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1. INTRODUCTION AND SUMMARY

1.1 Introduction

This report comprises the Final Report covering studies performed
under Contract NAS5-20225 for NASA/Goddard Space Flight Center, Greenbelt,
Maryland. The scope and requirements of this study are defined in the con-

tract work statement, which is reproduced below for reference.

(a) Scope: The objective of this contract is to design a wideband FM
: communication system for the Tracking and Data Relay
System and to analytically determine its performance.
Of the several varieties of wideband FM schemes dis-
cussed in the pertinent documents listed below, the most
promising approach is to be selected.

(b) Pertinent Documents: The reports generated by ADCOM under
contract NAS5-10797 are groundwork for performance
under this contract,

(c) Requirements: This communication system encompasses both the
up-link and down-link functions of tracking, command and
telemetry between a ground terminal and VHF User space-
craft. For the purpose of this study, the TDRS Spacecraft
can be considered to operate according to the '""bent pipe"
principle; therefore, design of such receiving and signal
handling operations can be omitted. Other system functions,
common to any TDRS system, such as RF transmit and

- receive, data coders and decoders, etc., can likewise be
ignored.

The following parameters are fixed for the low data rate
(VHF) TDRS communications.

1. Mir;ii'num effective on-axis TDRS antenna gain ... 16 dB.
2. User Antenna Gain ... 0 dB.

3. Down-link data rate ... 1 kb/s..

4

. Up-link data rate ... 100 b/s per spacecraft
(4 commands simultaneously requires 400 b/sec. )

5. Assume noiseless and interference free communications
between TDRS and ground.



6. Down-link telemetry and ranging multiple access ...
operations on 30 User spacecraft simultaneously
(fewer than 30 might also be considered if appropriate),
As many as 50 Users can be in view of the TDRS at one
time,

7. Up-link multiple access command and ranging ...
Command 4 User spacecraft simultaneously in the
presence of R&R signal,

8. Down-link frequency band ... 2 MHz; 136 MHz to 138 MHz

9. Up-link frequency band .., Assume two MHz band at
150 MHz,

10. RFI and multipath environment ... As prescribed in the
latest GSFC and ADCOM studies that exists just prior
to the work on this task, The multipath and RFI models
assumed shall be quantitatively described.

11, Down-link communication accuracy ... BER = 10~6.

12,  Up-link communication accuracy ... BER = 10-6.

13. Tolerable link outage ... In the interest of achieving
a feasible TDRS system a finite link outage probability
will be tolerated. Total link failure shall not exceed
1 % in terms of time or 36 second cut of each hour of
operation, The outages on any particular User shall be
less than 59, or 3 minutes out of each hour. An outage
is defined as that period of time a link operates below
specifications and includes the period one minute after
the outage ceases. This last requirement is included
because data intervals of less than one minute have
reduced value.

14, Acquisition time, ground and User ... 10 seconds
' - maximum,

15. Location of User spacecraft ... randomly distributed,
heights from 100 miles to 5, 000 miles,

16. Range determination uncertainty ... ‘less than 15 meters.
17. Range acquisition time ... less than 16 seconds,

18. Unambiguous range determinations ... less than 10, 000.
miles. ' '

19. Range rate determination accuracy ... less than
10 cm/sec with an observation period of 1.0 seconds,



The results of the analysis shall determine:

1. Required User transmitter power.
2. Required TDRS transmitter power.

3. Margins of 1 and 2 based upon probability
of RFI and Multipath.

1,2 Modulation Techniques for Spread-Spectrum Multiple-Access

Radio communication links betvs}een the TDRS and the User space-
craft will suffer from Multipath and radio freQuency interferences. To
combat these interferences it has been suggested that spread-spectrum
Signéls be utilized on both the uplink and downlink, Spread-spectrum
signals have the further benefit of enabling spread-spectrum multiple-access
operation of the tracking and data relay system. Thus, the increased spec-
trum occupancy requirements of such.sig-nal‘s would be at least partly offset
by the ability to communicate simultaneousiy with several User spacecrafts

over the same wideband channel,
- Of the four types of spread-spectrum signals, namely:

— Psaudo-noise phase-modulated carrier,
- Frequeﬂcy-hopping signal,
— Adaptive pulse burst,

— Wideband frequency-modulated carrier;

the latter has seen the least use in multiple-access applications. Under
Cohtract NAS5-10797 for NASA/GSFC, TeleAdyne ADCOM'haS evolved
several forms of a multiple~-access system concept utilizing wideband FM
signals for the TDRS applicatioh, The present study serves to identify and
describe the design and performance of the most promising form of this

éystem concept.

The wideband FM spread-spectrum multiple-access system was
designed to provide the advantages of spread-speétrum techniques while.

- exploiting the inherent narrowband nature of the information-bearing signals,



and without suffering certain disadvantages which often accompany spread-

spectrum techniques.

1.3 The Wideband-FM Multiple-Access System

The wideband FM system studied in this report performs the func-
tions of:

1. command data link from DAF to User,

2. telemetry data link from User to DAF,

3. multiple access to any one of several TDRS uplink signals
by the User,

4, multiple access to any dr all User downlink signals by the
DAF, '

5. two-way range and range rate measurement capability, and

6. resistance to RFI, multipath, and SSMA interference.

The data on both the uplink and the downlink are split-phase coded
and PM modulated directly on the carrier with a deviation of 1 radian.
Rahging is performed by utilizing sinusoidal range tones which PM modulate
the uplink carrier, These tones are turned around in the User transponder
and PM modulated on the coheréntly transponded downlink carrier. The ‘
highest frequenéy range tone is at 102, 4 kHz., Three ambiguity resolution
range tones at 6.4 kHz, 400 Hz, and 25 Hz provide ambuiguity resolution
down to 12, 000 kilométers. Thié 1s more than adequate for the TDRS

application,

.The uplink carrier is wideband FM modulated by a sinusoidal sub-
carrier whose frequency is selected to lie between 108 kHz and 136 kHz,
such that the 4th and 5th order upper sidebands lie in relatively RFI-free
portions of the uplink spectrum. The 4th order sideband will lie somewheré
between 432 kHz and 544 kHz above the carrier frequency, and the 5th order
sideband will correspondingly lie between 540 kHz and 680 kHz above the

carrier frequency.



The width of the band of the spectrum which must be free of RFI is
*8 kHz about the 4th apd 5th order sidebands. Condequently, it should be
relatively easy to either find such bands or else create them by forcing
certain RFI sources off the air, These RFI-free bands assure reliable
acquisition of the wideband FM signal on the uplink. Once the signal is
acquired, wideband FM compression in the User receiver prevides process-
ing gain against other RFI sources and multipath interference. The fact
that only a relatively .small fraction of the uplink RF bandwidth need be free
of RFI in order to assure reliable ‘acquisition is one of the advantages of

the wideband FM spread-spectrum technique.

Identification of a particular TDRS transmission is achieved by
assigning a unique subcarrier frequency to each TDRSI. On the ofher hand,
identification of a particular User transmission is achieved by assigning a
unique combination of subcarrier and carrier frequencies toeach User
spacecraft, There are ten primary and ten aux111ary subcarrier frequenc1es
to choose from, located in the range 110 - 141 kHz spaced by 3.2 kHz,

Each User generates its own downlink subcarrier frequency independent of
any uplink frequencies, There are three carrier frequenc1es (lower, middle
and upper carrier bands), ~ spaced by 25. 6 kHz. Thus the number of simulta-
neous Users is, I‘eSpeCtlvely, 60 and 30, according to whether or not the

auxiliary subcarrier frequenc1es are used.

The modulation index is chosen to be 5.52 radians. This value of &
is a zero of Jo(ﬁ), and means that there will be no discrete-carrier compo-
nent in either the uplink or downlink RF spectrum. It also yields relatively
high 4th and 5th order sidebands which are useful for acquisition. Finally,
only sidebands up to sixth order need be transmitted with this value of modu-

lation index.

A compound phase-locked loop is utilized in both the User and ground
receivers, in which the subcarrier and the carrier are tracked. The tracked

subcarrier is used to FM modulate the tracked carrier so as to generate a



wideband FM reference signal which is used to multiply the RF input signal
in the input mixer. The modulation index is chosen so as to provide full
compr-ession of the wideband FM subcarrier at the output of this mixer.,

. The actual receiver implementation utilizes a PM modulator followed by a

frequency multiplier to achieve the prbper modulation index,

Additional signal processing ié performed by the ground receiver,
The range measurement is performed by comparing the returned range and
ambiguity tones against the offginal transmitted tones. The range rate
measurement is performed on the coherent downlink carrier by comparison

to the uplink carrier.

1,4 Summary of Results

The narrowband nature of the information-bearing signals in the

" TDRS system may be appreciated from the following observations:

1. The data bit rates are relatively small on both the forward
(uplink) and the return (downlink) links, being either 100
BPS (normal mode) or 400 BPS (high data rate mode) on
the uplink, and 1000 BPS on the downlink. These rates,
particularly on the uplink, are low, compared to such
parameters as the direct-path carrier doppler range, the
relative multipath carrier doppler, the doppler dynamics
between the User and earth-based RFI sources, and the
bandwidth of narrowband earth-based RFI.

2. The ra'n"ge rate is determined by coherently transponding
the carrier component. This carrier component is tracked
by a phase-locked loop whose noise bandwidth is small
(9 Hz on the uplink and 12, 2 Hz on the downlink, single-
sided) compared to the above-mentioned parameters,

3. Range measurements are performed with a set of coherently
related sinusoidal range tones. These tones are tracked in
very narrowband phase-locked loops.

- The advantages of the narrowband nature of the information bearing
signals is that straightforward filtering in the frequency domain may be used
to combat multipath and RFI interferance, provided that the receiver can

lock up to the desired direct-path carrier. The wideband FM spread-spectrum



technique is ideally suited for this purpose. This technique also has the édded

advantage of providing simple multiple access capability while at the same

time minimizing the effects of other-User interference - the so-called SSMA

interference or system self-noise.

Unlike other spread-spectrum techniques' which often suffer from

problems of acquisition,

susceptibility to any and all interference sources in the
RF bandwidth,

cumulative effects of all 1nterference sources in the
RF band,

non-independence of the functions of data transmission
ranging, and spread-spectrum, often to the detrlment

‘of each,

complex receiver implementation, particularly on board
the User, and

constraints which reduce the flexibility of system modifi-
cations and improvements,

the wideband FM technique offers

réiatively simple, reliable, and fast acquisition,

susceptibility to only a small fraction of the interference
sources present in the RF bandwidth at any particular
instant,

non-cumulative effects of interference sources except
in certain rare situations,

processing gain against any and all interference sources,

relatively simple receiver 1mp1ementat10n both on the
User and on the ground,

the ability to separate the ranging, data, and spread-
spectrum functions so that each may be optimized
almost independently of the others, and

a flexibility in signal and receiver design which permits
improvements in signal design and receiver implementa-
tion to be made with a minimum of interaction between
the various communications functions, and which require
a minimum of recomputation of system performance.



This last feature of the wideband I'M technique permits changes in
system requirements to be readily incorporated into the system design with-
out the necessity of hz;ving to recompute all aspects of system performance,
This is.one feature of the wideband-FM spread-spectrum technique whose
importance cannot be overestimated. In fact, several modifications were
made in the system design during the present study which provided ir'nproved'
performénce in one area or another without requiring extensive recalculations.
In particular, improvements in the range turnaround channel were made in
the noise analysis of Sec. 4, with additional improvements suggested in the

improved system concept described in Appendix D.

The-results of an additive noise analysis indicate that on both the
upiink and the downlink the data bit error probability requirements set the
threshold on signal-to-noise power density ratio. In addition, since the data
is the widest bandwidth information signal, it is also the communications
function most susceptible to multipath, SSMA, and RFi interference. The
improved system concept described in Appendix D offers reduced suscep-
tibility of the data to multipath, SSMA, and RFI interference and is an out-
growth of the analysis of the wideband FM system described in Sec. 2 and
analyzed in Secs. 4, 5, “6, 7 and 8. Thebperformance of this modified
system fnay be readily analyzed by making minor modifications of the

P
analyses presented in the above-mentioned sections of this report.

Analysis of CW interference effects indicates systeni susceptibility
only when the RFI is located in certain narrow regions of-the RF band.
The system still has a moderate processing gain under these conditions,
but the important result is that this "worst case' condition persists only

for very short time intervals. This is because the doppler rate as

observed at the User spacecra.ft on the terrestrial RFI is very different
from that observed on the desired sigﬁal originating at the TDRS. Thus,
the RFI will fall in the " worst" regions of the band relative to-the desired
signal components only for short periods, then will rapidly sweep off to be

filtered out by various filters. ' —



Again, the system is susceptible to narrowband RFI only when it is
located in certain narrow regions of the RF band. The system has substantial
. processing gain under these conditions, enhanced by.the ability to filter out
large portions of the narrowband RFI spectrum that do not fall within the

narrow regions of the RF band.

The multiple-access features of the system were specifically
designed to minimize SSMA. Even under "worst case' conditions determined
by various doppler shifts, it is not expected that more than one User will
significantly interfere with another User. In this case, the system has suffi-
cient proceesing gain to combat the resulting SSMA interference, for all

reasonable ratios of received User signal powers.

. Finally, multipath interference is rejected by similar mechanisms.
Realtive doppler shifts of any appreciable magnitude are exploited to filter
out the multipath interference. When the relative doppler is too low to per-

- mit filtering, the doppler rate is large causing this unfavorable condition to
last only short intervals of time. The system still has a moderate processing
gaiﬁ, enhanced in the case of diffuse multipath by the ability to filter out
portions of the multipath interference that does not fall within the "worst"

narrow regions of the RF band.

1.5 Conclusions and Recommendations

The wideband FM system is a form of spread-spectrum multiple-
access system employing wide-deviation sinusoidal subcarriers to achieve
the desired—spectrum spreading. The concept encompesses the functions
of tracking, command and telemetry, and is capable of accommodating many

User spacecrafts and three Qr’four relay satellites.

Analysis has indicated superior system performance in combatting
the expected sources of disturbance, including random noise, multipath, RF
interference, and interferences from other User spaceerafts or other relay

satellites. Furthermore, the system concept offers many deployment and



operational advantagés, such as flexibility ir assignment of channels among
different Users, and ease of handover from one relay satellite to another,
Wideband FM is a highly effective and flexible approach to implementing the

TDRS communications and tracking functions.

It is essential for GSFC to thoroughly evaluate the candidate TDRS
system concepts prior to adoption of a specific approach for hardware imple-
mentation, Such evaluation includes paper design and performance evaluation

of the conAcepts to meet practical requirements under the same ground rules.

The present study fulfills this requirement for the wideband FM
system concept. However, we wish to emphas'ize that definite evaluation
and comparison of candidate system concepts muét be based, not only on
paper design and analytical predictions of performance, but also and more
importantly on experimental evaluations. Only an experimental evaluation
can uncover the practical advantages and limitations of a given system

concept.

_ Cénsequently, we strongly recommend that GSFC initiate an
experimental evaluation program of the wideband FM system concept. Such
a comprehensive program would yield, in a timely manner, ‘sufficient infor-
mation for a well-founded decision on the merits of the wideband FM system
vis-a-vis other candidate concepts. Experimental evaluation of the wideband
FM system is now urgently needed, in view of the on-going laboratdry

evaluation of other candidate concepts.
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2. SYSTEM DESIGN

2.1 Wideband FM Spread-Spectrum Multiple-Access Techniques

The basic signal format used in this system cbncept, both on the
uplink and the downlink, .is as follows: |
a) Ranging information is carried in a cluster of range tones

designed to yield the desired range measurement accuracy
and ambiguity resolution.

b) Data, viz., commands on the uplink and telemetry on the
downlink, is carried by a split-phase signal which, along
with the ranging sidetones, phase-modulates the carrier.

c) Spectrum-spreading is accomplished by frequency-
modulating the VHF carrier by a sinusoidal subcarrier
using a wide frequency deviation (modulation index = 5,52).

d) Identification of a particular TDRS transmission on the
uplink is achieved by assigning a unique subcarrier fre-
quency to that TDRS. Identification of a particular User
spacecraft transmission on the downlink is achieved by
assigning a unique combination of one of ten (primary)
subcarrier frequencies and one of three carrier frequen-
cies (lower, middle, and upper carrier bands). Auxiliary
subcarrier frequency slots are available to increase the
number of simultaneous Users to 60.

Straightforward means for accomplishing these modulation opera-

tions have been evolved, but their discussion will be deferred until Sec.

2.3.3.

Reception and separation of a de51red 51gnal in the presence of
other wideband FM signals is based on utilizing the unique combination of -
carrier and subcarrier frequencies characterizing it. A compound phase-
locked loop receiver, to be described shortly, locks on to both the carrier
" and the subcarrier by fully compressing the subcarrier modulation on the
desired signal., Undesired interference components such as other wideband

FM signals, multipath, or RFI disturbances are reduced in amplitude and

11



spread in spectrum by this wideband FM compr_eséion operation, thereby
reducing their effects on receiver operation. In this manner, the spi*ead~
spectrum multiple-access advantage is realized in achieving disturbance-
resistant communications with several User spacecrafts on the same .

frequency band.

2.2 System Configur—ation

The system configuration is described first for the simplified
situation of a single User and a single TDRS.A Figure 2.1 illustrates this
vsituation. At the ground station data acquisition facility (DAF), the VHI
signal is generated, modulated with the command data, then translated up
to X-band for transmission to the TDRS. All frequencies, including the
range tones, are obtained from the station master clock and frequency
synthesizer. The TDRS operates on the received X-band signal according
to the bent-pipe principle, coherently translating it back down to VHF for

relay to the User spacecraft.

At the Usei‘ transponder receiver, the compound phase-locked loop
locks onto the carrier and the subcarrier, and yield the split-phase command
signal for detection in the command extractor, The extracted uplink carrief
frequency is muitiplied in the transponder transmitter by the turnaround ratio
(23/25) to generate the coherent downlink carrier. A new subcarrier for the
downlink signal is generated.by the transponder clock and frequency synthe-
sizer. Thus the dowhlink subcarrier is not maintained coherent with the
uplink subcarrier. The uplink range-tone cluster is filtered prior to remodu-
lation on the downlink signal. The transponder transmitter combines the
‘ felemetry data, filtered range tones, subcarrier and turnaround carrier to

-generate the downlink VHF signal,

On the downlink the TDRS again operates on the bent-pipe principle
to coherently translate the received VHF signal up to X-band for relay to the

DAF. At the DAF the received X-band signal is translated back down to VHF

12.
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for processing in the VHF receiver. A corapound phase-locked loop locks
onto the carrier and subcarrier, yielding
a) The carrier frequency to the range rate extractor
which measures the round-trip doppler.

b) The range tone cluster to the range extractor which
measures the phase shifts on the various range tones.

c) The split-phase telemetry signal to the telemetry

extractor for data detection.

The system configuration for the general situation of several TDRS's
and many User spacecrafts is illustrated in Fig. 2.2. Three TDRS's are
shown, designated A, B and C, although extension to four is straightforward.
A DAF is dedicated to each TDRS, with a separate X-band link up and down,
Each TDRS radiates its VHI signal to all User spacecrafts in view, using
the common uplink carrier frequency but identified by its unique subcarrier
frequency. This is indicated in Fig. 2.2 by lines going to User No. 1 only
to reduce pictorial clutter. Each User‘é transponder receiver locks onto
the uplink signal containing the subcarrier to which it is tuned as soon as
it comes into view of the appr'op.riate TDRS, and commences to detect com-
mands, Commands intended for a particular User are identified by an
addreés code unique to that User. Addressing of several Users is accom-

" plished by a time-division multiplexing scheme (TDM).

The User downlink identification, based on its carrier and sub-
carrier frequency combination, is either preset or is selectable on command
frofn the DAF. The carrier frequency offset of 25. 6 kHz,‘ when used, is
derived from the downlink subcarrier frequency, and is removed on the
ground prior to d-oppler processing. On the downlink, each TDRS receives
signals from all User spacecrafts in view, and relays the full downlink VHF
band down to its DAF. Each DAF is equipped with a bank of VHEF receivers,
one for each User addressed by the TDRS associated with that particular DAF.

14
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2.3 DAF Transmitter

2,3.1 Functions
The functions of the DAF transmitter are:

1) To generate the wideband FM VHEF signal,
2) To coherently translate it up to X-band, and

3) To transmit the X-band signal to the relay
satellite, : '

2.3.2 Uplink VHF Signal Structure

The uplink wideband FM VHF signal consists of a VHF carrier

which is simultaneously

1) PM Modulated by

a) command data in the form of a split-phase
binary signal, and '

b) ranging sidetones, and

2) Wideband FM Modulated by a sinusoidal subcarrier -
: with a modulation index of 5.52,

The command data bit rate may be either 100 BPS or 400 BPS,

The ranging sidetones consist of a fine range tone at 102, 4 kHz and
ambiguity ranging sidetones clustered around 96. 0 kHz as shown in Fig. 2.3.
The ratio between the frequencies of successive range tones is 16. The range

tone frequencies are listed in Table 2. 1.

Table 2.1

Range Tone Frequencies

Range Tone Frequency
Fine range tone | ‘ fl = 102.4 kHz
Medium-fine range tone f2 = 6.4 kHz
Medium-coarse range tone- f3' = 400 Hz
Coarse range tone B f4 = 25 Hz
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The ranging sidetones are generated as indicated in Fig. 2,4, The

ranging sidetone signal representation is

t+ sin w t)] cos(wl-wZ)t (2.1)

} . N .
¢R(t) p, sinw t+ [p2 2pA(sm @ .

=0.48, and p, = 0.375.

All relay satellites transmit at the same VHF carrier frequency of
148.9255 MHz. The signals from different relay satellites are distinguished
in the TDRS-User VHF link by the unique subcarrier frequency assigned to
each TDRS, For exémple, two relay satellites require two DAF transmitiers,
each with a different uplink subcarrier frequency. Subcarrier frequencies

should be in excess of several kHz.

A plot of the distribution of the wideband FM signal power in the
various sidebands for a modulation indei of 5.52 is shown in Fig. 2.5, The
fraction of the total signal power contained in the first six sidebands on
either side of the carrier is 0.982. The power in the carrier is zero since
JO(S. 52) = 0. As may be seen from Fig. 2.5, the largest sideband is the
fourth order sideband, followed in order by the first, fifth, third, sixth,
second, and seventh order sidebands. The fact that the fourth and fifth
or.d_er,sidebands are large is utilized in the design of the wideband FM com-

pound PLL receiver acquisition aid system.

2.3.3  Uplink Signal Generation

The technique used to generate the uplink wideband FM VHYF signal
is to perform the PM modulation and the wideband FM modulation in separate
channels and then combine these two modulated signals by a mixing operation.
This permits optimum design of each type of modulator and ensures better

control over the modulation indices.
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A block diagram of the DAF transmitter is shown in Fig. 2.6. *
A clock and frequency synthesizer generates the fine range tone frequency
of 102. 4 kHz, the comfﬁand clock frequency, the subcarrier frequency, a
. reference frequency, fo, at appfoximatély 1 MHz, and an X-band reference

frequency.

Commands originating at mission control are formatted at the DAF
transmitter. The command formatter is synchronized by the command clock
rate. The command signal generator converts the command signal from the

command formatter into a split-phase command signal.

A range tone generator generates the' ranging sidetones. The rang-
ing sidetones and the split-phase command signal are added together and fed
to the PM modulator. The output of the PM modulator, which operates at a
frequency of 5 fo, is frequency multiplied by 48, This brings the carrier
frequency up to 240 fo and the phase deyiations of the carrier by the ranging

sidetones and the command data up to their desired values.

A coherent wideband FM modulator FM modulates a carrier at 91 fo
with the subcarrier while at the same time maintaining coherence with the

reference frequency fo. This is implemented as shown in Fig, 2.7.

The FM mod.ula;cor is made coherent with the reference frequency fo
by phase-locking the "carrier component of an FM modulated VCO. The
modulation index at this point is sufficiently small so that a large carrier
component is maintained at the output of the VCO. The desired modulation
index of 5.52 is obtained by frequenéy multiplying the VCO signal by 8 as
shown.” This also brings the carrier frequency up to 91 fo. The PM and FM
modulated carriers are mixed and the difference frequency component at

149 fo = 148.9255 MHz becomes the desired VHF wideband FM signal,

~*Tﬁe frequency at the output of a mixer is denoted as either the sum or
‘difference of the input frequencies in accordance with the polarity signs
at the inputs to the mixer. This applies to all mixers shown in all figures.
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The carrier freqﬁency of 148.9255 MHz is chosen because:

1) It places the uplink VHF carrier frequency very near the
center of the uplink VHF band extending from 148.0 to
149.9 MHz, '

2) It permits use of a simple User transponder turnaround
ratio of 23/25. ‘

3) With this turnaround ratio and uplink VHF carrier
frequency, the downlink carrier frequency is 137.01146
MHz which is very near the center of the downlink VHF
band extending from 136. 0 to 138.0 MHz.

4) To achieve this uplink carrier frequency, f, is chosen
a 1 MHz minus 500 Hz = 999, 5 kHz. '

If it were necessary to place the carrier frequencies precisely'in
the center of the uplink and downlink VHF bands, a tﬁrnaround ratio of
137.0/148. 95 would have to be used., This is rather difficult to achieve,
Fortunately, this ratio, which is approximately 0.91977, is sufficiently
close to 0,920 = 23/25 to permit the 23/25 turnaround'ratio to be used with
only slight tolerable shifts in the frequencies of the carriers from the

desired center band values,
The uplink VHF signal is therefore

e (1) = sin{(149) 2nf t + 6 sinw_ t+ (1) + ¢D(t)} (2.2)

where 0 sin wsct is the wideband FM subcarrier, ¢R(t) is the ranging
sidetones signal, and 4>D(t) is the split-phase command data signal.

The phase deviation of the data signal is 1 radian,
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2.4 Relay Satellite

The relay satellite is presumed to function as a simple "bent-pipe"
frequency translator from X-band to VHF. The effects of X~band DAF ~to-~
- TDRS doppler in the VHF link is presumed compensated for by some means.
(See ADCOM Final Report G-95 entitled, ""Communication Technique Studies
for the Data Relay Satellite System, ' May 15, 1969, prepared for NASA/
GSFC under Contract NAS5-10510, Mod 3.) Each TDRS relays all signals

that it receives in the downlink VHF band.

2.5 User Transponder

2,5.1 Functions
The User transponder must perform the following functions:

1) Acquisition of the wideband FM signal,

2) Coherent carrier tracking and demodulation,

3) Extraction of the command data.

4) Fi'ltering of the ranging sidetones.

5) Generation of the downlink subcarrier frequency.

6) Coherent turnaround of the uplink carrier, and
generation of one of three downlink carrier
frequencies.

7) PM modulation of the filtered ranging sidetones
and the downlink telemetry split~-phase data signal
on the downlink carrier.

8) Wideband FM modulation of the downlink carrier
"~ by the downlink subcarrier, and

9) Handover of signal reception from one TDRS to
another TDRS.

These functions are shown schematically in Fig., 2.8,
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2.5,2 User Transponder Compound PLL Receiver

The User transponder cdmpound PLIL receiver acquires, tracks,
and demodulates the wideband FM uplink signal from one of the TDRS's in
view. A block diagram of the tracking portion of the receiver is shown in
Fig. 2; 9. This shows a receiver designed to receive the wideband FM
signal from a single TDRS whose subcarrier freQuency is 9o The prob-

lems of acquisition and handover are treated in a later section.

The receiver is a compound PLIL consisting of a carrier tracking
phase-locked 106p, a subcarrier tracking phase-locked loop, a subcarrier
.feedback and wideband FM reference signal generator, and a carrier phase
demodulator. The VCXO output signal of the subcarrier loop is used to
modulate the carrier loop VCO output signal in such a manner as to permit

full compression of the wideband FM RF input signal at the RF mixer,

This is accomplished by utilizing a PM modulator followed by a frequency
mﬁltiplication by 24 in the feedback path, The effect is equivalent to wide-
band FM modulation if the phase of the subcarrier is shifted by 90° prior
to' PM modulation of the carrier loop VCO signal., The gain'of the feedback
loop is adjusted to yield full compression by making the modulation index of
the wideband FM reference signal equal to 5.52 at the control input to the

RF¥F mixer,

The advantages of full compression and of using a modulation index

of 5.52 are:

1) Full compression offers optimum operation in the presence
*of noise and interference,

2) The received wideband FM signal has no carrier component
since J,(5.52) = 0. This is important for proper SSMA
operation since it prevents the carrier components of other
User or other TDRS signals from interfering with carrier
tracking or data demodulation. Also, the fact that J (0) =0
when 6 = 5,52 makes it easy to set the modulation index at
this value. ' ' ‘
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3) Only the first six sidebands carry significant signal power. '
This permits utilization of the higher subcarrier frequencies
as primary subcarrier frequencies. The advantage of this
is that it spreads the wideband FM signal over more of the
2 MHz bandwidth. This helps reduce the effects of SSMA
and RFI interference by reducing the probability of certain
interference mechanisms, :

4) The fourth, fifth, and first order sidebands are the three
largest subcarrier sidebands. This is used to advantage
in the acquisition technique as will be described.

