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DYNAMIC RESPONSES OF RAILROAD CAR MODELS 

TO VERTICAL AND LATERAL RAIL INPUTS 

By John L. Sewall, Russell V. Parr ish,  
and Barbara J .  Durling 

Langley Research Center 

SUMMARY 

Simplified dynamic models were applied in a study of vibration in a high-speed 
railroad car. The mathematical models used were a four-degree-of -freedom model 
for  vertical responses to  vertical rail inputs and a ten-degree-of-freedom model for  
lateral  responses to lateral  o r  rolling (cross-level) inputs from the rails. Elastic 
properties of the passenger car body were represented by bending and torsion of a uni
form beam. Rail-to-car (truck) suspensions were modeled as spring-mass-dashpot 
oscillators. Lateral  spring nonlinearities approximating certain complicated truck 
mechanisms were introduced. The models were excited by displacement and, in some 
cases ,  velocity inputs from the rails by both deterministic (including sinusoidal) and 
random input functions. Results were obtained both in the frequency and t ime domains. 

Solutions in the time domain for  the lateral  model were obtained for a wide variety 
of transient and random inputs generated on-line by an analog computer. Variations in 
one of the damping properties of the lateral  c a r  suspension gave large fluctuations in 
response over a range of c a r  speeds for  a given input. This damping coefficient was 
significant in reducing laferal c a r  responses that were higher for  nonlinear springs than 
for linear springs for  three different inputs. Results showed that knowledge of c a r  stiff
ness  properties is needed in order  to locate system resonances which need to be avoided. 

INTRODUCTION 

The recent introduction of high-speed rail passenger service between metropolitan 
areas has stimulated considerable interest  in the effects of vibration on passenger com
fort. Vibrations are caused by track irregularit ies,  and reduction of these vibrations at  
high speeds is a particularly difficult task. 

References 1 to 5 report  some of the analytical research directed toward under
standing the parameters influencing the generation and transmission of vibrations in rail 
systems. In all these studies, significant motions and structural  characterist ics in highly 
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complicated suspension mechanisms a r e  represented by simple spring-mass-damper 
models. In reference 1, accelerations and forces  transmitted from the rails were studied 
for ranges of spring constants and damping coefficients of a three-degree-of -freedom 
model of vertical motion that included railbed flexibility. Lateral  accelerations and 
forces were studied for a seven-degree-of-freedom model that was also used to explore 
yaw stability. Reference 2 is a study of the responses of a simplified model of an auto 
fe r ry  transport to transient inputs. In reference 3, a four-degree-of-freedom model is 
utilized Lo show the advantages of a new suspension design over a conventional design in 
reducing accelerations transmitted to the car .  Reference 4 is a vibration-minimization 
study of a three-degree-of -freedom model of an electrically powered railroad c a r  subject 
to vertical sinusoidal and random inputs from the rails. In reference 5 a four-degree
of-freedom vertical model and a ten-degree-of-freedom lateral  model were used to 
examine a wide variety of parameter variations, including the effects of c a r  bending 
stiffness and spring nonlinearity on car  response. 

Topics not sufficiently considered in previous studies a r e  lateral  responses to both 
transient and random inputs, optimization that includes the effects of truck-suspension 
(equalizer) damping and stiffness, and damping effects in models which include spring 
nonlinearities. None of these studies (including the present one) allows for rigid-body 
pitch motion of the car ;  consequently out-of-phase vertical inputs to front and r ea r  
suspensions cannot be considered. 

The objectives of the present investigation were (1)to examine the relation between 
car  spring and damping parameters and c a r  responses when the ca r  is subjected to simu
lated rail irregularities including sinusoidal and various transient and random inputs, and 
(2) to demonstrate a method of minimizing c a r  accelerations by appropriate choices of 
spring and damping parameters for the vertical model. The minimization is more con
cerned with damping than with stiffness because damping properties a r e  assumed to be 
more easily adjusted in an actual rail c a r  than stiffness properties. 

The linear equations of motion were solved by digital computer programs for the 
sinusoidal inputs to both models and for one random inpdt to the vertical model. To 
include nonlinearities in the lateral truck suspension system, a real-time simulation 
(RTS) digital computer program was developed and utilized. This program involved 
numerical integration of the equations of motion in scaled real  time. Both linear and 
nonlinear acceleration responses to transient deterministic and random inputs were 
obtained for the lateral  model by means of this program. 
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SYMBOLS 

Values a r e  given in both SI and U.S. Customary Units. The measurements and 
calculations were made in U.S. Customary Units. 

maximum acceleration response at steady state for qth degree of freedom 

generalized coordinate for vertical ca r  bending 

lateral  distance between bolster springs (see fig. 13(b)) 

generalized coordinate for lateral  c a r  bending 

damping matrix 

viscous damping constant for  qth degree of freedom 

dissipation energy 


distance from end of ca r  to center line of trucks (see figs. 1 and 13(a)) 


Young's modulus 


Wforcing frequency, 
2n 

W 
frequency of qth degree of freedom, q 

modulus of rigidity 

acceleration due to gravity 

structural damping coefficient of c a r  in bending or  torsion 

root mean square of output spectral  density in g units 

vertical distance between c a r  elastic axis and line of action of lateral  trans
former spring (see fig. 13(a)) 
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hl vertical distance from traction-motor center of gravity to line of action of 
lateral  equalizer spring (see fig. 13(b)) 

h2 vertical distance from traction-motor center of gravity to line of action of 
lateral  bolster spring (see fig. 13(b)) 

h3 vertical distance between ca r  elastic axis and line of action of lateral  bolster 
spring (see fig. 13(b)) 

h4 vertical distance of ca r  section center of gravity from c a r  elastic axis, posi
tive for center of gravity above elastic axis (see fig. 13(b)) 

I flexural moment of inertia of ca r  c ross  section 

1A mass  moment of inertia of traction motor in roll about i t s  center of gravity 

IEA mass  moment of inertia of ca r  in roll about c a r  elastic axis, per unit length 

J torsional constant of c a r  c ross  section 

stiffness matrix 

kq spring constant for qth degree of freedom 

L length of c a r  (see figs. 1and 13(a)) 

mass  matrix 

MA traction-motor mass 

M, ca r  mass ,  mL 

Mg transformer mass 

m 	 mass of ca r  per unit length 

viscous damping coefficient for  qth degree of freedom 

general dispiacement forcing function 
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amplitude of forcing function 

generalized coordinate 

amplitudes of sinusoidal motion in qth degree of freedom in te rms  of dimen
sionless quantities 61 and S2 

lateral  distance between equalizer springs (see fig. 13(b)) 

vertical displacement forcing function at rails (see fig. 1) 

input spectral density of vertical model (see eq. (3)) 

output spectral density of vertical model (see eqs. (7) and (8)) 

kinetic energy 

time 

potential energy 

ca r  speed 

lateral  bending deformation of ca r  (see eq. (B2)) 

c a r  bending-mode-shape value a t  any x 

vertical bending deformation of ca r  (see eq. (A3)) 

length along ca r ,  measured from rea r  of c a r  

lateral  displacement forcing function at rails (see fig. 13(b)) 

spectral density of lateral  input at rails 

generalized coordinate of lateral  translation of traction motor 

genemlized coordinate of lateral  rigid-body translation of ca r  (see fig. 13(b)) 
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Y g W  generalized coordinate of lateral  transformer translation 


ZA(t) generalized coordinate of vertical translation of traction motor 


Z C W  generalized coordinate of vertical rigid-body translation of car (see fig. 1)  


zg(t) generalized coordinate of vertical transformer translation 


am34-n eigenvalue properties of beam in bending (see eqs. (A8) and (A9)) 


(AOt center-to-center distance between axles of a truck suspension system (see 
eqs. (11) to (14)) 

AY (t) displacement relation in lateral  bolster springs for nonlinear spring behavior 
(see eqs. (15)) 

6( t )  increment of vertical displacement a t  rails associated with cross-level (or 
rolling) displacement input (see fig. 13(b)) 

6I(f) spectral density of c ross  -level input a t  rails 

rl(t) generalized coordinate of c a r  in rigid-body yaw 

generalized coordinate of traction-motor rolling degree of freedom 

O,(x,t) rigid-body roll and torsion of ca r  (see eq. (B3)) 

eco(t) generalized coordinate for rigid-car roll 

h wavelength for wave input 

w angular forcing frequency, 2 ~ 3 ,rad/sec 

w angular frequency of qth degree of freedom, 2 d q ,  rad/secq 

Subscripts: 

A identifies properties associated with the traction-motor-equalizer system 

B denotes vertical c a r  bending frequency 
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C 

c2 

cT 

cv 

f 

0 

oT 

r 

S 

T 

associated with c a r  

identifies structural damping coefficient of car in lateral bending; also, 
lateral ca r  acceleration (see table III) 

identifies structural damping coefficient of car in torsion 

identifies structural damping coefficient of c a r  in vertical bending 

identifies forward trucks 

associated with transformer 

identifies energies and c a r  bending stiffness of lateral  model (see appendix B) 


identifies properties of traction-motor-lateral-equalizer system 


denotes lateral  c a r  bending frequency 


identifies properties of lateral  bolster spring-damper system 


identifies properties of lateral  transformer spring-mass system 


integer associated with mth c a r  bending mode 


identifies amplitude of forcing function 


identifies bolster rigid-body damping coefficients and frequency 


identifies general degree of freedom 


identifies rear trucks 


identifies properties of vertical bolster spring-damper system 


associated with c a r  torsion 
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V identifies energies and car bending stiffness of vertical model 

Q! identifies roll stiffness and damping properties of traction motor 

Dots over quantities denote differentiation with respect to time. Bars  over quanti
t ies  denote maximum amplitude in acceleration transfer functions. 

ANALYSIS O F  VERTICAL MOTION 

Equations 

Mathematical model.- The mathematical model used in the analysis of the vertical 
motions of the railroad car is shown in figure 1. The model consists of a uniform beam 
representing the railroad car, a heavy mass Mg attached to the center of the c a r  by a 
spring and damper (this mass  represents an electrical transformer used in powering the 

railroad car), and two masses  MA attached by springs and dampers to the c a r  and to a 
vibrating base representing the rails. The masses  MA represent the flexibly mounted 
sections of the truck frame and traction motors in the suspension system of the railroad 
car .  For convenience in further discussions, each mass MA with its attached springs 
and dampers is referred to as a truck suspension, the mass MA is called the traction 
motor, the spring-damper combination between this mass  and the c a r  is called the 
bolster, and the spring-damper combination connecting the traction motor MA to the 
rails is called the equalizer. A schematic view of the truck suspension system is shown 
in figure 2. The wheels, axles, and side f rames  (supporting the equalizer springs) a r e  
considered to be part of the rails, and the connections between the axles and traction 
motors a r e  not taken into account in the model. In addition to the viscous dampers in the 
transformer and truck suspensions, structural damping is included in the car .  The 
degrees of freedom considered a r e  c a r  rigid-body displacement, zc(t); car  bending 
motion, w(x,t) = a(t)w(x); transformer displacement, zg(t); and traction-motor displace
ment, zA(t). The model is symmetric about the middle of the car,  and the same rail 
input is applied simultaneously to both truck suspensions; therefore, both traction motors 
have the same motion, and only one degree of freedom zA is required. With different 
inputs to front and rear trucks, separate degrees of freedom are required to specify the 
vertical motion of the front and r ea r  traction motors, and rigid-body pitch would also 
have to be included. 

