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FOREWORD

The problem of preventing radio-frequency interference (RFI) fxom
adversely affecting field operations at ground receiving stations in a complex

aerospace communication network is a continual battle. RFI problems

involving transmitter harmonic generation, receiver spurious response, shield-

ing, and grounding originate in the equipment design phase. Such problems can
become serious in the field when an assemblage of receivers, transmitters,

computers, time standards, and numerous other electronic equipment are

interconnected to form a data acquisition radio link for spacecraft. Further-

more, the environment in which such equipment operates introduces its own

problems. Worldwide field stations, such as the Rosman, North Carolina, Space

Tracking and Data Acquisition Network (STADAN) facility, are subject to
lightning discharges which pose problems of personnel hazard and equipment
burn-out.

For several years the Headquarters Office of Tracking and Data Acquisition,

Supporting Research and Technology (SRT), National Aeronautics and Space

Administration, has supported a STADAN RFI Reduction Program

(523-150-18-02-51) in the Advanced Development Division at Goddard Space
Flight Center, Greenbelt, Maryland. An objective of the SRT program has been

to define the various mechanisms that produce RFI, to provide effective

solutions to minimize the degrading effects of RFI, and to ensure electro-
magnetic compatibility (EMC) in the performance of systems. The information

contained in this handbook addresses such topics.
The handbook has been divided into three sections:

Section I-Electromagnetic Compatibility Fundamentals Applied to Space-
craft Radio Communication Systems.

Section ll-Electromagnetic Compatibility Design Guideline for STADAN.

Section Ill-Lightning Protection Practices Applied to Field Station In-
stallations.

Each of the sections, respectively, summarizes activities on NASA con-

tracts: NAS5-9896 (Section I) with the Moore School of Electrical Engineer-
ing, University of Pennsylvania, Philadelphia, Pennsylvania; NAS5-10017

(Section II) with Genisco Technology Corporation, Genistron Washington

Facility; and NAS5-10572 (Section !II) with the General Electric Company,

High Voltage Laboratory, Pittsfield, Massachusetts. Furthermore, each section

is essentially a separate entity, although some overlap does exist between
Sections I and II. An extensive set of references is included in each section.

iii
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Furthermore, the three sections in the handbo_,k coutain a substantial

amount of new information not generated ill the above NASA contracts. 1

would especially like to thank the respective authors _)l eacl3 section for their

assislance m this regard.

Also, 1 would like to thank the Electromagnetic Compatibility (EMC)

Group of the Institute of Electrical and Electronics Er.-gmeers (IEEE), Inc., for

providing the academic atmosphere that substantialt-' infltienced the prepara-

tion of this handbook. For instance, seven officials mid members of the IEEE

EMC Group directly contributed to the prepara_ior_ _c tile three sections;

their respective names appear therein.

Briefly, the scope of the three sections is summarized :as follows:

Section I presents theoretical considerations inv,:,iving the generation of

unwanted output of transmitters, the unintentional a_mteration of noise, and

linear and nonlinear intrusion noise mechanisms m rcceTvers; it also considers

problems associated with the shielding, grounding, and iiltermg otequipment.

Recommendations for control of interference and f_t 11_ _election of sites for

ground stations are also included.

Section II addresses desirable p,actices to achieve clecmmmgnetic compati-

bility through proper design of equipment R)_ l-icld stalions. Techniques

discussed for p_eventing undesired electromagnetic i_te l_:'rcnce under normal

operating conditions include shielding to obtain desired reflection and

absorption losses, grounding, filtering, and wiring _nd cabling. Various

conversion charts related to RF interference have bee,., h>:h._ded in Section 11 as

helpful calculation aids to the design engineer.

Section Ill provides a discussion of lightning protection techniques applied

to field station installations. Lightning phenomena ai_d the effects of inductive,

capacitive, and resistive components of ligt_tning-md_ced voltages are dis-

cussed. The R_sman, North Carolina, STADAN ins..'._:ilbliol_ Js analyzed from

the standpoint of lightning protection. Specific recommendations include the

installation of voltage clippers of high surge current raUng for the protection of

sezlsitive circuits of solid-state electrical and eleclrc_mic equipment.

The handbook brings together in one conve.,_ic_l ph_ce many topics in

theory and practice that have proven to be useft_l. Related documents

published by the Department of Defer_se cot,rain cer_aill ma{erial discussed

here. It is hoped lhat the handbook may offm a concep . ,t curve, or a problem

.stated in a slightly different way and so prove valuable to the design or field

installation engineer.

Ralph t.. [aytor, llead

RF SuM.,_,t( Office

RF Systems Branch

Advar_ced Development Division

(;odd:_ d Space Flight Center
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1. INTRODUCTION

This section is intended as a design guide to minimize electromagnetic

interference in aerospace communication equipment for ground stations such

as the National Aeronautics and Space Administration's (NASA) space tracking

and data acquisition network (STADAN). Specifically treated are the mecha-

nisms of generating unwanted radio emissions that may affect station

operations as well as other communications services, the mechanisms by which

sensitive receivers become susceptible to interference, means for reducing

interference, standard methods of measurement, and the problems of site

selection. The sources of interference are viewed primarily as originating from

communications transmitters aboard spacecraft and aircraft, ground transmit-

ters within and outside the ground stations, and other electrical sources on the

ground that are not intended to radiate.

In this section the term radio frequency interference (RF1) noise is any

electromagnetic interference, periodic or random, that may have a disturbing

influence on devices exposed to it. RFI noise is distinguished from thermal

noise and may arise from natural or man-made sources; the category of

man-made RFI noise includes transmitters and similar devices producing
intended radiation, as well as electrical devices that radiate incidentally. The

RFI noise may be transmitted through a conductive path, or it may be

propagated through space. RFI noise may result in a uniform reduction of

normal output, it may take the form of a fluctuation superimposed on the

normal output, or it may show other deleterious effects.

We shall make use of the term "susceptibility" to quantify the degree to

which a device is sensitive to RFI noise. For example, the level of input RFI
noise required to give a specified degradation of the output quality of a

receiver is a measure of susceptibility. The degree of susceptibility will vary

with the type of input RFI noise, with the path through which the RFI noise
enters the device, and with the characteristics of the device itself.

Terms referring to specialized phenomena will be identified and defined
where pertinent in the text.

Given below is a list of the known RFI noise sources and a summary of

the intrusion mechanisms which play a role in ground stations. The order in

which the RFI noise sources are presented corresponds to their significance.

1.1 SPACECRAFT EMISSIONS

Two satellites that are simultaneously present in the main beam of a

ground antenna that have co-channel frequency assignments can inject RFI

noise in a ground receiver.
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1.2 AIRCRAFT EMISSIONS

Airborne transmitters above the horizon of tile grou,,_d _tations can inject

RFI noise from adjacent channels. Because of large amounts of transmitter

power at small distances, aircraft interference may become fAgnificant even if

received by the antenna sidelobcs. Ordinarily the magnitL_dcs of received RFI

noise will not be so high as to stimulate nonlinear eft'cot ¢, "o the ground re-

ceiver, except when an aircraft is in the main beam of lhe gr_mnd antenna and

flying at a range of less than 10 miles from the antenna.

1.3 (IROUNI) _TATI()N

TR,\NSMIq_FER EM1SSI()NS

Self-interference arises from station transmitters. ,\ithough not con-

centrated at the frequency to which the ground recr.iwx is tmled, large

magnitudes of power output from local transmitters may penetrate the receiver

by a nonlinear mechanism or may circumvent the shield t_, e_ter the receiver at

points other than the antenna.

Possible nonlinear mechanisms by which such RF1 !_ise can enter a

receiver are spurious responses, imermodulation, cr,_ss-modu[ation, and

desensitization. Mechanisms involving inadvertent ctmplin'a lhrough an indirect

input often include conduction through power and color,o):ablcs, conduction

and induction through ground loops, and field-induced pickup through equip-

ment and cable shields that are inadequate because t,l pc_,.)_ design o_ because

of imperfections lhat have developed with use. It _s ',_L,(, possible that the

transmitter itself may generate at the frequency to _hicl_ t}]c _eceiver is tuned.

RFI noise-producing mechanisms here include sidcband noise, sideband

splatter, harmonics of the output signal, leakage of signals intended for internal

use, and intermodulation and cross-modulation witl! c_l. _'xt,-, rlaf signal.

1.-1 [TNINTENTI()NAI_ SITE

EIMISSI()NS

Interference is also produced by electrical and electronic devices that are

part of the ground installation but which are not intended to act as radiators.

Conducted and/or radiated RFI noise may arise from rotating electrical

machinery, power switches and relays, power control circuits such as thy-

ratrons and silicon controlled rectifiers, pulse devices such as computers, and

automotive ignilion systems.
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1.5 U'NINTENTIONAL OFF-SITE

EMISSIONS

Significant off-site RFI noise includes electrical noise generated by the

many sources operating simultaneously in nearby populated areas (urban

noise); noise from automobile ignition systems, particularly if major highways

are nearby; discharges from nearby high voltage power transmission lines
(corona noise); and emission from ground transmitters.

The nature of these phenomena has been under study for many years,

and numerous publications can be found which treat one or more of these

topics. Where more detail is required on interference mechanisms and reduc-

tion techniques References 1 through 3 are recommended.

Since quantitative prediction of RF! noise emission and of susceptibility

levels depends upon the design of the electronic devices and circuits used,

emphasis is placed here on the principle of evaluating RFI noise. The view is

taken that, m the design of equipment, awareness of the RFI noise mechanisnr
and knowledge of possible cures for RFI noise are essential. Measurement

should be relied upon to give a quantitative assessment of the efficacy of the

design.

Ordinarily, it will not be enough to know only the mechanism of entry

and the level of unwanted signal admitted in the passband. The degree to which

the unwanted signal influences the output is the real question. Typically, a

desired signal level of +20 dB, relative to the undesired signal, will be

sat islam:tory.

2. GENERATION OF

UNWANTED OUTPUT

IN TRANSMITTERS

A transmitter will radiate a certain amount of unwanted energy outside
of its assigned frequency band. In some instances, this is a result of the normal

nature of the modulation process. ]he mechanisms by which spurious signals

are generated are, however, of equal or even greater importance. The nlos[

significant cause of spurious signals in the transmitter output is undesired
nonlinearity in some portion of the transmitter. The two most serious

offenders are the transmitter modulator and the final amplifier. The former,

which must be a time-varying device, is usually a nonlinear element. Deviations

from the required response law can cause spectrum broadening or "sideband

splatter." The final amplifier is required t¢_be linear over a wide range of input

levels. Deviations from linearity can give rise to the emission of transmitter
harmonics.
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Less common sources of unwanted outputs may be found at intermedi-

ate points in a transmitting system. The audio or video signal, prior to

modulation, may find a leakage path out of the transmitter. In systems wherein

a low-frequency sinusoid is generated initially and then multiplied to the

required output frequency, the subharmonics may leak out of the transmitter.

The possibility of parasitic oscillations also exists at various points. These are

not common in competently designed, low-frequency transmitters but are
common in microwave transmitters. Another mildly troublesome source is

oscillator noise. The effect of such noise is similar to that of sideband splatter,

but the level is general|y lower.

There are times when the transmitter is not, by itself, responsible for the

spurious output. The output of nearby transmitters may enter a transmitter,

usually through its antenna, and mix with the desired signal to form an

unwanted output component. Again, the effect depends on nonlinearity in the

final amplifier, in the transmission system between the final amplifier and the

antenna, or in the antenna itself. The effect produced is either cross-

modulation, wherein the information sidebands of the undesired signal appear

with the desired signal, or intermodulation, wherein a third signal, containing
some version of the information sidebands of both signals, is formed.

Tlle nature of these mechanisms will be developed in greater detail in the
following sections.

2.1 SIDEBAND SPLATTER

The unsavory sounding term "sideband splatter" identifies spectral

components formed immediately outside the assigned frequency band. Such

components arise in the modulator as the result of nonlinearity beyond that

required for the modulation process. The problem is of particular importance

in narrow-band modulation systems, such as in amplitude modulation (AM),

single sideband (SSB), and double sideband (DSB) systems. To some extent

phenomena similar to sideband splatter may be found in wide-band modulation

systems, e.g., in frequency-modulation (FM) systems. Furthermore, wide-band

modulation systems, such as pulse-modulation and frequency-modulation

systems, contain energy throughout a wide range of frequencies. This does not

constitute splatter but it is considered here because of the potential adjacent
channel interference. In practice, filters are used to restrict the energy to a

limited band in such a way that the capability of the system is not significantly

impaired. A point should be made here concerning the measurement of

sideband splatter. Because low-amplitude unwanted sidebands are to be

measured in the presence of the large amplitude of wanted components,
instruments that effectively filter out the desired components are necessary.
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1. Spectral Properties of Amplitude

Modulation and Related Systems

The fundamental process involved in generating AM, SSB, or DSB signals

is multiplication. A low-frequency information waveform x 1(t) is multiplied by

a sinusoidal carrier frequency x2(t ) = cos (6oct + ¢c ). As shown in Figure 1.1,
the vehicle for generating the product is virtually always a nonlinear device.

This is followed by a narrow-band filter to eliminate undesired components.

Ideal nonlinear elements are the square-law device and the linear diode

(Reference 4, pp. 97 to 100, or Reference 5, pp. 187 to 192). To obtain the

required result without distorting the desired sidebands, the amplitude of the

sinusoidal carrier applied to the linear diode must be much larger than that of

the information waveform. The ideal characteristics are, however, only ap-

proximately realizable. A typical nonlinear device can be described by the

output-input characteristic

N

Y =E anxn' (1.1)
n=O

where y is the instantaneous output and x is the instantaneous input. The

degree of significant nonlinearity is assumed here not to exceed that rep-

resented by N. The output of the nonlinear device for the input [x1(t ) + x 2 (t)]
is

N

Y = E an(xl + x2)n

n=O

N n

n=O k=O

(1.2)

,NFO,M.T,ON ISIGNAL_ NONLINEAR

xl(t) I ,',_,I [ DEVICE

/
CARRIER

xz(t) - COS(wet+Co)

Figure 1.1 .-Basic elements of product modulators.

NARROW-

BAND FILTER
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The second form in (1.2) is obtained from the firsl, using the binomial

expansion theorem. Assuming that the nonlinear element is followed by a

narrow-band filter centered at the carrier frequency c%, only terms containing

cos (Wct + Oc) are passed. By expanding* cos k (o_ct _ 0c) and retaining only

these fundamental terms, there is obtained

N n

/..., .wr, +,),,,:l k:l \--7)"
cos (%t + Oc). (1.3)

The x I terms higher than the first degree are distortion terms which extend the

sidebands to (N- 1) times the frequency band of the modulating signal. For

instance, if n = 7,

.),a(t) = [(a 1 + 3a 3 + lOa 5 + 35a 7)

+ (2a 2 + 12a 4 + 60a6)xl(t )

+ (3a 3 + 30a 5 + 210a7)x_(t )

+ (4a 4 + 60a6)x_(t )

+ (5a 5 + 105aT)x41(t )

+ 6a6x_(t) + 7aTx6(t)]cos(COct +Oc). (1.4)

If coefficients an are zero for n/> 3, that is, if the device is purely square law,

the output is exactly as required.

The component x;(t) cos (OOct + 4ac) in (I.4) contributes sideband

energy covering a band equal to four times the modulating frequency rather

than two times, as in the ideal case; the x_(t) cos (%t + 0c) component

contributes energy in a band twelve times the original modulating frequency.

*The expansion ofcm px m a terminating Fourier serie_ _ Dven b3

pip- I) + 1 p! ]
+ p c°s (p - 2)x ÷_7_' c°s l P - 41"_ " ' _ ---7-5- •- v,)J

when p Js even. When p is odd, the sum is Ihe same except ior the lasl lerln, which is

p_
COS X .

2]'\ 2I"
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The exact nature of the resultant spectrum depends upon the quantities

Xl(t). If Xl(t) is a pure sinusoid of frequency corn, then xnl(t) can readily be
determined, and (1.4) can be expanded in a harmonic series involving discrete

sidebands of the form cos [(wc-nWm)t + _c ] . Furthermore, the coefficients
an will be required. These are not ordinarily available and will have to be found
by test (Reference 6). A set of typical values abstracted from Reference 1 is
as follows (obtained by polynomial least squares fit to a triode characteristic

operated at a bias point of-10 V on the grid and at a plate current of 3 mA):

a I = 0.52 X 10 -3 A/V a6 =-2 X 10-8 A/V 6

a2 = 2.6 X 10-5 A/V 2 a 7=-1 X 10-8 A/V 7

a 3=-8X 10-7 A/V 3 a8=9X 10 -I°A/V 8

a4 =-6.2 X 10-8 A/V 4 a 9 = 9 × 10-11 A/V 9

a5 = 3.5 X 10-7 A/V 5 alo = 8.2 X 10-12 A/V 1°

A word should be said here concerning overmodulation. The general
form for an AM signal is

y(t) = A a [1 + x(t)] cos (_Oct + Oc), (1.5)

where A a is the peak amplitude of the unmodulated carrier and x(t) is the
information signal. A non-overmodulated waveform is one in which the factor

[1 +x(t)] >0 (1.6)

for all values of time. In AM transmitters, when this factor goes negative, the

transmitter can be cut off. In such cases the amplitude of the splatter com-
ponents becomes quite high. Correct practice requires that peaks of x(t)be

limited in such a way that (1.6) is always satisfied and that the modulating

signal be filtered after amplitude limiting to eliminate the high-frequency com-

ponents generated in the limiting process.
To minimize distortion, it is desirable to choose nonlinear elements with

characteristics as nearly ideal as possible. For a given device intended to be

used as a square-law modulator, it will usually be possible to find empirical

operating conditions which result in a characteristic that is nearly square law so

that the higher order coefficients are small. Furthermore, the final tuned
circuits in the transmitter will also act to reduce the level of the unwanted

components. As a rule, however, the circuit Q cannot be made high enough to
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completely eliminate the splatter components. An effective technique to
eliminate the unwanted sidebands associated with even powers of x I (t) in (1.3)

is to use a balanced modulator* (Reference 4, p. 104).

Prediction of the magnitude of the unwanted sidebands will ordinarily be

difficult. The coefficients an in (1.1) depend on the bias conditions and the

magnitude of the input signal; they depend on the curvature of the voltage-
current characteristics of the modulator and even vary among individual

modulating devices of the same kind. To determine the actual level of

undesired sidebands, measurements are necessary.
Measured and calculated results of excessive sideband output are

reported by Firestone, et al. (Reference 7). In an AM transmitter having an

audio modulating signal of 3 kHz and 54.7% modulation, the spectrum dis-

tribution shown in Figure 1.2, was obtained. It was pointed out by the authors
that the total harmonic distortion amounted to 3.3%, which i_ not an excessive

figure. A receiver operating in an adjacent channel 10 to 15 kHz from the

interfering signal will receive splatter components of the order of 60 dB below
the level of the carrier component. If, as may readily happen with a nearby

transmitter, the carrier power of the transmitter produces an input voltage of
about 100 mV at the receiver, the level of unwanted sidebands will cor-

respond to about 100 #V. This will often be far greater than the level of a

desired signal.

2. Spectral Properties of

Angle Modulation Systems

As is well known, a large number of sidebands is produced by an FM

transmitter, even with a perfect modulation technique and with a sine-wave

modulating signal. An FM signal containing an information waveform x(t) is
written

y(t) = Af cos [Wct + ¢(t)] , (1.7)

where

f
_(t) = J x(t) at. (1.8)

The instantaneous frequency ofy(t) is defined as the derivative of the argument
of the cosine, or,

_ d t d(p + x(t) (1.9)
wi(t) - dt [Wc + q_(t)] = w c + -_ = w c

*The balanced modulator will be described further in Section 2,2 in connection with harmonic

reduction.
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0 5

8O

PERCENT MODULATION =54.7

AUDIO MODULATION =3 kHz

MEASURED

..... CALCULATED --

i

10 15 20 25 30

FREQUENCY VARIATION FROM CARRIER FREQUENCY (kHz)

Figure 1.2.-Calculated and measured results of the typical spectrum distri-
bution of sidebands produced by amplitude-modulated transmitters.

If x(t) were a pure cosine wave of the form

x(t) = a cos _Omt ,

then a would be a peak frequency deviation in radians per second and

(1.10)
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y(t)=A[1Jo03)cOSWct+__Jn(t3)[c°s(C°c+nC°m)t

n=l

+(-I)"cos(% - n%,)t]l
(1.11)

where Jn (13) is the Bessel function of the first kind and of order n and 13- a/_ m
is the modulation index. Though in principle the result contains components to

infinite frequency, the amplitudes of the sidebands fall off very rapidly beyond

a certain point. A rule of thumb frequently used is that all significant

frequency components lie inside the range

[fc - 03 + 2)fm] <f< [fc + 03 + 2)],,1. (1.12)

The magnitudes of the components in this range are shown in Figure 1.3 as a

function of n for several representative values of 13.For example, for 13= 10 and

n = 12, Figure 1.3 shows the amplitude of the component (13+ 2)f m to be

J12(10)= 0.06. For values of n larger than (_3+ 2), the components will be

relatively small but they may be of importance in some instances. To estimate
the magnitude of components in this range, use may be made of the ap-

proximation

1 (e13'_ n (1.13)

where e is the base of the natural logarithm and is equal to 2.718 .... For

instance, if fm= 3 kHz and 13= 1, then according to (1.13), the component

n = 6, corresponding to a frequency of nfm = 6 X 3 = 18 kHz away from the

center frequency, has an amplitude J6(1) of about -94 d B, relative to the level
of an unmodulated carrier of the same power.

As in the AM case, it is also possible for the modulation process to create

a form of sideband splatter, though the extent of the increase in bandwidth for
wide-band modulation will not be as great as Rn AM. In the case of

narrow-band FM, however, modulation may give rise to a more significant

effect. The origin of this phenomena is, once again, nonlinearity in the

modulation process. To generate FM waves it is necessary to vary the

instantaneous frequency, or phase, of the carrier in exact correspondence with
the information waveform; that is, the characteristic relating applied signal

voltage and frequency of carrier must be perfectly linear. Departures from

linearity have the effect of distorting the information waveform and increasing
the bandwidth. The waveform of the modulated oulpul will therefore have a

broader bandwidth than is necessary.
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Figure 1.3.-Bessel function of the first kind,Jn (_), plotted as a function ofn

for various values of/3.

As pointed out above, the bandwidth of wide-band FM waveforms is

determined mainly by the peak deviation. In this case, for a fixed deviation,

the bandwidth of the information signal will not significantly affect the overall

bandwidth. For narrow-band FM signals, however, the bandwidth is deter-
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mined largely by the frequency of the modulating signal, and the effects may

be as great as in the AM case. An example involving an indirect FM generation

technique will demonstrate some of these points.
FM waveforms are sometimes developed by generating, initially, a low-

modulation index signal using adders and product modulators (Reference 4,

pp. 116 to 120). If the audio modulation signal is a sinusoid, the form devel-

oped is

y(t) = Aflcos Wct - f3sin _Omt sin tOct] , (1.14)

where 13is limited to a maximum value of 0.5. This can also be written

71/2

y('): Af[l+ 132sin 2 mint. j cos [Wc,. tan -1 (j3 sin mm,)]. (1.15)

When/3 "_ 1 this becomes

y(t) _ Af cos [tJct + 13sin Wrnt ] , (1.16)

which is an FM wave with modulation index 13.When high deviation FM signals

are required the signal initially generated is of the form given by (1.14), with 13

maintained sufficiently small. The narrow-band signal is then converted to a

wide-band signal by frequency multiplication. Even if 13in (1.14)is not small,

the amplitude factor in (1.15) can be made constant by the use of a limiter.
However, if 13 is not small, the phase factor will carry some distortion com-

ponents. For illustrative purposes, assume the amplitude factor Af has been
made constant by limiting and use the first two terms of an expansion for the

arc tangent. Then (1.15) takes the form

y(t) "_ A I cos ct + 13sin _Omt ---_ sin 3 u) m

=Afcos ct+ --_ sinwmt+-_sin3w m . (1.17)

The phase, which represents the modulation, now contains a third harmonic

term which, for/3 = 1, is about 10% of the desired fundamental term. When an

FM wave of low modulation index is developed, 13is kept less than 0.5; for 13=

0.5, the third harmonic distortion is in the order of 1%. Thus, the modulation

index used in the initial narrow-band FM signal should be made as low as

possible if excessive bandwidth is not to be consumed.

A recent study (Reference 8) may be found useful in the control of

nonlinearity. Two methods recommended here are: predistortion, wherein the

input signals are distorted initially in a manner that compensates for the distor-

tion introduced by the modulator, and feedback to attenuate unwanted com-

ponents.
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3. Spectral Properties of

Pulse Modulation Systems

Information transmitted by perfectly rectangular pulses will require a

larger spectrum than is ordinarily tolerable. It is well known (Reference 5, p.

41) that the Fourier transform of a single rectangular pulse* of width r r and

height At, is given by

where

Xr(f) = ArrrSinc ( nrrf), (1.18)

sin (nrrf)

sinc (TrZrf) -= rrTrf

The envelope of the sinc function falls off as l/f for higher frequencies; that is,

it falls off at the rate of 6 dB per octave. This rather slow fall-off rate implies

that signals of relatively large levels spread into adjacent channels. In practice,

however, pulses of slower rise-time will be obtained either by forming such

pulses initially or by passing rectangular pulses through a band-limiting filter.
Filters with very sharp cutoff will cause some crosstalk between adjacent

pulses. In general, the requirements of low crosstalk and low-level spectral tails

are opposed to one another. It is possible, however, to find a pulse shape for

which both are adequately small. An example is the pulse of a cosine cycle

with width rc and height A c, as are given by

Ac(1 cos 2zrt_x(t) =--_" + -- ,
z c /

=0

Tc Tc

-V < t <'-_--,

elsewhere.

This pulse has a spectrum given by the Fourier transform

(1.19)

sinc (rrrcf)
xc(f): A_c. , (1.2o)

2(l-r_f 9

where

sine (nr cf) =
sin (.rcD

nrcf

*A rectangular pulse of midband frequency 1 o will have a spectrum /[X(.f-f0)+X(f+[o)l.
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For frequencies significantly greater than 1/7 c (i.e., for (7"ef)2]>>l), the
amplitude falls off as l/f 3 or 18 dB per octave. A comparison of the spectra of

a square pulse and of cosine pulses of two different widths is shown in

Figure 1.4. The value of A e has been chosen so that the energy is the same
for all of the pulses being compared. For equal energy it turns out that A e =

1.635 A r @-_r/T_. The rectangular pulse is shown at (a) in Figure 1.4 and its
Fourier spectrum is shown in normalized form as XrU)/Ar7 r in the figure.

Cosine pulse (b) in Figure 1.4 is chosen to have the same width as the

rectangular pulse (r e = rr). Its spectrum is defined as X.t(.l). Its value is given

by (1.20) and it is plotted in a normalized form as Xcl(f)/Arrr. It will be noted
that the spectrum of the cosine pulse (b) is concentrated at low fre-

quencies, and has a greater bandwidth* than the rectangular pulse. At

higher frequencies, however (i.e., f> 2/r_), the amplitudes of spectral com-

ponents of the cosine pulse are comparatively very small. In practice the dura-

tion of the cosine pulse might be made longer than the duration of the square

pulse. Accordingly, a cosine pulse having twice the duration of the rectangular

pulse (% = 2rr) is chosen for illustration and is shown as pulse (c) in Figure
1.4. The spectrum of this pulse is defined as Xc2(.13 and is plotted as the

normalized form Xc2(f)/Arrr. The amplitude of the spectrum in this case is
comparatively quite small for f> 1/r r.

,1. Spectral Properties of

Radar Pulses

The off-band emission generated by a narrow microwave radar pulse can

cause serious interference, particularly in on-site, adjacent-channel receiving

equipment. The following analysis gives a method for determining the power
level of off-band interference, assuming that an ideal, rectangular radar pulse is

transmitted.

The train of radar pulses shown in Figure 1.5 has an average power level

Pa which is determined by the peak-pulse power level Pt, pulse width r, and
pulse repetition period T. The average power level is

V) (1.21)P = Pt •

As shown in Figure 1.6, the Fourier power spectrum of a single pulse is a [(sin

x)/x]2 function, where x =nTrr/T and n is the number c,f the spectral line

measured from the center frequency fo' The fractional power Pn of the nth

*Bandwidth is defined as the frequency at which the amplitude is down 1/_ from the

peak amplitude at origin.
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Figure 1.5 .-Radar pulse train.

spectral line, normalized with respect to Pa, is determined from the relation
(Reference 9)

:-7-(_ ,,,, .j (1.22)

The power P,(0) at the carrier frequency f0 may be expressed in terms of the

average transmitted power Pa by using (I .21) and applying L'Hospital's rule to
(1.22) to obtain

Pn(O) = (T)Pa , (1.23)

where Pa is given by (1.21).
nent (for n = 0) is

By substituting (1.21) into (1.23), the dc compo-

/._r 2

Pn(O) = t-T) Pt " (1.24)

When N :/: 0, the maximum power in the Nth spectral lobe is given by the

relation (Reference 4, p. 25)

and when 2N >> 1,

r 2 2

/r\ 2 /1 \2

p.(.)-- p,
A typical pulse radar has the following characteristics:

Pt = 106 W (1 MW) peak power,

(1.25)

(1.26)
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Figure 1.6.-Fourier power spectrum of an ideal pulse.

f0 = 5500 MHz,

r = 0.25 _ts pulse width,
and

T = 1/640 second.

A typical problem is to determine the level of off-band interference at a

frequency 100 MHz from f0" With an ideal transmitter pulse and with
N = 100/[1/0.25 X 10-61 = 25, the peak power level of the resulting 25th
lobe is determined from (1.25) as

2 2

PN(25)= (0.25X 10-6 _ [ 2 ]\ ]/6"40 / X 106 X 3.14(2 X 25 + 1)

=4.0X 10-6 W

= -24 dBm.

Communication receivers will normally respond to an interference of this level.
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5. Reduction of Sideband Splatter

Reduction of sideband splatter requires that attention be given to the
modulator to ensure linear variation of the modulation parameter (the

amplitude or angle). In AM and related systems, balanced modulators will be
useful in eliminating the sideband components arising from even-harmonic dis-

tortion of the modulating signal. To minimize splatter in such systems it is

generally necessary to use modulators that act as square-law devices as nearly as
possible. Perfect rectifier modulators with very large RF driving voltage can

also be shown to give ideal linear modulation. For modulators operating at low

levels it should be possible to come reasonably close to the ideal situation.
In systems of angle modulation, where the angle or frequency deviation

is obtained by varying a reactive component in an oscillator or where fre-

quency deviation is obtained by the indirect method discussed in Section 2.2,
linearity is better for small initial phase deviation. Large values of initial fre-

quency deviation will give rise to nonlinear modulation unless predistortion or
feedback is used. It would appear that the methods of angle modulation in

which a carrier is modulated by a pulse-position signal developed from the

information waveform (Reference 5, p. 388) can be made linear over a wide
deviation.

In addition to these methods of controlling spectral broadening at the

source, filters will be useful for suppressing undesired components after they

are generated. When the modulation process is carried out at tow level, filtering
can be very effective. There will usually be a number of tuned circuits between

the output circuit of the modulator and that of the final amplifier. If we

assume that all tuncd circuits are parallel-RLC resonant circuits, then the

amplitude response of each relative to its response at the center frequency is

given approximately by

B

H(f) _ [Br2 + 4(f- f0f-l_j 1/2' (1.27)

where B = 1/2nRc is the half-power bandwidth at which the response is 3 dB

below that at the resonant frequency, and .to = l/2rr_C is the center or

resonant frequency.

If the splatter frequency f is separated from the resonant frequency by

several half-power bandwidths, (1.27) can be reduced to

B (1.28)
H(f) _ 2If- JCol

If there are k stages, each with identical tuned circuits, the relative frequency

response at the transmitter output is
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(I .29)

For instance, if a command transmitter operating at 148 MHz has three tuned
circuits following the modulator each of 2-MHz bandwidth, the effect of the

tuned circuits is to reduce any splatter components at 136 MHz by a factor

[2_)131n3(f)_" 2(14 136 _ 172"-"8

(corresponding to approximately -65 dB). Where high-level modulation is

used there will be fewer tuned circuits to attenuate the splatter components

unless special attention is given to this matter. In the example given above,

note that a single tuned circuit attenuates any undesired 136-MHz sideband by
only 21.6 dB.

To complete the estimate of the magnitude of undesired splatter that

would reach a receiver requires knowledge of the power level of the splatter

component at the point of generation and the attenuation in transmission. The
former was discussed earlier in this section. While the effect of unwanted

splatter may be calculated in principle it is better practice to measure the levels

at the point of generation, especially for components far from the center

frequency. In this way the elusive parameters which are required for
calculation do not have to be determined explicitly; to determine them would

require measurement, too. As shown in the following example, rough estimates

using representative figures would be useful in preliminary work, however.

Suppose a rectangular RF pulse centered at f0 is generated as described
earlier. The pulse has a spectrum given by

X(f) =liXr(f- fo) + Xrff + f0)] ' (1.30)

where Xr(f) is given in (1.18). The energy of the pulse is

2rAr r
F_ 2 " (1.3_)

If a narrow-band receiver of bandwidth* B is tuned to a frequency fe in the
vicihity of one of the peaks far from the center of the spectrum, we may

approximate the magnitude of the spectrum by

1 Ar

Ix(f,,)) _ 2 _lf_ -.Cot (i .32)

*As used here, B is the effective noise bandwidth as defined in (1.47). A receiver with

rectangular bandpass of width B has an effective noise bandwidth equal to B.
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The energy of the pulse components selected by the receiver is

2B1 Ar

G =2 rr2[Ifc - ,t011z (1.33)

This energy relative to the total energy in the pulse is

Er B

E 2rr2rr[Lfc-foll 2"
(1.34)

If, for instance, B = 0.25 MHz, rr = 10-6 second, and Ifc -f0 i = 12 MHz, then

Er 1

E 8rr2(12) 2
_ 0.875 × 10-4 ,

or

E I.

k-":-(dB) = 10 log (0.875 X 10 -4 ) = -40.6 tlB.

that is, the unwanted sideband energy is about 41 dB below tile total energy

contained in the pulse.

If the rectangular pulses were fed through a succession of three single-
tuned circuits prior to transmission, as described above, and if the tuned

circuits produce no significant effect on the total pulse power, the sideband

components in the 0.25 MHz band would be 65 dB + 41 dB = 106 dB below

the pulse power transmitted.

At this point it is well to point out that, in effect, we are shaping the

pulse in the filters to reduce the unwanted sidebands.

Finally, the path attenuation must be taken in account. This factor is not

considered here except to point out that the problem of splatter is important

when transmitter and receiver antennas are relatively close, or when they are,
in fact, the same antenna. In the latter case, separation of functions is ac-

complished in a diplexer and one must detcrmme the degree of isolation
afforded by this device.

2.2 GENERATION AND SUPPRESSION

()F ttARMONICS

Harmonic generation is also associated with nonlinearity. The effect is a

generation of a new frequency which is an integral multiple of the original

frequency. When the original frequency is that of a modulated carrier, the

sidebands may remain unchanged or they may become distorted. In some
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devices the nonlinearity is incidental to normal linear amplification as in class

A tube and transistor amplifiers. In other devices nonlinearity is a consequence

of linear amplification by impulsive re-enforcement of a wave. RF amplifiers, of

the class B or C type, pulse a tank circuit throughout a portion of the

sinusoidal cycle and are therefore in this category. Klystrons and magnetrons

are also in this class. Oscillators continue to build up until the output is limited
by saturation and cutoff of the active element; hence, they also function in this

manner. In other cases the harmonics are an unwanted byproduct of a desired

nonlinear function. It was pointed out earlier that the modulator may distort

the modulating signal; it may also distort the RF signal. The ideal frequency

multiplier will yield only the desired harmonic but this is unusual. Many

unwanted harmonics will be present as well as the original input which

becomes an unwanted component.

It will often be possible to find modes of operation for the active devices
which minimize harmonic amplitudes, but this occurs usually at the cost of

efficiency. The extent to which such efforts are successful depends on the

amount of filtering used. Low-level circuits in the transmitter, incorporating

many frequency selective circuits, are unlikely to result in significant harmonic

output from the final stage. Some mechanisms for minimizing harmonic
content will now be described in more detail.

As pointed out earlier, modulators for AM signals and signals related to

AM are multipliers. The modulation function is performed perfectly when the
sum of the low-frequency signal and a carrier is delivered to a square-law

device. If xl(t ) is the low-frequency signal and cos Wct is the carrier, then the
output of a square-law device is the squared sum of these input signals:

[x 1(t)+ cos COct]2 = x_(t)+ 2Xl(t ) cos tOct +1 .lco s 2tOc t (1.35)2

The desired term is 2xx(t ) cos tOct. The term x_(t) is a distorted low-frequency
signal which is readily rejected in the RF filter following the modulator; the dc

term, 1/2, is obviously also rejected. Some energy at the second harmonic of

the carrier may trickle through, especially if the output circuit is not highly

selective. The use of a properly designed balanced modulator shown in Figure
1.7 will eliminate transmission of second harmonics. Assume that each

nonlinear device has an output-input characteristic given by the power series

Y =a 0 +alx +a2x2, (1.36)
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xa = x I (t) + COS (_et

L I DE]CE ICOS _ct t

DEVICE J ..........,._

Xb=-Xl_t) +cos _¢t Yb

I _(yQ_yb)

Figure 1.7.-Schematic diagram of a balanced modulator.

where y is the output and x is the input. When x a and .vb have values shown in

Figure 1.7. the total output may be written

ya-Yb=al{Xa-Xb)+a2(X2a -X2 )

= 2alXl(t ) +a2[xl(t ) +cos Vact]2 - a2[xl(t)- cos Wct]2

= 2a 1x 1 (t) + 4a2x 1 (t) COS OOct. (1.37)

No second harmonic term is present, assuming perfect balance, and the term

involving Xl(t ) alone* is rejected in the output tank circuit. This arrangement
will, however, leave harmonics of odd order in the output if the degree of

nonlinearity is not limited to square law. If, for instal_ce, a term a3x3 were

added to (1.36), the output would contain a term

3 1
2a 3 cos 3 COct=_a 3 cos COct +_a 3 cos 3COot (1.38)

which has a third harmonic component. [The rejection of splatter components

involving even powers of xl(t ) can be illustrated also by adding a3x3 and

expanding as in ( 1.37).1

It is conamon practice to use crystal controlled oscillators operating at

moderate frequencies (i.e., 30 MHz and below) and .:o employ frequency

multiplication to obtain the needed output carrier frequency. In such systems

electronic devices biased at or below cutoff (e.g.. m class B and C amplifiers)

are the source of the carrier output, which is rich in harmonics. The current

*Nolo thal x I (t) is a low-frequency term: however, x I (t) cos co t is a n_,)dulated RF signal.
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i(t)

Figure 1.8.-Cosinusoidal cap waveform.

,.,t

pulse is approximately of the form of the cap of a sinusoid as shown in Figure

1.8 and given by the expression

i(t) =!

a[cos wt - cos 0] , for (2nlr - 0) _< cot _<(2n_r + 0),

n = 0, -+1, +2,...,

0 , otherwise.

(1.39)

The Fourier expansion of such a wave is given by

i(t) =
A

rr(l - cos 0) sin 0- 0 cos 0 +
n=l

sin(n-l)O 2sinnOcosO.] t
÷ - cos nwt . (1.40)

n-I n

It will often be found that the sinusoidal cap is itself somewhat distorted

in passing through the amplifier, so that higher levels of harmonics appear.

Squarcd sinusoidal caps, given by the expression

i(t) =l

A2[cos cot- cos 0] 2 , for (2nrr- 0) <_ cot <_ (2nn + 0),

n=0,+l,+-2 .....

(l.41)

otherwise,



26 RADIO FREQUENCY INTERFERENCE HANDBOOK

may be a better approximation of the magnitude of current pulses from some

electronic devices than the undistorted caps illustrated in Figure 1.8 (Reference

10). The relative magnitudes of the first three harmonics for the undistorted

and square sinusoidal caps are shown in Figure 1.9 as a function of conduction

angle 20. In general, the larger the conduction angle, the smaller will be the

amplitude of the harmonic in the output.

It is, in principle, possible to estimate the harmonic output of the

transmitter using the levels determined by (1.40) or Figure 1.9 together with

the response characteristic of the tuned circuits following the source of

harmonics. Such a procedure is described in Reference 7, but the equations of

Section 2.1 provide the necessary forms. As a rough approximation, a single-
tuned circuit with a Q=10 will attenuate the second, third, and fourth harmonics

approximately 24, 30, and 33 dB respectively. Doubling the Q will increase the

attenuation in each case by about 6 dB.

In the usual case, the final amplifier will contribute the major amount of

harmonic output. The reasons for this are that ordinarily the final amplifier is

driven hard in order to get as much efficiency as is possible and the tuned

circuits following the final amplifier have limited selectivity, particularly at the

lower frequencies.
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Figure 1.9.-Relative intensity of harmonics for two pulse shapes as a function

of conduction angle.
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As a rule tube-type final amplifiers are operated as class C amplifiers. In

principle, the harmonic output from class C amplifiers is not different from

that of the frequency multipliers discussed above. As the conduction angle is

increased, the harmonic output decreases, but so does the efficiency. To reduce
interference and obtain the effect of a linear amplifier, it is obviously ad-

vantageous to use a push-pull class B final amplifier. It may even be ad-

vantageous to use class C amplifiers in push-pull since this would tend to cancel

the even harmonics. The amplitudes of odd harmonics relative to that of the

fundamental would be unaffected by tubes in push-pull, but these harmonics

are readily attenuated by tuned circuits in the output.

The harmonic outputs of 14 representative communication transmitters
are shown in Figure 1.10 (Reference 11). The legend of Figure 1.10 gives the

FCC limits for harmonic output. Note that some transmitters produce har-
monics whose levels are within 30 dB of that of the fundamental. For such

harmonic content, a 50-kW transmitter will emit a 50-W signal at the harmonic

frequency-in this case hardly insignificant.
Amplifiers for microwave frequencies also generate significant harmonic

output, though the mechanisms are different. The klystron, which is an im-

portant high-power amplifying device, is inherently a source of harmonics. The

bunching process develops concentrations of moving charge which pass the
catcher in the form of sharp bursts. The current induced in the catcher cavity is

highly nonsinusoidal. It has been shown (Reference 12) that the induced

current has a harmonic intensity given approximately by

Ic(n ) = 210J n (nx), (1.42)

where

n

and

n = the order of the harmonic,

I 0 = the direct current in the tube,

J = the nth order Bessel function of the first kind,

6osV 1

x = (elm)l�2(2 V )3/2' bunching parameter,
0

in which

= frequency of excitation,

s = spacing between input and output cavities,

V l = peak gap voltage at buncher,

e = electronic charge,
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Figure 1.10: Typical values of harmonic emissions determined from measure-
ments on 14 radio transmitters.

m = e]ectronic mass,

and

V 0 = beam accelerating voltage.

The bunching parameter value of x = 1.84 yields mnximum efficiency. At
maximum efficiency, the pulses of induced current are very nonsinusoidal and

the harmonic-current content is very high. To avoid large harmonic outputs,

the cavity Q must be high.
For loaded circuits, values of Q ranging from 500 to 1000 are obtainable.

Using such values of Q, it should be possible to attenuate harmonic outputs
more than 60 dB below the fundamental, even with equal fundamental and

second harmonic current in the tube. Measurements reported on a particular

pulsed klystron (Reference 13) are reproduced in Figure 1.11. Variation of

beana voltage, which alters the bunching parameters, is seen to alter .the
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second-harmonic content markedly. However, at the value of beam voltage for

which the second harmonic is minimum, the second harmonic power is only

about 40 dB below the fundamental output.

The traveling wave tube (TWT) appears to be a good choice as a

microwave power amplifier, generating little interference. The operation of the

TWT depends upon uniform re-enforcement of a traveling wave and does not

involve impulsive re-enforcement of a field, as in a klystron. Yet, reports

(Reference 12) indicate that, in particular cases, the second-harmonic output in

TWT's may range from 20 to 40 dB below the fundamental. It is possible that

these conditions exist only at maximum efficiency when the tube is driven

heavily. The input-output characteristic for specific traveling wave tubes was

found to be linear over a given range of inputs; beyond the linear range,

saturation was slowly reached. Operating the tube into its region of saturation

gives rise to maximum output; but, unfortunately, the harmonic content also

increases.
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Figure 1.1l.-Harmonic output as a function of beam voltage for VA 87-B

Klystron.
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High-power magnetrons are generally used as sources of pulsed RF

energy, coupled directly to the antenna. In the magnetron the energy of a

rotating cloud of electrons is imparted to the field in tuned cavities on the
periphery of rotation. The mechanism which selects electrons emitted from the

cathode, where they are roughly in proper phase, tends to maintain them in

bunches as in the klystron. The spatial distribution of charge is not sinusoidal,
and, again, pulses rather than sinusoids are induced in the cavities. The

magnetron cavities can also be excited in a harmonic mode so that a large

number of output components is possible in addition to the easily identifiable

harmonics. Harmonic level and frequency are both difficult to predict. A value

of -40 dB with respect to the fundamental has been quoted (Reference 13) for
the second harmonic, but the third harmonic was said to reach -20 dB.

From the foregoing, it is evident that harmonic intensities can be reduced

by operating oscillators and amplifiers over linear regions at reduced

efficiencies, canceling nonlinear components in balanced circuits, and filtering.

The first of these involves an increase in power consumption and heat
generation. As a result, more effort must be spent on heat removal. Balanced

circuits and filtering involve additional circuitry; the balanced push-pull circuit

eliminates only even-order harmonics. Filtering is, by far, the most practical

method for suppressing harmonics; techniques for suppressing harmonics are
discussed below.

One way of suppressing harmonics is by utilizing the wave trap or bypass

principle. In the case of a transmission line system, the filter elements may take

the form of shunt or series stubs. One application of such a filter to remove

second harmonics is shown in Figure 1.12.

L

SHORT CIRCUIT

8

!

Figure 1.12.-Diagram of two short-circuited stubs (each one-quarter-wave-

length long and spaced one-eighth wavelength at the fundamental
frequency) arranged to attenuate the second harmonic.
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The difficulty with wave-trap techniques is that power at the harmonic

frequency is reflected back to the generator, causing an impedance mismatch.

In theory, one way of avoiding this difficulty is to use an isolator between the

generator and the filter. Unfortunately, most isolators are designed to operate

at the fundamental fiequency, and their performance at harmonic frequencies

is usually unknown• This is especially true at the higher microwave frequencies.

If an isolator is used, it must be able to dissipate the power of all reflected

components (fundamental plus harmonics) without exceeding its rating.

