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ABSTRACT 

Solar radiation pressure exerts a mechanical force upon the surface of 

a spacecraft which intercepts the s t ream of photons coming from the Sun. 

For high-precision spacecraft attitude control and orbit  determination, it is 

necessary to generate a precise mathematical model of the solar radiation 

force and the moment of that force; such a model must be more accurate 

than the currently used "flat surfaceIt model, based on the radiation force 

on the effective cross-section a rea  of the irradiated body. 

In this report  the general expressions for  the solar radiation force and 

torques a r e  derived in the vectorial form for any given reflecting surface,  

provided that the reflecting characterist ics of the surface, as  well as the 

value of the solar  constant, a r e  known. 

fixed frame of reference leads to relatively simple expressions for the solar  

radiation forces and torques in t e rms  of the functions of the Sun-spzcecraft- 

Earth angle. 

An appropriate choice of a spacecraft- 

The advantage of such a model over the standard flat-surface model is 
obvious, and it is very easy to find the expressions for the e r r o r  of the stan- 

dard model for  any given reflecting surface. Another advantage of the model 

is that it can be used for the effects of the a i r  drag, solar  wind, etc. 
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I. INTRODUCTION 

TO derive the expression for the mechanical force exerted by radiation 

upon an intercepting surface,  let u s  consider an elementary flat surface area,  
perpendicular to the direction of the incoming radiation. Let S (Fig. 1 )  be 

such a surface and let  J be the radiant energy per unit a r e a  and per unit of 

time, impinging on S. One part  of this energy, ( 1  - Y ) J ,  Y < 1, will be 

absorbed by the surface and reradiated isotropically into space. 

ing part, Y J, will be reflected according to a certain reflection law f (  e ) ,  
where 8 is the angle between the direction of the reflected particle and the 

normal to the surface a r e a  S. 

be the two-dimensional Dirac delta function. 

diffuse, the reflected particles obey Lambert 's  reflection law ( R e f .  1): 

The remain- 

If the reflection i s  purely specular, f (8 )  will 

I f  the reflection is totally 

The total reflected radiation i s  in fact the combination of these two types of 

reflection. 

Fig. 1,  and by dw the elementary solid angle 

If we denote by cr the surface area of the hemisphere shown on 

dw = s in8  d 9  de,  

the total reflected radiation is 

where I is the radiant flux per unit solid angle on the hemisphere o. 

TPL Technical Memorandum 33-494 1 



Now set  

where I is  a constant. Subsequently, integrating over the a rea  of the 

hemisphere, we find 
0 

where 

1 for specular reflection 

n fo r  diffuse reflection. 
A(f) = 

The momentum of the radiation is J / c ,  where c i s  the speed of light. 

The momentum exchange due to the reflected beam of photons in the direction 

of the normal to the surface a r e a  S is 

and the tangential component of the momentum is zer3. 

over the surface of the hemisphere Q, the integral above becomes 
After an integration 

where 

1 for specular reflection I 2 / 3  for diffuse reflection. 
B(f) = 

2 JPL Technical Memorandum 33-494 



The total p ressure  is the sum of momentum exchanges due to the incident 

and reflected radiation 

P = J C [1 + YB(fjl. 

being the heliocentric 2 
SP ('SP Since J is inversely proportional to r 

distance of the irradiated body) the acceleration due to the radiation pres-  

sure  is  

k 
2 
SP 

= -  
r aSR P 

where 

k=-S+. 3~ 1 t Y B ~  
C 

Here, Jo is the value of J at the distance of the E a r t h  f r o m  the Sun (one 

astronomical unit), known as the solar constant: 

3 2 Jo = 1. 353 X 10 watts/meter (Ref. 2), 

while M is the mass of the reflecting body and S is the irradiated surface 

area. 

JPL Technical Memorandum 33-494 3 
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INCIDENT 
RADIATION 

SOLID ANGLE 

Fig. 1. Radiation reflected from an elementary surface area 
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II. SOLAR RADIATION FC,,CE ON AN INCLINED SURFACE 

Let us assume now that the direction of the incoming radiation is 

inclined by an angle 8 to the normal to the elementary surface a r e a  S (Fig. 2). 
The incident radiation produces the force 

FI = FN c o s 8  

where FN is the radiation force for  0 = 0, i. e . ,  i n  the case when the incident 

radiation i s  perpendicular to the intercepting surface, considered in the pre- 

ceding section. This force is given by 

- KSRPs FN -- 2 
rSP 

where KSRp is the solar  radiation pressure constant. 

stant can be easily calculated from the solar  constant Jo. 
The value of this con- 

It is 

Taking for the value of the astronomical unit (Ref. 3) 

AU = 149,597,893.0 km 

and for the speed of light (Ref. 3) 

c= 299,792.5 km/s 

we fipally compute 

2 = 1.0227 X kg rl/s . KSRP 

JPL Technical Memorandum 33-494 5 



The component of the force FI along the normal to the surface a rea  S is the 

pressure force (Fig. 2 )  

( 3 )  
2 pI = F COS e = F COS e, I N 

and the component of the same force in the tangential plane to the surface is 

T = F sin 8 = F sin 8 COS 8. (4  1 I I N 

As mentioned beforehand, of all  the photons impinging on the surface S, 
the portion of 1 - y remains absorbed and reradiated isotropically into the 

neighboring space, while the remaining portion y is reflected specularly or  

diffusely. The 

force produced by the reflection, af ter  the collision with the surface S,  is 

Let By be the portion of the specularly reflected photons. 

and the componeiits of this force along the normal to the surface of collision 

and in the tangential plane a r e  

pR = F COS e 

T~ = F~ sine 

R 

N’ so that, substituting FR and FI, we finally find, in te rms  of F 

pR = ~ Y F ~ C O S  2 e 

and 

- T~ - P Y F ~  sin e COS e. 

( 5 )  

6 JPL Technical Memorandum 33-494 



The force exerted on the surface S by the diffusely reflected photons, (1 - p)y, 

is perpendicular to S. Its magnitude is 

- 2Y F~ - g i -  p ) ~ ~  COS e. (7) 

The total radiation force along the normal to the surface i s  then the sum 

PN = PI t P t FD, R 

and the total tangential force is 

T , and T Substituting PI, PR, FD, f rom Eqs. (3-7), we obtain, in terms I R 
of FN, 

and 

T = ~ ~ ( 1  - pv) sin e COS e. (9) 

The polygon af forces  and the resultant force R a r e  shown on Fig. 2 .  

magnitude of the resultant force is 

The 

R~ = F~ cos e K~ t K~ COS e t K~ COS 2 8  J 
where 

L) 

2 2  4yL 2 K l = l t P Y  t 9 ( 1 - p )  

K2 = y ( 1  - Y)(1 t PY) 

K3 = 2pY. 

JPL  Technical Memorandum 33-494 7 
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The ang;e between the direction of the resultant force and the normal to the 

surface (oriented toward the surface) is 

JPL Technical Memorandum 33-494 



Fig. 

REFLECTED 

2. Polygon of forces acting on an elementary surface area 
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III. COMPUTATION OF THE SOLAR RADIATION FORCE 

10 

Consider an infinitesimally small  element dS of the irradiated 

reflecting surface S (Fig. 3), and let 

surface at  the point A (x, y, z) oriented in such a manner that 0 I 8 5 90 deg. 

If Q(x, y, z) = 0 is the Feflecting surface, then, obviously, 

be the unit vector of the normal to the 

and the oriented vector element of surface is 

- - -  
where e l ,  e e 

easy to see  that 

a r e  the unit vectors of a reference f rame xyz. Hence it is 2’ 3 

The unit vector of the direction of the tangential force T* lies in the 

plane containing the normal, incident and reflected rays,  which pass through 
the point A. 

source of the light is, so that the angle betweenT* and the direction of the 

light source i s  acute. 

direction, we find, from the conditions 

Also T* is directed toward the half of the plane in which the 

Denoting by u the unit vector of the Spacecraft-Sun 

that T* is qiven by 

- 
(15 )  

- u -  T* = -- w cot e. sin e 

JPL Technical Memorandum 33 -494 



Denote by d F  the resultant radiation force acting upon the element 

of surface dS. Since 

- - 
di? = - W  d P N  - T* dT, 

and since, f rom Eqs. (8) and ( 9 ) ,  

' I  d P N  = [(1 t pY)cos 2 8 t T ( 1  2Y - p)cos  8 dFN 

dT = (1 - pY) sin 8 cos 8 d F N  

where, from Eq. ( l ) ,  

dS = K(rSp) d s ,  -- K S R P  
dFN - 2 

rSP 

we can write , for the elementary radiation force,  

d'F = -K(rSp)[p(e)r* t t(e)T*]dS. 

The total solar radiation force over the whole a rea  S is then 

where 

2 2Y 
p(e) = ( 1  t pv) COS e t - ( 1  3 - p )  COS e 

t(6) = ( 1  - pV) s i n e  cos e. 

JPL Technical Memorandum 33-494 1 1  



The element of surface dS is given by Eq. (14), and the choice of the 

projection of the a rea  S on the coordinate planes, over which the double 

integration should be performed, is completely arbi t rary.  One should 

choose, of course, the Coordinate plane in which the projection of the a rea  

S is the simplest geometrical figure which renders the technically simplest 

integration procedure. 

Replacing, in  Eq. (18), vector T* by its value in Eq. (15), we give 

the expression for the total radiation force the following form 

where 

Using the notation 

I 2Y c1 = - ( 1  3 - p) 

c2 = 1 - py 

c3 = pY 

we can write the function B(6) in the form 

and the radiation force becomes 

cos e + 2 c 3  COS 2 e ,  

12 JPL Technical Memorandum 33-494 



where 

dS = z* dS. 