Note that by using a carrier PLL in a "long loop" configuration with
a multiply-by-24 prior to the RF mixer, the carrier loop VCO freqliency is
“made 1/25 of the VHF uplink carrier frequency. This is a very simple way

to obtain the divide-by~25 in the 23/25 turnaround ratio.

The high level of RF¥I which is present on the uplink necessitates
the use of a separate carrier phase demodulator and phasé deteétor. This
i‘sv done because coherent AGC is used to control the gain, and hence the
noise bandwidth, of the carrier loop. Consequently, a narrowband IF
amplifier (BW ~ 4. 0 kHz) is used to amplify the compressed carrier com-
ponent, By using this narrow bandwidth, RFI components which lie more
than a few kHz away from any of the subcarrier sideband components will
be suppressed prior to IF amplification. This prevents any of these RFI1

components from overloading the IF amplifier,

A wideband IF amplifier passes the ranging sidetones and first-
order subcarrier sidebands. This amplifier operates at a much lower
gain than the narrowband IF amplifier. Further amplification of the ranging
sidetones and the residual subcarrier first-order sideband is performed
after coherent demodulation by the carrier phase demodulator and subse-
- quent narrowband filtering by ranging sidetone filters and a subcarrier
bandpéss filter. The amplifiers used in this connection are AGC'd from

the output of an AGC detector to be described in the section on acquisition.
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The data may be extracted {rom the output of the carrier phase
detector since it's bandwidth is much less than 4.0 kHz and it is PM'd
directly on the carrier, The amplitude of the data at this point in the receiver
has already been amplified to a controlled signal level by the AGC'd narrow-~ ,

band IF amplifier,

The data demodulator consists of a bit synchronizer and an integrate-
' and-dump matched filter detector. The data demodulator is common to any

TDRS Sys’tem concept and need not be discussed further.

The rarige tone filters and the ranging sidetone turnaround channel
is unique to the particular system under discussion, and is described in
detail in a later section. We now turn our attention to the problem of

acquisition of the wideband FM signal.

2.5.3 Signal Acquisition

The problem of acquisition on the uplink differs fror that on the

downlink for several important reasons, These are:

1. Acquisition on the uplink must be performed with the uplink
command data and ranging sidetones present, whereas on
the downlink, the User can be commanded to not transmit
telemetry data until the ground receiver acquires the wide-
band FM signal and the ranging sidetones.

<
2. Depending on how handover is accomplished, the User may
be able to take longer to acquire than the ground receiver,

3. It is desirable to keep the User electronics as simple as
possible, whereas additional sophistication may be built
into the ground receiver acquisition circuitry.

4. The User must acquire in the presence of high levels of RFI
interference. :

5. The ground receiver must acquire in the presence of many
other-User signals (SSMA interference).

6. The doppler on the downlmk carrier is essentially twice
that on the uplink carrier, although the dopplers on the
subcarriers are essentially the same on both the uplink
and downlink, :
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7. The signal power to noise power density ratios are generally
different on the uplink and the downlink.,

8. The ground receiver can be designed to receive a signal over
a single downlink channel, whereas the User receiver may
have to utilize portions of the same receiver to receive sig-
nals from different TDRS's., A downlink channel is defined
by the downlink subcarrier frequency and carrier band -
assignment. It may be easier to design separate receivers
for each downlink channel than to design ground receivers
capable of receiving all downlink channels.

The following restrictions are placed on the uplink signal design
and system operation based on the above acquisition considerations:
1. The 400 BPS command data is not transmitted when a User

spacecraft is trying to acquire the wideband FM signal
from the TDRS in question during handover, ~

2, The final choice of uplink subcarrier frequencies for the
two or three TDRS's is to be made on the basis of no RFI1
interference of any significance lying within +8 kHz of the
upper 4th and 5th order sidebands, and no serious RFI
interference lying within 8 kHz of any other wideband TM
signal spectral component,

That is, there should be essentially no RFI interference near the
upper 4th, or 5th order sidebands, and the RFI that may lie near other
spectral components should not be so large as to seriously interfere with
compound PLL tracking, data demodulation, or ranging sidetone turn-
around when the receiver is in the track mode. Since only 2 or 3 subcarrier
frequencies need be selected for the uplink, these requirements may not be

as severe as might appear at first glance. As a last resort, it may be

necessary to require some RFI sources to go off the air,

A block diagram of the uplink acquisition scheme is shown in
Fig. 2 10. This scheme has been designed to acquire the uplink wideband
FM signal'in the presence of RF¥FI and multipath with the maximum possible
reliabilify consistent with the requirements for reasonable acquisition time,
signal-to-noise ratio, and receiver complexity. In particular, the scheme

was désigned to acquire lock with an input SNR no higher than that required

31



(4

SUBCARRIER
TRACK LOCP
PHASE DETECTOR

IF AMPL BPF \
&> ulye -
BW=400kHz AMPL Q%,
] 3
: FREQ_ACQ AGC ‘
CARRIER
IF AMPL ),@TRACK !
BW 2 4kHz 14 Lo SWEEF
AGC —-—@ ®
) i
LPE . SWEEP
5.0Hz 90 Fe ls) GEN
T v 5
| §
® CONTROL STRACK
Pm o V& o]
Mob GAIN 90 v [ Fucls) ‘—o\a?
3 4 ACO
vCXO0
1.0Hz
CARRIER
LOOP FREO
ACO DET
® LPE v lo
“*N.0H:
LPF
. @ Q—-S.OHZ
[INEAR
x24 —o| BFF of L Lol s4 fol PHASE
dwiye DET
BW=40Mz
]GATE CONTROL sotaw] rreestor
DET & lol ES OLD__’®
DET
LPF
BPF
O~
Buwie ¢
4TH AND 5TH de
ORDER UPPER r BW:600H: X b
SIDEBAND FILTER h
ACQ RF ACQ IF |t BPF < SUBCARRIER r
MIXER MIXER Swic BPF PHAL;%OD'EQEOCPTOé [ roc
w., |BW40Hz ‘ LPE
R-7181 8¢ - 10Hz
- SUBCARRIER
SQ Law THRESHOLD ACQ DET
DET & » " @
LPF pDeY

LPF

Tig 2 10 TInlink Acauigition Scheme

TO OTHER AGC

5.0Hr

" CONTROL INPUTS



for 400 BPS data demodulation and with full uplink modulation present

(although with 100 BPS data). Acquisition times on the order of 10 to 12

seconds should be possible with almost no possibility of false lock.

We now describe briefly the functions of the acquisition scheme

and then indicate how these functions are realized by the system of Fig. 2.10,

The functional behavior of the acquisition scheme is:

1.

With the carrier and subcarrier loops unlocked, the carrier
loop VCXO is swept until the error frequency is less than
about 200 Hz. This is the coarse frequency search,

The carrier loop sweep generator continues to sweep in the
sarmne direction for a short time and is then switched to its
fine frequency search mode in which the sweep is reversed
and swept slowly until the error frequency is less than about
20 Hz.

At this time the carrier loop is switched from the sweep
mode to the acquisition mode, and the carrier loop error
frequency is forced to zero.

Meanwhile, the subcarrier loop, which is in the acqulsltlon
mode, acquires frequency lock.

As the carrier loop error frequency goes to zero, the
phasing error on the subcarrier signal into the subcarrier
acquisition becomes negligibly small, thereby enabling
the subcarrier loop VCXO to acquire the proper phase for
wideband FM compression,

With the subcarrier loop propérly phased and the carrier
loop frequency acquired, the carrier loop is switched to
the track mode,

Meanwhile, the gain of the carrier loop IF amplifier is
adjusted by an AGC signal derived from the acquisition
subcarrier signal so that when the carrier loop is switched
to the track mode, its loop noise. bandwidth is already set
at the proper value. This not only saves acquisition time,

but also helps prevent the carrier loop from locking onto a

CW RFI component that may be close to one of the sub-
carrier sidebands but which lies further away from the
sideband than several carrier loop noise bandwidths, The
carrier loop need now only acquire phase lock. The gain
of the subcarrier tracking loop is adjusted in a similar
fashion,
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8. Phase lock is detected by a coherent carrier loop lock
indicator, and is verified by checking to see that the upper
4th order subcarrier sideband lies where it should. This
permits detection of false lock by the carrier loop on a
CW RFI component that may fall within the carrier loop
noise bandwidth but which may lie more than a few Hz
away from the particular subcarrier sideband with which
it interferes., :

9. Finally, when proper carrier lock is verified, the sub-
carrier loop may be switched to the track mode,

10. The in-lock condition is constantly monitored, so that
if the carrier or subcarrier tracking loop falls out of
lock, a reacquisition procedure may be initiated. In
particular, the subcarrier loop would be immediately
switched to the acquisition mode, since, if the carrier-
loop VCO has not drifted too far in frequency from the
frequency of the input carrier, subcarrier loop acquisi-
tion could take place rather quickly, and the carrier
loop could reacquire without having to switch out of the
track mode. Conseqguently, reacquisition could take
place in one or two seconds if the in-lock condition is
constantly monitored., This is important since it means
that the communications link would only be out of service
for a short time shculd loss of lock occur,

At the start of acquisition, switches A and B in the receiver shown
in Fig. 2,10 are in the positions indicated. The carrier loop VCXO is swept
back and forth so as to cover the input doppler range plus any small VCXO
frequency instability plus a small additional guard band range. Now if a
wideband FM signal whose subcarrier frequency is © . is present at the
input, its upper 4th and 5th order sidebands are mixed down to baseband by
the carrier loop VCXO in the acquisition RF and IF mixers. As the carrier
loop~ error frequency is reduced below about 2.00 Hz, the upper 4th and 5th
order subcarrier sidebands, phase modulated by the 100 BPS data, appear
at the outputs of their respective sideband bandpass filters. The outputs of
these sideband filters are multiplied together, and the resulting subéarrier
signal plus noise is filtered by a narrowband bandpass filter tuned to the

subcarrier frequency., The subcarrier signal is generated from the product
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of the 4th and 5th order subcarrier sidebands and their accompanying data
sidebands, The noise is generated from the product of the noises at the
outputs of the sideband filters and from the product of the subcarrier side-

. bands and noise,

The bandwidth of the sideband bandpass filters is chosen to be wide

enough to pass the 100 BPS data sidebands, yet narrow enough so that the
. product of the noises at the outputs of the filters is negligible compared to
the products of the sidebands and noise when the ratio of signal power to
noise power density in the receiver is equal to that necessary to achieve the
required BEP for the 400 BPS data. The bandwidth must also be narrow
enough so that the carrier loop error frequency is not too large when the
sweep is turned off. These requirements are satisfied at the above signal-
to-noise-power-density ratio for the 100 BPS data with a sideband filter noise
bandwidth of 600 Hz. These sideband filters are crystal filters which are
designed to provide an approximately flat amplitude and linear phase over a
400 Hz bandwidth, The skirts of the filter fall off gradually enough so Athat
the filter responds in a quasi-stationary manner to the linear sweep of the
sideband through the passband, and so that the data transitions do not cause

the filter to ring excessively.

The Subcar.riier signél at the output of the narrowband bandpass
filter following the multiplier is detected by a square law detector-lowpass
filter combination followed by a threshold detector. As the 4th and 5th order
sidebands are swept into the sideband filters, the signal output cf the narrow-
band subcarrier BPF builds ﬁp and rises above the noise level. When the
sidebands are near the center of their respective sideband filter passbands,
the output of the lowpass filter foilowing the square law detector will exceed
the threshold level of the threshold detector. The sweep rate is determined
by the bandwidth of this lowpass filter, which in turn is determined by the
requirement that signal—to?noise ratio at the output of the lowpass filter is
large énough to assure a high probability of correct detection,
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For example, if the lowpass filter is a single-pole RC filter, the

time éonstant, TLPF’ is related to the noise bandwidth of the filter, BLPF’
by ‘
=1 (2.3)
LPF 4 BLPF

If we require that the VCXO sweep rate is such that the carrier loop error _
frequency sweeps 50 Hz in a time equal to four time constants of the lowpass

filter, the sweep rate will be R = 50 B Hz/sec. If BL is 20 Hz, this

LPF
corresponds to a sweep rate of 1 kHz/sec.

PF

When the threshold detector detects the presence of the subcarrier
signal it triggers a monostable which stays on for a time long enough to
permit the sweep to move the subcarrier sidebaﬁd compdnents past the
center of the band of the sideband filters. When the monostable turns off?
the sweep is r’eversed and slowed down and the analog gate at the input to
the narrowband 4th order sideband bandpass filter is closed. This gate is
kept open during the c-oarse sweep to prevent this narrowband filtéi" from
ringing as a result of the presence of a fast sweeping signal at its input.

As the 4th order subcarrier sideband is swept into the passband of the
narrowband 4th order sidéband bandpass filter, the signal level at poiﬁt 2
will rise above the threshold level of the threshold detector.. This discon-
nects the sweep by switching the carrier loop switch A from the sweep
position to the acquisition position. The output of the narrowband 4th order
sideband BPF is hard limited and frequency divided by 4 to produce a signal
at the subcarrier frequency which is offset from the subcarrier frequency by
1/4 of the residual carrier loop error frequency. This signal is compared
with the subcarrier VCXO signal in a linear phase detector, so that the output
of the linear phase detector will be a ramp whose time derivative is proper-
tional to 1/4 of the residual carrier loop error frequency plus the subcarrierv
loop error frequency. The carrier loop is designed so that the seize fre-
quency in the acquisition mode is greater than the maximum value of the

sum of the residual carrier loop error frequency plus 4 times the subcarrier
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loop frequency error. The carrier loop then rapidly adjusts the phase of
the carrier loop VCXO so that the carrier loop frequency error is equal fo
- minus 4 times the subcarrier loop frequency error. This, however, is
very small, ‘and the 4th and 5th order sidebands will be well centered in the
passbénds of their respective sideband filters, Detection of carrier loop

frequency acquisition is made at point 3.

MeanWhile, the gains of the subcarrier and carrier tracking loops
and the subcarrier acquisition loop are adjusted by an AGC voltage derived
from the output of the lowpass filter at point 1, This adjusts the damping

factor and the noise bandwidths of these lcops to their design values,

Subcarrier loop acquisition is detected by the coherent subcarrier
loop acquisition detector at point 4. As the subcarrier loop pulls into lock,
the carrier loop frequency error goes to zero, At this time the subcarrier
loop is phase-locked, the carrier loop is frequency-locked, the AGCid
amplifiers in the carrier and subcarrier loops are adjusted to their proper
gain values, and wideband FM compression is taking place in the RF mixer
of the carrier tracking loop. The carrier loop may no§v be switched to the
tracvk mode, The carrier loop will rapidly settle to the proper phase in a
time on the order of the inverse of the carrier loop noise bandwidth. Depend-
ing on the initial phase error; the loop may slip one cycle before phase lock
is achieved. The phase lock condition is detected by the coherent carrier
loop acquisition detector at point 5. If the carrier loop locks onto the com-
pressed carrier component, the output at point 3 will remain high., On the
other hand, should the carrier loop lock onto a CW RFI component lying
within the loop noise bandwidth but several Hz away from the subcarrier
sideband with which it interferes in the RF spectrum, the signal level at
point 3 will drop, since the 4th order sideband will no longer lie where it

it supposed to be.

-%C.J. Byrne, "Properties and Design of the Phase-Controlled Oséillator
with a Sawtooth Comparator,' The Bell System Technical Journal, p. 587,
March 1962, : ’ ’ :
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If the signals at points 5 and 3 indicate that the carrier loop is
properly acquired, the subcarrier loop is switched from the acquisition to
the track mode. The in-lock condition of the subcarrier loop may be
monitored at point 4. If this signal level continues to indicate that the sub-
carfier loop is locked, the receiver is in the tfack mode, and the downlink
wideband FM signal may be transmitted, Downlink telemetry and ranging
sidetones are not transmitted until the ground receiver acquires the down-
link wideband FM signal and commands the User to transmit these signals
as PM modulation on the downlink carrier. Acquisition of the ground

receiver is described in a later section.

We now describe the sweep system in more detail so that the mean
time to acquire may be calculated. A large portion of the acqﬁisition time
is spent on the coarse and fine carrier sweep. From Fig. 2,10 it is seen
that the sweep is applied to the input of the active loop filter Fc(s). The
transfer function of this filter is |
1+7.s 7’2 .
F(8) = o = 2 4o (2. 4)

‘T’IS Tl 1

The filter behaves like a‘gain of Tz/‘r plus an ideal integrator of gain 1/‘Tl°

(This holds down to very low frequenclies at which point the active filter
behaves like a gain G, where G is the dc gain of the operational amplifier
used in the active filter,) Consequently, if a step is applied to the input of
thié filter, the output (VCXO input) would consist of a stefn of'ampli‘tude |
Tzl‘fl times the input amplitude, plus a range of slope 1/’:‘l times the input
amplitude. The ramp provides the sweep, and the amplitude of the step
controls the sweep rate. A small step .at the VCXO input may be tolerated
at the ends of the sweep which extends past where the input is known to be,
but it may present a problem when the sweep is being changed from the

coarse to the fine sweep mode. To circumvent this problem, the step is

first applied to an RC filter circuit whose time constant is equal to 1’2,
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and the output of the sw-eep generator is obtained from the voltage across.
the capacitor. This eliminates the step at the VCXO input. In additioﬁ,
the analog gaté at the input to the narrowband 4th order sideband filter is
closed slowly enough so that the sudden application of the signal does not
cause the narrowband filter to ring. In this application, the gate circuit
behaves like an AGC amplifier whose gain is increased slowly from_iero

to its final design value as the gate is closed.

A block diagram of the sweep generator is shown in Fig. 2,11,
The dperation of the sweep generatdr is as follows., When the generator
is in the coarse frequency sweep mode gates #1, 2, and 3 are all closed,
Theée are analog gates employing FET's as variable resistors. * The
output of gate #3 is connected to the carrier loop active loop filter F2(s).
The squarewave generator output consists of a balanced symmetrical

squarewave whose period is 2T The squarewave passes through

SWEEP’
gate #1 to the positive input of a differential amplifier. The squarewave
is reduced in amplitude and bassed thrbugh gate #2 to the negative input
of the differential amplifier to which a '""holding' capacitor is connected.
This capacitor has a véry short charge time when the gate is closed, and
a very long discharge time when the gate is open. Consequently, when
' the gates are closed, the output of the differential amplifier is a square-

wave whose amplitude is the difference between the squarewave ampl'itude

at the outputs of gates #1 and #2.

The output of the differential amplifier is fed into an RC filter
whose time constant, 'ro = Roco’ is equal to the time constant 1’2 of the
active loop filter. This is done so that the voltage at the input to the VCXO

will be a ramp when a step of voltage is applied at the input of this RC filter.

* : |
H.W. Ruegg, "An Integrated FET Analog Switch, PIEE, pp. 1572-1575,
December 1964. - :
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To show that this is the case, we write the product of the filter transfer

functions of the RC filter and the active loop filter as

1 (l+’rzs) (1 + ‘rzs) 1
1+7s8 =~ " *s T+t ‘r.s
(o] 1 0 1

(2.5)

_Observe that when 1;0 = T,, the product of these two transfer functions

23
is a pure integrator. Consequently, the voltage at the VCXO input will
- be a triangular wave with no voltage jumps when the loop filter is driven.

by this sweep generator.

Now, when the threshold detector at point 1 in the block diagram
of Fig. 2.10 detects the preSence'of the subcarrier signal, it triggers tWo
moncstable multivibrators. The short duration monostable stays on long
enough for the sweep circuit to sweep the subcarrier sideband components
past the center frequency of the sideband filters. If the sweep rate is
1 kHz/sec in the coarse frequency sweep mode, and if a sweep of 200 Hz
is sufficient to assure that the subcarrier sideband componehts are at least
100 Hz past the sideband filter center frequencies, the monostable period
should be 0.2 sec. At the end of this time the monostable reverts to its
OFF state. This is detected by a turn-off detector which then opens gates |
#1 and #2, The function of the long duration monostable is to prevent the
next zero crossing of the squarewave generator from closing these gates
if this zero crossing occurs in a time following the opening of these gates
which is too short to permit fine sweep acquisition to occur. This arrange-
ment makes it unnecessary to extend the periqd of the squarewave by a
time' long enough to permit fine sweep acquisition. This is also the reason
why gate #2 is used in conjunction with a holding capacitor rather than feed-
ing the reduced amplitude squarewave directly into the negative input of the

differential amplifier.
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When gates #1 and #2 are opened, the {/oltage at the output of the
differential amplifier jumps to the negative of the voltage on the holding
capacitor. This provides the voltage for the return sweep. Since this
voltage is smaller than the voltage at the output of the differential amplifier
during the coarse 'sweep mode, the return sweep will be slower, At this
time the gate at the input to the narrowband 4th order sideband filter.‘is

closed.

If the single-polé lowpass filter at point 2 in Fig, 2.10 has a
noi.se bandwidth of 20 Hz, and if we require tﬁat in 4 time constants of this
filter the return sweep travels 10 Hz, the return sweep rate must be 200Hz/
sec or 1/5 of the coarse éweep rate. Consequently, if the fine sweep must
return 200 Hz in order to 'sweep the 4th order subcarrier sideband into the
passband of the narrowband 4th order sideband béndpass filter, the fine
sweep portion of the wideband FM acquisition will last 1 second. If we
measure the start of acquisition from a zero crossing of the squarewave
generator, and if we consider the sweep range to be 8 kHz when referred

to the VHEF input, the maximum coarse frequency sweep time will be 8 sec,

When the threshold detector at point 2 in Fig., 2,10 detects the 4th
order subcarrier sideband, it opens gate #3 in the sweep generator, thereby
disconnecting the sweep, and .closes a gate which connects the carrier loop
filter to the output of the linear phase detector. The carrier loop error
frequency is now on the order of 20 Hz or less, and the subcarrier loop
error frequency is at most 3 Hz, so .that the output of the linear phase
detector, just prior to switching the loop to the acquisition mode, consists
of a ramp whose maximum time derivative corresponds to an input error
fréque_ncy of 1/4 the carrier loop error irequency plus the subcarrier loop
error frequency, or about 8 Hz. The carrier loop can lock on to this signal -

very rapidly as we shall now show.
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‘We choose the gain of the acquisition loop so that the damping factor
is T = 1 (critical damping). This is done by adjusting the gain of the linear
phase detector. The loop noise bandwidth now is 15 Hz. The response of the

: *
carrier loop phase error to a step in the phase input is in this case

o (1) = A0, e (1-x) | . (2.8)
ce i : .
where '
, 2 2t |
X = Cwnt =2¢7t/ T, = ", . : (2.7)

The responsé to a step in input frequency is simply the integral of this,

or
X T
| Gce(t) = Awi fo e—X(lfx) dx(r~§-> (2.8)
; Awi<_2—%> xe * (2.9)

The response to the sum of these inputs is then simply

s -
_ . =X 2 -X _
Ouelt) = A0, €™ (1-x) + Aw (=) xe (2.10)

. _
(We neglect the small residual phase error required to maintain frequency
lock on the input frequency offset.) This may be rewritten as
T

" (4"; - Ae (Ez_»m-x - (2.11)

= AfH -
9ce( t) ei e

'FC.J.. Byrne, '"Properties and Design of the Phase Controlled Oscillator
with a Sawtooth Comparator, " BSTJ,. p. 578, March 1962.
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Note that the initial slope of the response is

. + 2 T \)
ch(t =0 ) = %—2— —Aei - (ABi - Awi<-2—>/ (2.12)

which must be negative if Aei is > 0 and positive if Aei is < 0 in order that

the loop not slip a cycle. The requirement on Awi is

4A6.
]

s

IAwiI < (2.13)

Since the maximum initial phase jump is =, the requirement on Af is
' , i

2 . .
|af | <= - (2.14)
1 T
2
With Ty = 1/12 sec (see Appendix D) this frequency, known as the ''seize'

frequency, is 24 Hz, This is about 3 times as large as the maximum fre-

quency offset that we are likely to encounter.

The carrier loop may be considered to be acquired when x =5,
Thus, from Eq. (2.7), the acquisition time is

- 57
t = ——2—-2- Z 0,20 sec (2.15)

acq.

| During the time that this acquisition is taking place, the subcarrier
loop is acquiring lock on the subcarrier signal at the output of the multiplier.
The dc amplifier in the subcarrier loop is adjusted by the AGC circuit so
that the damping coefficient is 2 (overdamped). In this case, the loop noise
bandwidth is 2. 84 Hz., This is approximately equal to the maximum sub-
carrier loop error frequency. In this situation the subcarrier loop should

lock .up without slipping cycles in a time on the order of l/con sec.

44



Since l/mn is given by

Ta

2L

n = “acqg.

(2.16)

1.
w

for a second order loop with an active filter, and since 7, is determined by

2

track mode considerations (¢ = 1//2 and B. = 0,5 Hz in the track rriode),

L
~and is related to the loop noise bandwidth and the damping coefficient by

fz : )
7= — track =, . 1 - =1,5 sec (2.17)
2 (B.) ar?
L track track

the subcarrier loop acquisition takes place in about

:"l—n =%—‘;—(—g =~ 0.4 sec | (2.18)‘

The subcarrier loop acquisition is detected by the coherent sub-
carrier loop acquisition detector which employs a lowpass filter héving a
noise bandwidth of 1.0 Hz. If this is a single pole filter, it responds in
about 1 second, This is the same time that it takes to detect carrier loop
frequency acquisition at point 3. When carrier frequency acqu}iéition'_elrld_
subcarrier phase acquisition are detected, the carrier loop is switched to
the track .mode. The carrier loop gain is already adjusted to its propér
value by the AGC circuit. Since the carrier loop is already frequency
acquired, it need only adjust its phase. This phase acquisition occurs on
the order of llwn sec or approximatély 0,06 sec. Phase acquisition is
detected by a coherent cophasal phase detector as indicated in Fig. 2.10.
This takes another 0,2 sec. If the carrier loop locks onto the compressed
carrier and not onto some CW interference component that lies inside the -
loop noise bandwidth, there will be a signal output at point 6. It takes 0.2
sec to observe a loss of output at this point, This detection occurs simulta-

neously with carrier loop acquisition detection. If this output indicates
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proper carrier loop lock, the subcarrier loop may be switched to the tréck
mode. The outputs at points 5 and 6 may be monitored to make certain that

the loops remain in lock.

The various times contributing to the total acquisition time are

summarized in Table 2.2.

Table 2,2

User Receiver Compound PLL Acquisition Time

Acquisition Function '.Maximum Time (sec)
1. Coarse Frequency Sweep ’ 8.0
2. Fine Frequency Sweep 1.0
3. Carrier Loop Frequency Acquisition 0.2
4., Subcarrier Loop Acquisition 0.4
5, Carrier and Subcarrier Loop

Acquisition Detection {(Simultaneous) 1.0
6. Carrier Loop Acquisition in ‘
Track Mode 0.1 (upper bound)

7. Carrier Loop Acquisition Detection
and Verification (Simultaneous) 0.2

8. Verification of Subcarrier Loop
Acquisition in Track Mode 0.2

Total Maximum Acquisition Time 11.1 sec
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The largest contribution to the acquisition time is the coarse
frequency sweep. If this can be speeded up by sweeping at 1. 2 kHz/sec
rather than at 1.0 kHz/sec, the acquisition time can be reduced below

10 seconds,

When the compound PLL is properly locked, AGC control ié
obtained from the coherent carriei" loop lock detector rather than from the
subcarrier signal at the output of the sideband multiplier in the acquisition
aid portion of the receiver, This is done so that the loops will have the '
proper AGC control voltages on their gain-controlled amplifiers in the event
that the 400 BPS data is switched on, The output of the coherent carrier
loop lock detector is lowpass filtered by a filter having a nbise bandwidth
on the order of 0.1 Hz in obtaining the AGC control Voltage. This is done
'so that if the loops should fall out of lock while the 400 BPS da}:a was on,
reacquistion could take place with the gain—‘c.ontrolled amplifiers set to their
proper gain levels, Should reacquisition fail to take place as a result of the
lower SNR into the subcarrier acquisition loop during transmission of the
400 BPS data, this fact could be made known to the ground by an emergency
telemetry signal which would be transmitted by the User in the event that
reacquisition failed to occur within some short time after loss of lock,
say 2 seconds. In this event, the ground would have to cease transmission
of the 400 BPS data in order to permit this User to reacquire, With a
properly designed system, such loss of lock situations should occur with
very low probability so that interruption of the 400 BPS data by such a loss.

of lock situation will be rare.