It is possible to utilize a ferrite circulator to suppress harmonics• For

example, the configuration in Figure 1.13 could be used to divert the reflected

energy into a resistive load. Unfortunately, the circulator has bandwidth

problems as does the isolator• Another harmonic filtering-absorbing technique

directionally couples the unwanted signals into a second waveguide, where they
are absorbed.

It should be pointed out that a simple method for harmonic absorption,
which also affords some reduction of the level of harmonics in the main load,

can be achieved merely by coupling to the main waveguide a smaller waveguide

whose cutoff frequency is below the fundamental but above that of all
harmonics•

Additional filtering techniques are given in References 1 and 14.

®
SIGNAL

SOURCE

_'_ LOAD AT HARMONIC FREQUENCIES

j CIRCU TOR

l ELEMENTSTO REFLECTHARMONICS

'_ _v LOADATFUNDAMENTALFREQUENCY

Figure 1.13.-Diagram illustrating the use of a circulator to separate harmonics.

2.3 TRANSMITTER NOISE

The spurious sidebands discussed in Section 2.1 can be reduced through

careful design of the modulator, but it is frequently found that a significant

background interference level still exists around the transmitter carrier center

frequency. This results from oscillator noise modulating the carrier in

amplitude, frequency, or phase• The noise is mainly associated with the

oscillator itself, which is quite noisy compared to amplifiers, but some noise is

produced in the amplifiers as well. It is possible for corona to form, or for
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arcing to occur, at high-voltage points in the final amplifier. Subsequent

filtering in the output tank circuit results in a pair of noise sidebands on either

side of the carrier frequency; spurious levels are difficult to estimate
accurately.

Measurements of noise power are more appropriate though they are
difficult to make because of the presence of the much larger power in the

carrier. Some measurements have been reported on VltF transmitters (Refer-

ence 15), and the results of tests on a 45-MHz and a 160-Mltz transmitter are

shown in Figure 1.14. The basic crystal frequencies were 3.75 MHz and 6.67

MHz, respectively, and three or four frequency-multiplier stages were utilized
before the final amplifier. The tests were performed on an unmodulated
transmitter, but the effect of modulation on the noise sidebands was not

determined. Data, not presented here, were also obtained for the power

amplifier alone, without the exciter and its multipliers; the resulting noise was

generally about 20 dB below that shown in Figure 1.14. The noise levels are

quite low in these cases, but the noise interference injected into a receiver can

be quite significant when transmitter and receiver anlennas are very close to
each other.

2.4 INTERMODULATION
AND CROSSMODULATION

The phenomena of intermodulation and crossmodulation imply the

mixing of two or more signals in a nonlinear element in such a way that

multiplicative mixtures of the two signals result. This occurs in receiver input

circuits, as well as in transmitters, and sometimes in a _lo_dinear element in the

channel. As far as transmitters are concerned, the process involves the

reception of an unwanted signal by the transmitting antenna, which conducts it

back to the output plate of the final amplifier, where it is mixed with the

transmitted signal. The process is therefore of greatesl significance when both

the unwanted signal and the nonlinear product are withi_a the passband of the

final amplifier. This can occur if the nonlinear device has a characteristic of

odd degree. For instance, suppose the output signal has a component that

depends on the third power of the output voltage. Two _:tmaponents of voltage

at the output are the output signal voltage itself,

xl(t ) = Vl(t) cos [wit + Ot (t)l, (1.43)

and the unwanted signal voltage,

x2(t ) = v2(t ) cos [co2t + ¢2(t)1. (1.44)
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qhe sum Xl(t) + x2(t), when applied to a nonlinear device having a cubic term,
will result in an intermodulation component,

Ya(t) = v_(t) cos [(26o 1 - ¢o2)t + 2¢1(t ) - _2(t)l, (1.45)

and a crossmodulation component,

Yb(t) = v2(t)v2(t)[cos w2t + _2(t)] . (1.46)

The center frequency of the intermodulation component differs from either

¢o I or w 2 ; but, if the two frequencies are close to one another, the frequency
of the new term is not too different from co 1. The modulation on the term

whose frequency is (26ol-6o2) is a combination of the modulations on each of

the causative signals. The crossmodulation component has a frequency equal to

one or the other of the original signals, and its amplitude is a combination of

the original amplitude coefficients of both mixed signals. The intermodulation
term is usually more serious since it occurs in an entirely new frequency band.

The crossmodulation term, given in (1.46), implies that the unwanted signal is

re-radiated with a distorted envelope. As a rule, the amplitude of the

re-radiated signal is much smaller than that of the original unwanted signal,

defined by (1.44), and the re-radiated signal might be viewed as a small new

splatter or noise component.

2.5 OTHER SPURIOUS OUTPUTS

Parasitic oscillations are known in both low- and high-frequency

amplifiers. In low-frequency devices they result from stray external and

internal capacitances and inductances that form spurious feedback loops. The

cures are often very simple, sometimes involving inserting resistors in the leads

to the grid and plate of the amplifier to increase losses of the spurious tuned

circuit. The methods of handling these situations are well described in standard
reference books (Reference 16).

At microwave frequencies, corresponding phenomena exist. Often, the

phenomena are completely internal to the tube. At some frequencies,

transit-time effects are sources of negative resistance. If a tuned circuit

somewhere in the structure is coupled to the negative, resistance, parasitic

oscillations occur. Various mechanisms for eliminating parasitic oscillations are

described more fully in Reference 10.
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3. UNINTENTIONAL
NOISE GENERATION

Man-made electrical noise reaches significant proportions at VHF and

UHF. Unwanted noise may be generated by any of the following: vehicle

ignition systems, corona discharge and leakage from high power transmission

lines, rotating electrical machinery, switching devices, rectifiers, arc welders,

discharge lamps, industrial heating equipment, and medical and diathermy
devices.

The majority of these noise sources are naturally concentrated in urban
areas of population and industrial centers. Locating ground stations away from

urban population centers eliminates most of the noise originating from such
sources. However, there is usually vehicular traffic, as well as power lines, in

the immediate vicinity of a ground station. Consequently, noise from these

sources is of greater significance to station operations.
Noise sources located on the ground do not significantly affect the fixed

interferometer antenna arrays used by NASA Minitrack interferometers

because the main beam of these arrays is fixed and points vertically. Of course,

this will not be true for any of the mechanically movable antennas such as the

satellite automatic tracking antenna (SATAN) array, located at Minitrack sites,

or the 85-ft parabolic dish located at data acquisition facilities. These antennas

may be affected by noise sources on the ground when the mainlobe, backlobe,
or sidelobes are pointed at the horizon. However, the energy entering the

antenna sidelobes is lower than that collected by the mainlobe or backlobe.

3.1 NOISE FROM VEHICLE
IGNITION SYSTEMS

Automobile and truck ignition systems undoubtedly make the largest
contribution to the overall man-made noise level at VHF and UHF. A number

of sources (References 17 through 25) describe quantitative measurements on

the noise levels radiated by automobiles and trucks; these sources describe

comprehensive theories for the explanation of radiation from ignition systems.

Results of measurements made by George (Reference 19)at 180 MHz and 450

MHz are reproduced in Figures 1.15 and 1.16. Although these data were

obtained in 1940, they are still applicable to modern-day vehicles.

For example, recent measurements reported by Rosa (Reference 25)

determined average levels of peak ignition noise for the noisiest 20 percent of

over 3000 vehicles measured. Rosa reported that one out of five vehicles



36 RADIO FREQUENCY INTERFERENCE HANDBOOK

100

:e 90

a, 80

°I,..,w, 70

°t

RECEIVING ANTENNA: HALF-WAVE DIPOLE, 3? f HIGH: ]09 (1FROM ROAD
WAVE POLARIZATION: HORIZONTAL
FREQUENCY: 180 MHz
BANDWIDTH: 10 kHz

/

_I--_ TRUCKS _..7_.._=, _ _-; _ _ _ _ =_-'_2_ _

.......

 .Z E%C RS

q

[
40 _ _ _ __L..... L ___

0 lO 20 30 40 50 60 7() 80 90 100

FRACTION OF AUTOMOTIVE VEHICLES RADIATING NOISE AT

LEVELS LESS THAN THAT INDICATED BY ORDINATE ,7.:_

Figure 1.15.-Levels of noise radiated at 180 MHz by vehicular traffic ignition.

lO0 F RECEIVING ANTENNA: HALF-WAVE DIPOLE, 35 H HIGH; 100 ft FROM ROAD
WAVE POLARIZATION: HORIZONTAL
FREQUENCY: 450 MHz

BANDWIDTH: lO kHz

m

'._ 70 J--- TRUCKS _ "-_ '_-' ........r

60 -OLD CARSj"_E W CARS

40 _.L__.... i L L .... _ .... i .... • _ ___

0 I0 20 30 40 50 60 lO 80

FRACTION OF AUTOMOTIVE VEHICLES RADIATING NOISE AT

LEVELS LESS THAN THAF INDICATED BY ORDINATE %)

J

• - ///

/ o /

J

ioo

Figure 1.16.-Levels of noise radiated at 450 MHz by vehicular traffic ignition.

radiated a constant level of 84 dB above 1 /aV/m/MHz flora 40 to 300 MHz,

almost fully covering the entire VHF band. By way of comparison, the upper

20 percent of vehicles in Figures 1.15 and 1.16 averaged about 80 dB above 1

/aV/nT/MHz, which closely agrees with Rosa's data.
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Automobile ignition noise is, in general, impulsive in nature. As a result,

the peak voltage response of a receiver to ignition noise [see Equation (1.52)]

will vary in a manner directly proportional to the receiver predetection

bandwidth. For instance, the data in Figures 1.15 and 1.16 may be translated

to other receiver bandwidths from the relationship

Lx = E_+ 20 log (zaf),
where

E x = new effective radiated ignition noise level in dB above 1
/aV/m/unit-bandwidth,

= level of radiated ignition noise given in Figures 1.15 and 1.16,
in dB above 1 _V/m/MHz,

and

At" = receiver bandwidth in megahertz.

For example, in Figure 1.16, the 80-percent point for trucks corresponds
to E r = 80 dB above 1 _V/m/MHz. For a receiver bandwidth Af= 0.1 MHz, the

new effective radiated ignition noise level becomes

E x = 80 + 20 log(O.1)

= 60 dB above 1/IV/m/100-kHz bandwidth.

From George's data, noise emanating from trucks is seen to be the most

serious problem, and this is still true today. Figure 1.17 shows the theoretical

propagation curves for horizontally polarized waves over level ground. Such

curves serve as the basis for extending data of Figures 1.15 and 1.16 to larger

distances. The field strength (in microvolts per meter) expected at a given

distance d (that is, d = 100 ft for George's data) is obtained by multiplying the

measured field strength at a known distance by the factor K. In practice, noise
levels will probably fall off with distance at a faster rate than is shown in

Figure 1.17, because of absorption and screening by vegetation, foliage, and
trees.

Rosa (Reference 25) reported the space attenuation for ignition noise for

distances up to 1000 ft from a highway. For instance, at 10, 70, 160,200, and

300 MHz, the space attenuation As, in dB, for a distance D from a fixed
reference point is determined according to the relationship

A s = 10 log(I/D3).
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level ground for horizontally polarized waves.

By way of comparison, this space attenuation increases at a greater rate than

the 6 dB per octave rate (I/D 2) for free-space propagatit_n.

In addition to the distance factor in assessing the noisiness of a station

site due to ignition noise from passing vehicles, the frequency with which

vehicles pass by the site must be taken into account. Consequently, the traffic

density around a station site must also be considered when determining the

degrading effects of ignition noise on the received data.

Ignition noise is created by the oscillatory current that is set up in the

high-tension leads when the energy stored in the self-capacitance of the spark

plug, the high-tension cables, and the ignition coil, is rapidly discharged

through the spark plug gap. The rapidly changing current then radiates energy

from the high-tension cables and also from coupled low-voltage circuits. This

current, called the "capacitive component" of the ignition current, has an

oscillatory wave shape and lasts for only a short time (of the order of 4 ns for a

l-ram spark gap). This creates a continuous frequency spectrum distributed
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throughout a very wide part of the VHF/UHF spectrum. The amplitude of the

spectrum remains relatively flat up to at least 600 MHz, although some energy

is usually still measurable at 1000 MHz. The spectral energy distribution

radiated by an automobile will depend on the duration of each spark discharge,

the layout of the electrical equipment and wiring within the engine

compartment, and the shielding effectiveness of the hood and body frame that

surrounds the engine. For this reason, the levels of interfering noise radiated by
an ignition system vary widely with different makes and models of automobiles

and it is very difficult to accurately predict the effective noise levels from a

particular vehicle. The hood covering the automobile engine has been found to
be especially important in the reduction of ignition interference.

A number of relatively effective means of suppressing ignition inter-

ference have been developed. The most effective method is the complete
shielding of the engine compartment of an automobile. However, this method

is generally considered to be impractical and too expensive. The most widely

used system makes use of suppressor resistors which may be either lumped or
distributed. The suppression resistance effectively reduces the amplitude and

frequency of the oscillatory current. In the system using lumped resistors, a

high-temperature, 10-W carbon resistor of 5 to 15 k_ is placed close to the
distributor end of the high-tension cable between the coil and distributor.

Additional suppression can be obtained by the addition of similar resistors at

the spark plugs. Special spark plugs available today incorporate the resistor into

the body of the plug. In systems using distributed resistance, the metallic

conductor in the high-tension leads is replaced by braided textile fibres that
have a total resistance of 4 to 10 kf/. Such cables are more effective than

lumped resistors and have now been adopted by all United States automobile

manufacturers for use as standard ignition cables.

Unfortunately, although suppressive devices are fitted to nearly all new

cars, they frequently are removed during normal servicing and maintenance and

generally are not replaced. This practice results from general ignorance of

automobile mechanics and also from the fallacy that suppressive devices
degrade engine performance. Any vehicles or gasoline engines stationed at or

near ground sites should be fitted with effective and adequate suppressive
devices. Care must also be taken to see that these devices are not removed

during any maintenance work on such vehicles or engines.

3.2 NOISE FROM HIGH-POWER

TRANSMISSION LINES

High-voltage transmission lines are a source of broadband noise that is

produced by corona discharges at various points along the line. Noise may also

be caused by arcing over dirty or wet insulators. The noise propagated by
power lines is very quickly attenuated with distance: at a frequency of about 1
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MHz, the corona noise from a 200-kV power line is undetectable by a receiver

with a half-wave dipole located more than 200 ft from the line. Corona noise

levels are relatively significant in the broadcast and HF bands but decrease

rapidly at frequencies above about 10 MHz. At frequencies above 100 MHz,

the corona noise levels appear to be virtually insigr_ificant. Most of the

measurements taken during on-site tests have been at frequencies in the broad-
cast band and below. These tests have shown that the levels of corona noise can

also fluctuate greatly from day to day. Conditions of humidity and wind can

cause large and rapid fluctuations of noise levels. These levels also tend to

change over tong periods of time as the transmission line ages; newly installed
lines tend to be noisier than older lines.

The corona phenomenon occurs when the dielect_ic medium surrounding
the high-voltage conductor breaks down and electrical discharges take place.

Corona will always emanate from local points of sufficiently high field

intensity; that is, from points of surface discontinuity at which a high potential

gradient exists. For this reason, corona discharges always take place at the

sharpest poivt on the surface of a conductor. The mechanism of discharge may

be explained as follows. Incidental ionization, which is always present, provides

a supply of electrons in the vicinity of the conductor. At negatively charged

points of high-potential gradient, these electrons are accelerated away from the

conductor by the strong field and, in fact, possess sufficient energy to ionize
the surrounding air molecules. An avalanche effect then results. However, the

region of ionization remains confined to the space surrounding the discharge

point. The positive ions created by the discharge are attracted to the negatively

charged corona point, thereby reducing the potential gradient and quickly

quenching the corona discharge. The discharge current is therefore pulse

shaped and lasts only for a short time, ranging between 0.1 and 0.5 gs.

The discharge from a corona point tends to repeat itself such that a
continuous series of recurrent pulses is generated. The repetition rate of these

pulses is a function of the potential gradient at the point where the corona is

formed. Generally, pulse repetition rates are of the order of 1 MHz or greater,

depending on the line voltage. Whereas the discharge cvrrent from a single

corona point is roughly periodic, the total discharge current on a line contain-

ing numerous corona spots must be treated as a sol of randomly occurring

pulses. To this extent, the noise generated by a power line is similar in effect to
shot noise.

Corona discharge from points that are at a high positive potential have
been found to be somewhat different from those at a negative potential. The

potemial gradiel_t required /'or the formation of corona is somewhat higher,

and the current is not impulsive in nature. The pulses obtained are of greater

amplitude and lower repetition frequency than those for negative corona.

Noise from corona discharges has been investigated (References 26

through 31)in both the laboratory and the field. Because of the large number
of w_riables ilwolved, it is difficult to correlate measurements obtained at one

field site with those obtained at another site. Figure 118 shows some data
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Figure 1.18.-Variation of corona noise level with frequency.

extracted from Reference 28. As can be seen, the power radiated at VHF is

very low (only about 10 dB above the receiver threshold level). It should be

remembered that these measurements were made with a half-wave dipole

antenna located only 40 ft from the power lines; normally, receiving antennas

would not be located so close to a power line. As would be expected, the

400-kV line radiates more noise than does the 138-kV line. However, part of

the noise measured at these frequencies probably includes other man-made

background noise, which is continuously present at VttF and UHF.

No data have been found on measurements of corona noise at 400 MHz;

it can probably be concluded that corona noise may be ignored at UHF.

In summary, it may be concluded that corona noise from power lines

does not represent a serious problem for aerospace ground-site operations,

since the noise levels generated cease to be significant at the frequencies used in

telemetry data acquisition.

It should be emphasized that, although corona noise radiated from a

good power line is not expected to cause serious problems under normal
conditions, a faulty power line can cause serious noise problems. In this case,

the noise is usually caused by arcing somewhere along the line and is not due to

corona. Such effects occur infrequently and can be prevented by regular

maintenance of the power line.

3.3 OTHER SOURCES OF NOISE

The remaining sources of noise, which may exist at groun'd sites, include

fluorescent lamps, electric motors, rectifiers, switching devices, and so forth, it

can be safely assumed that all these noise sources will be housed inside the

buildings and therefore will not be located in very close proximity to the
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receiving antennas. None of the sources mentioned radiate noise at very

significant levels at VHF or UHF, and the additional attenuation provided by

the buildings that surround these sources will probably cause such noise levels

to be undetectable at the receiving antennas. Any slight disturbances that are

noticed will occur when the antennas point straight at the station buildings.

Many potential noise sources, such as rectifiers and switching devices, are

found in the antenna control circuits. However, these are presumably housed in

metal cabinets within the building, so the overall shielding sh_)uld be more than

adequate.

Of the different noise sources mentioned, the most serious is the

fluorescent lamp. These lamps, as is common with all plasma-operated devices,

generate radio noise. The noise originating from plasma devices is caused by the

presence of periodic fluctuations in the ion or electron density in the area

immediately surrounding the electrodes and by the periodic switching of the

polarity on ac-operated devices. Figure 1.19, which is taken from Reference
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Figure 1.19.-Peak and average levels of noise radiated at a distance of 1 ft

from a standard, low-noise, 40-W fluorescent lamp. (After H. R. Steele,

Illuminating Engineering, 1954)
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32, shows a typical spectrum of the field radiated by a fluorescent lamp. As

can be seen, the level of noise radiated at frequencies of 100 MHz and above is

virtually insignificant. The major part of the radiated energy occurs in the LF

and VLF regions, below 100 kHz. Also, as with all these noise sources, the

noise levels fall off rapidly with distance (References 32 through 34).

A particularly noisy device that disrupts signal reception will probably be

relatively easy to suppress by effective shielding and by the addition of

interference suppression filters. On the other hand, it should be emphasized

that any of these devices being used outside the operations buildings and close

to the receiving antennas may well cause some difficulties. Such devices might
include hand tools, such as electric drills or saws for outside construction work,

and arc welders. Of course, interference from such noise sources can be avoided

by halting construction work and outside activities during scheduled satellite

passes.

4. ADMISSION VIA

INPUT TERMINALS

Receiver susceptibility to undesired inputs is classified according to the

mechanism of unwanted signal intrusion, as follows:

(1) Linear intrusion via normal input terminals.

(2) Nonlinear intrusion via normal input terminals.
(3) Intrusion through ports not intended as signal inputs.

In this section the first two items are treated in detail. The third mechanism is

covered in Section 5.1.

The block diagram of Figure 1.20 shows the essential elements of a

receiver. The acceptance band of the receiver and the spectrum of an adjacent-

channel signal are both shown in Figure 1.21. In the linear intrusion mode the

receiver acts as a normal bandpass filter that accepts any input containing

frequency components in the receiver passband, as indicated in Figure 1.21.

Unwanted inputs, whose spectrum is centered at or near the frequency to

which the RF filter is tuned, originate from communication systems or from

other noise sources that cause interference. In the second mode, called the

nonlinear intrusion mode, unwanted signal energy that lies outside the normal

passband of the receiver acts on a nonlinear element in such a way as to enable

the receiver to accept undesired signals. The RF filter in Figure 1.20 is a

preselector network which limits the frequency band of energy passing through

the succeeding active elements in the receiver. The latter nearly always have

some residual nonlinear properties that play a significant role when the input

amplitudes are large. When the RF filter is inadequate to limit large

out-of-band inputs to a satisfactory low level, the nonlinear devices (vacuum

tubes, transistors, and diodes) will generate frequency components not
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originally present. Interference can occur when these new frequency compo-

nents are within the passband of the portion of the receiver following the

nonlinear device. Phenomena typical of nonlinear intrusion include single

spurious response, multiple spurious response (intermodulation), and sideband
transfer (crossmodulation).

Ultimately, it will be necessary to know the degree to which the

undesired signals interact with the desired signal. This is a difficult problem for

several reasons. First, the original properties of unwanted signals are altered
after the signals have been operated on by the linear and nonlinear receiver

circuits. Second, the determination of the response of the detector to the

combination of desired signal and the undesired components is an involved

process. Third, it is difficult to evaluate the signal information lost through
such interactions.

DESIRED[AND 1 [ ACTIVEDEVICEJ J
[..._._ W I T H NON L I RE AR I.__.. _

UND ESIRED--_ RF I F
FILTER J I PROPERTIES: I I FILTER

SIGNALS [ J I,,PLIFiE R-MIXER I I AMPLIFIER

DETECTOR

Figure 1.20.-Block diagram of basic receiver elements.

"-_OUTPUT

BANDPASS CHARACTERISTIC

g OF,ECE,VER
/ I \/"_\, ./- SPECTRUMOFADJACENT-

/ _! JYL__ _" CHANNEL SIGNAL

f'l _ REGION SUSCEPTIBLE 1"O ENERGY

IN ADJACENT CHANNEL
FREQUENCY

Figure 1.21. Interference produced by a signal in an adjacent channel.

4.1 LINEAR INTRUSION

Linear admission of signals depends in a straightforward manner on the

response of the receiver bandpass filter. The unwanted signals fall into one

of the following categories:

(1) Broadband noise arising from natural or man-made sources

that radiate inadvertently, or which are intended to radiate. (Over the bandpass

of a typical receiver, the spectral density of such noise energy is essentially

flat .)

(2) Signals from communication sources assigned to a frequency at

or near the center frequency to which the receiver is tuned (i.e., co-channel

interference; more particularly, when the center frequencies are separated by

an amount less than the receiver bandwidth, the signals are said to be

co-channel).
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(3) Signals from communication sources assigned to operate at

frequencies within one of the passbands to which the receiver is susceptible.

(4) Signals from communication sources assigned to operate on a

frequency that differs from the receiver center frequency by more than the

signal bandwidth (adjacent-channel interference).

A receiver usually contains one or "more mixers for translating the input

frequency to more convenient intermediate frequencies for further amplifica-

tion. In this discussion, it is assumed that no fundamental change takes place in

the nature of the signal with this translation (i.e., spectral content and phase

are preserved). Once they are admitted, both wanted and unwanted signals are

therefore viewed as being at or near the frequency at which the IF amplifier

operates.

1. Broadband Noise

Broadband interference noise sources of the nonperiodic variety,

sometimes referred to as noncoherent sources, are characterized by unpredic-

table and irregular waveforms. Typical natural noise sources are thermal noise,

shot noise, galactic noise, solar noise, and atmospheric noise. Typical

man-made sources of noise include discharges on high-voltage lines and

electrical devices, noise from automobile ignition systems, commutator noise,

noise in complex switching systems, and noise generated by fluorescent lamps.

However, in some of these sources, a certain amount of waveform regularity
exists. Atmospheric noise bursts sometimes are found to have some coherence

because of multiple propagation path s (Reference 35); furthermore, there are

long-time fluctuations, depending on the time of day, season, and sunspot

cycle, that are roughly predictable (Reference 36). Corona noise on high-

voltage lines and noise from fluorescent lamps is usually modulated at the

power-line frequency (References 29 and 30). Noise from a single, stationary,

internal-combustion vehicle is more or less periodic; however, noise from one

or more passing vehicles or from several stationary vehicles is not. A more

detailed discussion of some of these sources also appears in Section 5.1.
Nonperiodic broadband interference sources are best characterized by

their power spectral densities (Reference 37). The mean-square value of the
noise admitted through the IF amplifier of a radio receiver is

<e02> = N1 (f)lG(f)l 2 df,

where

and

(1.47)

Nl(f) = the one-sided power spectral density at the receiver input in
V2/Hz

G(f) -the amplitude versus frequency transfer characteristic from

the receiver input to the IF amplifier output.
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If the noise spectral density is flat over the receiver passband and if the center

frequency of the IF amplifier is written fl, the mean-square value of the IF

amplifier output is

<e2> = Nl(fl)tC(fl)[ 2 f0 ® ]C(f)12_ _,2df = NG2 Bp (1.48)
IG(f_)l

where

N = NI (fl) is the spectral density of the receiver input noise power
at the band center,

and

G 2 = IG0"I)]2 is the power gain at the band center,

f0 IG(f)t2Bp = iG(fl)t2df is the effective noise-power bandwidth of theIF amplifier.

Periodic broadband noise sources generate regularly spaced and constant-

amplitude short pulses (or pulses which are nearly so). Two cases can be

distinguished. In the first, the pulses are sufficiently spaced in time so that each

pulse acts as a separate transient exciting the receiver. In the second, the pulses

follow one another so rapidly that they tend to overlap at the filter output.

The overlapping case arises when pulse spacing is of the order of the inverse of

the receiver bandwidth or less. Since the more common impulse sources (e.g.,

radar transmitters and modulators) have relatively low repetition frequencies
compared to receiver bandwidths, attention is directed exclusively to the

nonoverlapping case.
The instantaneous output voltage of an IF amplifier to an input that has

a Fourier spectrum given by S(f) is

eo(t ) = S(f)G(f)e ]2#t dr, (1.49)

where

and

G(f) = IG(f)l expUq_Or)l,

IG(f)l = the amplitude-versus-frequency characteristic of the IF am-

plifier,

q_(f) = tile phase-versus-frequency characteristic of the IF amplifier.
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For broadband inputs and narrow-band receivers, S(f) will be virtually

constant over the passband at a value S(fl ), so

eo(t ) = S(f l) f f iG(f)le/12,fft + ¢,LDIdr.
(1.50)

Because {G(f){ is an even function of frequency and q_(f) is an odd function,
this reduces to

f0 _

eo(t) = 2Sbrl ) IG(f)l cos [21rft + q_(f)] dr. (1.51)

Frequently, the important output quantity is the peak of the resulting

output waveform. It may be shown that for IG(f)l with even symmetry around

the center frequency fl and for O(f) with odd symmetry and linear aroundfl,
the output maximum is

fo" IG(flSeom = 2S(fl)G(fl) iG(fl)ldf= 2SGB e , (1.52)

where

and
S = S(fl) is the Fourier spectrum of the input at the band center

" {G(f)lBe = ir---77"_ldf is the effective impulse bandwidth of the IF
amplifier.

nonoverlapping, irregularly spaced, nonconstant amplitude pulses, theFo_

peak value obtained with each pulse can be determined with the formulas

above. Ignition noise typically falls into this category.
When random or impulse inputs are applied, the foregoing may be used

to determine the mean-square value and peak value, respectively, of the output

of the IF amplifier. How the normal function of the receiver is impaired then

depends on the detector and the use made of the receiver output.

Remedies for broadband noise that overlaps the receiver band must take

advantage of differences that are known to exist between the form of the signal

and the noise in the time domain. A review of methods dealing with noise of

a discrete impulse nature appears in Reference 37. The most common methods

used are limiting and blanking, both done before the broadband pulses have

been filtered in the IF amplifier. The principle here is that this sort of noise_

having short duration and large peak value, can either be limited above the level

of the desired signal or be totally blanked out for its brief duration. In either
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case, the signal is eliminated for the duration of the impulse, but this hardly
ever causes any loss of information. In the case of the limiter, the original

large-amplitude pulse is replaced by a smaller one, thereby reducing the

impulsive spectral magnitude in the desired passband. It is evident that a filter

preceding the limiter or blanket will widen the interference pulse and make

these processes less effective as noise reducers.

Successful operation of a blanking system requires _c_ _ing of a precursor

to trigger the blanking process. Systems for eliminating the periodic pulses of a
nearby radar system may make use of direct synchronization from the radar

source. Where there is no access to the source, the receiver ilself must sense the

pulse in one channel in order to blank it in a second channel.

The limiter is much simpler; frequently an operator adjusts the clipping

level to achieve best reception. A technique cited in Reference 38 (Ch. 11, p.

19) for counteracting impulse noise is to pre-smear the information prior to

transmission and to reassemble it after detection. The reassembling process

smears the impulse over a large interval of time, thus reduci_lg its effect.

An advantage can be realized by the use of a modtllation process that

builds distinguishable characteristics into the signal, which the detector then

uses to help in identification. A matched-filter detector, it_r instance, uses a

priori information about the shape of the signal pulses to discriminate between

signal and noise (Reference 38). In general, broadband modulation schemes

that enhance a signal in the presence of Gaussian noise will frequently result in

signal enhancement in the presence of non-Gaussian interference.

2. Co-Channel Interferen ce

The term "co-channel interference" designates interference that involves

communications systems that have been assigned equal, or nearly equal, carrier

frequencies. Co-channel frequency assignments are ordinarily made when the

probability of the simultaneous encounter of signals from the two systems is

insignificant. Such systems are separated physically by large distances or do not
operate at the same time. Sometimes, co-channel interference will arise because

of unusual propagation conditions or because co-channel s(mrces operate under

conditions for which they are not intended to operate.

The term "adjacent-channel interference" designates interference be-

tween communication systems that have been assigned neighboring channels.

Channel-spacing policy varies, but the term "adjacent" will be used to mean

channel separation by a frequency difference greater than the average of the

two signal bandwidths. Figure 1.21 illustrates interference of this kind; energy

on the skirt of the adjacent-channel signal spectrum is shown overlapping the

bandpass characteristic of the receiver. Although, in the typical case, the

receiver skirt sensitivity is low, compared to the in-band sensitivity, receivers

located close to an adjacent-channel transmitter can be exposed to very large

magnitudes of unwanted signals.
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Estimates of interference arising from linear intrusion can be made in

several ways without excessive numerical complexity: by treating the un-

wanted signal as a pure sinusoid, as a broadband waveform perfectly centered

in the band, as a broadband waveform whose center frequency is sufficiently

removed from the frequency to which the receiver is tuned so that the

unwanted spectrum is nearly constant over the receiver band, or as a

band-limited waveform falling on a small portion of the receiver selectivity
curve. The first of these will be useful for the estimation of both co-channel

and adjacent-channel effects. The second is appropriate for the evaluation of

co-channel interference, and the third is appropriate for the determination of

adjacent-channel interference. In the third case, the bandpass filter is exposed

to a portion of the one sideband of the unwanted signal. The effect is not

much different from that produced by thermal noise of equal mean-square
value. Therefore, the spectral density of the unwanted signal is estimated at the

center of the reception band and, as in the case of nonperiodic broadband

noise discussed above, the mean-square value of the IF amplifier output is
determined by use of (1.48). The fourth class will be illustrated in Section
4.1.4.

3. Receiver IF Channel

Interference

One somewhat different mechanism involving only linear phenomena is

the penetration of unwanted signals that are centered at one of the IF channels

within the receiver. For instance, a large-amplitude signal centered at the

frequency of one of the IF amplifiers may manage to pass through the input
selective RF circuits to the IF amplifier in question. Once there, it proceeds
down the rest of the receiver in a normal manner. To overcome this sort of

difficulty, the selectivity of the input RF circuit and/or stray paths to the

sensitive circuits must be controlled. As would be expected, the most

susceptible frequency is that of the first IF amplifier, but consideration needs

to be given to all succeeding IF amplifiers.

4. Adjacent-Channel Interference

Signals from two satellites with closely spaced adjacent-channel fre-

quency assignmcnts can produce interference within a given receiver. Two

interference conditions will be analyzed, with the interfering signal unmod-
ulated and then modulated with broadband random noise.

Two satellites, A and B, are assumed to lie within the antenna beam of a

given ground receiving station. At the receiver, the average power in the
• ._.

unmodulated signal from satellite A is the mean-squared voltage, X-, and the
_-'2 a

average power in the unmodulated signal from satellite B is X b. At the ground
station, the carrier frequencies received from the two satellites are fa and fb"
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These frequencies are given by

and

where

fa = fl + All

=I2+ I2,

fl = carrier frequency of the unmodulated signal transmitted by

satellite A,

f2 = carrier frequency of the unmodulated signal transmitted by

satellite B,

All = Doppler shift of signal transmitted by A,

and

Af2 = Doppler shift of signal transmitted by B.

The receiver's selective circuits are assumed to consist of n single-tuned

parallel RLC type circuits. From (1.27), the relative response of these circuits

is written

4(f _fo)2]_n/z

where* B is the bandwidth of one single-tuned cir@ait at the half-power point,

or 3 dB below maximum response. In terms of the 3-dB bandwidth, B 3 dB of

the receiver passband, Hn(f ) becomes

f !l_n/2

4(f - fo)2121/n- 1

Hn(f) = -I" B_ dB

*The 3-dB bandwidth of n identical, single-tuned circuits in cascade is given by

B./_I/'- IB3dB = "q,=

where B is the 3-dB bandwidth of one single-luned circuit IReference 39). Similarly, the 6-dB

bandwidth is given by

B6dB = B_4 l/n - I
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When the receiver is tuned to the frequency fo =f a, that is, when the
station is tracking satellite A, the power Pi of the unmodulated interfering

signal from satellite B in the receiver passband is given by

e. = IH (fb)12_'b2.

To give a numerical example, the parameters are assumed as follows:

// =3_

fa = fl + Afl = 136,200 kHz + 2.0 kHz = 136,202 kHz,

fb = f2- Af2 = 136,230 kHz - 3.0 kHz= 136,227 kHz,

and

B3 dB = 30 kHz,

Xa =I0-16W =-130dBm,

X 2 =3 X 10-15 W=-lI5 dBm.

In this case, (f - f o ) = (f b - f a) and P/is given by

or

4(136,227- 136,202)2121/3- 1

ei = + (30)2 X 3 X 10 -15

P. _ 5.9 X 10-16 W.
l

For reception from satellite A, the signal-to-interference power ratio is

_2a2 10-16

S/I Pi 5.9X10 -16_0"17"

The signal has a level of -7.7 dB relative to the interference; such a low

signal-to-interference ratio will usually represent an interfering situation.
The interfering signal is nowm assumed single-sideband modulated with

broadband noise, and the power X 2 is assumed to be uniformly distributed

over an ideal bandwidth, AB, centered about the frequency fb" The power
spectrum of the undesired signal and the receiver response curve are shown in

Figure 1.22, where the power spectral density of the interfering signal is

P_') = _i W/kHz of bandwidth. When the receiver is tuned to the frequency fa,
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OdB
B_._RECEIVER BANDPASS

CHARACTERISTIC

POWER SPECTRAL DENSITY
_3dBI _ OF UNDESIRED SIGNAL

/-- _--*i W/kHz

AB fb AB ffb-7 fb+_

Figure 1.22.-Unwanted signal spectrum and the receiver bandpass characteristic.

the power of the unwanted interference that gets into the receiver passband
selectivity skirt is given by

=f0 = q_ij_(f)j 2 dJ.
e,

Assuming that _bi is constant over the interval*

and equal to zero elsewhere, the interfering power Pi is then

-_ d[ .

By an appropriate change of variable, the integral above can be reduced to a

standard integral (e.g., Reference 40, p. 1068, eq. 13) of the form

*It will sometimes be sufficiently correct to assume thai the entire unwanted signal band

is uniformly attenuated by the relatively flat portion of the tail of the receiver bandpass

characteristic; that is, it will be possible to let

Hn(J' ) = Hn(fb )

for all values of)" in the band _/_.
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where

c = _iB3 dB'

a =412 l/n- 1],

b =|_

af

dy B3 dB

and

bf - B3 dB

= a constant,

- a constant.

The selective circuits of the receiver are assumed to consist of three

single-tuned stages, i.e., n = 3, which makes a _ 1.0. For n = 3, integrating the

expression for Pi' changing the variable y back to f, and inserting the upper and
lower integration frequency limits, the interfering power is

t +3[ I 1 - q
Pi=d_iB3dB{4(a}+l)= _--[_(af-+l)+_-tan '(af ...I

'Jl
or

Pi = dPiB3 dB K "

where K corresponds to the terms in the braces.



54 RADIO FRFQUENCY INTI:_I'_FERENCE HANDBOOK

In the example below, the parameters of the first example are assumed

and the unwanted signal power _bb is assumed uniformly spread in the band

AB= 30 kHz. From their definitions above, the tbHowing values can be
written :

_2b2 3X 10-15 10-1(,W/kll z
_i - AB- 30

at- = 1.33,

bf = 0.33,
and

K 20.267.

"Iherefore, inserting numerical values,

Pi = 10-16× 30×0.267 =8×10-16W =-121 dBm.

Assuming that the desired signal power X 2 gets into the receiver, the
a

resulting signal-to-interference power ratio after the selective circuits is

10_16

S/I= Pi 8X 10-16 0.125.

Thus, the desired signal is 9 dB below the interference. This, too, will usually

represent an interfering situation that is typical of satellite-to-satellite

interference experienced in the STADAN network using the 136.0- to
137.0-MHz band.

4.2 NONLINEAR INTRUSION

Nonlinear effects can arise as a result of inadequate rejection of the

unwanted signal in the input filter circuits of the receiver that is followed by

some nonlinear process in an electronic device. Less common nonlinear

admission mechanisms may include imperfect joints between conductors prior

to the receiver filter circuits, which give rise to nonlinear junction effects.

High-powered communication transmitters are usually the only significant

sources. However, the spurious outputs of the transmitter are rarely large

enough to be significant; therefore, only the main signal needs to be con-
sidered. Also, natural noise sources and incidental sources of man-made noise

are usually insignificant.
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1. Spurious Responses

The spurious responses of a receiver result from nonlinearity in an early

stage, which gives rise to harmonics of incoming signals; nonlinearity in the

mixer, which results in oscillator and signal harmonics; and frequency
multiplication in the local oscillator and its related circuits. At each frequency

to which the receiver is tuned, another set of possible spurious response

frequencies exists, and each of these sets has its own level of significance
(Reference 41).

Spurious responses arising in mixers can often be explained in terms of

the following mechanism. The nonlinear device, such as a transistor, diode, or

vacuum tube, has an input-output characteristic that may be specified by the
power series

N

= ) _anxn. (1.53)Y

n=0

The mixing operation occurs with the simultaneous application of a signal,

xs(t ), and oscillator voltage, Xo(t), where

and

for which

and

"lhen, x = xs + x 0

Xs(t) = Vs(t) cos (cos t + (as)

Xo(t ) = A cos COOt ,

Vs(t ) = signal amplitude modulation function,

cos = angular frequency (2nfs) of signal carrier,

fs = signal carrier frequency,

Ss = phase angle,

coO = local oscillator frequency,

A = local oscillator amplitude.

and

N

y(t) = Z an [xs(t) + Xo(t)ln
n=0

N n

n=0 k=0

+ (as)A(n-k) cos (n-k) COot. (1.56)
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The periodic function cosP x (see Section 2.1.1 ) can be expanded (Reference

42) in a Fourier series so that, when (1.56) is written as a sum of individual

cosine terms, the result contains all frequencies

Imco s +_ rico01 , (1.57)

where

an d

Whenever one of these frequencies coincides with the intermediate fre-

quency, a potential spurious response is said to exist, qt/at is, any input fre-

quency cos that satisfies the equation

(+_rico 0 +_coil)
co

s ?H
(1.58)

with ally combination of the signs leads to a potential spurious frequency.

Frequently, the amplitude of the signal component Xs(t ) is small com-

pared to that of the oscillator component Xo(t ), and te_ms involvingxk(t)can

be ignored when k > 1. The significant portion of (1.56)is, then,

N

y l(t) = _[_ na n x(on-1)(t)Xs(t) = g(t)x(t). (1.59)

n=l

The quantity g(t) is the transconductance as a function of time when an

oscillator voltage, Xo(t ) is applied. That is, the transconductance is the de-

rivative of (1.53), or

N

a),
g = _x = E nanx(n-l) "

n=l

(1.60)

]'hen, writing x = Xo(t) = A cos COot, we obtain

N N-I

g(t ) = Z nanA('Z-l ) cos'n-l' coot = E g,l cos ncoot .

?l = 1 tl=0

(_.6_)



ADMISSION VIA INPUT TERMINALS 57

The last term on the right of (1.61) is the form that would be obtained if

cos (n'l)w0t were expanded as was done for coskx in (1.2) and all terms of like

harmonic were collected. Thus, from (1.59),

Vs(t) _-_

Yl(t) = --7 ___gnl cos [(w s - nw0)t + cbsl
n=0

+ cos [(w s + nWo)t + (_s]l" (1.62)

That is, frequencies cos + nco 0 will be obtained. The quantity gn/2 is the
conversion transconductance corresponding to the nth oscillator harmonic. It

may be noted here that if g(t) is a pure cosine wave at the frequency co0 (that
is, if g versus x is a straight line over the region of oscillator swing), then the

only output freqt_encies are cos + co0. Some electronic devices do, in fact, come
fairly close to this ideal over a portion of their operating range, and from the
viewpoint of minimizing interference, operation ought to be restricted to this

range. However, designers frequently do not, or cannot easily, control the level
of oscillator voltage applied to the mixer. Maximum conversion transcon-

ductance at the fundamental frequency (at radian frequency cos + _o0) is
obtained with large oscillator input, and this often results in more than a

proportionate increase in the conversion transconductance at harmonic

frequencies. Then, too, the output of a variable-frequency oscillator is rarely

constant over an appreciable range of frequencies; the conversion gain generally
varies over the band.

When the mixer is a diode, as it often is in microwave receivers, the

mixing of the signal with a harmonic of the local oscillator ordinarily cannot be
avoided. An ideal diode acts, in effect, like a switch that is turned off and on

by the local oscillator at the oscillator frequency. The signal voltage is

therefore multiplied by a square-wave switching function. The square wave

contains all odd harmonics of the oscillator frequency so that harmonic
mixing with all odd oscillator harmonics is unavoidable. In a real diode the

performance is somewhat modified, but the principle is essentially the same. A

more precise evaluation of the frequency conversion for a crystal mixer is

obtained by use of the current-voltage characteristic of the diode. This is given
by

i = Is(eav - 1), (1.63)

where

/s = the reverse saturation current,

a = a constant which, in theory, is e/KT (_ 40),
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v = the voltage at the quiescent operating point,

e = 1.602 × 10-19 C, the electronic charge,

and

K = 1.38 X 10-23 J/°K, Boltzmann's constant,

T = temperature in degrees Kelvin.

"lherefore,

di_ ' eav (1.64)
g = dv - aJs "

When

then

v =A cosco0t,

g(t)=alse(aAc°sw°t)=alsIIo(aA)+2_-_jln(aA)c°snwot"(1"65)n=1

In this expression, ln(aA) is the modified Bessel function of the first kind of
order n (n = 0, 1, 2 .... ) and of argument (aA) (Reference 42). The conversion

transconductance, as defined in (1.61), is

gn = 2alsln(aA )" (1.66)

From Bessel function theory it will be found that for values of (aA)apt to be

used here (ranging around 10), values of ln(aA) up to about n = 6 are of the
same order of magnitude. That is, harmonic conversion will be very significant
for the sixth harmonic of the oscillator. For higher values of the argument

(aA), the value ofln(aA ) becomes significant for even greater values of n.

The interference-to-signal ratios are not easily calculated because the gain

or loss of amplitude of the undesired signal between the input and the point at

which the nonlinear effect takes place is not ordinarily known. Furthermore,
the oscillator level and harmonic and subharmonic content, as a function of

the frequency to which the receiver is tuned, are not ordinarily known, it is
more common to measure the intensity of the spurious responses than to

calculate them. The usual procedure is to set the tuning control to three

frequencies in each band, one at the center and the others in the vicinity of the
band extremes. With the receiver fixed at each frequency, an input signal is

applied from a generator that is tuned through the frequencies of potential

response. A desired signal, modulated or unmodulated, may be applied
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simultaneously. The observed quantity is the ratio of signal input voltage to

interference voltage required to give a stated output. The ratio may depend on

the input level. The intensity of the spurious responses, nevertheless, can be

calculated in many cases, especially when only approximate values are needed.
An example of calculated spurious response intensities follows.

Let N= 3 in (1.53). The spectrum of signals produced in the nonlinear
device is found by expanding (1.56) to obtain

y(t) = a 0 + a 1Vs(t ) cos (Wst + Os) + a I A cos COot

+4a.[v2(t) + A 2] + la_v2(t ) cos 2(COst + C_s)z _ _ 2 z_

+la2A2 cos 2_ot +a2Vs(t)A cos [(u_s - COo)t + _s ]

+ a2Vs(t)A cos [(a) s + COo)t + _s ]

+[3a3A3 +3a3Av2(t)] cos Wot

t 2+ cos%, +

+ l--a,v3(t) cos 3(w t + Cs) +la3A3 cos 3Wot4 _ s s

+3a3v2(t)A cos [(2w s - Wo)t + 2¢s ]

+3a_v2(t)A cos [(2_ s + Wo)t + 2¢,1
¢-'1" J

+3a3Vs(t)A2 cos [(w s - 2w0)t + ¢s ]

+3a3Vs(t)A2 cos [(6os + 2_o0)t + Cs] . (1.67)

From the collection of components in (1.67)we consider the terms for

which the frequency of the interfering or undesired signal, now written 6_S/,
is [see (I .58)]

wSl - 2w 0 = +_wif •
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The receiver is tuned to the desired component, whose frequency is now

written coSD'

¢oSD - co o = coil.

The intensity of a spurious response at frequency ¢Osi when receiving a desired

signal of frequency wSD is determined from the coefficients of the appropriate

frequency terms given in (1.67). Suppose for instance that coSD = 140 MHz,

w 0 = 110 MHz, and coil" = 30 MHz. Then, the frequency of the interfering sig-

nal coSl = 2w 0 + coil has the two values of 250 MHz and 190 MHz. From
(1.67), the desired component at the output of the mixer is of angular fre-

quency cos - w 0 and is given by

D = a2vs(t)A cos [(co s - co0)t + _s ] .