The second integral in Eq. (22),  because of 

cos e = u m, 

becomes 

Denote by A yz, Axz, AT the projections of the total illuminated a rea  

on the coordinate planes. Subsequently, 

- 
S = A  e + A  7 + A  7 yz 1 x z  2 xy 3’ 

If cy is the angle between the direction of the incident Sun ray, defined by thr 

unit vector u, and the z-axis of the system, then 

- -  
u = e2 sin cy t e cos (Y 3 

and 

The total radiation force is then 

d S  -KCz(Axz sin cr i A cos cr! ‘ii 
X y  

S 

JPL Technical Memorandum 33-494 13 



where, from Eq. (21) 

and also where 

since @(x, y, z )  = 0 is the equation of the illuminated surface a rea  and 

w = IP@l. 

Incidentally, for a black body, y = 0, p = 0, C2 = 1, and the radiation 

force (Eq. 25),  is given by 

- 
F = -K(A sin Q + A  cos a);. 

XI, XY 

The first integral in Eq. (25) in the form 

may  be hard t o  evaluatr 

necessarily have to be simple geometric figures. Therefore, a s  was 

mentioned before, the best method for the practical  evaluation of tb.e double 

integral in Eq. (25) would be to use it in the form 

since all three projections of the a r e a  S do not 

14 JPL Technical Memorandum 33-494 



and to choose dS froin one of the three expressions given by Eq. (14). 
we can adopt for the total form of the total radiation pressure,  the following 

expr e s s ion : 

Hence 

where, from Eq. (14), 

or  

w W W dS = 4 y d z  = 4 x d z  = -dxdy. 

In the practical application of Eq. (29), one should be aware of the fact 

that the normal to the surface, defined by the unit vector E*, bisects the 

angle between the incident and the reflected solar .rays so  that 0 -c 8 5 

and, therefore, 

7T 
ZJ 

or  

JPL Technical Memorandum 33-494 1 5  



16 

Hence, the d i r ec t lm  of V@ should be chosen in such a manner that the 

inequality above i s  always satisfied. 

noted that from cos 8 = 
At the end of this section, it should be 

mc and Eq. (27), 

JPL Technical Memorandum 33-494 



Fig. 3. Orientation of unit vectors along 
the tangent and normal to the 
reflecting surface 

JPL Technical Memorandum 33-494 17 



IV. h:OMENT O F  THE SOLAR RADIATION FORCE 

The same considerations used in the preceding section can be extended 

to the problem of finding the moment of the solar radiation force via a double 

integration over the illuminated surface S. 

force dF, acting upon the elementary surface a r e a  dS, is given by 

The elementary moment of the 

where 'F is the position vector of the point A (Fig. 3) in the system of 

reference xyz. F rom the expression for the elementary force in  the form 

t C,; cos 8 dS 1 
we find that 

so that the total moment of the solar radiation force over the area S is 

or 

18 

S S 
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Finally, setting 

V@ - 
dS = w dS, 

we obtain 

The unit vector u is directed toward the Sun. Denoting the heliocentric 
position vector of the spacecraft (Sun-Probe vector) by rsp as before, we 

have 

- 
- 'SP 

rSP 
u =--.  

Equation (31) i s  the final form of the expression for the moment of the solar 

radiation force. 

nated surface a r e a  on the xy coordinate plane. 

The quantity A is ,  as before, the projection of the illumi- 

Before moving to the next section, in which we shall proceed with the 

integration of Eqs. (29) and (31) for the spacecraft components, we must 
mention that the reflection does not s t r ic t ly  obey Lambert 's  law for some 

mater ia ls  and, therefore,  the function f(0) should be determined in such a 
manner that it represents  the actual response of a certain mater ia l  to 

reflection. The parameter  B(f), mentioned beforehand, can then be corn- 

puted using f(6) for that particular material. 

Another factor, which can also contribute an extra force of small  

magnitude, is the reradiation of the thermal energy. In Ref .  4 the author 

JPL Technical Memorandum 33-494 19 



20 

suggests an alternative expression for Eq. (8), which accounts for the 

above-mentioned effects. The expression is 

c 2 PN = FN (1 t P Y )  cos 8 t B(f) . (1  - p)Y + k ( l  - Y)] cos€)/  

where FN is given by Eq (1) and where the parameter k depends on the 

temperatures and emissivities of the front and back sides of the reflecting 

surface a2d on the absorbed and conducted flux. 
k = 1. 

For adiabatic surfaces, 

It is obvious that with the expression above for P the function B(8) N' 
in Eqs. (29) and (31) will have a somewhat different form. 

in this case p(8) is given by 
Namely, because 

while t(8) remains unchanged, and 

we find that 

c 
c; = B(f) [(I - p)Y 

2 B1(8) = 2PY cos 8 t B(f) (1 

Hence, we see that, using the notation 

we can'write the function B(8) in the form 

B1(8) = C; cos 8 t 

- F)Y t k( l  - Y)l COS 8. 

+ k( l  - Y)], 

2 2 p ~  cos e. 

JPL Technical Memorandum 33-494 
. d  



Comparison of this expression with B(6) given by Eq. (21) indicates 
that B1(6) and B(8) are one and the same function of 8 ,  differing only in the 

value of the constant C1. This difference is 

C; - C1 = [B(f) - $]Y(1  - p) + kB(f)(l - Y). 

JPL Technical Memorandum 3 3 - 4 9  21 



V. THE SOLAR RADIATION FORCE ON THE REFLECTING SURFACE 
OFAPARABOLICANTENNAREFLECTOR 

The high-gain antenna of the Pioneer spacecraft  has the shape of a 

paraboloid of revolution, with its axis of symmetry presumably pointing toward 

the Earth. 

reflector relative to the other components i s  shown on Fig. 4. 

sketch of the reflector only is given on Fig. 5 . ,  displaying the dimensions of 

the dish: the semidiameter 6 and the depth 5 .  

The configuration of the spacecraft  and the position of the antenna 

A simplified 

Since the double integration, indicated in  Eq. (29 ) ,  constitutes the major 

technical difficulty in the derivation of the expression for the solar  radiation 

force, i t  is a matter  of utmost importance that the coordinate system, with 

respect to which the integration should be performed, be properly and ade- 

quately chosen. 

The most  suitable f rame of reference, which would be mcsc objective 

for the purpose of the double integration, provided that the roll-axis of sym- 

metry of the spacecraft  coincides with the spacecraft  - Ear th  direction, can 

be defined in the following manner. 

Ear th  direction, we find that the unit vector of the 2'-axis is given by 

Taking the 2'-axis along the spacecraft - 

where 'fEp is the geocentric position vector of the spacecraft  and rEP = 

lFEPl* 

The y'-axis of this system lies in the plane defined by the unit vector - 
k and the unit vector G, defined by Eq. (32). 
this plane: hence 

The x'-axis is perpendicular to 

22 

and 
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Denote by a. the angle between the positive direction of the z’-axis and the 

direction of the unit vector Ti (Earth-Probe-Sun angle). Then 

0’ Iii x El = sin a 

Taking the expression for  Ti f rom Eq. (32),  we can write explicitly 

This f rame of reference is noninertial since the two vectors F 
vary with time. 

and 7 SP EP 

With the introduction of the heliocentric position vector of the Earth,  

whence 

the formulas above can be simplified and reduced to the form 

t R &  - 2rRE cos 9 r2 - 
k = (E, 

JPL Technical Memorandum 33-494 23 



- 
E where F = rSp, r = IFl, and + is the angle between the vectors P and Ti 

(Earth-Sun-Probe angle). 

Denote by H1, X2, X3 the unit vectors of direction of coordinate axes of 

an inertial reference frame (for example, the 1950 equatorial coordinate sys- 
tem), and let  X, Y, 2, and XE, YE, ZE be the components of vectors F and 
R respectively. The instantaneous angular velocity vector t3, defining the 

rotation of the above-described rotating frame relative to the inertial equa- 

torial f rame of reference, is then 

- 
E 

The unit vectors of the noninertial system of reference can easily be 

expressed in terms of the coordinates of the spacecraft  and the Earth and 

their derivatives in the inertial frame. Thus 

I x  Y Z 

24 JPL Technical Memorandum 33-494 



where 

1 /2 
p = [(. - x.)” -k (Y - YE)z t ( Z  - Z E ) j  

2 2 2 1’2 r = (X + Y  t Z )  

XXE t Y Y E  -t ZZE 

rRE 
cos 9 = 

However, due to the existence of torques, the axis of symmetry of the 

reflector moves relative to the above-described system of coordinates, 

defined by unit vectors i, j, k. 
tion force f rom Eq. ( 2 9 ) ,  by double integration, we can establish another 

coordinate system, defined in the following manner: 

- - -  
Therefore, fo r  the computation of the radia- 

The z-axis is  taken along the axis of symmetry of the reflector. 

The unit vector of this axis is Z3. 

The y-axis, defined by the unit vector F2, l ies in the plane of 

vectors T3 and ii. 