2,5.4  The Ranging Sidetone Turnaround Channel

The functions of the ranging sidetone turnaround channel are:

1, To filter the ranging sidetones so as to remove as much
noise, multipath, and RFI as possible while still preserv-
ing the relative phasing of these sidetones,

2. To amplify the sidetones to their proper level for phase
- modulation of the downlink carrier,
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3. To detect when an excessive noise or RFI condition exists
at the outputs of the ranging sidetone filters such that
either excessive noise loading of the downlink carrier or
insufficient SNR in the range tone demodulator would occur,

4. To disconnect the AR sidetones from the downlink demodu-
lator when this condition exists at the output of the AR
sidetone filter, and to disconnect all sidetones from the
demodulator when this condition exists at the output of the
fine range tone filter.

A block diagram of the ranging sidetone turnaround channel is shown
in Fig, 2.12, After bandpass filtering and amplification to the proper signal
level for PM modulation of the downlink carrier, the outputs of the fine range
tone amplifier and the ambiguity range tone amplifier are square law detected
and lowpass filtered by a IVery narrowband lowpass filter, As the noise level
or the level of RFI in the outputs of these amplifiers rises, this is detected
by the square vlaw detector. The gainbof the analog gate circuits at the output
of these amplifiers is reduced from unity gain so that excessive noise loading
of the downlink carrier does not occur. If the gain is reduced too 4much,
however, the signal level in the range tone demodulator will be insufficient
to permit proper range tone extraction, When this occurs there is no need
to transmit the range tones on the downlink., Consequently, the analog gates
are opened when the Schmitt triggers detect that the noise or interference
levels have reached this point. Because of the much wider bandwidth of the
AR sidetone filter, there is more chance that RFI may be present at the
output of this filter than at the output of the fine range tone filter., However,
the gain of the analog gate for the AR sidetones may be reduced by as much
as a factor of 4 ‘before the probability of AR tone extraction errors rise
noticeably. The gain of the analog gate for the fine range tone cannot be
reduced very much before the signal level of the fine range tone falls below
threshold. - However, because of the much narrower bandwidth of the fine
range tone filter, the power density level of the RFI can increase to a much
higher level than it can in the AR sidetone filter before it becomes necessary

to reduce the gain of the analog gate below the threshold level, When threshold
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is reached at the output of the fine range tone tilter, both the fine range tone
and the AR sidetone analog gates are opened. Since AR demodulation cannbt
take place on the ground when the fine range tone is not transmitted on the

downlink, there is no reason to transmit the AR sidetones under this condi-

tion,

The Schmitt trigger has a built-in hysteresis whose value is set so
that when the gates are opened again the noise or RFI level will have been
reduced by an amount sufficient to assure that ranging measurements can be

made for a time long enough to obtain sufficient range data.

Alternate range tone schemes which reduce the problem of excessive
noise loading of the downlink carrier as a resuit of noise and RFI turnaround

are described briefly in Appendix D.

2.5.5 User Transponder Transmitter

Since as many as 30 Users may be transmitting simultaneously on
the downlink, it is necessary to be able to distinguish between these various
Users. This is done by assigning each User a unique wideband FM sﬁb—

- carrier frequency and carrier band. With 10 primary subcarrier frequencies
and 3 carrier bands, 30 Users may be aécommodated. With 10 additional
auxiliary subcarrier frequencies, the number of simultaneous Users could

<
be increased to 60,

The primary subcarrier frequencies are separated by 3.2 kHz, and
the carrier bands by 3.2 x 8 = 25, 6 kHz, The auxiliary subcarrier fre-
quencies are interleaved between the primary subcarrier frequencies, All
subcarriers and the 25, 6 kHz carrier band separation frequency are derived
from a 128 kHz crystal oscillator, This permits the effects of the local
oscillator to be removed in the DAF doppler extractor as will be shown in
Sec. 2,6.4. A convenient way to gene'ra_‘te the subcarrier frequencies is

~shown in Fig. 2,13, In practice, a User would only be required to generate

one primary subcarrier frequency and the adjacent auxiliary frequency,
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The block diagram in Fig. 2,13 shows how any of the frequencies listed in
Table 2.3 below can be generated. If a User were assigned a frequency of
118. 4 kHz, for example, only the circuitry shown.in bold lines in Fig. 2,13

would be used in this User's transponder.

Table 2.3

Downlink Subcarrier Frequencies

Primary Auxiliary

(kHz) - (kHz)
112,0 ' 110.4
115. 2 113.6
118.4 116. 8
121. 6 120.0
124.8 123.2
128. 0 | 126. 4
131.2 - 129. 6
134.4 ' 132, 8
137. 6 136.0
140.8 139. 2

The User transponder uses a turnaround ratio of 23/25 = 0.92,

This ratio was chosen because:

1, It is very close to the desired ratio of
137/148.95 = 0.9197717355, and

2. It is a very convenient ratio to use.

With an uplink frequency of 148.9255 MHz, the downlink frequency
will be 137.01146 MHz, Both are sufficiently close to the desired center

band frequencies so as to cause no problem in that regard.
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As in the DAF transmitter, the PM modulation of the downlink

carrier by the filtered ranging sidetones and the telemetry data, and the

‘wideband FM modulation by the subcarrier are pérformed in separate '

channels, The outputs of these channels are mixed in an output mixer
which combines the modulations and achieves the desired downlink VHF

carrier frequency.

The "divide-by-25'" is achieved in the User transponder receiver
by using a "long loop" carrier tracking PLL as shown in Fig. 2.9.in which
the multiplier following the PM modulator multiplies the PM modulated VCO
signal by 24. In this way the VCO frequency will be 1/25 of the input carrier

frequency.

The "multiply-by-23" is achieved in the User transponder trans-
mitter by using the fact that 23 = 48-25, so that a mixing operation can be
utilized in which two separate signals from two multiplier-modulation
chains are mixed together to form the desired output multiplication factor.
As in the DAF transmitter, the PM modulator is followed by a multiply-by-48
multiplication‘chain as shown in Fig, 2,14, The factor of 25 is obtained by
utilizing the fact that 25 =24+ 1 =8 x (3 + -El-;-). The coherent FM modulator

is a phase-locked loop similar to thai used in the DAF transmitter.

The carrier band may either be selected in accordance with instruc-
tions froxh the DAF or else simply designed into the transponder. The
center band involves nothing more than a simple turnaround as described
above. The two outer bands, one on either side of the carrier, are obtained
by adding or subtracting 3.2 kHz to the frequency at the output of the divide-
by-eight frequency divider as shown in Fig., 2,14. The frequency multiply-
by-eight of the coherent FM modulator VCO signal increases the carrier

band separation to 25. 6 kHz.
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2.5,6 Handover |

Two types of handover operations need be considered. These are
1) TDRS handover on the uplink and 2) SSMA channel handover on the down-
link. TDRS handover occurs when it is desired to have a partlcular User
cease tracking the signal from one TDRS and commence tracking the signal
from another TDRS. SSMA channel handover occurs when it is desired to

switch the User transmitter from one downlink channel to another.

Varlous options of differing degrees of complex1ty are possible
1nsofar as TDRS handover operation is concerned. The simplest of these is
to permit a User to receive from only one TDRS. This means that this User
has the capability of receiving only the uplink signal which is wideband PM
modulated with the subcarrier having the particular subcarrier frequency

that his receiver is designed to acquire and track.

If the User is to receive signals from more than one TDRS, his
receiver must be modified from the simple receiver design shown in
Fig. 2,10. Two levels of complexity are possible for the case of multiple
TDRS reception capability., The next simplest receiver utilizes a single
carrier loop, a multiple frequency subcarrier loop and multiple acquisition
aids as indicated in Fig. 2.15, which shows a receiver capable of sequen- '
tially receiving signals from two relay satellites., To understand the opera-
tion of this receiver, assume that the User is tracking the TDRS signal

having subcarrier frequency f In this case the subcarrier bandpass

scl” -
filter switch, the VCXO switch, the feedback switch, and the acquisition
aid switch are all set to the state which passes the signals which correspond

to the subcarrier at frequency f . The subcarrier loop mode switch is in

, scl.
the track position. If the DAF desires to switch the User from TDRS #1 to

TDRS #2, it sends the appropriate command to the User via TDRS #1, Upon
reception of this command, the User-control switches all the above switches

to the state which passes the signals corresponding to the sub_carrier at
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frequency fch’ and switches the subcarrier loop mode switch to the V
acquisition position and initiates carrier loop sweeps. The receiver then
acquires the signal from TDRS #2 as desci‘ibed in the section on acquisi-

tion. The switches are not shown in Fig. 2,15,

The box labeled ”wsc ACQ. AID" in Fig. 2,15 consists of thé 4th
and 5th order subcarrier sideband bandpa'sfs filters, the multiplier, the,
subcarrier sigrial bandpassb filter, and the narrowband 4th order sideband
BPF and its gate. The box labeled "VCXO wsc” in Fig. 2,15 consists of
the subcarrier VCXO, the 90° phase shifter, and the frequency multiply-
by-4. Refer to Fig. 2.10 for comparison.

If signals are to be sequentially received from moire than two
relay satellites, the User receiver is simply modified by adding additional
acquisition aids, sub‘-carrier loop VCXO's, and subcarrier bandpass filters.
Additional transmission gate switches are simply added to accommodate the

additional subcarrier frequencies,

The next level of complexity utilizes a separate receiver for each
TDRS, but only a single transmitter. The User continuélly tracks the sig-
nals from all relay satellites in its Qiew, but transmits the turﬁed around
carrier and ranging sidetones from only one receiver at a time in accor-
dance with command instructions from the DAF. This p'ermits more
‘rapid sequential range and range rate measurements to be made to different

relay satellites than is possible in the previous case,

Finablly, the highest level of complexity utilizes essentially a
separate complete transponder for each TDRS. The transmitter in each

transponder uses a different downlink channel, This permits simultaneous

rangiﬁg through several relay satellites,

SSMA channel handox}er{_is. requirfé‘d when there are more Users
than available channels but not all Users are in view simultaneously.

In SSMA channel handover, the probiem is to switch the User from its
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present downlink channel, defined by its downlink subcarrier frequency
and carrier band, to an unoccupied channel which the User has the capa-
bility of utilizing. The assignment of downlink channel capability to the
various classes of Users and the procedure for distributing the Users
among the various downlink channels so as to minimize the frecjuency of
channel handover is an operational problem that can only be attacked when
the communications requirements of each class of User, their number,
and their orbital configurations are known. The capability that some
Users will have of utilizing one of several different dowhlink channels
permits this operational problem to be solved in a reasonably efficient

and flexible manner,

The simplest level of User complexity provides the User with the
capability of using only the center downlink carrier band and a single
primary downlink subcarrier frequency. This User must switch to his
auxiliary subcarrier frequency when another User must use this channel,

or else must simply turn off his transmitter.

‘The next level of User complexity provides the User either with
the capability of using all downlink carrier bands but only one downlink
primary subcarrier frequency, or of using only the center downlink

carrier band but several downlink primary subcarrier frequencies.

The highest level of User complexity provides the User with the
‘capability of using all downlink carrier bands and several primary sub-

carrier frequencies,

The subcarrier generation technique and the carrier band selec-
tion technique were described in Sec. 2,5.5 and illustrated in Figs,
2.13 and 2,14, Transmission gate switches, controlled by the User-
control, switch the User transponder transmitter to the downlink carrier

band and subcarrier frequency ¢commanded by the DAF,
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2,6 " DAF Receiving System
2.6.1 Functions |
The DAF receiving systern must perform the following functions:
1) Coherent translation of the downlink TDRS
X-band signal to VHF,

2) Acquisition of the VHF wideband FM signal.

3) Coherent carrier tracking and phase demodu-
lation of the VHF wideband FM signal by a
compound PLIL,

4) Extraction of the downlink telemetry.

5) Extraction of the range tones and range
measurement.

6) Extraction of the two-way VHF carrier
doppler and range rate measurement.

A functional block diagram of the DAF receiving system is

shown in Flg 2,16,

2.6.2 DAF Compound PLL Receiver

A block diagram of the DAF reoeiver compound PLJIL. is shown
in Fig. 2,17, This particular receiver receives the signal on the down?
link channel correspondlng to the downlink subcarrier frequency f sc
and the downlink carrler frequency f In general, fc may be written
as (23/25)fc + kAf, where k is elther -1, 0, or +1, depending on which
downlink carrier band is involved, and Af is 25,6 kHHz, The above
- frequencies are nominal frequencies and don't include the VHF doppler

offset.

A comparlson of this receiver with the User transponder receiver
reveals that the structure of the compound PLL in the two receivers is
1dent1cal For the 51tuat1on where k ?‘ 0, i.e,, the downlink carrier band
involved is not the center band, it is necessary to derive the carrier offset

frequency Af from the subcarrier tracking loop VCXO frequency, This is
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so because the two frequencies are coherently related, both having been
generated in the User transponder from the common 128 kHz crystal
oscillator. The simplest way to do this_ is to use a subcarrier-loop VCXO
- whose frequency is 128 kHz followed by a frequency Synthesiz'ér which
'generates the frequency 25. 6 kIllz and the subcarrier frequency f;,c in

the manner indicated in Fig. 2.13.

Acquisition is very similar to that of the Usef transponder
except that data is not transmitted on the downlink during acguisition,
Since the power that would have been robbed from the subcarrier side-
band éomponents by the data is now back in the subcarrier sidebands, the
sideband filters in the acquisition aid can be narrowed to about 200 Hz,
thereby helping to provide some discrimination against SSMA interference,
The lowpass filter at the outpﬁt of the square law detector at point 1 in
the block diagram of Fig. 2.17 may be widened as a consequence of the
higher downlink signal-to-noise power density ratio (required by proper
demodulation of the 1000 BPS data). This means that the sweep fate may
- be essentially doubled in the coarse frequency sweep mode, Since the
sweep range is essentially twice that of the uplink, the coarse frequency
sweep time should be essentially the same as for the User receiver,. 4
The fine swéep time should be essentially the same as for the uplink case,
as should the other acquisition times, so that the total acquisition time

for the downlink should be about 10 seconds as in the uplink,

Range tone extraction may now be performed with the downlink
telemetry data still not turned on. " This means that the range tones may
be acquired more rapidly and with less probability of error than if the

data were present,

The receiver shown in Fig. 2.17 is capable of receiving the
downlink signal from a single downlink channel. It would be desirable
to design the receiver to be able to receive either the primary or

corresponding auxiliary subcarrier frequency and with any of the three
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carrier bandé. In this way a User could be commanded to switch his
downlink signal between any of these chaﬁnels, in order to avoid an SSMA
problem for example, and the same receiver could be used to track the

. signal. For the two subcarrier frequencies, the receiver would be modi-
fied as in Fig. 2.15. For the three carrier bands, the VCXO in the
carrier loop could simply be desig'ned to run at the center band freciu‘ency
and could be pulled into either the upper or the lower.carrier bands.
During coarse frequency acquisition this is accomplished by applying a
postix}e or negative dc voltage to the input of the loop filter for a preset
time sufficient to drive the VCXO to the center frequency of either the
upper or the lower carrier band. The sweep generator thén sweeps fhe
VCXO over the range of input doppler in that band. If the VCXO is in the
center of the band when the sweep is applied, care must be taken not to
sweep the VCXO out of the band. This means that the first sweep should
sweep the VCXO only to the edge of the band with subsequent sweeps
moving the VCXO back across the band. To prevent the VCXO from
sweeping too far, or not far enough, ‘the voltage on the VCXO may be
monitored and compared to reference voltages which represent the desir_ed
‘end points of the sweep in each direction. During the search mode, the |
sweep can be controlled so as to sweep Between these 'desired end points.

Similar remarks apply to the sweep generator in the User transponder,

With these minor modifications, the receiver is capable of
receiving a signal from any one of three primary channels and three.
auxiliary channels corresponding tc; a single primary subcarrier fre-
quency with any of the three carrier bands and its associated auxiliary '

subcarrier frequency with any of the three carrier bands.
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2.6.3 ~ Range Tone Extraction and Range Measurement

A block diagram of the range tone extractor is shown in Fig. 2,18,
A phase-locked loop is used to track the fine range tone. The fine range
tone VCXO signal is then used to coherently defnodulat_e the other ranging
sidetones as indicated. A bandpass filter centered at 96 kHz ensures that
noise and interference centered around the missing upper sideband fre~
quency of 108, 8 kHz does not appear at the output 6f the first coherent
detector. The fine range tone VCXO signal is frequency divided by 16
and compared in phase with the coherently detected 6.4 kHz range tone,
Logic circuitry determines whether to advance or retard the divide-by-16

counter, This process continues until the coarse range tone is acquired.

The fine range is measured by comparing the phase of the
received fine range tone VCXO signal with that of the fine range tone from
the DAY clock and frequency synthesizer. A digital phasemeter of 9 bit

accuracy is required in this phase measurement,

Coarse range is measured by simply subtracting the contents of
the divide~by-16 counter in the DAF range tone generator from the con-
tents of the'divide-v-by—lﬁ counters in the DAF range tone extractor, The
simplicity of this range'extraction technique is one of the advantages of

this ranging systemf

2.6, 4 Doppler Extraction and Range Rate Measurement

Range rate is determined by meas‘uring the two-way VHF carrier
doppler contained in the DAF receiver carrier-tracking loop VCO fre-
quency. The function of the doppler extractor is to e}itract this doppler
from the VCO frequency and add_ it to a convenient bias frequency. The
range rate measurement unit then measures this doppler plus bias
frequency, and determines the range rate. Any X-band doppler between
the DAF and the TDRS is assumed to have been removed prior to the DAF

VHF receiver.
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The DAF receiver carrier loop VCO frequency, including doppler,

is

=

t ..

c 1 23 . 23 .

Z e—— = e—— pumShai {- e - a9

fvco "3 725 {(25 ) f + kaf(1-7)) (25 >fc27'd} (2.19)

where ‘i:d is the dopplér factor Vd /c. The doppler extractor must remove

the carrier band offset frequency term kAf(1-7T ) and the downlink center

d
band carrier frequency term (—g—g—) fc, and must add an appropriate bias

frequency. How this is done is shown in Fig, 2,109,

The carrier loop VCO frequency is mixed with the frequency
(23_/25)6’1‘0 in mixer #1. This serves to remove the center band carrier
frequency term and add an intermediate bias frequency, To see how this
comes about, recall that the uplink carrier frequency is fc = 149 fo
=150f -f =25(6f -f /25). Consequently, 6f isf [/25+ f [25, The
: o o o o© o ¢ o]
multiplication of the frequency Gfo by the transponder turnaround ratio

23/25 yields the frequency

1§23 23 } |
25{25 TR (2.20)
This is seen to be the sum of the center band carrier frequency term

which must be removed from the carrier loop VCO plus an intermediate

bias frequency. The difference frequency at the output of mixer #1 is

1 23 . }
25 f 2'rd _ (2.21)

23 .
{25 £, - KAKL=F )+ 255

This frequency is then multiplied by 25 to yield

23 .
%5 f0 - _kAf(l-'rd) +

25 fc 2rd '
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The carrier offset term is removed by first mixing the frequency
f0/2 with the frequency Af(1- :r'd) obtained from the subcarrier loop in the

“carrier band selector mixer to produce the frequency

=+,

(2.23)

Mo

’

and then mixing this in mixer #2 with the frequency at the output of the

multiply~by-25 to obtain

f .
23 21, , 23 :
+22f 27 = 221
25 'c?Ta 50T e L 2 Ty (2.24)

The frequency (21/50) fo 'is the final bias frequency at 419,79 kHz,

The range rate measurement is made with an N-counter System
which measures the time required to accumulate N cycles of the doppler
plus bias frequency. The clock frequency used in the N-counter range
rate measurement system is 24 fo ~ 24 MHz, This frequency is both
simple to generate, and ensures that the rms quantization error in the
range rate measurement is much less than the permissible rms range

rate error.

The N-counter range rate measurement system shown in Fig, 2,19
s enabled by the DAF. The first positive-going zero crossing of the
doppler plus bias signal enables the time measurement counter which
counts cycleé of the clock frequency at 24 fo. When N-cycles of doppler
plus bias are counted, the time measurement counter is disabled. The
range rate is computed from the measured number of cycles of clock

counted during the time required to accumulate N-cycles of dOpplér plus

bias,
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3. APPROACH TO PERFORMANCE EVALUATION

-

3.1 Disturbances

Any TDRS multiple-access system will be subjected to a variety

of disturbances and interference threlats. These include:

a)

b)

c)

4

Additive Random Noise received from radiating noise
sources such as the galactic plane, or generated in-
the receiver itself, '

CW Interference received from terrestrial radiating

sources, By CW is meant any interference signal
consisting exclusively of discrete spectral compo-
nents, i.e., perfectly periodic signal.

Narrowband RFI received from terrestrial radiating

sources. This category is meant to include signals
modulated by intelligence, such as voice-modulated
or data-modulated signals. The term narrowband is
relative to the spread-spectrum (2 MHz wide) of the
TDRS signal. This RFI bandwidth is typically 10-20
kHz. Narrowband RFI is to be distinguished from
CW RFI in that its spectrum does not consist exclu-
sively of discrete components, but rather contains
substantial amounts of continuous-spectrum com-
ponents arising from nonperiodic signal components.

SSMA Interference, This is interference resulting

from the use of Spread-Spectrum Multiple-Access
techniques. At the User receiver, this interference
results from the presence in the same band as the
desired relay satellite signal of signals from other
(undesired) relay satellites. At the relay satellite
receiver, and hence at the ground receiver, this
interference results from the presence in the same
band as the desired User signal of signals from other
(undesired) User spacecraft.
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e) Multipath Interference arising from signal reflections
off the earth's surface. This includes both specular
and diffuse components, depending on the roughness
and physics of the reflecting surface and the parameters
of the TDRS-earth-User geometry,

The effects of each of these disturbances on the wideband FM
system are analyzed in succeeding chapters, in terms of the basic

communications functions performed by the system.

3.2 - Basic System Functions

In order for the system to satisfactorily perform its intended
functions of communications and tracking, it must successfully accom-
plish a set of more basic functions peculiar to the wideband-FM concept.

The most important of these are:

a) Signal Acquisition including the locking of the various
control loops and initiation of tracking and data extrac-
tion functions.,

b) Compound PLI: Tracking involving the tracking of both
carrier and subcarrier with acceptably small phase
‘errors. - '

c) Data Demodulation - the extraction of data-carrying
waveforms with sufficient fidelity to permit bit
detection, and bit and frame synchronization.

d) Ranging Sidetone Turnaround by the User transponder
without undue degradation,

e) Ranging Sidetone Demodulation by the grou’nd receiver,
with sufficiently low phase errors to permit accurate
ranging.

f) Doppler Extraction at the ground receiver, again with
sufficiently low phase errors to permlt accurate range
rate measurement.,

The effect of each disturbance type on each of these basic system

functions is analyzed in the appropriate chapter in this report.
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3.3 Performance Evaluation

The performance of the wideband FM technique in the presence
of various disturbances is more difficult to evaluate analytically than other
spread-spectrum techniques, such as the pseudo-noise technique. This
is because the technique is not "uniformly" susceptible to most disturb-
ances: the efffects of a disturbance are usually negligible over large
segments of the range of variation of its parameters, and significant only
over a small segment of the range. Thus the significant disturbance
effects do not accumulate to degrade systeni performance except in the
relatively rare occasions when the respective disturbances simultanéously

fall within the "worst case' regions of their parameters.

Instead of attempting to determine the combinations of signal and
disturbance radiation conditions that would yield significant system
degradation, an unnecessarily cumbersome and speculative process at
best, we chose a parametric approach.to performance evaluation. FEach
disturbance is treated separately in terms of each of the basic system
functions listed in Sec, 3.2, and the ranges of disturbance parameters

that would impair the function were determined.

From this treatment emerged the particular function most
vulnerable to the particular disturbance. This then set the ""threshold™
values of the disturbance parameters that could Be tolerated in the worst
case, Generally speaking, these worst case disturbance conditions did
not occur simultaneously, so that the consideration of one disturbange at

a time was justified as a meaningful evaluation procedure,
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4. ADDITIVE RANDOM NOISE EFFECTS

4,1 Introduction

The function of a noise analysis of the TDRS wideband FM system
is to 1) determine which of the various system functions: compound PLL
acquisition and tracking, data demodulation, ranging, and range-rate
measurément is the limiting factor in the determination of the required
system signal to noise power density level on the uplink and the downlink,
‘and 2) detérmine what modifications may be made in either the signal format

or the receiver design to improve system performance.

The uplink is considered first. Uplink compound PLL tracking
and command data demodulation depend only on the received uplink signal
power and uplink noise power dénsity. Range and range-rate measurements
are made on the ground, and consequently both uplink and downlink received
signal powers and noise power densitites enter into the computations. This
requires a judicious apportionment of the uplink and downlink powers in the

computation,

4.2 Uplink Analysis

The received wideband FM signal on the uplink may be written as

eu(t} = fzsu sin{wcut + _ch(t) + §sin [wsut + esu(t)]+d>mu(t)}

(4.1)
where
S © is the received uplink power

W is the uplink VHF carrier frequency (rad/sec)
cu
| is the carrier phase which contains the uplink VHF doppler

cu and doppler dynamics

o . is the wideband FM subcarrier modulation index, and is
equal to 5. 52 '
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w is the uplink subcarrier frequency (rad/sec) which is used
to distinguish the particular TDRS

.9 is the subcarrier phase which contains the uplink subcarrier
doppler and doppler dynamics

$ (t) is the uplink PM modulating signal consisting of split-phase
command data Bxu(t) and ranging sidetones

p,sin [wlt + 6 l(t):] * pycos [f“l'“é)‘t + 6 1(t) -0 2(t):‘

,+ 20, (Sin [wBt + 0 3(1:)] + sin [w4t + 94(t)] )
cos [(wl-wz)t + (1) - 02(t)] . |

The data phase deviation 8 is 1 radian. The phase deviation of the
fine range tone, Py is 0. 5 radians. The phase dev1at10ns P, and Py are to
be determined from the noise analysis, but they are presumed to be less

than pl.