The peak voltage of this component is

D = a2AVsD ,

where VSD is the amplitude value of Vs(t ) and the signal input is the desired
signal. The undesired or interfering component has angular frequency

satisfying coil = +-ws +-2co 0 and is given by

I =3a3vs(t)A2 cos [(co s +-2co0)t + q_s] .

Its peak value is

I =3a3Vs1A2,

where VS1 is the peak of Vs(t ) and the signal input is the undesired signal. At
the output of the mixer, the ratio of the level of the desired signal to that of

the interfering or undesired signal is, therefore,

D 4a2VsD

I 3a3VsIA '
(1.68)

where VSD and VSI are the peak voltage levels of the desired and undesired or

interfering signals, respectively, at the input of the mixer. However, the

quantity of interest is the ratio of the voltage of the desired signal to that of

the interfering signal at the receiver RF input rather than at the input to the
mixer.
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The voltages given in (1.68) may be converted to voltages at the input of

the receiver by taking account of the RF gain of the receiver. Let K be the

voltage amplification of the interfering signal relative to that of the desired

signal as a result of gain in the RF circuits preceding the mixer. Then, if FD (in

place of VSD ) is written to designate the peak voltage of the desired signal at

the input of the receiver, and if V I (in place of V$I ) is written to designate the

voltage of the interfering signal at the input of the receiver, then Vsl = KV 1
and the required ratio becomes

O)input = 4a2VD3a3AKF 1 •
(1.69)

For instance, if two single-tuned circuits each of bandwidth B = 15 MHz are

used in the RF stage, then, from (1.29) for the 190 MHz interference compo-

nent (k = 2),

[2 B 12K = (fs1 -fSD) = 0.0225 voltage ratio.

If now we use the values of a2 and a 3 given in Section 2.1.1 and assume the

local oscillator level A = 10 V, we obtain from (1.69)

D_ 4 X 2.6 X 10 -5 VD VD

1 3 × 8 X 10-7 X 10 × 2.25 × 10 -2 V1 = 192.5 7/.

For equal values of desired and undesired components, D/I = 1, and the input
ratio must be

v1
--= 192.5.
vD

That is, for equal signal and interference at the mixer output, the interfering

signal at the receiver input has to be 101og(192.5) = 45.7 dB above the level of

the desired signal.

Figure 1.23 shows a plot of equation (1.58) relating the tuned frequency

fSD and frequency of potential interference fSl for several values of m and n
for a receiver covering a range from I O0 to 200 MHz and having an oscillator

frequency f0 set 30 MHz below the tuned frequency. Measured or computed
values of strength of response are indicated on the diagram at the appropriate

points, as shown on the line labeled fs1 = 2f0 - _f at fSD = 140 MHz. Or, for
each spurious response line on Figure !.23, a corresponding curve can be

plotted as shown in Figure 1.24, showing the relative response at each tuned

frequency.
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The intensity of spurious signals introduced by nonlinear mechanisms

involving the generation and admission of signals may be reduced by filtering in

appropriate places and reducing the levels of the input signals. For instance, the
spurious response of a receiver is increased when the local oscillator is made to

drive the mixer over a wider range of its voltage-current characteristic.

Although the desired conversion efficiency might be increased somewhat, the

"harmonic conversion" efficiency is also increased and, beyond a certain point,

becomes proportionately more than the desired effect. To keep the spurious

response low, additional filtering can be used prior to the mixer. As a general

rule, a trade-off between the cost of additional filtering and that for increased

gain ought to be considered. In addition, the region t)f the characteristic over

which the mixer is operated should be as nearly square-law as possible.
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2. Intermodulation and

Crossmodulatton

lntermodulation and crossmodulation, discussed for transmitter mechan-

isms in Section 2.4, are also important in receivers. The mechanisms are

essentially the same. Intermodulation in receivers, however, results when two

or more unwanted signals are present simultaneously at the input. Cross-
modulation is the transfer of information from an undesired carrier onto the

desired one. In either case, nonlinearity in a circuit near the receiver input is
usually the cause.

Intermodulation is the more important of these mechanisms. It becomes

especially important when a range of frequencies is subdivided into separate
communication channels and when a number of closely spaced channels must

be used simultaneously. Then, two unwanted signals of the form in (1.43) and

(1.44) of Section 2.4 give rise to a component of the form

Yl(t) = v2(t)v2(t ) cos [(2w 1 - w2) + 2_bl(t ) - _2(t)l (1.70)

when the nonlinearity is of the third degree. As was pointed out in Section 2.4,

this component is significant because 2w x w 2 is not too different from

either frequency if _l and w 2 are not far apart. It should be clear that the

component at frequency 2w 2 - w I is significant, too, for the same reason.

It will similarly be found that with three channels at frequencies fl 'f2'
and i"3' intermodulation products having frequencies near to but not coincident

with the original generating frequencies are

.fl +.f2 - f3 ,

fl-f2+f3,

2:t-: 2,

2:1-: 3,

2/2-/1,

2f2-f 3 ,

2:3-I ,
and

2_3 - _2 •
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The even-degree terms in Taylor's series expansion for tile output-input

characteristic of the nonlinear element also give rise to intermodulation

components, but they are all far from the range of frequencies in question.

Though the third-degree term is generally the most inw_rlant, the fifth-degree

term may have to be accounted for also. Possible interference components due

to fifth-degree nonlinearity are of the form

6 +;2+6-I4-4 '

2fl +6-4-4'

fl+ f2+ f3- 2f4 ,

2fl + f2- 2f3'

3fl- f2- f 3 ,

and

3fl - 2]' 2 "

These are only representative forms; the subscript on the frequencies above

may be permuted in any way among the assigned frequencies. Thus, if there are

10 frequencies, 3]'7 - 2rio or fl - f2 + f3 - ]'4 + fs are frequencies that can be
significant. Techniques for channel selection to avoid interference are given by

Babcock (Reference 43) and also by Beauchamp (Reference 44).

Tests of susceptibility to intermodulation in actual receivers have been
described in detail. McLenon (Reference 45) applied signals to commercial-

grade receivers to give potential intermodulation at 5.1 MHz. He obtained a

resultant equivalent interference carrier level of 0.5 taV for inputs ranging from

0.01 V to 0.1 V. The highest input was required in a receiver that had two
tuned circuits before the first amplifier tube.

A sample calculation of the magnitude of intermodulation interference

will now be given. Third-degree nonlinearity is assumed. Carrying out an

expansion similar to that given in (1.56) but with xs(t ) and Xo(t ) replaced by

two incoming signals xl(t ) and x2(t ) as given by (1.43) and (1.44) and with n
= 3, an output interference component

Yl(t) =---_-vf(t)v2(t ) cos (2_ 1 - co2)t (1.71)

is obtained. The tuned frequency of the receiver is 2co I - co2 = to0 . A desired

signal, Xs(t ) cos coot, entering the receiver at the same time will result in an

output term determined by the first-degree terms (with o._efficient al) of the

Taylor series. Thus, ys(t) = a lvs(t ) cos coot.
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The signal-to-interference voltage ratio S/I is defined as the ratio of the
coefficients of these two components, or

4alVs(t)

S/I- 3a3v2(t)v2(t ) .
(1.72)

If, for simplicity, Vl(t), v2(t), and Vs(t ) are taken to be the constants Vl, v2,
and Vs, respectively, and the two unwanted signal amplitudes are assumed equal

so that v 1 = v2, then the signal-to-interference ratio is unity when

(1.73)

For instance, if

and

Vs= lOX 10-6V,

a l=5X 10-3mho,

a3= 5 X 10-5 A/V 3 ,

then v I = 0.11 V. At VHF, an interfering signal of this magnitude could be
produced by a 50-W transmitter with a spacing of about 150 ft between the

transmitting source and the receiving antenna.

The intermodulation interference has amplitude v I at the input to the
nonlinear element, but its amplitude at the antenna terminals can be greater

than this value. However, if the selectivity of the input circuit is not sufficient

to cause much attenuation to the unwanted signals, the unwanted input signal
voltage thus can be about 0.11 V, also.

In the case of crossmodulation arising from third-degree nonlinearity, the
interference component I [again using (1.43) and (1.44) and expanding in

a form such as (1.56) with v2(t ) cos [_o2t + ¢2(t)] viewed as the desired signal]
is

3a3v;(t)v2(t)

Yl - 2 cos [_2 t + q_(t)] . (1.74)

This component contains a mixture of sidebands from the unwanted v 1 and
the wanted v2 signals. Since the desired component, in this case, is

Ys(t) = alv2(t ) cos [w2t + ¢2(t)1,
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the signal-to-interference voltage ratio, defined as the ratio of the coefficients

OfYs(t ) and Yl(t), with Vl(t ) and v2(t ) constant at v I and v2 , respectively, is

S/I = 2a 1
3a3vl 2 "

(i .75)

Only unwanted signals of large amplitude will make this ratio significant. When

the signal-to-interference ratio is unity,

for crossmodulalion. For example, if the values of a I and a3 given previously
are used,

v 1= 8.1 V.

3. Desensitization

Desensitization refers to a reduction in overall receiver gain, or sensi-

tivity, or both, when a large unwanted signal enters the receiver. The inter-

ference signal alone may not even be observed if it is either unmodulated or
modulated in such a way that the receiver is nonresponsive. Typical mecha-

nisms of desensitization are discussed in the following paragraphs.

A large-amplitude unwanted signal at carrier frequency passing through a

receiver having automatic gain control (AGC) will sometimes depress the
receiver gain. The AGC voltage is determined by the carrier level at the

detector input, and any signals present there will affect it. In envelope detector

systems, in FM receivers, and in receivers using frequency tracking, a large

undesired signal will tend to "capture" the detector.

Desensitization is also encountered when unwanted signals have suf-

ficient amplitude to overload one of the early stages of the receiver. This effect

may be found to occur even with unwanted signals at frequencies relatively far

from that to which the receiver is tuned, because of the large bandwidth of the

initial stages. The mechanism varies according to the circuit. The unwanted

signal may overload the first active device and cause tile desired signal to be

suppressed during periods of saturation and cutoff; this usually occurs due to a

lowering of the effective Q of the tuned circuit. In systems having RC networks

for bias generation or in those having AGC filter networks in the early stages,

overload will cause a change in bias and a reducti(m in gain. The bias is

sustained for an interval of time, depending on the RC time constant and the

peak value of the undesired signal.
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Pulsed signals of low duty cycle, such as radar emissions, can be

especially troublesome because of their large peak amplitudes. Microwave radar
interference to low-frequency communications systems, by overload of an early

receiver stage, is not uncommon, largely because the lumped tuned circuits at

the input are virtually useless as filters of microwave energy. Once the

unwanted pulse appears at the input amplifying device, it will act according to
one of the mechanisms described in the previous paragraph. Even when

charging networks are not present, unwanted pulse signals of low duty cycle

may be a source of interference though they do not fall strictly into the

category of desensitization. Two mechanisms are described below.

Broadband signals, such as pulsed radar signals, if admitted at least as far

as the first amplifier stage of low-frequency receivers, may be detected in the

amplifier if they are sufficiently large. Their sidebands may contain energy in
the receiver passband at the point of detection. Furthermore, distortion in the

detection process will sometimes increase the effective bandwidth of the

sidebands. Broadband signals of the kind mentioned above may have

bandwidths to about 15 MHz or even more, depending upon the radar

parameters. Taking into account possible sideband distortion, this mechanism

should be considered potentially significant through the HF band.

An unwanted signal that would ordinarily be rejected by the receiver will

sometimes cause interference by transferring its information sidebands to the

carrier of the desired signal. Large-amplitude pulsed signals that are admitted to

the first amplifier stage and overload the input circuit create, essentially, a

short circuit across the tuned circuit for the period of the pulse. The desired

signal is, therefore, altered at the pulse rate; this is, in effect, a modulation of

the desired carrier by the pulse information. No charging networks need be

involved here. When unwanted signals are not so large as to cause overload

directly at the input, the nonlinear input-output characteristic of the active
device may still be a cause of crossmodulation..

Under "Spurious Response," it was pointed out that diode mixers act
naturally as harmonic mixers to create spurious responses. Diode mixers are

also subject to desensitization effects (Reference 46). The effect is found to

arise in microwave receivers (e.g., radar receivers) where the mixer is the first

electronic device following the input terminals. It can be shown that the con-
version transconductance [defined by g(t) in (1.65)] is altered by the presence

of a large unwanted signal. A more important effect, however, appears to be

connected with impedance mismatch; the effective output impedance of the

mixer at IF is altered by the unwanted signal. If the input impedance of the IF

amplifier is matched to the impedance of the mixer in the absence of unwanted

signals, it will become unmatched when the unwanted signal appears. Tests
reported (Reference 45, pp. 28 to 29) show a drop in conversion efficiency by

approximately 3 dB for an unwanted sinusoid whose amplitude is equal to that

of the local oscillator signal (see Figure 1.25); the greater the local oscillator

power fed to the mixer, the larger will be the magnitude of the unwanted signal
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Figure 1.25. Test results of conversion loss in a crystal mixer.

that can be tolerated. It was pointed out above, however, that with increasing

local oscillator inputs, the harmonic conversion transconductance gn becomes
significant for higher values of n. A compromise is therefore needed between

high local oscillator power (to minimize desensitization potential) and low

local oscillator power (to minimize spurious response potential).

It is evident that with adequate filtering prior to the active elements in

the receiver, the effects of nonlinearity in these elements can be reduced.

Ideally, the bandwidth of circuits ahead of a potentially nonlinear element

should be equal to the bandwidth of the IF amplifier, but this will generally be

impractical and difficult to accomplish. Unwanted signals whose frequency is
relatively near that of the desired band will therefore not always be easy to

reject in the RF amplifier. Where such interference is expected, as would seem

to be the case when aircraft interference signals located in the 118.00- to

135.95-MHz band are encountered, it is desirable to use input circuits with

large dynamic ranges to avoid such effects as overh)ad and desensitization.

However, sharp rejection filters (wave traps) have been devised (References 1

and 13) especially for rejecting fixed-frequency unwanted signals in an adjacent
channel.

4. Miscellaneous Interference

Reduction Techniques

In addition to interference reduction by filtering and by proper choice of

the electronic device and its operating point, certain additional techniques

should be considered. Electromagnetic signals can be isolated by the use of

different frequencies, time sharing, codes that make different signals separable,

spatial separation, shielding, and different wave polarizz_tions. For the case of

potential interference to a ground station receiving signals from multiple
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satellites operating in a given band, studies have been completed for
establishing methods of frequency assignment to minimize interference

(Reference 47).

5. SPURIOUS PATH

ADMISSION MECHANISMS

The antenna represents the sensor in a receiving system and is obviously

the most important point of energy pickup. However, significant amounts of

unwanted RF energy may penetrate the system through other paths.
The energy may penetrate in one of two ways: as conducted interference

along the power lines and control cables of the system or as radiated inter-
ference in which the energy is able to penetrate the system directly because of

poor and inadequate shielding.

The two basic forms of energy penetration will be considered separately,

and methods of reducing the unwanted noise will be discussed. These reduction
methods include the use of filters in the case of conducted noise on cables and

the use of adequate shielding in the case of radiated noise.

5.1 PENETRATION

THROUGH CABLES

The basic mechanisms by which noise may penetrate into a receiver via

the input cables are illustrated in Figures 1.26 to 1.28. As shown in Figure

1.26, noise from a motor is able to enter the receiver directly through a

conductive path provided by power leads. In Figures 1.27 and 1.28, however,

the noise is coupled into the input cable through impedance and inductive

coupling, respectively. The mechanism of Figure 1.27 is referred to as

"common-mode" interference, and those of Figures 1.26 and 1.28 are referred
to as "differential-mode" interference. These basic mechanisms will now be

further discussed,

MOTOR: EFFECTIVE

SOURCE OF NOISE
FEEDING BACK
INTO THE INPUI
POWER LEADS

Figure 1.26,-Simplified circuit illustrating how noise may be conducted
between two units sharing a common power source.
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Figure 1.27.- Simplified circuit of a common-mode interference path providing

noise transfer through a common impedance.
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Figure' 1.28. -Simplified circuit showing noise introduced by a differential-

mode path (inductive couplingt.

1. Conductive Path

Figure 1.26 illustrates an example of the transfer of conducted noise

from one unit to another via a common power supply. Since the power source

has a finite internal impedance, the noise existing in one unit is transferred to

the other unit. The magnitude of such an effect is difficult to predict since a

knowledge is required of the noise transfer characteristics of the system as well

as of the susceptibility of the unit being interfered with. It is a common

practice in government or industry to set maximum limits on the allowable

conducted noise output from any electrical device or equipment connected to

a power line,*

2. Conamon-Mode Path

One means by which common-mode interference can be produced is

illustrated in Figure 1.27. The ground return is seen to be common to both

loops and also to contain some impedance. Consequently, the two loops are

coupled to each other through their common impedance. If the impedance of

the common branch were zero, there would obviously bc no noise transfer. The

*See for example, Mil. Spec. MIL-i-6181D, "Interference Control Requirements, Aircraft

Equipment."
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obvious remedy to this problem is to avoid the use of common ground returns.

A designer will frequently use separate grounds, tied to a single common point;

or he will use a common ground bus made of low-impedance material. It

should be noted that, although resistance in a common ground return is a very

important factor in common-mode coupling, inductive reactance in the ground

return is equally important at high frequencies. In such a situation, the

coupling, once it occurs, can be remedied only by the use of filters.

3. Inductive Coupling

Inductive mode coupling is shown in Figure 1.28. Because of inductive

coupling, noise is induced in series with the desired input.

At low frequencies (below 50 kHz) the coupling between a pair of

identical cables can be accurately determined. The types of cable commonly

used include the coaxial and the shielded and unshielded pair. At low

frequencies, electrostatic shielding, when it exists, will usually eliminate any

electric coupling between cables. Magnetic coupling depends upon and is

inversely proportional to the square of the distance between conductors.

Therefore, inductive coupling can be reduced to tolerable levels by maintaining

an adequate spacing between cables or by twisting the paired conductors of
open-wire unshielded lines.

A coaxial cable with a solid outer conductor and a perfectly concentric

cross section will not exhibit any coupling. However, in practice, coaxial cables

contain braided outer conductors, so some coupling generally does exist. A
typical value of mutual impedance is 10-'612, so 1 _V is induced in a line for
each 1 A of current.

At the higher frequencies, quantitative formulas for coupling between

cables are less well known, and those that exist are quite complex. One of the
difficulties is that coaxial cables usually consist of braided outer conductors;

there is no generally accepted theory for coupling in this case. Indications are

that when good quality coaxial cables are properly grounded along their length

and are properly terminated, one should experience almost negligible inter-

action. On the other hand, inadequate cable terminations or discontinuities in

the shields will permit signal voltages and currents to travel on the outside

surface of a coaxial cable. This can be a serious source of coupling, particularly

if the operating frequency and length of the cable produce resonant effects so

that substantial standing waves can exist, in fact, the incidental imperfections

in joining and grounding cables are usually the main sources of trouble with
interconnections between system components. Awareness and care are obvious-

ly necessary.
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5.2 FILTERING

The isolation and removal of conducted noise is largely achieved by

means of RF filters. A large number of commercially made filters are presently

available for use in radio interference applications. As a rule, specific kinds of

filters are used in certain applications particularly susceptible to interference.

Among the different types of filters are power line filters, bypass (or feed-

through) filters, harmonic suppressors, and more colnplicated networks for use

on control and output leads.

The function of such filters is to limit the frequellcy bandwidth of the
various leads entering and leaving the equipment to that which is required for
undistorted transmission of the desired waveforms, lh)wever, this is difficult to

achieve in practice;uniformly high rejection of all frequc_lcies outside a wanted

band is virtually impossible to achieve. There are two basic filter techniques:

reflective filtering and absorptive filtering. In the former, rejection of the

unwanted signals is achieved by completely mismatching the impedances of

interfacing circuits at the undesired signal frequencies. The unwanted signals

"see" either open-circuit or short-circuit paths at the appropriate frequencies.

In the absorptive technique, the undesired signals arc actually separated from

the wanted signals and are diverted into a separate channel where they are

absorbed in a resistive circuit. The second technique is used in those cases

where some resemblance of "matching" is to be preserved at all frequencies,

e.g., in generators.

1. Power Line Filters

Power line filters are used to prevent unwanted high-frequency signals

from being coupled between equipment by a common power connection. A

common technique is to utilize a "brute force" filter, i.e., a filter having several
ladder or recurrent sections in which the choice of the values of circuit

parameters is not critical. Sometimes it is necessary tbr such filters to have

extremely broad band performance, e.g., filters for screened rooms, In these

cases, multiple sections are used, each being designed to reject a different

portion of the spectrum. For stringent requirements, multiple-section filters

combining constant k- and m-derived sections may be required. Filters of this
kind may be useful in other applications where lumped parameter filters are

needed. An example of the design of such a filter will be found in Reference

40, p. 184.

A number of general precautions must be followed in constructing all

rejection filters, and some particular precautions must be observed for power
line filters. Since substantial amounts of current are taken from the power line

and must pass through the filter, its inductors may require wire of rather large
size. This places severe limitations on the anaount of inductive reactance that

can be realized. (Section I1 discusses these aspects.)
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2. Bypassing and Feedthrough

Capacitors

The objective in bypassing is to provide a lowqmpedance shunt path to

effectively short circuit unwanted signals. Typically, a capacitor whose im-

pedance at the frequency of interest is less than one-tenth that of the circuit

being bypassed is used. It is to be noted that a 10:1 impedance ratio may not

be enough in some cases. Unfortunately, it does not always suffice merely to

use a unit of larger capacitance, since capacitor elements have internal and lead

inductances that provide a frequency limit above which their capacitive

properties cannot be realized. (For the resonance properties of capacitors, see,

for instance, Reference 14, Figure 6.27.) The self-resonant property is some-

times utilized to obtain nearly perfect bypassing in a narrow band of fre-

quencies. Bypassing of input and output leads can be accomplished effectively

by using feedthrough capacitors, which provide a conductive path from one

terminal to the other and at the same time offer high capacitance (up to 2300

pF) to a bulkhead or mounting panel. Feedthrough capacitors are available in

such small sizes that they can be incorporated into electrical connectors. In

special cases, transmission line sections may be used instead by making use of

the impedance-transforming property of a quarter-wavelength line.

Reference 14 provides useful data on modern synthesis and design of

electrical filters. Many examples are given of the design of low-pass, high-pass,

and band-reject filters. Details of filter design at VHF and higher frequencies

are given in Sections 7.5.4.2 and 7.5.4.3 of Reference 1.

5.3 GROUNDING

Conducted noise on signal leads and cables is created frequently by poor

grounding practices. Problems arising in such cases can be avoided only by very
careful design of the grounding system (see References 48 and 49).

The grounding system usually refers to the network of conductors that

tie the various parts of a system to some common reference point. This p'oint,

designated as "ground," represents a reference potential to which all signal and

power voltages are established. The reference potential is often represented

physically by a surface, such as a metal sheet, provided that the various points

on this surface are connected by sufficiently low-resistance paths. All points on

the surface can then be considered to be approximately at the same potential.
The extent to which this approximation holds depends, in turn, on the

electrical system involved. If, for example, the metal sheet is used as a power

supply ground, then this ground may carry a current of the order of several

amperes. Any small resistance in the path of this current will create a small

potential difference across the ground conductor (see Figure 1.27). This vol-

tage will be insignificant when compared to the power supply voltage. How-

ever, if the same metal sheet is also used as a ground return for some signal
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voltage, this voltage now becomes very significant in c_m_parison with the

signal voltage since noise signals of even a few microvolts are quite intolerable

in signal circuits. This example illustrates how noise is crealed by the use of a

common path for both power and signal return currents.

Problems arising from coupling through a common glound can obviously

be avoided by completely separating the various networks, such as the signal

circuit, power circuit, and control circuit, that together make up the complete

electrical system. These networks should not be intmcCmnected through

common impedances and common ground returns. Furthermore, care must be

taken to see that, even though a direct connection does not exist, voltages do

not become inductively or capacitively coupled into sigrm] circuits fr_,m the

power or control circuits. Generally this requires that signed circuits and power

circuits be put into separate compartments or drawers wilh adequate shielding

between compartments.

1. Singr, le-Point vs. Multiph,-I_¢)i tat

Grounds

Generally, multiple-point grounds are preferred by electronic designers

for two reasons: convenience and circuit efficiency. Circuit construction can be

simplified by returning circuit elements to the nearest appropriate multiple-

point ground. At the higher frequencies, the lead lengtt_s (connections to com-

ponents) must be kept short in order to keep the self-inductance of the leads

small, and this is facilitated by multiple-point grounds.

In a multiple-point ground system, the various gr_,und points must be

connected together so that the possibility of common current paths exists; this

may produce interaction, in order to avoid this, a desigr_cr will frequently use a

single-point ground system, particularly at the lower, audio frequencies. In a

single-point system, ground returns must be kept as short as possible, so the

ground point should be centrally located inside the circuit layout.

When physical separation of the different parts t_f a circuit is necessary,

the long ground leads in a single-point system become objectionable because of

the possibility of mutual inductive coupling between le_ds. In this case, the

single-point system becomes impractical, and the designer must revert to a

multiple-point ground system.

When circuits are separated by long distances, cable'_ are generally used to

interconnect the system, The use of cables can create noise problems.

Furthermore, the length of the cable can be such as to cause resonance. If so,

the cable can act as an efficient radiator of energy: it also can receive energy

radiated from some other source. The possibilily _t :,uch radiation can be

reduced substantially by connecting the cable t_J earth grounds at a large

number of points. The ground connection of the cable provides a common-

mode path for the coupling of currents that may flow in tire earth or reference

grounds. The solution to this problem of coupling is I,_ use balanced signal

circuits so that undesired voltages or currents are nullcd _mt.
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2. Balanced Circuits

Figure 1.29 shows the arrangement of a balanced coupling circuit. Cur-
rent flowing in the loop formed by the cable shield and the ground will induce

voltages across the twisted pair of signal leads. If these leads are perfectly
balanced, the induced voltage will be canceled at the input of the receiver. The

use of a balanced cable has therefore eliminated the noise pickup. In par-

ticularly sensitive circuits, the balance may be made adjustable. Current in the
shield of the cable can be minimized by connecting only one end of the shield

to the ground, as shown, but then a substantial potential may appear between

the end of the shield and the receiver chassis. As a rule, the cable ends are

connected metallically to the receiver case, so that a continuous ground loop

exists. The dotted line in Figure 1.29 represents such a connection. An

alternative procedure to minimize the current in the ground loop is to operate

either the source or the receiver without its own ground connection.

The above principle is most effective when conductive coupling is not

required in the original circuit, such as when an ac signal and transformer

coupling are used. Even with dc, a balanced system can be used, but it may be

less satisfactory. In some cases, dc-to-ac inverters have been inserted in signal
circuits to reduce pickup in the balanced cable.

l SOURCE

i J, L_? 1 RECE'VE 

I
GROUND OR REFERENCE LINE

Figure 1.29. Balanced coupling circuit.

3. Ground I_x)ops

Ground loops arise where parallel grounds are necessary. For example,

where coaxial cable is required for low-loss or distortionless signal transmission,

the outer conductor may be in parallel with the power supply ground. A

magnetic field in the loop formed by the parallel grounds may result in an

induced current at the frequency of the magnetic field. A magnetic field arising

from switching or pulsed currents may have a broad frequency spectrum. To
reduce the effects of such loops, the grounds for power circuits should be run

close to the signal cable. Triaxial cable may also be used so that a portion of
the cable may be insulated from such loop currents.
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5.4 PENETRATION THROUGH

SHIELDS

Radiated energy may be coupled into a susceptible device through a
shield of inadequate thickness, holes provided for ventilation and other pur-

poses, and imperfectly joined shield sections. Precise calculation of shielding

effectiveness, even for perfectly joined, solid shields, depends on the form of

the shield and the type of field for which the shielding is meant. Both electric

and magnetic coupling can occur; but normally it is easy to provide electric

shielding, so that is usually not a serious problem. Magnetic shielding is more

difficult to provide, particularly at frequencies below 100 kHz. To avoid un-
certainties in critical situations, tests should be run to check shielding effective-

ness. Such tests require the establishment of a known field and a measurement

of the insertion loss introduce d by the shielding.

Interference may also be created by certain nonlinear characteristics in

the metal that forms the equipment shield. Nonlinearity gives rise to cross-

modulation components that are manifested in the receiver output. Such
effects usually are created only when the equipment is in a relatively strong RF

field, such as that which exists in the vicinity of broadcast and radar trans-

mitters. Nonlinear effects are known to arise in magnetic materials, such as

steel, nickel, and mu-metal, and in corroded metals and corroded joints

(especially loose joints). Rough or oxidized surfaces on steel tend to increase

the nonlinear effects. Consequently, if the surface is coated with a non-

magnetic conducting material, such as copper, nonlinear effects become sig-

nificantly reduced. Welded joints also have been found to be superior to riveted

or bolted joints. Reference 50 gives further details of these effects,

5.5 StIIELDING AND BONDIN(;

Shielding of VHF equipment against stray fields requires adequate bond-

ing at the seams and maintenance of adequate shielding at the ventilation

louvres. The thickness of the shielding material is, as a rule, no problem; if the

shield is thick enough to be adequate mechanically, it will usually be adequate
electrically at VHF.

The function of a shielded enclosure is to terminate the RF fields that

exist both inside and outside the shield. The terminated fields give rise to
surface currents that flow on the inside and outside surfaces of the metal

shield. In a perfect situation, these surface currents are able to circulate in an

uninterrupted manner on both surfaces of the shield.

However, if there are conductive imperfections at a seam that joins

sections of the shield, then part of the inside surface current will be able to

flow to the outside surface; similarly, part of the outside surface current will be

able to flow to the inside surface. Consequently, part of the field inside the
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equipment becomes propagated outside the shield; in the same manner, part of
the outside field is set up inside the shield.

Perforations, louvres, and so forth are obviously essential for adequate

ventilation in the equipment. Consequently, it is generally not possible to have
an ideal solid shield. Small perforations in the metal or sections of conductive

screening usually provide satisfactory shielding at ventilation louvres since the

surface currents will flow arofind the openings without appreciable penetra-

tion. Significant surface currents are forced onto the opposite surface mainly at
seams, at long louvres, and at imperfectly joined shielded cables. Whenever

conducting seams are required, soldered or welded joints are usually preferred.
Pressure joints must be clean; abrasive gasket material that is also conductive

may be useful. Further details on shielding in general are given in Section II
and in Chapter 5 of Reference 3.

5.6 SHIELDING AND FILTERING

Duct filters are sometimes used to improve the shielding inside ventila-

tion louvres. They consist of an array of closely spaced parallel tubes. The

tubes are conductive and have a narrow cross section. Consequently, the tubes

act as waveguides below cutoff frequency and present a relatively high attenua-

tion to any fields incident on the filter. When the tubes are operated below

cutoff frequency (_ >> _c) , the attenuation of the tubes in dB per unit length
is given approximately by

54.6

a = _---_ , (1.76)

where length is measured in the same units as wavelength for cutoff, he-
Figure 1.30 shows the attenuation properties of a circular waveguide

operating well below cutoff. It can be seen that the smaller the cross section of

the tube, the greater is its attenuation. For example, suppose that'a tube

attenuation of 30 dB/cm is required in a certain ventilation assembly. From
Figure 1.30, it can be seen that a tube of about 4-mm radius is needed, for the

TEll mode taken to represent the "worst case" (lowest attenuation). The

corresponding cutoff frequency of the tube is 20 GHz. Therefore, the desired

attenuation can be obtained at frequencies up to 10 GHz. A tube length of 4

cm will therefore provide about 120 dB of total shielding effectiveness in the

filter, which is generally considered to be more than adequate for most
applications.

The effective attent_ation is much more readily calculable when ventila-

tion is provided by tube assemblies than when holes or louvres in a panel are

used. Edge effects tend to introduce large errors in the calculation of louvre
attenuation.
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CUTOFF FREQUENCY (GHz)
100

Figure 1.30. Attenuation properties of circular tubes used in air ducting

assembly.

6. INTERFERENCE

CONTROL

6.1 INNTRUME1NWS AND

M EAS[r ItIN(] MEq?ttOI)_

The measurement of RFI noise and the susceptibility of equipment to

RFI noisc is a vast field that in a brief account is apt to bt: oversimplified. The

following United States Government military specifications will be found to be

gernlane:

MIL-I-6181 D, "Interference Control Requircmcnls, Aircraft Equip-

mellt ."
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MIL-I-11748B (Sig. C), "Interference Reduction for Electrical and

Electronic Equipment."

MIL-I-16910B (Ships), "Interference Measurement, Radio Methods
and Limits, 14 kc to 1000 Me."

MIL-I-26600 (USAF), "Interference Control Requirements, Aero-

nautical Equipment."

MIL-STD-826 (USAF), "Electromagnetic Interference Test Re-

quirements and Test Methods."

Industrial standards that are pertinent include the following:

C63.2-1963, "Radio-Noise and Field Strength Meters, 0.015 to 30

Me/s," American Standards Association.

C63.3-1964, "Radio-Noise and Field Strength Meters, 20 to 1000
Me/s," American Standards Association.

C63.4-1963, "Radio-Noise Voltage and Radio-Noise Field

Strength, 0.015 to 25 Mc/s," American Standards Associa-
tion.

No. 107-1964, "Methods of Measurement of Radio Influence Volt-

age of High Voltage Apparatus," National Electrical Manu-
facturers Association.

It is proper to distinguish between three different kinds of testing

methods according to the purpose of the measurement. In the first, the meas-

urements are part of the design procedure. The designer will perform various

tests with laboratory apparatus to measure the interference properties of the

equipment being developed. In the second, measurements are made for the

purpose of determining the detailed nature of RFi noise and how it affects

systems. These measurements are tailored to fit specialized requirements, are

done in the analysis laboratory or in the field under conditions simulating

actual use, and frequently involve statistical analysis, in the third, the meas-

t, rements are made on the final equipment as part of a series of tests to

determine general acceptability of equipment. Measurements of the third kind

follow standard procedures and involve interference limits that virtually guar-

antee interference-free operation in normal use. The military and civilian speci-

fications mentioned above describe tests and test equipment for use in connec-
tion with measurements falling into the third category. Following is a dis-

cussion of the third class of measurements in terms of their intent, applica-
bility, and limitations.

The tests are intended to reveal both the susceptibility of sensitive de-

vices and the RFI noise-generating properties of electrical equipment in radia-
tion or induction modes and in conduction modes. Well-established standards

have been set by the military for application at frequencies up to 1000 MHz;

beyond this frequency the procedures and limits are still tentative.



80 RADIO FREQUENCY INTERFt'RENCE HANDBOOK

6,2 SUSCEPTIBILITY TESTS

The conventional methods for the evaluation of component sus-

ceptibility make use of two types of waveforms: the sine wave and the
recurrent impulse. The first concentrates energy at one frequency; the second

disperses energy over a wide band of frequencies but concentrates it in time.

Circuits containing tuned elements are sensitive in a narrow band and will

register a large response when the input energy is concentrated within the

passband. Sine waves are most effective in this case. hnpulses, on the other
hand, are more effectively used with broadband circuits because such circuits

yield a larger peak response to impulses of a given energy than to sine waves of
the same energy. Quantitative relations were discussed in Section 4.1. The large

peak response will reveal nonlinear mechanisms that might otherwise go

undetected. Where overdesign against interference is to_ costly, attention

should be given to the expected environment, and the tests should be tailored
to the need.

For testing purposes, typical impulse sources generate uni-directional,

short impulses lasting anywhere from 10 -9 to 10 -10 s. Correspondingly, the

energy is spread from near-zero frequency to tile 1 to 10 GHz range. An RF
generator producing pulses of about 10-7-s duration and with a peak

amplitude two orders of magnitude less than the impulse peak will produce

approximately tile same spectral density as the impulse over a band of about

10 MHz. Since many potentially interfering pulse sources are, in fact, better

simulated by pulses, RF pulse testing is in many cases advisable.
Tests with sine waves are also carried out to determine certain nonlinear

behavior. Susceptibility to subharmonics of tuned frequencies will utilize a

single sine wave of large enough amplitude to create the effect. Some kinds of

tests for nonlinear mechanisms (e.g., intermodulation and crossmodulation)

require more than one sine wave. Finally, it is customary to use a modulated

sine wave, particularly in testing receivers, in order it) get an identifiable

output.

1. Conducted Susceptibility Tests

Conducted susceptibility tests are carried out on electronic components

connected to power sources or to other system components. Ideally, such tests

are made on all external leads. For conducted noise on power lines, standard

procedures have been devised (see the specifications listed above). Typically,

for measuring susceptibility to audio voltages in series with the power line, a

setup as shown in Figure 1.31 is used (see MIL-I-6181Dj. The capacitor C acts

to ensure low inrpedance at the power supp]y at all frequencies of the test, and

the test is carried out over the entire audio range (50 to 15,000 Hz). The

purpose of the test is to insert, by means of a source of certain impedance, an

audio voltage of a given magnitude in series with the power supply. The various
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POWER LINE
I

POWER _L c J COMPONENT

SUPPLY T [ UNDER TEST

V

AUDIO JOSCILLATOR

Figure 1.31.-Typical setup for performing audio susceptibility test on a power
line.

standard specifications invoke slightly different test conditions. For instance,

one requires that the effective open-circuit voltage inserted in this way be 3 V

and that the impedance be less than 0.6 f2. Under these conditions "no change
in indication, malfunctioning, or degradation of performance shall be

produced."

Sine wave tests of RF susceptibility on power lines are also fairly well

standardized. Each ungrounded line is tested, sometimes with the arrangement

shown in Figure 1.32. In effect, the noise voltage from the RF signal generator

is applied between a "hot lead" on the power line and ground. The "line

stabilization network" is used to standardize the impedance looking back from

the unit under test into the power source. The impedance looking into ter-
minals 1-3 on the network varies from about 5 f_ to about 50 _2 for the

conditions shown over the range of frequencies for which the device is used.
Specifications vary on the conditions to be employed. Typically (see
M1L-I-6181D), the RF sine wave is amplitude modulated at 400 to 1000 Hz,

and the modulated signal is applied with a carrier level of 0.1 V applied over a
range of frequencies from 0.15 kHz to 10 GHz. The unit under test must not

malfunction under these conditions. Various deviations from this procedure are

quoted, in one procedure (MIL-STD-826), output from the signal generator is
applied between a line and ground using any suitable device to isolate the
power line.

Similar procedures are sometimes prescribed for impulse testing. One
specification (MIL-I-11748B) requires that the circuit of Figure 1-32 be used

with a standard impulse generator replacing the RF signal generator. Proper
functioning is required when the impulse spectral density is 90 dB above 1
/.tV/MHz.

When leads other than the power leads are to be examined, similar

methods are used. The specifications listed above do not prescribe any fixed
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Figure 1.32. Typical setup for performing RF susceptib_Iiiy test on a power

line.

methods and procedures; these should be tailored to the requirements of the

equipment and to the enviromnent. Broadband inputs to control leads and to

input leads will ordinarily result in some measurable effect since the circuits to

which the leads are connected are meant to accept some of the spectral com-

ponents in the broadband source. Either levels of input RFI noise must be

appropriately limited or filters must be used to eliminate RFI noise in the band

to which the device is normally receptive.

The term "proper functioning" is not precisely defined in the specifica-

tions mentioned; it is a matter of choice on the part of the engineer to deter-

mine whether or not the equipment is adversely affected. A criterion some-

times used is that the RFI noise injected by the test source shall cause no effect

beyond that produced by the internal noise of the system.

2. Radiated Susceptibility Tests

Examples of procedures, which again generally differ from one another

only in detail, are described in the previously listed military specifications. All

of these specifications specify a sinusoidal test frequency, audio modulated;

and the range of testing extends from 14 kHz to 20 Gllz. Impulse testing has

been proposed in some quarters, but such methods are rmt common practice.

All of the accepted procedures involve the placement of the component under

test in a known field, or in a prescribed location wil|: respect to a standard

source, and evaluating the effect. Normal signal inputs, such as the antenna

input on a receiver, are terminated in suitable, shielded, dummy sources. Tests

are carried out with the largest mnplitude expected and, as in the case of

conducted susceptibility, the effect is required to he "inqguificant."
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Figure 1.33. Typical equipment arrangement for making radialed susceptibility
measurements.

A typical test setup, illustrated in Figure 1.33, shows the use of a rod

antenna placed some standard distance from the equipment under test. This
distance is specified as 1 ft in MIL-I-6181D, 1 m or 7.6 m (depending on the

equipment class) in MIL-STD-826, and 25 ft in MIL-I-11748B. The latter speci-

fication allows reduction in the distance as frequency is increased; the distance

quoted is that specified for low frequencies and is apropos for measurements
with a rod antenna.

As frequency is increased, the rod is replaced by a dipole. The point at

which the dipole is used is either 25 or 50 MHz, depending on the specification

employed. An untuned dipole is required in two of the specifications, but
tuning is used in all cases above 50 MHz. As a rule, tests can be carried out with

the component oriented in a number of ways; the four sides.facing the source
is specified by one test.

The tuned dipole is specified up to 1000 MHz. Beyond this, and some-

times at lower frequencies, directive antennas (horns, parabolic dishes, dis-

cones, and so forth) are used. At frequencies greater than 50 MHz, tests with

both horizontal and vertical polarization are required by MIL-I-11748B.

3. Other Tests

The mechanisms of spuriou.s signal susceptibility, described in Section

4.2, are examined experimentally with various standard test procedures. A set
of such procedures is fully described in MIL-STD-826 and will therefore not be

repeated here. Tests are specified in the aforementioned specification for such

mechanisms as two-signal intermodulation, spurious response to a single un-
wanted signal, and cross-modulation. In each case, the methods simply involve

the use of standard signal generators as calibrated sources representing both

wanted and unwanted signals. Generally, however, a great deal of care is re-

quired in setting up and performing the tests since most signal generators
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themselves produce spurious outputs that can cause confusion in interpreting
test results. For tunable receivers, it may be necessary to make tests at many

points of tuning since the sensitivity to unwanted signals is not constant

throughout a given frequency band. Some standard procedures compromise by

requiring tests at a few points in each band of tuning; e.g., points near the edge
of each continuously tuned band and one point near lhe middle of the band.

Specification MIL-STD-826 requires scanning throughoul a frequency range.
This is a time-consuming operation. As a rule, the spurious responses will be

found where they are expected; it may save much time, particularly for testing

at the production stage, to examine only those points at which such responses

are expected.
When testing for such mechanisms as spurious response and cross-

modulation, a point to be borne in mind is that the magnitude of the response

will not always be linearly related to the input signal level. The mechanisms are
nonlinear and, as a consequence, the interference response is nonlinear. Tests

should be carried out using'the maximum input level of the unwanted signal

for which interference protection is required.

6.3 TESTS OF RFI NOISE OUTPUT

Tests that measure RFI noise output are performed with setups that are

not too different from those used for susceptibility testing. The important
distinct, ion is that an RFI measuring instrument replaces the signal (or impulse)

generator. Test set instruments for measuring RFI are awtilable for frequencies

ranging from low audio into the microwave range. Though manually tunable
instruments ate used most often, there is a tendency to utilize either

mechanically tuned devices or electronically swept spectrum analyzers to speed
data collection.

The two major problems of measurement are the following. First,
measurements of electromagnetic fields at distances close to the source are

difficult to reproduce because they are a function of antenna location and

reflections from surrounding objects. Furthermore, unlike measurements taken
in the far field of a source, measurements in the _lear field are almost

impossible to extrapolate to give the field level at other distances. However, if

measurements are attempted at a greater distance from the source, the
measured value is naturally smaller and the overriding effects of other RF1

sources in the environment begin to be felt. Though shielded enclosures for

tests are not always required, they are often beneficial. The maximum distance

is naturally restricted in such instances. The second problem concerns the
measure of the RFI noise itself (Reference 51). The instruments under

discussion all have a moderately narrow passband; typically, bandwidths are of

the order of 0.1 to 1.0 percent of the center frequency. For the measurement

of pure sinusoids, all the instruments can be calibrated to give the same
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reading. For broadband inputs, the readings will depend on the detailed nature

of the input, on the bandwidth, and on the function performed by the

detectors following the RF-intermediate-frequency amplifier.

Three types of detectors will be found on standard instruments: the

average-of-the-envelope detector, the peak detector, and the quasi-peak

detector. Some instruments contain all three, and some omit the quasi-peak

detector. As the name indicates, the average-of-the-envelope detector reads the

average of the envelope of the output of the IF amplifier. The peak detector

reads the peak value of the IF amplifier output. The quasi-peak detector,

shown schematically in Figure 1.34, reads less than the peak value and is, in

effect, defined by its charging and discharging time constants. The time

constants are measured by applying a unit RF step input and determining the-

time to reach 63 percent of the final output or by suddenly removing the input

and determining the time required to fall 63 percent of the way to zero. The

accepted charging and discharging times, according to United States standards,

are 1 ms and 600 ms, respectively.

The response of standard RFI test instruments to various inputs is shown

in Table 1.1 (Reference 52); all instruments are assumed to have been

calibrated to read the root-mean-square (RMS) value E of an applied sine wave.

The symbols used in Table 1.1 are defined in Section 4.1.1. The input

quantities given in Table 1.1 have been measured with an RMS detector, too,

though standard instruments are not ordinarily equipped with such a device.

The impulse input is a periodic pulse that occurs with a period not so high that

successive pulses will overlap one another in the RF or IF amplifiers. The

quantity S i is defined as the impulse strength and is twice the Fourier spectral

intensity at the tuned frequency (see Section 4.1). For a pulse of duration

7"(1/7- >> tuned frequency) and height A,

S i = 2At. (1.77)

The response of quasi-peak detectors to periodic impulses depends on the

recurrence frequency of the pulses, on the bandwidth, and on the time

constants. This relationship is shown in Figure 1.35.
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Figure 1.34.-Circuit of _ quasi-peak detector.
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Table 1.1 .-Response of an RFI meter,*

Input

SJl]O wave

Periodic impulses

(rate =/p/S)

Random noise

Peak J

i

E I 1:"

SiBe t Sdp
-- i

,/5-1

Type of Detector

Average Quasi Peak** RMS

0.884 Bx/_N

*N, Be, and Bp are defined in Section 4.1.1.

**Charge time = 1 ms; Discharge time = 600 ms.
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Figure 1.35.- Response of a quasi-peak detector as a function of RFI meter

parameters.
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1. Coi, dueted RFI Noise

Measurements

Measurements of the RFI noise level at the output of an electrical ap-

paratus operating from the power input line are frequently made with the

setup of Figure 1.32. The RF signal generator is replaced by an RFI measuring

instrument. The line stabilization network prevents variability of the power-

line impedance from affecting the readings. In some cases, particularly in

instances where tile power drawn by the equipment under test is high, alterna-

tive methods that use a capacitive connection to the line can be used. Another

test involves making an inductive measurement of the RFI noise current on the

line through tile use of a clamp-on toroidal pickup coil. In the latter method,

tile RF impedances of the power source and the line do affect the readings.