The equations of motion of the mathematical model a r e  derived in appendix A. The 
matrix equations of motion a r e  of the form: 
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where the column matrix (q} contains the displacements a(t), zc(t), zg(t), and 
zA(t). In equation (1) [M] is the mass  matrix, [C] is the damping matrix, [K] is 
the stiffness matrix, (Q} is the displacement input, and {Q}is the velocity input. 

Rail inputs.- The time history of the rail input used in this analysis was either 
sinusoidal or  random. The sinusoidal input is 

Q(t) = So sin w t  

Q(t) = sow cos utI (2) 

where w is the input frequency and So is the displacement amplitude. The random 
input is given by the spectral density variation identified as "middle estimate'' in figure 8 
of reference 4 and is based on measured railroad roughness data. The spectral density 
for this displacement is 

SI@)= 
46.9 x 10-5 cm2,,Hz 

f2.64 

YI 
f being the input frequency in hertz. The root-mean-square (rms) amplitude c this 
spectral density is 1.113 mm (0.0438in.) for a frequency range of 0.1 to 10 Hz. 

Acceleration transfer functions .- With sinusoidal input (eqs. (2)) and the assump. .  

tion of sinusoidal motion in the form 

equation (1)leads to the equations: 

The elements of the matrices LK], [MI, [C], (cl}, {Gz} ,  {Q$ , and {Q2> a r e  
given in appendix A. Equations (4)a r e  solved for  {q$ and {a2} by using standard 
digital computer routines. From the solution of equations (41, the amplitude (4) is 
determined by use of the relation 
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where /- is the response amplitude and 9.= tan-’“j- is the phase angle. 
J ql i  

In this paper, as in reference 4, no results are presented for  t6e phase angle 9j ’  
On the basis of equation (5), a general expression for the steady-state acceleration 

response to sinusoidal input, or  transfer function, may be written as 

The expressions for  transfer function at different model locations a r e  given in the fol
lowing table: 

~ -

Location Acceleration transfer function 
- .-__ - - _ _  - . ~- - _  ~ _ _ _ _ _ _ . _  

Car 

Transformer 

Traction motorsL
- . 

The two car  locations for  which acceleration transfer functions were studied were the end 
of the ca r  (x = 0 )  and the middle of the ca r  (x = L/2). 

Spectral density.- The spectral density of the acceleration response at  a given 
model location is obtained from the t ransfer  function and the spectral density of the 
input %(f)  by the equation 

n 

The root-mean-square value of Sq(f) in g units is obtained from 

The integration limits fb and f e  were taken as 0.1 and 10 Hz, respectively, for  this 
study. 
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Optimization Procedure 

Sinusoidal input.- With the sinusoidal input, the objective of the optimization was to 
minimize the largest  value of the acceleration transfer function occurring between 0 Hz 
and 20 Hz. The procedure used was the same as that used in reference 4. The first step 
in this procedure is to generate transfer function curves such as shown in figure 3 for a 
range of values of one of the system parameters. The next step is to plot the value of the 
transfer function associated with a given peak (determined from curves such as those of 
fig. 3) as a function of the varying system parameter. For  example, figure 3(a) shows 
that peaks occur at about 1 Hz and 8.3 Hz in the transfer function at the end of the car ,  
and figure 4(a) shows the variation of the transfer function associated with each of these 
peaks as the transformer frequency is varied. Similarly, parts (b), (c), and (d) of 
figures 3 and 4 show where the peaks occur for other positions in the model and how the 
peak values vary with transformer frequency. The frequency range associated with each 
peak is shown next to each curve in figure 4. 

The next step in the optimization is to identify a curve which shows the largest  
value of transfer function for  each value of the varying parameter. Such a curve is 
called a maximum acceleration function and is indicated for  each model location in 
figure 4 by the segments of the curves joining the circular symbols. A value of the 
varying parameter that minimized the maximum acceleration function is then chosen. 
Figure 4 shows that a transformer frequency of 6.5 Hz minimizes the maximum acceler
ation function a t  both ca r  locations but not at  either the transformer o r  traction-motor 
location. In the present study, a value was chosen that minimized the ca r  location 
accelerations because they were considered more important from the standpoint of 
passenger comfort. 

Finally, with the optimum value of the f i rs t  system parameter, a second system 
parameter is varied and the process described is used. to determine an optimum value 
of the second parameter. In the present study, this procedure was repeated through four 
parameters and constituted an optimizing cycle. The cycle was  repeated, as in refer
ence 4, until the value obtained as optimum for  a given parameter was  the same as the 
value obtained in the previous optimizing cycle. Fortunately, no more than two opti
mizing cycles were required in this study. Figures 4 to 7 show the curves used to deter
mine the optimum values of the varied parameters (with fA = 4.12 Hz) and a r e  discussed 
in the section "Results of Vertical Motion Analysis." 

Random input.- The objective of the optimization with the random input was to 
minimize the value of the root-mean-square (rms) acceleration in the frequency band 
from 0.1 to 10 Hz. The procedure was to obtain values of r m s  acceleration for each 
model location by using equations (4), (7), and (8) for  a range of values of a system 
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parameter. A value of the system parameter was chosen to minimize accelerations at 
all locations, i f  possible, and the value chosen w a s  then held constant while a second 
system parameter was varied. Only a single optimization cycle was required to obtain 
sufficiently accurate optimum values of the two parameters varied in this study. 

Results of Vertical Motion Analysis 

Two studies were carried out with the vertical model: (1) an optimization study 
based on minimum response of the c a r  and (2) a parameter variation study of the effect 
on acceleration transfer function of two parameters that were not varied in the optimiza
tion study. The full scope of both of these studies is indicated in table I. Table I(a) 
contains the values of the constant parameters and table I(b) indicates the parameters 
that were varied, along with the value of each parameter used for each figure. 

-Optimization for  sinusoidal input. - The optimization procedure described for the 
sinusoidal input was used to determine optimum values of the frequency of the trans
former and the damping coefficients of the transformer, bolster, and equalizer. The 
curves used to determine optimum values a r e  shown in figures 4 to 7, and the values of 
the remaining parameters a r e  given in table I. The optimum transformer frequency was  
chosen from figure 4 to be 6 Hz. Figure 5 shows that the tranformer damping value 
of 0.25 minimizes the transfer function for both car  locations and, in addition, results in 
near-minimum values of transfer function for the transformer and traction-motor loca
tions. Figure 6 shows that the transfer function is minimum at the end of the ca r  for a 
bolster damping coefficient ns of 0.09 but at the middle of the car  for ns = 0.14. The 
transfer function is sensitive to variations in bolster damping. In this case, ns was  
chosen as 0.11. This value is good for the transformer location but not for the traction 
motor, for which the minimum transfer function is obtained for ns 5 0.5. Figure 7 
shows that optimum equalizer damping is 0.03 for the end of the car  but is 0.31 for the 
middle of the car.  The compromise value of nA = 0.1 was  chosen arbitrarily, between 
the two minimizing values. 

Figures 4 to 7 show that it was not possible to choose a value of the varying param
eter  that minimized the transfer function a t  all model locations simultamously. This 
result was also observed for  the three-degree-of-freedom model of vertical ca r  motion 
studied in reference 4. Because of this result, c a r e  must be taken in a real  rail car  
situation that an optimum value of a system parameter chosen to minimize acceleration 
at, for example, a ca r  location does not result in excessive acceleration at  another loca
tion, such as the traction motors. The factors to be considered when the accelerations 
a t  both c a r  locations cannot be minimized together, such as those shown in figures 6 
and 7,  a r e  discussed in reference 4.  
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The results shown in figures 4 to 7were obtained by using an equalizer spring 
value that resulted in an equalizer frequency of 4.12'Hz. The study represented by 
these figures was repeated with an equalizer frequency of 5.53 Hz (a stiffer equalizer 
spring). The values of the other nonvarying parameters w e r e  the same as those shown 

in table I(a) for figures 4 to 7. The optimizing curves with the equalizer frequency 

fA = 5.53 Hz were qualitatively .very similar to the curves shown in figures 4 to 7; the 

optimum values of the varied parameters are compared for the two equalizer frequencies 

in  table II. This table shows that the optimum values of only transformer and bolster 

damping were different for the two equalizer frequency values. Moreover, the transfer 

function with fA = 5.53 Hz was insensitive enough to variations of transformer 

damping ng to insure that a value of "g = 0.25 would be an acceptable value. 

Figure 6 shows, however, that transfer function is very sensitive to variations of bolster 

damping ns; therefore, the difference between ns = 0.057 and nS = 0.11 is signifi

cant. These results indicate (as might have been expected) that the value of the equalizer 

spring is important in determining one of the optimum damping values, bolster damping. 

In this particular case, the equalizer spring value is not important for  the other param

eters  fg, %, and nA. 


Optimization fo r  random input. - By using the optimization procedure previously 
described for the random input, optimum values of bolster and equalizer damping coef
ficients were determined. The results a r e  presented in figures 8 and 9. The values of 
all other parameters were the same as those for the sinusoidal input study of figures 4 
to 7,  as shown in table I. The values of transformer frequency and damping were not 
varied; however, the optimum values from the sinusoidal input study were used. 
Figures 8 and 9 both show that the r m s  acceleration, in  general, w a s  insensitive to varia
tions of bolster and equalizer damping. Figure 8 shows that a bolster damping coeffi
cient of about 0.3 is a good value for minimizing rms  accelerations. In spite of the 
insensitivity of r m s  acceleration to variations of bolster damping, the value of ns = 0.11 
as determined from the sinusoidal study has r m s  accelerations at the c a r  location about 
30 percent greater than those for ns = 0.3. Therefore, these r m s  studies indicate that 
a higher bolster damping value is required to minimize r m s  accelerations than is 
required to minimize peak acceleration transfer functions. This result is in agreement 
with the results fo r  the three-degree-of-freedom model of reference 4, where, with no 
mass  between the rails and the car ,  it w a s  shown that the optimum suspension damping 
values were larger for  random inputs than for  sinusoidal inputs. Figure 9 shows, 
however, that r m s  acceleration is so  insensitive to variations of equalizer damping (for 
the particular values used for the other system parameters) that any value between 
nA = 0 and nA = 0.5 may be chosen without penalty to r m s  acceleration. 
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The r m s  values shown in figures 8 and 9 were obtained from spectral densities of 
the type shown in figure 10. These particular spectral  densities apply to the optimum 
values of ns  and nA = 0.30 from figure 9 and show a concentration of energy at the 
low frequency range (around 1 Hz) for  the two c a r  locations and the transformer. For 
the traction motors, the energy concentration occurred in  the higher frequency range, 
near 5 Hz. 