The x-axis is perpendicular to the yz-plane, forming a right- 

hand-oriented triad with the f i r s t  two axes. 

be denoted by Z1. Therefore,  

Its unit vector will 

where a = &(E, F 3 ) ,  namely, the angle between the z-axis and the direction 

of the incoming radiation. 

shown on Figs.  5 and 6. 
The xyz-coordinate system described above i s  

JPL Technical Memorandum 33-494 2 5  



The geometry of the parabolic reflector is  shown on Fig. 6 .  Placii g 
the origin of the above-described coordinate system a t  the vyrtex of ;he 

paraboloid, -we c;tn write for  the equation of the reflecting surface 

2 '  
cp(x,y, z) : z - h(x t y") 0 

where h is  the parameter 

5 A = - ,  
b2 

(33) 

(34) 

depending on the dimensions of the reflector only. 

spacecraft, we have, approximately, 

F o r  the Pioneer F / G  

= 0.202 meters- '  . 

The magnitude of the illuminated inside a rea  of the reflector is a func- 

For  small  values of CY, the whole a rea  is illuminated and tion of the angle (Y. 

the projectiox of this a r ea  on the xy-plane is a circle of radius 6. When the 
solar  ray passing through the point A on the br im of the reflector dish (Fig. 

6 )  becomes tangent to the surface,  the tangent line cuts off the segment 5 on 

the negative z-axis, s o  that 

where 

25  
6 tan Si? = - 

or  

tan Q = 2 tan 4 ,  

where 

5 tan q~ = 6 .  

The two angles, S2 and +, a r e  shown on Fig. 5. 

(35) 

( 3  7) 
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If cy > 90' - S2, one part  of the inside a rea  of the reflector will be 

in the shade, and the projection a rea  in the xy-plane will not be the full a rea  

of a c i rc le ,  but a somewhat more complicated figure. 

let us s ta r t  with the equation of a solar ray passing through any point (x,, 
yo, zo = 6 )  on the br im of the dish: 

To find this figure, 

x =  

x - x o  y - y o  2 - 5  

0 - - -  sin cy cos cy 
- -  - - t  - -  

where 

Take yo = dw, where w is a parameter .  

above yield 

Then, in ierms of w ,  the equations 

These equations represent,  in the parametric form, the equation of the 

inclined elliptic cylinder, shown on Fig. 6. The semimajor axis of this 

cylind-- - i s  6, and its  semiminor axis is 6 cos a. 

this cylinder with the paraboloid of revolution 

The line of intersection of 

2 2  z = A(x t y )  

occurs for the values of t which a r e  the solutions of the quadratic equation 

( 3 9 )  
2 2  (1 s i n  cy)t t (2A6w sin CI - cos a ) t  t (Ab2 - 5 )  = 0 . 
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However, f rom Eq. (34), A!i2 - c 2  = 0, and the soluticns of Eq. (39) 
a r e  

t l  = 0, t2 = -(-- 1 cot Q Lbw) , s i n a  A 

For  t l  = 0, we have 

y = 6w 

and, eliminating the parameter  W ,  we obtain the equation of the circle  

2 2  2 x t y  = 6 .  

For  

6 
-(cot (Y cot 9 - 2w) , t~ - sin a 

- 

w e  obtain the equation of the line c,! intersection in the parametric form, 

I I 
x =  6 I/- 

y = 6(cGt O! Cot - W) 

z = 6 tant$[jl - w z ) 1. (cot O! cot L# - w ) q  

The projection of the curve given by Eq. (40) on the xy-plane is given 
in the parametric form by 

x = 6  4 7  1 

y = 6(cot Q co t$  - w). 
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Eliminating w, we find 

where 

= 6 cot a cot JI . YC 

The two circles  intercept if 0 < y < 26 or ,  in other words, if C 

or 

0 < cot a cot IC( < 2 , 

O < c o t ~ < Z t a n J I = t a n Q .  

or if 

90' - $2 < Q < 90'. 

For Q < 90' - S2, the whole inside a r e a  of the reflector is illuminated. 

For Q = 90', the whole area is in the shade. The y-coord'nate of the 
point B (Fig. 6 )  is 

- - 6 = 6(cot Q cot ql - 1) , YB - YC; 

and the two circles intercept in the points with coordinates 

6 ys = 2 cot a cot ql . 

(43) 

(44) 

The shaded area on Fig. 7 represents the projection of the illuminated 

inside area of the reflector on the xy-plane. The angle 6, is given by 
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where 

A,, = cot CY cot 4 = 2 sin do . (45) 

2 2 
With this denotation, the equations of the two circles ,  given by x t y2 = 6 

and Eq. (41), are 

y = 6 A  * 
0 

and the parametric equation of the line of intersection (Eqs. 40) becomes 

x = 6  

y = 6(A0 - w) 

z = 5 (1 - w 2 ) + (Ao - w)! [ 
t A. 2 - 2A0w). 

The projection of this curve on the xz-plane is, in the parametr ic  form, 

and, after the elimination of the parameter  w, we obtain the ellipse 

z = < l t A o -  [ 2spT7] 
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or  

2 z = 5(1 t Ao) - 2 cot a 

or 

The projection of the same line on the yz-plane is, in parametr ic  form, 

y = "AO - W) 

1 t A. 2 - 2AOw) 

and, after the elimination of the parameter  W, we obtain the equation of the 
straight line 

z = 2 y c o t a t r  ( 1 - 4)- (49) 

For  z = 5 ,  we get 

AO 
2 - y s  

y = - -  

2 and for the point of intersection with the parabola z = hy (point B), f rom 

h y z -  2 v c o t a -  5 ( 1 - A 3 = 0 

we find 

y = 6(A0 - '1 = yB S 

which is the value already obtained in Eq. (43). 
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The projections defined by Eqs. (48) and (49) a r e  shown on Fig. 8 and 
Fig. 9, respectively. 

From the equation of the reflecting surface,  w e  find 

which yields 

V@ = - 2 h x F  2hyZ2 t Z3 1 -  

and 

2 2  2 W = 1001 = 4 1  t 4 h  (x t y ) ,  

so that 

fl* = -(-2hxF 1 2XyF2 t T3)  . W 1 -  

F r o m  
-  COS^ = E* 

where Ti is given by Eq. (23), we find 

cos a - 2hy s in  a 
W COS e = (53) 

where 8 is the angle between the incident so la r  ray and the normal to the 

surface at a particular point. Therefore 

or 

cos a - 2hy sin (I > 0 .  

This condition is satisfied for 

ys ’ 
cot a - &*O 

y < 2 x - - =  2 

which is correct.  
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Returning to Eq. (22), we shall first find the force over the whole a r e a  

of the reflector; when cy < 90" - Q, that is, when the entire interior of the 

m i r r o r  is illuminated. Introducing the polar coordinates 

we can write 

cos a - r s in  4 sin a 
COS e = 

JE7 
and 

(55) 

Since 

F = - -  V@ B(8)r dr  d$ - - KC'- //,/x c o s 8 r  dr d 4 .  

A 4X2 A 
XY 

- 
4X 

XY 

Hence , 
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where 

Z 
F 

I =  

d r  d+ - KC21 

cos 0 r d r  d+ 

with B(9) given by Eq. (21). 

The integration of the right-hand sides of the three equations given 

above is rather  complicated in polar coordinates, particular'ly when yc < 6 d 2 ,  

o r  when (Fig.  7) 

because the radius vector OS1 (or OSz) intersects the upper c i rc le  on Fig. 7 
in two points. The integration is simpler in rectangular coordinates, as will 

be shown later. 

However, before going deeper into the details of the integration over 

the a r e a  A 

over the whole inside (front) area of the parabolic reflector, when a < 90" 
- 52. 

x 

tion over the whole area will be denoted by 

we shall f i r s t  derive the components of the radiation force 
XY' 

The projection of this area on the xy-plane is the area of the circle  
2 0 t y2 = b2 ,  which we shall  call  A The components of the force of radia- 

XY 

0 
XY 

The limits for  the integration over the area A are: for  9, +l  = 0, 
+2 = 2n, and for  r, r l  = 0, r2 = 2hb = 2 tan 9 = 2 m. Then 
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2 0 F KC3 (cos a - r sin + sin CY? cos + d+ 
2x2 l t r  

+ 3 lTlm (cos a - r sin + sin 0 )  r2 dr  c o s +  d+ 
4 A' 

2 
(cos a - r sin + s f n  a)'* sin + d+ F 0 = 3 l2'Lzrn 

y 2h2 l t r  

+ 3 [T[m(cos ct - r sin + sin a) r2 dr sin + d+ - KC21 sin a 
4 A 2  

(59) 

0 
(cos a - r sin + sin a) 2 --z r d r  d+ 

FZ = ->[T12m l t r  

d+ - KC I C O S  a .  - 3 4x2 J(II11Pmlcos a - r sin .+ sin a) 2 

(60) 

It is easy to see that, f r o m  Eq. (58), 

0 F x =  0. 
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Equations (59) and (60) can be written in the form 

FO = K(c,I,, t c ~ I ~ ~  - C ~ I  sin a )  
Y 

Fo z = -K(C3131 t C1132 t C21 cos a) 

where , after the integration is performed, 

- -s in  2a 12n 2 1 2 m r 3  .- d r  = -ab 2 sin 2a(1 t 2 cot2 In cos a ) ,  2 sin + d+ 
2h2 l t r  

- 

(63 )  
I2 1 

2 n  2 2m 
n6 sin a tan -(2 t sec  a) ,  - 

I2 2 - - * J O ’ P n s i n 2 + d ? l  4x2 3 2 (64) 

2m 
r dr sin2 a 12= sin2 + d+ i2m r3 d r  

I31 - - c o s 2 a [ n d + ~  2 A2 7 ’ 2 x 2  l t r  l t r  2 

2 2 2 = nh?[sin a t 2 cot n(1. - 3 cos a )  In cos a ]  

2 
- -[(l nd - 2 cot2 Q In cos Q) - (1 t 6 cot2 S2 In cos a) cos Zn], ( 6 5 )  - 2  

Os 9 ( 6 6 )  2 
132 = ‘Os - 4x2 a 12n d+ [2mF l t r  = 27~6 cos Q 1 t cos s2 
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Collecting all terms given by Eqs. (63-67) together, w e  can write Eqs. 