These tests also can be performed on other interconnecting cables, such as

control lines.

2. R_tdiated RFI Noise

Me_lsuI'enlents

Measurements of radiated RFI noise field intensity m the vicinity of an

electrical device are made with a setup (essentially that of Figure 1.33) in

which the antenna feeds a standard RFI measuring instrument. As in the case

of susceptibility measurement, tile distance from the source and the details of

the setup depend on the particular application. At low frequencies, loops and

rods are used; at higher frequencies, dipoles and horns are used, as discussed in

Section 6.2. Because the radiated field often depends on location, it is common

practice that tile test sample be turned until tile point of maximunl emission is

found.

7. SITE SELECTION

The factors influencing site selection for ground stations are discussed

here in brief. Tile material presented herein is a summary of the interference

study program reported in Reference 53 (Section 2).

Operational requirements largely dictate the selection of the geographic

regkm in which the station is to be located. However, topography criteria and

RFl-environment criteria also influence site selection.

In order to ensure that the RF communication link between satellite and

ground stations is as reliable as possible, it is essential to establish a ground

station in noise-free areas where the level of local ambient RF! noise is as low

as possible and where no nearby high-powered ground or airborne transmitters

operate on the same or adjacent frequencies.

In the past, the most suitable topography for a data acquisition site has

been a very shallow "hollow" composed of a relatively flat plain surrounded by
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distant hills with an elevation angle not exceeding 10 degrees. The hills effec-

tively shield the site from unwanted RF1 noise being propagated along the

ground.

7.1 FACTORS THAT INFLUENCE

TFIE RFI ENVIRONMENT OF' A SITE

The factors upon which the RFI environment of a site depends may be

summarized briefly as follows:

(1) Natural and man-made ambient noise background at a site.

(2) Proximity of fixed and mobile transmitters operating on the same

frequency or on frequencies adjacent to those used for the satellite-to-ground

communications.

(3) Propagation characteristics of the area in which the site is to be

located. (This includes the soil conductivity of the region, the roughness of the

terrain, and the vegetation of the terrain.)

(4) The natural shielding that a site possesses.

Many of these factors are obviously closely interrelated. For example,

the ambient RFI noise level will be closely dependen! on the natural shielding

of a site and also, to a certain extent, on the propagation conditions of the

region. These factors will now be considered in detail

7.2 NATURAL AND MAN-MADE

AMBIENT NOISE LEVELS

At VHF and UHF, man-made noise generally represents by far the largest

part of the overall background noise level at any particular site. For com-

parison, Figure 1.36 shows that noise levels from celestial sources are

lower than the man-made noise levels: however, celestial sources can become

significant sources of interference, especially for narrow-beam, high-gain

antennas (Reference 54). Figure 1.36 shows the relative ambient noise levels

expected from different sources, over the 100 to ¢_00 MHz frequency range,

when a half-wave dipole antenna is used as described by Skomal (Reference

55). Most sources of man-made noise are nattnally concentrated in heavily

industrialized urban population centers. Such sources include automobile

ignition systems, corona discharge from powel lines, fluorescent lights,

switching systems, motors, rectifiers, and arc welders. Figure 1.36 presents

Skomal's data for the noise backgrotmd in a tst)ical city and at points

approximately 10 mi and 25 mi from the city cenler. The RFI noise levels

within a lO-mi radius of the city center are prohibitively high, thus making it

undesirable to locate a sensitive receiving system wilhiu or very close to a city.

Figure 1.37 shows the average fall-off of the RFI noise levels with distance

from the urban center, at 200 and 400 MHz.
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Various authors have attempted to correlate the levci of man-made RF!

noise existing in an urban environment with the population of the town or

city. However, because of the general lack of sufficient data, it has not been

possible to obtain meaningful correlations. Skomal has concluded that the data

shown in Figures 1.36 and 1.37 are applicable to any town or city with a

population of 50,000 or greater. Using experimental evidence, Skomal further-

more concludes that the major source of man-made RI:I noise at VHF and

UHF is automotive ignition interference. Satellite data acquisition ground

stations should be located away from major highways to ensure thai the

sensitive receiver systems are not disturbed by igniti_m mfisc.

There are usually many factors that influence |he scicction of a specific

site for a given ground station. Some of these iac_tus :_re discussed in the

following. Since there are obvious practical and ecom>mic advantages to

locating a site in proximity to towns or cities, the qucsl]_m 1:hat remains is, how

close to a town can such a site be located and still conlJtml2 to operate without

interference? F'rom the data already presented in this sct_lhm, it may be safely

concluded that stations of the Minitrack type (Refereno: 561 that employ a

vertically directed fan beam can be located as close as 30 t_, 35 mi to a town of

50,OOO population or greater, ttowever, a site that effectively shields the

receiving system from urban noise could actually be even closer to the town.

Sites for data acquisition facilities, which use high-gain steerable antemaas,

should be located further away to eliminate the possibility of serious

interference when the antenna is pointing directly at the town; a minimum

distance of about 50 mi is usually a good compromise, tt,_wever, this distance

will be modified by the height of the antemm above ground and by the

irregularity of the terrain.

Finally, an RF1 noise-measurement survey, at the frequency bands of

interest, should be made at several alternative sites before a specific site

selection is made.

7.3 FIXEI) AND MOBILE THAN_M ITTERS

OPERATING ON THE ,%AME

OR AI),IACENT FREQUENCIE_

Certain frequency bands have been allocated by the International Tele-

communications Union (ITU) for the transmission of telemetry data from

scientific satellites. Those frequency bands, which are presently of concern in

data acquisition ground station operations*, are as follows:

(1) 136 to 138 MHz.

(2) 400.05 to 402 MHz.

(3) 1700to 1710MHz.

(4) 2200 to 2300 MHz.

*Other frequencies are being used by NASA for such purp,.>,cs a, t.',mmmnication satellite

and decp space probe down links (.,tee Reference 57).
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The location data fl)r fixed transmitters in these bands, throughout the

world, are available from the International Frequency List compiled by the

International Frequency Registration Board in Geneva (Reference 58).

Worldwide maps showing fixed transmitter locations for the 136-, 400-, and

1700-MHz space research bands are given in Reference 53.

Although the exclusive allocation of these frequency bands to the space

telelnetry service has been realized within the United States, this is not the case

throughout the rest of the world. In many nations, these frequency bands are,

in effect, shared by both the space service and fixed and mobile services (or

other services). Consequently, low-power transmitters continue to operate in
these bands.

The fact that fixed and mobile services continue to operate in frequency

bands adjacent to the four bands assigned fi)r space research has created the

possibility of adjacent-channel interference to ground station operations, such
as interference from the United States aeronautical mobile service, which

operates at frequencies immediately below 136 MHz. Some sites are particu-

larly susceptible to interference from airborne transmitters, because of the lack

of path attenuation between transmitter and site. This problem is further
discussed in Section 7.3.3.

1. Radio Regul_/tions of the

Interl_alional Teleconanaunicalion Union

The first provisional allocations of certain bands of the radio spectrum to

the space telemetry service were made at the Administrative Radio Conference

held at Geneva in 1959 (Reference 59). These allocations were later confirmed

and expanded at the Extraordinary Administrative Radio Conference (EARC)

held at Geneva in October, 1963. The revised radio regulations, which were

agreed to at the EARC, were put into effect in the United States on January 1,
1965.

The details of the four space research allocations that were made at the
EARC, as well as the existing allocations in the adjacent bands above and

below the four bands, are given in Section 7.5 (Reference 60).

2. Interference From Airborne

Transmitters

The lack of sufficient path attenuation between an airborne transmitter

and a site can cause interference because of the consequent high power levels

arriving at the site. The expression for the power (in watts) received at a

136-MHz telemetry receiver input is given by

PX 2 G

P - R2, (1.78)r 8n"2X 16002
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assuming a transmitter antenna gain of 3 dB, where

P = the output of the airborne transmitter in watts,

= the wavelength in meters,

and

G = receiving antenna power gain (above isotropic),

R = distance in miles between transmitter and site.

This expression has been plotted as a function of distance in Figure 1.38 for an

aircraft transmitter operating in the range of 135.0 to 135.95 MHz with a 25-W

output and an antenna gain of 3 dB (hemispheric coverage). Curves are shown
for three values of G, the receiving antenna power gain, corresponding to three

of the different types of receiving antennas used at STADAN sites.

It can be seen from Figure 1.38 that the levels of power received from

aircraft transmitters can be prohibitively high. The signal level received from an

aircraft 100 mi away may be as much as 60 dB greater than that received from
a satellite. Even if the aircraft is flying in a region outside the main lobe of the

ground receiving antenna, there can be sufficient unwanted energy entering

through the antenna sidelobes or backlobes to exceed the level of the satellite

signal by 30 to 40 dB.

Whether or not interference is actually created depends on a number of

factors, including the general density of air traffic in the area, the height at
which aircraft fly, and the amount of time the aircraft are in communication

with the ground. From Figure 1.38 it is evident that an aircraft flying at an
altitude of 40,000 ft will be "visible" to a ground station as far away as 250

mi, if smooth earth conditions are assumed. Obviously, this distance also

depends on the height of the receiving antennas above ground; an aircraft will

be "visible" to the 85-ft parabolic dish antenna from much farther away than it

will be to a Minitrack array since the dish antenna is mounted about 100 ft

above the ground. Consequently, the higher an aircraft flies, the greater is the

probability of interference. Also, we see that the data acquisition facilities,
which employ the directional dish antennas, are more susceptible to aircraft
interference than are Minitrack stations. Certain STADAN sites in the eastern

United States have experienced more aircraft interference because they are

located in regions of high air traffic density. Figure 1.39 {Reference 61) is a

map of the peak density of air traffic in the United States for the busiest day

of fiscal year 1964. This map shows the traffic flow for aircraft flying under

instrument flight rules.
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7M VttF PROPA(;,ATION

Ct IARACTERISTICS

At the frequencies presently used in the STADAN system, the ground or

surface wave that predominates at the lower frequencies is rapidly attenuated

so that propagation is restricted to the space-wave, which consists of a direct

wave and a ground-reflected wave. For relatively short distances between the

transmitting and receiving antennas (20 mi or less), line-of-sight conditions are

said to exist and, to a good approximation, the earth may be considered to be

flat. In this region, the direct wave and reflected wave create interference

effects, so that the resulting change of field strength with distance contains

many deep nulls, assuming a perfectly smooth reflecting earth (see Figure

1.40). Radio propagation above 40 MHz over irregular terrain is given in

Reference 62. In practice, the earth has a rough surface and is not a perfect

conductor. Consequently, the ground-reflected wave is both attenuated and

altered in phase relative to the wave reflected from the smooth earth. The solid

curve of Figure 1.40 (Reference 63) will therefore be modified to that shown

by the dotted curve for actual rough earth conditions. The form of both solid

and dotted curves is dependent on the height of the transmitting and receiving

antennas and on the frequency used; increasing these parameters will greatly

increase the number of nulls.

3O
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Figure 1.40. Field strength as a function of distance for a smooth reflecting

earth. (After F. E. Terman, Electronic and Radio Engineering, 1955)
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For distances beyond the line-of-sight region, refraction and diffraction

effects become very significant. The earth's curvature must now be considered,
and in order to account for the change in refractive index of the earth's

atmosphere with height, the effective radius equal to 4/3 times the true radius

of the earth is generally used in propagation calculations. The first theory

developed for wave behavior in this region was the Sommerfeld "smooth earth

theory" (Reference 63), which computed the average bending of a wave over a

perfectly smooth and perfectly conducting earth. Howevcr, experimental data
accumvlated over many years did not agree with the theoretical predictions of
the smooth earth theory; in practice, signal strengths were found to be con-

siderably greater than those predicted in theory. The increase in signal strength

is largely attributed to two effects: diffraction of the wave (caused by surface

irregularities) and scattering of energy in the troposphere.

Diffraction of a wave by a rough surface is difficult to evaluate theo-

retically since it depends very much on the type of terrain being considered,

including its roughness and its conductivity. The results of some work done on
knife-edge diffraction are occasionally applicable in the case where a single

large mountain or hill is located between transmitting and receiving antennas.
However, this situation is not commonly found in practice.

The scattering of energy that takes place in the troposphere (that part of

the earth's atmosphere closest to the earth's surface) is thought to be caused by
small discontinuities in the refractive index of the troposphere. The amount of

energy scattered depends largely on the meteorological conditions, the time of

day, the season of the year, and the latitude on the earth's surface at which
scattering occurs. There is, therefore, a very wide hourly variation in the energy

scattered by the troposphere.

Figure 1.41 (Reference 64) shows the change of both theoretical and
measured field intensities with distance at a frequency of about 50 MHz. The

curve for the measured data represents an average curvet since the experimental

data vary over wide limits. It can be seen that the measured curve falls roughly
between the curve derived from the smooth-earth theory and that predicted

from knife-edge diffraction theory. The experimental curve probably fails close

to that which can be predicted by rough-surface diffractio_l theory (References

65 and 661).

"7.5 ALLOCATED SPACE RESEARCII

FREQUENCY BANDS

Intelligent solutions to problems of radio frequency interference to, or

arising from, spacecraft communications require knowledge of the frequencies

on which spacecraft communication and data transmission may be carried out.

The data in this section apply to the frequency bands that have been allocated

to the space research service. The adjacent band allocations also have been
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included, however. The frequency allocation information presented in Table

1.2 represents a partial revision of the Geneva 1959 radio regulations adopted

by the EARC, convened in Geneva in October 1963.

The allocations listed in Table 1.2 differ according to the dii_ferent parts

of the world. For purposes of frequency allocations, the ITU has divided the

world into three different regions; the three columns of regional data in Table

1.2 correspond to the ITU worldwide divisions.

The names of services printed in capital letters (e.g., FIXED) represent

"primary" services. If only one primary service is allocated to a particular

frequency band, then that allocation is an exclusive one. If more than one

primary service has been allocated to a particular band, then the band is shared

by the services listed.

Permitted and primary services have equal rights, except that, in the

preparation of frequency plans, the primary service has prior choice of

frequencies over the permitted service.

Secondary service stations must not cause harmful interference to

primary or permitted service stations that are already operating on assigned

frequencies. Furthermore, they cannot claim protection from harmful inter-

ference from primary or permitted service stations.
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Table 1.2 Frequency allocations by internalional treaty.
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Table 1.2 (Continued)
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FIXED

MOBILE

radlolocaOon

Reg_,,n i

Nntc_ ,nFd ('oum_enl5 Applying It, Val.lu_ Regh,l_s

Austria, Denmark,

Greece. Nether

lands, Norway,

Portugal Sweden,

Switzerland.

Turkey, U K.,

Western Germany:
This band will be

allocated in Ihe

future h_ Fixed
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(excluding Aero-

naulical ) service

Western. Central, and
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MOBILI
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Table 1.2 (Continued)

Flequcnc_ Band

IMtizi

1690 to

1700

1700 to

1710

[710 to

1770

17901o

22q0

2200 tt_

22c_0

Service

METEOROLOGICAL

AIDS

METEOROLOGICAL-

SATELLITE

SPACE RESEARCH

(Telemetry and Tracking)

FIXED

MOBILE

FIXED

MOBILE

MeleorologlcaL

SaleUite
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Fixed

Mobde

N*,te_ _nd C,,nnnen_ App_lEtg I, VaE.,US Regions
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U S.S.R, bloc, Algeria,

Lebanon, Morocco,
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Austrm. Finland:

Meteorolog_cal.kads
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FIXED

Secondary Service:
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(exc)/lding A_ah_,n )

Regl,m 3

I Pakistan, Kuwait
, Primary allocation also to
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eluding A_alion) service
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Zealand: Secondary al-
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tion) _rvice
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(Telemetry and Tt_cking)
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se_we_
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MOBILE

SPACE RESEARCH

(Telemeto/and Tracking)

FIXED

MOBILE

FIXED
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2200 to 2290 Mtiz per IRA('. PNm;.y l_,A. _tse lot space research, down-

data band
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Earth-to-satellite range dala hllk!
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table 1.2 (Concluded)

Frequency Band

(MHzl

2290to

2300

230Oto

2450

Service

SPACE RESEARCH

(Telemetry and Tracking

in deep space)

RADIO LOCATION

Amateur

Fixed

Mobile

Noles and Cnmmenls Applying to Various Regions

Region I

FIXED

SPACE RESEARCH

(Telemetry and Tracking

in deep space)

Austria Space research

service in the 2290 to

2300 MHz band is a

secondary service.
MOBILE

FIXED

Amateur

Mobile

Radiolocation

Frequency 2450 MHz

is designated for in-

dustrial scientific and

medical purposes Emis-

sion is to be confined

within ± 50 Mltz of

designated frequency.

2375 MHz is designated

in certain European

countries listed under

Regions 2 and 3.

In United Kzngdom,
2300 to 2450 MHz is al-

located on primary basis
to Radiolocation service

and on secondary basis

to Amateur, Fixed,

and Mobile ser'nces.

In E R. of Germany,

2300 to 2350 MHz band

is allocated to Amateur

service.

Region 2

SPACE RESEARCH

(Telemetry and Tracking

in deep space)

Cuba l*ses 2200 Io 2300

Mltz band fnr Fixed and

Mobile services.

Region 3

FIXED

MOBILE

SPACE RESEARCIt

fTelemelry and Tracking

in deep space)

RADIOLOCATION

AMATEUR

FIXED

MOBILE

Frequency 2450 MHz is designated for industrial,

scientific, and medical purposes except in Albania,

Bulgaria, Hungary, Poland, Roumania, Czechoslovakia,

and the U.S.S.R., where 2375 MHz is used. Emissions

must be confined within :t 50 MHz of designated
frequency.

In India, Japan, and Pakistan, 2300 to 2450 MHz band

is allocated on a primary basis to Fixed, Mobile, and

Radiolocation services and on a secondary basis Io
Amateur service



102 RADIO I:RI,.QUI_INCY INTI-LRI tlI_,t(NCE HANDBOOK

REFERENCES

I. K. G. lteisler and H. J. ttewitt. "Interference Nc!ebook," Rome Air

Deveh)pmcnt Center Report No. RADC-TR-66-1 _ June 1966.

2. bTterference Reduction Guide fi_r Design Engineers, Vols. 1 and 2,

prepared by. Filtron Co.', Inc., for U. S. Arn_y [:le_ _ronics Labs., Fort

Monmouth, N.J., Aug. 1964, Accession No. AI) f, 1()¢-,6_ and AD 619667.

3. O.M. Salali, R. M. Showers, F. Haber, and R. F. Schwartz, "Training

Course in Electromagnetic Compatibility," Moore School of Electrical

Engineering, University of Pennsylvania, 1 q66.

4. M. Schwartz, lnfi)rmation Transmissl_m, M_Jdularl?m, and Noise. New

York: McGraw-Hill, 1959.

5. P. F. Panter, Modulation, Noise, and &:eclral Analysis. New

York: McGraw-Hill, 1965.

6. F. Haber and B. Epstein, "The parameters of nonlinear devices from

harnronic measurements," IRE" Trans. on Eh, ctron Devices, Vol. ED-5,

No. 1, pp. 26-28, Jan. 1958.

7. W. Firestone, A. MacDonald, and tt. Magnu3ki. "M_dulation sideband

splatter of VttF and UHF transmitters," Pro:'. _lti(mal Electronics

"_64-'7_- l_eb. 1955.Conference, Oct. 4-6, 1954, Vol. 10, pp. ,_ - .....

8. J. C. Otto and R. R. Garcia, "lnlerference Rc,lu,fion Techniques for

Nonlinear Devices," General Electric Co.. Final Report on Contract DA

63-039-AMC-02278(E), May 1964.

9. Robert B. Marcus, "The analysis and synthesh of radar emission

spectrums by digital computer techniques." t_r¢,c. Ninth Tri-Service

Conference on Electromagnetic Cotnpatibilitv, Chicago: Armour

Research Foundation pp. 231-260, Oct. 1963.

10. J.G. Armfid, "Predicting spurious transmitte_ sign:ds," Electronics Vol.

34, No. 16. p. 68, Apr. 21,196t.

11. O. M. Salali, "Recent developments in inlerfcrence," IRE Trans. on

Radio Frequen O, Interference, Vol. RF1-4, No. 2, pp. 24-33 May 1962.

12. E. L. Gintzon, Microwave Measurements. New York: McGraw-Hill,

1957.

13. K. Tomiyasu "On spurious outputs from high power pulsed microwave

tubes and their control," IRk' Trans. _,n 31irrowave Theory and

Techniques, Vol. MTT 9, No. 6, pp. 480-484, Nov. !q61.

14. A Handbook on Electrical Filters," Synthesis, Design, and Applk'ation.

Rockville, Md. White Electromagnetics, Inc.. 1963

15. J.S. Smith and N. H. Shepherd, "The gaussian curve-transmitter noise

limits spectrum utilization," Pro¢. of the Unclassij'tcd Sessions of the



R EF1";RENCI-;S 103

Symposium on Electromagnetic hTterferenee, U.S. Army Signal Corps

Research and Development Laboratory, Fort Monmouth, N.J., pp.

138-144, June 15, 1958.

16. F. E. Terman, Radio Engineers' Handbook. New York: McGraw-tiill,
1943.

17. R. O. Schildknechl, "Ignition interference to UHF communication

systems," IRE Trans. on Radio Frequenc), Interference, Vol. RFI-4, No.

3, pp. 63-66, Oct. 1962.

18. W. Nethercot, "Car-ignition interference," Wireless Engineer, Vol. 26,

No. 311, pp. 251-255, Aug. 1949.

19. R.W. George, "Field strength of motorcar ignition between 40 and 450

Me.," Proc. IRE. Vol. 28, No. 9 pp. 409412, Sept. 1940.

20. A. J. Gill and S. Whitehead, "Electrical interference with radio

reception," J. Inst. Elee. Eng., Vol. 83, No. 501, pp. 345-386, Sept.

1938.

21. C.C. Eaglesfield, "Motorcar interference," Wireless Engineer, Vol. 23,

No. 277, pp. 265-272, Ocl. 1946.

22. W. Nelhercot, "Radio interference," Wireless World, Part 1, pp. 352-357,

Oct. 1947; Part 2, pp. 463-466, Dec. 1947.

23. B.G. Pressey and G. E. Ashwell, "Radiation from car ignition systems,"

Wireless l:'ngineer, Vol. 26, No. 304, pp. 31-36, Jan. 1_)49.

24. C.C. Eaglesficld, "Car ignition radiation," Wireh'ss Engineer, Vol. 28,

No. 328, pp. 17-22, Jan. 1951.

25. A. J. Rosa, "ttF and VItF automobile ignition measurements," 1EEE

Electromagnetic Compatibility Regional Symposium, San Antonio,

Texas, Oct. 6-8, 1970.

26. J. E. Diamessis, "Investigation of corona noise in a three-phase

transmission line," Pro< Fifth Conference on Radio Interference

Reduction and Electronie Compatibilio,, Chicago, I11.: Armour Research

Foundation, Oct. 1959.

27. F. Haber and J. E. Diamessis, "Corona noise models based on modulated

gaussian noise," Proc. Sixth Conference on Radio Interference Reduction

and Eleetronie Compatibility, Chicago, I11.: Armour Research Founda-

tion, Oct. 1960.

28. G.D. Lippert, W. E. Pakala, J. C. Bartlett, and C. D. Fahrnkopf, "Radio

influence tests in field and laboratory,"AIEE Trans., Vol. 70, Part 1, pp.

251-269, 1951.

29. H.L. Rordcn, "Radio noise influence of 230 kV lines," A1EE Trans.,

Vol. 66, pp. 677-681, 1947.

30. G.R. Slcmen, "Radio influence from high w)ltage corona," AIEE Trans.,

Vol. 68, Part 1, pp. 198-205, 1949.

31. F. O. McMillan, "Radio interference from insulator corona," AIEE

Trans., Vol. 51, pp. 385-391, 1932.



104

32.

RADIO FREQUENCY IN'IFRI'k;RENCE HANDBOOK

H. L. R. Steele, Jr., "Physical processes in the fluorescent lamp which

cause radio noise," Illuminating Engineering, Vol. 47, No. 7, pp.

349-356, July 1954.

33, "Interference from fluorescent tubes," Wireless World, Vol. 56, No. 3,

pp. 90-93, Mar. 1950.

34. P.A. Kaya, "Noise Generated by Fluorescem Lamps," master's thesis,

Moore School of Electrical Engineering, University of Pennsylvania, Aug.

22, 1951.

35. A. D. Watt and E. L. Maxwell, "Measured statistical characteristics of

VLF atmospheric noise," Proe. IRE', Vot. 45, No. 1, pp. 55-62, Jan.

1957.

36. W. Q. Crichlow, D. F. Smith, R. N. Morton, and W. R. Corliss,

"Worldwide radio noise levels expected in tire frequency band 10

kilocycles to 1OO megacycles," National Bateau of Standards Circular

557, Aug. 25, 1955.

37, J.H. kaning and R. H. Battin, Ran&)m Processes i_t Autot_atic Control.

New York: McGraw-Hill, 1956.

38. E. J. Baghdady, Lecture's on Communicat#m S)'stem Theory. New

York: McGraw-Hill, 1961.

39. S. Seely, Electron Tube Circuits. New York: McGraw-Hill, 1950, 1st ed.,

pp. 204-206.

40. Reference Data for Radio Engineers. New York: International Tele-

pho,re and Telegraph Co., 4th ed., 1956.

41. R.D. Trammell, Jr., "A Method for determining mixer spurious response

rejection," 1EEE Trans. on Electromagnetic Comlmtibility, Vol. EMC-8,

No. 2. pp. 81-89, June 1966.

42. "Smithsonian mathematical formulae and tables of elliptic functions,"

Smithsonian Miscellaneous Collections, Vol. 74, No. 1, 1947.

43. W.C. Babcock, "lntermodulation interference in radio systems," Bell

System Technical Journal, Vol. 32. No. 1, p+ 63, Jan. 1953.

44. A.J. Beauchamp, "A technique of intermodulation interference determi-

nation," IRE Convention Record, Part 8, Information Theory, Paper No.

22.5, pp. 26-29, New York, Mar. 1953.

45. D. McLenon, "Measurements of conununication receiver interference

vulnerability," Proc. of the Unclassified Sessions of the Symposium on

ElectromagTwtic Interference, U.S. Army Signal Corps Research and

Development Laboratory, Fort Monmouth, N.J., June 15, 1958.

46. "Interference Reduction Techniques for Receivers," Quarterly Report

No. 4, Contract DA-36-039-AMC-02345(E), Radio Corp. of America,

Sept. 30, 1964. AD 455 117.

47, F. ltaber, M. Celebiler, E. Ho, R. Lefferts, and L. Fass, "Frequency

Assignment Guideline for Satellite Radio Links," NASA Contract

NAS5-14923 (Apr. 22, 1968, to July 31, 1969), Moore School Report

No. 70-01, University of Pennsylvania. Issued July 1969.



REFERENCES 105

48. "Grounding low-level instrumentation systems," Electronic Instrument

Digest, Vol. 2, No. !, p. 16, Jan.-Feb. 1966.

49. W. McAdam and D. Vandeventer, "Solving pickup problems in electronic
instrumentation," ISA Journal, Vol. 7, No. 4, p. 48, Apr. 1960.

50. J.J. Krstansky and R. F. Eisner, "Environment-generated intermodula-

tion in communication complexes," Proc. Tenth Tri-Service Conference

on Electromagnetic Compatibility, Chicago, II1.: ITT Research Institute,

pp. 77-99, Nov. 1964.

51. F. Haber and R. M. Showers, "Instrumentation for radio interference

measurements," Electronic Industries, Vol. 20, No. 3, p. 110, Mar. 1961.

52. D.B. Geselowitz, "Response of ideal radio noise meter to continuous

sine wave, recurrent impulses, and random noise," IRE Trans. on Radio

Frequency Interference, Vol. RFI-3, No. 1, pp. 2-11, May 1961.
53. F. Haber, "Study of GSFC Radio Frequency Interference (RFI) Design

Guideline for Aerospace Communication Systems," Moore School of
Electrical Engineering, University of Pennsylvania, Moore School Report

No. 66027 for NASA, Apr. 30, 1966.

54. R. E. Taylor, "136 MHz Ground Station Calibration Using Celestial

Noise Sources," Goddard Space Flight Center, Greenbelt, Md.,

X-523-69-135, Apr. 1969, Accession No. N69-29767.

55. E. N. Skomal, "Distribution and frequency dependence of uninten-

tionally generated man-made VHF/UHF noise in metropolitan areas,"
IEEE Trans. on Electromagnetic" Compatibility, Part 1, Vol. EMC-7 No.

3, pp. 263-278, Sept. 1965 ; and Part 2, Vol. EMC-7, No. 4, pp. 420-427,
Dec. 1965.

56. J. T. Mengel, "Tracking the earth satellite, and data transmission by

radio," Proc. IRE, Vol. 44, No. 6, pp. 755-760, June 1956.

57. "Radio Frequency Allocations for Space and Satellite Requirements in

Accordance with EARC Geneva, 1963," National Aeronautics and Space

Administration. Washington, D. C., Nov. 1964.
58. International Frequency List, International Telecommunication Union,

3rd ed., Vol. 4, Parts (b), (c), and (d), Feb. 1, 1965.

59. "General Secretariat of the International Telecommunication Union,

Radio Regulations," Geneva, Switzerland, 1959.

60. "Partial Revision of the Radio Regulations, Geneva, 1959, and
Additional Protocol," General Secretariat of the International Telecom-

munication Union, adopted at the Extraordinary Administrative Radio
Conference, Geneva, Switzerland, 1963.

61. "Enroute IFR Air Traffic Survey, Peak Day, Fiscal Year, 1964," Federal

Aviation Agency, Office of Management Services.

62. J.J. Egli, "Radio propagation above 40 Mcs over irregular terrain," Proc.
1RE, Vol. 45, No. 10, pp. 1383-1391, Oct. 1957.

63. F. E. Terman, Electronic and Radio Engineering. New

York: McGraw-Hill, 1955, 4th ed., ch. 22, pp. 803-825.



106 RADIO FREQtJENCY INTERFERENCE HANDBOOK

64. K. Bullington, "Radio propagation variations at VItF and UHF," Proc.

IRE, Vol. 38, No. 1, pp. 27-32, Jan. 1950.

65. K. Bullingttm, "Radio transmission beyond the horizon in the 40 to

4000 Mc band,"Proc. IRE, Vol. 41, No. 1, p. 132, Jan. 1953.

66. K. Bullington, "Characteristics of beyond-the-horizon radio trans-

mission," Proc. IRE, Vol. 43, No. 10, pp. 1175-1180, Oct. 1955.



SECTION II

ELECTROMAGNETIC
COMPATIBILITY

DESIGN GUIDELINE
FOR STADAN

Robert B. Cowdelt

James S. Hill

James C. Senn

Jerrald C. Shifman

John W. Skaggs

Genistron Washington Facility

Genisco Technology Corporation

Washington, D.C.





1. INTRODUCTION

The purpose of this section is to provide a reference source for guidance
in achieving electromagnetic compatibility (EMC) in the design of electronic

and electrical equipment for aerospace ground stations. For example, the
application of shielding theory to good design is presented and standards of

good practice are outlined for bonding, grounding, wiring, and cabling. Some

aspects of filter design are explained, and suggestions are given for the
application of filters to electronic and electrical equipment. References and a

bibliography are provided so that the user may be directed to sources of

information more detailed than the presentation included in this handbook.

An example of an aerospace ground station network is the NASA Space
Tracking and Data Acquisition Network (STADAN), which is comprised of

three major functional systems: the Minitrack, the Data Acquistion Facilities

(DAF), and the Goddard Range and Range Rate (RARR) systems.

Minitrack, historically the first of these systems, has been used for

tracking United States satellites equipped with suitable radio beacons, as well

as some foreign satellites. The RARR system complements Minitrack by

providing improved tracking data at VHF and S-band for space probes, launch

vehicles, and satellites in highly elliptical orbits. The DAF's, now operating at

several locations, provide greater high-speed data handling capability than

Minitrack and are equipped with high-gain parabolic antennas with frequency
capability at 136,400, and 1700 MHz.

The world-wide STADAN currently includes stations in the United

States, Australia, South America, Africa, and Europe. The major functions of

STADAN are tracking, command, data acquisition, and data transmission. For

detailed descriptions of STADAN and its functions, see References 1 and 2.

2. SHIELDING

Data signals transmitted from satellites or orbital manned spacecraft are

of low amplitude when they reach a ground station. The purpose of this

section is to define shielding that prevents the penetration of undesired

radiated electromagnetic energy through equipment interfaces. The undesired

radiated interference can be generated within the ground station itself and/or

be generated by external sources. Proper placement of equipment, and the
judicious use of shielding, will minimize intrasystem interference.

In order to prevent malfunctioning of electronic equipment arising from
undesired signals at frequencies from audio to X-band, it is necessary to enclose

all electrical and electronic equipment within a metallic case or shielded
enclosure.

A satisfactorily shielded enclosure should provide shielding effectivness

of 50 to 100 dB, depending upon the intensity of the undesired signals that are

present and the type of electromagnetic fields. In general, the design should
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call for maxinmm shielding effectiveness within the limitations of weight, size,

mechanical rigidity, and cost. In the case of a telemetry receiver, for example,
the receiver itself is not essentially a generator of undesired signals (except for

low-level, local-oscillator radiation) and should not cause malfunctioning of

adjacent equipment. The receiver can be very susceptible to external undesired

signals, however, and therefore should.be provided with a shielding enclosure

having high shielding effectiveness. Cases for transmitter equipment are

required to provide a shielding effectiveness of at leas_ 100 dB in order that
leakage through the case at harmonic frequencies may be reduced to acceptable
levels.

In practice it is difficult to reduce the level of interfering signals to
allowable limits by shielding against spurious radiation from transmitters and
radiation of local oscillators in receivers. For this reason it becomes necessary

to require some excess shielding effectiveness for the shielding enclosures of

adjacent equipment even if high levels of undesired signals a_e llot generated by

such equipment. In the final analysis, the burden _)f shielding adjacent

electronic equipment should be divided about equally am_._ng them.

An electromagnetic field is made up of two c_p,._J_ents: an electric

field E and an magnetic field H. When an electromagnetic wave encounters a

metal surface a shielding action occurs. Part of the wave energy is reflected and

part of the energy penetrates the metal; the latter portion is partially dissipated

as it passes out of the far surface of the metal. Essetltially, the electric field

component E induces a charge of equal but opposite polarity at the surface of

the shield. The magnetic field component H induces a ctarlet_t flow whose field

is equal in magnitude and opposite in direction tt_ the incident field.

(Reference 3.)
All metals exhibit a finite conductivity. Current fh_w., on the surface and

within the metal to a depth based on the magnitude of the skin effect. Only at

temperatures near absolute zero does a metal approach _he properties of a

perfect conductor so that current flows at the surface only. Under these
conditions all incident energy would be reflected. Since the actual fields at the

metallic surface are not equal and opposite, only a porlio_l of the incident

energy is reflected. The remaining energy is dissipated as heat and as a
transmitted wave on the other side of the shield.

The characteristic wave impedance is generally defined as the ratio E/H,

the electric field conrponent to the magnetic field cotnpo_lent, both of which

are transverse to the direction of propagation. Assuming lhat free space and air

have the same characteristics, a plane wave has a free-space characteristic

impedance, in ohms, of

ZO= = 120_= 377 f2 (2.1)
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where

e0=permittivityoffreespace(air),or8.85X 10-12F/m,
and

/.t0 = permeability of free space (air), or 1.26 X 10-6 H/m.

When distance from the radiator is small in terms of wave length, E and tt field

impedance magnitude may be approximated using the following expressions:

for an electric field and

(2.2)
ZW coe0r

Z W = CO#or (2.3)

for a magnetic field. In these equations,

and

Z w = impedance at distance r,

r = distance from source in meters,

co = 2nf is the angular frequency in radians per second.

Shielding effectiveness describes tile effectiveness of a given metal as a

shield and is measured in dB. The equation expressing shielding loss in dB

(References 3 and 4) is

S=R +A +B (2.4)

where

R = total reflection loss in dB from both surfaces of the shield (ne-

glecting the multiple reflections inside the barrier),

and

B =

absorption loss in dB inside the barrier,

a positive or negative correction factor caused by the reflecting

waves (secondary reflections) inside the barrier and is calculated

in dB. When a metallic barrier has an absorption loss A of less

than 15 dB, the shield is designated as being electrically thin.

(The term B need not be taken into account when the absorption

loss is more than 15 dB.)

In the determination of the total shielding effectiveness of a shield,

values for R, A, and B are to be determined as indicated in the following

sections. To simplify computations, a number of nomograms are provided.
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The computation of reflection losses can be greatly simplified by

considering the shielding effectiveness for incident electric fields as a problem

separate from that for magnetic fields or plane waves. Thus, the determination

of reflection loss becomes a problem of determining the reflection loss for an

electric field R e, a magnetic field Rh, or a plane wave Rp. Nomograms for
determining values of Re, R h, or Rp are given in Figures 2.1, 2.2, and 2.3,
respectively.

Secondary losses can be positive or negative and should be taken into

account when the absorption loss A is tess than 15 dB. To avoid computing B,

it is desirable to maintain the absorption loss greater than 15 dB at frequencies
where shielding effectiveness S is close to the required level

2.1 REFLECTION AND ABSORPTION

LOSSES

Reflection loss depends upon the type of field to be shielded and the
distance between the source and the shield. Reflection loss is a maximum

when the impedance of the incident wave is much higher or lower than that of

the shidd. Magnetic fields are low impedance in nature a_ all frequencies, but

electric fields exhibit high impedance at all frequencies.
For conditions such that fr "_ 2 × 10 9 the reflection toss in dB for a high

impedance field is given (References 3 and 4) as

where

[_ 2_laf 3 r
R e = 354 - 10 lOgl0_ _

\ v /

r = distance between source and shield in inches,

(2.s)

= relative magnetic permeability of shield material,

and

G = conductivity of shield material relative to that of copper (for whicn
G=I),

f = frequency in hertz.

Reflection losses in dB for the magnetic field can be determined mathe-

matically by the following equation (References 3 and 4)

, F0.462 3_--_ 41R h = 20 JOgloLr _ + 0.136r +0.35 .
(2.6)
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R. B. Cowdell, 1967 IEEE EMC Symposium Record)

The plane wave is characterized by an impedance of 377 _ (E/H = 377).

Mathematically, reflection losses in dB can be determined from a relation given

in References 3 and 4:

Rp = 168 + 10 lOglO(-_ ) . (2.7)
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Absorption losses are a function of the physical properties of the shield

material and are independent of the type of source field. The important

parameters of the shield are its relative permeability, relative conductivity, and

thickness. The absorption loss in dB of a shield is given (References 3 and 4) as

where

A = 3.34 × 10-3tx/_,

t = thickness of shield material in mils (10 -3 in.),

(2.8)

/a = relative permeability of shield material,

and
f = frequency in hertz,

G = conductivity of shield material relative to that of copper.

A close approximation to the basic shielding effectiveness for reflection

loss and absorption loss can be determined with the use of the nomograms

presented in Figures 2.1 through 2.4. Figure 2.1 is used for reflection loss where
the field is generated by a high-impedance source or where the electric field

predominates. If the source is of low-impedance (where the magnetic field is
predominant), then Figure 2.2 is to be used to estimate the reflection loss.

A plane wave reflection loss may be obtained with Figure 2.3. The plane
wave case applies when the shielding material is at least one wavelength distant

from the source, or at a distance of at least D2/A, where D is the largest

dimension of the field source or shield and ?_is the wavelength.

Figure 2.4 is used to determine absorption loss. Absorption loss is
independent of the field source impedance or the distance from the field

source. The magnitude of the absorption loss is directly proportional to the
thickness of the shield material.

Each nomogram is marked to show a sample calculation. In the case of

reflection loss for the electric field and magnetic field, the example is based on
the use of soft aluminum shield material at a distance of 5 in. from the source

of the field having a frequency of 100 kHz. A line joining these points on the
two appropriately marked scales intersects the unmarked line at a transfer

point. From this point a line is drawn to the selected frequency, 100 kHz, on

the frequency scale. The reflection loss is read off of the R e scale of Figure 2.1
or the R h scale of Figure 2.2.

The nomogram for plane wave reflection loss is used by simply drawing a

line on Figure 2.3 joining appropriate points on the scales for the frequency
and the selected shielding material. In the example, soft aluminum is used at a

frequency of 100 kHz. The reflection loss of 116 dB is read from the Rp scale.
To use the absorption loss nomogram, follow the example shown. A soft

aluminum shield of 0.003 in. (3 mils) thickness is used. The line joining these
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two values intersects the unmarked line at the transfer point. The line from the

transfer point to the frequency of 100 kHz intersects the A scale at 2.5 dB,

which is the absorption loss.

If the shield is electrically thin (absorption loss <15 dB), internal

(secondary) reflections become critical. Internal retlection loss B may be a

positive or negative value. For a very thin. shield, B could have a relatively high

negative value.

When the absorption loss A is equal to or greater than 15 dB, the internal

reflection loss B may be neglected. However, for A "< 15 dB, a correction must

be made for the multiple reflections within the shield. When a metallic barrier

has sufficiently small absorption so that the value of A is less than 15 dB, it is

designated as clectrically thin. Tile internal reflection loss in dB may be

computed from the following equation (obtained from Reference 5, pp. 2-47):

where

B = 201og1011 - acos 7.68 × t0-4i-v'6"/_

+jet sin 7.68 X 10-4tx/-G-_i, (2.9)

(Zs - Zw !q 2
z+ j ×lo-O.l 

The intrinsic impedance of the metal, in obms, is defined as

[laf'_ 1/ 2

Zs=(1 +/)_:2_) × 3.69 × 10-7

The impedance in ohms of the incident wave in free space for high-impedance
(electric) fields is

Zw = _e 0 j3r- _2r2 ]

and for low-impedance (magnetic) fields

j[3r-32r 2 '_Zw =Clao 1 +jflr- 32r2J

in these equations, the symbols have the following meanings:

c =velocity of light (3 X 108 m/s),

Z s = intrinsic impedance of metal in ohms,
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Z
w

_o

and

= impedance of incident wave in free space,

= permeability of free space (1.26 × 10-6 H/m),

t = thickness of barrier in mils,

_u = relative magnetic permeability referred to free space,

e0 = permittivity of free space (8.85 X 10-12 Fire),

G
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= relative conductivity of shield material referred to that of copper
(e.g., G = 1 for copper, G = 0.61 for aluminum, and G = 0.17 for

iron),

f = frequency in hertz,

_3 = 21r/)L where ?_is the wavelength in meters,

r = distance from source to barrier in meters.

2.2 SELECTION OF SHIELDING
MATERIALS

The selection of the material is determined by its ability to drain off

induced electrical charge and to carry sufficient out-of-phase current to cancel

the effects of the interfering field. Inherent characteristics that make the metal

an effective shield are its conductivity G and permeability /l. A physical
characteristic that enhances the effectiveness of a metal as a shield is its

thickness; the shielding effectiveness of a metal is also dependent upon
frequency.

The selection of proper materials for shielding is made in accordance

with the following basic rules:

(1) At low frequencies (LF), only magnetic materials can furnish

adequate shielding against magnetic fields. Thickness is an important factor.

(2) For a given material, magnetic fields require a greater shield
thickness than do electric fields.

(3) At higher frequencies, smaller shield thickness is required for a given
material.

(4) At sufficiently high frequencies, nonferrous materials, such as copper

and aluminum, will give adequate shielding for either electric or magnetic
fields.

(5) The electric field component for frequencies from 60 to 800 Hz (i.e.,

ac power) can readily be shielded with thin conducting materials such as iron,

copper, aluminum, and brass.
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Care must be used when adding a shield to a subsystem. For example, a

shield placed too close to a circuit in which the circuit Q is a critical factor can
cause degradation of performance because the losses in the shield will appear as

an effective resistance in the critical circuit, thereby lowering the circuit Q

(Reference 6).

The permeability of any magnetic material depends on the intensity of
the field surrounding it. If this field is very strong, the shield may become

magnetically saturated, thereby rendering the shield ineffective. A remedial

solution to this problem is to use a shield constructed in lwo or more layers.

The outer layer should have medium permeability and the innermost layer

should have high permeability. Additional layers between the outer and inner

layer may be required, depending on the intensity of the source.

Even a properly designed shield will be ineffective if it contains
uncontrolled discontinuities. Most of the discontinuities are necessary to

accommodate leads, such as those for input and output lines, power lines,

antetanas, control shafts, fuses, jacks, test receptacles, plug-in receptacles,

indicator lights, meters, equipment covers, and door and ventilating holes

(Reference 7). Provisions for such discontinuities can be made.

1. Penetration Holes in Shieldi ng Materials

One effective method of neutralizing the shielding discontinuities created

by planned holes (e.g., air ventilation and circuit adjustment) in a shield is to

use cylindrical and rectangular waveguidc-shaped openings. When properly

designed, a waveguide-shaped opening will act like a high-pass filter with a
cutoff frequency above the highest frequency of interest The cutoff frequency

is a function of the cross section of the waveguide.

For a cylindrical waveguide, the cutoff frequency is

6.92
fc = -'-d-- (2.10)

The cutoff frequency for a rectangular waveguide is

5.90
fc - b (2.1 1)

In these equations,

and

fc = cutoff frequency for the dominant mode in gigahertz,

d = inside diameter of a cylindrical waveguide in inches.

b = greatest dimension of rectangular waveguide in inches,



SHIELDING 121

At any frequency fa considerably less than cutoff (i.e., fa < 0.1fc), the attenu-
ation in dB per inch for cylindrical waveguides is approximated by the relation

32
a _-- (2.12)

d"

For rectangular waveguides, the attenuation in dB per inch is

27.3
a _ _ (2.13)

b '

The equations given above are valid for air-filled waveguides with length-to-

width or length-to-diameter ratios of 3 or more (Reference 8).

Only insulating (nonconductive) material is allowed to extend through

the waveguide opening; otherwise, if a conductive material is used, it will act
like an antenna aborting the shielding effectiveness. A control (e.g., a variable

resistor) can be adjusted by means of a nonconductive shaft through a

cylindrical waveguide. Ventilation can be effected through the use of

a honeycomb composed of a number of tiny waveguides clustered adjacent to

each other; however, the shielding effectiveness is reduced in proportion to the

area covered by honeycomb.

2. Finger Stock and Metallic Gaskets

Access doors and covers in shielded enclosures cause shield discontinu-

ities at each junction. Effective shielding at these junctions can be achieved
through the use of finger stock and/or resilient metallic gasketing. The junction

surfaces should be completely free of oily film, corrosion, moisture, and paint.