Parameter  variation.--ICar bending frequency fB and c a r  weight Mcg were held 
fixed a t  8 Hz and 574 kN (129 000 lb), respectively, for the optimization studies, and the 
structural damping coefficient gcv was taken equal to zero. To determine how these 
properties might interact with other parameters in the model, including those chosen 
for  optimization, transfer functions were obtained for wide variations of c a r  bending 
frequency and ca r  weight and for a nonzero structural  damping coefficient. Maximum 
values of the peak acceleration curves (maximum acceleration functions as described in 
section "Optimization Procedure") and their associated frequencies a r e  plotted for the 
two ca r  locations as functions of bending frequency in figure 11for an arbi t rary non
optimum configuration, Variations of acceleration transfer functions with ca r  weight a r e  
shown in figure 12 and were obtained by varying both c a r  weight and bending frequency, 
ca r  bending stiffness being assumed to be fixed at  a value corresponding to fg = 8.0 Hz 
and Mcg = 574 kN (126 COO lb). The values of all parameters used to generate fig
ures  11 and 12 a r e  shown in table I(b). 

Figure 11 shows that the acceleration transfer function with no ca r  damping has a 
maximum value for both ca r  locations f w  a c a r  bending frequency value of 3 Hz. The 
value of transfer function at  its maximum is about 8.5 and 3.9 times the value at 
frequencies above 6 Hz for the end of the ca r  and the middle of the car ,  respectively. 
This sensitivity suggests the need for knowing the bending frequency of a given rail car  
and its possible variations in service s o  that large values of acceleration can be avoided 
by praper design of the system. Figure 1 2  shows that c a r  acceleration transfer functions 
were relatively insensitive to wide variations in c a r  weight. 

Comparison in figure 11 of the solid curves for zero structural damping with the 
dashed curve fo r  structural damping (gcv = 0.05) shows that' a small amount of structural 
damping causes large decreases of acceleration transfer function within the frequency 
range of resonance (<6 Hz). However, i f ,  by proper design, this range can be avoided, 
structural damping becomes of minor importance, as indicated by the  virtual coalescence 
of the curves of figure 11 away from resonance. 
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ANALYSIS OF LATERAL MOTION 

Mathematical Model 

Views of the mathematical lateral  model and i ts  coordinate system are shown in 
figure 13. Viscous damping representation is omitted for figure clarity. The motion of 
the model is governed by equation (l),and the matrix elements for this equation a r e  
derived in appendix B in  the same manner as that used in  appendix A for the vertical 
model except for  differences in certain strain-energy terms due to the nonlinear lateral  
bolster springs. Car motion is represented by the torsional and lateral  bending of a 
uniform beam. As in the case of the vertical model, linear viscous damping is assumed 
for  the lateral  truck and transformer suspensions and structural damping for the c a r  
itself. Symmetry about the center of the ca r  is assumed in lateral  as well as longitu
dinal directions. 

Degrees of freedom.- The lateral  model consists of ten degrees of freedom identi
fied as follows: 

Car lateral  bending mode, b(t) 
Car rigid-body lateral  translation, yc (t) 
Car  rigid-body roll, Oco(t) 

Car f i rs t  torsion mode, Ocl(t) 

Car rigid-body yaw, q(t) 

Transformer lateral  translation, yg(t) 

Lateral translation of r e a r  traction motor, YAr(t) 

Lateral translation of forward traction motor, yM(t) 

Roll of r ea r  traction motor, 8Ar(t) 

Roll of forward traction motor, BAf (t) 


The c a r  is free to twist about a longitudinal elastic axis (designated in fig. 13(b)), and 

L The total bolster springthe f i rs t  torsion mode shape of the car is given by COSE. 
constant ks and damping constant cs for each truck a r e  divided equally between the 
springs and dampers located symmetrically beneath each side of the ca r ,  as shown in 
figure 13(b). Similarly, the total equalizer spring constant kA and damping con
stant cA in each truck a r e  each divided equally between the springs and dampers 
connecting the traction motors to the rails. Both rigid-body roll and torsion (8 

co 
(t) 

and BCl(t)) are resisted by the bolster springs and dampers. The spring constant 
2and damping constant -

2 
over each rail represent the combined stiffness and damping 

of separate equalizers actually located near each wheel; that is, there  a r e  four equalizers 
per truck. Traction-motor roll (BAr(t) and BAf(t)) is assumed to be resisted by this 
spring-damper system. Additional stiffness and damping in the equalizer-traction-motor 
system are provided by a rolling spring constant k, and a damping constant c, at 
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the traction-motor center of gravity, as shown in figure 13(b). The introduction of this 
additional stiffness and damping is intended to simulate the complicated linkage and gear 
mechanisms between the traction-motor and wheel-axle system in an actual rail car 
truck, as illustrated in figure 2. 

Lateral  stiffness and damping in the transformer and truck suspensions are given 
by spring and damping constants that are assumed to approximate lateral shear  stiffness 
and damping in the vertical transformer suspension, the bolsters, and the equalizers. 
The lateral  transformer spring and damping constants are designated by kzg and c l  g’ 
the lateral  spring and damping constants of the bolster by k lc  and czc, and the lateral  
equalizer spring and damping constants are denoted by kz and cl  . The transformer 
properties are assumed to be linear, and the bolster and equalizer properties are also 
assumed to be linear between the small solid semicircles in the truck suspension view 
(fig. 13(b)). These semicircles represent compressible stops o r  bumpers, each having 
the nonlinear spring function shown in figure 14. This function is based on measured 
force-deflection data for  an actual truck suspension. 

Rail inputs.- The lateral  model was excited by lateral  and rolling, o r  rocking, inputs 
~ 

from the rails as indicated by the horizontal and vertical arrows a t  the bottom of the 
truck suspension view in figure 13(b). The lateral  input is designated Yf(t) and Yr(t) 
a t  the forward and rear trucks, respectively. The roll input is identified as c ross  level, 
as in reference 1, and was generated by the differences 6f(t) and 6r(t) between 
unequal vertical inputs applied to each rail as shown in figure 13(b). This difference was 
always applied as the displacement of the right-hand rail (with the c a r  viewed from the 
front). In general, these inputs may be written in vector form as 
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Three classes of input were applied to the lateral  model: sinusoidal, transient, 
and random as indicated in figure 15. The sinusoidal inputs (fig. 15(a)) may be written in 
the general form: 

where o is the input frequency and Qof, Qor = Yof, Yor or 6,f, 6,, depending 
on whether the model is excited by lateral  or cross-level inputs, respectively. The 
quantity K represents the phase angle between forward and rear inputs, and the model 
was excited with inputs either in phase or out of phase as illustrated in sketch (a). The 
out-of -phase option allowed for  the influence of c a r  torsion and traction-motor rolling 
effects to be examined. 

In-phase inputs 

Sketch (a) 
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The three nonsinusoidal deterministic inputs in figure 15 are transients repre
senting different types of disturbances of finite length X along the rails. The first of 
these inputs is a single square pulse (fig. 15(b)) with a constant displacement applied to 
the front trucks Qof and rear trucks Qor in a sequence of time intervals which intro
duces c a r  speed v as an additional variable through the simple relations 

t l  - to = t3 - t2 = 
+ (A2)t 

V 

L - 2d - (A2)t - X 
t2 - t l  = - .~ 

V 

where t l  - to is the time interval required for the forward truck to roll over the dis
turbance, t2  - t l  is the time between when the front truck leaves the disturbance and 
the r ea r  truck encounters it,  and t3 - t2  is the time it takes for  the r ea r  truck to 
roll over the distrubance. If L-- 2d - (A2lt is l e s s  than A ,  corresponding to a long 

disturbance, t2 - t l  becomes negative and indicates that the r ea r  truck encounters the 
disturbance before the front truck leaves it. The distance (AZ), is the center-to-center 
distance between the axles of a truck. The velocity inputs Qf(t) and Qr(t) a r e  
assumed to be zero. Lateral o r  cross-level inputs were applied in the directions indi
cated in the foregoing in-phase sketch, and the only phase lag of the r ea r  truck behind 
the forward truck w a s  due to ca r  speed, in accordance with equations (11). 

The second transient input is the square pulse train (fig. 15(c)) which is intended to 
reproduce the effect of rail joints as illustrated in sketch (b): 

Sketch (b) 

The length XR is the distance between joints, and h is the gap between the ends of the 
rail joints. In the present paper, X was chosen as 2.54 cm (1in.) and XR as 
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11.9 m (468 in. o r  39 f t ) ,  This input is treated as a succession of square pulses applied 
to one rail (the right-hand one for the front view of the car ,  consistent with the foregoing 
in-phase sketch). The displacement inputs to each truck are constant and the velocity 
inputs are assumed to be  zero, as for the square pulse. In addition to equations ( l l ) ,  
two other time-distance relations are involved, namely 

and 
XR
- + At5 - t l  =v2 

where t5 - t4 is the time required for  the forward truck to roll over the disturbance 
due to the gap in the other (left hand) rail, and t5 - t i  is the time required for  a truck 
to  t raverse  the distance between gaps which occur on opposite rails. 

The third transient input is a single-wave pulse (fig. 15(d)) which is intended to 
simulate the effects of a lateral  deviation of the track from a straight course o r  the bank 
on a curve, depending on whether the inputs are lateral o r  c ros s  level. This input is 
governed by trigonometric relations of a form similar to those used in reference 2. 
For  the forward truck, the displacement input is 

and for the rear truck 

The velocity input for this case is 

Qofm sin 2m(t - to) 
Qf(t) = h + (A2)t X + (AZ)t 

Equations (11) apply for  this input as well as fo r  the square pulse. In the application 
of equations (13) and (14), X was varied over a wide enough range to insure that 
L - 2d - (AZ), - h was both positive and negative. 
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Random inputs to the lateral  model included the functions illustrated in figures 15(e) 
to 15(g). Spectral densities identified as 1and 2 in figure 15(e) correspond to r m s  ampli
tudes of 5.08 cm (2 in.) and 2.54 cm (1in.), respectively. Spectral density 3 is based on 
an experimental measurement of random vertical displacements along a 3.2-km (2-mile) 
section of test track in the eastern United States, and the r m s  amplitude was 1.524 mm 
(0.06 in.) for a vehicle speed of 49.2 m/sec (110 mph). This input was arbitrari ly applied 
to the lateral  model with a 2.54-cm (1 in.) r m s  lateral  amplitude. Figure 15(f) illus
trates the square-pulse train input with random amplitudes. Figure 15(g) shows a time 
history of a combination of this random-pulse train input with spectral density 4 in fig
ure  15(e) for a 2.54-cm (1in.) r m s  amplitude. This input was also applied arbitrari ly 
as lateral input to the lateral  model. Spectral density and r m s  inputs a r e  denoted 
by YI(f) and YrmS for  the lateral  input and 6I(f) and 6rms for the cross-level 
input. All these random inputs were applied simultaneously to front and r e a r  trucks. 
Velocity random inputs were neglected. 

Outputs.- Responses of the lateral  model were obtained in the forms of acceleration 
transfer functions for the sinusoidal inputs, absolute values of maximum accelerations 
in g units for the transient inputs, and acceleration spectral  densities and r m s  values 
for the random inputs. Lateral  acceleration responses were calculated in the c a r  at  
various stations distributed along the longitudinal center line of the ca r  and also for the 
transformer and traction motors. Vertical acceleration responses were determined in 
the ca r  just over the bolsters and in the traction motors over the equalizers. Accelera
tion transfer functions for  the sinusoidal input were obtained from equations (4) to (6) as 
for the vertical model, and particular forms of equation (6) a r e  listed in table 111for the 
lateral  model. 