With the compound PLL in the track mode, the equiﬁralent wideband
FM reference signal which effectively multiplies the received signal may be
written as - :
: eref(t)?\fé_ cos o t+ écu(t) + 6 sin [wSut + asu(t)] $ (4.2)

where

~

6 (t) and 9 (t) are estimates of 8 (t) and 6 (t).
cu su , cu su

If white Gaussian noise of single- s1ded noise power density N is
also present at the input, the output of the carrier loop phase detector is,

in normahzed form,
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ePD(t)‘= sing.e Cu(t) - ecu(t) + §sin [wsut +0 Su(t)J

- &sin [@sut " 6su(t)] * d)mu(t) %

+ Gaussian white noise of single-sided power density -Nu/Su_ (4.3)
This output may be expanded and renormalized as

sinze () - & (t)+ 6sin [w t+ 0 (t)] - 6sin[w t+ 6 (t):”
cu cu v Su su . su sSu

‘Fcosie (t) - 6 (t)+6sin|'w t+ 6 (t)]
. cu cu . su su

- bsin [wsut + 0 su(t)]%[tanﬁxu(t) * p,sin [colt + 6 111(t)]
+ bzcos[:gml-w2)'t +0, (1) - qu(t)] + 2PA(sin[w3t + o 3u(t)]

+ si t+ - +6 -
+ sin [w4- 94u(t)])cos [(wl @)t lu(t) qu(t)]]
+ Gaussian white noise of single-sided power density Nu/Squ1

where . 2J1('pR)

M =cosd_ (t) andp, == . p
u mu R J () R for Py < 0. 5. (4. 4)

The first term in Eq. (4. 4) is the compound PLL tracking error.
The second term represents the data and ranging sidetones which are
suppressed slightly by the fact that there are carrier and subcarrier loop

tracking errors. The third term is the Gaussian white noise of single-sided
2 .

i density N /S M"™,
noise power density u/ My
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4,2.1 Compound PLL Tracking Threshold _

The valué of the ratio SuMlzz/Nu required for the compound PLL to
operate approximately as linear independent carrier and subcarrier loops in
the presence of worst-case doppler dynamics is computed in Appendix A. The
carrier loop presents the more severe problem as a result of the wider
loop noise bandwidth required to track the worst-case carrier doppler
dynamics. The results of the analysis conducted in Appendix A are summar'-'

jzed in Table 4. 1,

Table 4.1

Compound PLL Parameters

Quantity ' Value - Significance
. . 2 >.
[6 Cu(t)] 30.rad/sec worst-case carrier
maximum doppler dynamics

(B ) : 9 Hz :
cu . . .
optimum optimum carrier loop
) ‘ noise bandwidth

: o : _
(&hreshold)cu = (SuMu/l\El) 462 . corresponds to a peak
’ carrier loop phase
‘error of 30°
(B u) ~0.5 Hz optimum subcarrier
optimum loop noise bandwidth
2 o ,
cuent ' 8 : carrier loop rms phase
Y threshold noise error at threshold

16



4,.2.2 Data Demodulator Threshold

If the carrier and subcarrier loop phase errors are small, their
effects on slight suppression of the PM modulation may be néglected. In

this case the results of Appendix C may be applied with g = Ttang

1 - :
02 ) NuT/Sumi’ so that the condition for achieving the required BEP
becomes
Ttan23 'p = 15. 85 (4. 5)
threshold <u

With B= 1 radian and T = 2.5 x 107 sec (400 BPS data), the value of

(pthreSh()ld)Xu is 2600. This is siénificéntly larger than the threshold of
linear operation of the compound PLL, and in fact will turn out to be the

determining factor in_'setting the uplink signal-to-noise power density ratio.

For the 100 BPS data the value of (p is 650, which

v threshold>Xu
is just slightly higher than the threshold of linear operation of the compound

PLL.

4.2.3 Ranging Sidetone Turnaround

The fine range tone at @ and the ambiguity resolution sidetones

clustered around (wl— wz) are bandpass filtered as indicated in Fig. 4.1,

|

95.6 96 964 102.4

S R

R-7188

Fig; 4,1 Bandpass Fi‘ltering of Ranging Sidetones
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The noise bandwidth of the fine range tone filler may be on the
order of 200 Hz, whereas the noise bandwidth of the ambiguity resolution

sidetone filter is on the order of 2000 Hz.

~ The filtered sidetones phase modulate the downlink carrier with
approximately the same deviations as on the uplink. As will be shown, it is
more advantageous to use a larger phase deviation for the ambiguity resolv-
ing tones on the uplink than oh the downlink, Noise which is contained ih
these filter bandwidths also phase modulates the downlink modulation. The
modulation suppression caused by the retransmitted noise will now be eval-

uated.

The noise in these filter bandwidths is considered to be divided
into noises whose spectral components lie within several Hz of each
ranging sidetone, plus the remaining noise. That is, the total noise passed

by the filters, nF(t); is written as

nF(t) n(t)+n (t)+n(t)+n(t)+n(t)+n(t)+n(t)+ AR()

(4. 6)
where n (t) is the noise whose spectral components lie Wlthm several

Hz of the f1ne range tone, and an

fine range tone bandpass filter. Similar definitions apply to the other noises

(t) is the remaining noise passed by the

in Eq. (4.6). The single-sided noise power density oan(t) is

N/SMz
u u

The downlink transmitted signal is of the form

- : . \23/ " . . »
' eT(t) = ’2ST smg—z-s‘(wcut + ch(t))+ kAwt + §sin| wsdt] + Bxd(t)
+ plsin(w1t+ 6 h§t)) +n (t) + pzcos[ (o, =)t + 6 18 0 (t) Fuft)

- +
+ psin| (0 -ttt +6 (1) -6, (1) + 63u(t)] + ng(t)
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- pAsin[(Ql-wz)t gttt o, (1) -0, ) -6, (0] +n (1)

+ 5. sinl (o - + + - +6 (1] +n’
pAqm[(wl wz)t « t 61u(t) 92u(t) 4u( )] n4(t)

- ppsinflo -t - ot+ o, ) -0, (1) -0, 1] +n (1)

o 0+ 0y ) :

(4.7
The noises an(t) and nAR(t) suppress the amplitude of the desired modulation

by the factor

—%<H?R+ﬁ2AR>

= + = 4. 8 EY
Mn_ cos(an(t) n_,AR(t)> e (4 ,)
The variances 2 d n2 imatel
ng and n,, are approximately
2 _ 1 2 1 -
, = =~ B d =—1B : 4.9
MR T p Tn1 *OTAR Tp Tha (4.9)
u u .
where Bnl and BnA are the noise bandwidths of the fine range tone filter

and the ambiguity resolution sidetone filter, respectively., The power in

the desired modulation is suppressed by the factor

M2 - "e-'(an * nAR>= e_<Bn 1+BnA>/pu (4.10) |

IfB_*B_, =2.2X 10° Hz, and if p_ is equal to the value required
by the 400 BPS data BEP requirement, then Mz = 0.429. This means that
the retransmitted noise will suppress the desired downlink signal compo-

nents by approximately 3.7 dB in power,
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4.3 Downlink Analysis

The received downlink signal may be written as

~ed(t) =\/28 mnﬁi(w 546 (t)>+ kAwt + 6 (t) +&sm[w £+ 6 (t)]
+ B () + blsin (wlt + eld(t)> + ,1(t) + Z)zc_os[ (wl—wz)t +61d(t) - 92d(t)]

+n (t) + pA81r1[ (w "9, n +w3t + 9 (t) - 9 (t) +6 (t)] +n (t)

- Bpsinf (e -t -t + Old(t) - sz(t) - 63d(1:)] + n,(t)

+ pysinl (o -w)t + ot +6, (1) -6, (1) +6, (t)]+nZ(t)'

- [;Asin['(wl-wz)t et (t) - 6)2d(t) - e4d(t)] + n;(t)

+ an(t) + r;AR(t) , : (4.11)

where ‘ . .
S is the received wideband FM downlink signal power.

23/25 1is the transponder turnaround ratio.

Aw is the carrier offset frequency, and k may be either +1,
-0, or -1. '

6 (t) is the carrier phase which contains the downlink carrier

cd doppler and doppler dynamics,
) is the W_idéband FM subcarrier modulation index and is
equal to 5. 52.
“q is the downlink subcafrier frequency.

Osd(t) is the subcarrier phase which contains the downlink sub-
carrier doppler and doppler dynamics,

xkd(t) is the downlink split-phase telemetry data.

de(t) is the kth range tone phase containing the two-way range tone
doppler and doppler dynamics,



The equivalent wideband FM reference signal which effectively

multiplies the received signal is

23 °
(t) —\f‘cos{—— w b+ kAot + 8 (t) + 6 sm[wsdt + esd(t)]} (4.12)

°RE 25

where G(t) is the estimate of 6 (t) ((—) (t) +\23>6 (t)) and 6 (t) is the

estimate of the subcarrier phase 6 (t)

Rewriting the phase 6 (t) as
c

ec(t)=(6Cd(t)+< )e (t) - (25\<e (t) - (t)>> (4.13)

it is readily seen that the carrier loop must essentially irack the two-way
doppler dynamics on the downlink VHF carrier, and will also track the

phase-jitter on the transmitted downlink carrier.

If white Gaussian noise of single-sided noise power density Nd is
also present at the input, the output of the carrier loop phase detector is,

in normalized form

e t) = sin {Gc(t) -0 (1) + Efsin[ ot +Qsd(t)] - bsinf ot + esd(t)] + Bx (1)

+ turned-around range tones and noise} v

: N

+ Gaussian white noise of single-sided power density é—d (4. 14)
d

]

As was done in the uplink analysis, this output is expanded and renormalized

as

t+esd(t)]}

sin{ec(t) -8 (1) + osin[w t +0_ (0] - osinle_,

+ cgs{ec(t) - éc(t) + §sin[ w4t +-.Bsd(t)] - §sin| W bt ésd(t)]}lzcanﬁ xd(t)

+ B sinfwt + Gld(t)]- + gycos] (wl—'wz)_t to. 1) -6, (1)) +n (1) + nt)



+ ppsin (Ql—mz)t Tt +o (&) - 0, {6+ 93d(t)] *+ n,(t)
- Bysin[ (o)t —at +o, (6 - 0, () -0, (0] +nt)

~ ' +
+pysin[ (o o)t ot 6, (6 -0, 1)+ 0,{t)] *n (©)

- EAsin[(wl—wz)t - ot +91d(t) - 92d(t) -»64d(t)] +n4(t)]

N

d
+ Gaussian white noise of single-sided power density 5
' S MM
' d d n
4.1
where Md = Mu ifg=1 rgdlan and if PR = Wz PR and

an is given in Eq. (4. 10).

The first term in Eq. (4.15) is the compound PLL tracking error.
The second term represents the data and ranging sidetones plus the noises
lying within several Hz of the ranging sidetones, and the third term is the
2.2

Gaussian white noise of single-sided power density Nd/SdeMn .

4.3.1 Compound PLL ’f‘racking Threshold

If we assume that the carrier loop tracks the phase-jitter on the
transmitted downlink carrier with negligible error, the carrier loop-phase
error Oc(t) - 5c(t) will consist of the dynamic tracking error plus phase
jitter resulting from the presenece of the Gaussian white noise at the re-
ceiver input. Consequently, the results of Appendix A may be applied here

with 'B'c increased to

6 = 2ox2x 2 - 55.2rad/sec2 | (4.16)
c 25 ‘
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The optimum carrier ioop no'ise bandwidth in the ground receiver

2
is 12.2 Hz, and the threshold value of Py = s M2M /Nd for carrier
) n

d d
threshold, is 622. The subcarrier loop noise bandwidth

(pthrg shold) __ .
" in the ground receiver need not differ from that of user receiver since

onl}; one -Wéy doppler dynamics are involved in subcarrier tracking on the
down-link. Also, the carrier loop is the critical loop in the compound PLL.,
Consequently, the subcarrier loop noise bandwidth will be set at 0.5 Hz for

all downlink subcarrier frequencies.

4,3.2 Data Demodulator Threshold

As in the uplink case, the results of Appendix C may be ap‘plied with
' 2 1 2,,.2

=T ' = =N T/S M
" tan B and o oy /d dMQ’

required BEP becomes

so that the condition for achieving the

Ttanzﬂ (p

threshold)x = 15.85 (4.17)

d

-3 .
. _ . T = _
With 8 .1 radian and 10 ~ sec, the value of <pthresh01d>xd

This is considerably higher than the value required by the compound PLL,

is 6500,

and in fact determines the/tﬁhreshold on the downlink,

4,3.3 Range Tone Derhodulation
.

The signals and noises into the range tone demodulator may be

written as-

glsin[ ot +61d(t)]-+ n;l(t) + Ezcos[(wl—wz)t to, {6 - 92d(t)] + nz(t)
~ . ] B ( | 3 +
+ 5, sin| (o -g))t + eld(t) 62d(t) Tt +0, ()] +n (1)

- Bpsin[ (o -t +o, (1) -0, (1) - ot -0, ()] + ng(t) + ..

+ Gaussian white noise of single-sided noise power density
2.2 - - :
N, /S MM _ ' '
a/3Mq n — , - (4.18)
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It is convenient to write the downlink noise as the sum of noises
which lie within several Hz of each sidetone plus the remaining noise. If
the rahge tone demoduiator is linear, only the noises thal lie within several
. Hz of each sidetone will contribute to the ranging errors. Consequently, |
the above expression for the signals and noises into the range tone demodu-
lator is modified by replacing nl(t), nz(t), etc., with noises 'ﬁ’l(t), Hz(t),
etc., which all have single-sided noise power densitites around each side-

tone given by the sum

1 1
+ = p = — 4

s M2 s M2m2 R op, o

u u d dn :

(4.19)

In the fine range tone loop the fine range fone input signal and

noise is effectively multiplied by a VCO signal of the ferm

e voolt) =VZcos[ut + 6, ] : (4.20)

where Gld(t) is an estimate of 91d(t). The output of this multiplier is

-~

p . | |
\@L sin[-@ld(t) - Gld(t)] + Gaussian "white'' noise of
single-sided power density @ - (4.21)
The noise is "white'' over the fine range tone loop noise bandwidth,

The fine range tone loop is linear if the error Gl'd(t) - éld(t) is
small. Under the small phase error resumption, the linear phase model

of the loop shown in Fig. 4.2 may be used.
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— $Fls)

Fig. 4.2 Linear Phase Model of the Fine Range Tone PLL

The noise n'l(t) is the noise rTl(t) multiplied down to baseband so that its
single-sided power density is Op.

- The phase error 6 = Gld(t) - 51d(t) consists of a dynamic tracking

1R
error and a noise error., TDRS system specifications require that the one-

way rms range error be less than 15 meters. ¥or a fine range tone fre-

quency of 10_2.{1 kHz, this requires that the rms phase error; G?e , be less
than 0, 0645 radians or 3.7°. This means that the total rms phase error
= 5 === : v

le let  len
- must be less than 0. 0645 radians even for the worst-case doppler dynamics.

‘The dynamic tracking error, 6. _, is given by

let

6, , = | (4.23)

B ‘=il<+~;—>-k | (4. 24)
2 \&T e ) T K .
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. . 2 ,
The mean square phase noise error, 6 -, 1s

len
22
= B
elen 52 <I>R 1 | (4.25)

If the loop is optimized by selecting the noise bandwidth so that
CDR is maximum when the rms phase error is at its threshold value, the
~ following results are obtained:

(4.26)

- ( ) Fﬁ - (4.27)
<<> *

<CI,R>thre shold

~ e -2 2 6] o
For £ = 1/¥2, 5,=0.5, 8 ,;=4.1x10 "~ rad/sec ,and V6 >=:QOM5

le
radians; (B 1-) and(d)R) are
' optimum threshold
(Bl> = 0.635 Hz | (4.28)
optimum
Q©R> - 0.655x10°° (4.29)
threshold

If R, * SuMz/Nu is equal to ‘2600 (the value required for uplink
data, and which makes Mg equal to 0.429), p; must be greater than 3700
for thi s threshold value of cI) to be realized. For larger values of P, the
value of Py ma'y be decreased. It must, however, be larger than

1528 = <€PR>;1 . We now consider the requirements of proper range ambi-
th '

guity resolution.
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The ambiguity resolution sidetones clustered around 9, are

coherently mixed down to the medium fine range tone frequency, w_, by a

o the m . 2
signal of the form V2 sin| ot + Bid(t)] which is obtained by phase shifting

. the fine range tone VCO signal by 90°. The output of this mixer is

~p-z—sm[oo t -(Gld('t) - f)) (t)] + (Hz(t)>'

vz L2
ﬁA T o 1
+V—%:cos|'w2t - (91d(t) - eld(t)> + ezd(t) —(w3t + egd(t)>] + (n3(t)>
P~K . \v'
—V——ZL—COS[wzt - <61d( ) - 9 (t ) + 9 (t) + \w t+0 (ﬂ)] <n3(t)‘;
BA | “~ N\ ~+ Nt
+v—2: cos [wzt - (eld(t) -0, {0} + 6 (1) - <w4t + 94d(t)>] +<n4(t))
—Eé— slat - (9 (t) - 6 (t)>+9 (£)+(wt+e (t)) + N—(t)>'
v S°%1% 1d 1d 2d 4 Vad <n4

(4.30)
The single-sided noise power densitites of the noises around the medium

fine range tone and the other ranging side tone frequencies are all equal

to <I>R.

The phase shifted"signah’_'sin[w t+o, t)] is frequency divided
by 16 to form the medlurn fine range tone amblgulty 1oop VCO signal.

This VCO signal may be written as

-~

; |
(t) V_cos[wzt+——1-+62A] | (4.31)

€ovCo 16

where 92A is ambiguity resolution phase error,

This VCO signal multiplies the medium fine range tone and noise

(Hz(t)>' to produce the error signal and noise given by

P | le i
£ sinl-6 +—=5 -9 + 1! :
sin 1 1 : n'(t) | . ‘ (4.32)
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Here use has been made of the facts that 6, = Gld/16 and that

2d

91e= eid - 51d' The single-sided noise power density of the noise n-'2(t) is

<I>R.
The ambiguity resolution phase error 62A is driven to zero by the

action of the medium fine range tone ambiguity PLL. A linear phase model

15
. . " . T
of the loop is valid when the phase <62A 16 Gle) is small, he phase

: 1
-0, 5 ™May be considered as the loop phase error, with ﬁz(t) and _I—gele

representing additive noises. If the noise plus the phase error (15/16)6le
[}

is too large, it may cause 92 to settle at + or - 22-% thereby causing

A

an ambiguity resolution error. We there define a ''peak’' phase error 9'p2

- Z 15\. [ 2 15
- o[% e B+ 20 B +(12)0 - ,
002" 915 B2 (16)0 2 r°s <16> let (4.33)
Py Py |

and require that 52 be chosen so that for st 0.02 Hz, ¢g= 3, and tIDR equal

as

to the fine range tone threshold value, the ''peak' phase error is 7/16,

For the manner in which the noise bandwidth of the fine range tone

loop was optimized, elet V5 ( ele)p' Under these conditions the value

of 5'2 is found to be approximately 0. 16,

The VCO signal of the medium-fine range tone ambiguity loop
is phase-shifted by 90° to provide the reference signal for the coherent
demodulation of the medium-coarse and coarse range tones. The output of

this coherent demodulator when 62A= 0is

BA-COS [’1—2 916] sin (;931; + 93(t)> + (n;\) " . (né>”
. "

15 | " -
o~ 15 i + f -
pPpcO® [16 6)1e] sinfogt £000) + (o) + o)) | - (4.34)
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" +\n -\ M ' ‘ ' '
Where (n3> and <n3> are the noises around w_ from the upper and
1

3 Lon
+ -
lower sidebands respectively, and similarly for <n4> and ~(n4> .

For ,’ 12e < 0. 0645, COS.B—(? ele] may be approximated by 1.

The medium-coarse range tone émbiguity loop reference signal
‘is obtained from the reference signal used for the coherent demodulation

of the medium-coarse and coarse range tones by a digital divide by 16.

This reference signal may be written as
7o [ 151. ., ( )
- + + 4.35
e3VCO(t) J2 cos w3t (16)2 03 !:I |

. so that the output of the medium-coarse range tone ambiguity. loop phase

detector is

~= sin -06_,] +n_t) (4.36)
voo A
2 e’ ° ’

where GSA is the ambiguity resolution phase error, and the single-

sided noise power density of n;’(t) is 2<I>R.

Neglecting Gle/(16)2, our criterion for correct ambiguity reso-
lution is that the "peak' error defined by
i
[4®_B
R » _ _
0= o —-—2-§- (4. 37)
Pa

be less than 7/16. We select EA so that for B2=0.02 Hz, @, equal to
the threshold value for fine range tone tracking, and o= 3, the peak
error, Gp, is7/16, The value of 5A so obtained is approximately

0. 110 radians. Anaiysis of the coarse range tone ambiguity loop yields

the same result.
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The results of the ranging analysis are summarized below.

For Bl =P = 0. 5 radians, the maximum value of @R that may be
tolerated is 0.655 x 1073 when the fine range tone loop is optimized so that
‘the rms phase error is 0. 0645'r4adians (or 3.7°). The optimum noise

bandwidth of the fine range tone loop, (Bl), is 0.635 Hz,

Correct ambiguity resolution will be achieved with high probability
for the above value of CIJR for ambiguity resolution range tone loop noise
~ bandwidths of 0. 02 Hz if Py Py = 0. 16 radians and PA R Pp~ 0. 11 radians,

4.3.4 Range-Rate Analysis

Range;rate measurement specifications call for an rms range-
rate error of less than 10 cm/sec for a 1 second measurement time. For
an N-cycle counter doppler measurement unit, the rms one-way range
ARZ

rate error ( )1/2, is related to the rms phase jitter on the tracked

downlink carrier (Ofn)l/z by the expression

)1/2 e _ 12 |
f2—27r f /—2-§>T (60n> o (4.38)
C

\25

(Ra2

where fc is the uplink carrier frequency, T is the measuremént duration,
and c is the velocity of light. This expression assumes that the phase
jitter is uncorrelated over a time duration of length T. The phase jitter
on the tracked downlink carrier consists of phase jitter on the tracked up-
link carrier which is retransmitted ;t>y the User spaéecraft, plus phase
jitter arising from noise (or other sources of interference) at the DAF re-
eiver input which falls within the carrier loop noise bandwidth after wide-

. 5\ 1/2
band FM compression, That is, (63n> / is given by

: R — — 1/2

@i) 1./2 = [(‘3%) <9c2en>u +<9c2en>d] (4.39)
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For T = 1 sec and f = 148, 925 MHz, th/e 19 cm/sec range-rate
: —5-\1/2
error corresponds to an rms phase jitter (631)) equal to 0. 405 radians.

For the carrier loop threshold values of P, and Py
—5— (Bc)op't 9.0 |
<e > = =) = == = .0195

u

cen Pin
: “u

—_— (B ) '
o ) - (_____c ogt.) Jlz2
d

\"cen Pin 622
so that : - 1/2 .
9 — | 1/2
23 5 T .. e
[(—-—25> (ecen>u + <ecen) ] —{(1.847)(. 0195)] = 0.190

(4.40)

Since this is less than the threshold value of the range rate measurement,
the range-rate measurement specifications will be met if the ‘compound

PLL's are operating above threshold.

4.3.5 Uplink and Downlink S/N Tradeoff

Of real interest in the TDRS system analysis are the values of
; 9 ‘
S /N dS, /N Now t M
u/ a an d/ q ow tha can be computed, the values of Su/Nu and

Sd/N may be determined in terms of required values of P, and Py

d
With g= 1 radian, p = 0.5 radian, py = 0.16 radian, and

py = 0.11 radian, M is

=

2 2, .2 g, . 2 2 2 8
cos BJO(pl)JO(pZ)AJO(pA) 7__(.54) (.9385)7(.9936)7(. 997)

0.245 | o ‘ : (4.41)
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I3

The most stringent requirement on both the uplink and downlink
S/N occurs for the data demodulation. On the uplin P> 2600, whereas on

the downlink pd) 6500. Be\,ause of the turned-around no1se on the downlink,
pd is

Ng

3 :
u 2
= —=1M -
For Py~ 6500, p, ™may be increased over its required value of

2600 thereby permitting (Sd/Nd) to lie between 26,400 .and 61, 500. The

. S »
g - +
Py = (”“d")M?e (Bnl BnA)/pu

(4. 42)

o))

[
i}

noise bandwidth of the ranging sidetone turn-around filter, (Bn1+ BnA)’

is taken to be 2. 2 kHz, A plot of (Sd/Nd) as a function of (Su/Nu) for

Py~ 6500 is shown in Fig. 4.3. This plot shows the reduction in required
downlink (S/N) that may be realized by reducing the effects of the suppression

of the downlink signal by turn-around noise.

4.3.6 An Alternative Technique for Reducing the Effects of
: Turned-Around Noise .

In Fig. 4.3 it was shown how the value of (Sd/Nd) required to
meet the downlink data BEP requirement may be decreased at the expense
of an increase in the value of (Su/Nu). This effect is a result of reducing
the suppression of the downlink desired-signal modulation power by the re-
transmitted phase noise as the uplink S/N is increased. An alternative way
of accdmplishing this is to increase the deviations of the ambiguity resolving
ranging sidetones on the uplink and decrease them on the downlink. The in-
creased modulation suppression on the uplink is compensated‘for by an

increase in (S /N ).

For example, if Py on the uphnk is increased to 0. 48 radlans and

N is increased to 0.375 radlans, the value of M2 = cos BJ (pl)J (%)J (pA)
is 0.170. In order that P, * S M /N be greater than 2600, as required by
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Fig. 4.3 Downlink vs. Uplink Signal-to-Noise-Power-Density Ratio
for Fixed Downlink Data Error Rate
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the uf)link data BEP, (Su/NQ) must be increased from the previous minimum
value of 10,570 to 15,280, If on the downlink Py is made equal to 0. 12
radians and Pa is made equal to 0. 094 radians, a reduction from the up-
link dev1at10n:, by a factor of 4, proper ambiguity resolution will still occur.

The modulation suppression arising from retransmitted noise is now

| 9
B . /p B, /(4)7p
M2 =" nlTu TnATTE T (4.43)

This factor is now only 0. 8825 when p = 2600, B = 0.2 x 10° Hz and

3
BNA= 2.0 x 10" Hz rather than 0. 429 as was the case previously. This

" means that this technique can result in a decrease in (Sd/Nd) from

61.50 X 103 to 29.30 x 103. (Note that M(2i = 0. 251 rather than 0, 246 as
previously.) This is a significant reduction, and required only a relatively'
smali increase if (Su/Nu) were increased without changing the uplink and

downlink deviations.
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5. 'C. W, INTERFERENCE EFFECTS

The effects of C.W. interference on the TDRS wideband FM system
performance depend on 1) the location of the C.W. interference in the wide-
band FM signal spectrum at the receiver input, and 2) the relative strength
of the C. W, interference. The analyses of these effects are divided into
several sections: 1) compound PLL demodulation, 2) data demodulation,
and 3) ranging and ranging sidetone turn-around. The probability of the
various interference effects in terms of the percentage of the 2 MHz band-

width which is vulnerable to C,W. interference is alsc considered.

5.1  Compound PLL Demodulation

If the C. W, interference falls Aver_y close to one of the wideband
FM subcarrier sidebands it may interfere with the compound PL1, demodu-
lation. If it lies within both the carrier and subcarrier loop noise band-
widths, it can interfere with both carrier and subcarrier tracking. Since
the subcérrier loop noise bandwidth is much smaller than the carrier loop
noise bandwidth (0., 5 Hz vs. 9 Hz single-sided), the likelihood is that it

will interfere only with carrier tracking, if it all.
i '

To analyze the situation, we write the received uplink signal plus

interference as

1l

e, (t) = /25 _ sin{wct +0 (1) + osinfw t+0_(t)] + d>m(t)}

+ -
25, sm{wIt + 91(”}

. o
/35 E_N Jﬂ(é)mn{wct +0 (1) +nfu t+ esc(t)] ¥ (bm(t)}

+ i +0 @)+ mlew t+ + + A
ZSI sm{wct c(t)_ m[cusct Gsc(t)] Awlt AGI(t)}

(5. 1)
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where coI is the nominal frequency of the interference and GI(t) is the carrier
doppler phase of the received interference. The frequency of the interfer-
ence lies near the sideband for which n = m. That is,

witt+tO{)=wt+Oo@) +mlw t+0 ()] +Aut+A0(t) (5. 2)
I I c c sc sc I I

with Au{I + Aél being small,
The received signal 'plus interference is effectively multiplied
by the wideband FM reference signal |

eREF(t) = ﬁ‘{cos wct + ec(t) + Gsin[wsct + esc(t)]} | (5. 3)

where 5C(1:) and asc(t) are estimates of the received phases Gc(t) and Osc(t).