Gaskets should be mounted firmly to one side of the junction and should be

composed of a combination of resilient and metallic material. The outer edge

of the gasket which mates with the mating junction should have the ability to
penetrate all surface film to ensure a tight junction at audio frequency (AF)

and radio frequency (RF).

Finger stock is a strip of phosphor-bronze or similar material cut to

form contact fingers under spring pressure. This type of contact strip is subject

to damage unless it is installed in a recessed or inner lip; it should be handled
with extreme care.

3. Screen and Conductive Glass Shields

Screen shields can be used effectively over pilot lights and sockets, meter

faces and gauges. For example, the regular glass in meters and gauges can be

replaced with conducting glass. As a further precaution, their junctions with the

panel should be sealed with metallic gaskets. Plastic-cased pilot lights and

meters should be avoided and metallic cased items used (References 5 and 9).
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,1. Additional Considerations

Fuses, jacks, and all receptacles should have metallic bodies and should

be provided with screw-on, snap-on, or spring-loaded metal caps. Each junction

with the panel should be sealed with metallic gaskets.

It is usually necessary to form a discontinuity in the shield by inserting

power, control, and signal lines. The usual procedure for power and control

lines is to mount the filter inside the shield. The filter input terminals

should extend through the shield. The signal line poses more of a problem
inasmuch as filtering to any great extent can cause signal degradation.
A Faraday shield coupling device in conjunction with a shielded twisted line is
one solution.

2.3 RECEIVERS

The following shielding guidelines should bc employed during the

development phase (Reference 10):

(1) All unremovable butted joints should be welded or brazed.

(2) Removable panels should be mated to adjoining contact surfaces
through the use of metallic gasketing or finger stock. A sufficient number of

binding devices should be spaced around the mating area to ensure the tight
contact over the entire surface.

(3) Control shafts should penetrate the case via a circular waveguide by

means of nonconducting shafts. Conducting shafts should use a grounding nut
on the shaft.

(4) Any meter affixed to the case should be housed in a seamless

metallic case. The glass covering the meter face should be a conducting glass or
laminated glass incorporating a wire mesh.

(5) Ventilation through the case should be effccted via honeycomb
waveguide material, waveguides, or wire mesh.

(6) All connectors should be types providing shielding continuity.
When connectors are not in use, metallic caps should be used to maintain the

shielding continuity. Metallic gaskets should be used to ensure shielding

continuity.

(7) Fuse holders and their removable caps should be metallic. Metallic

gaskets should be used to ensure shielding continuity.

(8) The panel indicator lights should be housed within a metallic

holder. The glass portion of the indicator should be a conducting-type glass or

the inr_er surface should be covered with a wire mesh. Metallic gaskets should

be used to ensure shielding continuity.

(9) The tuning dial window should be covered with conducting glass or
wire mesh.

(10) Shield boots of metal mesh, conductive plastic, or rubber should be

used on all toggle switches.
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(11) The receiver subsystems should be individually shielded to prevent
intrasystem interference.

2.4 TRANSMITI'ERS

The transmitter housing should reflect the basic shielding techniques

given for receivers. Primary concern is with interference signals radiating from

the transmitter to other equipment within the electromagnetic complex via the

radiating interface of the housing.

Each stage of the transmitter, from the oscillator to the final amplifier,
will require individual shielding. The diameter of the shield around a coil

should be twice the diameter of the coil. The shield length should be equal to

the length of the coil plus twice the diameter (Reference 11).

During the development stage, radiated signal levels should be obtained

from breadboard transmitter subsystems. With these data, the type of material

and the thickness needed to contain the interfering signals can be calculated.

2.5 ELECTRONIC SERVO SYSTEMS

The electronic servo systems should employ the same shielding tech-

niques as given for receivers, where applicable. The servo subsystems should be
individually shielded to prevent susceptibility from inter- and intra-system
interference.

Type and thickness of the cabinet material may be selected on the basis

of the shielding requirement. The requirements for mechanical strength will

often dictate use of a thicker material than may be required for shielding alone.

2.6 COMPUTERS

The computer housing shielding should be in accordance with the

guidelines set forth for receivers. Electronic subsystems should be individually
shielded if susceptible to inter- and intra-system interference. Normally, the

material selected to offer structural rigidity to the equipment will afford

enough shielding if the cabinet penetrations are properly designed.

2.7 COMMAND ENCODERS

The shielding guidelines set forth for receivers are applicable. All

low-level subsystems should be completely shielded in order to prevent
susceptibility from inter- and intra-system interference. The conducting

material selected to offer structural rigidity of the equipment will usually

afford shielding adequate to meet requirements.
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2.8 DATA PROCESSING

The section for receivers should be used as a guideline for shielding the

data processing equipment cabinetry. All susceptible st,bsystems should be

completely shielded from inter- and intra-system interference. The conducting
material selected to achieve structural rigidity of the equipment will usually

provide sufficient shielding.

2.9 TIME STANDARDS

The time standard should employ the same shielding techniques as for

receivers, where applicable. The time standard subsystems should be indi-

vidually shielded to prevent susceptibility from inter- and intra-system
interference. Tests of susceptibility to radiated energy should be performed on

a breadboard system during the development state. The data obtained can be

used to calculate the type of shielding material needed and the thickness

needed to protect the time standard.

2.10 POWER GENERATION EQUII:'MENT

Motor generators should be completely housed within a shielded

enclosure. The guidelines set forth for receivers are applicable. Adequate

ventilation is a necessity. Ventilation openings may be screened with the screen

continuously grounded around the edge, or a honeycomb panel may be used.

The power distribution panel box should be completely shielded. Access

plates should be gasketed with metallic gaskets.

2.11 TELETYPE EQUIPMENT

Standard, unmodified commercial teletype equipment such as the

M28/Automatic Send and Receive unit is a generator of high-level implusive

broadband noise. The three interference sources within the teletype equipment

are the motors, the selector magnets, and the transmitter-distributor contacts.

Fortunately, all of these source generators (e.g., M28/ASR unit) are housed

within a single shell. This housing is not an effective shield so the guidelines set
forth for receivers should be followed.

The following electrical subsystems should be shielded:

(1) Selector magnets.

(2) Transmitter distributor contact box.

(3) Typing reperforator contact box.



SHIELDING 125

2.12 MOTORS

Motors should be completely shielded with the motor shaft connected to

ground through a phosphor-bronze sleeve or a conductive grease. A conductive

screen should be placed over openings on the inside of the end bells.

2.13 VENDING MACHINES

The housings of vending machines should be shielded in accordance with

the shielding techniques given for receivers, when applicable. The electronic

control mechanism that dispenses a selected item and makes the proper change

should be completely shielded.

2.14 MOTOR VEHICLES

The following shielding guidelines should be followed:

(1) The ignition system should be completely shielded.

(2) The battery charging system should be completely shielded.

(3) The shields should be accessible through AN or other suitable
connectors mounted on the wall of the shield.

2.15 ENCLOSURES FOR ELECTROMAGNETIC

INTERFERENCE TESTS

Most tests for electromagnetic interference (EMI) should be conducted in

a shielded laboratory enclosure. The purpose of the shielded enclosure is to

reduce ambient electromagnetic fields to levels that will not affect the accuracy

of the tests being performed. The guidelines given for shielding equipment

enclosures are directly applicable to the design or procurement of laboratory
shielded enclosures (i.e., shielded rooms).

Most users of shielded enclosures purchase the enclosures in disassembled

modular form. The manufacturer's price for an enclosure normally includes

cost for erection, filter installation, and certification of shielding effectiveness.

Unusually large shielded enclosures are normally custom built as an

integral part of a new building. When this procedure is followed, great care
must be taken during construction to verify complete continuity of all joints

and proper installation of doors, ventilation panels, and filters. Upon

completion, and regularly thereafter, any shielded enclosure should be tested

to verify shielding integrity or to determine corrective maintenance required.

Commercial modular enclosures are available as single-wall or double-wall

units. The most commonly used materials are galvanized and copper-clad steel.

The single-wall structure usually has sufficiently simple joint construction to

make it as effective, or almost so, as the more complicated double-wall

structure. Double-wall construction is usually accomplished by bonding a metal
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sheet to each side of plywood or by welding stiffener channels to the inside

surfaces of the two spaced sheets.

Proper assembly of modular shielded enclosures is critical. Every bolt of

the enclosure must be uniformly and securely tightened to ensure electrical

continuity at all points on each joint or seam. Proper initial assembly is best
left to the experienced technicians employed by the enclosure manufacturer.

Stresses introduced by temperature changes and movement of floor loads and

oxidation of contacts will cause some deterioration of shielding effectiveness

with time. Also, the contact fingers around door edges can become fatigued

and introduce RF leakage. These problems can be minimized by periodic

inspection and corrective maintenance. Maintenance usually includes a sys-

tematic routine for uniform retightening of all assembly bolts and replacement
of worn finger stock at door openings.

Custom-built permanent enclosures should be inspected for cracks in

welded or soldered seams and worn finger stock at doors. Any cracked joints

should be carefully cleaned and repaired, and worn finger stock should be

replaced.

Measurement procedures for shielded-enclosure shielding effectiveness

are specified in Reference 12. Proposed specifications for built.in-place

shielded enclosures and additional test procedures applicable to both built-in-

place and modular enclosures are given in Reference 13.

3. BONDING

Bonding refers to the establishment of a low-impedance path between

two metal surfaces. This path may be between two points on a system ground

plane as well as between ground reference and a component, circuit, or
structural element.

Poor bonding between equipment and ground reference plane will cause

interference because it prevents methods of suppression, such as insertion of
filters or shields, from being completely effective. Consider the installation of

the poorly bonded filter in Figure 2.5. At low frequencies above the passband,

interference currents will follow path 1 to ground. When the impedance of a

bond (Z b = R b +jWLb) becomes larger than the reactance of the capacitor

(Z c = l/jwC) in series with the load impedance (RL) , interference current will
follow path 2 into susceptible equipment (Reference 14).

3.1 GENERAL CONSIDERATIONS

Generally, the impedance of a bond is of greatest concern at high
frequencies (HF) where the skin effect impedance is much higher than the dc

resistance. Typical HF bonding design is shown in Figure 2.6.
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lallter
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L b Inductance of a poor bond.

R b = Contact resistance of a poor
bond.

Note: When (1/j ,..C , RL) _- (R b , jtaLb) '

interference currents will

follow path (2) to susceptible

equipment.

Figure 2.5.-Circuit representing poor bonding between a filter and ground.

J'"_

I

Note:

Establish HF

bond of faying surfaces
where indicated by symbol []

Figure 2.6.-Example of good HF bonding installation.

A dc bond is a connection that is effective in reducing dc potential

between the bonded parts to a negligible level when full design currents are

flowing (see Figure 2.6). The impedance of an HF bond may be very high at

frequencies outside the range of interest (including dc and audio frequencies).

Figure 2.7 shows the typical impedance of a solid copper bond strap for

various values of its length-to-width ratio (References 15 and 16).

Electrical bonding serves other purposes in addition to the elimination of

interference. Good bonding prevents the buildup of potential differences

between points connected to a ground plane and in this manner eliminates

potential ground loops. Bonding between components deters the buildup of

static charges in normal equipment operation and also minimizes the damage

that might be caused by lightning strikes (which produce high voltage buildup

and heavy current flow). Good bonding will protect personnel from the shock
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i 2 3 4 5 6 7 8 9 10

Length-to-Width Ratio

Figure 2.7. Normalized impedance of a copper bonding strap for different

ratios of length to width.

hazard that would restllt if power were inadvertently shorted to an enclosure. It

is imperative that bonding practices receive the careful attention of design

personnel to optimize system reliability and security, as well as to reduce

problems of eleclromagnetic compatibility.

The designer must specify adequate bonding Io ensure that the end

product witl require minimum use of suppression ct)i_ponents. It is the
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designer's responsibility to determine bonding requirements and to call out and

illustrate on drawings areas in need of bonding. The designer must also

determine which surface areas are to remain unfinished or require a conductive

finish in order to provide acceptable electrical continuity for bonding. Figure

2.6 illustrates a recommended bonding callout on a typical drawing (Reference

17).

Joints made by direct metal-to-metal contact fulfill bonding require-

ments. Such joints may be produced by welding, brazing, sweating, swaging,

and in most cases by soldering. Semipermanent bonds, such as those provided

by bolts or rivets, are acceptable when good electrical contact exists between
bare metal surfaces. Star, or lock, washers may be used with threaded devices

to ensure continued electrical contact and tightness. Star washers are very

effective in cutting through nonconductive coatings such as those caused by

corrosion. Joints that are press fitted or joined by self-tapping or sheet metal

screws cannot be relied upon to provide a low-impedance bond at high

frequencies. Riveted joints on 3/4-in. centers are acceptable if the rivet holes

are bare. Clamped fittings that are permanent after installation are also
acceptable, if they meet the requirements for maximum allowable resistance

listed in Table 2.1. Direct bonds must always be made through continuous

contact between bare, conductively finished metals.

An indirect bond (or bonding jumper) is an intermediate electrical

conductor used to connect two isolated items. Because jumpers often have

significant impedance at HF, their use must be avoided wherever possible (see

Figure 2.8). Resonance between the inductance L of the jumper and the

_.___ca _2__

(a) Acceptable bonding jumper.

Unacceptable

(b) Unacceptable bonding jumpers.

Figure 2.8.-Diagrams of acceptable and unacceptable bonding jumpers.
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capacitance C between components results in a maximum bond impedance at a
given frequency. The voltage buildup at resonance could result in the

generation of arc discharges and strong electric-field interference at this

frequency. The inductance can be minimized by using a metal jumper whose

length is less than five times its width. In this way the resonant frequency may

Table 2.l-Resistance limits for dc bonding.

Component

Support brackets and electrical/electronic cabinets

Access or inspection doors
Fuel, oil, hydraulic lines, and fittings
Power conduit

Conduit carrying signals or low currents
Filters

Electrical motors, starters, generators,
and attenuators

Metal tanks with fuel filler provisions (no electrical
installations)

Metal tanks containing no flammable material
Other electrical devices attached to enclosures

Switches, circuit breakers, and potentiometers in

circuits exceeding 50 V
Metal instrument panels

(a) Nonelectrical

(b) No rotating or vibrating electrical equipment

(c) With rotating or vibrating electrical equipment

Radiators and heat exchangers

Metal ducts (nonelectrical, rigid, and flexible)
Engine supports
Antennas

Coaxial cables (HF)

Structural joints or breaks

Ground support equipment enclosures*

(a) Cabinet seams

(b) Drawers

(c) Panels
(d) Access doors

Maximum dc

Resistance to

Structure (ohms)

0.0025

0.005

500 k

0.10

1.0

0.0025

0.0025

0.01

500 k
0.005

1.0

500 k

0.01

0.0025

500k

500 k
0.0025

0.0025

0.0025

0.0025

0.005

0.005

0.005

0.l

*See paragraph 2.2 on shielding for information concerning pr_,vention or containment

of electromagnetic radiation.
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often be raised so as to be above the range of concern. Braided jumpers may be

objectionable at HF because braids tend to have higher inductance, but they

may be preferable at LF because they offer greater flexibility than solid
jumpers (see Figure 2.9). Direct metal-to-metal contact is essential in all cases.

Figure 2.10 presents a typical arrangement for a bonding jumper.

2
Ct.

10 5

10 4

10 3

lO2

io

1
0. 100

1. Iridited block to iridited fixture

2. Braided copper strap 5 x 1
2. Solid copper strap 5 x 1 x 0.032
3. Solid brass strap 5 x 1 x 0.02
4. Solid aluminum strap 5 x 1 x 0.02
5. Solid steel strap 5 x l x 0.02
6. Stranded 14 gauge copper wire, 5

(Dimensions in in. )

1 1 i _ _ i i ,Ill I I i i II i i lali i i J i i Jl i i ill

t 10 100

Frcquency (MHz)

Figure 2.9.-Impedance of various bonding materials.
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The following list defines the design guidelines for electrical bonding

jumpers:

(1) Jumpers should be bonded directly to the basic structure rather than

through an adjacent part (see Figure 2.8).

(2) Furthermore, jumpers should not be installed two or more in series

(see Figure 2.8).

(3) Jumpers should be as short as possible.

(4) No more than several jumpers should be installed.

(5) Jumpers should not be connected with self-tapping screws.

(6) Jumpers should be installed so that vibration or motion will not

affect the impedance of the bonding path.

(7) Jumpers should be made of tinned copper, cadmium-plated phos-

phor bronze, aluminum, or cadmium-plated steel. Mating metals should be

selected to have properties of low corrosion.

Treat surlace b¢lore mounting.

tne. )

Bond Faying Surfaces

Figure 2.10.-Example of bonding jumper installation.

3.2 BONDING PRACTICES AND

TECHN IQUES

1. Surface Treatment

Both direct and indirect bonding connections require metal-to-metal

contact of bare surfaces. It is frequently necessary lo remove protective
coatings from metals to provide a satisfactory bond. The area cleaned for
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bonding should be only slightly larger than the area to be bonded. Ridges of

paint around the periphery of the bonding area can prevent good metal-to-

metal contact. Washers or fittings must fit inside the cleaned area. Immediately
prior to bonding, all chips, paint, grease, or other foreign matter must be

removed with the proper cleaning solution.

After bonding, the exposed areas should be refinished as soon as possible

with the original finish; however, if the paints are too thin, refinishing paints

may seep under the edges of bonded components and impair the quality of the
bond.

A suitable conductive coating may be used when removable components
must be provided with a protective finish. Where aluminum or its alloys are
used, corrosion resistant finishes that offer low electrical resistance are

available. Some of the many conductive coatings are alodine, iridite, oakite,

turco, and bonderrite. These finishes need not be removed for bonding

purposes. Figure 2.11 shows the degradation of shielding effectiveness of

metal-to-metal joints caused by finishes on aluminum and magnesium.

o.I 1 lO IOO lOOO

Frequency (MHz)

Figure 2.11.-Degradation of shielding effectiveness caused by finishes on

metal. (After C. B. Pearlston, IRE Trans. RFI, October 1962)
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2. Corrosion

Severe weight restrictions in systems often dictate the use of light metals

(such as aluminum or magnesium) that have favorable strength-to-weight ratios.

If their surfaces are untreated, such light metals are highly active chemically

when placed in contact with other metals. For this reason, they are usually
coated with nonconductive finishes to prevent corrosion. However, the

impedance of the bonding joint is increased by such protective finishes, and it
is often necessary to remove nonconducting portions of the finishes at the

bonding interface. If the surfaces renuain unfinished, more nonconductive

corrosion products can be formed that also increase the impedance of the joint.

Because of this, it is generally recommended that conducting protective

finishes be applied to light metals at the bonding joints to obtain a

low-impedance joint.
Corrosion occurs between two dissimilar metals in solution, or even in a

moist atmosphere, since they form an electrochemical cell. The extent of

corrosion depends upon the metals comprising the electrochemical cell and the
conditions under which the dissimilar metals come into contact with each

other. By properly modifying these two factors, the extent of corrosion can be
reduced.

No appreciable corrosive action occurs between two metals in the same
electrochemical or galvanic group. If they are in different groups, the metal

coming first in the following list will form the anode and be relatively heavily

corroded, whereas the metal coming later will form the cathode and be

relatively free from corrosion or will be protected. According to their

electrochemical activity, the common metals may then be arranged in the

following groups of decreasing corrosion tendency (from anodic end to cathodic

end):

Anodic End (most easily corroded)

Group I Magnesium

Group II Aluminum, aluminum alloys, zinc, cadmium

Group III Carbon steel, iron, lead, tin, tin-lead solder

Group IV Nickel, chromium, stainless steel

Group V Copper, silver, gold, platinum, titanium

Cathodic End (least easily corroded)

The greatest degree of corrosion occurs when dissimilar metals are openly

exposed to salt water, rain, or other liquids that may act as an electrolyte.

Minimum corrosion occurs when metals are kepl dry and completely free from
exposure to moisture. The following three exposure conditions are defined:
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Exposed:
Sheltered:

Housed:
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Metal has an open, unprotected exposure to weather.

Milder exposure than above and metal surfaces receive

limited protection from direct action of weather. Such

sheltered protection would be afforded by louvered

housing, sheds, vehicles, aircraft, and boats.
Metal surfaces of equipment are housed in weatherproof

buildings.

3. Bonding Protection Code

For a given pair of dissimilar metals in contact under the three exposure
conditions enumerated above, the extent of corrosion can be minimized with

certain protective measures. The following bonding protection practices have

proven to be useful:

(1) The joint of dissimilar metals should have a protective finish applied
after the metal-to-metal contact has been established so that a liquid film

cannot bridge the gap between the two dissimilar metals.

(2) The two dissimilar metals should be joined with bare metal exposed

over an area slightly larger than that of the joint itself. The joint is untreated,

but the remainder of the surface of the two metals has an appropriate

protective finish.
By making use of the above grouping of anode and cathode materials,

together with the exposure conditions under which equipment is to be used, it

is possible to establish acceptable practices for the protection of equipment

against corrosion or to minimize corrosion under a given set of circumstances.

Suggestions for providing a protective bond between two dissimilar metals,
identified in anode and cathode groupings, are given in Table 2.2

Table 2.2 may be used to minimize corrosion conditions when it becomes

necessary to place dissimilar metals in contact with one another. The use

of Table 2.2 is demonstrated in the following example: Equipment having an

aluminum housing (Group II) is to be mounted on a stainless steel frame

(Group IV) and used outside in continuously exposed conditions. Table 2.2

suggests that a protective finish should be applied after bonding. In most cases,

it is also a good practice to interpose a tin- (Group Ili) or cadmium- (Group II)

plated washer between the two metal surfaces. Thus, if the protective coating is

chipped, the washer instead of the irreplaceable aluminum frame will be

attacked by corrosion.
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Table 2.2 Groups of materials recommended for providing protective

bond between two dissimilar metals used as anode and cathode.

Condition

of Exposure

Exposed
Sheltered

Housed

Exposed
Sheltered

Housed

Exposed
Sheltered

Housed

Exposed
Sheltered

Housed

Anode
i

I II II1 IV

A A
A A

A A

C A B
A B B

A B B

C A B B

A A B B

A B B B

C C C A
A A A B

A A B B

Cathode

II

III

IV

Notes: Bond protection code

A. The couple must have a protective finish after metal-to.metal contact has been

established so that no liquid film can bridge the two elements of the couple.

B. The two metals may be joined with bare metal exposed z_t junction surfaces. The

remainder must be given an appropriate protective finish.

C. This combination cannot be used except under very unusual circumstances where

short life expectancy can be tolerated or when the cquilmacnt is normally stored

and exposed ['or only short intervals. Protective coatings art: mandatory.

3.3 BONDIN(; OF STRUCTURAL EI_EMENTS

The high-frequency impedance of a bond that can adversely affect

system performance cannot be conveniently measured. As shown in Figure 2.7,

the high-frequency impedance of a bond at the highest operational frequencies

of the system may be reduced through the use of bonding straps having small

ratios of length to width.

The limits for dc bonding in Table 2.1 may also be used to establish

recommended limits of impedance of AF and HF bonds. Measurements of

bonding resistance can be made with commercially available bonding meters.

The following examples of bonding techniques for typical items

commonly included in many systems are listed to demonstrate the application

and importance of good bonding practices.

The dc resistance measured across any individual bond from any point on

a chassis across the bond to any point on the otheJ side usually should not

exceed 2.5 m_. The dc resistance between any equipment and its rack or

between the rack and structure also should not exceed 2.5 mg2. If these

conditions are fulfilled, no component will be above the structure potential by

more than the voltage drop across a resistance of 5 m£2.
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1. Connector Bonding

Startdard AN-type connectors as well as coaxial connectors must be

bonded to their respective panels over the entire mating surface as illustrated in

Figure 2.12. Panel surfaces must be cleaned to the base metal for no less than

1/8 in. beyond the periphery of the mating connector. Connector bonding is

essential for obtaining the appropriate shield wire grounding through a
connector backshell.

P/.'7",,/57 -

, e}

f la _

1/8 in, if"

Figure 2.12,-Bonding of connector.

2. Bonding Enclosure Flange

to Structure

Enclosures that are attached to frames or racks by means of flange-

mounted quick disconnect fasteners must be bonded about the entire flange

periphery. Both the flange surface and the mating rack surface must be cleaned
and polished over the entire contact area, as shown in Figure 2.13. The direct

bonding method of Figure 2.13a is far more desirable than the jumper bond

shown in Figure 2.13b. The use of jumpers should be avoided if possible.

surface. )

{a) Direct (b) Jumper Bonding

Bonding Method Method (not preferred)

(preferred)

Figure 2.13.-Bonding of base member.
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3. Bonding Structural M('_n_bers

Bonding between various structural members and brackets must be

accomplished through clean metal surfaces, as illustrated by the typical

applications shown in Figures 2.14 and 2.15.

_ _// P _ Bonding Area (Clean_JS __r-':Sur+face both

/_. Treatment of Bonds. ")

Figure 2.14.- Bonding of bolted members.

Bonding Area

Figure 2.15.-Bonding for riveted or welded bracket.

4. Vibration Isolators

Bonding jumpers with properly cleaned surfaces should be installed on

each vibration isolator, as shown in Figure 2.16. Jumpers for this application

should have a maximum thickness of 0.025 in. so that damping efficiency is
not impaired.
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_an surfaces in

contact

;_,,_, \ - /l ._ "_l<_2_t_:_°
)  J;15PT) =

_ MounUng Structure

Figure 2.16.-Installation of vibration isolators.

5. Base-Mounted Components

Components mounted to their respective chassis through normal base-

mounting methods should use the full mounting area of the component to

provide a suitable electrical bond, as illustrated in Figure 2.13a. Separate
jumpers (as shown in Figure 2.13b) should never be used for this purpose.

6. Rack-Mounted Components

Rack-mounted components should be bonded in the same way as flange-

mounted equipment. The preferred method of bonding rack-mounted packages
employing one or more shear pins is shown in Figure 2.17. Mating surfaces

should be cleaned for 1/4 in. around the periphery of the bushing, as shown in
Figure 2.17.

7. Knitted Wire Gaskets

Knitted wire gaskets may be employed to provide both bonding and

shielding between removable parts and structure. Designs for inclusion of

gaskets should be based on minimum plate-to-gasket pressure of 30 psi. Gaskets

should be 1/8 in. in width. Additional information about gasket installation is

given in the section on shielding (Reference 18).
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Clean each mating surface 1/4 in.
around the bushing periphery.

/ \
\,

Rear of \

Shear Pins

£7

Rear of
Electronics

Figure 2.17.-Bonding for shear pins.

3.4 RECEIVERS AND TRANSMIT]_ERS

During the development stage of receivers and transmitters, the following
bonding guideline is recommended:

(1) Where feasible, hard bonding (direct) should be utilized. When

indirect bonds must be used, the jumpers should not exceed 3 in. in length.

(2) All bonding surfaces should be thoroughly cleaned of any noncon-
ductive material (Reference 18).

(3) All subsystem ground busses should be bonded to the intra-system

ground plane.

(4) Base-mounted components should employ the base-mounting area to

provide a suitable electrical bond.

(5) All panel-mounted components should be bonded directly to the
panel.

(6) Removable panels that are attached to the case flange should be

bonded about the entire flange periphery. Flange-mounted quick-disconnect
fasteners may be used.

(7) Bonding between structural members and brackets should be

effected by welding or brazing.
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3.5 ANTENNA BONDING

Arcing between two pieces of metal that are not properly bonded

together is a source of interference that can be both troublesome and difficult

to locate. When the arcing metal joint is a part of the receiving antenna, the

receiver may become saturated with electromagnetic interference from the arc.

This type of interference may occur at any point where two pieces of metal

make a high-resistance contact or where the resistance of the contact varies

with vibration. The condition may be aggravated by dirt and corrosion.

Structural members of a framework, meshed gears, and links of a chain have

been documented as sources of interference. Frequently the situation is

compounded by the proximity of a local high-power transmitter that induces

fairly high currents in the metal joints and establishes a source of broadband
noise.

Several types of ultrasonic devices are now available to aid in locating arc
sources in metal structures, including antennas. Characteristically, a high

proportion of the arc energy lies in the ultrasonic range of frequencies usually

peaking around 150 kHz. A typical ultrasonic detector, used in finding arcs,

corona, and gas and liquid leaks, has a sharply directional pickup pattern. The

high directivity of a sensitive detector can be used to pinpoint a source of
energy, such as an arc, at several hundred meters distance. When the source of

the interference has been found, the pieces of'metal across which the arc forms

must be bonded together to form a low-impedance junction. Gear teeth and
other rotating or sliding metal parts present special problems that may be dealt

with by using brushes or slip rings (References 19 and 20).

The following guidelines for bonding antenna structures are recom-
mended:

(1) All bonding surfaces should be thoroughly cleaned of any noncon-
ductive material.

(2) All structural support members should be welded or brazed.

(3) After bonding, the exposed areas should be given a protective

coating to prevent corrosion.

(4) Adjustable or movable parts of the antenna and structure must be

bonded. Adjustable sectors of the parabolic reflector surface should be bonded

to the frame. These bonds must have low impedance at all operating

frequencies, including the operating frequency of other antennas in the

immediate vicinity (Reference 21).

3.6 BONDING OF OTHER EQUIPMENT

Applicable guidelines for bonding electronic serve systems, computers,

command encoders, data processing equipment, and time standards are given in

Section 3.1. Also, the bonding procedures set forth in Section 3.1 are

recommended for the bonding of motors, generators, alternators, and power
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systems; rotating shafts should be bonded through _ phosphor-bronze ring or

through conducting grease to reduce static discharges.

Where applicable, the bonding procedures guideline set forth in Section

3.1 is also recommended for teletype equipment, vending machines, and motor
vehicles.

4. GROUNDING

The overall ground system must meet requirements for personnel safety

as related to the electrical power system, lightning protection of personnel and

property, and electromagnetic compatibility by providing a quiet, earth-

potential common bus for the grounding of electronic equipment. The last

requirement is met by the signal ground system as part of the overall ground

system. The signal ground system must function as a ground over a wide

frequency range, as wide or wider than the spectrum occupied by the various

signals processed by the electronic equipment (Reference 22).

Grounding techniques for the power system and for lightning protection
are well developed and have been standardized (see Bibliography). Signal

ground systems, on the other hand, have not been well standardized (Reference

23).

The purpose of this section is to suggest a grounding method for the

signal system. The uniform plan presented herein recommends single-point

grounding for low-frequency and instrumentation circuits and multiple-point

grounding for high-frequency applications.

The distinction between LF and HF grounding is based on the different

interference frequencies to which circuits are likely to be susceptible and on

differences in the performance of shields in the tlF and LF ranges.

Low-frequency circuits are affected primarily by the power frequency and its

harmonics (60, 120, and 180 or 400, 800, and 1200 Hz) and are relatively

insensitive to HF effects. Interference fields from nearby power lines are made

up of both electric and magnetic field components. Shielding is effective

against electric fields at power frequencies whether shields are grounded at o,le
or both ends. For magnetic fields, however, conventional shields have no

appreciable shielding effect unless impractically thick, solid iron shields are

used. if more than one ground point is used, the shield and ground of the

structure will form a large loop which may be closely coupled to audio leads of

field station equipment. Circulating shield currents will inevitably make

interference conditions worse than with no shield at all. Shield ground currents

create magnetic fields which induce an RF1 current in lbe center conductor

(see Figure 2.18). These currents cannot flow when the shield is grounded only

at one point (see Figure 2.19). If leads are grounded at more than one point,

return currents will not balance sending currents and a net field will be

generated to create potential interference. Shielding o1' the electric field can be

provided by grounding the shield at a single point.
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Shield 7

,o,er_erence ?I:

Currents in _ _ ,

/Ground Plane

(a) Current loop with multiple grounding.

Magnetic Fleld_

_ Dielectric

_[F////._.,J3

_ _Center Conductor

Cable Shield Strands

(b) RFI current induced in center conductor.

Center

Conductor

I ,

Figure 2.18.-Effect of circulating shield currents in producing interference.

!
No Current

Return Path

Ground Currents

Shield Stray

Impedance Capacitance

_---_ _"-'_ Open circuit

_" a t low

Finite Ground Plane [ frequencies
I

Impedance

_ Grotmd Currents

Figure 2.19.-Elimination of low-frequency loops between shield and ground
by means of single-point grounding.



144 RADIO FREQUENCY INTERFERENCE HANDBOOK

Leads carrying frequencies in excess of 1 MHz are far less sensitive to
power-frequency interference than to HF disturbances. To effectively protect

these leads from electric and magnetic field coupling, they must be completely

enclosed by the shield. In completely closing the shield, the intent is to prevent
HF currents of ambient fields from flowing on the shield interior. To ensure

the proper contact, the cable shields should be grounded at both ends. Good

electrical contact can be established by grounding the shield completely around

the periphery of the connector shell. The use of pigtail grounding should be

avoided on all HF cables. Where it becomes necessary to use a pigtail, the

length should be minimized. Generally, it is not necessary to ground HF shields

at points other than at both ends, unless the cable is unusually long or carries

high-level signals.

4.1 SINGLE-POINT GROUNDING

(SPG) SYSTEM

Data acquisition in areas of high ambient noise demands the use of

differential or balanced circuits. Since a differential circuit responds only to

the voltage applied between its input leads, the noise voltage at the source may

be above ground potential by a considerable amount without degrading circuit

performance. Figure 2.20 illustrates such a differential circuit. The input

voltage, Vg, is the voltage to which the device responds. The noise voltage, Vn,
is simultaneously impressed on both input leads but is balanced out in the

input to the device because each input lead has the same impedance to ground.
Thus, the device does not respond to the ambient noise. In theory, the ambient

noise voltage is cancelled out, assuming the impedance of Vg is zero ohms. In
practice, there is always some unbalance in the differentia] device or associated

circuitry, and some part of V n will appear as a differel_ce voltage across an
equivalent resistance R.

The noise voltage differential causes a reduced output signal-to-noise

ratio. Figure 2.21 shows how the unbalance causes u portion of Vn, AVn, to

appear across the input terminals of the device.

in

lg

in

Q_ Dtfferential_

/_ Device O_ Load

__ ______j 2fn

Figure 2.20.-Schematic diagram of a differential or balanced circuit.
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in2

ini + in2 = i n

Dlfferential_

Device U

Load

Figure 2.21 .-Effect of unbalance in a differential circuit.

The noise generator shown in Figure 2.21 will produce a voltage AV n

between the two input leads that is caused by the noise current in flowing in

the finitely conductive ground plane. The generation of this voltage is

illustrated in Figure 2.22. If the ground connection to either the load or source

is removed, thereby establishing a single-point ground (SPG), a ground loop is

no longer formed, and no appreciable common-mode voltage Vn can develop.

This is "the advantage of an SPG. If the connection to one of the grounds is
removed, an SPG is achieved only at dc and very low frequencies. At high

frequencies, the ground loop is completed by capacitive coupling to the ground

plane through Cd, as shown in Figure 2.23 (Reference 24).

The SPG system is practical and effective only in frequency ranges in

which distributed and stray capacitances are not large enough to degrade it.

The high-frequency equivalent of a nominally SPG system is shown in Figure
2.24. Only a few of the ground loops are shown, but these are sufficient to

illustrate the point.

-_ AVn _'- -===_in2

- 1" t

inl

ill

/

O

o

Differential

Device

'l/1/H//////////////////

I V n _!

:Load

Ineffective

Ground Plane

i////ll

Figure 2.22.-Common-mode voltage generated by current flowing in a finitely

conducting ground plane.
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Q
_- "*" in2 I o

Differential

Device
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I
I Ineffective

/

Ground Plane
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Figure 2.23 .-Ground loop produced by distributed capacitance.

Chassis A

I

Cd I/ Cd

F---'N'_//--"

l
I

L

I Ground Loop l

I 2 I
I I
L__Cd __-I

II

II

_'_,_ Ground Loop 3 ...,,,,_/_

1 -"" _,_._ _._'_Ground Loop Ground Loop 4

Chassis B

I d

cd T cd
:_-Ul I1-71[st--t _

----,-_¢T/_-/ .... 'i
_/ I

i
!

1
Ground Plane

Figure 2.24.-Ground loops produced by several distributed capacitances.

There is a transitional frequency range in which the impedance of the

stray ground loops is too small to be called single-point grounding and too large

to be true nmltiple-point grounding. Grounding systems within this range are

termed hybrids. Distributed capacitance and the filter capacitance to ground

generally establish upper frequency limits for SPG requirements.

4.2 MULTIPLE-POINT GROUNDING

(MEG) SYSTEM

The voltage and current of high-frequency signals are distributed along a

conductor according to the spatial retardation effects of electromagnetic

energy transmission. A conductor or shield grounded at only one point behaves

like a grounded monopole antenna, and the potential developed at the

ungrounded end must be considered because the conductor may then become a
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reasonably efficient antenna system even at physical lengths that are a

relatively small fraction of the signal wavelength. Thus, it may radiate energy

from a noise source and expose other equipment to the electromagnetic fields,

or it may act as a receiving antenna.

The antenna effect may be largely overcome by grounding the conductor

at its ends. In an equipment cabinet that cannot be solidly bonded to the

ground plane, the diagonally opposite corners of the mounting surface may be

grounded. If coaxial cables pass through a metal bulkhead, a bulkhead adapter

with the outer shield grounded to the bulkhead should be used. The

multiple-point ground (MPG) system must be employed in the frequency range

above 1 MHz because of the degrading effects of ground loops caused by

distributed capacitances in the high-frequency range.

4.3 THE ROLE OF STRUCTURE

The mechanical elements of the system are defined as its "structure." A

structure may be composed of-

(l) Frames that hold circuit board receptacles.

(2) Racks for mounting frames.

(3) Ducts, trays, and supporting frame of the cabinet.

(4) Cabinet casework.

(5) Miscellaneous items that support or influence electrical currents.

Although structural design has traditionally been the responsibility of the

mechanical engineer, it has become an area of increasing interest to the circuit

designer because structures frequently function as a shield and a ground
reference for circuitry. A highly conductive structure is desirable because it

allows the circuit designer considerably more flexibility than an insulating

structure (Reference 25). The circuit designer should negotiate with the

structural designer to provide solid conductive paths between modules, power

supplies, and peripheral equipment elements as an integral part of the

structure. A recommended requirement of such negotiations is that every joint
in the structure must exhibit good conductivity. To the structural designer this

means that maximum areas must be provided for metal-to-metal contact and

welding, brazing, or high pressure fasteners for joints.

For power frequencies and for de, the inductance and capacitance of the

structural elements may be disregarded; the effect of resistance on voltage drop

is the primary consideration. At higher frequencies, inductance is a more

important factor. This simply means that structural members stressed by RF

energy should have low inherent inductance. Interpreted structurally, low-

inductance design involves designing members with a high ratio of surface-to-

cross-sectional area. Permeability can also have a significant bearing on the

self-inductance of the structure. For example, by using iron instead of copper
or aluminum, the inductance increases by a factor of 10 to I00.
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4.4 DESIGN OBJECTIVES

A specific objective of good design practice is to bring all chassis of a

system to a common potential, or failing that, to minimize the potential
differences between them. A shift in the reference potential of a signal (which

can be minimized but not completely eliminated) occurs when any signal is

transmitted by a wire or cable over any distance. In addition to a shift in the

reference potential in the cable, the chassis of the line termination equipment will

not be at the same potential as that of the source equipment for other reasons.

The structure may be "hot" or the ground bus connecting the chassis to the
system reference may have excessive voltage drop. Thus, an unavoidable net

difference in reference voltage occurs between the receiving chassis and the

incoming circuit. Even a good structure cannot completely prevent cable flux

linkages, but it will at least bring the two chassis to a common potential. A
good design approach is to attempt to get all of the chassis within some

arbitrary voltage difference tolerance and to identify cal)les that run between

chassis lhat have a voltage difference. The design objective for cabling is to

minimize the net cable current, i.e., to arrange cables so that tim vector sum of

all currents entering and leaving a specified volume is mmmmm.

Circuit designers should develop a scaled module layout showing all

module-to-module interconnecting cables. A chart should be prepared to

tabulate system waveforms, as illustrated in Table 2.3.

Table 2.3-Example of typical waveforms carried

by cables interconnecting modules.

Signal

Frequency

(kHz)

0.300

9.6

28.6

100
186

Wave form

Pulse

Square
Pulse

Sine wave

Square wave

Amplitude Rise Pulse
Peak-Peak Time i Width

(v) (us)! (us)
I

6 1.5 400

6 0.5 5

40 0.5 : 10

32 0.0 [ 0.0

6 0.1 ' ""

Load
Location

Resist-
(card-des-

ance
ignation)

(k_2)

t CF-3

8 CC-7

AC-9

7 Oscillator

1.5 CA-4

The next step is to use this information as a guide to establish the

grounding and protection techniques for each lead or set of leads, as described

in the following paragraphs (References 14 and 26).
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4.5 REQUIREMENTS FOR FIELD
FACILITIES

An SPG system is desirable for field station facilities. Each ground

system should connect to the earth ground at only one point. If necessary,

there should be a ground system for each type of power used. Separate ground

systems should also be used for signal leads, structure or interference grounds,

and signal shield grounds. All interference-producing devices, filters, and

high-frequency shields should be connected to the chassis ground. Prior to the

connection of equipment to the rack grounding bus, each ground system in a

given rack should be electrically isolated from all others by a minimum

resistance of 10 M_2 (Reference 27).

The connection to earth is an essential part of a power grounding system.
If this connection is inadequate, even the most elaborate grounding system will

be ineffective because there will be no low resistance path to earth.

A buried ground that establishes a good connection to earth must be-

(l) Made of good electrical conductors.

(2) Able to withstand mechanical abrasion.

(3) Able to withstand the effects of corrosion.

(4) Able to provide sufficient contact area with the soil to minimize the

grounding resistance.

The resistivity of the earth ground should remain reasonably constant
through the changing seasons of the year and be relatively unaffected by

normal current flow in the system. To prevent excessive corrosion of the

connection, copper or zinc coated (galvanized) iron electrodes should be used.

Electrodes driven into the ground may be rods or pipes. If soil conditions

permit, a few deep pipes are usually more effective than many short pipes.

The approximate resistance of a rod or pipe driven vertically into the

earth as a function of the depth to which the rod is driven is shown in Figure

2.25. The decrease in resistance with increased rod diameter does not justify
using rods with a diameter greater than that required to withstand the stresses

of driving. Since an effective electrode consists of a rod and 6 to 10 ft of soil

around the rod, it is advisable to drive rods at least 12 ft apart. The usual

procedure is to drive a group of electrodes in a straight line (this configuration

affords the lowest resistance). However, when several ground rods are

connected together, their combined resistances may be higher than the

calculated parallel resistances of the individual electrodes. This is because only
a part of the resistance of each ground electrode connection parallels the
resistances of the other electrode connections; the remainder is common. The

relationship between the cumulative paralleling efficiency and the spacing

between ground rods is shown in Figure 2.26 (Reference 28).

In cases where ground conductivity is very low, it may be advisable to

treat the earth with a salt solution around the driven electrodes. The change in

resistivity brought about by changing the salt content of sandy loam and red
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Figure 2.25.-Theoretical variation of ground resistance with depth of ground

rod. (After "Electrical Interference," by Rocco Ficchi, 1964)
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Figure 2.26.-Cumulative paralleling efficiency of rod electrodes in untreated

soils for various separation of ground rods. (After "Electrical Inter-

ference," by Rocco Ficchi, 1964)

clay from 0.1% to 20% is shown in Figure 2.27 Also shown is the change in

ground resistance with time as the salt is carried away by the water in the soil.

After approximately a year it is advisable to retreat the soil.
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Figure 2.27.-Changes in resistance of a ground connection as the result of

salting. (After "Electrical Interference," by Rocco Ficchi, 1964)

The resistivity of salted soil also varies with temperature. Resistivities

increase rapidly as temperatures fall below freezing. Sandy loam soil with 20%
moisture and 5% salt shows a variation of about ten to one over the

temperature range from +20 ° to -13°C.

Specific earth ground requirements for STADAN stations are given in
Reference 2. Additional grounding information is given in NASA-GSFC

Specification S-523-P-8, November 20, 1967, "Lightning Protection Guideline

for STADAN Ground Equipment." (Also, see Section III.)

4.6iRACK AND CABINET GROUND
SYSTE M

Each ground station rack should be provided with a signal ground bus 1

in. wide by 1/4 in. thick, the bus length being determined by the cabinet

height. Each chassis in a rack should be designed to have four independent

ground systems that are electrically isolated except at one point. All ground

systems should tie electrically at one point to the rack signal ground bus (see

Figure 2.28). Each ground system becomes a conductive network that provides

a reference voltage for circuits requiring the same reference potential. No
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ground currents should be intentionally allowed to flow in any of the following

four independent ground systems:

(1) Signal ground system for instrumentation.

(2) Chassis or interference ground system.

(3) Signal shield ground system.

(4) Power ground system.

Ground loops are usually the result of unmtentioually completed paths

that permit the flow of currents in grounding circuits. They are most often

caused by a high impedance that may develop between two points within the

same ground system. A loop which was passive in an original circuit design may

become active when corrosion causes a high-impedance joint to develop in the

loop. Ground currents can then produce a difference in potential, and the

active ground loop becomes a possible source of trouble. The area of a ground

loop can vary from a fraction of a square inch in micro-miniature circuits to

-Tinned Copper Braid _.- Electronics Rack

Chassis #I
g _ ChaBsis or Interference I

:_ ( Ground System I

. " i( Signal Ground System
-- : _/Signal Shield Ground System I

" (.POWer Ground System I

I
_- Rack Copper Ground Bus I

Chassis #2 i

d U_ Chassis or Interference I
• : - ( Ground System

-- -' ( Signal Ground System I

; "" _Signal Shield Ground System I
: "" / Power Ground System

I

14-- No. 8 Stranded Cable or Larger [

---_. si--_;aG-%_--da-;dJ-_ (--4/0_---_'--_ted _ablel

Sub Floor 111]V d_--Operatiorm BuHdlng

_,_ [ .C_=II_ 4/0 Copper Cable to Signal

Ground Earthing Terminal Block

Signal Ground Terminal Block

(insulated copper plate I//4in. thick)

Figure 2.28.-Grounding scheme for a station signal system.
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thousands of square feet in buildings and antenna assemblies. Use of SPG

systems will reduce the potential in ground loops. Careful implementation of
the principles of grounding for circuits and shields will prevent the formation

of ground loops that might be formed within a chassis or between chassis or
racks.

The structure should be highly conductive and, hence, be designed so
that there is no significant impedance between any two members. To achieve

this goal, RF bonding described in Section 3 should be used.

4.7 CIRCUIT AND SHIELD GROUNDS

Methods of circuit and shield grounding will be determined by the circuit

frequency, sensitivity, and the presence of follow-on circuits. A follow-on is an

extension of a circuit beyond its initial termination.