- - - .- .- - -Solutions of equations- of motion. - Equations (4) and the transfer functions listed in 
table III were programed on the Control Data 6600 computer system a t  the Langley 
Research Center, as were the corresponding equations for the vertical model. This 
program is restricted to linear spring elements. The solutions of equation (1)for the 
transient and random inputs in figure 15 were programed, along with equations (11)to 
(14), for another Langley computer facility, discussed in the following section, that was 
also able to handle the nonlinear spring characteristics shown in figure 14. 

Scaled Real-Time Simulation 

The presence of the nonlinear springs and the wide selection of inputs previously 
described prompted application of another method of solving equation (1)for  the lateral  
model. This method involved the numerical integration of this equation in time by use of 
the real-time simulation (RTS) capabilities of the Langley central digital data recording 
facility. In this approach, the ten simultaneous equations represented by equation (1) 
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were integrated in the time domain on the Control Data 6600 computer system, and solu
tions were fed through digital-to-analog converters (DAC) to give time histories of 
displacements, velocities, and accelerations in various parts of the model. To insure 
sufficiently accurate integrations, the independent variable time had to be slowed, or  
scaled, during the computation. A time interval of 1.5625 msec was used in a second-
order Runge-Kutta integration scheme. Results from this program for sinusoidal 
inputs were checked with those obtained from the digital transfer-function program. The 
sinusoidal inputs of equations (10) could be applied in the RTS program for an arbitrary 
phase angle K ,  whereas the digital solution was programed only for  solutions with K 

equal to integral multiples of 71 corresponding to in-phase and out-of-phase inputs to 
the front and r ea r  trucks, respectively. 

An important feature of the RTS approach is the on-line random input capability 
represented in the flow chart of figure 16. In this arrangement, band-limited white 
noise, which was  generated by an analog computer, could be introduced directly through 
a cut-off filter, or through a desired shaping filter, into the RTS computer program for  
solving equation (1). Outputs of this program and the random input were both fed on-line 
into a time ser ies  analysis digital program (TSA), in which statistical properties of input 
and output were calculated. Spectral density and r m s  value were the two properties of 
interest in this investigation. By appropriate choices of shaping fi l ters,  reasonable 
approximations to the spectral-density shapes f o r  inputs 3 and 4 in figure 15(e) could be 
generated for  any desired input amplitude. 

Real-time simulation system. - The real-time simulation (RTS) system used to 
solve the ten equations of motion provides console control combined with digital accuracy 
and convenience. (See ref. 6.) The ten second-order derivatives in equation (1) were 
formed and numerically integrated twice during each machine iteration to yield the 
velocities and displacements. These operations a r e  indicated on the flow chart of 
figure 17. During most of this study, 32 iterations per second (20-to-1 slow) was the 
normal iteration rate,  whereas 64 iterations per second (10-to-1 slow) were used when
ever possible. 

~~Random studies.- An Electronic Associated, Incorporated (EAI) 231-R analog 
computer was programed with appropriate f i l ters  and a mean and r m s  control circuit to 
produce desired random inputs to the mathematical model from an analog Gaussian 
noise generator. This equipment is represented by the random-input (or noise gener
ator) box in the flow chart of figure 16. Outputs from the mathematical model were 
directed to an on-line TSA program located a t  a separate control point of the RTS system. 
This program computes mean values, standard deviations, chi-square tes ts  for  normality, 
histograms, autocorrelation functions, and power spectral  density functions (PSD) for its 
input channels. These statistical properties a r e  discussed in detail in reference 7 .  A 
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CDC-250 cathode ray tube (CRT) was used to display linear or log-log plots of the PSD 
values generated by the TSA program. Control stations such as those used for  solving 
the equations of motion, operation of the TSA program, and operation of the CRT a r e  
shown in figure 18. Also shown are a CRT console and the time-history recorders,  each 
capable of displaying 8 different displacements, velocities, o r  accelerations. 

Visual ca r  display.- An oscilloscope display showing a front cutaway view of the. . ~ 

car at the forward truck was driven by a program on the GPS 10000 iterative analog 
computer. As indicated in figure 16, this analog program transformed DAC outputs from 
the mathematical-model solution into signals for the scope display. This display w a s  of 
small analytical value because of the 20-to-1 or 10-to-1 time scales but was useful for 
demonstration purposes. 

Results of Lateral Motion Analysis 

The presence of eight spring elements and eight dampers in the lateral  model 
requires the use of a computerized algorithm for  minimizing vibration levels in the 
system. The trial-and-error cycling approach utilized in a limited optimization of the  
vertical model, with eight system elements at most, w a s  considered to be impractical 
fo r  the lateral model. Instead, the analytical tools previously described were exploited 
to obtain trends of acceleration responses to inputs involving realistic ingredients for  
lateral  and cross-level rail disturbances. Parameter  variations included realistic rail 
c a r  values, and the widest variations were made for  the sinusoidal inputs utilizing the 
transfer-function digital program. The RTS capabilities were employed to explore 
(1) relations between c a r  speed and damping coefficients in the truck suspension and 
(2) nonlinear spring effects for the transient and random inputs. Some effects of input 
wavelength were also considered. The full scope of this study is given in tables IV 
and V. The fixed properties a r e  listed in table IVYand the values of the variable prop
erties and inputs in each of the figures a r e  presented in table V. Inputs in table V a r e  
identified according to the appropriate parts of figure 15. 

input.- Typical acceleration transfer functions for variousResults for  sinusoidal..- ~ 
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stations in the lateral  model a r e  shown in figure 19. With all damping coefficients 
reduced to 0.001 and the ca r  structural damping coefficients set  equal to zero, peak 
acceleration responses occurred near the uncoupled frequencies of the system. The 
existence of only a few peaks in figure 19 is attributed to the moderate to high damping 
levels indicated by the values listed in table V for  this figure. A dominant peak 
at  0.44 Hz occurred frequently in the c a r  and transformer responses as shown in 
figures 19(a) and 19(b). The response was sensitive to the magnitude of the lateral  
bolster damping coefficient nzc. Other parts of the model experienced dominant peak 
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accelerations at higher frequencies for  the cases  considered, as is evident, for example, 
in figures 19(c) to 19(e). 

All ten degrees of freedom were retained in nearly all the studies; however, the 
effects of deleting traction-motor rolling degrees of freedom (BAr(t) and BAf(t))and of 
changing traction-motor stiffnesses (kar and kaf) were given limited attention. The 
effects of these parameter variations are compared in the transfer-function plots of 
figures 20 and 21. Figures 20(a) and 20(b) show only a "-percent reduction in maximum 
lateral  c a r  accelerations to lateral in-phase inputs because of the complete elimination 
of these rolling degrees of freedom and about 4-percent reduction with traction-motor 
rolling stiffnesses increased from k,, = k,f = 26.8 to 101.5 MN-m/rad (corresponding 
to 2.375 X lo8 to 9.00 X lo8 in-lb/rad and to a frequency increase from f, = 18 H z  to 
35 Hz). Somewhat larger  effects on the vertical bolster responses a r e  evident in fig
ure  20(e). Figure 21  shows still larger effects of traction-motor rolling stiffness on 
maximum acceleration responses to cross-level out-of -phase inputs. Lateral end-of -
car  response (fig. 21(a))and the vertical response over the bolster (fig. 21(c)) a r e  each 
reduced by about two-thirds with f, increased from 18 to 35 Hz; however, these 
maximum responses occurred close to 18 Hz,  and at  lower frequencies within the range 
of interest of this study, these effects a r e  seen to be much smaller. In general, changes 
in car  accelerations due to these variations in traction-motor stiffness and rolling 
degrees of freedom in figures 20 and 21 a r e  considered to be small by comparison with 
the effects of other parameters in the model. 

Maximum values of peak acceleration curves a r e  shown as functions of frequency 
(that is, spring) and damping parameters  in figures 22 to 29 for sinusoidal inputs. 
Frequencies associated with these peak accelerations a r e  identified a t  points along the 
curves. Figure 22 reveals a resonant region of significantly increased lateral  c a r  
accelerations due to lateral  c a r  bending frequencies (eq. (E16a)) falling within range of 
other frequencies of the model. These trends a r e  similar to those observed in figure 11 
because of vertical bending frequencies. The great reduction in lateral  c a r  accelerations 
due to ca r  structural damping in this resonant region is similar to that observed in 
figure 11for the vertical model. Likewise, with lateral  c a r  bending frequencies well 
removed from the other frequencies of the system, lateral  c a r  accelerations w e r e  
greatly reduced and were insensitive to variations in structural damping, as w e r e  verti
cal c a r  accelerations in figure 11. For  a lateral  bending frequency of 8 Hz,  the maxi
mum transfer function was about 0.25 g per  inch at  both the end and middle of the c a r  and 
occurred at a frequency of 0.44 Hz.  The results in figure 22 were obtained with lateral  
in-phase inputs from the rails. 

Maximum lateral  ca r  acceleration responses to out-of-phase lateral and cross-
level inputs are plotted as functions of c a r  torsional frequency in figure 23. Lateral 
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responses in figure 23(a) a r e  seen to be constant over a wide range of torsional fre
quencies and significantly reduced with fT less  than about 5 Hz. The effect of cross-
level inputs in figure 23(b) is somewhat reversed, maximum acceleration responses 
increasing as fT is moved beyond the range of other system frequencies. It may also 
be observed that the lateral ca r  responses to lateral inputs were higher than the lateral 
ca r  responses to cross-level inputs, and this result is a general one of this study not 
only for the sinusoidal inputs but for the other inputs as well. Higher car  responses to 
lateral  than to cross-level inputs were also obtained in reference 1. The large varia
tions in response shown in figures 22 and 23 indicate the need for accounting for ca r  
lateral bending and torsional st iffnesses in analyzing car  vibrations. Comparison of the 
trends in figure 23, particularly figure 23(b), with those in figure 22 suggests that tor
sional stiffness plays a smaller role than bending stiffnesses in car vibrations. 

Variations in acceleration transfer functions with c a r  weight a r e  shown in figure 24 
fo r  out-of-phase inputs. These variations were obtained by varying c a r  weight, rolling 
moment of inertia, lateral  bending frequency, and torsional frequency with c a r  bending 
and torsional stiffness assumed to be fixed a t  values corresponding to f l B  = 8.0 Hz, 
f T  = 15.0 Hz, Iv&g = 574 kN (129000 lb), and IEA= 3090 kg-m (695 l b - s e d ) .  Although 
the trends differ from those shown for the vertical model in figure 12, the effects of a 
wide variation in c a r  weight on lateral  c a r  transfer functions a r e  small, as these effects 
were for the vertical c a r  transfer functions. 

The flexibly mounted transformer beneath the middle of the ca r  acted as a vibration 
absorber for reducing lateral  ca r  accelerations in an analogous manner to i ts  role in 
reducing vertical car  accelerations in the vertical model. The peak responses in 
figures 25 and 26 show reductions that were obtained for a wide range of transformer 
frequencies and damping coefficients with all other parameters held constant at the 
values listed in tables IV and V. 