(62) in the following form: 

2 sin a t f sin 2a 
Y 

t g l  COS Q t g2 
2 

where 

(2 t sec Q), - -  2Y 1 - cos n 
f l  - 9 (l - PI, t cos si? 

1 t  Y 
2 f2 = 2 t ZPY cot2 R In cos Q ,  

1 - - - - PY cot' R In cos R ,  
go 2 

4Y cos R - -  
81 - 3 (l - PI1 t cos s2 ' 

- 1 2 - - - PY(1 t 3 cot R In cos 9 ) .  g2 2 

For the Pioneer spacecraft 

b = 1.3716m 

& = 0.3803111 

2 sb2 = 5.9102 m 

m = tan+ = 0.277267 

+ = 15'.498 
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tan S2 = 0.554535 

S2 = 29.'012 

and 

f l  = O.O46754Y(l - p) 

f2  = 0 .5  - 0.371922pY 

= 0.5  t 0.435961pY g0 

gl = 0 . 6 2 2 0 4 6 ~ ( 1  - p) 

= 0.5  t 0.307883pYi g2 

To compute the solar  radiation force exerted upon the inside surface 

of the reflector using Eq. (22) o r  Eq. (29), when 0-ily one par t  of the surface 

is illuminated, one must select  the proper projection of the surface orA one 

of the coordinate planes which yields the simplest double integration. 

From the preceding considerations , it follows that the projection in 

the yz-plane (Fig. 9) is the simplest geometrical figure composed of a par t  

of the parabola z = Xy2, A'OB, and the segment BS of the straight line 

2 z = 2y cot ct t G(1 - Ao) . 
Since, f rom Eq. (14), 
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where 2 A  

projects twice). 

is the projection of the surface ' rea  S on the yz-plane (the a r e a  
Y Z  

The equation above is equivalent to 

The component of this force along the x-axis, because of the axial 

symmetry of the reflector, vanishes. The other two components a r e  

KC 

(74) 

KC 

V Z  - XY 

F = 2 K a  c1 COS a t 2 c 3  COS 
Y 

YZ 

F = - -  Js (c, cos e t 2 c 3  cos 
z f i  

A 
Y Z  

where 

dy dz (cos a - 2hy s in  a) 11 I/= 

J =  
A 

Y Z  

(75) 

Integration of Eqs. (74) and (75) cannot be performed without diffi- 
2 culties taking z = z(y) because for  the limit z = l y  

the integrands in Eqs. (74) and (75) vanish. 

should be performed taking y as a function of z. 

gration over the par t  A'BIBS a r e  

the denominators of 

Therefore, the integration 

Thus, the limits for  inte-. 
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40 

and, for the integration over the remaining part B OB, the limits are 
1 

y i ( z )  = - f i  

2' = 0 1 

Taking cos 8 from Eq. (53), we find 

F = 2K&(C1J21 t 2C3JZ2) - -J KC2 sin (Y 

Y 6 

KC 
C J t 2C3J32) - - .JIi"J cos (Y F~ = -7' 1 31 

where 

JPL Technical Memorandum 33-4 94 * 



dy dz 
J31 - 

A 
YZ 

2 
J32 - - J/ cos2 0 ,dydz . 

A .J. - kY 
YZ 

The evaluation of these four integrals, together with the fifth integral 

J with cos 0 taken from Eq. (53), is scmewhat complicated; it is relatively 
simple to reduce the double integration to  the single integration with constant 

limits zI and z2, o r  z! and zb. However, it may be much s impler  and more  
suitable to apply directly the numerical double integration procedure with 

variable limits. 

The integration for 90" - Q < a < 90" can be performed in rectangular 

coordinates in the following way. 

nated surface of the ieflector on the xy-plane, we can write ( see  Fig. 7) 

Again taking the projection oi the illumi- 

and, because of the symmetry of the reflector with respect to the yz-pl:ine, 

and 
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so that 

In order  to avoid tbe double integration, an approximative method can 

be introduced. 

components of the force over the illuminated a r e a  and the components of the 

force over the whole inside a r e a  of the reflector are the same as the ratios 

of the respective projection a reas .  

The method is based on the assumption that the ratio of the 

Namely, we can assume that 

where, f rom Fig. 7, 

Projection of the illuminated surface 
Area of the circle  Il(ff) = - 

Explicitly, this ratio is 

where 4 is a function of the angle a, defined by 0 

1 
3 2  sin + = - cot 9 cot Q = cot S2 cot a . 

For  the Pioneer spacecraft, 9 = 15: 498 and 

sin + - 1.803 cot a . 0 -  

(79) 
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For a = 90' - n, when the whole inside area of the reflector is  illuminated, 

sin = 1, +o = n / 2  and q(a) = 1 .  Therefore, 

The graph of this function is shown on Fig. 10. 
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t 

CENTER OF GRAVITY I 
Fig. 5. High-gain antenna reflector of the Pioneer spacecraft 
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Fig. 6. Solar ra.diation on the concave 8i8e of the parabolic reflector 
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Y 

4 

Fig. 7.  Projection of the illuminated inside area of the 
reflector on the xy-plane of reference 
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Fig. 8.  Projection of the illuminated inside area of the 
reflector on the xz-plane 

L 

Fig. 

48 

9 .  Projection of the illumirated inside area 
refle7toi on the yz-plane 

of the 
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Fig. 10. Graph of the blocking function for the 
concave side of the parabolic 
reflector 
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VI. THE MOMENT OF THE SOLAR RADIATION FORCE O N  T H E  
REFLECTING SURFACE O F  THE PARABOLIC REFLECTOR 

Equation (31) gives the final form of the expression for the moment of 

the solar radiation force over a surface a r e a  S. 
parabolic reflector, 

For  the inside area of the 

- G x F -  - E (z sin (Y - y cos 9) t E2 x cos a - e3 x sin a 

and the three components of the moment vector are 

M =  
X 

- 
MY - 

- 
MZ - 

yB(8)(1 t 2 h z )  dx dy t KC2 1^1;1(z s in  

A A 
XY 

-K!! 

XY 

-KCZ sin a XW cos 6 dx dy. JS 

‘ y - Y  

C O S  e 

cos 

dx 

T o  integrate over the whole inside area of the reflector, we must  sub- 

stitute B(0) f rom Eq. (21) and cos 0 f rom Eq. (55)  and use the polar coordinates 

defined by Eq. (54). Also, because of z = r 2 /4X, 

2 
1 t 2 h z =  - 2 t r  

2 
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and 

Since cos 8 contains sin 4 only, and B(8)  is a function of cos 8 only, a l l  

integrals containing x = ( r / 2 h )  cos Q (the two integrals in M 
vanish when integrated i rom + = 0 to 9 = ZIT, because 

and one in M ) Y z 

.’her efor e, 

0 Mo = MZ = 0. 
Y 

0 The M component has the form 
X 

d r  
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or, after the integration, 

52 

5 s ino (4  t sec R - 5 sec Q )  
ITKC 0 M = -  
~ O X ~  

4 
.t - sin 2a (sec 52 - 1 t 4 In cos a) 

rKC3 

32 X’ 

rKC2 sin 2a tan 4 Q. t- 
32 h 3  

Finally, substituting X = (tan q ) / d ,  we find 

0 2 Mx =  IT^ SK(hl sin (Y t h2 sin 2 0 )  

where 

I 2Y 4 5 - -(1 - p) cot R ( 4  t sec R - 5 sec R) h l  - 15 

3 4 2 h2 = $l t 2pY cot R (tan R t 2 In cos R) 

For  the Pioneer spacecraft, these values are 

hl = 0.334912Y(3 - p) 

h2 = 0.5 t 0.4165028 

and 

2 3 r b  5 = 2.2477m . 
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For 90" - 
is in the shadow, 

< cy < 9 0 " ,  when one part of the inside area of the reflector 

where the "blocking function'1 q(a) was given in Eq. (78). 
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VII. THE SOLAR RADIATION FORCE ON THE BACK SIDE 
OF THE PARABOLIC REFLECTOR 

Assuming that the thickness of the reflector is negligible, we can write 

the equation of the outside surface in the form 

2 2  
2 - X ( x  t y  ) = 0 .  

The normal to this surface is now pointing outwards, i. e. , the grad @ is now 

given by 

grad a = 2XxZ 1 t 2XyF2 - - e3 ( 8 5 )  

and the unit normal vector R* is 

where W is given by Eq. (51). 

The geometry of the outside (back side) area of the reflector is shown 

on Fig. 11. 

f rom the par t  in the shadow is the locus of points at which the so la r  rays are 

tangential to the surface of the paraboloid. 

The curve which separates  the illuminated par t  of the surface 

If 

"-xo=---- Y - Y o  2 - 2 0  
- - t  0 sin Q cos Q 
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is the equation of a solar  ray parallel to the unit vector Ti, the interception 

of this straight line and the surface of the paraboloid is defined by the 

following s ?t of equations : 

- - 
2 2 2  cos Q - 2Xy sin a f a - 2Xy0 sin a)* - 4h sin a .A(x t y ) - z0 - 0  0 0 - 

= xo 

y = yo t t s i n a  

z = zo + t cos Q 

2 2  z = h(x + y ) .  