When the leads in a system are indexed and classified according to

Section 4.4, the alternatives listed below can be applied. In all classifications, a

careful effort should be made to group interconnecting wire bundles so that
there will be zero net ground current flow in a bundle.

1. Terminated Circuits

If one end of a circuit is terminated in a load (no follow-on connections)

the grounding method should be selected according to the circuit frequency.
For circuits operating at frequencies below 5 kHz, float the terminated

end and use an SPG at the other end. Tightly twist high and return leads. If

shields are required they should be grounded at a single point.
For circuits operating at frequencies between 5 ktiz and 1 MHz, the most

desirable practices depend upon circuit sensitivity. For circuits with a
sensitivity threshold of 50 mV or less, balanced circuits should be used. If

unbalanced circuits are used, the load end should be floated and triaxial shields

(grounded at a single point as in Figure 2.29) should be used to reduce pickup
of stray energy. For moderately sensitive circuits with a threshold of 0.05 to 1

V, the circuit may be grounded at both ends.

Inner

Center Conductor Shield

Zo:

Zx > 5o._ { ...... _"_" "-

Outer
Shield

#

i .

Figure 2.29.-Example of grounding a double-shielded (or triaxial) coaxial cable.
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Circuits operating at frequencies above 1 MHz should be grounded at two

or more locations. Shields should be grounded at frequent intervals if they are

long. A high-quality ground path should be maintained between ground

poin ts.

2. Follow-On Circuits

When both ends of a circuit have follow-ons to other circuits, both ends

should be grounded. Precautions should be taken in this case to obtain

very-low-impedance bonding between frames of the two modules. The
interconnection pairs (high and return leads) should be twisted and routed on

adjacent connector pins as close together as possible. If the circuit is very

sensitive, magnetic field picktJp problems can be quite severe. To avoid

grounding a circuit in two ground systems, isolation transformers may be used

if an overlap in grounding system occurs.

3. Poor Structure Continuity

If the structure continuity is poor* and cannot be improved, the circuit
must float at the free end. If both ends have follow-oil tics, then some method

of isolation is reqt, ired. Isolation transformers with Faraday shields can be used

in extreme cases. Under some conditions balanced circuits may provide the

solution. Problems of poor structure continuity are best handled by checking

for potential sources of trouble and by incorporating correct measures early in

the design stage. The use of very sensitive or high-power circuits in the

frequency rangc between 5 kHz and 1 MHz should bc avoided if structure

continuity is poor.

4.8 SHIELD GROUNDING FOR

LOW-FREQUENCY CIRCUIT_

Low-frequency (LF) lines are those intended oniy for transmission of

signals (not power) at audio frequencies. Shields on LF leads should be
grounded at one point only. The shields of sensitive instruments and balanced,

or differential, circuits should be grounded at the receiving end to prevent
excessive induction into cables at that point. In most other cases, shields

should be grounded at the sending end to prevent the signals carried on cables

from being induced into other circuits. All LF shields should be brought to a
single point where they can be securely grounded with the LF common lead

and the LF power bus.

*In this context, "poor" refers to loosely joined metal strta:turcs with high contact

resistance between joints.
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When cables are long, the grounding of LF shields becomes complex.
Shields are often carried through connectors on leads to preserve the SPG

concept. This has the disadvantage of using valuable connector pins and

degrading the performance of the shield. When shields are combined and

carried through on one pin, the resulting cross coupling can prove to be
excessive. It is recommended that long shields be grounded at intermediate

connectors, as shown in Figure 2.30. It is desirable to create several short cable

shields that are single-point grounded in place of one long, inefficient shield. In

addition, cable coverage by the shield is maximized using this scheme because

shields can be run directly to the pin; otherwise, cable coverage is lost when
shields are stripped back for pigtail leads.

The following rules summarize recommended practices for grounding LF
circuits and their shields:

(1) Ground LF shields, LF power supply leads, and LF common leads

together at one point only.

(2) Tightly twist all LF leads. Never run the supply and return leads

separately or in separate shields.

(3) Never include LF signal leads and power leads in the same bundle,

on the same connector, or on the same terminal board if it can be avoided.

Bulkhead

Ground

Equipment
#2

Figure 2.30.-Grounding of a long, low-frequency cable.

4.9 SHIELD GROUNDING FOR

HIGH-FREQUENCY CIRCUITS

High-frequency leads are those intended for transmission of signals above

the audio frequency range. All high-frequency shields should be grounded at

more than one point. When a line is short and there are no intermediate breaks

in the shield, grounding at both ends of the cable will suffice. In the case of
very long runs where a cable must be routed through one or more intermediate

connectors, it is preferable to ground cable shields at each connector (see

Figure 2.31). The preferred method of grounding to connectors is illustrated in

Figure 2.32.
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Equipment

#I

Bulkhead

g, Connector / Connector _ Connector_
Shields _ in Junction

_lffd IlkIN fill Ill[ FI

_,,_-..- Cl_ssm ,_ Colmector--

Ground Grounds

Figure 2.31 .-Grounding of a long, HF cable.

Clean Metal or Iridite

(for bond to chassis)

c Clean Metal Contacts

Cbaasla Mounting Plug IaBert Shield Clamp Shell Ring

Figure 2.32.- Sectional diagram of a typical shielded plug showing preferred

method of grounding to connectors.

Occasionally a circuit will be susceptible to both tow- and high-frequency

interference, An example of this could be a low-frequency analog circuit,

which would normally be susceptible to radiation al power frequencies. In

addition, it could be very susceptible to high frequencies modulated at an

audio rate. To protect leads against this phenomem_n, a hybrid method which
offers the advantages of both single and double grounded cables is necessary.

This can be accomplished by grounding one end of the shield

conductively and the other end through a capacitor. The value of capacitance

will depend upon frequency; however, its value will typically range between

0.01 and 1.0/JF. The cable is thus grounded at a single point at low frequencies
and grounded at two points for high frequencies.
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4.10 SHIELD GROUNDS

At connectors or junction boxes, it may be desirable to group shield

grounds together at one point. This practice may be hazardous when the same

shields are used to prevent radiation and also to protect sensitive circuits. In

this case, coupling into sensitive circuits is inevitable to some degree.

To reduce coupling into sensitive circuits by common shields carrying

different kinds of current, it is advisable to group leads into bundles according

to the power they carry. Lines may carry-

(l) Noisy power (to motors, solenoids, and so forth).

(2) Interference-free power.

(3) High-level signal or instrumentation power.

(4) Sensitive signal or instrumentation power.
Cable shields can be grounded together in any wiring bundle without

danger of cross coupling when leads are routed in separate groups as classified

above. If the grouping of shields and leads is not controlled early in a program,

an incurable condition may result. It is unlikely that the cross-coupling

problem on shields can be dealt with feasibly in a completed system.

4.11 LENGTH OF GROUND LEADS

Because shields are normally difficult toground, the length of the ground
lead tends to become excessive. The reactance of a short, straight ground lead

is so low at low frequencies that it is inconsequential. This is especially true

when the diameter of the wire is relatively large so that the ratio of length to

diameter is small. However, the effect of this inductance becomes important at

higher frequencies.

As an example, a l-in. length of AWG 20 copper wire has an inductive

reactance of 13.0 _ at 100 MHz. It is evident that at high frequencies the

inductance of short pigtail grounds is highly undesirable because it can

effectively isolate a double grounded shield from its structure.
The standard equation for the self-inductance of straight, round wires in

air is given in Reference 29 as

L0=5.08× 10-3lI-1.0+-_+2.31og10(_)], (2.14)

where

L 0 = self inductance in microhenrys,

/_ = permeability of wire relative to that of copper (taken to be 1.0),

and
l = length of the wire in inches,

d = wire diameter in inches.
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Pigtail ground leads introduce undesirable reactance and should not be

used for grounding HF shields. For LF shield grounds, it is permissible to allow

pigtail leads of 1 to 2 in. The chart in Figure 2.33 is presented to assist in

determining the permissible length of shield ground connections (Reference
30).

The problem of terminating shields at connectors becomes highly

complex as the cable density of a bundle increases. To elmfinate pigtail grounds

and simultaneously simplify the problem of terminating shields in high density
wire bundles, shields may be connected to chassis through the connector

backshell as shown in Figure 2.32. Using this method, shields connect to

ground through the backshell to the chassis-mounted plug and finally to
chassis. Connectors must be finished with a conductive, noncorrosive finish and

be securely bonded to ground to obtain acceptable HF grounding.

4.12 CIRCUIT AND POWER

RETURN GROUNDS

A summary of recommended practice for power and return circuits is
itemized as follows:

(1) Separate return conductors should be connected back to the source

for delivering ac power, dc power, or power to interference-generating circuits

as well as for instrumentation and signal circuits.

(2) An SPG should be established for each ground system. This point
should be centrally located and permanently bonded to the structure.

(3) Returns of a given type should not share a common conductor when

there is a possibility of circuit coupling.

(4) Circuits that produce large, abrupt current variations should have a

separate grounding system or should be provided with a separate return lead to

the SPG. This reduces transient pickup in other circuits.

(5) When returns of a given type are combined, as for a group of returns

from a single frame, a return bus may be used. This bus should be of minimum

length and be flat and of low impedance. The cross section of the return bus
should be at least as great as that of the combined return conductors connected
to it.

(6) All circuit returns should conform to the following principles:

(a) The two leads of a given circuit should be routed together as

close as possible.
(b) Leads should be routed as close to the ground reference plane as

possible.

(c) Circuit returns should never be shielded separately or carried

outside the shield used for the corresponding hot conductor.
(d) Leads carrying audio frequencies should be tightly twisted with

their returns (18 turns per foot is satisfactory) and carried in

insulated shields grounded at one end only.
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(7) The high-voltage and grounded leads of power circuits should be

formed into a twisted pair to reduce magnetic field generation. The two leads

should pass through adjacent connector pins to reduce capacitive coupling to
other circuits. All power returns for modules must be isolated from the frame.

They should be bunched together and routed as far as possible from signal

circuits.

4.13 RECEIVERS AND TRANSMI_VFERS

Grounding minimizes coupling between circuits, establishes an equipoten-

tial plane, eliminates inductive loops, and provides low-impedance paths for
return currents. The following guidelines should be employed to achieve this:

(1) At frequencies below 5 kHz, the SPG system should be used.
(2) At frequencies above 1 MHz, the MPG system should be used.

(3) A hybrid of both the SPG system and the MPG system may be

necessary to achieve good grounding in the critical frequel_,cy range from 5 kHz
to l MHz.

(4) Circuits that produce large, abrupt current variations should have a

separate grounding system or should be provided with a separate return
conductor to the SPG.

(5) A metal chassis or cabinet used as a ground return circuit should be

made of metals having high electrical conductivity.

(6) Grounding impedances should be kept low by using the shortest

possible grounding leads.

(7) Grounds for low-level signals should be isolated from all other

grounds.
(8) Grounding straps should have the maximum practical surface area

and conductivity.

(9) Grounding of the antenna structure must conform to the require-

ments for lightning protection and safety of personnel.

4.14 OTHER EQUIPMENT

The grounding guidelines of Section 4.8 are applicable. Personnel safety

and electrostatic charge dissipation are additional important considerations.

The grounding designed with short, low-inductance leads, as outlined in
Section 4.8, should be sufficient.

5. FILTERING

This section is devoted to a discussion of the design and application of

filters commonly used in EMI work. A complete nmthematical treatment of

the principles of interference reduction will be found in various texts listed in

the bibliography which deal exclusively with theory.
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Filters are normally used as a last resort whenever it becomes necessary

to reduce interference currents flowing in a conductor. An initial effort should

be made to design circuits that are inherently free of such currents. Failing this,

filters should be utilized to limit the magnitude of EMI currents and to confine
the currents to the smallest practical physical area. Properly installed filters can

significantly suppress radiated and conducted EMI.

After the basic circuit design has been determined, it is necessary to

establish a plan for dealing with any remaining EMI. In general, this plan will

depend upon circuit layout, shielding, bonding, and filtering.

The effectiveness of any EMI filter is greatly influenced by the

impedance of the noise source and the load impedance. Manufacturers of EMI

suppression filters normally specify the filter insertion loss with fixed source

and load impedances, usually 50 _. The actual insertion loss realized in a

practical circuit may be different from 50 _. This aspect should be taken into

consideration when specifying or using EMI filters (Reference 31).
The number of filters required for a given device and the amount of

insertion loss required in each filter should be determined as early as possible in

the design phase of a program. If the equipment is small and relatively simple,

it is possible to establish filter requirements as part of the original circuit

design. Usually a filter is inserted on each power input lead. Filters are
mounted so that the filter body forms a part of the basic enclosure, with the

input and output terminals of the filter on opposite sides of the enclosure

(Reference 32).
If the equipment is large and complex, the filter requirements are

generally established by circuit EMI evaluation in the breadboard stage.

Interference specifications limit the amount of conducted EMI that may be

present on the power input leads and the amount of radiated EMI that may be

present at some fixed distance from the test sample. In the breadboard design

stage, it is possible to make accurate measurements of conducted EMI on the

power lines; this is compared to the specification limit. The amount by which

the EMI present exceeds the level of the specified limit is the amount of

filtering required.
Evaluation of the radiated EMI characteristics is somewhat less direct. Of

course, the actual level of radiation can be measured. This level will be reduced

by the shielding of the final enclosure.

Another method for evaluating EMI in the breadboard stage of

development is based on a Fourier analysis of waveforms in the various circuits.

Repetitive nonsinusoidal waveforms give rise to harmonic components at

frequencies far above the fundamental repetition rate. Whether radiated or

conducted, these components become a major factor in all broadband EMI

problems, both radiated and conducted. A survey of the more powerful

waveforms is made with an oscilloscope; the waveforms to be analyzed are

photographed. The spectral distribution of harmonic components should be

computed and plotted for each case. This set of graphs enables one to judge

which circuits are most likely to be a major EM1 contributor (Reference 33).
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In the following paragraphs it is assumed that filtering requirements have

been established.

Once the requirement for insertion loss is known for a given filter, the

next step is to design the filter circuit. If actual circuit impedances are known

in the frequency range of interest, then these values should be used for

calculating circuit values. If they are not known, then an arbitrary impedance,
usually 50 _2, is assumed and a filter circuit is designed. This circuit is installed
in the breadboard model and the reduction in conducted EMI is measured at

several frequencies above the nominal cutoff frequency of the filter. The
amount that this insertion loss differs from the calculated (50-_) insertion loss

is noted. A final circuit is then designed, still based on the 50-_2 impedance but

correcting for discrepancy in the insertion loss determined above. This

procedure will yield the correct filter design.
Certain guidelines are helpful in deciding what type of filter circuit to

apply in any given instance. If it is known that the filter will connect to
relatively low impedances in both directions, then a circuit containing more
series filter elements is indicated (a T-circuit, for instance). Conversely, a

high-impedance system calls for a n-filter. If the filter is connected between
two severely mismatched impedances, then an asymmetric filter circuit such as
two L-section elements can be used. The series element faces the low-

impedance side of the system.
At frequencies well above cutoff, a properly designed filter provides

transmission toss that increases at 20 dB per decade per reactive element. This

is sometimes expressed as 6 dB per octave per reactive element (Reference 34).

The classical n-type f'flter circuit, consisting of an inductor and two

capacitors, can be used for any low-pass filtering in communications circuits or

for suppressing electromagnetic interference in power lines.

Equations and charts for the design of n-type filter circuits are readily
available in standard reference books; however, these were developed primarily

for applications in which current and voltage levels are relatively low. When.

such data are used to design a n-network for use as an EM! filter, the current

and voltage levels are usually so large as to require elen-tents of impractical
sizes.

For example, a Butterworth n-filter with a cutoff frequency of 10 kHz

calls for a capacitance of 0.3/_F and an inductance of 1.6 mH. The design of
this inductor presents no problem if it is required to carry only 10 or 20 mA. If

it must carry 20 A without saturating or overheating, it may become too bulky

to be practical. The desired transmission loss at frequencies above cutoff may
be obtained with elements of practical size by using a different set of values for

both series and parallel filter elements. The component values for such
modified circuits are not easily derived from the design equations usually given

in handbooks, and it is difficult to determine the trar_smission loss of the

modified filter as a function of frequency (usually specified in terms of a

matched 50-_2 system).
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5.1 LOW-PASS FILTER DESIGN CHARTS

With the charts presented herein, practical low-pass filters can be

designed to reject RFI above the upper cutoff frequency, and their

transmission loss can be determined rapidly. Two related equations are the

basis for the nomographs and charts (Reference 35). First, consider a simple

circuit consisting of only a source and load, both of which have impedances of

equal value as shown in Figure 2.34a. The output voltage for this circuit is
simply

G
vl 2 " (2.15)

Next, consider the circuit with a 7r-type filter inserted between the source and

load impedances, shown as Figure 2.34b. Writing the loop equations for this

circuit and solving for the load voltage, the output voltage is

Vin

V 2 = . (2.16)
2- 2w2LC +�[(eL/R)+ 2R¢oC- ¢o3RC2L]

Substituting Vin = 2V 1 from (2.15) into (2.16) and determining the square of
the absolute magnitude of the voltage ratio leads to

Vl 2 _2{ ['2 C2R2_LC)
V2 = 1 + \4R2 +

+ ¢o4(L-_-LR 2C3)

eo6R2L2C 4
+ 4 (2.17)

T(
Vin

Source Loaa

V l

L
(a)

I
Source I Filter I l_ad

I I

R V2

',

Figure 2.34.-Source and load connected directly and with filter interposed.



164 RADIO FREQU_:_NCY lNTER t"I'I,Rt-INCE HANDBOOK

Filter insertion loss in dB is defined as

I/1 2

I.L. = 101Oglo V2

To simplify (2.17), let the damping ratio be represented by d:

(2.18)

As co becomes very large, the o36 term dominates {2.17). A cutoff fre-

quency, -/Co= c°0/2rr' can be defined from this term, where

so that

co6_ 4
R2L2C4 (2.20)

1- 2 -]1/3

coo=LRtc2j •

If the expressions for d and coo are substituted into (217) and appropriately

rearranged, the insertion loss in dB is

6o21 1 3) 2I.L. = l0 lOglo +--_ok- _ - d 2/

-2 _-._(--_/3 - d2/3_ 006 1+ .-77g.6 ' (2.21)
coO \d ] coO

This expression can be simplified further by letting

D = 1 _ d213 (2.22)
dl/3

and by normalizing the frequency of interest with respecl to cutoff frequency

;o:

F= f_f_= co

fo coo"

L
d = _ (2.19)

2CR 2 '
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The insertion loss in dB for a n-type filter circuit can then be expressed as

I.L. = lOlogl0[1 +F2D 2 - 2F4D +F 6] . (2.23)

The insertion loss response curves (Figures 2.35 and 2.36) are based on

this equation. The response curves are numbered from 0 to -6 for Figure 2.35

3Q

2_

10

0 I 1 I 11 I 11

O. O1 O. 1 1 10 100

Normalized Frequency (F : f/fo )

Figure 2.35.-Curves for insertion loss for an under-damped, low-pass, three-
element, n-type filter. (After J. C. Shifman, IEEE Trans. EMC, 1965)

120

110
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9O

3O

2O

10

0

O. Ol

I. L. (dB) : 10 lOgl0 (1 + F2D 2 - 2F4D + F6) _I_

2CR 2

.... 0_ . I i ,.lllJ i • | _li_,

0.1 10 100

Normalized Frequency (F = f/f0)

Figure 2.36.-Curves for insertion loss for an over-damped, low-pass, three-

element, n-type filter. (After J. C. Shifman, IEEE Trans. EMC, 1965)
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and from 0 to +6 Figure 2.36. These numbers correspond to the logarithm of
the damping ratio, d = L/2CR 2. Thus, for a value of d = 0.01, the -2 curve of

Figure 2.35 represents the transmission response of the filter.

5.2 INSERTION LOSS CALCULATIONS

As an example of the use of these curves, consider the case in which it is

required to find the insertion loss at 10 kHz for a three-element filter having a

cutoff frequency of 50 kHz and a damping ratio, log 10 d = -4. The normalized
frequency is 10/50= 0.5. By entering the graph at the abscissa value 5 and

projecting upward on Figure 2.35 to curve -4, the value of the insertion loss is
read from the left-hand scale as 20 dB.

As another example, let it be required to find the insertion loss at 40 kHz

for a three-element filter having a cutoff frequency of 80 kHz and a damping

ratio, lOgl0 d = +3. The procedure is the same as that described, but since the
damping ratio is positive, Figure 2.36 must be used. For the normalized

frequency of 40/80 = 0.5, the insertion loss is found to be 34 dB.

The nomograph of Figure 2.37 is based on (2.19) and (2.20) and

represents the relationship between inductance L, capacitance C, cutoff

frequency f0, and response curves of Figures 2.35 and 2.36. Any straight line

intersects the L, C, and .to scales at values that satisfy w 0 = (2/RLC2) 1/3,

where R = 50 _2. Each sloping guideline in the nomograph is labeled with the

logarithm of the value of d associated with the slope.
The data for Figures 2.35, 2.36, and 2.37 are valid only for R = 50 _.

For some other resistance, R'=KR, the required values of inductance and

capacitance are L' = KL and C' = C/K, where K = R'/R is the scale factor and

the primed letters designate the required circuit values after scaling. Impedance

scaling has no effect on the shape of the response curve, as the same values of
attenuation occur at the same frequencies as before (Reference 36).

An example of how to use Figure 2.37 to determine the insertion loss of

a symmetrical n-type low-pass filter circuit in a matched 5042 system is

represented by the dotted line in the homograph. For this example, L is 50

mH, C is 0.1 taF, and f0 is 7 kHz. The projected response curve is obtained by
noting which of the slanted lines marked, Damping Ratio, d, is most nearly

parallel to the straight line connecting L, C, and fo" In this case, the +2 line is
used. Insertion loss as a function of frequency for zr-circuits having damping

ratios lying between -6 and +6 is shown in Figures 2.35 and 2.36 where the

freq_ency scale is normalized to f0 = I. To get the actual frequency values, the
frequency scale must be multipled by the cutoff freq_e_cy determined from

Figure 2.37.

The insertion loss for the above n-type circuit is therefore determined by

the curve labeled +2 in Figure 2.36. For this case, )'o is 7 kHz and the
normalized frequency scale in the figure must be multiplied by 7 X 103 to

obtain the actu:d frequency values.
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Figure 2.37.-Nomograph for computing constants of a 1r-type filter. (After

J. C. Shifman, IEEE Trans. EMC, 1965)
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5.3 THE II-CIRCUIT DESIGN

Suppose it is necessary to design a n-type filter circuit that has 35 dB of

insertion loss at 50 kHz. Assume that a zero damping ratio is the most
desirable; then, from Figure 2.35 or Figure 2.36, at 35 dB read F = 3.8. From

this determine Jo by

f 50 X 103
f _ I --_

Y0 f0

3.8[ 0 = 50XlO 3,

and

f0 = 13.2 kHz.

Place a straight edge on the nomograph (Figure 2.37) so that it lies parallel to

the line of unity' filter damping ratio and passes through 13.2 kttz on the/CO
scale. Read L = 1.1 mH and C = 0.20 taF, which are the component values for

the rr-circuit. If there are no restrictions on the component values or their

physical size when determined as indicated, then tile assumption of unity

damping ratio in Figure 2.37 is valid.

When establishing requirements for filter inserti(m loss it must be kept in
mind that different filters of the same design will display somewhat different

interference characteristics due to component tolerance variations. For this

reason, it is important to allow a safety margin in inserli,)n loss requirements.

A common practice is to allow at least 6 dB for this margin in the stop band.

5.4 SELECTION OF INDUCTORS

Filter inductors are usually wound on toroidal cores of powdered

iron, molybdenum permalloy, or ferrite material. The choice of materials is

determined by the operating frequency and current rating. The powdered iron

cores can be used for all dc applications and for most 60-Hz power frequency

applications. For high-current 60-Hz and 400-Hz applications, molybdenum

permalloy cores should be used. For extremely tow current (<0.1 A)

applications, the ferrite materials should be considered. The size of the core is
determined by the required inductance and current rating. The product of the

number of turns and the peak current must be limited to a value that will not

drive the core more than 50% into the magnetic saturatio_l region.

Windings should be placed on the coil so that input and output turns are

separated as much as possible. The resistance in the windings plus losses in the
core cause all the heating that will occur in the filter. This heating should be
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takeninto considerationwhenratingthefilter for operationat a specified
ambienttemperature.An empiricalrelationshiphasbeendevelopedwhich
indicatestheapproximatetemperatureriseofthecontainingcaseas

TemperatureriseinC° = P
0.006 A (2.24)

where

P = power dissipated in watts

and

A = total surface area of filter case in square inches.

This expression is based upon the typical heat dissipation characteristics of
tinned steel cans.

5.5 SELECTION OF CAPACITORS

Capacitor selection is determined by the voltage, temperature, and

frequency ranges in which the capacitor must operate. Most EMI power line

filters are rated for certain standard voltages. For 28-Vdc applications,

capacitors with a 100-wVdc rating are quite adequate. Metallized mylar units
offer the most compact capacitor with good reliability and low dissipation

factor. Lead length should be kept short to improve the high-frequency

performance.
If a large amount of capacitance is required in a small space, tantalum

capacitors may be considered. However, this type of capacitor is sensitive to over-

voltages and can be damaged by reverse polarity. The dissipation factor is con-

siderably higher than for Mylar units and the high-frequency response is worse.

For 120-Vac applications, the capacitor should be rated as a 400-wVdc

unit, suitable for ac use. A Mylar and foil unit or a paper-Mylar and foil unit is

recommended. The dissipation factor is low and high-frequency performance is

good. For 240-Vac applications, an oil-impregnated paper and foil unit is
recommended.

If good capacitor performance is to be expected above 50 MHz, it
becomes necessary to make use of designs using feedthrough capacitors which

eliminate the lead inductance problem.

5.6 FILTER ENCLOSURES

An EMI filter should be enclosed in a steel case with a conductive outer

finish. The terminals should be arranged so that the input and output leads are

physically separated by the greatest possible spacing. The internal design
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should be such as to provide maximum isolation of individual filter circuits. If

crosstalk is critical, a solid metal barrier between circuits should be used. The

mounting plate of feedthrough capacitors should form a sealed barrier so that

interference cannot "couple past" the feedthrough. Filter circuits carrying high
current should be isolated from low-level circuits.

5.7 FILTER INSTALLATION

When an EMI filter is installed, care must be taken to ensure that its

performance is not limited by poor mounting techniques. Ideally, the filter

should be mounted as part of a natural barrier, such as the main circuit chassis
or enclosure. This tends to prevent interference coupling from the input to the

output. In no case should the filter input and output leads be bundled

together.

The mounting surface for the filter should be a clean conductive area. An

anodized surface on an aluminum chassis has poor conductivity; an iridite

surface has much better conductivity. If the filter is mounted in a cutout in the

chassis, the use of EMI gasket material is recommended to ensure a good bond.

The mounting bond must not deteriorate with time; therefore, bare ferrous
surfaces should not be used.

The leads on the output of the filter should not be routed through a

region containing interference fields. If this is unavoidable, then the leads
should be shielded.

5.8 FILTERS FOR RECEIVERS

Filtering may be required to reduce both reception and transmission of

interference along conductors. The following guidelines are recommended:

(1) Tunable rejection filters may be useful a! the RF inputs to reject
off-channel interference.

(2) RF bandpass filters should be used where necessary to suppress

spurious radiation (Reference 37).
(3) A low-pass filter between the output of the RF amplifier and the

input of the mixer will reduce spurious reponses, A low-pass filter is used

before the RF amplifier in field intensity receivers to reduce spurious response

above the tuning range of the receiver.

(4) Low-pass filtering should be used on all RF filament leads.

(5) A harmonic rejection fdter used between the output of the local

oscillator and the mixer will reduce spurious responses.

(6) A tunable, active-notch rejection filter Iocar_ed at the input to the

first IF amplifier is useful in controlling adjacent channel interference.

(7) An active audio-pulse cancellation filter may be useful in the audio

stage to eliminate a single frequency, such as a heterodyne beat.
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(8) Low-pass power line filters on the power input lines are recom-
mended to reduce susceptibility to conducted and local radiated interference

(Reference 38).

5.9 FILTERS FOR TRANSMI'I_ERS

Filters for the transmitter are usually designed to reduce the output of

RF energy at any frequency except the operating frequency. The following

guidelines are recommended:

(1) The network coupling the final amplifier to the antenna terminals

should be designed so that it incorporates the characteristics of a low-pass filter

and suppresses the harmonics of the operating frequency (Reference 39).
(2) lnterstage coupling should make use of filter techniques to reduce

harmonic feedthrough.

(3) Low-pass filters should be used where signal and control lines
penetrate the transmitter cabinet.

(4) Power lines should be filtered to prevent rectifier noise from being

coupled from the transmitter into the power lines.

(5) Bypass filters should be used in the filament and plate power supply
circuits to prevent harmonics from coupling into critical circuits.

(6) If the frequency source is a frequency synthesizer instead of an
oscillator, coupling to it should be through a band-pass filter instead of a
low-pass filter.

(7) In the frequency range above 100 MHz, transmission-line-type filters,

resonant cavities, and waveguides are more practical than lumped parameter
filters.

5.10 FILTERS FOR OTHER EQUIPMENT

Servo systems, computers, command encoders, and time standards can be

grouped together in the discussion of the applications of filters. Attention
should be given to the following points:

(l) Power-line filters will reduce the probability of malfunctions caused

by transients on the primary power line. They will also prevent rectifier noise
from feeding back into the power lines.

(2) Input, signal, and control lines should be filtered to prevent the
entrance of harmful interference.

(3) The output circuit should incorporate a low-pass or band-pass filter
to suppress harmonics and spurious frequencies.

Commutator-type motors and generators are sources of serious inter-

ference. The switching transients resulting from commutation must be dealt

with through the use of a number of design techniques. Modern motors usually
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incorporate shielded housings. Recommended interference suppression guide-

lines for rotating equipment are as follows:

(1) Each brush should be bypassed to the frame with a 0.05- to 0.25-_F

capacitor. The voltage rating of the capacitor should be at least twice the

operating voltage of the motor or generator. The capacit(_r leads should be kept
short. If necessary, a feedthrough capacitor can be used in some applications.

(2) The armature terminal of a generator should be bypassed with a

0.05- to 0.25-btF capacitor whose voltage rating is at least double the output

voltage rating of the machine. The leads must be kept short. A feedthrough

capacitor offers improved high-frequency filtering.

(3) Portable hand tools, using commutators, should be filtered at the

point at which the power line enters the case. Typically, the load current is 1
to 5 A and small n- or L-filters can be used. The case is grounded through the

third wire in the power cable. This offers a common reference point for a

balanced-type tilter.

(4) The alternator should have capacitors installed at the brushes of slip

rings and the exciter.

Filtering of teletype equipment is essential to reduce conducted
interference. The following guidelines are recommended:

(1) Low-pass filtering should be employed at the output of the
transmitter-distributor contacts.

(2) Low-pass filtering should be used at the input and output of signal
lines.

(3) Low-pass power-line filters should be used at the power input to the

equipment.

If a vending machine cabinet is an effective shield, the use of power-line

filters may be sufficient to eliminate interference from this source. Generally,

the cabinet shielding is poor, and it will be necessary to install filters as
outlined below:

(1) All fluorescent lamps used on the machine should be filtered.

(2) All switching contacts associated with the coin switches and

merchandise release solenoids should be filtered or bypassed with capacitors.
(3) All motor leads at the motor junction box should be filtered.

Filtering of motor vehicles can be accomplished by using the following

guidelines:

(1) The battery terminal of the coil should be bypassed to ground by

means of a low-inductance, 0.1-/aF filter capacitor.

(2) The battery terminal of the generator should be bypassed to ground
by means of a low-inductance, O.I-oF filter capacitor.

(3) A low-pass filter should be inserted at the output of the regulator.

(4) The battery terminal of the regulator should be bypassed to ground

by means of a low-inductance, 0.14aF filter c_pacitor. The field terminal

should not be bypassed.
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(5) All gauges and sender units using make-and-break contacts should be
bypassed with capacitors.

The voltage rating of capacitors should be consistent with voltages used
in the system, with some allowance being made for transients. For automotive

systems, this factor of safety is usually 4 and sometimes as high as 10.

6. WIRING AND CABLING

Methods for controlling EMI must include measures for reducing

interference either caused by or aggravated by wiring and cabling. Wiring

within an individual unit can cause problems by providing a coupling between
EMI-producing components and nearby susceptible components or circuits.

Cabling between units can cause coupling between leads within the cable and

between cables. Wiring and cabling both provide entry points for harmful

electromagnetic energy existing in the local environment. The design engineer

should be cognizant of these various pitfalls, and utilize techniques for avoiding
or minimizing them.

6.1 WIRING

The term "wiring" is defined as the interconnections among elements of

one chassis or unit. Wiring is distinguished from cabling which is taken to mean

conductors or groups of conductors connecting different units of a system.
Wiring may include power leads, signal leads, printed circuit conductors, and

control leads. Coupling between wires is more readily discussed by making a

distinction between low-impedance (magnetic) coupling and high-impedance
(electric) coupling (Reference 40).

1. Ix)w-Impedance Coupling

Coupling between wires takes place by means of magnetic and electric

fields. Low-impedance coupling is best visualized by thinking in terms of

transmitting loops and receiving loops. Therefore, low-impedance EMI coupling

is combated by decreasing the mutual inductance between these loops. It is
assumed at the outset that everything possible has been done to reduce the

magnitude of the interference current flowing in the transmitting loop.

The following methods should be considered as a means to reduce

low-impedance coupling:

(l) The area enclosed by the transmitting loop may be reduced.
(2) The area enclosed by the receiving loop may be reduced.

(3) The transmitting and receiving loops may be oriented in mutually
perpendicular planes.
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(4) One loop may be broken and rejoined with a symmetrical cross
connection to achieve cancellation of induced voltage.

(5) The impedance of the loads in either loop may be increased.
(6) The separation between loops may be increased.

(7) Shielding material may be placed between the transmitting and re-

ceiving loops.

Methods 1 and 2 are very effective solutions. If a current-carrying wire

and its return wire are placed directly together, the effective area of the loop is

made very small, ttowever, this is not always easy to accomplish. In particular,
it should be noted that use of a structure (chassis) as a return path may lead to

large loop areas. Such loop areas may be minimized by running the hot wire

directly against the structure and using the shortest possible length of loop.
Method 3 is often impractical since its effectiveness is critically

dependent on perpendicular alignment.
Method 4 is a powerful technique for limiting interference coupling. The

transposition of a wire and its return circuit is conventional practice in the

construction of telephone lines. When carried over into electronic circuit

wiring, it becomes the familiar twisted-pair wiring method.

Method 5 should be considered early in the design stage. If low-

impedance sources are unavoidable, then efforts should bc made to increase the

impedance of nearby sensitive circuits.
Method 6 is probably the most obvious means of' reducing coupling.

Separating wires that carry interfering currents from those connected to

susceptible circuits should be considered standard practice. A helpful factor is

that induced voltage decreases in an exponential manner with increasing wire

separation.
Method 7 is more difficult to implement than is at first apparent. There

are two primary mechanisms by which shielding redtlces coupling. A shield of

high conductivity functions by developing a counter flux due to eddy currents
excited within the shield. A shield of high permeability functions by providing

a flux path of low reluctance for the interference field. The first shielding

mechanism for reducing coupling becomes impractical at low frequencies

because very thick materials are required for it to be effective. The usual

shields on shielded wiring provide no significant protection against magnetic

coupling at low frequencies. The second mechanism calls for the use of special
materials such as Hypemik and Mumetal. To be most effective, a shield of high

permeability must provide a closed flux path. Breaks in this path may
themselves become severe sources of magnetic fields.

2. High-Impedance Coupling

Electric fields of relatively high value are produced in circuits that have

high voltages and low currents. High-impedance coupling can be thought of as

resulting from stray capacitance between leads, in gencral, high-impedance

coupling is somewhat easier to eliminate than low-impedance coupling.
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The following methods should be considered as means to reduce

high-impedance coupling:

(1) Filters may be used at the source or at the susceptible circuit to
reduce interference voltages.

(2) Coupling capacitance may be reduced by increasing spacing between
wires.

(3) Shielded wires should be used.

(4) The input impedance of the susceptible circuit should be reduced.

(5) Balanced lines and balanced circuits should be used.

Method 1 offers a common solution; it is generally p.eferable to filter the

source side if possible.

Method 2 is accomplished by separating wires known to be sources of

interference and those recognized as pickups for susceptible circuits. Coupling

can be reduced by perpendicular wire crossing.

Method 3 is very effective. The combination of filtering and shielding

provides a means of reducing virtually all electric field coupling. This fortunate
circumstance comes about because shielding effectiveness increases for electric

fields at low frequencies where filtering becomes impractical.

Method 4 is recommended for consideration early in the design stage.
However, the procedure recommended in method 4 conflicts with measures

suggested for suppressing magnetic coupling. A compromise is usually made by

designing for circuit impedances in the range of from 150 to 600 _2.

Method 5 is effective for sensitive equipment when both wires are
maintained at the same impedance to ground. Grounding, if required, is done

at the center point of the source and load. The result is that coupled

interference voltages appear equally on both leads and cancel at the input to

the sensitive device. Wire shielding of the "twin-ax" type may be used to

reduce the magnitude of the coupled interference. (The "twin-ax" cable is

co-axial cable with two inner conductors somewhat off center.)

6.2 CABLING

In a general way, all of the interference reduction techniques outlined in

the preceding section on wiring also apply to cabling. This section deals with

problems more specifically associated with cables (References 41,42, and 43).

1. Electric Coupling

Electric coupling between lines within a multiconductor cable can be

severe in long cable runs. This is best minimized by isolating interference

source leads in a cable separate from cables containing susceptible circuit leads.
If this is not feasible, all interference source leads within a cable should be

shielded. A further reduction in coupling can be achieved by separate shielding
of susceptible circuits.
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2. High-Frequency Coupling

In cables, one frequently faces the situation in Which lead length is very

long compared to wavelength. The distinction between high- and low-

impedance leads then becomes less useful because standing waves may exist on

wiring at high frequencies. A wire that exhibits a very high impedance or even

an open circuit at one point becomes a very low impedance and is susceptible
to magnetic fields at a quarter-wave distant. In this situation, it is necessary to
treat the cable as a transmission line.

3. General Coupling Equations

The amount of coupling between wires in an actual installation is

affected by stray parameters that do not yield to a simple mathematical

analysis; however, an estimate of the coupling to be expected is of value to the
designer and can be calculated by making certain simplifying approximations.

Figure 2.38 shows a circuit illustrating the basic o)upling mechanism
between two systems of parallel wires. The ratio of the noise voltage coupled

into the input side of the susceptible circuit of the noise voltage (Reference 40)

is given by

electric comp. magnetic comp.

EO R[+R 0 × + X --- =KGf. (2.25)+ RO R2a +R21./

lE° tRo Noise Producing Circuit R1

('¢T_

i ' ' ic I M 1 C

T T "¢-rc_' _"

I|LG 1_2G Susceptible Circuit 112L __

t_?gure 2.38.-Circuit representing electric and magnetic coupling between

parallel wires.
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The fraction of noise voltage appearing at the load side of the susceptible

circuit is electric comp. magnetic comp.

EO ;-+-Ro × - ;+-Ro × R2 G +R2L / KLf, (2.26)

where

E 0 = noise voltage in the interfering circuit,

E2G = noise voltage coupled into the generator side of the susceptible
circuit,

X M = reactance component of the inductive coupling,

X C = reactance component of the capacitive coupling,

E2L = noise voltage coupled into the load side of the susceptible
circuit,

K G = coupling coefficient, generator side,

K L = coupling coefficient, load side,

and
R 2 = R2LR2G/(R2L +R2G),

f = frequency of interfering signal.

In each of these equations, the first term in brackets represents the

electric component and the second term represents the magnetic component of
field coupling. Figure 2.38 identifies the resistive and reactive elements of the

circuit. Note that the voltage coupled to the input end of the susceptible

circuit, E2G , is shown as the sum of the electric and magnetic components. At

the opposite end of the suceptible circuit, the coupled voltage E2L is shown as
the difference between the electric and magnetic components. For the

approximation made here, the two components of E2L will indeed be in phase
opposition. Rather than having to determine a difference voltage, the larger of

the two components is assumed to be the predominant interference. It is

common practice to assume that voltage transfers a}e proportional to

frequency until unity transfer is reached and that the transfer 'is unity for all

higher frequencies. Figure 2.39 shows the assumed voltage transfer ratio

plotted as two dotted straight lines; one rises at a rate of 6 dB per octave, and

the other has unit value at higher frequencies. Typical experimental data are
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also plotted. The assumed curves show somewhat more coupled-in interference
than is shown by the experimental data. Usually, this situation will be

experienced in cases of light circuit loading. Resonances in the wiring can

produce an inversion so that experimental data may rise above the approxima-
tion in the narrow frequency band of the resonance. For a considerable

variation in loading above or below 300 g2, K G = 2K L is a very good
approximation.

4. Graphical Calculation of Coupling

For certain simple situations it is possible to develop a graphical

presentation of coupling effects. Such graphs are especially helpful in

establishing cable and wire routing during chassis layout. Figure 2.40 shows

the induced voltage E i in a length of wire as the result of interference current 1

flowing in an adjacent parallel wire; the spacing D between wire centers is 1/2
in., and the wire height d above the ground plane is 2 in.
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The graphical data presented in Figure 2.40 may be generalized to

yield the following empirical approximation, which gives the induced voltage

E i in millivolts:

E i _ 3.12 X 10-4 lIfd/D, (2.27)
where

1 --- length of wire run in feet,

I = interference current flowing in one wire, in amperes,

f = interference frequency in hertz, from 60 Hz to 10 kHz,

and

d --- elevation height of wires above the ground plane, in inches, from
1 to 5 in.

D = distance between wire centers in inches, from 0.5 to 4 in.

6.3 GUIDELINES FOR WIRING

AND CABLING OF EQUIPMENT

Wiring and cable routing should be planned in order to separate and

isolate sensitive (susceptibility prone) wires from possiblc interference carrying

conductors. The preceding guidelines are applicable to both receivers and
transmitters.

The guidelines given in the previous sections also apply to support

equipment. In addition, attention should be given to the following items

(References 44 and 45):
(1) Separation of the various circuits into compatible groups is ex-

tremely important where diverse functions are incorporated into a single

package (Reference 42).

(2) Individual separate ground returns are highly desirable to prevent

common mode coupling.

The use of shielded wire is recommended in vending machines. As an

alternative, metallic conduit or cable troughs may be used.

Vehicles in which interference is to be completely suppressed should

have the ignition systems completely wired with shielded high-tension wires.

Double-braided shield wire with connector fittings is commercially available for

this purpose. In addition, the primary wiring between file generator and the

regulator should be shielded.

7. CALCULATION AIDS

Some of the most frequently required mathematical conversion param-

eters are presented here as Figures 2.41 through 2.48. As users of these

guidelines become familiar with the use of a given set of instrumentation, they
will discover that many of the tabulated instrument calibrations, antenna

factors, cable loss curves, and so forth can be combined in convenient chart

form. If such charts are developed in permanent form. they will save much
time and tedious labor.
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8. DEFINITIONS
AND SYMBOLS

The following definitions are used or referenced in this section.

(Reference 46). Following the definitions is a listing of symbols for physical

quantities with their multiplying symbols. A standard method of decibel

notation is explained.

(1) Ambient electromagnetic environment: The level of electro-

magnetic emission (conducted or radiated) indicated by a calibrated

interference-measuring set with the equipment under test inoperative.

(2) Antenna factor: A multiplying factor applied to the voltage at the

input terminals of the measuring instrument to yield electric field strength in
V/m and magnetic.field strength in A/m, for a given antenna and frequency.

(3) Antenna conducted emission, transmit condition: The undesired

portion of signal spectrum appearing at the antenna terminal of a transmitter
under full load transmit conditions.

(4) Antenna conducted emission: The undesired portion of signal

spectrum present at the antenna terminal due to an operating receiver or a

transmitter in standby condition.

(5) Broadband emission: Any signal emission having a spectral power

distribution such that the impulse bandwidth of the measuring instruments is
more than 1.2 times the repetition frequency of the signal when the impulse

bandwidth of the receiver is also less than 1/t, where t is the pulse width of the

signal.

(For practical use in determining narrowband or broadband classification

of emissions, detune the instrument by one impulse bandwidth or by one-half

of the smallest frequency division on the dial, whichever is larger. If the peak

reading is reduced by at least 3 dB, classify as narrowband. If the peak reading
does not decrease at least 3 dB, classify as broadband. Note that this criterion
makes classification as narrowband or broadband a function of the band-

width of the measuring instrument.)

(6) Conducted EME: Electromagnetic emissions propagated along a

power or signal conductor and measured by direct conductive or magnetic

coupling to an appropriate probe.
(7) Component (equivalent to "equipment," as used in this handbook):

The smallest recognized unit (black box) that generally is used in conjunction

with other components to perform a particular function.

(8) Counterpoise: The ground (or reference) plane for an unbalanced
antenna.

(9) Coupling coefficient (coupling factor used in thetcase_of resis-

tive, capacitive, self-inductive, and inductive coupling): The ratio of the

impedance of the coupling to the square root of the product of the impedances

of similar elements in the two circuit meshes. Unless otherwise specified,

coefficient of coupling refers to inductive coupling, in which case it equals
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M/_, where M is the mutual inductance, L 1 is the total inductance of one

mesh, and L 2 is the total inductance of the other mesh (all values in henries).

(10) Cross-coupling: The coupling of a signal from one circuit to
another, where it becomes an undesired signal.

(11) Cross-modulation: Modulation of a desired signal by an undesired

signal.

(12) Crosstalk: An undesired signal introduced by cross-coupling.
(13) Desensitization: The reduction in sensitivity of a receiver due to

the presence of an undesired signal.

(14) Electrical equipment: Equipment that generates or utilizes elec-

trical energy, but does not intentionally generate electromagnetic energy of a

type that may be a potential source of interference. (Examples are electric

motors, office machines, fluorescent lamps, and solenoids.)

(15) Electromagnetic emission (EME): Electromagnetic energy (desired
or undesired) propagated from a source by radiation or conduction.

(16) Electromagnetic interference (EMI): A condition in which an

electromagnetic emission produces an undesired response in a specific
susceptible component or subsystem.

(17) Electromagnetic susceptibility (EMS): The tendency for an un-

desired response to be produced in a component by an electromagnetic
emission.

(18) Ground plane: A metal sheet or plate used as a common reference

point for circuit returns and electrical signal potentials.

(19) Impulse bandwidth (IBW): The ratio of the unmodulated sine wave

in /iV rms to the impulse amplitude in V/MHz required to produce an equal
response in the circuit.

(20) Impulse interference: Interference causing nonoverlapping tran-
sier_t disturbances in a receiver.

(21) Intermodulation: Mixing of two or more signals in a nonlinear

element to produce signals at frequencies equal to the sums and differences of
integral multiples of the original signals.