A vibration-absorber role can also be assumed for the lateral  truck suspension. 
However, the present trend study was limited to the effects of damping with fixed spring 
parameters. Thus, with fixed lateral  bolster and equalizer frequencies, lateral  bolster 
and equalizer damping coefficients were varied and reductions in peak acceleration 
curves obtained as in figures 27 and 28. The results in figure 27 show relative minimum 
lateral  c a r  accelerations a t  different c a r  locations for different bolster damping coeffi
cients due to lateral  in- and out-of-phase inputs. In this case, structural damping has 
the effect of widening these differences in the bolster damping values for minimum 
acceleration responses. Similar results a r e  shown in figure 28 for  the equalizer damping 
variation, except for the effect of structural damping which is not included. Figure 29 
shows the relative minimum of peak lateral  ca r  accelerations at different values of 
bolster roll damping coefficient for in-phase and out-of-phase cross-level inputs. With 
ca r  torsional structural damping included, out-of-phase responses were sharply reduced 
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with a minimum lateral  response indicated a t  noT = 0. This reduction in response due 
to structural  damping is consistent with that shown in figure 23. These results indicate 
the joint influence of both c a r  and suspension damping on lateral  c a r  acceleration 
responses. 

Results for  transient and random inputs.- In utilizing RTS capabilities to examine 
linear car responses to various transient deterministic and random inputs, the main 
variables of interest were c a r  speed v, input disturbance length A, and lateral  bolster 
damping coefficient nit. Some effects of bolster roll damping coefficient noT were 
also explored. Most of the results are presented in plots of peak lateral  c a r  acceleration 
responses as functions of ca r  speed, as shuwn in figures 30 to 35. Some variations of 
peak responses with car  length are shown in figure 36 for the square-pulse train input of 
figure 15(c). 

These results show wide differences in  peak lateral c a r  responses due to changes 
in input and changes in c a r  speed for individual inputs. Lateral  inputs generally produced 
higher lateral  ca r  responses than did cross-level inputs, as was noted in figure 23 for 
sinusoidal inputs. Mid-car responses were lower than end-of -car responses for tran
sient deterministic inputs (figs. 30 to 33) and for the combined random input (fig. 35). In 
some cases,  such as those illustrated in figure 36, minimum c a r  responses along the 
length of the ca r  occurred at  about 25 percent and 75 percent of the c a r  length. More
over, the spread between front and r ea r  responses of the ca r  w a s  considerably larger  for 
the wave-pulse inputs than for the other inputs. Figures 32 and 33 show responses at the 
r ea r  of the c a r  that are significantly higher than those at  the front of the car .  Sample 
time histories in  figures 30 and 32 further illustrate differences in the character of the 
ca r  responses for square-pulse and wave-pulse inputs for  two widely different distur
bance lengths. Initial accelerations due to a pulse input for X = 0.305 m (12 in.) in fig
u re  30 were more errat ic  than those due to a wave input for X = 76.2 m (3000 in.) in 
figure 32. Peak accelerations were about 0.047g for both time histories. 

Other indications of how dependent these results were on the nature of the input a r e  
afforded in comparisons of r m s  accelerations in table VI for two different random inputs, 
and in comparisons of acceleration responses for  deterministic and random pulse 
train inputs in figure 34. The table compares r m s  lateral  responses for  the test track 
input, corresponding to input spectral  density 3 in figure 15(e), and the combined input of 
figure 15(g) for  a 2.54 cm (1in.) r m s  amplitude. The results a r e  taken from figures 35 
and 37 for  the same c a r  speed 49.3 m/sec (110 mph) and lateral  bolster damping coeffi
cient (nZc = 0.11). Responses to the test  track input are seen to be 22.5 to 39 percent 
higher than responses to the combined input, and mid-car responses are higher than 
responses a t  the truck locations in contrast to the combined-input responses. In 
figure 34, nzc was 0.057, and the lateral-input amplitudes were 2.54 cm (1in.) for  the 
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deterministic pulse train input and 2.54 cm (1in.) r m s  for  the random pulse train input. 
As the figure shows, lateral  responses due to  random input were larger  than those due to 
deterministic transient input, and differences in  lateral responses between the trucks and 
the middle of the car were greater  for  the random than for  the deterministic transient 
inputs. The lateral  responses to random pulse train inputs (A = 2.54 c m  (1.0 in.)) 
followed about the same trends and were about the same magnitudes as the lateral  
responses to  the deterministic pulse inputs (X = 0.305 m (12 in.)) in figure 30. However, 
r m s  accelerations at rear and forward truck locations tend to be more nearly equal in 
figure 34 than do the corresponding peak accelerations in figure 30; thus, the effects of 
input variation on c a r  response are also apparent in this comparison. These results 
further support the recommendations in references 1 and 4 which point out the need for  
obtaining measured input spectra for studies of this kind. 

Effects of wavelength X were explored fo r  the wave-pulse inputs, and figure 33 
shows the variation of peak lateral  c a r  accelerations with c a r  speed for two different 
values of X, both less than that of figure 32. Comparison of the results in these two 
figures indicates that lowering X f rom 76.2 m (3000 in.) to  19.05 m (750 in.) substan
tially reduced the speed range bounding the wide spread in end-of-car acceleration 
responses to lateral  inputs. The much smaller lateral  response to  cross-level inputs 
behaved in a manner somewhat similar to that of the lateral-input responses; however, 
the spread in end responses still extended over about the same speed range regardless 
of h value, and cross-level responses fo r  X = 38.1 m (1500 in.) are shown in 
figure 33 to be nearly indistinguishable from those for  A = 19.05 m (750 in.). 

In addition to the effects of input variations and disturbance length, variation of 
damping in the lateral  bolster (nl c) also caused large fluctuations in lateral  c a r  accelera
tion response. For  example, localized increases in response were observed at particular 
car speeds for the deterministic pulse train and combined random inputs in figures 31 
and 35; however, the effects of this damping are reversed. That is, increased damping 
for the deterministic input tended to increase responses near 53.7 m/sec (120 mph, 
fig. 31), whereas increased damping for  the random input not only gave reduced responses 
but also caused them to be largely invariant over the speed,range (fig. 35). I t  should be 
noted that c a r  speed variations for  the combined random input of figure 35 are due solely 
to the pulse train part  of the input. By contrast with these effects, the wave-pulse input 
caused steep increases in lateral  car peak responses to maximum values near 44.7 m/sec 
(100 mph) and slight decreases a t  higher speeds (fig. 32). Within the 35.8 to 44.7 m/sec 
(80 to 100 mph) speed range, increased lateral  bolster damping coefficients were more 
effective in reducing lateral  c a r  acceleration responses than at  other speeds. These 
damping effects clearly indicate that no fixed damping value would reduce lateral car 
accelerations at  all speeds or  at all locations in the car for  any of the inputs considered. 
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Effects of bolster roll damping on lateral  ca r  acceleration responses were much 
smaller for cross-level inputs than the effects of lateral  bolster damping were for  lateral 
inputs. An indication of these effects may be seen in figure 30 where responses for 
noT = 0.30 a r e  higher than those for  noT = 0.20 at nearly all c a r  responses from 
17.88 to 71.52 m/sec (40 to 160 mph). Other results (not included) show still higher 
responses for  noT = 0.40. As observed for the lateral  bolster damping effect, the effect 
of bolster roll damping was also very much a function of ca r  speed. 

Nonlinear spring behavior.- All the results presented thus far a r e  based on linear 
spring characteristics in the model. In addition to i ts  application to the simulation of 
various rail irregularity inputs, the RTS method w a s  also used to explore the effects of 
spring nonlinearity in the lateral bolster suspensions. The nonlinear spring characteris
t ics shown in figure 14 were assumed for this purpose, and the deflections in the 
abscissa of the figure a r e  related to the degrees of freedom in the model through the 
equations* 

IT  \ 

- h3 kco(t) + Ocl(t) cos ""I 

Through these equations, nonlinear behavior in the bumpers directly below the c a r  is felt 
in the ca r  and the traction-motor suspension. 

With the nonlinear spring characteristics allowed for in equation (1),acceleration 
responses to sinusoidal inputs failed to reach a steady-state condition but varied in 
amplitude for  a finite number of cycles of oscillation in repeated sequences in time. This 
response behavior ceased after termination of the sinusoidal forcing function. With band-
limited lateral  white-noise amplitude of 2.54 cm (1in.) r m s  input (no. 2 in fig. 15(e)) 

* Additional relations a r e  included in reference 5 for  an assumed nonlinearity in the 
lateral  equalizer springs. However, these relations (eqs. (6) of ref. 5) have been found 
to be incorrect because of the omission of lateral inputs from the right sides of the equa
tions. Consequently, the "nonlinear" curves in figure 11 of reference 5 a r e  incorrect and 
have been omitted from figure 37 of the present paper. In addition, the te rms  - h ~ ~ o ~ ~ ( t )
and -hzfB~f(t) in equations (15) were erroneously omitted from equations (5) of refer
ence 5 but were included in calculations for the nonlinear spectral  density in figure 7 of 
this reference. 
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to equation (l), output spectral  densities and r m s  values, such as those shown in figure 38, 
were obtained and are seen to be considerably higher for  the nonlinear case thanfor  the 
linear case.  Figure 38 also shows large reductions in responses due to increasing 
lateral  bolster damping from nzc = 0.057 to 0.11. 

Similar effects of the nonlinear springs were observed in lateral  acceleration 
responses along the length of the car due to wave pulse inputs as shown in figure 39. 
Here the input wavelength X was 9.52 m (375 in.), and the car  speed 35.8 m/sec 
(80 mph). The solid curve identified as "linear" applies to lateral  acceleration responses 
f o r  which kzc was linear and is included for  comparison with the other curves for 
which kzc  was  nonlinear. As may be seen, increasing nzc from 0.057 to 0.30 
resulted in drastically reduced responses, as in figure 38 for  the random input. With 
nzc = 0.30, the responses were reduced to the levels of the linear responses over the 
length of the car .  

It thus appears that higher ca r  accelerations can be obtained with nonlinear springs 
than with linear springs in the model and that this result is not likely to change when the 
input changes. It is also evident that a moderate amount of damping can be very effective 
in reducing nonlinear acceleration responses. 

CONCLUDING REMARKS 

Simplified vertical and lateral  dynamic models of a high-speed rail passenger c a r  
have been developed and studied to obtain dynamic response information which is relevant 
to the problem of passenger comfort. Vertical responses of the c a r  to vertical inputs 
from the rails have been obtained in a four-degree-of-freedom model, and lateral  
responses to lateral  and rolling (cross-level) rail inputs have been obtained in a ten
degree-of-freedom model. Elastic properties of the passenger c a r  body were repre
sented by the bending and torsion of a uniform beam, and the rail-to-car (truck) suspen
sion systems were modeled as simple spring-mass-dashpot oscillators. Lateral  spring 
nonlin ear itie s  approximating c e rtain c omplic ated truck m echanism s were introduced and 
their effects on ca r  response were explored. The models have been excited by displace
ment and, in some cases,  velocity inputs from the rails, and a wide variety of deter
ministic (including sinusoidal) and random input functions have been used. Results were 
obtained in the form of acceleration responses in various parts of the models, particular 
attention being given to c a r  responses. From this study, the following observations a r e  
mad e, 

A trial-and-error optimization procedure for minimizing acceleration responses 
in the car  has been shown to  be feasible for a dynamic system with a few spring and 
damping elements. This feasibility was demonstrated for the vertical model, in which a 



systematic variation of stiffness and damping properties showed that larger optimum c a r  
suspension damping was required for  random than for sinusoidal inputs and that it was 
not possible to choose values of system parameters that simultaneously minimized 
accelerations in the c a r  and in other par ts  of the model. The lateral  model contained 
too many spring and damping elements for a practicable optimization by this approach 
and would require instead the application of a computer algorithm. 