Here we have four equations with four parameters:  xoO yo’ zoO and t. 
To be able to eliminate them we must introduce the condition that the straight 

2 2  line is tangent to the surface z = X(x + y ). Thus we have 

+ t cos a = x xo + (yo + t 
zO C ‘  

or 

2 2  (A sin a)t  + (2Xy0 sin Q - cos a) t  + b ( x i  + yi) - zO] = 0 , 

a quadratic equation in t which, due to the condition that the straight line 

has to be tangent to the paraboloid, has to have equal roots, t l  = t2. Since 

we have 

cos a - 2Xy 
2 

sin Q 

tl  = t2 = t = 
2h sin a 
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and 

(cos Q - 2>-yo sin a)' = 4A sin cy [ A ( x ; + y : b o ] *  

The substitution of the above-given value for t into the second of Eqs. (87) 
yields 

cotff 6 bAO 
Y = 2x = Z c o t + c o t a  = - - 2 - y s a  

i. e. , the value previously given by the second of Eqs. (44). 
shows that the limit of the shadow is a plane curve,  contained in a plane 
parallel  to the z-axis, which projects in the xy-plane as the par t  of a straight 

line parallel  to the x-axis. 

Eq. (88) we can derive the equation of the limiting curve in the xz-plane, 
eliminating xo and zo. 

This equation 

From the f i r s t  and third of Eqs. (87) and f rom 

Setting y = ys, we find that the curve is the parabola 

z = A x  2 t 2 c o t a  ys , 

i.e., the parabola z = kx2 (projection of the reflector on the xz-plane) moved 

transiationally upward. 

reflector is shown on Fig. 12. 

The projection of the illuminated surface area df  the 

The qradient of the outside surface of the reflector is pointed outwards; 

in other words, its direction is opposite to  the direction of the gradient of the 

inside surface of the reflector. Thus, f rom Eq. (85), 

and, f rom Eq. (86), 
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where W was given by Eq. (51). 

to the s-irface Q) and the direction of the incoming radiatioa is then 

The cosine of the angle 8 between the normal 

- - 2hy sin a - cos a 
w c o s 8  = u N+ = 

From what was previously said, we orient the normal tcr the surface in 

such a manner that the angle 8 l ies in the first quadrant; i. e . ,  so that 

This condition yields 

2hy sin a - cos a > 0 . 

For  90" < a < 180", y > 0, s in  a > 0 ,  - cos Q > 0, and the condition is 

always satisfied. 

the constraint 

Fo r  90' - S2 < Q < 9 0 ° ,  the  inequality above yields 

which is always satisfied for the illuminated portion of the back srlrface of the 

reflector. 

The solar  radiation force on the back surface can be found in the same 
way as was done for the front side of the reflector. Fo r  90" - i2 < a < 
90' t S2, one par t  of the outside surface is illuminated, while for 90' -I 
52 e a e 180', the whole back side is lit by solar  rays. The force over the 

whole area can be obtained from the corresponding expressions for the front 

side of the reflector if we note that cos 8 f rom Eq. (90) is the negative of the 

expression for cos 0 used for the front side, given by Eq. (53). Thus, denoting 
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by a prime the integrals corresponding to integrals I 21a 122, 131, 132 and I 
for the front surface,  we find 

5 1  = I21 

I i 2  - -I22 
- 

';1 = '31 

I i2  = -I32 

I'= I ,  

and the coaponents of the solar  radiation force will be 

where IZ1, IZ2, Igl, 132, and I are given by Eqs. (63), (64), (65), (66), and 

(67), respectively. 

Equations corresponding to  Eqs. (68) for  the front side are then 

s in  a + f; s in  
Y 

2 l  FIo z = -V€I K(go + g; cos a + g: L cos 2a 

(93) 
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where 

f; = f l  

f; = - f2  

so that 

Y 2 

t g l  c o s 0  - g2 cos 2a 
2 

where f l J  f2' goJ g l J  and g2 are given by Eqs. (69), (70), (71), (72), and 

(7 3),  respectively . 
Jntroducing again the ratio 

Projection of the illuminated area 
q 1 W  = Area of the circle 

we find, for 90" < cy < 90" t S2, from Fig. 12 ,  
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s o  that the total force on the illuminated portion of the back side is 

approximately 

F' = ? , ( a )F t  
Y 

F' = q1(@)F' 0 
Z z 

(97) 

where 

for  90" - R e CY < 90" t S 2  
2+0t sin 2+0 

+a) = ('" lT 

1 for  90" < CY < 180'. 

The graph of this function, for the Pioneer Spacecraft, is shown on Fig.  13. 

F rom Eqs. (78) and (96) we can also write 

This method, however, does not give as  good results as in the case of the 

front side of the reflector and can possibly be used only for the values of (Y 

which are not too far below the value a = 90" t a. 
Q = 90" and assuming black body s t ructure  of the back side of the reflector 

we find F' = F' = 0, which is not true. Therefore,  the components of the 

radiation force in the whole iaterval 90" - R < CY< 90" t R should be determined 
by the double integrations over the area of projection A 

For  example, taking 

Y Z 

XY' 

FA = 0, 

F' = - -  JB(0)r2 sin + d r  d+ - KCZI sincr , 

F' = - [B(€l) r d r  d+ - KC21 cos (Y , 

Y 4A2 A 

4X2 
XY 
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where B(0) is given by Eq. [Zl), cos 0 is given by Eq. (90), and 
P A  

The integration is simpler than in the case of the front side of the reflector 

because the projection of the illuminated a rea  is the segment of the circle 

x t y = 6 . The integration limits a r e  2 2 2  

sin +o 
sin+ For  r: r = 2m - to r = 2m 

where +o is given by Eq. (90). 
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GRAD9 Y 

DIRECTION OF INCIDENT 

I \ 

Fig. 11 .  Solar radiation 011 the convex side of the 
parabolic ref lector 
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T 
PROJECTION OF THE 

ILLUMINED AREA 

Fig. 12. Projection of the illuminated outside area of the 
reflector on the xy-plane of reference 

O * l t  0 I 1 I 1 1 I ! I , I I 1 I I 
0 10 20 30 40 50 60 70 80 9C 100 110 120 130 140 150 160 170 180 

a 

Fig. 13 .  Graph of the blocking function for the convex side of the 
parabolic reflector 
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VIII. THE MOMENT O F  THE SOLAR RADIATION FOHCE ON THE 
BACK SIDE O F  THE PARABOLIC REFLECTOR 

In the same manner as for the inside a r e a  of the reflector, we can 

prove that 

M’  = ML = 0. 
Y 

Since, for the back side, 

- dx d TXdS = r x R* d = -(yel - xG2)(1 t 2x2) dx  dy, I N * ’  “31 

and 

- - -  
u x F = ( z  sin a - y cos a) + e2x cos (Y - e x sin (Y, 1 3 

the expression for the moment, given by Eq. (31), becGmes (note that for the 
back side r X d s  i s  the negative of the corresponding value for the front side) 

yB(B)( 1 t 2 h z )  dx dy t KC2 W(z sin CY - y cos a) cos 8 dx dy, 

A A 
XY 

// M‘ = K 
X 

XY 

and, since cos 8 has the opposite sign of the same expression for the front 

side of the reflector, integrating over the whole area of the circle,  we find 
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2m 3 2 2n 
- G3 sin 2a I d+ (' -t 2' dr 

l t r  

2m 
- C2 sin 2a [ d+ r3 dr], 

or 

MIo = a6 2 <K(hl sin P - h2 sin 2a) 

X 

where hl and h2 are given by Eqs. (83) 
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IX. TOTAL SOLAR RADIATION FORCE AND TORQUE ON BOTH SIDES O F  
T H E  PARABOLIC REFLECTOR:  RECAPITULATION O F  FORMULAS 

In the general case,  the reflectivity characterist ics of the front and 
back sides of the parabolic antenna reflector a r e  different. W e  shall denote 

by pF, yF the values of P and y for the front side, and by pB, yB the values 

of the same quantities for the back side of the reflector. Also, set  

so that 

Let us compute f i rs t ,  for given values of 6 and 5 ,  

R = arc tan(  3 6) 

and the constants of the reflector 

a l  = cot2 Q In cos Q 

(2 + sec  n) 2 1 -  R - -  - 
a2 9 1 t ::: n 

- 4 cos n a3 - - 3 1 t cos n 

2 3 

2 
- -  2 1 t 2 c o s R + 3 c o s  z l t 4 c o s  n 

cos Q(l + cos $2) bl - 15 

2 b2 = cot S2. 
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Then 

for the front side, and 
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for the back side of the reflector. where 

The components of the solar  radiation force and torque a r e  schematically 

shown on Fig. 14, xor different intervals of the angle cy between 0 and 180 deg. 

If we redefine the functions '1 (a) and q (c )  in the following manner 

1, for 0' 5 a 5 90" -51 

t sin 29,)s for  90" - a  c Q c 90" 

0,  for 90' I CY 5 180' 

we can wri te ,  for  the components of the solar  radiation force and torque, the 

following express  ions : 

FT = q(cy)F 0 t r F  
Y Y 

where 
0 for O ' <  CY 2 90" - R 

1 for  90' - S2 c a < 180" 
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and where, from Eqs. ( 6 8 ) ,  ( 8 2 ) ,  ( 9 5 ) .  ( 9 9 ) ,  (103), and (104), 

Y 

'0 
Y 

F ' O  = -ad 2 K (-go B B  t gl  cos a - 
Z 

sin a t  h z  sin 
X 

2 B MIo X = nd 5 K (hl sin a - 

Figure 14 shows the values of the components of the solar  radiation 

force and moment for different values of angle a, as well a s  the values of 

the total force on both sides of the parabolic reflector. 

