L 7d
h3<2— - d> [’klcr cos T

+ kyop €OS L(.I_-x:_dl:\

2
<§ - d> <klcr+klcf)

L \2
ch<2— - )

/L_g
Clc\z"d/

‘Ck%'d)

Lo
'clch2r<2— - d)

L
Ckhzf(f - d)




K
MATRICES FOR LATERAL MODEL (EQ, (1)), N

Hag%(3)

-klg

'klghT

kg

g

-k W)

Kper

Kerha

d

-k phg cos T

Kor ¥ e r

€ir * G

Crhir - Cchar

“Kye WL -d)

Kot

Koy

kL(-rkIcr

C+C0e

Cubis - Cpehpp

icIt:x'thW(‘:‘)

Kierhyr

2
kgB ad
-( T kLcthrhIi) cos 7~

L
Kye rh2r<'2_ - d)

KprPr Koo iy,

2 2
ksB” KaRT
P 4 ar

2 2
+ klrh1r+kLcrh2r

2 2
eB, Cart
4 1 ar

2 2
+ clrhlr + clchlr

10
|
KehaWIL-d)
—
Kpethys
kB2
N3 Kaetaghy

2
kB 7L -d
'(T . kk[hzrh3> cos —(—L——l

L
klcthI(g_ - d)

Kgehg - Ryeghor

2 2
kgB® k, (R .
—3 Y T4 tkar

2 2
+kyhp + Ky oghap

2
CS—BZ~+ CMR +C
[ 3 of

2 2
+°Eh1(+cl<‘,h2[
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TABLE XI.- STIFFNESS AND DAMPING MATRICES FOR LATERAL

1 2 3 4 5
2 2 “h wfhg “ich3 ad
wLB+—[W @ +W2-d) Llwasrwe-a) e 3w + we-a) S Wi cos T 2 (Lo
e z
2 Mg 2 2 Mg L 2 Mghp (1 7(L-d - e +we-a)
Mew g (L (w2 BT L B (L-d) 2
lgMc () +wlgMcw(2> -wlgMc B 3 +W(L ~d) cos L
2
h, h, w2 h
2,2 M 2 hy o Mgy “ie Maf g 1, gos 70-d) 0
Wi '“‘"Ig M_c Wie B '“‘"Zg ", B 5 B |_cos +cos L
2 2
1 h I h
2 Iga 2<3> 1/2 Iea 23>|: d
W + - =|w —_—tw - cos —
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2
he\2 M,
2(°T)y & Al -d
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1 M, w —
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+W(L-q) cosﬂk'—"ﬂ ke L L L d 21r(L dﬂ T lga
L J +cos T T ] +C0S +gcT w mp?
L
hyl5-dt
3'2 ad
) cos ™ 2
2L‘ ‘ nkukB\L ,’LCOSL /L—d
5| ngepe 2—Lw@aw-q)] | 0 0 ancwlc{\'ZT"
| L
L |
M ! M, h
My L o G i o
t - L -3 = B | - —=
6 My w(z) Iy 2 B 0 0
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, - 3 e M m-d 2
8 -nlcukW(L d) N NV B 0 cosJL—) N Ol S
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MODEL UNDERGOING SINUSOIDAL MOTION (EQS. (9), B:

6 7
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. My My Traction motor
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| Rails
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Figure 1.- Mathematical vertical model of railroad car and truck suspension.
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Bolster springs

Traction motors

Truck frame

Equalizer springs

Side frames

Figure 2.- Schematic view of truck suspension system.
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Acceleration transfer function

Acceleration transfer function

g/em

251

20

10k

.05~

251

201

A5

.10p

.05~

ol

1 1 1 | ]
0 4 8 12 16 20

Frequency, Hz

(a) End of car.

[/ 1 ! /

0 4 8 12 16 20
Frequency, Hz

(b) Middle of car.

Acceleration transfer function

Acceleration transfer function

g/em g/in.

0 4 8 12 16

Frequency, Hz

(c) Transformer.

4.5~
1.75~
1.50+
-
1251 4 ob
1.00
Nl
1.5+
.50
.25+
Lol
4] 4 8 12 16

Frequency, Hz

(d) Traction motors.

Figure 3.- Acceleration transfer functions for optimized vertical model.
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g/em  g/in, g/em  g/in.

Peak acceleration transfer function

Transformer frequency, ig, Hz

Peak acceleration transfer function

(c) Transformer.

Transformer frequency, fg, Hz

(a) End of car. 5~
1.75~ 5.0
=
8 )_O__O/O——O—-O—O——O—-O
3~ o Py
o
3 g wsof-
E 1.0~ E
< CQ-O O Maximum acceleration function 2 Lask Frequency, Pz
& | g g - 3 ———— 21t072
0
g ‘ \b £ — —— 80t08.7
| b S,
5 g $ < 0.82
g < 20
g o 2
] [*] G
3 8 I L. O
g 5 o5k
-::5 ="
& ok o L ! ! ]
2 4 6 8 10
Transformer frequency, fg, Hz Transformer {reguency, fg, Hz
(b) Middle of car. (d) Traction motors.

Figure 4.- Effects of vertical transformer frequency on acceleration transfer functions for vertical model with first
equalizer spring (f A =4.12 Hz). Numbers beside curves are frequencies of peak acceleration transfer functions.
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g/em  g/in.
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Transformer damping coefficient, ng

(d) Traction motors.

Figure 5.- Effects of vertical transformer damping coefficient on acceleration transfer functions for vertical model

with first equalizer spring (f A =4.12 Hz). Numbers beside curves are frequencies of peak acceleration transfer

functions.
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g/cm  g/in. g/em  gfin.
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Figure 6.- Effects of vertical bolster damping coefficient on acceleration transfer functions for vertical model with
first equalizer spring (f A=4.12 Hz). Numbers beside curves are frequencies of peak acceleration transfer
functions.
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of information concerning its activities and the results thereof.”

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and TECHNICAL TRANSLATIONS: Information
technical information considered important, published in a foreign language considered
complete, and a lasting contribution to existing to merit NASA distribution in English.
knowledge.

SPECIAL PUBLICATIONS: Information
TECHNICAL NOTES: Information less broad derived from or of value to NASA activities.
in scope but nevertheless of importance as a Publications include conference proceedings,
contribution to existing knowledge. monographs, data compilations, handbooks,

sourcebooks, and special bibliographies.
TECHNICAL MEMORANDUMS:

Information receiving limited distribution TECHNOLOGY UTILIZATION
because of preliminary data, security classifica- PUBLICATIONS: Information on technology
tion, or other reasons. used by NASA that may be of particular

o interest in commercial and other non-aerospace
CONTRACTOR REPORTS: Scientific and applications. Publications include Tech Briefs,
technical information generated under a NASA Technology Utilization Reports and

contract or grant and considered an important

o - "Fechnology Surveys.
contribution to existing knowledge. &Y y

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546