The stiffness of the equalizer in the truck suspension w a s  found to be important in 
determining optimum damping in the vertical c a r  suspension (bolster) but was not impor
tant for  the optimum equalizer damping nor the optimum stiffness and damping of a 
simulated transformer mounting beneath the middle of the car .  

Knowledge of c a r  stiffness and weight properties is needed so that with proper 
design its natural frequencies a r e  sufficiently removed from other frequencies in the 
system to avoid resonances characterized by high ca r  acceleration responses. Torsional 
stiffness properties appeared to be l e s s  important than either vertical o r  lateral  bending 
stiffness. Structural damping in the c a r  was shown to be important at  car  bending and 
torsional frequencies within range of other frequencies in the system. However, c a r  
responses at c a r  frequencies well removed from this resonant region were insensitive to 
variations in c a r  structural damping. Car responses were also shown to be relatively 
insensitive to wide variations in car  weight. 

Car  acceleration responses to sinusoidal input (transfer functions) were shown to be 
sensitive to variations in vertical and lateral  bolster damping and relatively insensitive to 
variations in transformer stiffness (frequency) and damping. 

Rolling stiffness and displacement of the traction motor in the truck suspension 
were shown to have minor effects on c a r  acceleration responses in the lateral  model. 

Results of the study for the lateral  model indicate that the real-time simulation 
(RTS) method could be used in preliminary design and troubleshooting of rail car  config
urations. Wide differences in  lateral  ca r  response were shown for different ca r  speeds 
and the various transient and random inputs that were available with this method, and 
results further showed that no fixed value of lateral  bolster damping would reduce lateral  
c a r  accelerations at all ca r  speeds or  in all ca r  locations. 

Lateral ca r  acceleration responses were higher for nonlinear than for  linear springs 
for two different inputs, and these responses a r e  shown to be particularly sensitive to 
variations in lateral  bolster damping. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., June 30, 1971. 
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APPENDIX A 

DERIVATION OF EQUATIONS OF MOTION FOR VERTICAL MODEL 

This appendix presents the derivation of the matrix elements of equations (1)and (4) 
for the vertical model. These equations were obtained from Lagrange's equation in the 
form 

where T is the kinetic energy which is assumed here  to be a homogeneous quadratic 
function of the velocities, D is the dissipation energy, U is the potential energy, 
and qj is a generalized coordinate. These energies are given in terms of the degrees 
of freedom of the mathematical model of figure 1. Pitching and rolling motions of the c a r  
are neglected, and small  displacements are assumed throughout the model, consistent 
with linear theory. Performance of the indicated operations in equation (Al) for each 
degree of freedom leads to a se t  of simultaneous equations of motion represented by the 
general matrix equation (4). 

' Energies of the Vertical Model 

Kinetic energy.- The kinetic energy of the four-degree-of-freedom model in figure 1 
is given by 

where m is the mass of the car pe r  unit length L, M is the mass of the transformer,g 
and MA is the mass  of the traction motor in each truck. The bending deformation of the 
car  is given by 

w(x,t) = a(t) W(x) (A3) 

where a(t) is the generalized coordinate having the units of displacement and W(x) is 
the mode shape. The vertical traction-motor displacement ZA is the same for both for
ward and r ea r  trucks. 
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APPENDIX A - Continued 

Potential energy.- The potential energy of the vertical model is 

where (EI), is the bending stiffness of the car in the vertical direction, z(d,t) is the 
vertical displacement of the rear trucks, z(L - d,t) the vertical displacement of the 

-,tforward trucks, zt) is the vertical displacement of the middle of the car ,  and S(t) is 
the displacement input from the rail to both trucks. The truck and mid-car displacements 
are related to the four degrees of freedom by 

z(d,t) = w(d,t) + zc(t) = a(t) W(d) + zc(t) 


z(L - d,t) = w(L - d,t) + zc(t) = a(t)  W(L - d) + zc(t) 


z(;,t) = w 6 , t )  + zc(t>= a(t>w - + zc(t) Jt) 

Substitution of equations (A5) into equation (A4) gives 

Dissipation energy.- The dissipation energy is given in t e rms  of viscous and struc
tural  damping constants by 
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APPENDIX A - Continued 

where gcv is the structural  damping coefficient of the ca r  in vertical bending. By 
following the approach of reference 8, structural  damping is introduced in equation (A7) 
with its magnitude proportional to the elastic restoring forces in the ca r  and in phase with 
the velocities of oscillation of the car. The presence of the frequency w in the denomi
nator of the last term of equation (A7) limits the use of the structural  damping concept to 
systems with sinusoidal motions. In this investigation, structural  damping was included 
only in the acceleration transfer-function computer program for equations (4). 

Car Bending Mode 

The bending mode shape of the car  in equation (A3) is taken as the bending mode of 
a uniform free-free beam and is given by 

where Pm and am are obtained from the equations 

for  m = 1, 2, . . . Solutions of equations (A9) a r e  given in various places in the liter
ature. (See, for example, ref. 9.) Since i t  was assumed that the motion of the car  could 
be adequately represented by using only the fundamental mode, it was sufficient to con
sider m = 1, for which PIL = 4.730 and a1 = 0.9825. This assumption is essentially 
the same as that made in reference 4, except for the different approximation made for the 
mode shape. Mode-shape values for different stations along the ca r  a r e  given in table VII. 

Matrix Elements of the Mathematical Vertical Model 

The elements of the matrices [d, [C], and [K] of equations (4) were obtained 
by carrying out the operations indicated in Lagrange's equation (Al)  for each degree of 
freedom in the model and these elements a r e  listed in tables VI11 and IX. All matrix ele
ments of equations (4) were obtained by dividing through each of the equations by the car  
mass Mc and the sinusoidal input amplitude So. The elements of (911, (g2), (Ql), 
and {Q2} a r e  as follows: 
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APPENDIX A - Continued 

zA2-
SO 

c 


0 

0 

In the matrix elements, the natural frequencies of various par ts  of the model con
sidered separately (WB, us, wg,and WA), and the dimensionless viscous damping coef
ficients, are related to the spring mass  and damping constants by 
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APPENDIX A - Continued 

First vertical bending frequency of car: 

(A1la) 

Bolster rigid-body vertical translation frequency: 

(Allb) 

Transformer frequency: 

(Allc)  

Equalizer spring- traction- motor frequency: 

(A1Id) 

Bolster damping coefficient (for both trucks) : 

ns = -cS (Alle)
Mc*s 

Damping coefficient for the transformer suspension: 

n -CR (All�)
g - 2Mgwg 

Damping coefficient of equalizer suspension in each truck: 

"A = CA 
~MA*A 

where M, = m L  is the mass of the rail car. The equation for WB is a reduced form 
of the equation 

*B 
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APPENDIXA - Concluded 

Using equation (A8) for  Wm(X) leads to s,”Wm2(x)dx = L and 

loL1 2 T G ( j 2 d x  = pm4L. Substitution into equation (A12) of these values of the integrals 

leads to equation (Alla). It should also be noted that in the derivation of equations (4), 

there is an off-diagonal element M12 = m InL Wm(X) dx. However, by virtue of conserva
” 

tion of momentum in a free-free beam, this integral vanishes, and the mass matrix 
reduces to a diagonal matrix. Evaluation of the three foregoing integrals is found in 
reference 10. 
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APPENDIX B 

DERIVATION OF EQUATIONS OF MOTION FOR LATERAL MODEL 

This appendix presents the derivation of equations (1) and (4) for  the lateral  model. 
These equations were obtained in the same manner as those for the vertical model, 
beginning with Lagrange's equation (eq. (Al)). The derivation of equation (1)also involved 
the introduction of terms into the potential energy to allow for  the presence of nonlinear 
lateral  bolster springs, and these te rms  were different from those corresponding to the 
linear lateral  bolster springs. The lateral  model is further assumed to be uncoupled 
from the vertical model. 

Energies of Lateral  Model 

Kinetic energy.- The kinetic energy of the ten-degree-of-freedom model shown in 
~ ~ - .. 

figure 13 is: 

where IC is the mass  moment of inertia of the car  c ros s  section in roll about the section 
center of gravity. The lateral  bending deformation of the c a r  is given by 

with b(t) the generalized coordinate for  the car  and W(x) the bending mode shape 
given by equations (A8) and (AS). Rigid-body roll and torsion of the c a r  a r e  contained in 
the following expression for Oc(x,t): 

36 




APPENDIX B - Continued 

Potential energy.- The general expression for  the potential energy of the lateral 
model with linear springs may be written as 

n n 
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APPENDIX B - Continued 

The lateral  and torsional displacements of the car at the trucks and the middle of the c a r  
are given by 

Ly(d.1) = v(d.t) + yc(t) - q(t) = b(t) W(d) + yc(t) - (z- d) q(t) 

y (L  - d,t) :-v ( L  - d.t) q(t) = b(t) W(L - d) + yc(t) + 


($1) - v(i.1) + yc (t! 


OC(d,t) - t2co(t) + UCl(t) c o s  L 


OC(L - d.t)  ~ ‘L0(t) + Hcl(t) cos 
L 

Substitution of equations (B2), (B3), and (B5) into equation (B4)gives the following 
expression for potential energy as a function of the generalized coordinates: 

- b(t) W(d) - yc(t) + q(t)  - h2rBAr(t) - I13 
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APPENDIX B - Continued 

With nonlinearities allowed in the lateral bolster springs, kzcr and kkf a r e  no 
longer constant, and the potential energy terms associated with these variable spring con
stants must therefore be replaced. The replacement terms a r e  derived by first defining 
a variable spring function k(5) such that the restoring force is k(5) 5, where 5 is 
the spring deformation. The work done by this force moving through a differential 
displacement d5 is [k(<) g d 5 ,  and the potential energy developed in the spring 
stretched to some displacement Ay is then obtained from the integral 

The displacement Ay is a function of the degrees of freedom of the system, and in this 
investigation, Ay is given by equations (15). Thus, the potential energy due to the non
linear lateral  bolster springs is 

which replaces the second and third te rms  in equation (B6). 

Dissipation energy.- The dissipation energy of the lateral model in te rms  of both.~ 

viscous and structural damping constants is written as follows: 

DL = ?{[tAr - b(t) W(d) - $c(t) + - hZrbAr(t) - 113 + i c i ( t )  cos 



APPENDIX B -Continued 

where gcz is the structural damping coefficient of the car in lateral  bending, and gcT 
is the structural damping coefficient of the car in  torsion. These coefficients have been 
introduced in the same manner as the bending structural  damping coefficient of the c a r  in 
the vertical model. (See appendix A.) 