Equations (106), together with Eqs. (103), (104), and (107), represent  
the final form of the solution. 
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1 FRONT SIDE BACK SIM FRONT BACK 

(b) TOTAL FORCE AND TORQUE 

IO", 900 - 01 
I 0 I Fx I FY I Fz I Mx I 

0 I P  I F 0  I M,o 

IW, 900 + 0) 0 F; F: 

0 190" + 0, IEOO] 

Fig. 14. Table of the total radiation force and torques 
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X. COMPARISON WITH THE FLAT-SURFACE MODEL 

The so-called "effective area" of the illumination in the flat surface 

model is the projection of the i l luminatedarea on the plane perpendicular to 

the direction of the solar  radiation. 

model (the model used in Ref. 5) and still be 151e to find the order  of magni- 

tude of the deviation of the flat surface model f rom the real force model, we 

shall consider the case when 0 5 Q 5 90" - R. 

the values of p and y are the same for  both models. Then the components of 

the solar  radiation force for  a flat surface can be derived f rom Eqs. (68) by 
set t ing5 = 0. ThenR = 0 and 

To simplify the derivations of the flat 

We shall also assume that 

f l  = 0, 

- m, 
go - 2 

so  that 

0 2 
Y 

F (flat) = -.nd K ( l  - f3y) sin (Y cos Q,  

The differences in the components of the real force and the flat surface 

force model are 
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(2 t sec n )  sin a 1 - cos52 
Y 1 t c o s n  

cos cy 
1 - c o s n  

PFo = alj2K[4f! (1  - p) 1 t cos R z 

For the Pioneer F/G spacecraft, these differences are 

1 0.046754 y(1 - (3) sin cy t 0.128078 py sin 2a 
Y 

1 0.044621 y(1 - p) cos a t 0.064039 Py(1 t 3 cos 2tr )  
z 

which shows the order of magnitude of the error in the flat surface model. 
For example, for a = 0, (3 = y = 1, 

2 AF: = 0.256156 ~ l 6  K 
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XI. PRINCIPAL AXES O F  INERTIA: EULER’S  EQUATIONS O F  MOTION 

In order to derive the equations of motion of the spacecraft under the 

action of the solar radiation force, we shall assume that the spacecraft is 

rotationally symmetric and that i ts  center of gravity (point C on Fig. 15) l ies 

on the z-axis. 

of the body in the following manner. 

z -axis will coincide with the z-axis of one f rame of reference and, for the 

same reason, the x and y axes may be chosen arbitrari ly.  Therefore, to 

simplify ‘he problem, we shall take the x and y 

x and y axes respectively. 

z P’ YP’ P Now define the system of principal axes of inertia x 
Because of symmetry the principal 

P 

P P 
axes to be parallel  to the 

P P 
Hence, 

= xP 

Y = Yp 

The components of the moment of the solar radiation force with respect  to  

the point 0, the origin of the system xyz, a r e  

If 
origin and r 

point C as the origin, the relationship between theee two vectors is 

is the position vector of a point of the body with respect  to  0 a s  the 
- (C) is the position vector of the same point with respect to the 

The moments of the solar radiation force relative to the points 0 and C are ,  

respectively, 
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further on, because F = 0, 
X 

so that 

or, consequentJ.y, 

where 

x = x  
P 

Yp = Y 

C z = z - z  
P 

arz the principal axes. 
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The moments of inertia of the hollow paraboloid of revolution with 
respect to the axes of the system xyz a r e  

= I  = -  MR ( 2 b 2  t 3t2) 
'x y 6 

where MR is the mass of the reflector. 

principal moments of inertia of the reflector a r e  

According to Steiner's theorem, the 

MR b 2  
3 

C =  

Let Jx, J J be the principal moments of inertia of the  r e s t  of the 
Y' 

spacecraft. Then, using Eqs. (108) and (109), we can write Euler's equations 

of motion of the whole spacecraft in the form 

(C t J,) G2 - (Jx - J ) wX w y  = 0 
Y 

Here we assume that the r e s t  Jf  the spacecraft i s  not illuminated (wX, w 

a r e  components of the angular velocity vector). 

w 
Y' 2 

For  a rotationally symmetric spacecraft, Jx = J and 
Y' 
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so that 

and the differential equation for w is 
Y 

(A t Jx12 ij t n ( A - C t J x - J Z ) w  = z  F - Mx* (111) 
n (A - C t Jx - Jz) Y . Y  c Y 

The right-hand side of this equation can be written in another form, by means 

of the first of Eqs. (68)  and Eq. (82), namely 

F rom Eqs. (69), (70) and the first of Eqs. (83), we can find the values 
of f l  zc t &hl and f 2 t 5h in t e r m s  of the angle S2 of the reflector.  2 c  2 

From 

using the cotation 

f z t 5 h l  = t1 1 c  

f 2 +&h2 = P2 2 c  

we have the right-hand side of Eq. (111) in the form 

F - M, = -Cs (P1 ein Q t P t  sin 2a). "c Y 
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For  the Pioneer spacecraft, 

e, = Y (1 - p) (0.127367 f 0.046754 zc) meters  

- (0.3803 t zc) + (0.158396 - 0.371922 zc) BY meters  12 - z 
2 Cs = 6.0444 X 1017 kilogram meter/second 

or,  if the  heliocentric distance of the spacecraft is given in  astronomical 

units (AU), 

5 2 kilogram meter/second Cs = 2.7008 X 10- 

With a negligible loss of accuracy we can assume that the angle a is equal to 

the Earth- Spa ce craft - Sun dng le. Therefor e, 

Using the notation 

9 1  n (A - C t Jx - Jz) = 

w e  can rewrite Eq. (111) in the form 

(e, sin a t I 
2 2 

sin 2a) 
- C S  - - -  92 .. 

91 y S q l W y  r 
- w  

or  

2 2 
ij + a  w = - r O ( l  t e cos f )  (P1 sin CY t l 2  sin 2a) 
Y O Y  
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where 

n ( A  - C t J, - J,) 
A t J  

R =  
0 X 

A - C + J , -  J, 
E =  

2 O a; (1 - e212 (A + J,) 

= semimajor axis of the spacecraft 's  orbit  in astronomical units 
aO 

e = the eccentricity of the spacecraft 's  orbit 

f = true anomaiy of the spacecraft. 

The period of f ree  oscillations (without the forcing function) of the rotationally 

symmetric spacecraft (J, = J ) is given by 
Y 

A + J, 2a To = -  n A - c + J , - J =  

where n is the rate of rotation of the spacecraft about i ts  roll axis. 

If there were no other par ts  of the spacecraft (the reflector only), 

J x =  J = O  
2 

C = M R  7 b2 

s2 A - C =  MR 18 
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and 

- - n [l t 6 ( 9 ? ] .  

F o r  the Pioneer spacecraft, the ra te  of rotation about its roll axis is 

5 revolutions/minute, and the period of spinning is thus 

= 12 seconds. spin T 

Therefore, 

- 
To - 

The ratio 6 / <  is approximately 

T spin [1 + 6  (tf]. 
3.6 ,  so that 

To = 79 Tspin = 948 seconds = 15.8 minutes. 

The period of f r ee  osciliations about the x-axis is the same. Indeed, setting 

the right-hand side of the first of Eqs. (110) equal to zero, we can substitute 
w into the second of Eqs. (110) and obtain again Eq. (115) in the fo rm 
Y 

2 
tj t a  w = o .  
X o x  
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x = x  P 

' AXIS OF SYMMETRY 
yTT OFTHE REFLECTOR 
I / 

DIRECTION OF 
SOLAR RAYS 

I 

Yp = Y 

CENTER OF GRAVITY 
- I OF THE SPACECRAFT / 

Fig. 15. Orientation of axes of the noninertial 
reference frame 
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XU. SOLAR RADIATION FORCE IN THE INERTIAL XRAME OF REFERENCE 

The components of the so la r  radiation force,  given by the first two of 

Eqs. (106), are relative to the noninertial frame of reference xyz. The 

angular velocity vector of rotation of this system is 

where 

given by 

He re , 

and the equation of motion of the spacecraft  in an inertial  f rame of reference 

is 

where F' = F -t FzE, and mS is the mass of the spacecraft. 9 
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XIII. SOLAR RADIATION FORCE ON THE SURFACE 
O F  A CIRCULAR CYLINDER 

A spacecraft may c a r r y  one o r  more  components of cylindrical shape 

such as fuel tanks, instruments,  etc. To find the solar  radiation force 

exerted on the surface of a cylinder of an a rb i t r a ry  radius in  the general  

case,  we shall assume that the axis of symmetry of the cylinder l ies  along 

an arbi t rar i ly  chosen direction, defined by the unit vector El. 

the noninertial f rame of reference,  the axes of which are dirrcted alo-ig the 

unit vectors F - 
lated into the center of gravity as the origin,  and let tne point 0 be t h e  -oint 

on which the axis of symmetry of the cylinder penetrates the yz-plane of the 

above-described coordinate system. Taking 0 as the origin of another coor- 

dinate system of axes x ' ,  y ' ,  z' parallel  to .;he axes x, y, and z respectively, 

we have, f rom Fig. 16, 

Let xyz be 

- e3 of the already described system of coordirate;, t rans-  1' e2'  

I x' = x 

Y' = Y - Y o  

=0 z! = - 

where the two quantities yo and z In order  to bring the axes of 

the system x' y' z' into the position of the system 6 q 6 ,  we must  perform the 

following two rotations: 

a r e  known. 0' 

(1; Rotation about the z'-axis by an angle x ,  iil the positive direction; 

this brings the x'-axis into the position OL. 