(22) Malfunction: A change in the normal performance output that
effectively prohibits the proper operation of a component.

(23) Microvolts per megahertz (,uV/MHz): The broadband emission

intensity in gV rms of an unmodulated sine wave applied to the input of the

measuring circuit at its center frequency (which will result in a peak response

in the circuit equal to that resulting from the broadband pulse being measured)
divided by the effective impulse bandwidth in the MHz of the circuit.

(24) Narrowband emission: An emission that has its principle spectral

e_ergy lying at a single frequency within the passband of the measuring
receiver in use. (See defintion No. 5.)

(25) Radiated EME: Electromagnetic fielCs in space, propagated by
either induction or radiation.
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(26) Receiver front-end rejection: The ratio of the power required at

the receiver antenna terminal to produce a standard response or change in

response to the power required to produce the standard response at the center

frequency.

(27) Receiver spurious response: Any response of a receiver to a signal

outside its intended reception bandwidth.

(28) Spurious emission: Any electromagnetic emission outside of the
/ntended emission bandwidth.

(29) Standard response: The programmed or desired response pro-

duced in a test item by a specified input signal. [The standard response can be

used to measure any deviation from normal performance which occurs during

susceptibility testing (e.g., ratio of signal plus noise to noise on a receiver for a

specified input signal).]
(30) Substitution measurements: A method of measuring signals which

depends on the use of a calibrated signal generator with an output similar to

that of an unknown signal. (The calibrated signal is substituted for the

unknown signal to reproduce the instrument response. The error is then limited
to the error of the calibrated signal source.)

(31) Test antenna: An antenna with specified characteristics designated

for use under specified conditions in conducting tests of electromagnetic
interference.

(32) Test item: Any separate and distinct component or subsystem

which, if procured separately, would normally be subject to applicable tests as

required by the specification. This term is used for brevity to refer to the item

under test in this handbook, regardless of whether it is a component or a

subsystem.

The following symbols shall be used to indicate the applicable physical

quantity:

Physical Quantity SI Unit Symbol

Length meter m

Electric current ampere A

Electric field strength volts per meter V/m

Magnetic flux density tesla T

Magnetic field strength amperes per meter A/m
Voltage, potential difference,

electromotive force volt V

Power watt W

Frequency hertz Hz
Electric resistance ohm f_

Electric capacitance farad F

Inductance henry H
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The

plying prefix:

Prefix Symbol

tera (1012) T

giga (10 9) G

mega ( 106) M

kilo (10 3) k

milli (10 -3) m

micro (10 -6 ) At

nano (10 -9) n

pico (10 -12) p

following symbols shall be used to indicate the applicable multi-

Decibel notations referred to one of the units obtained by applying a
multiplying prefix to the physical quantity involved shall always be used as
shown in the following example:

Quantity to be abbreviated and referenced:

Decibels Referencing Micro Volts Megahertz

[ P_hy lBandwidth factOrsical quantity

Multiplying prefix

Above or below

Abbreviated as dB

The following abbreviations are interpreted as shown:

dBm* =

dBm/m 2 =

dBm/m2/MHz

dBpV =
dBW =

decibels referred to one milliwatt

decibels referred to one milliwatt per square
meter

decibels referred to one milliwatt per square
meter per megahertz

decibels referred to one microvolt

decibels referred to one watt

*Note that this is an exception to the rule, the W is understood; dBm is the generally
accepted notation for decibels referred to one miUiwatt.
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1. INTRODUCTION

Lightning, which has both plagued and awed man throughout history, is

still effective in disrupting man's activities, including satellite tracking

operations at NASA STADAN facilities, particularly those located in

lightning-prone areas. This section discusses theoretical considerations of

lightning phenomena and defines the magnitude of the magnetic, capacitive,

and resistive components of lightning-induced voltages. As an example of the

method discussed, a typical tracking station is analyzed from a lightning

standpoint. Specific protective methods are discussed, including the

implementation of high-surge-current voltage clippers for sensitive electrical

and electronic circuits, grounding, counterpoises, and bonding. The safety of

operating personnel is also treated as a prime consideration.

2. LIGHTNING STROKES
TO STRUCTURES
AND EARTH

One of the major factors to consider in determining the probability of

lightning damage is the number of lightning strokes to earth in a given area and

for a given period of time. Since precise quantitative data do not exist except

at a few specifically instrumented structures, a secondary measure-the

frequency of thunderstorms-is used.
For many years, Weather Bureau stations have recorded "thunderstorm

days"-the number of days per year during which thunder is heard. This index
is known as the "keraunic level."

It should be noted that, for several reasons, the information so collected

is of limited value. First of all, no distinction is made between cloud-to-cloud

discharges and cloud-to-ground strokes. Also, there is no allowance for the

duration of a storm. A storm lasting an hour would be counted as heavily as

one lasting several hours. Despite these limitations, the keraunic level is broadly

useful and can be correlated at least partially with lightning strokes to
earth-based objects. The United States Weather Bureau has compiled data on

the keraunic level on a statistical basis and has published a map of the United

States which shows isokeraunic lines; Figure 3.1 is an isokeraunic map of the

United States (Reference 1). As shown, the incidence of lightning varies

throughout the country, being lowest at the Canadian border and West Coast
and highest over the Gulf Coast of Florida.

The expected frequency of strokes to ground, at a typical station such as

that at Rosman, North Carolina, can be estimated by multiplying the keraunic

level at the place of interest by a suitable empirical factor determined by
analysis of data concerning lightning strokes to power transmission lines

(Reference 2). This empirical factor has a value between 0.23 and 0.5 strokes

201
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Figure 3.1 .-Isokeraunic map of the United States showing the average number

of days per year during which thunderstorms occur. (From U. S. Weather

Bureau)

to ground per square mile. For example, at the Rosman site, where the
keraunic level is 50, the expected stroke frequency would range from 11.5 to

25 (i.e., 50 X 0.23 = 11.5 to 50 X 0.5 = 25) strokes per square mile per year.

For such numbers to be significant, it is necessary to determine the effective

lightning-collecting area of the site.

In order to determine the effective lightning-collecting area, it is necessary

to encircle the site with an imaginary geographical boundary line. "l]ais boundary

line, defining the site lightning-collecting area, is located at a fixed distance x

from site peripherals such as towers, cables, and so forth. Lightning strokes

terminating inside the collecting area are assumed to be potentially damaging,

whereas strokes terminating on or outside the boundary line do not affect the
site.

Equation (3.2) is helpful in defining the fixed distance as

The parameter E is the maximum safe voltage gradient (in volts per meter) that

can exist along the surface of the ground and not cause damage to adjacent site

structures or cabling. If this gradient is kept low enough, the magnitude of
induced voltages and currents will be low; a heuristic value is E = 10,000 V/m.
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Furthermore, if the current for an average lightning stroke is taken to be
40,000 A, and if soil resistivity is considered to be 6000 fLm, then x = 200 ft

for a typical station. For a more conservative figure, the minimum safe distance
should be increased to 500 ft.

Such a boundary line is shown drawn around the Rosman site plan
(Figure 3.2). The area of the odd shape is computed to be 0.33 square miles.

Using this number and the previously arrived at strokes-per-square-mile numbers,

a stroke frequency from 4 to 8 strokes per year is calculated. These numbers

compare favorably with the number of separate damage-producing storms
recorded by site personnel.

Tall structures are frequent targets for direct lightning strokes. At the

STADAN sites, the tallest structures are the collimation towers (between 100

and 200 ft high). From statistical data on strokes to tall structures, it can be

predicted that, for a keraunic level of 50, a lO0-ft-high structure would be

struck 0.23 times and a 200-ft-high structure 0.70 times per year; these stroke
rates are directly proportional to the keraunic level.

Since these numbers are significantly less than the expected 4 to 8

strokes in the general area of Rosman, the problem of lightning protection is
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Figure 3.2.-STADAN site layout at Rosman, North Carolina, showing effec-

tive ground area of site for purposes of lightning protection.
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not primarily one of protecting against strokes to the antenna towers. In this

case, design changes and "fluxes" to control lightning effects, although including

those for the towers, must be directed primarily to deal with random strokes to

ground that ultimately affect some part of the electri,:, electronic, data, or

ground systems at the site.
To aid in making calculations of stroke frequency at other world-wide

site locations, Table 3.1 (Reference 3) has been prepared.

Table 3.1 .-Keraunic levels at world-wide S-I'ADAN sites.

Site Location Ker_tunic Level

Fairbanks, Alaska

Carnarvon, Australia

Fort Myers, Florida

Greenbelt, Maryland

Johannesburg, South Africa

Kano, Nigeria

Kauai, Hawaii
Lima, Peru

Goldstone, California
Newfoundland

Orroral, Australia

Rosman, North Carolina

Santiago, Chile

Tananarive, Madagascar
Wallops Island, Virginia

Winkfield, England

10

1

91

35

74

82

6

15

5

5

9

50

3

132
40

14

3. THEORETICAL
CONSIDERATIONS

3.1 LIGHTNING PHENOMENA

A lightning stroke consists of a rapid discharge of electricity. The current
in the stroke generally rises to peak values of from 1000 to 100,000 A in time

periods ranging from 1 to 10 gs. Some investigations have indicated that an

average current changes at a rate of approximately 15,000 Miss. The current

generally decreases to one-half the initial value within approximately 50/_s. A

typical time history of a stroke terminating on a very tall structure is shown in

Figure 3.3. (This stroke terminated on the Empire State Building and is
representative of many strokes to that building.)
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Figure 3.3. Current peaks and continuing currents of a typical lightning

stroke to the Empire State Building. Total duration, 0.47 s; total charge,

-84 C. (After K. B. McEachron, Trans. AIEE, 1941)

Analysis of Figure 3.3 shows that the stroke begins in the upper left-hand

corner with zero time and zero current (Reference 4). Elapsed time runs from
left to right across the figure.
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As can be seen, the initial stroke current reaches a negative value of

about 250 A in 0.04 s and continues at that value until 0.2515 s has elapsed;

then, a step negative current peak of about 15,000 A occurs. After several

hundred microseconds, the stroke current falls again to 250 A; at 0.2618 s, a

current pulse of 4000 A occurs. The phenomenon of a continuing low-

amplitude current interspersed with high-amplitude pulses exists for the
duration of the stroke. In this case the stroke continued for about 0.47 s and

had four distinct current peaks.

The area under the current-time curve (measured in coulombs)largely

determines the burning or thermal power of the stroke. This particular stroke

discharged 84 C, of which 60 C were discharged by the continuing current

before the first current peak. Most of the charge of the stroke is discharged by
the continuous current and not the current peaks. Strokes to ground or low

structures are not likely to exhibit the continuing low-amplitude current prior

to the first current peak; consequently, these strokes normally have a relatively

low charge. The time duration of a multiple-pulsed stroke may be as long as 1.5

s; however, most data indicate that the total duration of the average stroke is

about 0.1 s. The time required for a single discharge varie.'; widely, but 100/as is

not an unreasonable average.

"..0

u

m

2.0 3._ L.,7: ' .: _.0

Figure 3.4.-Histogram of time to crest for lightning strokes. (After J. G.

Anderson, Trans. AIEE, 1961)
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The gamut of measured characteristics of lightning strokes is necessary to

determine both damage possibilities and protective measures required.

Figure 3.4 shows a histogram of the average time for a lightning stroke to

crest. One to two microseconds is the predominant time. The effective time to

crest is an important parameter for determining the voltage induced in
electrical circuits. The best of several sou.rces of data (References 5, 6, and 7) is

given.

Figure 3.5 shows the distribution of current amplitudes that can be

expected from lightning strokes. The median is approximately 40,000 A.

Figure 3.6 (References 4 and 8) shows the effective rate of rise of

lightning-stroke current peaks; the average value is 10,000 to 15,000 A/t_s. This

illustration shdws that data of the kind shown in Figures 3.4 and 3.5 cannot be

compared directly to yield a composite result. The tendency is for crest time to

be delayed as current amplitude increases.

Figure 3.7 gives a measure of the charge in coulombs, a significant factor
in determining the thermal burning action of the lightning stroke. As

mentioned earlier, thermal action occurs largely in the long-duration portion of
the stroke.

2!'

2C -

o

rJ

15 ' m

1C •

C

@

I

4,3 6Q

_'_rent _mpl iris'de (k_z)

80 lO0 120

Figure 3.5.-Distribution of current amplitude for a lightning stroke. (After

J. G. Anderson, Trans. AIEE, 1961)
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THEORETICAL CONSIDERATIONS 209

The importance of the preceding data can be summarized for practical

applications as follows: First, current amplitude I determines the voltage

amplitude E R that will be developed across a resistance R in the path of the
current flow. This is basically an application of Ohm's law, i.e., E R =IR.
Second, time to crest in conjunction with the current amplitude fixes the rate
of rise of the current. This, in turn, affects the voltage developed across an

inductance L, such as wires and structural members, in the path of the current

flow (i.e., induced voltage E L = L di/dt), it also determines the voltage that will
be induced in circuit loops in the vicinity of the lightning circuit.

3.2 GROUNDS, COUNTERPOISES,

AND BONDS

The requirements of a lightning protective system with respect to

grounding, counterpoises, and bonding are based on the following premises:

(1) The lightning current must be conducted into the earth along a
controlled path.

(2) The resistance of the current path should be as low as practical, and
the path should be as short as possible to minimize inductance.

(3) In areas where electrical equipment is located, a uniform-potential

ground plane should be established.

(4) In areas frequented by personnel, so-called "touch" and "step"

voltages should be prevented. These are the voltages that can exist between two

pieces of equipment which an operator could simultaneously touch; it is also

the voltage difference that can exist between the point where a man is standing
and equipment he could touch, or simply the voltage that could exist between
a man's feet.

The first step in meeting these requirements is to provide an adequate
path to conduct the lightning current into the earth.

1. Ground Rods

Lightning currents flowing through the resistance of the path between

the stroke-termination point and the earth will produce voltage drops that may
be dangerous to personnel and equipment. Since these currents can be quite

large [40,000 A is an average value, with a possible maximum of 180,000 A, as
was measured more recently (see Reference 9)], the resistance of the discharge

path must be made as small as possible. For this reason, structures or
equipment that may be struck by lightning or which form part of a discharge

path for lightning current require a good electrical ground (a connection to

earth by a low-resistance circuit). The resistance of this circuit is generally the

sum of the resistances of the metallic structure or equipment and its joints and

the ground resistance. Usually the ground resistance is the largest component.
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To define ground resistance, the underground flow of lightning electric
current must be understood. This current flows in the earth in three dimensions

through a volume of earth that is, in general, not homogeneous. Therefore, a

rigorous analysis of the distribution of currents is difficult. However, a

quantitative analysis of the electric phenomena in the ground is possible if

homogeneity of the ground is assumed. Such an analysis will allow numerical
calculations to be made and will permit definite conclusions to be drawn. The

available literature on ground resistance is extensive and needs little expansion.

The purpose of the following discussion rather is to provide a capsule

introduction to ground resistance (References 10 and 11 ).

To provide a better understanding of the phenomenon of current flow in

the earth, a simple electrode in a homogeneous earth will be analyzed. (The

meter-kilogram-second system (MKS) will be used because it yields results in

practical electric units.)
The simplest electrode is a hemisphere of radius r embedded in the earth

as shown in Figure 3.8. If a current I (in amperes) flows through this electrode

and spreads out radially in the ground, the current density (in amperes per

square meter) at a distance x (in meters) from the center of the hemisphere is

J= _/ (3.1)
2nx 2 "

According to Ohm's law, such a current density produces an electric-field

strength given in volts per meter by

- P---_--/ (3.2)
E = ,oJ- 2rrx 2 ,

where/9 is the resistivity of the earth in ohm-meters.

/ /
\\\XNNNN\NNX \\\

Figure 3.8.-Hemispherical electrode embedded in the earth.
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The voltage, as the line integral of the field strength from the surface of

the conducting hemisphere to any distance x, is

x o, f%= oip__ _qV = Edx = 2n jr x2 2rrLr xJ '
(3.3)

where r is the radius of the conducting hemisphere in meters.

The total voltage between the hemisphere and a far-distant point with
x_oois

o/
V = 2--'_ ' (3.4)

The total resistance experienced by the stream lines of current diverging

from the hemisphere is

V 0
R _ _.

1 2rrr "-'-"

Notice that the current, is not present in the last term in (3.5).

As an example, a hemisphere of radius r = 1 m embedded in soil of
resistivity p = 10 _-m will have a ground resistance of

10 gZ-m
R = = 1.6 g2.

(2_X1 m)

This is the resistance encountered by current flowing through the entire earth

surrounding the electrode. Most of this resistance is encountered in the

immediate vicinity of the electrode. As can be shown from (3.3), 50 percent of

the total voltage drop resulting from current flowing through this resistance

occurs between the electrode and x = 2r; 90 percent occurs between the

electrode and x = 10r. For the example calculated, these distances are 2 m and

10 m, respectively.

The general case described by (3.3) is plotted in Figure 3.9, where the

potential at a point some distance x from the center of the electrode is given as

a percentage of the electrode potential. This figure can also be used to

determine the voltage at a point on the surface of the earth rather than at a

point under the earth. For example, consider a hemispherical electrode of 1-m
radius (r in Figure 3.10) carrying a current of 10,000 A. If the effective ground

resistance of this electrode is 1.6 _, the electrode potential is 16,000 V. Now,

take point a to be 2 m from the center of the electrode; it can be determined

from Figure 3.9 that the potential existing at point a is 50 percent of the

electrode potential; that is, point a is at 8000 V.
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This example can be extended to show that a significant voltage

difference can exist between two adjacent points on the surface of the earth. If

point b in Figure 3.t0 is 2.5 m from the center of the ele.ctrode, its potential

will be 40 percent of the electrode potential, or 6400 V. Therefore, a voltage

difference of 1600 V exists between points a and b, which are only one-half

meter apart.

Thus far, the simple hemispherical electrode has been used to illustrate

ground resistance, ground electrode potential, and the voltage gradient existing

along the surface of the earth near a current-carrying ground electrode.

tlowever, the same phenomena will occur with the more commonly used rod

electrode whose length is much greater than its diameter.

100

i ,f_O

,L

'0

o 1 I I I i

Figure 3.9.-Voltage gradient in the earth for a hemispherical ground electrode

for a current I.

i

Figure 3.10.-Voltage along surface of the earth, produced by a current-

carrying electrode.
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Ground rods are commercially available in standard 8- to 12-ft lengths

that may be joined by couplings for greater depth. Rod diameters are generally

less than 1 in. For a rod whose submerged depth is much greater than its ra-

dius, the resistance of the rod (Reference 11 ) is given by

R=_n / n - ,
(3.6)

for l >> r, where

p = ground resistivity in ohm-meters,

and

1 = submerged length of rod in meters,

r = radius of rod in meters.

Within practical limits, the diameter of the rod is of much less

significance than its length, so long as the logarithmic ternr, 4 l/r, remains

unchanged. Since resistance does not decrease directly with the length of the

rod, a point is reached at which further increase in length is accompanied by

only a minor reduction in ground resistance. Table 3.2, from Sunde (Reference

12), shows tile variation of resistance with rod length for various rod diameters;

the data were calculated from (3.6) for an average ground resistivity of 100

Ug-m.

The practical approach is to determine the ground resistivity of the earth

for a variety of soils and moisture content at a given site. Table 3.3, from Watt

(Reference 13), gives representative values. Since ground electrical resistance

varies directly with the ground resistivity, the data presented in Tables 3.2 and

3.3 can be used to determine the ground resistance of a typical ground rod.

The following relationship is helpful in determining an unknown ground

resistance R x, where

Px

Rx = Rs°il Psoil

Px

= Rs°i1100 _-m '

The term Rsoil is a resistance value obtained from Table 3.2, which is based on

a soil resistivity of 100 _-m, and p x is an earth resistivity value obtained from

Table 3.3. For instance, a rod 1/2 in. in diameter and sunk 10 ft into marine

sand (such as would exist at Cape Kennedy, Florida) would have a resistance

ranging from 0.35 to 3.5 g2. The range spread is predominantly affected by the

moisture content of the sand.
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Table 3.2.--Ground resistance (in ohms) for various lengths and diameters of

ground rods.*

r _

Diameter of Rod

(in.)

0.5

I

2

4

12

24

l = Length of Rod (ft)

l l 2 5 10 ! 20 ! 50 I 100
i : i

225 ! 132 62 35 19.2 i 8.7 I 4.7

188 ] 113 55 31 17.3 8.0 I 4.3

151 ! 95 47 28.5 15.5 7.2 I 4.0
I

115 I 77 40 25 13.6 6.5 I 3.6

69 I 51 28.5 18.1 10.9 5.4 I 3.0

44 ! 35 21 14.4 9.0 4.6 I 2.6

*Based on soil resistivity of Osoil = 100 LZ-m.

Table 3.3.-Representative values of earth resistivity (Watt et al., Proc. IEEE,

1963).

Type

Soil

Water

Sediments

Material

good

average

poor

fresh

sea

marine sands and shales

marine sandstones

clay

sandstone (wet)

sandstone (dry)

limestone

Approximate Resistivity, Px

10 to 102

102 to 103

103 to 104

103

0.2

1

1

10

102

104

104

to

to

to

to

to

to

to

to

104

0.25

10

102

102

104

107

108

Igneous rock granite 103 to 109

basalt 105 to 109

Metamorphic to

to

to

to

slate

marble

gneiss

serpentine

103

103

103

103
I

105

108

107

107
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Whenit isnotpossibleto obtain the desired ground resistance from a

single ground rod, several rods may be driven and connected in parallel. If the

spacing between rods is large compared to the length of the individual rods, the

resistance will be reduced in proportion to the number of rods. If the rods are

close together, each rod will be in the electrical near-field of its neighbor and

the overall resistance becomes

R=_/ln (A_--) , (3.7)

where A represents the radius of an equivalent rod.

The expressions in Figure 3.11 show how the equivalent radius depends

on the rod geometry. In each case r denotes the radius of the individual rods.

If the rods are moderately close to each other, the overall resistance will

be more than if the same number of rods were spaced farther apart. For

instance [from (3.7)], two 3/4-in. diameter, lO-ft rods in parallel and spaced 1

ft apart in a soil resistivity of 10 _-m will have a resistance of 2.5 _. The same

two rods spaced 10 ft apart will have a resistance of 1.9 _. Lewis (Reference

14) gives additional information on ground rods in parallel as a function of

spacing; also, see Ficchi's data given in Section II-4.5.

In closing this section on ground resistance, it is appropriate to include a

short discussion on the measurement of ground resistance. The fundamental

method of measuring ground resistance is shown in Figure 3.12. Current is

circulated between the ground under test and an auxiliary ground. Preferably,

this auxiliary ground should be located at a distance that is large compared to

the dimensions of the ground under test, since it is not desirable to have

interaction of the ground current distributions at the two electrodes. A voltage

is then measured between the ground under test and a reference ground located

somewhere between the two current-carrying electrodes. This reference ground

should be so located that it is not in the electric field of either of the

current-carrying electrodes. Assuming that the current density is negligible at

the reference electrode, the resistance of the ground under test is R = VII.

The measurement may be made with a voltmeter and ammeter, with the

current being supplied by a transformer energized from the ac power lines.

Alternatively, a bridge may be used for the measurement. Most often, however,

ground resistance is measured with self-contained instruments such as

commercially available ground-resistance testers.

When measuring the ground resistance of a large structure, it may be

difficult to place the auxiliary current ground or the reference ground

sufficiently far from the ground under test so that the electric fields of the

electrodes do not interact. Curdts (Reference 15) has shown that, substantially,

the correct ground resistance is measured if the reference ground is located at a

point approximately 60 percent of the distance from the ground under test to

the auxiliary ground. If the system is large, stray currents in the ground from

outside power sources may introduce errors. These tend not to affect the
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Figure 3.11 .-Equivalent radius of multiple ground rods connected in parallel.

Current

Auxiliary

Ground Under Test Ground

@Voltmeter i

Reference

Ground

Figure 3.12.-Fundamental method for measuring ground resistance.

measurements when a self-contained ground tester is used, since the frequency

of the current set up by the test set is generally different from the frequency of
the interfering currents. Such interfering currents can 'also be balanced out in

the measuring instrument. Duke and Smith (Reference 16) have described a

60-Hz test set, which contains such balancing circuits, for the measurement of

low-impedance grounds.
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2. Counterpoises

A counterpoise is a single, bare wire or a network of bare wires buried

horizontally. The counterpoise functions to reduce the resistance of a ground

electrode, interconnect ground electrodes, provide a convenient means for

grounding equipment and circuits, reduce voltage gradients on the surface of
the earth, and intercept lightning stroke currents that would otherwise

terminate on equipment and circuits being protected.

From Sunde (para. 3.6, Reference 12), the resistance of a single, buried
horizontal wire is

for l _ d, where

p = resistivity in ohm-meters,

(3.1 l)

1 = length of wire in meters,

and
r = wire radius in meters,

d = burial depth in meters.

Table 3.4 shows how the resistance of a counterpoise varies with length

of wire and burial depth.

Equation (3.11) is derived on the assumption that the potential is
uniform over the entire length of the wire, which holds only if the wire has

infinite conductivity. A very long wire will not be at the same potential along

its entire length, and therefore (3.11) will be somewhat in error. However,

from a practical viewpoint, the diameters and lengths of counterpoise wire

normally used are such that the error introduced as a result of wire resistance
may be neglected.

Table 3.4.- Variation of resistance (in ohms) with length of a horizontal wire

for a ground at the surface and at a depth of 12 in.*

Burial Depth

(in.)

0

12

Length of Wire (ft)

10 20 50 100 200 500 1000

80 45 19.4 10.4 5.6 2.4 1.29

47 27 12.8 7.1 3.9 1.75 0.45

*Earth resistivity = 100 12-m; wire gauge = No. 10 AWG.
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Figure 3.13.-Transient impedance of 1000 ft of counterpoise as a function of

surge propagation time with the number of radial wires as a parameter.

(After "Protection of Transmission Lines Against Lightning," by W. W.
Lewis, 1950)

Another consideration in determining the effective resistance of the

counterpoise is its transient response (i.e., the change in impedance along the

counterpoise with respect to time) when a high current surge, such as a
lightning stroke, is applied. Initially, the effective resistance is quite high, of

the order of 150 _. The initial value of the resistance is defined as the surge

impedance of the wire. As the surge propagates along the wire, the resistance

decreases as the current spans more and more of the wire, thus making more
effective contact with the earth.
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The surge propagates in the earth at roughly one-third the speed of light.

As an example, approximately 3 /as would be required for current to span a

1000-ft wire. For a given length of buried wire, the transient resistance will

reduce to its steady-state resistance faster if the wire is arranged as several short
radial wires than if it is laid as one long wire. Figure 3.13 (Reference 14) shows

how the transient response of buried wires varies for several configurations of

counterpoise wires. In the case of driven ground rods, the final resistance can
be obtained quite quickly since the rods are fairly short. The final resistance of

widely spaced ground rods cannot be attained until a surge current has reached
the most distant rod. As a practical matter, the first 250 ft of buried conductor

are the most effective for the grounding of lightning currents with counter-

poise.

Ground resistance decreases with increasing current, at least until
the current heats the soil moisture to the boiling point. The proportional

reduction is less for grounds of low resistance than for grounds of high

resistance. Figure 3.14 (Reference 14) shows typical measured values of ground

resistance as a function of impulse current.

3. Bonding

Bonding can be defined as providing an electrical connection across

mechar.'.cal joints between metallic structures, for example, the electrical

connection of conduits and piping to structural metal, and the interconnection

of reinforcing metals in cement structures (Reference 17). The bonding of

these joints is necessary to provide a minimum resistance and direct path for

lightning current from the point of stroke termination to the earth, to protect
personnel from the shock hazard resulting from equipment internally power

faulted, and to prevent the accumulation of static charge that would produce
radio interference and sparking, thereby creating shock and explosion hazards,

3.3 VOLTAGES INDUCED
BY LIGHTNING

The purpose of the following section is to describe the three principal

lightning stroke phenomena that produce voltages in electrical circuits. These
are as follows:

(1) The voltage induced in circuits that are magnetically coupled to

conductors carrying lightning currents.

(2) The IR, or resistance voltage, resulting from lightning current
flowing in the structure and ground resistance.

(3) The voltage induced in circuits that are capacitively coupled to the

lightning stroke.

Lightning voltages in electrical circuits are generally some combination of

the three components. For ease in understanding, the components will first be
discussed separately.
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1. Inductive or Magnetic Component

The magnetically induced voltage is the most complex and, as previously

stated, is the induced voltage in a circuit that is magnetically coupled to a

current-carrying conductor. For instance, in Figure 3.15, the voltage is

magnetically induced in loop A by the field produced by the changing lightning-

stroke current flowing in conductor B,
As another examplc of induced voltage, consider Figure 3.16, where the

current path forms part of the voltmeter loop; there is negligible current flow-

ing through tile voltmeter. This simple circuit is symbolic of lightning current

flowing in a wire with a man touching the wire at two points, a and d. The

voltage E is related to the rate of change of flux produced by the changing

current dl/dt in the loop according to the following equation:

where

and

d_
E---N_7, (3.12)

N = number of turns

4, = flux in webers enclosed by the loop.

a_XI
t

Voltm_eter

A
B

Zero-Volt Reference Level

Figure 3.15.-Magnetically induced voltage E in a loop (A) by changing current

in a conductor (B).
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The dimensions of the loop and rate of change of current must be known

to actually determine the voltage. First, the flux density in W/m 2 is determined

from the relationship

where

3 = 2rrr ' (3.13)

_z = permeability of space, 4_r X 10 -7 H/m,

I = current in conductor in amperes,

and

r = radial distance from conductor in meters.

Next, the flux linked by loop abcda is determined by taking the line integral

around the loop to obtain

hIJl

Zero-Volt

dl

a Voltmeter b

r 1

Reference Level

Figure 3.16.-Circuit for analyzing magnetically induced voltage in a voltmeter

loop as the result of current flowing in an adjacent conductor.
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f hlaI fr2 1

I L '

_--20X 10-8/h In .

(3.14)

The time rate of change of flux is

d---7= 20 X 10-8h In . (3.15)

From (3.12) and (3.15) the voltage induced in the single-turn loop in
Figure 3.16 is

where

and

dl ln__r2_
e --2°x 1°-8h

h = loop height in meters

d/
dt rate of change of current in amperes per second.

(3.16)

For h in feet,

Eba = 61 × 10-9hd/In_'l)dt/r\ (3.17)

The equations for Eba express the loop voltage in terms of loop
dimensions and rate of change of the flux linked by the loop. From these

equations it can be seen that the loop voltage is a function of the loop
dimensions. For example, if one were attempting to measure the voltage

between a and d, the value obtained would be dependent upon the dimensions

of the loop and not simply the height, a to d. This concept of induced voltage

is very important and, therefore, in an attempt to clarify it further, the same

loop voltage will be described in terms of the familiar lumped inductance.
Consider the circuit in Figure 3.17 where

1 = current in conductor adin amperes,

LII = self-inductance of the current-carrying conductor between a
and d, in henries,
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I

la

Ii

r 2

L22

p

)-

Figure 3.17.--Circuit for analyzing voltage induced in a flux-linked loop.

L22 = self-inductance of the meter lead, in henries
and

L 12 = I"2l = mutual inductance between L 11 and L22 , in henries.

Equating the voltages around loop abcda yields

dI_ L dl= dl
Eba=Llldt 12dt (Lll - L12)_

lfq_ t is the magnetic flux produced by current I, then for a single turn,

g'1

Lll I "

From (3.14), tile flux in webers is

where

h = length in meters of the conductor being considered,

(3.18)

(3.19)

(3.20)



THEORETICAL CONSIDERATIONS 225

and
r 1 = radius in meters of the conductor,

R = radius to a distant point where flux density = 0.

Integrating (3.20) and combining with (3.19) yields

h/a
Lll =_-n (ln R - In rl).

Similarly, for a single turn, tile mutual inductance in series with LI1 is

(3.21)

q52

L12 I (3.22)

where the magnetic flux produced by the induced current is

where r 2 is the radial
conductor and the meter lead.

yields the mutual inductance:

(3.23)

distance between the center of the current-carrying

Combining (3.18), (3.21), and (3.24) yields

hlalnfr2_ dl

where

h = length of the current-carrying conductor in meters,

and

/1 = 4rr X 10-7 H/m,

dl
q_

dt rate of change of current in amperes per second.

h_

L12 =-_-(ln R -In r2). (3.24)

Integrating (3.23) and combining with (3.22)
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Therefore,

Eba = 20 X 10 -8 h In . (3.25)

Note that (3.25)is identical to (3.16).

So far, a "resistanceless" conductor has been assumed. The addition

of resistance to the circuit is illustrated in Figure 3.18. Equating voltages

around loop abcda yields

Eba =RII+ (Lll - L 12)_/t/, (3.26)

since current flows through R 1 but not R 2.

A comparison of (3.26) with (3.18) shows that, m zhe case of this loop,

the total voltage drop across the resistance is simply added to the net drop of

induced voltage.

Thus far, cases have been considered ill which the current-carrying con-

ductor formed part of the loop. In the more general case, the loop is electri-

cally isolated Rom the current conductor, as shown in Figure 3.19. In this case,

the drop in i_duced voltage is

d/

Eba = (L12 - L 13)_-7 , (3.27)

where L 12 is the mutual inductance between LII and 1,22 [see (3.22)] and L13

is the mutual inductance between LII and L3y

R 1 R 2

l

b

"L22

Figure 3.18. Circuit for analyzing voltage induced in a flux-linked inductive

loop containing resistance.
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Lll

÷
___b+

L22 L33

c

Figure 3.19.-Circuit for analyzing magnetically induced voltage in an isolated

flux-linked inductive loop.

Equation (3.27) has exactly the same form as (3.18), and expressing
(3.27) in terms of circuit dimensions instead of inductance yields (3.25),

repeated here for convenience:

hdlln(r2_
Eba=20Xl0-8 d-_ \'_1/'

where

r 2 = radial distance between Lll and L33 in meters,

r 1 = radial distance between L 11 and L22 in meters,
and

h = height of L22 and L33 in meters.

Equation (3.17) expresses Eba for circuit dimensions in feet instead of meters:

Eba=61Xl0-9h_t/ln r(_l).

Expressing (3.17) in a slightly different form yields

Eba = 61X 10-9 h_t/_n(_-i + 1)1,

where W=r 2-r 1.
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As an example of the application of (3.17), calculations were made of

the voltage induced in a loop inductively coupled to the current-carrying
conductor for loops of different widths and distances from the flux-producing

conductor. Figure 3.20 shows the results of such calculations for current

changing at the rate of 1000 A/_ts; the induced voltages arc given per foot of

loop height h for a single-turn loop. The figure graphically illustrates the effect
of moving the loop with respect to the current conductor and varying the

width of the loop, which changes the amount of linked flux.

As another example of a voltage induced in a loop near a conductor

carrying a changing current, consider Figure 3.21.

Here, the voltmeter has been replaced by a man, and the loop is the path
from the man's hand, down his body, across the earth, and up the conductor.

If h = 5 ft, r l = 0.01 ft, and r2 = 2 ft, from (3.17) the voltage across the man
would be

(
Eman= (61 X 5)In \O.Oljdt X 10-9 .

For a current changing at the rate of 50,000 A//as (dlMt = 5 X 1010 A/s),

the induced voltage is

Ema n = 80,800 V.

These examples illustrate the well-known principle that the magnetically

induced voltage depends on the flux linked by the loop and that the flux

linked by the loop depends upon the loop dimensions.

2. Resistive Component

The resistive component of voltage is best described by refering to Figure

3.22. The lightning stroke terminates at equipment A, and the current I flows

into the earth through the ground resistance RF, producing a voltage drop E
between the cable connected to A and the zero-volt reference potential of the

earth. Since there is no electric circuitry between A and the zero-volt reference,

the magnitude of E does not pose a burnout problem. However, at the other

end of the cable, which is shown with the sheath isolated, a dangerous voltage

E' exists between the cable sheath and equipment B. It is important to recognize

that when there is an open-circuit discontinuity in the sheath, negligible current
I .

flows to ground through RF, equipment B remains at the zero-volt reference

potential and the voltage E' is across the discontinuity. The voltage El, between
the circuit compot_ent and the metal housing orB, _qll be some fraction orE',

depending on circuit impedances. Both E' and E 1 are the resistive components
of voltage resulting from the lightning stroke terminating a_.A. The most direct
way to minimize the effects of E' is to connect the sheath to B and allow the

sheath to carry a portion of the stroke current.
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h is height from

ground to man's

hand.

r2 is distance from

near edge of rod

to man_s foot.

dI

dt

n
I

_q

2rl

b-- r,-q

Lightning Current Loop

\
Figure 3.2 I. Diagram of a lightning current loop formed by a man.

I A

Cable Sheath

E _

__ Z_._._.ero- Volt Reference

1?i rcuit

R F '

Component

Figure 3.22. Diagram showing resistive components E' and E 1 resulting from a
lightning stroke.

3. Capacitive Component

Prior to a lightning stroke, an electric charge slowly accumulates on

earth-based conducting objects in the vicinity of the electrified clouds. ]'his

increase in charge occurs slowly enough so that the potential of grounded
conductors does not change appreciably with respect to ground, even when the

conductors are grounded through a high impedance. When the lightning stroke

terminates on a point such as A in Figure 3.23, tile charge on the grounded

objects suddenly becomes redistributed. The redistribution of charge manifests

itself as a current flow through the grounding impedance of the conductors and

produces a voltage across that impedance known as the capacitive voltage

component of the stroke.
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Referring to Figure 3.23, the voltage between the conducting object and

ground can be expressed as

E Q-t/RC
= _-e , (3.28)

where

Q = charge in coulombs,

and

C = C 1 + C2 + ... + Cn, the total capacitance to ground in farads,

R = RfR}/(Rf + R}), the effective resistance to ground in ohms,

t = elapsed time since stroke, in seconds.

Equation (3.28) shows that if the product RC is small, the exponential
term will be large (for a time t of the order of 10 _ts), thus making the value of

a voltage capacitively induced on any well-grounded structure quite small for a

typical stroke.

For example, if RC = (1000 _)(1000 X 10 -12 F)= 10 -6 s, at the end of

time t = 10/as, the value of E will be 1/22 V for Q = l0 -6 coulombs. For the

larger value ofRC = (106 f2)(10 -9 F) = 10-3s, the value of E will be 1000 V

for a charge of the same magnitude.

A

Figure 3.23.-Diagram showing capacitive component of lightning voltage
induced in a circuit.
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4. RECOMMENDATIONS

FOR LIGHTNING

PROTECTION

This section presents a discussion of the factors which should be

considered in providing lightning protection for new installations, together

with appropriate recommendations for implementing protective measures. This

section is organized in four parts: protective grounding signal and data

transmission circuits, power circuits, and surge protection devices for equip-
ment.

4.1 GROUNDS FOR SAFETY

PROTECTI 0 N

Protective grounding at fixed stations is intended to provide protection

for operators, electrical and electronic equipment, and buildings and equip-

ment housings. Some of the recommendations made to achieve effective

protective grounding may be in conflict with desirable practices for grounding

signal and data transmission circuits. However, these conflicts can usually be
resolved in a satisfactory manner.

Common grounding connections between all metal parts in and around a

building provide the best protection for operators and equipment. Parts to be

grounded include all metal piping, conduits, structural members, and building

outer skins, as well as equipment cabinets, racks, and enclosures.

Such a grounding arrangement should utilize a buried counterpoise

around the periphery of buildings, with ground rods at the corners and spaced

at intervals not exceeding 50 ft for large buildings. Such a grounding system is

illustrated in Figure 3.24. This arrangement permits separate power and

equipment grounding within the building. Should there be a requirement for a

completely separate signal or instrumentation ground connected to earth at

some point other than the building counterpoise, a protective device should be
connected between it and equipment ground at each equipment cabinet,

enclosure, or rack where the separate signal ground is used. Such a protective

device that has proven to be extremely effective for this application is a

high-surge-current, controlled avalanche selenium rectifier.
In general, the protective measures applied to the structural parts of all

buildings should follow the recommendations given in Reference 18.
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Ground Rod

II--_ (driven 10 ft bel°w

I _ I ............... _ I 1/0 AWG Bare Copper

foundation and as deep

Structure Bonds

%% \,_,

• \

signet] ztndpower routes) _o _/ \

% \\

Figure 3.24.-Diagram of typical grounding for a building.

4.2 GROUNDS FOR SIGNAL

AND DATA TRANSMISSION CIRCUITS

Signal and data transmission circuits provide paths through which

lightning currents and voltages can enter sensitive equipment. Circuits totally

contained within protected buildings and having no exposure to lightning

currents can usually be designed without direct consideration of lightning

effects. Circuits which are not totally contained within protected buildings or

are connected to or are a part of circuits not within protected buildings must
be designed to accommodate lightning effects.

The effects of lightning damage fall into two general categories. The first

includes all types of burning and blasting mechanical damage that can occur

when a lightning stroke contacts an object. The most direct way of minimizing
mechanical damage is to provide a means of intercepting the stroke before it

actually strikes. This interception can be accomplished by enclosing the circuits

within metal conduit or by providing grounded guard wires such as are used on

power transmission lines. The best protection for underground data circuits is
provided by two bare guard wires buried 3 to 4 ft above and to either side of a

cable trench. Data lines above ground should be protected by an overhead

guard wire that is grounded at intervals not exceeding 250 ft and which is

spaced at least 8 ft above the data circuit to be protected.
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The second category of lightning damage involves the electrical proper-
ties of equipment circuits. Because electrical damage may arise from an

immensely complicated situation, it is not wise to genelalize on the proper

protective measures to be applied. A complete analysis of the possible effects

of lightning should always be made because an effective design from a lightning

viewpoint should consider both the voltage tolerance levels of the equipment

and the expected magnitudes of the lightning-induced voltages. The following
sections outline lightning protective measures necessary to guarantee minimum

induced voltages when common construction practices are utilized.

The use of rigid steel conduit to form a continuous grounded metal
shield around signal and data transmission circuits results in a system that is

immune to the effects of lightning. Such a system usually requires no other

supplementary protective devices, since the use of a ferromagnetic conduit

eliminates the need for special circuit grounding for the control of lightning.

For example, on circuits contained within 2-in. (electrical-trade size)

rigid steel conduit, lightning-induced voltages will be of the order of 30 V

between conductors and ground and 0.2 V between conductors; these results
were obtained for an average lightning stroke directly to a 5000-ft-long

conduit. Larger conduits and/or shorter lengths will result in lower voltages.

The induced voltages are proportional to length and inversely proportional to

the product of the square of the thickness of the conduit and its cross-sectional
area.

The conductor-to-ground voltages are essentially those of the IR drop

along the inside of the conduit, where R is a complex fi_rlction of the conduit

permeability, conductivity, cross section, and the rate-of-change of the

lightning current. For the case of 2-in. rigid steel conduit and a simulated
current pulse shaped like lightning, the effective resistance has been measured

to be only 0.001 of the dc resistance (Reference 19).
The voltage between conductors is primarily due to the flux leakage at

joints and bends and, hence, varies nearly linearly with length.

The use of non-ferromagnetic metal conduit (e.g., aluminum) will result

in significantly higher voltages than ferromagnetic conduit (e.g., black iron

pipe) even if the non-ferromagnetic metal conduits have a significantly lower

dc resistance. For instance, the substitution of 2-in. aluminum pipe for 2-in.

rigid steel conduit results in approximately a 42-fold increase in voltage, even

though the dc resistance of the aluminum conduit is 0.06 that of steel. This

apparent inconsistency is accounted for by the large permeability of steel
relative to that of aluminum.

The type of construction utilizing above-ground cable trays with guard

wires is frequently used in warm regions and provides lhe greatest flexibility

for adding or deleting cables. This construction requires the following special

bonds and grounds in addition to the guard wires describcd in Section 4.2.

(1) Grounding. The cable trays should be grounded to driven rods at
intervals not exceeding 250 ft and to building ground systems at both ends.
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The ground rods should be about 16 ft long. If soil conditions prohibit driving

rods, equivalent counterpoise should be installed (see Section 3.2).

(2) Bonding. All trays should be bonded together so as to form a
continuous electrical structure.

(3) Cables. All signal and data cables should have a continuous overall

metal braid or shield (not spiral tape) that is bonded to the building ground

system at each end.

Overhead cable trays with guard wires will not provide the protection

that is obtained with steel conduit; some sensitive circuits may require special

protective devices. Voltages between conductors in cable trays will be

approximately an order of magnitude larger than for conductors in steel

conduit. The conductor-to-ground voltages can be estimated utilizing the

techniques given in Section 5.2.

The type of construction utilizing buried nonmetal conduits with guard
wires does not provide the protection that can be obtained with cable trays or

conduits, in addition to the guard wires described in Section 4.2, all signal and

data cables should have a continuous overall metal braid or shield (not spiral

tape) that is bonded to building ground systems at each end.

Voltages between conductors buried in nonmetal conduits with guard
wires will be approximately 100 times the voltages between conductors in steel

conduit; sensitive circuits connected to long runs will therefore require

protective devices. The conductor-to-ground voltages can be estimated utilizing

the techniques given in Section 5.2.

The type of construction utilizing buried conductors with guard wires is
essentially equivalent to that described above, and the same restrictions and

requirements apply.

4.3 GROUNDS FOR POWER CIRCUITS

Wiring and lightning protection for power circuits should in general

follow commercial practices. Where sensitive equipment is used or where high

reliability is desired, the following additional protective measures should bc
used.

The primary power should be distributed at as high a voltage as is

economical. Lightning-induced voltages are primarily functions of equipment
geometry and not system voltage. Therefore, the higher the system voltage, the

lower will be the effects of lightning-induced voltage on a percentage basis.

Also, the higher voltage systems have lower ratios of lightning arrester
protective breakdown voltage to system operating voltage.

Lightning arresters should be applied at both ends of all primary

distribution power lines regardless of whether these are buried or above
ground.

Station-type arresters rather than distribution type arresters should be
used.

Secondary arresters should be applied at all distribution panels fed from

a transformer whose primary is served by a power line exposed to lightning.
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4.4 SURGE PROTECTION DEVICES

FOR CONTROL EQUIPMENT

In general, control circuits and communication systems are operated at

voltage levels considerably below those used for eleciric power work; therefore,

the protective devices for these circuits need not handle ib.e very large amounts

of energy encountered at higher voltage levels. Some <)f the devices to be

described here will handle large current surges, but others are somewhat limited

in their current-carrying capabilities.

According to their mode of operation, proteclive devices acting as
overvoltage suppressors for control circuits and communication systems are

classified as "crowbar" devices or switches (e.g., zener diodes), voltage clippers

and nonlinear resistance elements (e.g., Thyrite), or energy storage elements

such as a capacitor or inductor.
Crowbar devices or switches operate by abruptly conducting or breaking

down electrically when the voltage between the electrical terminals reaches a

specified value. This action results from the break&Jwn of a dielectric gas
between two electrodes or from avalanche or other solid-state phenomena

occurring across a semiconductor junction. In general, devices employing

breakdown of a gas can control high-energy lightning surges if the tolerances on

the voltage levels for which protection is required are rather loose.