Matrix Elements of Mathematical Lateral Model 

The elements of the square matrices of equations (1) and (4) were obtained by 
carrying out the indicated operations in Lagrange's equation for each degree of freedom 
in the lateral  model in the same manner as for  the vertical model in appendix A. For 
the nonlinear springs, the Lagrange operation reduces the integrals in equa
tion (B7) to functions of Ay; that is, aqj 

Thus, the integrals in equation (B8) reduce to  

where qj  = b(t),yc(t), . . . eAf(t). The elements of the stiffness matrix obtained from 
this operation for equation (1) a r e  identical in form with those obtained for the l inear 
springs on the basis of equation (B6). 

Matrix elements for  the lateral  model a r e  given in tables X to XI. Each matrix is 
symmetric about i t s  principal diagonal. The mass matrices a r e  given in table X, the 
upper matrix being for  the general form of equation (1) and the lower matrix, for  the 
frequency-domain form of equations (4). The stiffness and damping matrices are given 
in table XI for  equation (1) and in table XI1 for  equations (4),the upper matrices being the 
stiffness (K) matrices and the lower matrices the damping (C) matrices. The moment 
of inertia of the c a r  per unit length about the ca r  elastic axis is given by IEA= E + mhq.2 

The matrix elements corresponding to equations (4) were obtained by dividing each equation 
by the car mass Mc (or mL) and sinusoidal input amplitude Qo in a manner similar 
to that done for  the vertical model in appendix A. 

The rearward and forward lateral  bolster spring constants (kzcr and kkf in 
table XI) were kept equal throughout the investigation. However, the distinction between 
them is necessary when these springs a r e  nonlinear, in order  to relate the nonlinear 
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deflections properly to the motion throughout the system in accordance with equations (15) 
during the numerical integration of equation (1). Since there is no nonlinear damping 
in the system, clcr - ckf = clc in the damping matrix of table XI. 

The input matrices of equation (1)for  the lateral  model are 

0 


{Q> = {Q)= 
0 

czrhlrYTr(t) + ir(t: 

Equations (4) were programed for either lateral  or  cross-level rail inputs, and the input 
amplitudes Yof and tjof to the forward trucks were chosen as reference displacements 
in defining the dimensionless degrees of freedom for the {cl) and (q2) matrices. 
The complete sinusoidal relations involving these input amplitudes a r e  

Yf(t) = Yof sin wt 

�jf(t) = tjOf sin wt 

Yf(t) = �jOf sin (w t  + K 
2 ) l

J 

where K~ and K~ a r e  phase angles which, in this study, were each an integral multiple 
of ‘IT. Even multiples imply in-phase inputs to front and rear  trucks, whereas odd 
multiples imply out-of-phase inputs. The quantity 6r(t) o r  tjf(t) represents the 
difference in vertical inputs to left and right rails under each set  of trucks (see again 
fig. 13(b)) and completely defines the cross-level input. The quantities Sr(t) and Sf(t) 
disappear in the derivation of the equations of motion. The matrix elements for  (al), 
(G2}, (Ql) ,and (Qz) for these inputs a r e  as follows: 
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pl) = k2} = 

0 

0 

M~~ sin(wt + K ~ )  

@l} = OLr M, sin w t  

2 MAf 
wLf M, 

w2 
MAr hlr sin(wt + K ~ )  

It- M, R s in  wt 

w2 MAf hIf 
Lf Mc R 

0 

0 

MAr cOS(Wt + K2)c.2)= 2nl t -WLt- M, cos w t  

MAr h i r  COS (Wt + K2) 
2nlrWLrM,R cos wt 
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APPENDIX B - Continued 

matrices for the cross-level inputf o r  the lateral  rail input. The {il) and (i2) 
are of the same form as those for  the lateral  input except that 6of replaces Yof. The 
cross-level input matrices are 

0 


{Qq= 
0 

{Q2) = 

w ~ s i n w tr ~ 

2 IAf 
wAf -

McR2 

IAr sin (w t  + K 1) 

As in the case  of the vertical model, the natural frequencies and viscous damping 
coefficients of the lateral  model appearing throughout the matrix elements in tables X 
to XI1 and equations (B14) and (B15) are related to the spring and damping constants by 
the following expressions : 

Firs t  lateral  c a r  bending frequency: 

Lateral  shear bolster rigid-body translation frequency: 

IC -=%--

Bolster rigid-body rolling frequency: 

F i rs t  torsional frequency of car: 

(Bl6a) 

(B16b) 

(B16c) 
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APPENDIX B - Continued 

Lateral transformer frequency: 

Lateral equalizer frequency: 

Rear equalizer rolling frequency: 

Front equalizer rolling frequency:-

Roll frequency of rear traction motor: 

war =iz 
Roll frequency of front traction motor: 

Bolster lateral damping coefficient (for both sets  of trucks): 

Later a1 transformer damping coefficient : 

Bolster rigid-body roll damping coefficient: 

- csB2 
noT - 4woTIEAL 

(B16e) 

(B16f) 

(B16h) 

(B16i) 

(B16k) 

(B161) 

(Bl6m) 
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APPENDIX B -Concluded 

Lateral shear equalizer damping coefficient: 

c7 (Bl6n) 

Rear equalizer roll damping coefficient: 

(B160) 

Front equalizer roll damping coefficient: 

Roll damping coefficient of rear traction motor: 

Roll damping coefficient of front traction motor: 

(B16r) 
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TABLE I.- PROPERTIES AND INPUTS FOR VERTICAL MODEL 

(a) Fixed properties 

Traction motor weight, MAg, N (lb) . . . . . . . . . 53 000 (11908) 

Bolster (car) rigid-body frequency, f,, Hz . . . . . . 1.0 

(b) Variable properties 

damping Transformer EqualizerCar  weight, Mcg Car  bending Transformer Equalizer Car  damping ' Bolster 
damping dampingFigure frequency, 1 frequency, fg, 1 frequency, coefficient, 1 coefficient, I coefficient, coefficient, '*put 

fB, HZ HZ 
fA, HZ gcv

! ns "E- "A 
I , 

37-1 129000 ~ 8.0 I 6.0 4.12 0 0.11 0.25 0.10 Sinusoidal 
I 

~ 4 I 574 ' 129000 8.0 ' Variable 4.12 ' 0 .ll .18 .10 Sinusoidal 


5 574 129 000 8.0 6.0 4.12 I 0 .ll Variable .10 Sinusoidal 

11 574 129 000 Variable 5.0 4.12 Variable .057 .18 .03 Sinusoidal 

12 Variable Variable Variable 5.0 4.12 0 .Os7 .18 .03 Sinusoidal-

I 



TABLE 11.- OPTIMUM PARAMETER VALUES 

FOR TWO EQUALIZER FREQUENCIES 

-r- Paramete r  .

4.12 Hz 5.53 Hz 

Trans fo rmer  frequency, f g , Hz . . 6 (or 6.5) 6 

Trans fo rmer  damping, ng .  . . . . 0.25 0.18 

Bolster  damping, ns .  . . . . . . . 0.11 0.057 

Equalizer damping, nA . . . . . . 0.10 0.10 

TABLE II1.- TRANSFER FUNCTIONS FOR LATERAL MODEL 
~ 

Location 

C a r  

Transformel  

Traction 
motors  

In c a r  over  
bo ls te rs  
(vertical) 

Equal izers
(vertical) 
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Acceleration t ransfer  function 

J 

ABr "2ljGCOl + e,,, cos  e)2 
+ pc02  + 4 1 2  cos  L -= 

gQo 2g 



TABLE 1V.- FIXED PROPERTIES FOR LATERAL MODEL 

Property 

C a r  length. L. m (in. or ft) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Truck attachment distance. d. m (in. o r  ft) . . . . . . . . . . . . . . . . . . . . . .  
Lateral  distance between bolster springs. B. m (in.) . . . . . . . . . . . . . . . . .  
Lateral  distance between equalizer springs. R. m (in.). . . . . . . . . . . . . . . .  
Distance of traction motor to  la te ra l  equalizer. h l r  and hlf .  m (in.) . . . . . . .  
Distance of traction motor to  lateral bolster. har and h2f. m (in.). . . . . . . . .  
Distance of la teral  bols ter  to  c a r  elastic axis. h3. m (in.) . . . . . . . . . . . . . .  
Distance of la teral  t ransformer to c a r  elastic axis. hT. m (in.) . . . . . . . . . . .  
Distance of c a r  elastic axis to center  of gravity. h4. m (in.) . . . . . . . . . . . . .  
Center-to-center distance between truck axles. (Al ) t .  m (in.) . . . . . . . . . . . .  
Transformer weight. Mgg. kN Ob) . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Traction-motor weight. MArg and MAfg. kN (lb) . . . . . . . . . . . . . . . . . .  
Traction-motor m a s s  moment of inertia. I A ~and I A ~ .kg-m’ (in.-lb-sec2) . . . .  
Lateral  bolster spring constant. k k r  and klcf. N/cm (lb/in.) . . . . . . . . . . .  
Vertical bolster spring constant. ks. N/cm (lb/in.), . . . . . . . . . . . . . . . . .  
Lateral  equalizer spring constant. klr and klf. N/cm ( lbhn.)  . . . . . . . . . . .  
Vertical equalizer spring constant*. kAr and kAf. N/cm ( lbhn.)  . . . . . . . . .  
Lateral  bolster frequency. fk. Hz . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Bolster rolling frequency. foT. Hz . . . . . . . . . . . . . . . . . . . . . . . . . .  
Lateral  equalizer frequency. f l r  and f l f .  Hz . . . . . . . . . . . . . . . . . . . .  
Equalizer rolling frequency. fAr and f k .  Hz . . . . . . . . . . . . . . . . . . . .  
Equalizer roll damping coefficient. nAr and nAf . . . . . . . . . . . . . . . . . .  
Traction-motor rol l  damping coefficient. nmr = nmf . . . . . . . . . . . . . . . . .  

*Total of four springs per  truck a t  9070 N/cm (5 170 lb/in.) each . 