(2) Rotation about the new y-axis by an  angle e ,  i n  the negative d i rec-  

tion. This brings the x'-axis into the position 06. 
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The equations of transformation between the x' y' z' system and 61 5 
system are 

- - ,  

or 

-s in x cos x 0 

cos E 0 sin c 

0 1 0 

- s in€  0 cos c 0 0 

cos x cos E sin x cos E sin E I 
L -cos x sin -sin x sin c cos c 

The equation of the cylinder in the system c q  5 is  

'1 2 t G 2 = a .  2 

The components of the unit vector 

- u = Z sin a t E3 cos Q 2 
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in the e q 5 -system are 

u2 

u3 

cos x cos E 

-sin x 

-cos)( sin E 

sin x cos E 

cos x 

-sin x sin E 

sin E 

0 

cos z 
- 

0 

sin Q 

cos 0 

or 

u3 = -sin x sin e sin CI t cos cos a/ 

and the equation of the plane parallel to unit vector ;and is 

- -  
(r  - ro) (Gx;,) = o 

or  

6 - 6 0  q - q o  5 - r o  

u1 u2 u3 = 0 ,  

f 0 0 
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o r  

This equation can be written also in the form 

Out of infinitely many planes given by Eq. (1221, two a r e  tangent to 
the surface of the cylinder. Their t races  a r e  shown on Fig. i7. The two 

lines along which these planes touch rhe cylinder project a P 

and Q, on Fig. 17. 

face from the par t  of the surface of the cylinder which remains in the shadow. 

The illuminated a r e a  projects on the Sq-plane as  a rectang!e of length AB = h 

and width 21, (Fig. 17). whi,h must Le determined in the following way. 

two points. 

These two lines separate tke illuminated par t  of the su r -  

- 

Combining the equations of the cylinder (Eq. 120) with the equation of 

the plane (Eq. 122) ,  we find the intercepcion of these two surfaces to be given 

by 

2 2  2 
q i - 5  = a .  

Substitutiilg the value of ’1 f rom the f irst  equation into the second, we obtain the 

the quadratic equation f o r  5 :  

(E; t u:)G2 - 2pu25 t (p2 - a2u:) = 0. 

Because of 

the same. 

the condition for tangency, the t w o  roots of this equation must  be 

Hence, we find 
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be cause 

8 6  

2 2  u2 t u  t u 3  = 1. 1 2  

Therefor?, the coordinates of points P and Q are 

au2 = *  
P, Q 

5 

and 

so tkat 

The unit vector of the normal to the surface 

- vo - V@ 
N * = l -  v q  - -  w 

lies in the ~5 - plane. From the equation of the surface 

we find 
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s o  that 

and 

- -  
Also, from cos 8 = u * N*, we find 

Taking the coordinate transformation 

rl = a sin 4 

5 = a cos 4 

w e  *-an wrice, instead of Eq. (127), 

COS 8 = u sin + t u3 COS 4. 2 

Since the q-coordinate of the point Q (Fig.  17) is 

the integration limits for the solar  radiation force in Eq. (29) will  be 

for  g : kA, $A t h 

for  4 : -A,  t A ,  
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88 

A arc sip (j u3 .). 
1 - u l  

The solar radiation force is then given by 

c?r, 5ecause 

-- I? = - K h i I B ( 0 ) ( K 2  sin 4 t E cos 4 )  d+ 
3 

-KhCZa(u 1 1  n + u 2 2  + u3K3)l cos 8 d+ 
J4 

where 

B JPL Technical Memorandum 33-494 
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The components of the solar radiation force, given by Eq. (130) ,  along 
the axes of the system s q s ,  are 

F = sin 9 t u3 cos +) db s 

A 
u2 

Fq = -KhjrhBIB) sin + d+ t u 1 F 5 

Performing the indicated integration, we finally obtain 

2 u .  u.. 
1 5  F = -2KahC u u s i n h  = -2KahC2 E! 2 1 3  

1 - u  

1 - u  
(133)  
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The components of the solar radiation force along the axes of the system 

x'y 'z '  will then be - -  
X 
F 

F 
Y 

z F 

. -  

- 
cos x cos f - sinX - cos X s ine  

s in  X cos c cos X - sin X sin t 

sin e 0 cos 

- 
3 F 

(134) 

Since the system x'y 'z '  is rotating in space, and the spacecraft also spins 
about its rol l  axis, the angle X is a function of time. 
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Fig. 16. Solar radiation on the curved surface of a 
circular cylinder 

TRACES OF PLANES 
PARALLEL TO THE 
UNIT VECTORS 't 

Fig. 17. Trace of the projection of the illuminated 
area of the cylinder on the xy-plane 
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XIV. SPECIAL CASES O F  THE SOLAR RADIATION 
F O R C E  ON A CIRCULAR CYLINDER 

If the circular cylinder l ies in the x 'y '  plane, t = 0, and, from 

Eqs. (121), 

u1 = sin x sin a 

u2 = cos x s i n a  

u3 = 

so that, f rom Eq. (129), 

cos CY sin A = 

F r o m  Eq. (131) we can derive 

3 

2 2 
sin x sin cy cos CY 

1 - sin x sin cy 

F = -KahC2 
6 

and the other two components can be obtained by a simple substitution of the 

values of u u2, and u3 into Eqs. (132) and (133). 1' 

Another interesting case is noted when the axis of symmetry of the 

cylinder coincides with the z-axis (axis of symmetry of the reflector). Then, 

the 6-axis l ies along the z-axis,  the q-axis coincides with the x-axis,  and 

the &-axis coincides with the y-axis, so that x = -.rr/2, and t = r /2 .  Assum- 

ing that the cylinder hangs behind the surface of the parabolic reflector,  we 

can take the bottom base of the cylinder as the qi;-plane, which yields 

= 0, zo = h. Thus YO 
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0 0 1 0 

sin cy 

cos (Y 

or 

u1 = c o s a  

u2 = 0 

u3 = sin CY. 

Neglecting the shadowing effects of other components of the spacecraft on the 

surface of the cylinder, we can write from Eq. (129) 

sin A = 1 ,  A = 90". 

Formulas given by Eqs. (131-133) yield 

-Kah(l - By) sin 2rr FS = 

1 2 F = -Kah sin c t P g ( 1  - p) t 7 ( 3  t py) sin CY 
5 
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which leads to the following expressions (FI = FZ, F,, = Fx, F5 = F ). 
Y 

F = O  
X 

2 F = -Kah sin (Y 7 ( 1  - p )  t 3-(3 t py) sin a 
Y [TT* 

FZ = -Kah(l - py) sin 20, 

(135) 
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APPENDIX 

STOKES' THEOREM; CONVERSION O F  DOUBLE 
INTEGRALS INTO LINE INTEGRALS 

The previously obtained expression for  the solar radiation force,  given 

by Eq. (22), may be written in the form 

i. e. , as the sum of two double integrals. W e  have seen ear l ie r  that the 

second integral in Eq. (A-1) can be solved immediately, since, insofar as 

the double integratioq is concerned, the unit vector 

and, therefore, 

i s  a constant vector 

- s  S 

The function B(B) in the f i r s t  double integral  in Eq. (A-1) is a function 

of x, y, and z. From the equation of the reflecting surface,  

we can obtain z as a function of x and y. With the substitution of the value of 

z so obtained into the function B(8), it becomes a function of x and y only, 

i .e. ,  B(x,y) .  Thus we have 

(A-3) 
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Now consider the double integral 

Since this integral physically represents one par t  of the solar radiation force 

exerted on the surface of a certain component of a spacecraft ,  the surface 

area S is always bounded by a simple closed curve o r ,  in the general  case,  a 

closed geometrical figure bounded by several  par t s  of different simple 

curves. Therefore,  we can write the Stokes theorem in the form 

S L 

where L is the closed curve,  bounding the surface S .  The vector is a n  

unknown vector function that must be determined from 

- 
(dS X V) >< v = B(x, y) d s .  (A-6 1 

Since, f rom what we had before, 

VQ dS = Z * d S  = y d S ,  

we can rewrite Eq. (A-6) in the form 

The equation of the surface @ having been known, we can consider VQ a known 

vector, 
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the components of which a r e  Ni(x, y), i = 1 ,2 ,3 .  The left-hand side of 

Eq. (A-7) is a tr iple cross-product,  which can be written as  

where the as te r i sk  abcve the vector z m e a n s  that the operator V is applied 

to vector v only. 
- 

Substituting the value of the triple cross-product (E x V) x from 

Eq. (A-8)  into Eq. (A-7), we find 

* - -  
grad(; e N) - N div ; = B(x, y ) z  

o r  

(A-9) 3 4 

grad ( y  - z) N div + B(x,  y) 

- 
-[ 

Using components of the vector function v: 

the following three partial differential equations: 

v l ,  v2, and v3,  Eq. (A-9) yields 

a v2 
N1 ax -t N 2 a x  

av 

av3 
N 1  az + N 2 a z  ay az + - -t B(x,y)] 

av2 t -  av 1 av2 

1 (A-10) 

o r  
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where B(x, y) is a known function of x and y. Since this system is homogeneous 

with respect to N NZ, and N3, the determinant of the system must  be zero.  1’ 

We shall now consider a particular case when the right-hand side of 

Eq. (A-9) is zero; in other words, we shall find a particular vector function 
v which makes the right-hand side of the Eq. (A-9) vanish, so that 
- 

div t B(x, y) = 0. (A- 11) 