This may be expanded as

. . R R
= + + [4 +
ppt) < /E 2 Tplcosfut + 81 + 2lw £+ 8 W]} (5.4)
= =00
The output of the multiplier (carrier loop phase detector) is (in norn_ialized

form)

(eo(t)>c = sin{ece(_t) + §sin wsct + esc(t)] - §sin| wsct + esc(t)] + d>m(t)}

S o
I ; '
+ /5— Jm(a)sm{ece(t) +mo__ (1) + Awt + AGI(t)}

u

S : - ‘ . .
' f I . _ P
i Su (Jm+1(6)sm{ece(t) ¥ mesce(t) * AwIt * Ael(t) [wsclc ¥ esc(t)]}

+ Jm_l(é) sin{@ce(t) + mesce(t)‘+' Dwort + A0 (t) + [wsct_ + OSc(t)]}>

=J (A )M sin6 (t)+ cosf (t)sind (1)]
. (o] SC u ce ce m

L

“

; Jm(é) sin {ece(t) + mese(t)‘+ AwIt + Ael(t)}'
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+M cos® ()2 (A sin[w t+6 () + (1]
u ce 1 sc sc sc sc

S .
~ / I . a ' -
+ §: (+Jm+1(5) sin {—[wsct + esc(t)] + ece.(t) + mesce(t) + Awl‘t + A@I(t)}

+ Jm_l(ﬁ) Sin{[wsct + Qsc(t)] + ece(t) + mesce(t) + AwIt + AGI(t)}>

(5.5)
Here . : _—
osinfw t+ 6 (t)] - 6sin[w t+ 8 (t)]
sc . sc sc sc
=A sinfo t+0 (©)+$ (1) | ~ (5.6)
sc sc sc sc )
where 0
A =2§sin <—193> A (5.7)
sc 2 ' :
and fsin@ =A sin(6  +§ ) - (5. 8)
sce SC sce sSC
Also M = {osé (t) , (5.9)
u m

So far as carrier tracking is concerned, the signal and noise com-

ponents of interest are

5
L5
m

S .
2 ‘sin{e (t) + mo () + Awt+ A0 (t)}
ce sc I

g + PR, S,
sind () + T I
(o] scC 9]

(5.10)

For small Gce(t), this may be linearized by making the approxima-
tion sinece ~ Gce. The results of Appendix B may be applied here with
5 _

o0 1 :
T |
Si Su m(r))
s T TowWm (5.11)
(o] O SC u
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Thus, if the fréquency AwI + Aél lies within the carrier loop noise band-

width, the maximum phase error resulting from the presence of this

SI |
S Jm(é)
u

<9ce> ST (A WM (5. 12)
- max (o] sScC u

C.W. interference is

The worst-case occurs for m=4 when § = 5.52, for which J -(5. 52) = 0. 3960.
. S 4
WithM 2z 0.4l and J (A )1, (6 > z~ f_I . The value of (6 )
u o sc ce ) ce

max Su max

should be on the order of 0.1 radian for any single C. W, interference in
order that the loop 6p§erate in the linear region _Whéh _k_)'gth_‘inter ference and

noise are present,

‘We can say that a C. W, interfef-ence -may cau-s-e a problem Wlth
carrier tracking if it is within 3 loop noise bandwidths of a subcarrier
. sideband of non-negligible value. For &= 5.52, the carrier component
(m = 0) is zero, and sidebands for m=7 are negligible. There are there-
fore 12 subcarrier sidebands to consider. For a single-sided carrier loop
noise bandwidth of 9 Hz, the total bandwidth of the RF spéctrum which is
vulnerable to C. W, interference with carrier trackingis 3 x 2 x 9 x 12 =
648 Hz. This is a small fraction of the 2 MHz RF bandwidth. In addition,
the high doppler dynamics between the luser and the RFI will mean that .
the C. W, RFI compohent will sweep right through the loop noise bandwidth.

Turning now to subcarrier tracking, the output of the subcarrier

‘loop phase detector is
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=

. o_u . '
(eo(t))sC e cos0_ ()23 (A_)sin[0__(t)+$_(1)]
S B

A 0L N si |

v 3 <Jm+1<5 ) + Jm_1(6)> s;n[ 6_(1)+m0__ (1) + A + A6 (1)]
(5.13)
" 2J1(Asc)
= MucoseCe N sm@sce(t)
~ Tsc

| SI 2m
+ 'S': a5 Tp(0)sin[6_ (1) +mo_ (t)+ Aut + A0 (1)]

For A ~0, and 6 and 6 .are small, this may be approximated
sc sce ce

ST
: 5 T® |
—_ + i + + +
NEA %9 ce Afz'—Mu(é/Zm) Sl?[ ece(t) mesce(?) Byt Ael(t)]
(5. 14)
Form =4 and 6= 5.52, and with M =~ 0.41, (56 ) is
_ u 7\ sce
S _
/_l_ '
S Jm(ﬁ) SI
- (5. 15)

6 u
(~——— 0 ) = S
il 2
J2 _sce max V2V u((‘5/ m) Su
i ‘
where use has been made of the results of Appendix B. The maximum

error occurs if Aw_ + AO. lies within the subcarrier loop noise bandwidth,

I I
For a subcarrier loop noise bandwidth of 0. 5 Hz, only
3 x2 x(.v5) x 12 = 36 Hz of the 2 MHz RF¥ bandwidth is vulnerable to C. W,
interference with subcarrier tracking. Of course a C.W, interference that

interferes with subcarrier tracking will also interfere with carrier tracking.

C.W. interference with acquisition may occur if the C.W. inter-.
ference lies very close to the 4th or 5th order upper sideband., However,

by choosing the uplink subcarrier frequéncies such that the upper 4th and 5th
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order subcarrier sidebands lie in RFI free parts of the uplink VHF band,

this problem may be completely eliminated,

5.2 Data Demodulation

C.W. interference may cause an error in data demodulation if it
overlaps the spectrum of the data around any of the subcarrier sidebands

at the RF input of the receiver.

- If the C.W. interference lies near the subcarrier sideband
corresponding to n = m, Eq. (5.5) may be used to determine the effects of

the interference on data demodulation with d)m(t) given by

<[>m(t) = Bxu(t) + plsin[ b+ Gl(t)] +p_cos| (91--w2)t + 91(1:) - 62(t)]

2

+ 2pA(sin[ ayt + 63(t)] + si_n[w4t + 94(t)]>cos[ () = )t + Gl(t)-Gz(t)]

(5. 16)

sin dam(t) may be written as

vsin({)m(t) = Mu[tanﬁxu(t) + 5lsin[ wtt 91(1:)] + 452cos[(wl-w2)t + Gl(t)—Gz(’t)]

+ 20, (sin[ b+ 93(t)] + sin Gt + 64(t)]> cos| (o =)t +6.(t) - 62(t)]

-

(5.17)

Focusing attention on the déta, the normalized input to the data demodulator

is .
5
/g—I—J (5)
- g M . A ’
(ei(t))d = x,® \ e g mn{@ce(t) +m_ (1) + Awt + AGI(t)}
ata u

(5.18)
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The results of Appendix C may now be applied. The variance of
' the interference at the output of the data demodulator was shown to be
given by
4,
9 9 Sin ((,oiT/4) ‘
ot = ST e - (5. 19)

where Si is the amplitude of the C, W, interference at the input to the data
demodulator, @ is the frequency of the interfei‘ence, and T is the bit period

of the data., Here Si and ) are

SI \2
S 7 (6)
' 1
Si 3 m (5.20)
and o, = Awp ¥ AGI | | | (5. 21)

The phases Gce(t) + mOSce(t) are essentially constant over the duration of one

bit period.

3n .
The worst- case variance occurs for coT/4 £ i-é—, for which
sin*(w, T/4)/(w T/4) is approximately 0. 525. The minus sign means that

the frequency w, = AwI + A6 may be negative, corresponding to the C. W,

I
interference RF frequency lying below the sideband frequency rather than '

above it.

The BEP requirement states that the ratio

2

2
(—L‘—) >15.85 (12 dB) (5.22)
20 . - . .

for a BEP of.10_6. Here p =T, and 02 is the variance of the Gaussian
noige at the -output of the demodulator. We require that Oiz be an order of
magnitude less than the critical value of 02 in order that the sum of the
Gaussian noise plus C. W, 1nterference not cause excessive errors. In

other words we require that
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2 2

2 2 U T
<< - -
0, << {9 1itical ~(2x15.85) ~ 31.7 (5.23)
or, in the worst-case,
1 A
<L —— = :
(0. 525)8 317 0.‘0315 (5.24)

For §= 5.52, the worst case occurs for m = 4, With 8= 1 radian

- : S
and M = 0. 41, the requirement on_|Z— is
u Su
SI M tan,B :
— << 4 =
5 (0.346) 7 (559 0.56 (5. 25)

For ‘w T/4] 2 37/4, sin4(wiT/4)/(wiT/4)2 is less than approxi-
mately 0.0450. The "bandwidth" of the data may therefore be defined as
the bandwidth for which sin4(wiT/4)/(wiT/4)2 is greater than 0, 0450%, and
is B=3/T Hz = 31, where fB is the bit rate. The uplink bit rates are
100 BPS and 400 BPS, so that the largest uplink data bandwidth is 1200 Hz.
With 12 sidebands of significance, the total frequency RF bandwidth which

is susceptible to C.W. interference with data demodulationis 14.4 kHz,

Because the data is split-phase, there is very little data power
near d.c. This means that a C. W. interference that is not too large may
interfere with either carrier tracking or data demodulation, but not both at
the same time. Also, because of the different dopplers between Users and
the TDRS and between Usérs and the interference sources, only a few
Users are likely to be affected by a lst_rong C.W,. interference on the uplink.
This differs from PN spread spectr@m techniques in which a strong inter-
ference can cause a serious disruption in communications for all Users.

Finally, the doppler rate between the User and an earth based interference

-

* The value of 0. 0450 corresponds to the height of the next highest maximum
of sin x/x
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source is much greater than between the User and the TDRS, sothat a C.W,

interference would not stay long inside the small loop noise bandwidth,

5.3° Ranging and Ranging Sidetone Turn-Around

A C.W. interference which lies near the ranging sidetones in the
- RFoinput spectrum may interfere with ranging and/or may rob power from
the desired downlink signal components by phase modulating the downlink
carrier in the ranging sidetone turn-around channel. Interference with
ranging may occur in several ways. The C.W. interference may be small,
but may lie sufficiently close to a ranging sidetdne to directly interfere
with range tone demodulation on the ground. The C.W. interference may
not lie very close to a ranging sidefone, but if it is turned around with
the ranging sidetones, it will rob power from the desired signal components,
thereby making therﬁ more susceptible to other noise and interference on
the downlink. Finally, the ranging sidetones turn-around channel is de-
"signed so that AGC amplifiers in the User transponder prevent a strong
interference from phase modulating the downlink carrier with a large
deviation. Consequently, a strong C.W. interference that gets throﬁgh
either the fine range tone filter or the ambiguity resolving sidetone filter,
and which causes the AGC amplifier at the output of that filter to reduce the
amplitude of the sum of the ranging sidetone (or sidetones), the C. W, inter-
ference, and the nois!e, will make the ranging sidetone (or sidetones) more
susceptible to downlink noise and interference in the range tone demodu-
lator, The turn-around channel is designed so that if the AGC amplifier
at the output of the ambiguity resolving sidetone filter would have too smali
" a gain as a result of the presence of RFI, the ambiguity resolving sidetones
do not phase modulate the downlink carrier. This prevents the transmission
of ambiguify resolving tones which are too weak, because of suppression
by C.W. (or other interference), to yield proper ambiguity resolution on
the ground. With the transmission of these ranging sidetones discontinued,

the noise and interference which would also phasie modulate the downlink
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carrier no longer does so, and therefore ceases to rob power from the
desired signal components, If the AGC amplifier at the output of the fine
range tone filter has too small a gain, no ranging sidetones are transmitted

on the ‘downlink.

We now examine the ranging situation mathematically. For the
case where a C. W, interference lies near one of the fine range tone side-
bands in the RF spectrum, we write

wt +0,(t) =0t +0 () + mlw t+ esc(t)] Frlot+o (1)

et A | (5. 26)

with AwI + AéI being small, and k = +1 or -1 depending upon whether

the interference lies near the upper or lower range tone sideband associated

with the mth (n=m) subcarrier sideband.,

The signal plus interference of interest is written in normalized

form as SI

S
- u
= i + +
el(t) | p1 s1}n[ wlt 61(t)]‘”

J (8)
m

M

- sin[k(w,t + el(t}) +0_ (1) +mo__ (1)

+ Aw. t + AGI(t)] | , , (5.27)

I

where the assumption of small compound PLL tracking errors has enabled
us to approximate J <A (6 )N and cos6 by 1. The amplitude of the
. o\ sc sce’/ : ce .

range tone, 51, is related to the uplink phase deviation, Py by

2J1(p1)

= Ty ® < 0. i . .
1 'Jo(pl) CH for p_. £ 0.5 radian (5. 28)

P 1
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If AwI + AGI is sufficiently small so that it lies within the fine range

tone loop noise bandwidth, and if the amplitude 5 J_(8)/M_1is small
u

compared to 51’ the effect of the C, W, interference will be to cause a
phase error in the fine range tone loop whose maximum value (assuming
the fine range tone loop is approximately linear) is
S
1
| I3 3_(&
(9 ) = - (5. 29)
le P

This must be less than 0. 0645 radians if the ranging speciﬁ'ca’cions are to
: ,S
be met. In the worst case situation where m =4, —S*I— must be less than
u

approximately 0. 03 for 5 ~ 0.5 radians when the C. W, interference lies

- within the fine range tonelloop noise bandwidth,

‘The fine range tone loop noise bandwidth is approximately 0.6 Hz
(single-sided). Consequently, if we assume thata C. W, interference which
is within 3 times the noise bandwidth of the fine range tone may cause in-
terference with ranging, the frequency bandwidth at RF which is susceptible
to this C.W. interference is 3 x2 x (0.6) X 2 x 6 = 43,2 Hz, This is a
very small percentage of the total RF bandwidth. Also, because of changing
doppler conditions such an interference situation would be very short-

lived.

If Acoy + AéI is not so small that it lies within the fine range tone
loop noise bandwidth, the C,W. interference may still cause a problem, if
it is sufficiently large, by robbing power from the desired downlink signal
components. The signal suppression factor for a retransmitted C, W,
in’cerference is simply JO(EH), where-ﬁIl is the phase deviation of the

C.W. interference on the downlink carrier. The power suppression is
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simply the square of this. In our case, 511 is

S
1
o ——Su Jm(b)

P11 =—————~——Mu . (5.30)

since the downlink phase deviation of the fine range tone on the carrier is

the same as that on the uplink.

An AGC amplifier prevents this suppression factor from becoming
too small by limiting the total phase deviation of the fine range tone, C.W,
interference, and noise (and other interference) on the downlink carrier.
Excessive suppression of the fine range tone to the extent that serious
degradation in ranging: pérforma.nce would occur, would be detected, and

under these circumstances the ranging sidetones would not be turned around.

If the bandwidth of the fine range tone filter in the User trans-
ponder is on the order of 200 Hz, the total RF frequency bandwidth that is
susceptible to this C. W, interference effect is 200 X2 x 6 = 2,4 kHz,

Turning now to the ambiguity resolving sidetones, we may write
the C, W, interference RF phase as ‘ |

w it +6,(t) = o t+0 1)+ m| @ t+ esc(t)] + k[ (e - )t +6 (1) —92(1:)]

+ AwIt + Ael(t) (5.31)

where AwI + AéI is small, and k = +1 or -1 depending on whether the C.W,
interference lies near an upper or a lower sideband of the ambiguity

resolving tones cluster,

As with the fine range tone, there is a small probability that the
C.W. interference may lie éufficiently close to one of the ambiguity re-

solving sidetones to cause an incorrect ambiguity resolution on the ground.
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 However, by far the greater problem is the suppression of the desired
downlink signal modulation by the retransmission of C.W, interference
(as well as other noise and interference) that lies within the bandwidth of
- the ambiguity resolving tones filter. ‘The normalized signal plus C. W,

interference at the output of the filter may be written as

eft) = pycos[{w-w)t +0.(1) -0(1)] + 27, (sin] ayt + 0(1)]

+ sin[wt +0 A1) cos[ (o, -y )t +0.(1) - 6(1)]

SI
g;— Jm(ﬁ) |
+ N sm{k[(g 7O -0 0] + 0 (0) + mo__ (1)
+ Aot + AGI(t)} : (5.52)

The amplifier at the output of this filter has its ga.in set so that the phase
deviations of the ambiguity resolving tones on the downlink carrier are
1/K times those on the uplink carrier, where K is approximately 4 (See
Sec. 4.3.6). Therefore, the signal suppression factor for a retransmitted
C.W, interference is J (p__), where p__is
o I2 12
S
I
-— J
3 m((5)
u

Pl * MuK _ (5.33)

and the power suppression is simply the square of this, It is clear that

Prs (and Py of Eq. (5.30)) should be on the order of at most 1 radian.

If the bandwidth of the ambiguity resolving tones filter is on the
order of 2 kHz, the total RF frequency bandwidth that is susceptible to
this C. W. interference effect is (2 x 103) x2 x 6 = 24 kHz, The total RF
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bandwidth that is susceptible to C.W. interference with ranging sidetone
turn-around is 26.4 kHz when both the fine range tone and the ambiguity.

resolving sidetones are considered.

"The modifications in the ranging sidetone format suggested in
Appendix D would alleviate this problem to a great degree if not eliminate

it altogether.
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6. NARROWBAND RFI EFFECTS

Narrowband RFI is considered as having a bandwidth on the order
of 15 kHz, It may be either AM or FM interference and either continuous

or intermittent in nature. In general, this type of RFI may be written as

e(t) = alt) sinfw t + 64t) + alt]]

where a(t) is a generalized AM modulation and oft) is a generalized angle

modulation, and GI(t) is the interference carrier doppler phase,

Since the bandwidths of the desired signal components are much
smaller than the bandwidth of the narrowband RFI, the effects of the narrow-
band RFI may be taken into account by replacing it by colored Gaussian
noise whose power spectrum is identical to that of the narrowband RFI,

To simplify matters further, we assume that the variation of the equivalent
noise bower density over the small desired signal components bandwidths

may be neglected.

We consider the effects of narrowband RFI on 1) compound PLL
tracking, 2) data demodulation, and 3) ranging and ranging sidetone turn-

around,

6.1 Compound PLL Tracking 4

Narrowband RFI may interfere with compound PLL tracking if it
overlaps one of the subcarrier sidebands. If the single-sided equivalent
narrowband RFI noise power density at the sideband corresponding to

n=m is Nm’ the normalized output of the carrier loop phase detector is
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(e (t)) =J (A )M sinf + cos® sind (t)] + RFI noise of single-sided
o/, Tosc T u ee ce”" "m

N J 2(s)

power density < mS

) around d. c.
u

+M cos® 2] (A )sinfw t+ 6 (t)+ ¢ (1)] + RFI noise of single-
u ce 1 sc sc sc sc

2 2
N (32 &)+ Jm+1(6)>)

‘sided power density ( (6. 1)

25
If the subcarrier and carrier phase errors are small, the compound

PLL is uncoupled in the sense indicated in Appendix A, and the carrier and

subcarrier loops are approximately linear and independent. In this case

J(A )Yx~1, cos6 =~ 1, and sinf® - ~0 .
o sc ce ce ~ ce

From Appendix A, the component of the carrier loop phase error

variance arising from the presence of this narrowband RFI is

— -BcNmen(a) ~
02 - : (6. 2)
S M
u u

where BC is the single-sided carrier loop noise bandwidth, If the RFI
power is assumed td be distributed uniformly over a bandwidth BI
' (BI ~ 15 kHz is typical), the single-sided equivalent narrowband RFI noise

power density Nrn may be written as

SI
N = — (6.3)
m
so that Eq. (6. 2) becomes
__ B, (’SI 72 (8)
62 = — ——) (6. 4)
ce \BI Su Mu2 :
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The rms error is

J:—Q_;' Su m .BC
0o =TT M 5 (6.5)

This should be much less than about 0.1 radian if the total carrier tracking
phase error, which consi'ders all sources of noise and interference, is to

ke small.

If the location of the narrowband RFI in the RF Spectrum. is de-
signated by the 1ocatioh of its center frequency; such narrowband RFI
located anywhere within :tBI/Z of a significant subcarrier sideband can
interfer:;’e with compound PLL tracking. For BI = 15 kHz, this means that
15x 10 x 12 = 180 kHz of the RF spectrum is susceptible to this type of

interference with compound PLL demodulation.

Turning now to subcarrier tracking, the output of the subcarrier

loop phase detector is

u . + + . . s
( (t)> 2J (A )Sln[ esce d’sc] RFI noise of single-sided |

: 2 2
: . Nm (Jm-1(6)+Jm+1(§))
power density 25
, u /

Mu 2J (Asc)
o . + . . s
Ts 6 n sin esce, - RFI noise of single-sided power

ScC

(B @+ 32, ()
density | —= ZS - around d. c. (6.6)
. 25, o

sc
malized output of the subcarrier loop phase detector becomes

If 6 is small, sin® « 0 and 2J (A )/A =~ 1, so that the nor-
sce : sce sce 1 sc
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656 + RFI noise of single-sided power density

1
NE sce

N (J2 (5) + J (a))
m 5 around d. c. - (6.7)
25 M | o
u u

From Appendix A, the component of the mean-square subcarrier
loop error, 62 §c » resulting from the presence of the narrowband

interference is

| 2
el BSNm J (6)+J (6)
56 6)sce - ) 2 (6. 8)

S M

u u

B \/S 32 (e +3° ()

) (R
B J\S, ) 12 2

The rms error is

2 2 : -
S +
1, r:ez _ ,,_1_ 3 \/Jm__l(é) Jm+1(6) /BS 6.9
NE sce Su Mu -2 BI :

This should be much less than about 0. 1 radian if the total subcarrier

tracking error, which considers all sources of noise and interference,

is to be small,

6.. 2 Data Demodulation

For the data demodulation case, use may be made of Egs, (6. 1)

and (5, _17) so that the input to the data demodulator becomes
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(ei(t)> = xu(t) + RFI noise of single-sided power density
-~ data ' : :

(N )
m m

S Mztanzﬁ
u u

)around d.c. (6.10)
when the carrier and subcarrier tracking errors are small. Applying the

results of Appendix C, the energy per bit divided by the single-sided noise

power density is

, . TS M’tan’p B\/S.) M’ tan®p
ull20? - A = S (6.11)
. N_J°(s) B I J " (8) ~
m m } m .

where fB = 1/T is the bit frequency. This must be much greater than
15. 85 (12 dB) if the required BEP is to be achieved in the presence of noise
and RFTI, | ' | '

- As with compound PLL tracking, 180 kHz of the RF spectrum is
susceptible to narrowband RF1I interference with data demodulation. This
is so because the data lies in a relatively narrow bandwidth about each sub-
carrier sideband in the RF spectrum. ' |

i

6.3 Ranging and Ranging Sidetone Turnaround

If narrowband RFI overlaps one of the sidebands of the ranging
sidetones cluster in the received RF spectfum, interference with ranging

and ranging sidetone turn-around will occur.

If the narrowband RFI overlaps the kth fine range tone sideband
(k = +1, -1) around the mth subcarrier sideband, the output of the fine |
range tone filter in the User transponder may be written in normalized

form as
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el(t) = p sin[wlt + Gl(t)] + narrowband RFI of single-sided noise power

1
1.2
2 Jrn(é) Nm k,1
5 ) around (6.12)
S M
u u
where Nm k. 1 denotes the single-sided narrowband RFI power density

at the frequency of the kth fine range tone sideband around the mth sub-

carrier sideband.

Likewise, the output of the ambiguity resolving tones filter may be

written as

eft) = p,cos| (0wt + 0.(8) - 040 + 20, (sin[ ayt +0,(t)]

i + - - +
+ s1n[w4t 94(’5)]) cos| (wl coz)t +491(t) 92(1:)] narrowband RFI

1
232 (N
. . . . 2 m m,k, 2
of single-sided noise power density around «
, ) anl : 2
- S M

u u
(6.13)
where N is the single-sided RFI power density at the frequency of

m,k, 2
the kth amb1gu1ty resolvmg sidetone cluster sideband around the mth

subcarrier s1deband
The normalized noise power dens1ty (; J (5)N X, p/SuM2>

(p 1,2) must be small compared to (N /S M2 o) if the ranomg specifications
are to be met, If the noise plus narrowband and C.W, RFI at the outputs
of the ranging sidetone filters is excessive, the gates following the AGC |
amplifiers at the outputs of these filters will open and the ranging side-

tones will not be transmitted on the downlink.
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7. SSMA INTERFERENCE EFFECTS

On the downlink there may be as many as 30 Users transmitting
simultaneously in the 136-138 MHz band. Each of these User transmissions
represents a potential s'ourcg of interference to every other User and vice-

‘versa. To reduce the extent of thisvinterference, each User is assigned
a unique combination of subcarrier frequency and carrier band (lower,
center, or upper). In this way the spectral overlap between any two

Users is ‘kept as low as possible consistent with other system considerations.

Since each User RF downlink signal contains both C.W, and
narrowband spectral components, both of these types of interference may
be encountered 6n the downlink from other User transmission. Table 7.1
lists the various types of SSMA interférence effects from a single other
User. The following sections treat 11 compound PLL demodulation,

- 2) data demodulation, and 3) ranging.

7.1 Compound PLL Demodulation

To determine the effects of other~User interference on carrier
and subcarrier traék"ing on the downlink, we begin by writing the downlink

received signal as .

e, (t) =425 sin{wct +0 () + 5 sinfo, t+0_ (1] + Bx (6}

+7 sin<co1t +6 1(t)) + ¢, g(t) cos[ (o =0 )t +0.(t) - 6,(t)]

+é 1)+ ‘%m‘“} , | (7.1)
where : :
_23 a
wct * ec(t) T 25 <cut * 6’cu(t)> + Kookt ecd(t)
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Table 7.1 .
SSMA Interference Effects from a Single Other-User

[Inte rference From

Interference With Type Seriousness
la, Compound other-user sub- cw potentially
PLL Demod- |carrier sideband serious
ulation
b. (Same) other-user data narrowband negligible
c. (Same) other-user rang- | CW plus narrow- possible prob-
ing sidetone plus band lem from fine
retransmitted range tone
noise
d. (Same) other-user re- _ narrowhband negligible
transmitted noise
2a, Data Demod- |other-user sub- CW plus narrow+ potentially
ulation carrier sideband band serious
plus data
b. (Same) other-user rang- | CW plus narrow- negligible
ing sidetone band '
plus retrans- '
mitted noise
3a. Ranging other-user sub- CwW serious when it
carrier side- occurs, but un-
band likely to last
|too long
b. (Same) other-user data narrowband not serious
c. (Same) other-user rang- CwW serious when it
ing sidetone occurs, but un-
likely to last
too long
d. (Same) other-user re- narrowband negligible

transmitted noise
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B’

¢nl

&)nAI{t)

0
s

(t)

(t)

ScC

(t)
c

(t)

uplink carrier frequency
carrier loop estimate of uplink carrier doppler phase

-1, 0, +1 depending on whether the carrier band 1s
lower, center, or upper
carrier band offset frequency

carrier dqppler phase on the downlink

downlink split—phase telemetry data

downlink fine range tone phase deviation

two-way fine range tone doppler phase

B, + 20, sin (wst + 93(1:)) + sin <w4’c + 64(t)> is the
ambiguity resolving sidetone cluster AM modulation

the noise and uplink interference, if any, retransmitted

on the downlink from the output of the fine range tone
limiting amplifer

= the noise and uplink interference, if any, retransmitted

on the downlink from the output of the amblgul’cy re-
solvmg sidetone limiting amplifer

the downlink subcarrier frequency for the User in question
the downlink (one-way) subcarrier doppler phase

downlink subcarrier modulation index of 5. 52 radians

Note that if the noise and interference at the output of the ambigu-

ity resolving sidetones filter is excessive, the ambiguity resolving side-
tones and its accompanying noise and interference will not phase modulate
the downlink carrier. Likewise, if the noise and interference at the out-
put of the fine range tone filter is excessive, neither the fine range tone |
nor the ambiguity resolving sidetones and their accompanying noise and

interference will phase modulate the downlink carrier. When the ranging
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sidetones do modulate the downlink carrier, the downlink phase devia-

tions are related to the uplink phase deviations by

1 1 %P
s oolz 1
Pp T kP2 K" e
B =_]_~-— 1

A KPA®KPA S (7.2)

where K is the attenuation of the ambiguity resolving ranging sidetcnes

by the AGC amplifier, and is equal to 4.

We consider the interference with the ith User by the jt‘n User,

and use the subscripts i and j to designate them. The significant spectral

components of the RF received signal of the jth User at the input of the

receiver tuned to receive the signal from the ith User may be written

approximately as

(e d(t))

i

P

. ) |
+ . +0 + B +t—=—M M, _ M M
nj[ % Scj(t)] Kij(t)} M M M M o [sm{ 2 it

scj

+0 (0 nf ot * 6 (1] +(w1t + 61j(t)>+ Bx dj(t)}

- sin{wcjt + 9cj(t) + nj[ “scj(t.) + escj(t)] -<w1t +6 lj(t)) +Bx dj(t)}]
b, (1)
4 AR

M M M + + t+
5 1MAR Moar [cos{wcjt ecj(t) nj[wScj est(t)]

+ [ =)t + 0, (6) - 92j(t)] + Bxdj(t)}+ cos{gcjt +0_ 1)

J sc3 SCJ

"+nfo (t)]-[(w -co)t+9 (t)—9 (t)]+3x (t)}] |
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+ MIMARH> <!> (t)] cos{ Lt 0

+nfw .tfescj(t)] +'Bxdj(t)}} __ : (7,3) 

J- scj

Where M1= Jo(pl), MAR

| = Jo('ﬁz)J;l('ﬁA), Mnl:' {cos <bn1), and
M AR" {cos (bnAR> are modulation suppression factors.