Value] 
25.9 (1020 or 85) 

3.81 (150 or 12.5) 

2.34 (92) 

2.01 (79) 

0.534 (21) 

0.305 (12) 

0.305 (12) 

0.305 (12) 
I 

0.610 (24) 

2.595 (102) 

57.8 (13000) 

53.0 (11908) 

2100 (18600) 

5250 (3000) 

11520 (6570) 

7000 (4000) 

36 300 (20 680) 

0.674 

0.997 

1.81 

6.62 

0.10 

0.60 J 
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TABLE V: VARIABLE PROPERTIES 

C a r  m a s s  moment 

Hz _i bending, g c ~  i n  t o r s ion ,  gCT 
kg-m Ib-sec2 

6.0 574 129000 3090 695 0 0 

120, 21 Variable  8.0 15.0 6.0 574 129000 3090 695 0 0 

18.0 Variable  15.0 6.0 574 129000 3090 695 Variable  0 

18.0 8.0 Variable  6.0 574 129000 3090 695 0 Variable  

18.0 ~ Variable  Variable  6.0 Variable  Var i ab le  Var i ab le  Variable  0 0 

1 25 18.0 ~ 8.o 15.0 Var iab le  1 574 129000 3090 695 0 0 

La te ra l  t r a n s f o r m e r  C a r  weight, q g  oi ine r t i a  pe r  C a r  s t ruc tu ra l  damping C a r  s t ruc tu ra l  

frequency' 'lg. 1", lb I unit length, IEA I coefIicient in l a t e ra l  i damping coefficiel 

1 
I 26 18.0 

18.0 1 

8.0 

8.0 

' 15.0 

15.0 

6.0 

6.0 1 514 

574 

129000 

129000 

3090 

3090 

695 

695 

0 

Variable  

0 

Variable  

18.0 , 8.0 15.0 6.0 I 574 129000 0 

18.0 8.0 15.0 6.0 574 129000 Variable  

1 30 18.0 I 8.0 15.0 0 

31. 36 ' 18.0 , 8.0 15.0 6.0 ~ 574 129000 ~ 3090 695 0 0
I 

32 18.0 8.0 1 15.0 6.0 I 574 129000 ~ 3090 695 0 0 

, 33 j 18.0 8.0 i 15.0 1 6.0 574 129000 1 3090 695 0 0 I 

34 18.0 8.0 15.0 ! 6.0 574 129000 1 3090 , 695 : 0 0 ~ 

35 18.0 8.0 I 15.0 6.0 ' 574 129000 1 3090 1 695 j 0 I 0 ,
I 

37 I 18.0 8.0 , 15.0 6.0 1 574 129000 3090 , 695 0 I 0 ,
38 ~ 18.0 15.0 6.0 3090 , 695 ' 
39 ~ 18.0 , 8.0 1 15.0 3090 , 695 1 ' 

L 
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- -  

-- 

AND WPUTS FOR LATERAL MODEL 

a te ra l  lranslorme La te ra l  bo l s t e r  
aniping coefficient lampine coefficient, 

% "IC 

0.25 0.057 


.25 ,057 


.25 ,057 


.25 ,057 


.25 ,057 


.25 ,057 


Variable  ,057 


.25 V? rialile 


.25 .20 

I 


.25 ,057 


.25 Variable  


.25 Variable  


.25 Variable  


.25 ,057 


.25 .057 


.25 Vxriaiiic 


.25 Varialile 


.25 Variable  


.25 Variable  


Bolsler ro l l  I Late ra l  equalize1 Sinusoidal l a t e ra l  Sinusoidal c ros s - i cve l  Trwisienl  and 
dampine coefficient,  damnine coeff ic ient  input (fig. 15(a)) In-phase input (fig. I5(a)) in-phase,  random inputs 

"oT ut-of-phase: K~ = 0 or >ut-of-phase: K~ = 0 or n 'igs. 15b)to 15Cg)) 

0.20 0.10 0 ... 


.20 .10 0, _ _  , n  


.20 .10 0 ... 


.20 . l o  n il 


.20 .10 n TT 


.20 .10 0 ... ........ 


.20 .10 0 ... 


.20 .10 0 .  n ... 


.20 Variable  0 .  n .._ 


Variable  .10 0 .  n ........ 


Variable  .10 .._ fig.  150,) 

.20 .10 ... lig. 15( r )  


.20 .10 ... fig.  15(d) 


.20 .10 .__ fig. 15(d) 


.20 .10 _ _ _  f ig  15 ( r ) .  fig 15(f) 


.20 .10 ... fig. 15k) 


.20 .10 ._. .._ fig. 15(e) 


.20 .10 ... ... fig. IS(?)  


.20 .10 ... ... fig.  15(d) 
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TABLE VI.- ROOT-MEAN-SQUARE ACCELERATIONS 


FOR TWO DIFFERENT LATERAL RANDOM INPUTS 


TO LATERAL MODEL 

RMS accelerations, g, for -

Car location 
No. 3 

Eastern U.S. railroad 
test  track (fig. 37) 

Combined input 
(fig. 35) 

Rear trucks 0.0416 0 .O342 

Forward trucks .0416 .0342 

Middle of ca r  .04 65 .O334 

TABLE VI1.- CAR BENDING MODE SHAPE 

X
-
L 

0 2.000 

.1 1.0743 

.147 .6509 

.2 .1954 

.3 - .5440 

.4 -1.040 

.5 -1.2156 

.6 -1.040 

.7 -.5440 

.8 .1954 

.853 .6509 

.9 1.0743 

1.0 2.000 
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TABLE VIE.- MASS MATRIX FOR VERTICAL MODEL 
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TABLE IX.- STIFFNESS AND DAMPING MATRICES FOR VERTICAL MODEL, 

p r o m  table VII, W(d) = W(L - d)1 
1 2 3 4 

. -W: 

2 "'g 0w 
gM, 

r 1 I 
nswsLW(d)+W(L-d)J 

M 
3 - 2% &dgw ($)

M, 

4 -nsws[W(d) +W(L - - 2nsws 



- - 

- - - 

-- 

TABLE X.- MASS MATRICES FOR LATERAL MODEL, 

- - 1 


1 2 3 4 5 6 7 8 9 10 

Mc 0 0 -mh4P1 (*> 0- - - - - J O  1 
I 

I Mc - w 4  0- - - +I 

2 0 1 
0- +I 5 .n 


& I - , I 
4 h4P1 (*) 0 0 

, 
BL 

I I 	 2m B2 1 MAr 0- - +I 
h4 ?)2 -1 

5 0 I I 2 - -
B *  12I 

-Mg6 1 I 1 0
I 

0 
I MC 

‘--+I 
9 

-MArl i 0 
I M, 

MAf-
M, 



TABLE XI: GENEHAL STIFFNLSS W D  DAMPING 

-ckfW(L - d) 

L 
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MATRICES FOR LATERAL. MODEL (EQ. (l)), 

0 0 


0 


ck  

0 


0 


0 


0 


0 0 
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TABLE X U  - STIFMESS AND DAMPING MATRICES FOR LATERAL 

0 



MODEL UNDERGOING SINUSOIDAL MOTION (EQS. (4)). E4 
9 


I 
00i I 

0 


0 


6 



m 

0 


I I

Ikg 
cg kS Bolsters 

zgW IZAW 	 I Mg zA(t) Traction motor 
Transformer 

kA kA Equalizers
I

I I 
I SW 

Rails 

Figure 1.- Mathematical vertical model of railroad car  and truck suspension. 



Figure 2.- Schematic view of truck suspension system. 
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(b) Middle of car.  (d) Traction motors. 
Figure 3. - Acceleration transfer functions for optimized vertical model. 
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Figure 4.- Effects of vertical transformer frequency on acceleration transfer functions for vertical model with first 
equalizer spring (fA = 4.12 Hz). Numbers beside curves a r e  frequencies of peak acceleration transfer functions. 
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Figure 5. - Effects of vertical transformer damping coefficient on acceleration transfer functions for vertical model 
with first  equalizer spring (fA = 4.12 Hz). Numbers beside curves a r e  frequencies of peak acceleration transfer 
functions. 
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Figure 6.- Effects of vertical bolster damping coefficient on acceleration transfer functions for vertical model with 
first equalizer spring (fA = 4.12 Hz). Numbers beside curves a re  frequencies of peak acceleration transfer 
functions. 
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Figure 7. - Effects of vertical equalizer damping coefficient on acceleration transfer functions for vertical model 
with first equalizer spring (fA = 4.12 Hz). Numbers beside curves a r e  frequencies of peak acceleration 
transfer functions. 
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Figure 8. - Effects of vertical bolster damping coefficient acceleration root-mean-square 
values for vertical model with f i rs t  equalizer spring (fA = 4.12 Hz1. 
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Figure 9. - Effects of vertical equalizer damping coefficient on acceleration root-mean
square values for vertical model with first equalizer spring (fA = 4.12 HZ). 
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Figure 10.- Optimum root-mean-square accelerations due to random input 
for vertical model. 
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Figure 11.- Effect of ca r  vertical bending frequency and structural damping on 
ca r  vertical peak acceleration transfer functions for first equalizer spring 
(fA = 4.12 Hz). Numbers beside curves are frequencies of peak accelera
tion transfer functions. 
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Figure 12.- Effects of car  weight on vertical peak acceleration transfer function 
for f i rs t  equalizer spring (fA = 4.12 Hz) at  peak frequencies of about 0.8 Hz. 
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(a) Top and mid-section views. 

Figure 13.- Mathematical lateral model of railroad car and truck suspension, 
with sections A-A, B-B, and C-C viewed from front of car (x = L). 
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(b) Truck suspension (sections B-B, C-C). 

Figure 13.- Concluded. 

72 




MN lb/in. 
m 

4. 

Traction motor -
4 .  

3 


2 

1 


Linear Nonlinear 

4c 
I I I I I 

.4 .8 1.2 1.6 2.0 in. 

0 -01 .02 .03 .04 -05 m 

Displacement, Ayr, Ayf 

Figure 14.-Nonlinear lateral  spring functions. k is an even function of Ay. 
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Figure 15.- Forward truck inputs. 
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Figure 16. - Flow chart for RTS on-line random input capability. DAC denotes digital-to-analog converters; 

ADC denotes analog-to-digital converters; and CRT denotes cathode ray tube. 
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Figure 17.- RTS flow chart for solution of equations of motion for 

lateral  model. {q} = [d-'({Q} + {Q}- p]{q} - [d(q}). 
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Figure 18.- Views of basic items of real-time simulation (RTS)facilities. 
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Figure 19. - Acceleration transfer functions for lateral model 
with lateral in-phase inputs ( K I  = 0). 
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Figure 20.- Effects of traction-motor rolling degrees of freedom and 
rolling stiffnesses on acceleration transfer functions for lateral 
model with lateral in-phase inputs ( K I  = 0). 

79 




L 

+ 

g/cm g/in. 

- .012 

B '0  0.0926 g/cm 8 
- . 0 3 r  

2:: (0.2355 d in . )  s-
I .20 

.075-
I m 


-a .15

2
2 

,050 
d -0 .10
... 
W" 

.025

0-

C 
u. 


$ ,008 
I 
v) 

c 


8
?2 ... .004 
W 

4 

Frequency, Hz 

(a) End of car.  
g/cm g/in. 

...c 
I 

al 

w 
ln 


c
2 ...C "i -00.8
c


E .Ial" .2 

4 

0 0.41 , J L, 

0 

Frequency, Hz 

(b) Traction motor (rear).  

4r 

0 5 10 	 15 20 25 30 3 5  40 45 
Frequency, Hz Frequency, Hz 

(c) Over bolsters, vertical (d) Equalizers (vertical) 

acceleration (forward). 

Figure 21. - Effects of varying traction-motor rolling stiffnesses 
on acceleration transfer functions for lateral  model with 
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Figure 22.- Effect of car lateral bending frequency and structural damping on car 
lateral peak acceleration transfer functions. Numbers beside curves are fre
quencies of peak acceleration transfer functions. 
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Figure 23.- Effects of car  torsional frequency and structural damping on car  lateral  
peak acceleration transfer functions for out-of-phase inputs at end of car .  Num
bers  beside curves are frequencies of peak acceleration transfer functions. 
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Figure 32.- Lateral car  peak acceleration responses to wave-pulse 
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