Since in this case the right-hand sides of the three scalar equations 

(Eqs. A- 10) vanish, the Jaccbian J (v l ,  v2, v3/x, y, z)  is equal to zero,  i. e. , 

- av 1 - av2 - av3 
ax ax ax 

av2 - av3 - aV 1 
I a Z  aZ az 

= o  

This fact implies that the three components of the vector function 

independent quantities. Indeed, writing the equation of the reflecting surface 

in the explicit form 

a re  not 
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and, therefore, 

We find, from the third of Eqs. ( A - l o ) ,  

) = 0. a((". + - af 
Z ax 1 ayv2 - v3 

and, accordingly, 

or 

af 9f v3 = - v  + -v - +(x ,y ) .  ax 1 ay 2 

Hence 

af avi a P 2  a+ av3 - -  aL 
ax - ax z V 1  axayV2 ax ax ayax ax 

t - -  + -- - - a2f t -  
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and, substjtiiting these values into the left-hantisides of the f i r s t  two of 

Eqs. (A , we find 

(A- 1 3 )  

Assuming that the determinant of this system does not vanish, i . e . ,  if 

G(x. y) = 

- a2f a2r 
2 axay ax 

the two compcaents v1 and v, can be determined f rom 
d 

(A- 14) 

Eqs. (A- 14) show that v1 and v2 a r e  functions of x and y only. Therefore 
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and, accordingly, 

av3 - = o  
3.. 

The conditional scalar  equation (Eq. A-11) then yields 

(A- 15) 

so that, differentiating the f i r s t  equation (Eq. A-14) with respect to x and the 

second equation with respect to y, and substituting the resul ts  into Eq. (A-15), 
we finally a r r ive  at a partial  differential equation of the second order  l o r  the 

determination of the function IC1 (x, y). 

To i l lustrate this method, we shall  consider the equation of the surface 

of the paraboloid of revolution 

2 2  @(x, y , z )  = X(x + Y ) - z = O 

where 

2 
G ( x , ~ )  = 4 X  

Here,  f rom Eqs. (A-14), 
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and Eq. (A-15) yields the Laplace equation in two dimensions: 
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NOMENCLATURE 

a 

aO 

aSR P 

A 

AO 

Axz’ Ayz 

B (f)  

C 

Y C 

C 

e 
- - -  
e l ’  e3 

f 

semidiameter of the circular  cylinder 

semin. Ajor axis of the spacecraft’s orbit  

constants of the parabolic reflector 

unit vectors along the axes of the inertial  reference 
frame 

acceleration of the so la r  radiation force 

moment of inertia of the parabolic reflector about 
the principal x -axis of the spacecraft  

P 
parameter  used in integration 

projections of the illuminated surface area on the 
three coordinate planes 

reflectivity function 

astronomical unit 

constants of the parabolic reflector 

moment of inertia of the reflector about the princi- 
pal yp-axis of the spacecraft 

function of the angle between the direction of the 
incident radiation and normal to the reflecting 
surface 

reflectivity function 

speed of light 

modified so la r  constant 

moment of inertia of the parabolic reflector about 
the principal z -axis of the spacecraft  

reflectivity character is t ics  of a specified reflecting 
surface 

eccentricity of the spacecraft’s orbit 

unit vectors along the axes of the noninertial irame 
of reference xyz 

t rue  anomaly cf the spacecraft  in i ts  orbit 

P 
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f l ’  f 2  constants of the parabolic reflector 

f l ’  f F  2 values of constants f and f for the front side of 1 2 the reflector 

-ralues of constants f l  and f 
the reflector 

for the back side of 2 

reflection law 

solar  radiation force 

components of the solar  radiation force along the 
axes of the noninertial f rame of reference xyz 

FN solar  radiation force exerted upon a surface per- 
pendicular to the direction of the incoming 
radiation 

par t  of the radiation force due to the incoming 
radiation FI 

FR par t  of the radiation force due to the specularly 
reflected radiation 

FD 

F0 

part  of the radiation force due tu the diffusely 
reflected radiation 

solar  radiation force exerted on the whole front 
surface of the parabolic reflector 

components of force F 
inertial reference frarre  xyz 

-0 along the axes of the non- Fo Fo Fx’ yD z 

’0 F’o 
F x D  y z 

components of t!.e solar  radiation force exerted 
on the whole back a r e a  of the reflector, along the 
axe5 of the noninertial reference frame xyz 

FT, FT 
Y Z  

components of the total solar  radiation force in 
the sy-tern xyz 

components of the solar  radiation force along the 
axes of the noninertial system g q  I; 

constants of the parabo!ic reflector 

values of constants go, g l D  and g2  for the front side 
of the reflector 

values of constant g o J  g l J  and g2  for the back side 
of the reflector 
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h length of the circular  cylinder 

hl’  h2 constants of the reflector; ccefficierits in the 
expression for the moment of the radiation force 

values of constants hl  and h 
the repec tor  

for  the front side of 2 

values of hl and h2 for  the back side of the 
reflector 

- 
i unit vector along the x-axis 

radiant flux per  unit solid aiigle on a hemisphere I 

IO constant, having the same dimensions as I 

definite integrals that appear in the expressions 
for the components of the solar  radiation force 

1 1  
IX’ y’ z moments of inertia of the reflector about the axes 

of the coordinate frame xyz 

unit vector along the y-axis 

radiant energy of the incoming radiation per  unit 
a r e a  per  unit of time 

J’ J21’ J22’ J31’ J32 definite integrals that a?pear in the expressions 
for  the components of the solar  radiation force 

J O  so la r  constant 

J J  Jx’ y’ z principal moments of inertia of the spacecraft 
without the parabolic reflector 

i; unit vector along the z-axis, in the Spacecraft- 
Ear th  direction 

k 

K = K(rSp) = K ( r )  

radiation constant 

function of the heliocentric distance of the 
space c raft 

reflecting character is t ics  of a surface 

solar  radiation constant 

auxiliary constants 

constant of the reflector 

total mass of the spacecraft mS 
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M 

M 
- 

mass  

moment of the solar  radiation force 

M M  Mx’ y’ z 

Mo Mo Mx’ y’ z 

MA, M’  MI 
Y’ z 

‘0 M’o’ M f O  
M x ’  y Z 

MR 
n 

pR 

91’ 92 - 
r 

r 

-(C r 1 

- 
RE 
s 
S 

components of the vector 
noninertial system xyz 

along the axes of the 

same as above; 0 is the origin of the system xyz 

components of the moment of the solar  radiation 
force along axes parallel  to x,  y,  z -axes ,  centered 
at the center of gravity of the spacecraft 

values of components %, M 
for the whole inside a r e a  of tg; reflector 

M, respectively 

components of the moment of the solar  radiation 
force for  the back side of the reflector 

values of components M;, M i ,  MH for  the whole 
back side area of the reflector 

m a s s  of the parabolic reflector 

ra te  of rotation of the spacecraft  about i ts  roll 
axis (z-axis) 

unit vectors along the axes of the system 6 q 5 

unit vector along the normal to the reflecting 
surface 

component of force F along the normal to the 
reflecting surface I 

component of force F 
surface 

along the normal to the R 

constants 

- heliocegtric position vector of the spacecraft ,  a lso 
rSP Irl = r SP 
dimensionless polar coordinate 

position vector of a point of the spacecraft relative 
to its center of gravity 

heliocentric position vector of the Earth 

oriented surface 

106 

surface area 
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TO 

- 
U 

W 

‘E 

“ 

“0 

13 

Y 

6 

f 

5 

‘1 

e 

x 

A 

’F’ ’B 

period cf f ree  oscillations of the spacecraft about 
the x- and y-axis 

unit vector in the Spacecraft-Sun direction 

components of the unit vector u along the axes of 
the coordinate system 6 7 s  

magnitude of the gradient vector 

noninertial, spacecraft-fixed coordinates 

principal axes of inertia of the spacecraft 

heliocentric inertial coordinates of the spacecraft 

heliocentric inertial coordinates of the Earth 

angle between the axis of symmetry of the reflector 
and the direction of incoming radiation 

Earth- Spacecraft- Sun angle 

portion of photons reflected specularly 

portion of reflected photons 

semidiameter of the parabolic reflector 

angle of inclination of the axis of symmetry of the 
circular  cylinder to the xy-plane 

depth of the parabolic reflector. Also, coordinate 
in the 51.15 system of reference 

coordinate in the (75 system of reference 

blockage (shadowing) functions for the front and 
back surface of the reflector, respectively 

angle between the normal to the surface and the 
direction of the incident radiation 

consta-: of the parabolic reflector 

polar angle used in integration 

reflectivity cha-*acteristics of a surface 

values of p for the froat and back surface of the 
rei leciJr ,  respectively 
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V reflectivity characterist ics of a surface 

108 

V ‘F’ B 

P 

(b 

X 

9 
- 
w 

w 

x’ wy’ *z w 

n 

QO 

values of v for the front and back surface of the 
reflector, re spectiv.? ly 

coordinate in the s q c  reference frame 

geocentric position vector of the spacecraft 

I. I 
polar coordinate 

equation of the reflecting surface 

angle between the projection of the axis of sym- 
met ry  of the circular  cylinder on the xy-plane and 
the x-axis 

angular dimension of the parabolic reflector 

angular velocity vector 

angular velocity 

components o r  the angular velocity vector along 
the axes of the noninertial f rame of reference xyz 

angular dimension of the parabolic reflector 

frequency of the free  oscillations of the spacecraft 
about the x- and y-axis 
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