 The first term in Eq. (7.3) is recognized as the subcarrier side-
Bands modulated with the split-phase telemetry data. The second and third
terms are the upper and lower fine range tc;ne sidebands around the sub-
carrier sidebands. The telemetry data phase modulates these spectral
components in the RF spectrum. The fourth and fifth terms are the upper
and lower ambiguity resolving sidetones cluster sidebands around the
subcarrier sidebands. The telemetry data phase modulates these compo-
nents also. Finally, the last terxﬁ is seen to contain the upper and lower
sidebands of the retransmitted noise and interference around the subcarrier
sidebahds, The telemetry data phase modulates these components as well.
The assumption is made here that the noise and interference asre suffi-

ciently small to permit the approximations,

sin &»nl(t) s cbnl(t)
and.

sin (bnAR(t) ~ (7. 4)

d;n AR(t)

to‘be made,

- The desired-User signal and the other-User interference are
effectively mulitplied in the ground receiver by the desired-User reference

signal given by

( REF(t)) J—Z—cos{wcit+éci(t) + psinfe, t+ 8 6 (t)]} (7. 5)

. o0 - A -
/T3 T (Ocosks t+8 (0 +nfu b+ b w1}

scl
n.=-co
21
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The output of the carrier loop phase detector is

(e()(t))c_- v Sdi Sin{ecei(t) " Ascism[ wsc:i,c ¥ escei(t) ¥ ésci(t)]

+ ﬁxdi(t) + 'b‘lsip @lt + eli(t)) + <!>AR(t) cos| (wl-wz)t + Gli(t) - ezi(t)]

O (i)nAR(t)}+ J3 E 3 3_(5)

n=-N n,=-w J
i

j _
{M M M M Sin{(co o Kt o (t)- r: M+hoe -no KM
nAR cj ci cj ci j

1 AR 1l sej  Mi%eci
+ +

(n 0 sci(t)> B de('f)}

2 - | ,

— in: - + - + +

+ oMM ARMnlM AR [Sln{(wcj wci)fc MORNC (wlt Glj(t))

+(nw . -nw )+\n6 (1)~ n8_ (t)>+;3xd(t)}

jscj “isci

- sinflo -0 )t + 0 (1) -5 (1) - (0t + 0, (D) o -no
cj ci cj ci 1 1j jscj isci

4 (njesc () - nd )+ Bx dj(t)}]

¢ AR

+ 22 MM, M M —o I+ 0 (1) -6
2 1 AR nl nAR[COS{(“’cj )t T O fH) -6 )

t (e . -no )t+<n6 (t)—ne )+ By (t)+[(w—w)t
jscj 1isci j

+0, (0 -0, (]} + cosfle -w H+0_(1) -6 () +(no  -no
1j 2] cj ci cj ci jscj 1sci

+ (njescj(t) - niesci(t)) + ﬁxdj(t) - [(wl-w2)t + elj(t) - 92j(t)]}]

-+M M, M M

17AR 01 AR[‘!’nlj(tHd’nARj(t)]COS{(wcj-wci)Hecj(t)

cj 1isci

) eci(t) + (njws %t (njescj(t) i niesci(t)> ¥ ‘Bxdj(t)}}W. 6)
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Consider now the case where the other-User subcarrier sideband
components for which nj=mj lies very close to the desired-User subcarrier

sideband component for which ni=mi, That is,

o t+60 M+mleo t+6 ()] =wt+6 (t)+mf[w t+0 (t)]
cj cj i scj scj ci ci it sci sci

+ Aw t+ 0 (t) (7.7)
ij ij

“where _AwJ + 91 (t) is small.

Then the C, W, interference with compound PLL demodulation
arising from the other-User subcarrier sideband for which nj=rnj comes

from the terms

A/de ij(a)J 1(5)M1MARM M AR sin{OCei(t) + Bxdj(t) + Awijt'+ eij(t)}

+ ’ ) -
./de'ij(s)J 1 SOM M, MM ARS1n{6cei(t)+Bxdj(t) (w, t+0__(0)

+A..t+9..(t)}+A/—‘s_ I (s) { .
By, i} 4 m, 6 J m, - (5)M1MARM 1M ARSIE, ei(t)

+vﬁxdj(t) + f’(wscit + ésm(t)) +Ba b+ 0, (t)} (7.8)
in Eq. (7.6). If Acf)ij + Aéij lies within the carrier loop noise bandwidth,
the carrier component of the first term in Eq. (7. 8) interferes with carrier
tracking., If Awij+ Aéij lies within th§ subcarrier loop noise bandwidth,
the carrier components of the second and third terms in Eq. (7. 8) inter-
fere with subcarrier tracking. If Awij + Aéij is larger than the carrier
loop noise bandwidth», the data components in Eq, (7. 8) will interfere with

carrier and subcarrier tracking.
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" If the carrier and subcarrier tracking loop phase errors are

small, and Aw,  + Aé_ . lies within the carrier loop noise bandwidth, the

J
maximum phase error, (6 e'> , from this C.W, interference is
_ cel/
( ) Sd . (MnIMnAR>i ‘
6 . = [==L T (6)T__ (6) * (7.9)
cel max Sdi _ mj mi —(MnanAR )i

for the case where the ranging sidetones and telemetry data are being
transmitted on both the desired-User and other-User downlinks, In

general <9cei> may be written as
max

5 Jm.(é)Jmi(G)(cos ﬁj)(MlMARMnanAR>

I B 5 i i
(ecei> S.. (cosBi) (M M M M )i

1 AR nl nAR
(7.10)

where Bi = B or 0 depending on whether or not telemetry data is being

transmitted, and similarly for 8 ..

The important factor in Eq. (7. 10) is the produ\ct Jm.(ﬁ)Jm.(G).
With 6 = 5. 52, the largest value Jm(b) is 0.3960 for m=+4, 1 !
If a sideband for which mj=:t4 lies near the sideband for which mi=i4, then
the product J4(6)J4(6) is 0.157. This is large enough so that if the other-
User signal is stronger than the desired-User signal, the worst-case con-
dition A-may cause a problem with cai‘rier tracking. I;c is for this reason
that the TDRS system should be designed so that the downlink received

signal powers are approximately equal.

To compute the probability of SSMA C.W. interference from an
other-User subcarrier sideband component, the locations in the RF gpectrun
of the subcarrier sidebands ‘for' each combination of subcarrier frequency

and carrier band arebomputed for the zero doppler case. Then the
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various potential interference threats from other Users can be 4computed..
for each User by considering the full range of relative carrier doppiers
and seeing which other-User subcarrier sidebands can overlap desired-
User subcarrier sidebands, Since the carrier loop noise bandwidth is
approximately 25 Hz double-sided, the probability of a serious SSMA
interference problem with carrier tracking from an other-User subcarrier ~
sideband is fortunately not large in view of the relatively large relative

carrier doppler spread on the downlink.

The probability‘of ihterference with subcarrier tracking is
even smaller in view of the much smaller subcarrier loop noise band-
width. If the interference does lie within the subcarrier loop noise band-
width, the maximum subcarrier tracking error is in general

5~ I, 03 (6 (Cos,Bj) <M1MARMn1MnAE%

< L 5o ) _/_di i
pre— . g .
E Scelmax ai’ V2 (6/2m;)(cos ﬁ1)<M1MARMn1MnARZ

(7.11)
For 6§=5. 52 and for mi=mj=4, the factor J @8 (a)zmi/aA/ 2 is 0.161,
4 i i
We now consider the case where the data around the other-User
subcarrier sideband for which nj=mj interferes with carrier tracking and
subcarrier tracking by overlapping the desired-User subcarrier sideband
for which n.=m,. ‘Since the noise bandwidths of the carrier and subcarrier
loops are much less than the downlink data bit rate, the power density of
the other User data interference may be assumed uniform across the

noise bandwidths of these loops.
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The normahzed output of the carrier tracking phase 1ock¢d 1oop

phase detector is

I o “”J (6)sinf, ( MagM Moag).
o+ |k —— M. M__M M :
cei NSy °0551< 17 AR nl nAR>

A t+ 6 (t) + 7.
X xdj(t)coS[ A,J)ij | ij( ) ecei] (7.12)
The power density spectrum of the other-User data in Eq. (7.12) is
approximately
2 [ T MM M M 2
S .. J 6)J (G)Sm 13 ( 1 AR nl nAR>
dj ] 1
Sdi aMM M M 2
o cos Bi( 1 AR nl nAR)
x 2 x1x (o (- Aw—9)+<1>(w+Aw +e) (7. 13)
2 2 XJ ij  1ij J ij

where & (w) T Mlﬁl"
%] (T /4)2

(7.14)

if the successive data bits are assumed statistically indépendent. The

power density (double-sided) at d. c. is

2
.4
S, Jm.(ﬁ)J (6)sm B (M MARMnanARZ_ (T)31n (Aw1]~91J)Z
3 L . 2 T2
i Aw -6 )
di cos ‘9*1 (MlMARMnlM AR>i ¢ “’ij_' ij 16

(7.15)

The peak of this power denéity spectrum occurs where sin4x/x2= 0. 525,

The worst-case rms phase error from this interference source is
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()3 (@)sing, (M M, M

=" B, 5y, ‘m, . 1 AR nl nAR>.
| \}9 . = 0.525) . [—\/—~L J J
cei V' fB Sdi

cos B, (M lMARMn1MnAR>i

(7.186)

Since the ratio Of‘Bc to fB is 12, 4/103= . 0124, this insures that the
carrier tracking phase error from this source of SSMA interference will
- be negligible even under worst-case conditions. For mj=i4 and mi=:t4,

(0.525)1/2(B /£ )1/25  (8)3  (8)=0. 0127,
C B . mj . mi
Likewise, the normalized output of the subcarrier loop phase

detector is

I .(6)Jmi(6)sin ,33, (M

il
wo- S . 2m.\ 1MAR1\ nanAR>
__.!-_.69 + _1 _daj 1/ J_ 1
scei M M
J2 SeR W2NSy N O  cos (M M/ pM nAR>i
Aw t + +
X. xdj(t)cos[. wijt eij(t) ecei] (7,17)

The worst~case rms subcarrier tracking error from this interference

source is

: (
.(G)Jmi(é)smﬁj\M M, M M R)

__1_5 02 - /0. 525\/ di, /_sc : Y 1 AR nl nA
N2 ,_[vscel A S4; ¥ g . cosBi<MlM

]
ARMnanARZ
(7.18)

Since the ratio Bsc/fB is 0.5 x 10—3, this error contribution

. to subcarrier tracking should be quite negligible,

Finally, we consider the interference with compound PLL demod-
ulation from an other-User rnaging sidetone and/or turned-around noise.

- Assume that a fine range tone sideband associated with the other-User
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subcarrier sideband for which nj=mj lies very close to a desired—Uger .
subcarrier sideband for which n =m, in the RF spectrum. As far as the
C.W.. interference is concerned, the maximum carrier and subcarrier
tracking errors are simply '5‘1/2 times the errors for the case of inter-
ference with compound PLL demodulation by the corresponding other-

User subcarrier sideband. Since p p1 0. 5 radians, the maximum efror
is approximately 1/4 of that for the other-User subcarrler sideband in-
terference case. Similar remarks apply for the AR ranging sidetones,

except that §_ and BAR are much smaller than '51. Turned-around noise

2
will also interfere with compound PLL demodulation in this case. To

estimate the seriousness of this interference source, write d)nlj(t) and

¢ nAR;j (t) as
. - + . t ' )
d)nlj(t) nljc(t)COSwlt nljs(t) smwl (7.19)
and
= - + 2 -
(bnARj(t) _nARjC(t)cos(wl )t nARjS(t)sm (wl w2)t o »(7_.-20)
t), t), t), iy i i
where nljc( ) nljs( ) nAch( ), and nAR;]s(t) are Gau_ssmn noises of

o . -2 2 2 2 .
zero mean and variances ¢ ] , andg The noise power

nlj’ “nij’ nARJ nARj"
densities may be assumed constant across the noise bandwidths of the fine
range tone and ambiguity resolving ranging sidetone filters. Then the

final term in Eq. (7.3) may be written as

AFS"— _Z_NJ (5)( AR) [ JC(t)cos{ L+ (t)+n[co i +Vescj(t)]

oy
twt+ g .(t)} + i { + +
ot /3J X4 f o ljs(t)sm @t ecj(t) nj[ 9ot +9scj(t)] tatt Bjx dj(t)}

+n Ach(t)cos{wcjt to )+ nj[ 9ot * escj(t)] + (o )t + Bjxdj(t)}

+ nA (£ sm{w Jt o (t) +n [w j t+ ascj(t)] + (wl_wz)t + BJ. )(dj(t)}

126 -



scj

nljc(t)cos{wcjt + ecj(f:) + nj[ 9ot O (0] -+ J de(t)}

- t)si t+ + + - ot + '
nljs( )Sln{wcj ch(t) 'nj[wsc':jt GSCJ(t)] wlt Bjxdj(t)}

+n Ach(t)cos{wcjt to M nfu b+ 0 0] - (o)t + B dj(t)}_ -
nARjS(t)Sin{wcjt + ecj(t) + nj[ wscjt + escj(t)] - (wl-uzz)t + Bj xdj(t)}] (7.21)

If the noise around the upper fine range tone sideband around the
nj=m:i subcarrier sideband overlaps the subcarrier sideband for which
n.=m,, the normalized output of the carrier tracking PLL phase detector

may be written as

| ij..l 3 (M MAR>
e .+ J_(8)d (6)
cei VS 4 ™ mi; ;3( ] ARM M AR)i

X [nljc(t)cos[ Awijt + eij(t) + Bj xdj(t)] + nljs(t)sin[ Awijt + eij(t) + Bj xdj(t)]]

- (7.22)

The noise terms may be expanded as
cos (Au t +6, () - sinB.x  (t)sin(Aq t +0
{nljc(t) (cosﬁ’J co ( %5 913() s1nBdeJ( )sm( 4 ij(t)>>
t){cosBsin(Aw t +6_ (t)) + si t Ay t+ 6 (t
n, o )(q J 1“(_"33 N )) sinf X, ( )eos ( gt 0y )))] (7.23)
The autocorrelation function of thisynoise is approximately

. ’ 2 .
v (7 Aw  +0 A .2 (7.24)
nlj(T cos[ ( %j ij)T] cos _BJ. + \I/nlj(T)\IJXj(T)cos[(Auij +eij)r_] sin ,3J_ |

127



which corresponds to a power density Spectrhm

'1'[<I> .(w-Aw..-é.)JrCID (w+Aw +6, )]cos 5
2L nl 1] ij

—;— [Joo ag <I> (C‘)CID (w AwJ —9 - C)+I —Lq) (C)‘P (w+AwJ+9 -C)]Sln B

(7. 25)
Since the noise bandwidth (double-sided) of the fine range tone
bandpass filter is onb the order of 1/10'the data bit rate, we may approximate
27 nl (&) by an impulse of area 021 in the convolution integral in Eq. (7. 25).

When we do this, the power density spectrum at w=0 becomes
2 N 2 .2 :
[cos B® (Mg +0 ) +0° sin?8. & (Aw. +6.)| —  (7.26)
J o nlj iy ij nl Jxj 1] ij

Note also that for the range of frequencies, Awij + éij’ for which

(A +9 ) is non-zero, & (Aw +6. ) is essentially negligible, Con-
n13 ij  ij xj  ij  ij R

sequently, if Awl j + 9 i is smaller than the range tone filter bandwidth, the

rms carrier tracking error from this source of interference is

' 2
Sd' 1 (MIMAR>J o 12BC
2 =\/z=Lt T (8T ()= - ~ x cosB,\/ :
MM M M :
Ocei Sai mg o omy 2 '31< 1 AR nl nAR> J nl
_ (7.27)
where Bnl is the double-sided range tone BP filter noise bandwidth. With

cnl on the order of at most 0.5 radians (The noise cannot be much larger

than this without robbing too much downlink signal power from the other
modulation 'components and thereby causing the limiting amplifier excess
noise detector to cease transmitting the ranging sidetones on the down-
link.), the factor
1 2Bc
I (6)Jm (5) 50

j i nlV B,
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is, in the worst-case where mj and m, are both either -4 or +4, approxi-
mately equal to 0. 014. The noise bandwidths were taken as 2Bc= 25 Hz
and B =200 Hz. This factor is sufficiently small so that the interfer-

nl
ence from this source may be considered negligible,

For Aw,j +6,. such that the peak of the data specfrum falls in
i ij
the center of the carrier loop noise bandwidth, the rms carrier phase

error will be

5 Sd' 1 (MIMAR> O' (0 525)2]3
Vo .=/—‘LJ (6)J (6)" 7 xsmﬁ ‘
cei Sdi mj m, 2 /3 MM M AJ

U717 AR
(7.28)

Since fB/(O. 525) is approximately 10 times Bnl’ this interference is

even more negligible than the interference from the turned-around noise.

Likewise, it may be readily seen that the carrier phase error
from the turned-around noise from the output of the ambiguity ranging
sidetone filter is even smaller than that from the turned-around noise
from the output of the fine range tine bandpass filter. This is so simply _
because the noise power density at the output of the limiting amplifier |
following the AR sidetone filter is less than that at the output of the limit- |
ing amplifier following the fine range tone filter. This is so in part
because of the attenuation factdr 1/K which reduces the amplitude of the
white noise. Also, since the exces:; noise detector ceases transmission
of the AR tones on the downlink when onAR éxceeds approximately 0. 5
radians, the larger noise bgndwidth BnAR results in a smaller value of

noise power density %AR prior to the excess noise limit being reached.

In sdmmary, the most potentially serious problem of SSMA
. interference with compound PLL demodulation arises from C.W.

interference with carrier tracking from an other-User subcarrier sideband,
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The probability of this occurring is small, however, and if it does occur

it should not last too long.

7. 2 Data Demodulation

In the case of data demodulation, other-User SSMA interference
Varisles from either the other-User subcarrier sideband plus data orv from
the other-User ranging sidetone plus data and turned-around noise. The
data bandwidth is much wider than the carrier loop bandwidth, and con-
sequently if an other-User subcarrier sideband overlaps the data around
one of the desired-User subcarrier sidebands in the received RF signal
spectrum, the data around the other-User subcarrier sideband will also

interfere with desired-User data demodulation.‘

To analyze the situation for the case of interference with data
demodulation from an other-User subcarrier sideband and data, we make
use of the results of the previous section to write the normalized input to

the data demodulator as
O (5)(1\/1 M .M M

( (ﬂ) xd(t) +\/S; m; AR 'nl nAR>].

smB 1 (MIMARMnanAR>

X csinfAw t+0 (t)+6 _(t)] + si ' A + + }
{cosﬁJ [ 5 iJ( ) Cel( )] s1n}3:i xdj(t)cos[ wijt Bij(t) Ocei(t)]
(7.29)
From Appendix C the variance of the interference at the output

of the data demodulator is approkimately

. 4 : :
sin (w..+9..)T/4 £ sin4(c—q,-6,.)T/4
o2 2 j ¢ 1.,
Sj P cos Bj + SJ,Sm BJ w o7 a|¥ 2
+ - -
(le 613) T2 )16 ( . b, ) T%/16
4 . ‘
si tw.+86.) T/4 . 4 ST -
- in (C wi) 13) / >T2 sin (ET{‘}) . . (7.30)
P 2 5 9 . .
tw,  +6, . T7/16 T
(c o 13) / (& T/4)
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2

o M,
where S Jm_(f’)Jm,(é)\Ml ARMnanAR>-
sl T A ] (7.31)
o2 S, in“8 (M M, M M
di Sin ’31< 1 AR n1 nAR)

The worst -case 1nterference from the C, W, subcarrler smleband
" of the other-User occurs for “4 + eij such that [sm (w +9 )T/4]/[ (w +6 ) T /16]
is at its peak of 0.525. The variance of the C. W, 1nterference in that case

is
2 .2 :
(0. 525) Sj cos BjT (7.32)

This must be much less than T2/31.7, or

Sj 0032/3:j «< 0. 06 - (7.33)
‘ ' - 2 2
In the worst-case where m =m_ =44, J° (§)J° (§) = 0. 0247.
: I 1 mj mi

This is sufficiently large so that this source of interférence may present
a problem if the other-User signal power is significantly larger than that
of the desired User, or if the other-User is not transmitting telemefry
and/or ranging sidetones (as during acquisition of the other- Uber, for
example), If the other User is transmitting data, the factor cos ,3 /sm ,3
which equals cos B 0. 41 for B=1 radian, reduces the C.W, SSMA

interference proble'r_n somewhat,

The worst-case interference from the other-User data occurs
for wij + eij = 0. In this case the variance of the other-User data inter-

ference becomes

4 :
2 .
1,.2 .2 i dx (sin x[4) 1.2, .2, /25 2 . 2
i ax =L £9
2’v]."Sjsm 'Bj- o7 x4 2‘1 Sjsm Bj K12>~T Sj sin Bj

(7.34).
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_ o o
This must be much less than T"/31.7, or

Sjsinzﬂj << 0.0316 - (7.35)

~or _ :
o Sd' 9 9 (M lMARMnanARf
-é—‘l.‘ Jm (6)Jm (6) 5
di 7§ i (M lMARMnanAR)i

(7.36)

Again, since Ji (G)Jrzn (6) can be as high as 0. 0247 for m, = mj= 14, this
' i i :
source of interference may pose a problem if the other-User signal power

is significantly larger than that of the desired User, or if several other-

User interference components of this type are simultaneously present,

Turning now to the problem of interference with data demodula-
tion from an other-User ranging sidetone plus retransmitted noise, the
‘input to the data demodulator for the case where an other-User fine range
tone sideband plus retransm.itted noise overlaps the desired-User data
may be written as

. Jm.(é)Jm.(é) (MIMARMnanAR)
(ei(t)> = Xgi ) Sd_? : sinBli (M MM M ) J
i

data i 1 "AR "nl "nAR

p .« vl ..
1 1
——— . + + + —
X { 2 Sm{wijt Gij(t) " Gcei(t) Bjx dj(t)} 2 (M

+ e‘ij(t) + ecei(t) + -Bj X dj(t)} +n ljs(t)sin{Amijt + Gij(t) + ecei(t) ,3j X dj(t)}]l

(7.38)

As far as the interference from the other-User fine range tone
and data is concerned, the results are identical to the case for interference

from the other-User subcarrier sideband and data except that the variance
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of interference is reduced by the factor i‘ pl2 =0.0625. Consequently, the

interference with data demodulation from an other-User fine range tone

plus data is sufficiently small to be considered negligible.

" The variance of the retransmitted noise component of the output

of the data demodulator is, from Appendix C,

o0 .
| de 2 o
_fw oy 2 () IESp(w)l | (7. 39)

where <I>n(w) is given approximately by

2,(w) = S cos ,3 e, (w+AwJ+9 )+ e (w-gwij-éijﬂ

0 0
CsinZe 1| [ 4 4 dg VI
+ 8! sin Bj 8[ (&) @ (w+AcoJ+9 -z;)+ Jwé_???nlj(c)@xj(w Acoij eij C)]

] -c0 2T nl
| (7. 40)
where ¢ 12 (32 (&) (MM, ) |
si= L S ! (7.41)
} P4 sin ﬁ(M M, M nanAR)

1 ' : ' 2
A i — i .
s before, we may approximate on cbnlj(c) by an impulse of area onl ,

so that the convolution integrals in Eq. (7.40) become

[‘I?‘ (cp+AwJ+6 )+¢I> (w-AwJ-G b | , | (7.42)

With thls approximation, the variance becomes

S'cosB—I d‘”( (w+/_\w +e R RO Aw -e ))M‘*—
J ~00 27 ij (T/4)

2 (2 0]
+Sisin’g o2 ) S (‘P o+ A+ 6, DAL LYY -6, ))—“J_“Sln W
_ j j 8 nl -0 27 1j (T/4)

(7.43)
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The first integral is maximum when Awij + eij 'is near the peak
2
of Sin4((oT/4)/(wT/4) » Whereas the second integral is maximum when
"Aw +6. = 0. Inthe first integral 2—; 21 (wi( Aw ,+eij)) is approximated

ij  ij 1)
by an impulse of area 01121’ so that the maximum of the first component of

Eq. (7.43) is
2

2 T
St cos B — o
j BJ 8

2

2 2
2(0. 525)= S! cos“g. T 2 (0. 13) (7. 44)
nl J ] nl

The maximum of the second component of Eq, (7, 43) is
' 2 i 2 4 2
2, T i . T
St sin . 2, ] QX-(M> - ' sin’B 212<2—5>
J

8 ‘n1l “foom \ x/4 ] 7 8 %n1°\12

= St sin2g T2 (0. 521) (7.45)
i 3 nl A A

The variances of Egs. (7.44) and (7. 45) must be much less than

2
T /31.7 if the required BEP is to be realized. This condition may be

written as

2 (5132 (5)

de i ]
2

5 . 3
- M - .
di (MlMAR nanAR>i sin - B,

‘ (MIMAR>J-2 coszﬁj J

02 (0. 13)<<0. 0316
nl

(7.46)
and
\2 .2 2 2
J
S . (MlMAR). sin g, m, (0, (6)
dj J - i 5 ]
S . M M -
o d <M1 ARMn1 nAR>i - sin B,

02 (0.521)«0. 03186
nl

(7.47)

The more difficult condition is that of Eq'. (7.47)., In the worst-case situa-

tion where m.=m = +4, J2 (5)J2 (8)o 2 (0.521) is 0. 00322 which is
1 3 n, mJ nl

approximately 1/10 of the critical value of 0. 0316. Consequéntly, if the
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other-User signal power is not significantly 1afger than that of the desired-
User, the interference with data demodulation from retransmitted noise

around an other-User range tone is essentially negligible,

- We now examine the case of interference with data demodulation
from an other-User AR sidetone cluster plus retransmitted noise and
accompanying data, Since the amplitudes of the AR sidetones are much
smaller than the amplitude of the fine range tone, the interference with

data demodulation from an other-User AR sidetone is entirely negligible.

As for the turned-around noise around the AR sidetone cluster,

recognition of the fact that the noise power denisty (I’n J.(co) is much less

AR

than the noise power density @nlj(w), even though g2 may be on the

. nAR ,
same order as cnzl’ leads one to realize that this source of interference

with data demodulation is negligible. .

In summary, ~only interference with desired-User data demodu
lation from an other-User subcarrier sideband plus data may present

a problem.

7.3 Ranging

In this section we éxamine the case of other-User interference
with the desired-User range measurement., The worst-case SSMA in-
-~ terference should occur for the situation where one of the other-User
subcarrier sidebands overlaps one of the desired-User fine range tone
sidebands. Of course, since the fine range tone loop noise bandwidth is
so small, the probability of the CW interference is small, and should
it occur, it would not last long because of the relative carrier doppler

dynamics.

The input to the fine range tone PLL phase detector may be

written approximately as
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J .(G)Jm.(é) cos Bj (Ml

' » o M. _M
' ( ) Sdi m) i AR nanAR>j
e (t)) =7 sinfwt+6.(t))+
: : S MM M M
( ' )1 ! ro di COSBi< 1 AR nl nAR )i

xsinfwt + 0. (1) +Aw, t+ 6 (t)+6 ()]
1 1 1] ij cei

| ing, (M M, M M
v de Jml.(é)Jmi(é) SmBj( 1 AR n1l nAR>1.
+ .
M, M M
Sai cosB; (M MarMny nAR)i
+ + +6. (1) +
x Xqyt) coslwt + 6 (1) Buy it + 0,,() G) | (7.48)

If Awij + 0, 3 is less than the bandwidth of the fine range tone PLL
- only the C, W, interference is important. In this case, the maximum

fine range tone phase error from this C,W, interference alone is

s, cos B (MIMARMnanAR) J_(8)_ (5)
V's

(6, > _ — J .l~ i
1/ nax ' Sa  coshy (M lMARMnanAR)i Py
| | | (7. 49)
For mj= m, = i4’. Jm.(é)Jmi(é)/’El - 0.314. Since the peak phase error

]
must be less than 0, 0645 radians, it is clear that ranging may be dis-

rupted when this interference occurs. Fortunately, the probability of
its occurrence is small, and the duration of the disruption is likely to be
short. In fact, if the relative carrier doppler dynamics is large enough,
the interference will sweep through the loop noise bandwidth too fast

for. any significant error to build up.