Semiconductor devices can provide very tight control over voltage levels, but

they have limited thermal capacity to control high-surge energy.

The breakdown or avalanche effect may be triggered directly by the

overvoltage, so that the device appears as a two-terminal device, or it may be

triggered by an auxiliary electrode (gate) in a three-terminal device with the

triggering signal supplied by an adjustable voltage-sensing circuit.

Many of these devices will continue to conduct after the initial triggering.

In such cases, external means should be supplied to interrupt the power

supplied to the device after the triggering surge has disappeared. Generally, a

serious disturbance is introduced in the system voltage until the power

actuating the device can be interrupted. Typical commercial devices that

incorporate the interrupting means and which are currently available are listed

in Table 3.5. This feature is limited to ac applications; for dc circuits, a definite

voltage interruption is required to stop the current.

The initial conduction or breakdown action of protective devices is not

instantaneous. As in the case of a spark gap, the time to breakdown is related

to the rate at which the voltage is applied so that the voltage at which

conduction is initiated increases when the rate of voltage rise is increased. The

voltage-time characteristic of a typical crowbar device is shown in Figure 3.25.

The siguificance of the voltage-time characteristic is that there is a time

lag during which the protective device has no effect on the overvoltage. For

lightning surges having steep wave fronts, high volt_ge:_ are left unsuppressed
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for time durations of the order of a fraction of a microsecond until the

protective device turns on. In this respect, the behavior of the crowbar device is

similar to that of the simple spark gap discussed earlier.

Spark gaps, gas tubes, and semiconductor switches have both advantages

and disadvantages. Some of these are listed in Table 3.6; other features of these

protective devices are enumerated in the following paragraphs.

I
I

Curve rises abruptly for times

i _ shorter than a microsecond

_ dc Breakdown

m

I I t 0 I
10-6 10-_ 10 -_ 10-3 10-_

Time to Breakdown (s)

Figure 3.25.-Typical voltage-time characteristic for breakdown of a "crowbar"
device.

Table 3.5.-Summary of characteristics of typical, commercially available,

low-voltage surge suppressors.

Range of Ratio of

Minimum Max to Min. Peak Current
Manu fa,_turer Model No

Breakdown Breakdown (A)

Voltages* Voltage**

General : Company

AMARK Corp.

EC & G Corp.

Victoreen Inc.

Electrlmic Induslrles

Siemens Corp.

Weslern Electric

L M, Ericsson Corp.

Amperex Corp.

General : Company

We'_ttnghot_;e _rp.

Dale Corp

General ; Company_

730 B

Cerbesis UA 1

Fenotron

VX-96

surge voltage prolector

GA 51574,GA 51724

Model 0369

neon bulbs

9 La4C4

appliance protector

LA.9

Selenium rectifier,

Thyrector types

6 RS21SA2I)2,

6RSI 5SAI DI, t_r

6KS32SA1DI

250 to 6000

250

800

150 to 5000

750 to

50,000

230 to g00

500 to 2600

250 to 400

200

70 to 120

1000

IO30

1500 to

5000

25 to 500

1.6

2.5

unknown

unknown

unknt_wn

unknown

1 6 or

greater

4

7.5

4

25

4

6

Zener

type

Self-

Inter-

rupting

2000 No

2000 No

3000 No

unknown No

1000 to No

6OO0

unknown No

6000 No

unknown No

unknown No

unknown No

10,CO0 Yes

5000 Ye_

300 Yes

300 Yes

*Minimum ovemoltage at which the proteclOr will operate Some manufacturer_ provide gaps for various voltages

"*Maximum breakdown voltage is defined as the operating voltage at the 0 l_ux point.

i"Operat mg temperature -70 ° to ÷ 160°F ; al_o meets humidity requirements of MIL-Spec 202.
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Table 3.6.-Advantages and disadvantages of miscellaneous types of lightning

protective devices.

Device Advantages Disadvantages

Spark gaps

Gas tubes

Semiconductor

devices used

as crowbars

7.

8.

9

i0.

11,

12.

I

2.

3

Simple and reliable.

Easily fabricated.

High energy handling capacity

Very low voltage drop {arc dropJ

during conducting state.

Bilateral operation (same character-

Jstics on either polarity).

Fast response time {.start conducting

m less than 1 ps if well designed).

Zero power consumption on stand-

by.

Wide operating range.

Long life expectancy.

Low internal capacitance.

Require no auxiliary equipment,

power supply, or maintenance.

Re}atively unaffected by radiation,

Low cost.

Small size (depending on bulb).

Low sparkover voltage typically 60

to IOO V in firing times greater than

2 tas.

4 Can pass very high currents for short

time.

5 Self-healing (usually).

I. Good surge current ratings, although

not as good as spark gaps.

2. Low voltage drop when conducting.

3. Suitable for use on low voltage dc

circuits.

4. If properly applied, will interrupt

follow-on current at the first zero

following initiation of conduction.

I, Relalively high sparkover potential

for their low-voltage ratings.

2. Stlnpie gaps will not extinguish fol-

Iow.on-cLtt rent.

3. Seldom avadabie in conveniently

packaged assemblies; must be de-

signed for each specific application.

1 Po(_r voltage-time characteristic.

7, Wili ¢on!mue to conduct if the driv-

ing "_oltage is above 60 to 100 V.

3 P¢)ssibly more sensitive to radiation

than spark gaps in air at atmospheric

pressure

4 Wdl not absorb large amounts of

energy

I. Low thelmal capacity to dissipate

surge energy.

2. Mus_ bc triggered by an auxiliary

circuit

3 Wilt not interrupt follow.on current

on dc Circuits.

4 katmted in rate of buildup of current

or rate .f buildup of voltage that can

be tolerated

5 Expenswe

6. Not bilateral. {For protection on

boIh pt_lal iltes, two rectifiers and

add_ll_mat c_rcuitry musl be used,

Bilateral devices are commercially

avadable with two series back-to-

back SCR's).

1. Spark Gaps

In operation, spark gaps tend to conduct with a low and reasonably

constant voltage drop across the device. When the gap carries maximum

current, the voltage across it is typically 10 to 20 V. With increasing current

through the gap, the arc channel increases in area and the voltage drop across
the arc remains about the same.
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If spark gaps are used on power circuits, it is important to provide

external means for extinguishing the arc by removing the applied voltage in

some manner. This can be done by interrupting devices, such as circuit breakers

or fuses, or by inserting resistance rapidly into the circuit by an additional

element such as Thyrite or a gas-blast de-ionizer. By suitable design, spark gaps

can be made self-extinguishing. Such self-extinguishing properties may make
use of the magnetic blow-out principle or may employ other means for

achieving the same effect.

2. Gas Tubes

Neon, argon, krypton, xenon, and other gases that ionize at low pressure
are often employed as dielectrics in low voltage spark gaps. Such devices can be

used as surge suppressors.

3. Semiconductor Devices

Crowbar devices are semiconductors, such as zener diodes and

silicon-controlled rectifiers (SCR's), which conduct abruptly upon avalanche

breakdown or upon triggering. Since the impedance of these devices reduces to
a very low value when they conduct, it is often necessary to add a series

impedance in which surge energy can be dissipated and which, at the same

time, limits the magnitude of power-follow current. A nonlinear resistor

(varistor) such as silicon-carbide is very effective for this purpose. This material

is used in certain commercial surge arresters.

4. Voltage Clippers and Nonlinear

Resistance Devices

Voltage clippers, as suggested by the name, limit the circuit voltage to a

specified threshold value. Generally, voltage limiting is achieved by lowering

the impedance of the limiter in proportion to the voltage rise. As a result, the

corresponding current causes about the same (or a very slightly increased)

voltage drop through the surge-voltage impedance.

The effectiveness of voltage limiters depends upon the ratio of their

impedance under overvoltage conditions to the impedance of the surge source.

The performance of these devices is best revealed by plotting current versus

voltage. These characteristic curves exhibit either a knee or a curvature, as
shown in Figure 3.26, in contrast to the straight line characteristic of a linear

resistor. Under steady-state conditions, voltage clippers utilizing nonlinear

resistance elements draw a small leakage current. When, for an initial

steady-state voltage condition, an increasing amount of surge current flows

through the device, the voltage rises gradually across it and across the
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Voltage

Figure 3.26.-Performance characteristics of typical voltage clippers compared
to that of a linear resistor.

R
s

]
El

)

R 1

Nonlinear Resistance

I (controlled avalanche

II_ selenium rectifier)

L E_I

' 1_J

o

Figure 3.27.-Method of using a nonlinear resistor as a means of limiting the

output voltage when the input voltage is subject to rapid rise.

shunt-connected system to be protected, as shown by the characteristic curve.

It is apparent that, under surge conditions, the voltage will increase a

significant percentage above the steady-state level before reaching a limiting
value.

Figures 3.27 and 3.28 demonstrate the action of a selenium rectifier in
reducing surge voltage. For the case shown in Figure 3.27 the feed-through

voltage, E 2, is reduced to a value less than 10 percent of the input voltage, E 1 .

For an applied surge voltage E 1=600 V, the feed-throtlgh voltage would be
held to a value E 2 =0.097 X 600=58.2 V [see Figure 3.28(b)].

An example of a nonlinear protective device is Thyrite*, which is a

nonlinear resistance element (Reference 21, pp. 12-5 through 12-7). The

relationship between the current 1, which flows through the device, and the

applied voltage E across it is

E = (Roi)l/n, (3.29)

*Registered General Electric Company trademark.
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E_

E 2

(a) Input voltage E l and output voltage E 2 without selenium rectifier. For

conditions shown, I{ 2 = 0.525 E l , dne to resistive w)ltage divider fornled by

source and rectifier impedances.

E l

E 2

(b) Input voltage E l and outpul voltage E 2 with selenium rectifier. Rectifier

maintains output voltage to a value E 2 = 0.097 E 1.

Figure 3.28.-Effecl of selenium rectifier in reducing surge w_ltage. For both

oscillograms, sensitivity is 200 V/cm, and sweep rate is 5 /as/cm

(Reference 20).
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where n > 1 for Thyrite. Usually, n is approximately equal to 3.5, but n can

equal 7 for higher resistivity Thyrite. For a common resistor, the constant R o

is the resistance in ohms and n = 1. Ordinarily, R o is the initial resistance, in
ohms, when voltage is zero (or very small). However, Thyrite has the property

that the apparent resistance decreases as the applied voltage increases.

Therefore, when the surge voltage from a lightning stroke appears across a

Thyrite element in a circuit such as that indicated in Figure 3.27, it is clipped
in magnitude because of the decreasing resistance of the Thyrite. The sum of

R s and R l should be very large compared with tile maximum value of the
nonlinear resistance of the Thyrite element. Typical Thyrite elements can

handle large peak surge currents. The level to which an overvoltage is held is

within the range of 10 to 20 percent above the peak value of the steady-state

circuit voltage. A typical application is in 60-Hz primary power lines.

The rating of voltage limiters is directly related to their capability for

storing or rapidly dissipating thermal energy, since clippers actually convert the

surge energy into heat. On the other hand, as soon as the surge current decays
and vanishes, voltage limiters recover their normal impedance so that a

minimum of disturbance is introduced after the surge; their presence in the

circuit does not interfere with normal circuit operations.

Typical devices in this category include silicon carbide (Thyrite) resistors,
selenium rectifiers, and zener diodes.

5. Energy Storage

Elements

Capacitors and ordinary resistors may be used individually or in

combination across equipment electrical terminals to provide protective devices

that function on the basis of stored energy.

Capacitors suppress overvoltage surges by temporarily storing surge

energy which is gradually dissipated through the impedance of the equipment

shunted by the capacitors; also, the inherent distributed capacitance of long

cables feeding equipment can cause a progressive increase in the rise time of the

leading edge of surge wave fronts reaching the equipment.

Linear resistors are often employed across highly inductive dc circuits.

These dissipate the magnetic energy stored in inductive elements.

Combinations of capacitors and resistors across the equipment are also

helpful. Surge energy is momentarily stored in the capacitors but is dissipated

at a decay rate determined by the effective RC time constant. Such

combinations are sometimes used to prevent excessiw voltages at open

switches accompanying surge reflection.
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4.5 SAFETY OF PERSONNEL

The importance of personnel safety cannot be overemphasized. All

operating and maintenance personnel, regardless of assignment, should be given
instructions as to proper and safe actions during electrical storms. The
following precautions should be taken.

(1) Maintenance or repair work on electric circuits should not be

permitted during electric storm activity. If such work is mandatory, all wires

should be temporarily grounded at the point of repairs and the workmen
should wear approved insulated gloves.

(2) Personnel must be prohibited from working on towers and antenna
structures during electric storm activity.

(3) Personnel should seek and remain in areas protected from lightning
during electric storm activity. Examples of such areas are protected buildings,

metal buildings, and hardtop automobiles. In the event of an emergency,
shelter could be obtained under large dish antennas.

It is suggested that some means of monitoring electric field strength to
establish the existence of dangerous electric storm conditions be obtained.

There are several suppliers of this kind of equipment.

Commercially available sferics detectors monitor electric field strength

and thereby provide a warning system that can be installed to predict the

existence of dangerous electric storms in that area. (Reference 22, pp. 7-11,
7-12, and 7-13).

5. LIGHTNING PROTECTION
PRACTICES APPLIED TO
NASA STATION SITES

Ideally, from an economical standpoint, effective lightning protection

practices should be implemented concurrently with new station construction.

For example, ferromagnetic conduit for long underground cable runs, other

metal structures, or counterpoises can be installed readily in a new site with

minimum cost. On the other hand, it is costly to incorporate these protective
features in existing installations.

However, the NASA Data Acquisition Facility (DAF) at Rosman, North

Carolina, is a typical example of an existing field station that has been

modified at minimum cost to achieve improvement in lightning protection of

several orders of magnitude. The lightning protection practices applied at the

Rosman site will be described as examples of desirable practices for lightning
protection.
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5.1 GROUND RESISTIVITY

As might be anticipated, the resistivity of the ground in the vicinity of a

station site has a significant influence on the harmful effects of lightning. This

is borne out by test data (Figure 3.29) obtained at two different station sites.

Test data for the Rosman and Madagascar sites were taken in accordance with

techniques outlined in Section 3.2.1. Datafor the two installations differ not
only in the magnitude of ground resistivity but also in the manner in which the

resistivity varies with depth of ground rods. The parameter D in Figure 3.29 is

the spacing between ground rods used in making the resistivity measurements.

A spacing of D feet between adjacent rods, as shown in Figure 3.29, yields the

average earth resistivity also to a depth D in the earth. Thus, D on the abscissa

of Figure 3.29 also refers to the depth into the earth.

Since the Rosman station is located in mountainous terrain, lightning

current injected into the earth's surface tends to remain fairly close to the

surface, thereby creating good opportunity for the lightning current to find its

way into the grounded conductors of buried cables in the vicinity. Primarily,
this effect arises because ground resistivity increases with the depth to which

ground rods are driven into the earth's surface, as shown by the test data of

Figure 3.29. It has been determined that the primary cause of equipment

burn-out at Rosman is the pickup of lightning currents oll long interconnecting

cables extending over a large area (see Figure 3.2).
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4,000

Figure
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Instrument: ,lames Biddle 4-ter'minal mek"ger
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:// i _
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20.9

Madagascar Data ! 0.4

13tl

xo zo 3o +o 50 oo _'
70 80
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3.29. Measurenlents of ground resistivity for gr_)und rods sunk to
different depths at two DAF station locations.
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On the other hand, the ground resistivity decreases with depth of ground
rods for the Madagascar station at Tananarive, Republic of Malagasy. This is an

ideal condition from the standpoint of best lightning protection. Therefore, it

is to be expected that the Madagascar site should experience much less trouble

during lightning activity than the Rosman site. This has, indeed, been the case

according to both Madagascar and Rosman station reports.

5.2 LIGHTNING-INDUCED

VOLTAGE IN LONG CABLES

Figure 3.30 represents a typical cabling problem wherein a lightning

current injected into the system at Location 3 causes a current IRg 2 to flow
through the resistance Rg 2. In fact, ifRg 2 is small compared to Rgl, and if the
resistance of the ground conductor between points A and B is small, most of

the injected lightning current will flow through Rg 2. The voltage drop across

Rg 2 will also appear at Location 2 and will be added to the magnetically

induced voltage, Vrnag , at that point.

If VRg 2 is taken to be the voltage drop appearing between point A and

ground as a result of the ground resistivity, and if Vrnag is the voltage induced
between points D and A as a result of flux changes in the loop DCBA arising

from the lightning stroke, the total voltage appearing between point D and

ground at Location 2 is

Vto t = Vmag + VRg 2 = Vmag + Rg21Rg2, (3.30)

where 1R is the current in the lightning stroke For the purpose of
2

simplifyin_ computations, it is convenient to deal with voltages normalized for

Location I Location 2

2000 irt

Shielded Cable (insulated)

2 ft

!

Uninsulated Safety Ground Conductor l

(- (- C C C
Leakage Current tc_ Ground

tq

(-

[Rg21 :R_,

l,ocat ion 3

Figure 3.30.-Diagram for analyzing the voltage induced in a long cable as a
result of a lightning slroke.
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unit current rather than with absolute values of w)hage. Typical values of

normalized voltage are VRg2]I = 1 and Vmag/l = 0.7, for injected lightning
current I. The lightning current may easily have a value l = 1000 A, and Rg 2 is
typically 1 _. When these typical values are substituted into (3.30) the total

voltage between points D and ground at Location 2 is found to be Vto t = 1700
V, for injected lightning current I = 1000 A.

5.3 LIGHTNING-INDUCED VOLTA(_E

BETWEEN EQUIPMENT RACKS

Figure 3.31 illustrates a typical configuraOon of stati(m equipment cabi-

nets wherein electrical sparking between cabinet racks was reported during

lightning activity. As can be seen from Figure 3.31, the left-hand cabinet is

bonded to the signal ground plate via a conducting path: a _onco,lducting loop
formed by points DEFABC is similar to the long cable loop ABCD in Figure

3.30. A magnetically induced vollage Vca b can appear belween points Cand D

if the cabinets are not electrically bonded together at these points. This

voltage is the result of the magnetic fluxes passing over two paths from E to F

and from points F to A.

Sii.mal

Ground

Pl;tte

-t) Radial

A

Equipment f{a(-ks ir_

)pt rations Buildin_

_ _ Dft_F S,_h C,mductor Shielded Cable

20 ft - No.

4-0 Radial F

J y lJninsutated Salet_ (;r,mnd Conductor

l/g1 _1t _ Ilg,

Injected

LightningZ_

G ,'t,und Antenn:

Fk,.id Site

Figure 3.31. Diagram for analyzing the voltage induced between equipment

racks as a result of lightning stroke.
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The magnetically induced voltage V 1 results from lightning current

flowing between points E and F, whereas V 2 is produced by the same current

flowing between points F and A, shown in Figure 3.31. Voltages V 1 and V 2

are now computed for a typical example, and then combined in a root-mean-

square manner to give a typical value for Vca b.

For the purpose of determining V1, radius r 1 is set equal to 0.065 in. (the

radius of a No. 8 wire conductor), radius r 2 equal to 240 in. (20 ft), and height

h equal to 2 ft. From (3.17), the induced voltage resulting from the portion of

the injected lightning current I flowing between points E and F is

(12 X 20'_d/
V 1 = 61 X 10 -9 2 In \ 0.065 ]dt

= (122 X 10 -9 In 3700)d _

= 10-6 d/
dt"

Assuming dl/dt = 1000 A/gs yields

10-6(103 4=

VI = \10 -6 s/ 1000 V.

However, induced voltage V 2 also contributes to the magnitude of Vca b.

In determining V2, which is actually larger than V1, the radius r! is set equal

to 0.230 in. (the radius of a size 4-0 wire conductor), radius r 2 equal to 24 in.

(2 ft), and height h equal to 20 ft. From (3.17), the induced voltage from the

portion of the injected lightning current I flowing between points F and A is

12 X 2'_dI
V 2 = 61 X 1O- 9 20 In \O.---'_]d'T

= (1220X 10 -9 In 90.5)dd--_/t

= 5.65 X 10 -6d/
dt"

Again, assuming dl/dt = 1000 A//as yields

103 A_=

V2=5.65X 10 -6 _k10-6s} 5670V.
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Since the magnetic fluxes set up by the current in these two paths are at

right angles to each other, the voltages add vectorially, resulting in

Vz
Vcab : (1_1 + V_2)V2 : (10002 + 5670-)

= 5750 V.

From this simple model, it is seen that the voltage between equipment

cabinets may be appreciable. Hence, it is possible to develop a voltage

sufficient to cause sparking between adjacent unbonded cabinets, thereby

constituting a hazard to personnel.

5.4 INSTALLATION OF

PROTECTIVE DEVICES

The judicious installation of selenium rectifier pwtective devices can

significantly improve a station's vulnerability to lighlning. Examples of

practices employed at the Rosman station are iltus_r_t_ed in Figures 3.32

through 3.35, inclusive.

To t

Equipment ¢

Racks ¢

Clamp-type

Connectionj

to Sheath

or Junction

Fitting

/
Selenium Rectifiers

(added for lightning protection)

Coaxial Cables

//
Safety (Pc_c;) Ground,

Piping, or Conduit

From

-_ Remote

Location

Typical

Metal

Junction

Box

Wired with

::::_"No. 16 AWG

Stranded

Insulated Wire

Figure 3.32. Installation of selenium rectifiers tot lightning protection of RF
coaxial cable shields.
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Existing No, _ AWG

B_m _ing Jumpers

\

Equipment racks
Installed Selenium

Rectifier

/_,._ No. 16 AWG Stranded
lnsulate_ Wire Ino

Grounding } ] ii \ [longer than 24 tn.}

Bus

Floor

Existing 4-0 AWG Radial Conductors

4/O Bare Safety Ground

(to building, piping, conduit,

and connection boxes)

Plate

Insulated

Signal

Ground

Figure 3.33.-Installation of selenium rectifiers for lightning protection of
equipment racks.

Cable Soldered

acket Connection

Overall

Cable N 14

Braid A_

Floor

I oo.duoto./Ex tin R ? o Circuit

Individual
Conductor I --_ll I !l . I_"'---- Location

Typical
I II Metal

* I

I d etlon

No. 14 AWG l _ _ I

Stranded, I_ ............. A

Insulated Wlre_ -°

Safety (Power) Grotmd

No. 2 Grotmd Wire / m n

- - to be added for lightning protection

* A selenium rectifier c_uld be used here, but a solid connection is preferable.

Figure 3.34.-Termination of shielded cables from remote locations for lightning

protection.
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To

Outputs

of

Valve

Driver

Cards

tV--::dtj Pun°_tnitonSan2 Te;_o 1c71 ]

_t Unprotected

} Terminals

tl I I I , I _,r__ 1 Lightning

I I I I ___ _-]--I-_proteeted

L _ L li [______lll ) Terminals

' _ C _I_ _ [__ I SelemumRectiners{addedfor

I[ ' t t _ -"'_l;gh:nN:gp:°t2wtG°:t::atae2:dJinsulated wire,

Safety {power) Ground or Signal Ground

Figure 3.35. --Installation of selenium rectifiers on a tesl-point panel and junc-

tion box in a typical solid-state equipment cimt ml console.

The application of selenium rectifiers for protection of RF coaxial cables

is illustrated in Figure 3.32. One method for proleciing equipment racks

against lightning-induced voltages is shown in Figure 333. In Figure 3.34,

insertion of a selenium rectifier in a ground lead is used for lightning protection

in terminating shielded cables from remote locations.

Figure 3.35 illustrates how a typical solid-state equipment can be

protected from lightning surges by the installation ot selenium rectifiers on

critical voltage-sensitive circuit lines. The minimum breakdown voltage of each

selenium rectifier should be selected to be slightly greater than the peak

operating voltage for a given line.

6. LIGHTNING PROTECTION

FOR NASA MINITRACK
STATIONS

The 136-MHz Minitrack Interferometer syslem (Reference 23) has a

unique lightning protection problem. The NASA inslallation at Fort Myers,

Florida, continuously reported the burnout of coaxial switches in the antenna.
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138-MHz

Signal II

Cable (50i_)

Metal Cabinet

toHubt_rNitrogenlh_Sesupply _((

Coaxial lane /

LAto Equipment

..... _k...... '_TL......

/
Bare Cuncluetor /

from Safety Insulated Conductor
from Slffaal Gru_d 'e'ield

(; l'uund .%'h ie ld

Shorted Co_ial

Stub

/
Minitr_k

Op_ratinns

BuiLding

--Short Copper ttraid

_ Seleniurn Rectifier

(added for llghtnLng protectten)

....--Signal Ground Bus

_ Pressur_Led C_xtal
Line from Antenna

/

T

Figure 3.36.-Grounding details of a Minitrack antenna signal cable for lightning

protection.

3-Wire System
2400 V, 3_b

D

l .-w,reSy.,e 2osv..
Silicon Carbide (Thyrite)
Protective Devices -_

Connected with No. 6

AWG wire.

Figure 3.37.-Installation of silicon-carbide protective devices oll secondaries of

pad-mounted transformers for lightning protection.

An analysis (Reference 20) revealed that the coaxial switches could be

protected by the use of a shorted coaxial stub, one-quarter-wavelength long,

and a selenium rectifier protective device, as illustrated in Figure 3.36. The

shorted, one-quarter-wavelength, coaxial stub provides a high parallel
impedance to the 136-MHz signal in the 50-fZ coaxial cable; the coaxial stub

provides a low-impedance path for the lightning current to flow through the

selenium rectifier. Also, the selenium rectifier is effectively connected between

the signal ground field line and the safety ground shield line, thereby providing

additional lightning protection.

The primary power system was protected with silicon-carbide protective

devices as shown in Figure 3.37.
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A
Absorptionloss,116,117,118

shieldingeffectiveness,111
Adjacent-channelinterference, 6, 44, 48, 49

Adjacent channel receiver, 44

Administrative Radio Conference,

Geneva, 1959, 91

Air traffic, United States, 94

Aircraft interference, 4

Alodine, corrosion resistant finish, 133

Aluminum, 133, 147

non-ferromagnetic metal conduits,

234

shield, 116

Amplitude modulation (AM), narrow-

band modulation, 6

sideband, 11

transmitters, 9, 10

Angle modulation, 10, 20

Antennas, bonding, 141

conducted emission, 188

Arc sources, aids in locating, ultrasonic

devices, 141

Arc welders, man-made noise, 88

Argon gas tube, 239

Atmospheric noise, broadband noise, 45

natural noise source, 45

Attenuation, circular tubes, 78

cylindrical waveguides, 121

man-made noise, 89

rectangular waveguides, 121

Automobile ignition noise, 5, 39, 45, 88,

90

impulsive, 37

Avalanche effect, 40

Average-of-the-envelope detector, 85

B

Balanced coupling circuit, 75,144

Balanced modulator, 10, 23, 24

Bandpass filters, 170

Bessel function, 12, 13, 27, 58

Blanking system, 48

Bonderrite, corrosion resistant finish, 133

Bonding, 126, 133, 219, 235

counterpoises, 209

protection code, 135

receivers, 140

shear pins, 140

shielding, 76

structural members, 138

transmitters, 140

VHF equipment, 76

Broadband emission, 188

Broadband modulation, 48

Broadband noise, 44, 45

corona discharge, 39

high-voltage transmission lines, 39

man-made noise sources, 45

automobile ignition, 45

commutator, 45

fluorescent lamps, 45

high-voltage transmission lines, 45

switching systems, 45

natural noise source, 45

atmospheric noise, 45

galactic noise, 45

shot noise, 45

solar noise, 45

thermal noise, 45

Building, grounding, 233

Bunching parameter, 27, 28

Bunching process, klystron, 27

Burnout, coaxial switches, 250

Butterworth n-filter, 162

Bypass filter, 171

Bypassing capacitors, 73

C

Cabinets, personnel hazard, 248

racks, 246

sparking, 248

Cables, 235

coaxial, 248

electric coupling, 175

noise, 69

shields, 157

wiring, 173

Calculation aids, 180

257
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Capacitivecomponent,230
lightningphenomena,201

Capacitivelycoupledcircuits,voltages,
219

Capacitors,169
bypass,73
feedthrough,73

Cascade,single-tunedcircuits,50
Changeofvariable,52
Characteristicwaveimpedance,110
Charge,inlightning strokes, 208

Circuit, noise conduction, 69

susceptibility tests, 80

Q, 9

Circular tubes, attenuation, 78

Circulator, ferrite, 31

Class C amplifier, 27

Clouds, electrified, 230

Coaxial cable (triaxial), 153

Co-channel interference, 44, 48

Command encoders, shielding, 123

Command transmitter, 21

Commutator noise, 45

Computers, shielding, 123

Conducted electromagnetic emissions

(EME), 188

Conducted noise, circuit, 69

measurement, 87

Conducting glass, 121, 122

Conduction angle, 27

square sinusoidal cap, 26

Conductivity, 110, 112,119, 234

Conductor, loop, 228

man, 228

Conduit, ferromagnetic, 234

steel, 234

Connectors, 122

Control shafts, 122

Conversion loss, crystal mixer, 68

Conversion transconductance, 57, 67, 68

Copper, 147

impedance of bonding strap, 128

serf-inductance of wire, 159

Corona discharge, 40

broadband noise, 39

high-voltage transmission lines, 39

man-made noise, 88

noise, 35, 41, 45

Correction factor, shielding effectiveness,
111

Corrosion, 134, 149

electrochemical cell, 134

Corrosion resistant finishes, alodine, 133

bonderrite, 133

iridite, 133

oakite, 133

turco, 133

Cosinusoidal pulse, 17

Counterpoise, 188. 217,232

bonds, 209

effective resistance, 218

grounds. 209

Cross-coupling, 189

Crossmodulation, 34, 44.63, 80, 83, 189

intermodutation, 32

Crosstalk, 189

Crowbar device, 236

Crystal controlled oscillator, 24

Crystal mixer, 57

conversion loss. 68

Current amplitude of lightning stroke, 207

Current flow in earth, 210

Current flow in hemi_.pherical electrode,

210

Cylindrical waveguide, 120

attenuation, 121

D

Damping ratio, filter, ! 68

Data acquisition ground station, 90

Data processing, shielding of equipment,

124

dc bonding, resistance, 130

Desensitization, 66, 68

undesired signal, 189

Detector, average, 85

peak, 85

quasi-peak, 85, 86

RMS, 86

sferics, 243

Diode, linear, 7

Diplexer, 22

Duct filter, 77

E

Earth, current flow in, 210

hemispherical electrode, 210

resistivity, 149,214, 244

Electric capacitance, 190

Electric charge, on earth-based object, 230

electrified clouds, 230

Electric coupling, 173
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cable, 175

magnetic coupling, 176

parallel wires, 176

Electric current, 190

Electric field, 111, 112, 116, 118

Electric field strength, 190

Electrochemical cell, as corrosion

mechanism, 134

Electromagnetic compatibility (EMC),

109, 128

Electromagnetic emission (EME), 189

Electromagnetic field, 110

Electromagnetic interference (EMI), 125,

189

Electromagnetic susceptibility (EMS), 189

Electromotive force, 190

Empire State Building, lightning stroke to,

205

Energy storage elements, 242

Equipment racks, lightning-induced

voltage, 246

lightning protection, 249

Extraordinary Administrative Radio

Conference (EARC), Geneva,

October 1963, 91, 97

F

Faraday shield, 154

FCC limits on harmonic emission, 27, 28

Ferrite circulator, 31

Ferrite material, filter inductors, 168

toroidal cores, 168

Ferromagnetic conduit, 234, 243

Field impedance magnitude, 111

Field strength, 37

function of distance, 95

Filter, Butterworth n-filter, 162

duct filter, 77

damping ratio, 168

fluorescent lamps, 172

harmonic rejection, 170

insertion loss, 166

installation, 170

pulse cancellation, 170

radio frequency, 23, 43, 72

receivers, 170

rejection, 68, 116

T-circuit, 162

transmitters, 171

Filter inductors, 168

powdered iron, 168

molybdenum permalloy, 168

toroidal cores, 168

Filtering, 160

duct f'flters, 77

waveguides below cutoff frequency, 77

shielding, 77

Finger stock, 121,122

Fluorescent lamps, filtering, 172

as noise source, 42, 45, 88

Follow-on circuits, 154

Fourier analysis, 8, 15, 25, 161

Fourier spectrum, 16, 47

ideal pulse, 19

Frequency deviation, 11, 20

Frequency modulation, narrow band, 6, 13

Frequency multiplication, 14, 55

Frequency multiplier, 23, 27

G

Galactic noise, 45

Galvanic group, 134

Gas tubes, argon, 239

krypton, 239

neon, 239

semiconductor switches, 237

spark gaps, 237

xenon, 239

Gaussian noise, 48

Ground cable trays, 234

Ground conductivity, 149

Ground connection, resistance, 151

Ground leads, length, 157

Ground loops, 75

Ground plane, 189

Ground resistance, 150, 215,219,228

effective, 211

ground rods, 214, 220

measurement, 216

Ground resistivity, 213, 244, 245

Madagascar site, 244

Rosman site, 244

Ground rods, 150, 209, 213, 244

Grounding, 73, 142, 151,234

buildings, 233

receivers, 160

signal system, 152

transmitters, 160

Grounds, bonds, 209

counterpoises, 209

homogeneity, 210

multiple-point, 74



260 RADIO FREQUENCY INTERFER ENCE HANDBOOK

power circuits, 235

single-point, 74

Guard wires, 235

H

Harmonic absorption, 31

Harmonic conversion transconductance, 68

Harmonic emission, FCC limits, 27, 28

Harmonic generation, nonlinearity, 22

Harmonic mixing, 57

spurious response, 67

Harmonic rejection filter, 170

Hemispherical electrode, current flow, 210

voltage gradient, 212

High-frequency receiver, spurious

responses, 62

High-voltage transmission lines, broadband

noise, 39

corona discharge, 39

man-made noise, 45

Horizontally polarized waves, 37, 38

1

Ideal pulse, Fourier spectrum, 19

Ignition noise, 38.39, 47

shielding, 125

Impedance, copper bonding strap, 128

Impulse bandwidth (IBW), 189

effective, 47

Impulse interference, 189

Inductance, 190

Inductive coupling of noise, 70, 71

Inductors, 168

filter inductors, 168

ferrite material, 168

molybdenum permalloy, 168

powdered iron, 168

toroidal cores, 168

Insertion loss, 166

n-type filter, 165

Instantaneous frequency, 12

Interference, adjacent channel, 44

Interfering signal, power spectral

density, 51

Intermodulation, 34, 44, 63, 80, 83, 189

crossmodulation, 32

Intermodulation interference, 65

International Frequency Registration

Board, Geneva, International

Frequency List, 91

International Telecommunications Union,

(ITU), 90, 91, 97

Intrinsic impedance, metal, 118

lridite, corrosion resistant finish, 133

Isokeraunic lines, keraunic level, 201

J

James Biddle megger, 244

K

Keraunic level, 201

isokeraunic lines, 201

Klystron, 23, 29, 239

bunching process, 27

pulsed, 28

Knife-edge diffraction theory, 96

Knitted wire gaskets, 139

l,

Length, ground leads, 157, 190

Linear diode, 7

Linear modulation, 20

L'Hospital's rule, 18

Lightning, 151

in loop with man, 230

propagation along wire, 218

rate of rise of current, 208

resistive components. 228

surge, 218

Lightning arrester. 235

Lightning-collecting area, 202

Lightning damage, electrical circuits, 234

mechanical, 233

Lightning-induced voltage, 219

equipment racks, 246

long cables, 245

Lightning phcnomena, capacitive

components, 201

magnetic components, 201

resistive components, 201

Lightning protection, 160

equipment racks, 249

selenium rectifiers. 249

solid-state equipment, 250

Lightning strokes, 127

charge, 208

current amplitude. 207

Empire State Building, 205

mechanical damage, 233

time to crest, 206

Local oscillator. 55

harmonic rejection filter, 170

Low-inductance leads. 160

Low-pass filter. 163, 170, 171, 172
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M

Magnetic component, 221

lightning, 201

Magnetic coupling, 173, 174

electric coupling, 176

parallel wires, 176

Magnetic field, 111,118

electromagnetic field, 110

shielding effectiveness, 112, 116

Magnetic field reflection loss, 114

Magnetic field strength, 190

Magnetic flux density, 190

Magnetic permeability, 112

Magnetically coupled circuits, 219

Magnetically induced voltage, 227,228

Magnetron, 23, 30

Man, as conductor, 228

Marine sand, resistance, 213

Matched-filter detector, 48

Measured field intensities, function of

distance, 97

theoretical field intensities, 97

Mechanical damage from lightning

stroke, 233,234

Megger, James Biddle, 244

Metallic gaskets, 121, 122

Minitrack, 90, 92, 109

antenna signal cable, 251

interferometer, 35,250

136-MHz receiver, 93

Mixer, 61

conversion transconductance, 57

harmonic conversion transconductance,

68

spurious responses, 170

Modulation index, 12, 14

Molybdenum permalloy, filter

inductors, 168

toroidal cores, 168

Motor vehicles, battery charging, 125

ignition, 125

shielding, 125

Motors, 88

shielded, 125

Multiple ground rods, 216

Multiple-point ground (MPG), 74, 146

147, 160

single-point grounds, 74

Mutual inductance, 224, 225,226

Mylar, 169

N

Narrowband emission, 189

Narrowband frequency modulation, 6, 13

amplitude modulation, 6

double sideband, 6

single-sideband, 6

Narrowband receiver, 21

Negative resistance, 34

Neon gas tubes, 239

Noise bandwidth, effective, 21

Noise, inductive coupling, 70, 71

man-made, 88, 89

arc welders, 88

attenuation, 89

automobile ignition, 5, 35, 45, 88

cables, 69

commutator noise, 45

corona discharge, 35, 88

fluorescent lamps, 45, 88

high-voltage transmission lines, 45

motors, 88

rectifiers, 88

switching systems, 45, 88

natural, 88, 89

ambient noise, 88

atmospheric noise, 45

broadband noise, 45
galactic noise, 45

shot noise, 45

solar noise, 45

thermal noise, 45

urban population centers, 35

Non-ferromagnetic metal conduits,

aluminum, 234

Nonlinear device, 32, 34, 43, 55, 59

Nonlinear element, 65

square-law device, 7

surge protection devices, 236

Nonlinear intrusion, 54

Nonlinear modulation, 20

Nonlinear protective device, Thyrite,

240, 242

Nonlinear resistance device, voltage

clippers, 239

Nonlinear resistor, 239

Nonlinearity, harmonic generation, 22

Notch rejection filter, 170

O

Oakite, corrosion resistant finish, 133
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Off-band emission, radar pulse, 16

Off-band interference, 19

Oscillator, 23

Overhead cable trays, 235

Overmodulation. 9

P

H-type filter, 162, 167

insertion loss, 165

Parabolic dish antenna, 85-ft, 35, 92

Parallel wires, electric coupling, 176

magnetic coupling, 176

Parasitic oscillations, 34

Path attenuation, 22

airborne transmitter, 91

Peak detector, 85

Peak ignition noise, 35

Penetration, shield, 76

Periodic function, cos Px, 56

Permeability, il 1, 119, 120, 157, 174, 234

Permittivity, 111

Personnel hazard, cabinets, 248

sparking, 248

Plane wave, shielding effectiveness, 112

reflection loss, 115, 116

Polynomial least squares fit, triode

characteristic, 9

Powdered iron, filter inductors, 168

inductors, 168

toroidal cores, 168

Power circuits, grounds, 235

Power generation equipment, shielded, 124

Power line filters, 72

Power line susceptibility test, 80, 82

Power series, 23, 55

Power spectral density, interfering

signal, 51

Product modulators, 7

Propagation along wire, lightning, 218

Protective devices, RF coaxial cable, 248,250

selenium rectifier, 232, 248,249

silicon-carbide, 251

Protective grounding, 232

Pulse cancellation filter, 170

Pulsed klystron, 28

Pulse modulation, 15

Pulse radar, 18

Push-pull, tubes operated in, 27

O

Quasi-peak detector, 85, 86

R

Rack signal ground btls, 151

Radar pulse, 16, 18

off-band emission. 16

Radiated electromagnetic emissions, 189

Radiated RFI noise, measurement, 87

Radiated susceptibilily tests, 82

Radial wires, transient impedance, 218

Radio frequency (RF) amplifiers, 23

Radio noise, fluorescent lamp, 42

Receivers, adjacent channel, 44

bonding, 140

filters, 170

front-end rejection, 190

grounding, 160

interference, 44

shielding, 122

spurious responsc, 55,190

Rectangular pulse, 15, 16, 17, 21

Rectangular waveguide. 120

attenuation, 121

Rectifier modulator, 20

Rectifiers, noise, 88

Reflection loss, 113, 118

shielding etTectivcness. 111, 112

Rejection filters, 170

wave traps, 68

Relative conductivity, 116

Relative magnetic permeability, 116, 119

Resistance, dc bonding, 130

ground connection, 151

marine sand, 2 t 3

Resistive component, lightning, 201,228

Resistivity, earth. 149

salted soil, 151

soil, 211

RFI noise, 3, 4, 5, 78, 79, 82, 84, 87, 88, 90

Root-mean-square (RMS) detector, 86

S

Satellite automatic tracking anlenna

array (SATAN}, 35

Screen shield, 121

Selenium rectifier, 240, 241,250

equipment racks, 249

lightning protection, 249

protectivc devicc_, 232, 248

Self-inductance, 157

copper wire, 159

current-carrying conductor, 223
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Semiconductordevices,silicon-controlled
rectifiers(SCR's),239

surgeprotection,236
zenerdiodes,239

Semiconductorswitches,gastubes,237
sparkgaps,237

Sfericsdetectors,243
Shearpins,bonding,140
Shieldedlaboratory,electromagnetic

interference,125
Shielding,69

batterycharging,125
bonding,76
boots,122
commandencoders,123
computers,123
continuity,122
dataprocessingequipment,124
ductfilters,77
electronicservo,123
filtering,77
grounds,157
holes,120
ignition,125
M28/AutomaticSendandReceive

unit,124
motorvehicles,125
motors,125
penetration,76
powergenerationequipment,124
receivers,122
teletypeequipment,124
timestandards,124
"twin-ax,"175

vending machine cabinets, 172

vending machines, 125

VHF equipment, 76

waveguides below cutoff frequency, 77

Shielding effectiveness, 109,110, 111,

112, 133

absorption loss, 111

correction factor, 111

electric field, 111,112, 116

magnetic field, 112, 116

plane wave, 112

plane wave reflection loss, 116

reflection loss, 111, 112

Shielding techniques, transmitters, 123

Short-circuited stub, 30

Shorted coaxial stub, 251
Shot noise, 45

Sideband noise level, 45-MHz transmitter,

33

160-MHz transmitter, 33

Sideband splatter, 5, 20

Signal-to-interference ratio, 51, 65, 66

Signal-to-interference response, 62

Silicon carbon devices, 251

Silicon-controlled rectifiers (SCR's), 239

Sinc function, 15

Single-point ground (SPG), 74, 143,144,

145, 146, 149, 153, 155, 158, 160

multiple-point ground, 74

Single-tuned circuits, 61

cascade, 50

selection, 87

Site selection, RFI environment, 88

Skin effect, 110

Soil resistivity, 211

Solar noise, 45

Solid-state equipment, lightning protec-

tion, 250

Space attenuation, 37

Space Tracking and Data Acquisition

Network (STADAN), 3, 54, 91,

92, 95,109, 151,203

Spark gap, 236,237, 238

gas tubes, 237

semiconductor switches, 237

Sparking, 246

cabinets, 248

personnel hazard, 248

Spectral broadening, 20

Spectral density, undesired signal, 52

Spectral lobe, 18

Splatter frequency, 20

Spurious emission, 190

Spurious response, 84, 170

harmonic mixer, 67

high-frequency receiver, 62

Spurious signal susceptibility, 83

Square-law device, 7, 23, 24

Square-law modulator, 9

Squared sinusoidal cap, 25

conduction angle, 26

Standard impulse generator, 81

Standard response, 190

Steel conduit, 234

Substitution measurements, 190

Surge protection devices, characteristics

of, 236,237

crowbar device, 236

nonlinear elements, 236

semiconductor devices, 236

voltage clippers, 236
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zener diodes, 236

Susceptibility tests, circuits, 80

power line, 81

T

Taylor's series expansion, 64

Telemetry, 136-MHz receiver, 91

Teletype equipment, M28/Automatic

Send and Receive unit, 124

Temperature rise, containing case, 169

Test antenna, 190

Thermal noise, 45, 49

Theoretical field intensities, function

of distance, 97

Thunderstorm days, 201

Thyrector, 237

Thyrite, nonlinear protective device, 240,
242

Time standards, shielding, 124

Time to crest, lightning strokes, 206

Toggle switches, 122

Toroidal cores, inductors, 168

ferrite material, 168

filter inductors, 168

molybdenum permalloy, 168

powdered iron, 168

Traffic density, 38

Transconductance, 56

Transient impedance, radial wires, 218

Transmitters, bonding, 140

emissions, 4

filters, 171

grounding, 160

harmonic emission, 28

noise, 31

shielding techniques, 123

sideband noise level, 33

sideband splatter, 5

Triaxial cable, 153

Triode characteristic, 9

Tubes in push-pull operation, 27

Turco, corrosion resistant finish, 133

"Twin-ax" shielding, 175

u

Ultrasonic devices, locating arc sources, 141

Underground cable, 243

Undesired signal, desensitization, 189

spectral density, 52

United States, air traffic, 94

Weather Bureau, 201,202

isokeraunic lines, 201

keraunic lcvet. 201

Urban population centers, noise, 35

v

Vehicle ignition systems, 35

Vehicle traffic density, 38

Vending machine cabinets, shielding, 172

Vending machines, shielding, 125

Ventilation. 122

Very high frequency (VHF) equipment,

bonding, 76

shielding, 76

VHF propagation, 95

VHF transmitter, 32

Vibration isolators, 138

Voltages, 219

capacitively coupled circuits, 219

lightning-induced, 219

magnetically coupled circuits, 219

magnetically induced, 227,228

resistance voltage, 219

Voltage clippers, nonlinear resistance

devices, 239

performance characteristics, 240

surgc protection devices, 236

Voltage gradient, hemispherical ground

eleelrodc. 212

w

Waveguides, altenuation, 121

cylindric_d, 121

rectangular. 121

Waveguides below cutoff frequency, duct

filters, 77

filtering, 77

shielding, 77

Wide-band modulation, 6, 13

Wire mesh, 122

Wiring, cabling, 173

x

Xenon gas tubes, 239

Z

Zener diode, semiconductor device, 239

surge protection, 236

NASA-Langley, 1971 -- i0