Turning now to the data interference component of Eq. (7. 48),

the rms phase error from this source of SSMA interference is
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—— sin 8. (M lMARMnanAR>. S .. 3 Jm .(G)Jm.(é)
02" - —d eI\ 3 (B o (g +o ) — L
cosB; (M M,pM 4 nA’r‘Qi i oA p1
(7.50)

where B1 is the single-sided loop noise bandwidth, and

| sin”(w T/4) - '

<I>X.(w) =T = 5 ' - (7.51)

J (w T/4)
The worst-case occurs for Aw +0 .. at the peak of ® (w). For this
— e R ¥ X3 :

situation, V efe is

—= sin B, (MlMARMnanAR>' S .. Jm.(ﬁ)Jm.(G)
62 = ! ! dil\/—L(0. 525) — L
\' le /. cosB. (M M f : )

_ max i 1 i B

M
ARMn1 nAR>i Sat 1
(7.52)
With B_= 0.6 Hz, f_= 103 Hz, p,= 0.5, and m,=m_= %4, the factor
\ 1 B "1 j i
5 J (8T (8 o
1 m, my
tanB —(0. 525) = ~ 1,56 x0,00567 = 0,00885
. B 1 v
: ’ (7.53)

is sufficiently less than the critical value of 0. 0645 radians, so that it is

unlikely that this source of interference will be serious.

For the case of interference with ranging from an other-User

ranging sidetone, consider the other-User fine range tone sideband to be
the‘SOurce of the SSMA C.W, interference, When the other-User fine

rvange tone sideband falls inside the loop noise bandwidth of the desired;User
fine range tone PLL the maximum phase error is '[)'1/2 times the value in
Eq. (7. 49). This means that the maximum fine range tone phase error

will be 0. 25 times the value for the case where the SSMA interference
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“with ranging is from the other-User subcarrier sideband. This is still
large enough to cause a serious disruption of ranging if the other-User
fine range tone dwells inside the loop noise bandwidth for any significant |

length of time. This, however, is highly unlikely,

Similarly, interference from an other-User AR sidetone may
also cause a momentary problem, although a less serious one than for

the case of SSMA interference from an other-User fine rénge tone,

Since the fine range tone rms phase error arising from SSMA
interference by an other-User data component around a subcarrier
sideband was already shown to be inegligible. it follows that the error
from the data components around the other-User rnaging sidetones
sidebands will also be negligible. This is so because the error in this
case is less than the above error by a factor equal to one-half the ranging

sidetone phase deviations which are all less than or equal to 0.25.

The remaining source of SSMA interference with range tone
tracking arises from other-User turned-around noise. We consider the
turned-around noise around an other- User fine range tone s1deband first.
If the error from this source is neglgible, the interference from the
turned-around noise around an other-User AR sidetone cluster sideband
will also be negligible. The input to the fine range tone PLL for this
case is '

3 (6)3 (6)(M MAR>

(e (t)> psm@we (t)>+/_dl'— j

ZCOSB ( ARMnanAR>i

X {nljc(t)cos (wlt"!' 61(1:) + Awijt + Oij(t) + ecei(t) + ,sj )gj(t)>

+ nljs(t)sin< @t +0 (1) + Aoyt + eij(t) to__(t)+ 8 de(t)>] (7.54)
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The normalized output of the fine range tone loop phase detector is

épproximately
' - M M J J
S < 1 AR)j m.(é) mi(a)

. d'
(e W) = 8 +\/ 9L .
; MM M ~
° >1 lei ¥V Sg MiMar“ni nAR)i 2P, cosp,

X {cos Bj[nljc(t)cos (Awijt + Gij(t)> + nljs(t)sin(Awijt + Gij(t))]

+ sin,Bj xdj(t) [-nljc(t)sin<Acoijt + eij(t)> + nljs(t)cos (Awijt + eij(t)>];
7 (17.55)

We proceed as in Egs. (7.24), (7.25), (7.26) and (7. 27) to obtain the
result that : '

_ MM |
= S .. Jm.(é)Jm.(a) ( 1 AR>- 2B
’92 - dj RE i J cosB. o 1
" lei S 2 711 cos 'Bi <M1M j nl B

di ARMn anAR >1 nl
(7. 56)
when Aw +t éij is less than the fine range tone BP filter bandwidth, and
ij o :
= 5. Im, 99, (M Myp). ~_ [2B (0. 525)
i M j nl
lei ¥ 8 2P cosh (MMarMniMnar), 1D '
(7.57)
when Aw, .+ 0, is near the peak of the & (w) curve,
o 1] 1) X]
From Eq. (7.56), the factor
J () (8 -
m m, 2B _
; i 1~ 0,157 2(0. 6)
g 5 = o= (0.5) = 0.0061
27, nl Bnl 2(0. 5) 20 A ,
(7.58)
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is sufficiently less than the critical value of 0. 0645 so that this eource of
SSMA interference with ranging may be considered not serious if the other-
User received signal power is not significantly larger than that of the

desired-User.

From Eq. (7.57), the factor

. 0,157 2(0. 6)(0, 525) |

3 ~ ~

o — = (0. 5) \/ ~ 0.002
27 fo 2(0. 5) 10°

Jm.(é)J'mi(é) : \/zBl(o.' 525)
nl

: (7.59)
Th1s is even smaller than the above case and therefore this source of

SSMA interference is essentially negligible,

Since the noise power density of the turned-around noise around
an other-User AR sidetone-cluster sideband is much less than that around
the other-User fine range tone sideband, this source of SSMA interference

with ranging should be truly negligible,

Concerning range ambiguity resolution, we realize that the very
‘small effective noise bandwidths of the AR tone loops make serious C. W,
SSMA interference unlike‘_iy in the sense that the relative carrier doppler
dynamics should prevent an other-User C.W, component from remaining
for any significant 1ength of tirhe within a fraction of a Hz of a desired-
User AR sidetone sideband, As far as other-User narrowband SSMA in-
terference with range ambiguity resolution is concerned,; recall that the
AR tone phase deviations were chosen in Sec. (4) on the basis that the
value of the effective noise power den51ty, CIDR for fine range tone tracking
~threshold and AR range tone phase acquisition threshold are identical.
Consequently, if the SSMA narrowband interference was negligible for the
case of fine range tone tracking, it should be equally negligible for AR

range tone phase acquisition.
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8. MULTIPATH INTEFERENCE EFFECTS

8.1 Introduction

Three types of multipath interference are considered. At low
grazing angles, the earth refelected multipath interference is likely to be
primarily specular at VHF, As the grazing angle increased, flat-fading
diffuse multipath interference predominates.- Finally, at large grazing
angles the fading of the diffuse multipath interference becomes non-coherent
as the time delay spread of the multipath interference increases. By
multipath interference is meant the earth reflected signals. The desired

direct line-of-sight signal is referred to as the direct-path signal.

8.2 Uplink Multipath Models

The mathematical models that we shall use to represent the
received signals for the three cases of multipath interference are developed

below.

We consider the uplink first, The received direct-path signal

is written as
(eu(t))d= JES sin{wct +6 (1) +osin[w t+o_(1)] + B’ﬂ;(t)
o+ plsiﬁ (wlt +0, (1) + by g{t)cos ((‘*’1'“’2)t + 91&) - 62(t)>} BERRY
Thc?n the specular multipath interference may be written as
(eu(t)>s= a v2s | sin{wct + éc(;) + ecs(t) + 6 sin[wsct + esc(£) + escs(t)] + ﬁ){ltt—ts)
* b, sin(mlt + 9_1‘” +6 13{t>>+ bagt-t )cos ((wl- @t +6.(t) - 0,(t) fels<£>- e2s(t>)}

(8.2)
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where a, is the relative amplitude of the specular multipath cornpbnent, and

0 (t) =-wt (t)

CcS Cc S

0 (t) =-w t (1)

scs SC s

els(t) = -wlts(t)

0, (1) = -qt (1) | (8;3)

and where ts(t) is the relative specular multipath time-varying time delay,

- The flat-fading dffuse multipath interference may be represented by

: (eu(t)>ffd= x,(t) A/2§u sin{wct o (t)+ ecs(t) + §sin[ w t+o_ (t)+ escs(t)]

+Bx (tt )+ plsin<w1t +0()+ Gls(t)> + dy plt-t )cos ((wl- @)t +0,(t)
- els(t) - ezs(t)> } + Xq(t) ,/2Su cos{ wt + ec(t) + ecs(t) + §sin| o b+ esc(t)

o r o, (0] ¥y (t-t )+ p sin (wlt +0.(6) +6, (1)) + ¢, (t-t Icos (o, et
ot -6 (t)+ 6, (1) - Aezs(t))} | . (8.4)

where y cu(t) and xqu(t) are independent zero mean Gaussian random
fluctuations with identical variances and power density spectra. The

autocorrelation function of xcu(t) and Xéu(t) is assumed to be

Ko X ) = ¢ % (147 = _ozexp[ (/7 )% (8. 5)

where T, is the "decorrelation time." The Fourrier transform of this is

2 2 2
g o f /2Bf

7= B, (8.6)
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where Bf is the ""fading bandwidth," and is related to the "decorrelation
time'' by
_1 1 - ‘
Bem 7T ot | (8.7

The fading bandwidth is approximately given by

v

B o] . '
¢ N—_Xc \I/W siny (8. 8)

where v, is the User satellite orbital velocity, )\C is the wavelength of

the VHF carrier, ‘Iv,v is the rms slope of the isotropic, Gaussian-distributed

undulating scattering surface, and y is the grazing angle of the scattering,

For the case of non-coherent fading of the multipath interference,
the assumption is made that spectral components separated in frequency
by an amount on the order of the subcarrier frequency fade independently,
whereas spectral components separated in frequency by several kHz or
less fade coherently. Thié is a valid assumption for diffuse multipath
interference at large .grazing angles and for User spacecraft at altitudes
between approximately 500 and 4000 miles. If the rms slope of the
scattering surface undulations is on the order of 4°, the coherence band-

‘width is on the order of 10 kHz.* This justifies the above aSSumptvion.

In the tim'e_‘idelay—spr_ead representation, the non-coherent fading

diffuse multipath interference may be written as

(e (t) = Z X k(t)sin{w +0 (t)+6 (t)+ gsinfw t+06 (t)+6 (1)
h-cfd k © ct c cs sc sc scs

- + t-t )+ o si + 0 (1) + - + - -
wsctk] _B)(_u( s) plsm (wlt Gl(t? Ols(t) wltk) &)AR(’C ts)cos<(w1 cuz)t

+ 91(t) - ez(t) + els(t) - ezs(t) - (wl—m2)tk>}+ qu(t)cos{wct + ec(t) + ecs(t)

*Durrani & Staras - Multipath Problems in Communications Between Low-
Altitude Spacecraft and Stationary Satellites. RCA Review, March 1968,
p. 95. ’ :
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+ § si + + - + -4 )+ p._si + + cwt ]
ésm[wsct esc(t) 0.4t wsctk] Bxu(t t) plsm(wlt 6(t)+6, () ot

+ &AR(t-.tS)‘cos((wl—ué)t +6.(t) - 0t) +6, (t) -6, (1) - (0 -u,) )}

1 27k (8.9)

An alternative, and more useful representation, considers only
the important spectral components of the received non-coherent diffuse
multipath interference. For simplicity in representation, we use the
amplitude-phase representation of the cophasal and quadrature random

signal components. That is-

a(t)sin(wot + d)(t)) = X )sine t+x () coso t (8. 10)

where

xc(t) a(t) cos ¢ (t)
and | (8.11)
xq(t) alt) sin ¢ (t)

"

Then, to a good approximation, the non—cohefent fading diffuse multipath

interference may be written as
+N

(eu(t)> x MM, ,/‘S’lz 2 neN Jn(é){ano(t)sin{wct +ec(t).+ecs(t) +d>n0(t)
+nfw t+6 (t)+9'?(t)j+ y (t )}+f—1 " (t)si +0(t)+0 (t)

n cosc: s¢ '~ scs 'Bxu —ts 2 anlt Sm{wct ct_ cs(lc
+0 (W) +nfw t+6 (1) +6_ (£)] +Bx (t-t )+ (ot +o.(1) +0 (t))}

-nlv sc sc scs S tu s 1 17 1s

P '

1l - . - .
T anl(t)sn:l{wct +ec(t) +9cs(t) +<bn1(t) + n[wsct +esc(t) vescs(t)] +ﬁxu(t—ts)

1y + +
- (wlt +0.(1) + Gls(t))} 5 bagtt,) anAR(t)cos{wct +o () +o_(H+d o

' | \
+ n “’sct + eSc(t) + escs(t)] + Bxu(t-ts) +((w1-w2)t +. el(t) - 92(t) + els(t) - GZS(t))}
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14 iy a - ’
* 2 <I)AR(I':%S) anAR(t)CoS{mct ¥ ec(t)_+'ecs(t) +d)nAR(t) +nf wsct ¥ esc(t) ¥ escs(t)]

+ Bxu(t—ts) - ((wl-coz)t + Ol(t) - 92(1:) '+els(t) - 628(1:)>}} ~ (8.12)

The fact that the fading of the fine range tone sidebands and that
of the nearest AR sidetone cluster sidebands may be partially coherent is
largely irrelevant. It is important to note, however, that the AM sidebands

of the “ and «, AR tones in the AR sidetone cluster fade coherently.

8.3 Specular Multipath Case

The case of specular multipath interference was studied in
Tech. Memo. G-161-7, We review the results of that memorandum and
update them to include the modifications in the signal and receiver design

| made since that time,

The output of the carrier 1oop,A phase detector for the case of

specular multipath interference is

)

+ plsin<<.o1t + el(t)> + d>A'R(t)cos ((wl—wz)t + Gl(t) - 02(1;)>}+ ausin{ece+ ecs(t)

+ §si t+6  +0 (1) - psi t+6 ]+ -t )+ (+
5sm[wsc sc scs( )] Gsm[wsc sc] 'Bxu(t 1:s’ plsm CQlt~ 61(1:)

= 1 + i + - i 6
. Sm{ece 53111[ wSct 6801 6 sin [wSCt + GSC] + Bxu_(t)

+0. (1) b, pli-t Jeos (o -t +0,(6) -0(0) +6 (6) -0 2S(t>)} (8. 13)

A

With Gce small and esce= BSC-GSC also small, the compound PLL operates

in the linear region.
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The subcarrier differences are

6 (sinfw, t+ esc] - sinfw t+ esc—‘esce]) = Asinfa t

where 0
A=20 Isin( Sce) |
2
and S .
./ 6 .
-+ = =
sin \d)sc Gsce> A sin esce
and
' +0 +6 ()] - sinfw t+0
& (Sln[wsct GSC GSCS( )] S n[wsc Sc])
= i + + 6 +
T'sin| wsct GSC scs(t) ‘}’SC]
where 6 +0
T= 26 |sin|—S%—S5C8 )| - 95 Isin(-g->|
2 2
and

' 6 .
. + + =2 o +
Sin <esce escs(t) 7sc> r o ( sce escs(

The various signal components at the outpu
phase detector are obtained by expanding Eq. (8. 13)
Egs. (8.14) and (8..17).

(eo(t)>c A MlMAR cos B { JO(A) sin Gce
+ JO(A)cos 0. taanu(t)
* auJo(r)Sin(ece+ Gcs(t)>

+ auJo(I‘)cos <9ce+ Gcs(t)) tanB xu(t-ts)'

+2J (A i +0 +
1( )cosGce sm[wsct Osc ‘LSC] |
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fr esc+ d>sc] (8. 14)

(8.15)

(8. 16)

(8.17)

(8.18)

t)> (8. 19)

t of the carrier loop

and making use of

carrier loop error signal
data signal
C.W. multipath inter-

ference

spe cﬁlar multipath data

.subcarrier



+ ‘ + - si + -
au2J1(T) [cos <9ce Gcs(t)> sin (Oce Gcs(t)> taanu(t ts)] |
: . subcarrier specular
X sin[w t+0 +0 (1) +y ] muliipath interference
sc sc scs sc

+ b sin(wt+ ) - i
Jo(A)cosece p, sin <wlt Bl(t) fine range tone

1

+aJ (T)[cos b, +e (t)) -sin(0__+0 (t) Jean B (-t )]
u o ce cs - ce cs u .S :
: ‘ fine range tone spec-

X 51 sinv[ mlt + 91(") n 913(“] ‘ular multipath interference

+ JO(A)cos ece &AR(t)cos<(w1-w2)t + 91(1;) - 92(t)> AR sidetones

tad r[ 6 +0 -sin(6 + - ]
au o( )COS< ce cs(t)) Sln(ece Gcs(t)taanu(t ts) AR sidetones specu-
! \ lar multipath inter-
+ ¢, (t- — )t + - + -
bt ts)cos<(w1 Gt +6.(t) -6,(1) +6,_ (1) st(t))} ference

(8.20)
For small & and §8 ,8n0B ~06 ,cos0 ~1, J(A)~1, and
ce sce ce ce ce o
2J1(A)~A.

8.3.1 Effects of Specular Multipath Interference on Compound PLL
Tracking

i

Depending 6n the frequenéy écs(t), the C.W. multipath interference
component will either interfere with carrier tracking or data demodulation,
‘bu>t not both. This is a consequence of the hature of the bower density
spectrum of the split-phase data. The narrowband multipath interference
caused by the data component around dc can interfere with both carrier-

tracking and data demodulation,

If écs/27r is less than the carrier loop noise bandwidth, the
maximum carrier loop phase error arising from the "'carrier" component

of the specular multipath interference (after multiplication by the wideband
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FM reference signal) is

(6.,) = ad (D (s.21)
ce u o
max
and the rms error is (6 e\) N A sketch of Jo(l") as a function of
“®max '
o«=6__+60_ _is shown in Fig. 8.1 for § = 5.52. For |a| greater than
sce scs

approximately 20°, JO(I‘) will be less than 0. 4.

The likelihood that éCS/ZW will be less than the carrier loop
noise bandwidth is small, however. In the range of grazing angles for
which specualr multipath interference is likely to occur (ybetween 10°
and 40°), écs/27r will be at least 150 Hz for near equatorial circular
orbits. Consequently, the effect of the C.W. specular multipath inter-

ference on carrier tracking is negligible.

_ The specular multipath data may interfere with carrier tracking
if the relative speculai‘ multipath doppler frequency écs/zvr is Su.ch that
it lies near the peak of the data power density spectrum. The rms
carrier loop phase error from the specular multipath data éomponent

is approximately given by

R

5 \L/2 NS YL
(ece> = auJo(I‘)tanB[Bc@XuKGCS” | (8.22)

. 4 .
where cI)X (w) = T sin (mT/4)/(wT/4)2. If ecs lies at the peak of the
u o
@ («) spectrum, this rms error is
-

1/2 B 1/2
] (8.23)

<ece> ~ auJo(F)tanﬁ[f (0. 525)

max B
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Fig. 8.1 Jo( I) as a Function of «
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With B = 9 Hz and f_= 100 Hz, this error becomes

c B
N\ 1/2
<92> = a J (T")tanB(0.218) (8.24)
ce . u o
max
For fB = 400 Hz, this error is
_\1/2 .
<92 ) = a J (TDtanB (0. 109) : . (8.25)
ce um o .
max

With écS/Zﬂ likely to be 150 Hz or greater, the peak of the
specular multipath data component will not be shifted into the center of

the carrier loop noise bandwidth. The next highest peak of &_ () has a
. u ,
value of approximately 0. 045 T, and this causes a maximum rms carrier

loop phase error of

r\1/2 -.
<92> = auJO(l") tan 8 (0. 064) S _ . (8.26)

©®/max
It is clear that the relative specular multipath carrier doppler frequency
is a big factor in reducing the effects of the specular multipath interfer-
ence on carrier tracking. Considering the fact that a;l is likely to be less
than about 1/2, and that Jo(l") is less than 0.4 for approximately 90 percent
of the range of the relative specular multipath subcarrier phase escs’

it is evident that the contribution to the carrier loop phase error from

specular multipath interference is essentially neglibible,

Turning now to subcarrier tracking,. the output of the subcarrier

loop phase detector is approximately given by
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(e (t)) 71? 2J1(8)sin(e I %Ni(ncos(ecg 0_{t))sin(6___

sce

SCS SCS

vo_ () +y ) - FzJ (Osin(0,,+ 0, 1)) tan B (-t Jstn(o, +o_ (047, )

5 23 (1) - (8.27)
S -5 :
=77 %5ce 2 f( T > COS<9 o (t)) Sm( Osce escs(t)>
a & (23.(D ‘ g
T (2 SN
e < T >S1n<9ce+ Ocs(t)>tan6 xu(t ts)31n<esce+ Oscs(t)> |
| (8.28)

The error resulting from the presence of the C, W, bspecular multipath
interference is negligible because the relative specular multipath carrier
doppler frequency écs/27r is much greater‘than the subcarrier loop noiseé
bandwidth B sc” The contribution to the rms error from the specular

multipath data is approximately given by

1/2 27 (T) B_ o qi/2
A g () e[ (i)

(8.29)

A sketch of [26J1<I' (a)) sina/I‘(a)] is shown in Fig, 8.2 for §= 5. 52.
The maximum value'of this factor is approximately 1.1, For écS at the
peak of the data power spectrum <I>x (w), and for £5=400 Hz and

u
BCS= 0. 5 Hz, the worst-case rms error is-

1/2 _
5 2 _ 1/2 _
J_2_<esce) a, J._(l 11, 56)[400(0. 525)] = 0,031 a

max

_ , (8.30)
This is certainly negligible.
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For fB= 100 Hz, and GCS at the second-highest peak, the maximum

error is

1/2 -

B2 ) - L 100 56)[9*'5'(0 045)]1/2 = 0.0182

v 2 \'sce s 3 : 100 ’ %a
: (8.31)

which is even more negligible,

In summary, the effects of specular multipath interference on

compound PLL tracking are negligible.

8.3.2 Effects of Specular Multipath Interference on Data De modulation

Turning now to the case of data demodulation, the normalized

input to the data demodulation is approximately

e.)) _ . N ' L
| ( i }iata %, (8 + 2,7 () cot gsin(6_+6_()+a J (Deos(6_+0_(1))x (t-t )

(8.32)

The variance of the C. W, interference at the output of the phase

detectoris e
5 1 oio o o sin'(6 ST/4)
Oy = Eau'Jo (Dcot“g T - < 5 (8. 33)
(6 T/4)

The worst-case situation occurs for écs at the peak of the Split—phase
power density spectrum. In this case the condition for the required BEP
is .

2 T2

9w < 317 . ' 0 (8.34)

or

1 : 2 2 2 1
=(0. 525 <<
3 )au Jo (T)ecot”s <317
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With a, less than about 1/2, and JO(I‘) less than 0.4 for approximately
90 percent of the range of the subcarrier relative specular multipath phase

delay, escs’ this condition should be satisfied most of the time.

For the 100 BPS data rate, 6__ will more than likely lie past
| the peak of the split-phase power density spectrum. If écs lies at the
next highest peak of split-phase power density spectrum, the condition

ona J (D is
u o
a J (D) <« 1,84 : ' (8.36)
uo ~

This condition will be satisfied essentially all of the time,

The specular multipath data component -at the output of the data
demodulator is ’ ' .
T
]

a 3D J gos(ece+ 0,4+ 06_f0))x, (t-t ) € gpt)dt (8.37)

Since the Worst-éase specular multipath interference occurs at low
grazing angles (y<20°), and since such low grazing angles would only be
encountered for low altitugies, the relative specular mulfipath delay, ts’
will be small compared to a bit period under conditions for which specular
multipath interference is likely to be a problem. For example, for alti-
tudes below 200 miles, and for grazing angles below 20° the relative
specular multipath time delay is less than 0.4 msec. This compares with
uplink bit periods of 10 msec or 2.5 msec for the command data, and a
downlir_lk.'bit period of 1 msec for the telemetry data. Consequently, we
make the simplifying assumption that t, is negligible in Eq. (8.37), so
that the product xu(t—ts)esp(t) = 1 over the bit period,
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The mean-square value of the specular multipath data component at the

output of the data demodulator is

2 .
- i T/2)
9 21 9 sin“(0 . |
o " T 5 a Ji(r) S (8. 38)
(eCST/z)

With écgzw greater than 150 Hz, the worst-case condition for the required

BEP becomes, in the case of T = 10 msec, approximately

1 1
) or = (a J (I‘) —_—— g ——
Tz 31.7 2( > (3 /2) 31.7 (8.39)

or

aJ (M« 1.2 . - (8.40)
u o -

This condition is satisfied most of the time,

For T = 2.5 msec, the worst-case condition becomes

%( 32 (1“)) 311.7. S (8.41)
or | |

1 a2 J(T)« 0.252 . (8.42)

This condition is not satisfied very easily. However, if écs/?,ﬂ‘ is greater

than 400 Hz, the worst-case condition reduces to that of Eq. (8.40).

-8.3.3 Specular Multipath Ranging Sidetones Interference

Cohcerning the specular multipath ranging sidetones, it is seen
from Eq. (8.20) that these sidetones are reduced in amplitude by the
factor JO(I‘) and are modulated by the relative specular multipath carrier

doppler frequency terms
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A}

[cos<9ce+ o_(1)) - sin(0_+6_(t)) tangy_(t-t )] (. 43)

If écs/zw is greater than one-half the fine range tone filter noise band-
width, the C. W, interference term will be further attenuated by the filter
transfer function, If écs/27r is greater than the data bit rate, the peak of
the specular multipath data spectrum in Eq. (8. 43) will not overlap the

direct-path fine range tone.

Similar remarks apply for the AR sidetones except that the
wider AR sidetones filter bandwidth results in turn-around of most of the

AR sn:letone specular multipath components

If 6cs/27r is such that it places the peak of the specular multipath
400 BPS data spectrum on the fine range tone, the criterion that this
. source of interference contributes a fine range tone rms phase error
which is much less than the critical value of 0. 0645 radians is that
ach')(l")« 2.83. Thisis easily Satisfied since auJo(l") is on the order of
1/10 of this value,

8.4 Flat-Fading Diffuse Multipafh Interference

We now examine the case of flat-fading diffuse multipath inter-
ference. In this case the output of the carrier loop phase detector may
be written as

Y o= si + Asi + +° + + p.si ( t+ )
(eo(t)/c s1n{9Ce Asin| @t esc (bsc_] ﬁxu(t) p;sin{ « Bl(t)
+ ¢ - + - + i + t) + + Tsi t
J;AR(t)cos<(wl wz)t Gl(t) ,92(t)>} au(t)sm{ece Bcs(t) d)SCQt) Tsin| e

+ + + + t )+ p si + +
St ro (O +y +By (t-t ) plsm<w1t 6.(t) els(t))

o+ b -t doos((w -w )t +o.(1) -0 0 +o, 1) -0, (1)} O (8.44)
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where - éu(t)cos (bu(t) X c(t)

and

au(t)sinéu(t) xq(t) | | (8. 45)

~ For small tracking errors eceand 50__» this is expanded as
(eo(t)>c ~ MlMARCOS ﬁ{@c; tang xu(t) + au(t)Jo(T)sin<OCS(t) + d)u(t)>

+ a;(t)Jo(ﬂcos(Gcs(t)' + <I>;1(t)> tanB x (1=t ) +27 (Msin[w t+6_ +$_ ]

+a (1123, (D) [cos(@cs(t) +d>u(t)> - sip(ecs(t) +<bu(t)>tan/3 xu(t—ts)]

: 10 +6 (W) +y 1+ 5 sinfwt + + 0
x sinfw, t+6_+6_ (1) +y ] p1Sm(w1 el(t)) a7 (D ;os( B

+ <!>u(t)) - sin(ecs(t) +d>u(t))tan,3 xu(t—ts)] X plsin<wlt +6.(t) J_“91s(t)>
+ AR(t)cos< (wl.-wz i+ (1) - 92‘“> + au(t)JO(r)[cos(eCS@ + d)u(t)> - sin(@cs(t.).

] - _ ) W e ()
+ ¢u(t)>tanﬁxu<t ts§] X b AB(t ts)cos( (o -w)t +0.(0) ~6.() +0, (1) -0, (1))

(8.46)'

The effect of thé fading is to spread the spectrum of the multi-
path interference. F‘or low orbit User spacecraft and for an rms scattering
surface slope value of approximately 4° and a grazing angie in 'excess of
20°, the fading bandwidth will exceed approximately 90 Hz., This is
much larger than vthe noise bandwidths of any of the phase-locked-loops
“in the system, so that the spectrum of the fading may be considered as

"white' inside the various loop noise bandwidths.
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8.4.1 Interference with Compound PLL Tracking

The multipath interference with carrier tracking may be written as

JO(D Xc(t)sin ecs(t) + Jo(r)x q(t)cos ecs(t)

~

' +.J0(1") xc(t)cos Ocs(t)tanﬁxu(t—ts)

- JO(T) xq(t)sin Bcs(t)tanﬁ xu(t—ts) (8.47)

The autocorrelation function of this interference is

Jz(l"){‘lf(v')cos(écsf) + tan25 \I—"(T)A\I/X (T)COS(écST)}

u
where _ ' | -
w7 = (xc(t)zc(t+7)> = (xqft)xq(t+7)>. | (8.48)
The power density Spectrum at w= 01is
] o0
2 ) tanle | & (¢ -
JO(D{@(GCS) t tan“B _L o cpxu(c)cb.(c GCS)} _ (8.49)
where 2 |
_ (o) 2 2
oo -w [2(27B )
®(w) J'““—.z—;r———Bf e o f (8.50)

2 . '
where ¢~ is the value of ¥{r) at 7=0, and B is the fading bandwidth,

The integral in Eq. (8.49) is

4 ' : N2
1- 0_2T _r C;Er sin (L T/24) A/‘__IB e-(c-ecs>2/2<27rBf>
| N (€ T/4) 5 (8.51)
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The worst case occurs when BCS is at the peak of the <Ig(u(§) curve, and .
the fading bandwidth, Bf,’ is much narrower than the width of the peak.
Although this condition is unlikely, even for the 400 BPS data rate, it _

_ does represent an upper bound on the integral. The maximum value of the

integral is then

I = (0. 525T)g> : (8. 52)
max .

and the maximum rms carrier tracking loop phase error from this diffuse

| multipath data component is

_1/2 |
(92 ) = ¢J (T)tanB(0.109) for f_=400 Hz (8.53)
ce o B
max .
and -

—5\L/2

(ece> = 0J_(I)tang(0. 064) for £,=100 Hz (8. 54)
max

It is assumed that écs/27r exceeds 150 Hz in the above, so that the worst
case occurs for écs/zﬁ at the second highest peak of the data power den-

sity spectrum when fB= 100 Hz.

The rms carrier loop phase error arising from the first term in

Eq. (8.49), for the case where Bf exceeds 90 Hz is

© e 1/2 :
/2 2B - 62 jo(21B)>

(92 ) - o7 (T) c_ . cs £ ‘ (8. 55)

o W 2T Bf
With Bf= 90 Hz and écS/ZW =150 Hz, this error becomes

12

52 ) = 63 (T)0.14 3

<9ce) o J (T')(0. 14) - Bse

This is sufficiently small to be considered negligible.

159



A similar analysis applied to the subcarrier tracking loop A

‘reveals that, as in the specular multipath case, the subcarrier tracking
6 (,2

. ——\1/2 ,
error e ('Bsce) is negligible, For example, the maximum error
max :

from the diffuse multipath subcarrier component for Bf= 90 Hz and

0 /2m =150 Hz is
Sc

, ' 1/2
_\!/2 2J (T 9B’ -62 /2(21B )2
-—15——<92 ) = c——é'—(—-l-—sina) —2C o ©S £
J2 \'sce J2\ T ﬁBf
' 1/2
. 1 2
_o_ 2(0.5) --<{150/90) '
ey (1.1)[&;(90) e 2 ] | (8.57)
<. 0.026¢0

which is totally negtligible.

8.4.2 Interference with Data Demodulation ... .

We now consider the data demodulator. The normalized input

to the data demodulator is

<ei(t)21ata= xu(t) + Jo(l")cot _B[Xc(t)sin ecs(t) + xq(t)cos ecs(t)]

+ JO(I‘) xu(tft.s)[ xc(t)cos Gcs(t) - xq(t)sin Gcs(t)] - | (8.'58)

The output of the data demodulator is

T

(¢0®)

=T +J (DeotB f [x (t)sin@ (t) + x (t)cos O (t)]e (t)at
data o o "¢ cs q  cs Sp

_ T
+J (T) ‘[ [x (t)cos® (t) - x (t)sin® (t)]x (t-t de (t)dt
. o olc cs q cs “Tu s’ sp

- (8. 59)
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The variances 61‘ the two interference components at the output of the

-demodulator are

| % -2 2

2 2| do 1 " (-0 ) /2028y sin?(wT/4)

o —J (I")cot BTG g ’z—ﬁ'\[—;—g—e —
P ST 2T Bg (wT/4)

0,? < 12(Deot’s 7% (0. 525) | (8. 60)

and

2-J(1")T2 zf do f dccb (c)cb(w e- 9 Q) Eyl—(ﬂﬂé— (8.61)
2 -0 27 s o] 27 (Q)T/4)2

fort >T/2 so that x (t-t )e (t) is essentially random or
s u s sp

2 - (DT2 2 f—d—@@( y Sin (wT{2)

(8.62)
%2 Too 21 (wT/2) '

2
for t K T/2 so that xu(t—ts)esp(t) ”esp(t).

While the integrais in the above equations are difficult to evaluate in gen-
eral, the frequency spreading of the diffuse multipath reduces the variances
below the corresponding ones for the case of specular multipath. Since the
cond1t10ns for achieving the required BEP could be ach1eved in the worst-

case for the specular multipath case, it can be achleved also for the flat

fading diffuse multipath case,

8.4.3 Flat-Fading Diffuse Multipath Ranging Sidetones Interference

From Eq. (8.46) it is seen that the flat-fading diffuse multipath
ranging sidetones are reduced in amplitude by the factor JO(I') and are

modulated by the flat-fading relative specular multipath carrier doppler

: frequency terms

a (t)[cos(@ (t) + ¢ (t)) - Sln(@ (t) +¢ (t))tanﬁxu(t-ts)] (883)
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For 9 /27r greater than one-half the fine range tone filter noise 4
bandw1dth the fadmg C.W, term w111 be further attenuated by the filter
transfer function. Also, if OCS/-ZW is sufficiently greater than the data bit
_rate, the peak of the flat-fading diffuse multipath data spectrum in Eq. (8. 63)
will not overlap the direct-path fine range tone. If this data peak does
overlap the direct-path fineA range tone, the fading will help reduce this
contribution to the fine range tone loop rms phase error below that for the

specular multipath case,

8.5 Non-Coherent Fading Diffuse Multipath Interference

For the case of non-coherent fading diffuse multipath interferénce,

the output of the carrier 1oop phase detector may be written approximately as

@o(t))c = sin{ece+ Asinfu t+0_+d_ 1+ 6y (1) +p lsin<w1t +0 1(t)>

+N
+ (bAR(t)cos((wl-wz)t +91(t) - ez(t)\} +M M, o Z J (6);a (t)sm{ e
: LN

p
+o 0+ () +B><u(t -t )+n(9sce+ SCS(’E))}**?anl(t)sin{GcleGCS(t)'

. - . \
I NOE Bx, tS) + n(esce+9 ) +(at+ 6.(t) + els(t))}

scs

P
—1 a7 (hyei : -
-3 anl(t)sm{ece+ 0_Lt) +<bn1(t) T Bx,(t-t)+ n(esce+ escs(t))

A ' N\ -+ +
- '(wlt rom re, N+ 24, (ot ) ot arleos{o  +6 () +0, (1)

sce - scC

tBx -t ) +nle, e (1)) +(Coy oyt +0.(1) = 0,(1) + o, (1) -928(t>)}
Lo (oot e e (-
Ty chR(t ts)anAR(t)Cos{ece+ Gcs(t) +(bnAR(t) t8 Xu(t ts) +n(9sce+ Gscs(t)>

- _<(w1_°§)t + 91(1:) - 62(1;) + Bls(t) - ezs(t)>}f
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+N

+ MIMAR nZ:_N Jn(é-)ano(t);+ q_nﬂ(é)sm{ecg ecs(t) + (f)no(t) +B><.u(t—t‘s)

tnfo +o (1)) -(w t+o (t)+0 (t))} +J <5)s'm{e +0 (t)
: sce scs sc sc scs. n-1 ce ¢S
b () +By (t-t )+ n(e +0 (t)> + (co t+6 (1) +0 (t))}%
- no u S \sce scs sc sc scs (8. 64)
where obnly the non-coherent fading diffuse multipath interference terms

of significance are listed.

8.5.1 Compound PLL Tracking

"The carrier and subcarrier loop phase errors are assumed small
so that the loops may be treated as independent linear systems., Consider-
ing the carrier loop first, the terms of importance at the output of the

'

carrier loop phase detector may be written in normalized form approximately

as :
+N 9 : -
+ i + -
0o nZ_N Jn(ﬁ)gano(t)51n{9CS(t) d>n ) +a (titanfy (t ts)cos{ecs(t) +d>no(t)}f
(8.65)
The rms carrier loop phase error is approximately ‘
— (4N 1/2 1/2
2 ' _
6 {Z J‘*(@)} 323 q><o>f (8. 66)
ce KRN cc .

where <I>c(o) is the value of the power density spectrum of

gano(t)sin{ecs(t) + &no(t)} + ano(t)tanﬁ Xu(t—ts)cos{ecs(t) + d)no(t)}g

at w= 0. This implies that the fading statistics are independent of n.
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From Egs. (é. 47) and (8. 49), @ (o) is
CJ_oo |
s 2, [ at ¥
q)c(o) = ‘I‘(GCS) +tan"j8 2 o ‘I)Xu(C) &(¢ Gcs) (8.67)

where @(écs) is given by

, 2 -8 /3B jE)2
‘P(GCS) :“/E;Bf e o _ (8.68)

and the integral is

© 2 2
- (¢- ecs) /2(27rBf)

. j_g sin*(¢T/2) 1 (8.69)
0 2T (CT/4)2 JZTBf

which has an upper bound of (0. .)25T)0' . This upper bound is approached
when 6 s is at the peak of the @x (¢) curve and Bf is much narrower than
the width of the peak. In this caSe ® (9 ) would be negligibly small.

On the other hand, with 6 /27r = 150 Hz and B

-3
would be approx1mate1y equal to 1.1 x 10 0-2.

= 90 Hz, &6 )
f cs
This is to be compa
to (0. 525T)0” for T=2.5 x 10 ° sec, or 1.31 x10 3¢ For T= 10'2séc,
(0. 525T)02 is 5.25 x 10-302. With 2BC= 18 Hz, the upper bound on

\’92 » is, with tang= 1, 56,

ce
== N . 11/2 3 _331/2
e .= Z J (5. 52) {(18)(5.25 X10 © +2.68 x10 )}

ce n

) max n_=—N v _ .
+N
'-\' N

= 0.3780] ) is.52) /%= 0,127  (8.70)
n==

Since this is an upper bound and is negligibly small, it may be concluded
that the effect of the non-coherent fading diffuse multipath on carrier

_ trackmg is negligible,
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Turning now to subcarrier tracking, the output of the subcarrier

loop phase detector is approxiinately
_ e v

N 06 ce” NG nzZNano(t)Jn(ﬁ)(Jnﬂ(G) ¥ Jn—1(6)>[sm{ecs(t) ¥ d)no(t)}

+ tanB xu(t-ts)cos{ecs(t) + &no(t)}] - (8.71)

so that 1 5\/62 is .
2 sce

+N

1/2 1/2
1 2 21 2n .2
5 5\/esce 5 n=ZN ( J (a)ﬂ ngsccbc(o)g (8.72)
N 1/2 _ 1/2
§f—;-" %ﬁ_ Z anf(S. 52) ;5.25 x10 3+2_.68x10'3 g
n=1

< 0. 03240(0. 880) = 0. 02860
which is entirely negligible.

In summary, the effects of hon—coherent fading diffuse multipath
on compound PLL tracking are negligible if the relative spe'cular multipath

carrier doppler exceeds 150 Hz and the fading bandwidth exceeds 90 Hz.

8.5.2 Data Demodulation

The normalized input to the data demodulator is approximately

(el(t)z = X (t) + _ZNJ‘ (8)cotB a (t)[sm{é (t) +4) (t)}

+ tang xu'(t-ts)cos{ecs(t) + cbno(t)}] | © (8.73)

The variances of the interference at the output of the data demodulator are
s 12 2

- (w-0 :
(-6 g) 1202mBY" it 4y

: _ o0
0'? = Z I £(6)] cot ﬁTz 2 f do 1. 5
' n= (wT/4)

-0 27,/ Oom Bf

J (5) cotzﬁTzoz(O. 525) ' (8.74)

IA
[\/H- ,

-N

{]

n
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and

+N
Z G f d"’ I—gcb (w £-0 )sm YT /a) (8.75)
- R % (oT/0) -

for t_> T/2 so that Xu(t_ts)esp(t) is e.ssential.ly random

. + - )
ol- ZNJ (o)l T f 2 gu-0) —S—lﬁ—‘-"%lz— (8. 76)
_ n=-N , (wT/Z)

2
for t << T/2 S0 that xu(t-ts)esp(t) ~ esp(t)

where _ w2/2(27rB )2
For proper data demodulation c? must be much less than T2/31. 7
2 C
or y\' 7%(5. 52){ cot®g0 (0. 525) << =L (8.77)
aEN D : 31.7 . _

with B=.1 rad and ZNJ (5.52)| = 0.113, this reduces to 02<< 1.3. This
nes :

condition should pertain almost all of the time.

If 6 5/27T is greater than the data bit rate, the condition °§<<T /31 7

reduces in the worst case to
4N

Z 745, 52)f0” — 5 << (8.178)
n=-N n (371‘/2) :

or 9
o « 6.2

This condition is readily satisfied.
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If the bit rate is 400 Hz, and 9 S/21r is much smaller than this,

2
the worst-case condition on 0,& T7/31.7, reduces to

}; J4(6) 02<< 1 ' (8.79)

or 02 ¢« 0,28

This condition may not be satisfied very easily. However, the likelihood

that this worst-case condition will be encountered is very remote.

8.5.3 Non-Coherent Fading Diffuse Multipath Ranging .
Sidetones Interference

The non-coherent fading diffuse multipath ranging sidetones are,

from Eq. (9. 64), approximately given by

+N p ;. '
- 205y)1 F . + -
eR(t) = M1MAR n=21N Jn(ﬁ)g 5 anl(t)sm{ecs(t) +d>n1(t) +Bxu(t ts)

0, .
( -1 -
v (ot o) +918(t)>} Sa (t)s1n{0 O +4 0+ By (et )

» 1 + ot
- (atrom+o S(t)>}+ Lyt e AR(t)cos{GcS(t) 4T 1)
+ 5xu(t-ts) +<(w1 —wz)t + el(t) - 92(t) + els(t) - GZS(t))}

1 - - - oy } ;
g &AR(t ts? a_ AR(t)cos{GCs(t) + (bn ARt »+ ,sxu(t ts) ((wl wz)t + Gl(t)

i ‘92(t)+els(t)-92s(t)>}£ S (8. 80)
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The autocorrelation function of eR(t) is approximately

+N P.\2 . . L
eR(t)eR(t+T)= MiMfXR Z Ji(ﬁ){(fl) [zb('r) <1+tan23 b, (T)>cos[(w1+ 6,+6 )]
n=-N u

+ 4)(,-)(1 +tan25 ¢X (T)>cos[(w1+é1 - écs)T]]
u

+d ) .(T)[;D(T)/l”*tanzﬁ ) (r))cos[ (. 6.+ 6 ) ]

. 4 AR K X, 11 es'™

+ 4’(7)( 1+ tanzﬁ %bx(T))COS[ w1+ él - écs) T]]z (8. 81)
u

The various ranging sidetones add incoherently as indicatéd. The relative
multipath carrier doppler frequency, écs’ and the diffuse multipath fading
help spread the multipath interference components over a much wider
bandwidth than the corresponding direct-path components, and this, plﬁs
the incoherence of the multipath fading; reduces the effects of the non-

coherent fading diffuse multipath on ranging.

8.6 " Downlink Multipath Models

The downlink multipath models are essentially identical to those
for the uplink, except that the downlink signal of Eq. (7, 1) is used in place
of the uplink signal (;f Eq. (8.1). Also, with the downlink telemétry data,
xd(t), having a bit rate of 1000 BPS, the effects of downlink niultipath data
components on compound PLL tracking and ranging are even more negligible

than for the uplink,

The problem of other-User ‘multipath interference is also present
on the downlink. However, if the other-User signal power is not much
larger than the desired-User signal power, the other-User multipath inter-
ference should be negligible. This is a consequence of the following

factors: .1) the wideband FM SSMA interference suppression mechanism,
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2) the generally weaker received signal power of the earth-reflected multi-
path interference, and 3) the frequency spreading of the diffuse multipath
interference. In addition, the changing doppler conditions between the
desired-User and the other-User received signals mean ‘that the duration
of a given other-User interference mechanism will be relatively short
compared to the duration of the interference from the desired-User's

own multipath.
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Appendix A

COMPOUND PLL ANALYSIS

The wideband FM receiver employs a compound PLL which
simhl’caneously tracks the subcarrier and the carrier, and regenerates
the wideband FM signal as a coherent reference. This permits the co-
herent demodulation of the low cieviation PM data and ;:-ange tones. For
the case of small carrier and subcarrier tracking phase errors, the
carrier and subcarrier loops are approximately both linear and inde-
pendent. Consequently, linear PLL analysis may be applied to the
loops. In particular, the loops may be optimized independently in the
presence of Gaussian white noise and changing doppler. This analysis

is developed below.

The received wideband FM signal on the uplink may be written

as

e (t) =35, sinut+o )+ osinfut+ o+ o (A1)
where

Su ~ is the uplink received power.

@, is the uplink carrier frequency.

6 (t) is the carrier phase which contains the doppler and
¢ doppler dynamics.

6 is the modulation index of the wideband FM subcarrier,
and is equal to 5. 52.

w is the uplink subcarrier fréquency.

Gs(t)- 'is the subcarrier phase which contains the doppler and
doppler dynamics.

d>m(t) is the low deviation PM modulation consisting of split-
phase command data and ranging sidetones.
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_In the track mode the received wideband FM signal is

effectively multiplied by a reference signal given by
) = ./ + 6(t) + 6 si +0 '
eref(t) J 2 cos {wct Oc(t) 6 sin{ ot Gs(t)]} (A.2)

where éc(t) and és(t) are estimates of the phases Gc(t) and Gs(t), respectively,

The output of the multiplier (carrier loop phase detector) is
= i - 5 -+ 1 + - i + 5
so(t) N, 5, sm{@c(t) Gc(t) §sin[ wst Gs(t)] 6sin| wst GS( t)]

+ d)m(t)} | (A.3)

If Gaussian white noise of single-sided power density Nu is also
present at the input to the receiver, the noise at the output of the multi-
plier will also be Gaussian and white with a single-sided power density
Nu' Writing the noise at the output of the multiplier as nc(t), the total
output of the multiplier, appropriately normalized as is the custom in

developing phase models of PLL's, may be written as

eo(t) > sin \ec(t) - éc(t) . 6sin[ ot + es(t)] - §sin[ wt+ és(t)]}

. _ _ sind_(t)
+ - + §si + - i +
cos .Gc(t) 9c(t) §sin wt Gs(t)] . §sin| mst Gs(t)]} M
n (t)
+ = (A.4)
JS, M
where M is the modulation suppression factor given by
M= sl
cos (bm(t) (A.5)



If the phase errors 6 =6 -0 and @ =0-9 are small, the
ce C s S

approximation
sin{e + psinfwt+8 + 0 ]—5sin[wt+é]}
Tl ce s s se s s
~ + gsinf[wt+ 8 +6 |- §sinf[wt+ D A.6
ece sin[ @ ), se] 6 sin[ @, s] ( )

may be made. This approximation linearizes both the carrier and the
subcarrier loop and makes them independent to a first approximation.
There is a small high order coupling between the loops as may be seen

by writing
singf + ssin[wt + és +6.] - dsinw t + és]}

6
- se
s + 4 + +—-——
s1n{90e 26s1n(Gse/2) cos[cost 0 +—5 ]}

ot

6
A se
: L+ :
cos{Zésm(Gse/Z)cos[wSt 0 +—5 ]} sing

i

+

e s L A }
cosf__ sin ‘6sm[ wt+o + Bse] §sin| wt+ GS]

i

Jo(z ssin(6__/2)) sing__
+cos0  sinlssinfwt+8 +0 ] - gsinfwt+ 8 ]} (A.7)
"~ ce s s se s s

\

If ece is small and if Gese is small, the above may be approxi-

mated by

+ - 2 - - -~
| Jo(éese) ece cosece{ésm[ wst + OS + ese] §sin| wst + GS]} (A. 8)
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Since

~1-=(50 + A
Jo(aese)Nl A (6 Se) (A.9)
and cos 6§ ~1-L02+. .. ' ' (A.10)
ce 2 ce

the coupling, for the case of small phase errors, is a second-order
fluctuation in the amplitudes of the error Signal‘s of the carrier and

subcarrier loops. In the analysis which follows, this coupling is ne-

glected.
The carrier loop may therefore be modeled as shown in Fig, A, 1,

nelt)
Sy M

"';—F(S)

Fig. A.1 Linearized Model of Carrier PLL

The loop is designed to be a high-gain second-order loop.
The error ece consists of a dynamic tracking error and a noise error.,
For the case where the carrier doppler is changing at a constant rate
givep by ?9'0, the dynamic tracking.error, ecet’ is given by
=8 Jw? (A.11)
cet ¢’ nc

‘where CI is the loop natural frequency (rad/sec). The loop natural

frequency is related to the loop noise bandwidth, Bc’ as

w
B, * —_rZI—Q (Cc ¥ 4C1 ) = ke ’ . - (A2
c

. where Cc is the damping factor.
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The noise error variance is given by

—_— BCNu B :
6c:%an ) 2 , - (A ,13) |
v S M p - .
u
Defining a ""peak'' phase error, <6ce> , by
"2 \1/2 |
= + .
(g.e) = lo,l o (0 (A.14)

cen/

the noise bandwidth, Bc, is chosen so that at threshold p = SuM2/Nu

is minimized for a given worst case doppler rate, 6 , and Gaussian
noise error peak factor o, Threshold is defined by <6ce>p: ecm’ where
6 ., is2 maximum tolerable "peak" phase error. For the compound
PLL, this maximum tolerable 'peak' phase error may be set at

30° since the linearization approximation begins to break down for phase

errors-in excess of about 30°, The Gaussian noise error peak factor

may be taken to be 3, The damping factor §c is chosen té be 1//2,

From Eqs. (A, 11), (A, 12), (A.13), and (A, 14), p is related

to BC and the other variables as

c"C 2 | BC |

cr B® -2 &
c ¢ 6 :

cm

The minimum value of p at threshold corresponds to a loop noise band-

width given by

(Bc> | . B \/Skc(ec/ecm) (A.16)
optimum
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The threshold value of p is then

. 9 ‘ 2 -
(p)threshold i} <—Z> <Cé/ecm> <Bc>optimum (A.17)

The doppler rate GC is equal to wc(R/c)., where R is the vrange between

the spacecraft and the TDRS, and c is the velocity of light.

Turning now to the subcarrier loop, the error signal of

Eq. (A. 6) is effectively multiplied by the subcarrier loop VCO signal

(es(t)> = /T cos[at 5] (A.18)

vCco

‘The output of this multiplier is

plus Gaussian noise of single-sided power density Nu/SuMZ, The equi-

valent phase model of the loop may be drawn as shown in Fig, A.2,

Fig. A.2 Linearized Model of Subcarrier PLL
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o}

The "effective phase error' is taken as —"",.2._' 0., because for a constant

or slowly varying subcarrier loop phase error, ese, the subcarrier

difference in Eq. (A.6)
- ~ A A ose -
i +0+ - §si +61 = +0 +-=2
6 sin| mst OS Gse] psin| wst BS] = Gesecos[ Wy Gs 9 ] (A.20)

' 66 60
has an rms value of ﬁs_e . Lettingo_ = J_zs_e , a ''peak" error,

<ase> » may be defined in a manner analogous-to Eq. (A.14). That is

' —— . 1/2 -
2 \
_ = +
(ase> lOlsetl Us(als,en) (4.21)
. b '
Here ozz‘ is
sen

5 B N B
o - -—8u _ s (A. 22)

sen S M2 p

u

where BS is the subcarrier loop noise bandwidth. The_ dynamic tracking

error o -, is
set

o =

w .
.. - _s_
Ut ozs/wns ou 3 - (A, 23)
ns

where the loop natural frequency, @ ¢ is related to the loop noise band-

width, B_, by

o
B (é‘s it ) “shs 2

The damping factor Cs is chosen to be 1/,/3  as in the carrier loop.
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Defining threshold by (a ) =0, whereq_  is a maximum
se/ sm Sm.

tolerable "peak'" error, the subcarrier loop may be optimized by se-
lecting the loop noise bandwidth BS so as to minimize the value of p at

‘this threshold. The results are

‘ o o /0
(B ) = [sx® £ > (A.25)
s/ .. S\ _
optimum sm
and
5 2 9 ,
_ = (= o A,
(p)threshold (4>(Gs/ sm) (Bs> . (4. 26)
_ optimum _
If « =68 ,k =k, ando =0 , the ratio of the noise band-
sm em’ 8 cC s ¢

widths of the subcarrier and carrier loops is

(B'S'Z t. - | g 5 s |
B = -—5—- = ﬂ (A.27)

For § = 5.52, fS= 107.2 kHz, and fc = 149 MHz, this ratio is approximately
0.053. This is also equal to the ratio of the threshold values of p. Con-
sequently, the carrier loop clearly imposes the more stringent require-
meﬁt on received signal power. This means that for a value of p at

or above carrier loop threshold, fhe subcarrier loop will be well ébove

threshold. The "peak" error, (ase> , at carrier loop threshold is
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Numerical Example

The highest doppler rate occurs for a low orbit Spaéecraft
passing directly under the TDRS, The carrier doppler rate on the up-
" link in this case is approximately 30 rad/séc% The TDRS must radiate
sufficient power to permit spacecraft with this worst-case doppler dynamics
to operate above threshold in the presence of the worst-case noise power
density. Consequently, this value of 50 helps determine the required

uplink TDRS transmitter power.
For .G.c = 30 rad/secz, and with { =¢_= 1/JZ, o =0_= 3,

S
and 8 =¢q = 30° the values of (B \ , (p),,, and (B
cm  sm c/

) " are
Opt. th S opt

given in Table A, 1,

Table A.1

Compound PLL Parameters

| ‘O.c(rad/secz) 30
(B ) (H2) 9.0
¢ opt. ’
(p)th (Hz) | 462
(BS> (Hz) 0.48
opt.
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Appendix B

CW INTERFERENCE WITH PLL TRACKING

In this appendix the effects of small CW interference on PLL
tracking are considered. The PLL is considered to be linear, and the

phase error caused by the CW interference is assumed small.

The input to the loop may be written as

e, (t) =/25 sin[w t+ 6 (t)] + /25, sin[w.t+'9_(t)] (B.1)
in o] (o] o 1 1 1

where S0 -is the signal power, Si is the interference power, Oo(t) is
the phase to be tracked by the PLL, . is the frequency of the inter-
ference, and ei(t) represents possible doppler dynamics on the inter-

ference,

The VCO signal which multiplies ein(t) may be written as
= ' + . 4 -
eVCO(t) _ /2 cos [wot eo(t)] | (_B.2)

where éo(t) is the estimate of eo(t).

The output of the multiplier is therefore

sinf(w; -0 Jt+6(H -6()]  (B.3)

-S_— :
o

%]

e (1) = sin[6_(t) -6 (1)] +

The linearized loop phase model is shown in Fig. B. 1.
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'\/:r in [(wi ~wo )1+, (f)-éo (.t)]

]
o

+Fls)

Fig., B.1 Linearized Phase Model of PLL

With the frequency Awi = (wi - wo) + éi(t) - éo(t) lying well within

the loop noise bandWidth, the maximum phase error arising from the

presence of the interference is simply equal to /Si/So. If this is small
(i.e., on the order of 30° or less) the loop linearization approximation
is reasonable, and the rms phase error contributed by the interference
1

5 Si/S_o> 1/2 when the interference lies within

may be approximated by (\

the loop noise bandwidth,

For Acoi lying outside the loop noise bandwidth, and for low

1/2

doppler dynamics, the rms phase error of (% Si/SO> is simply
reduced by the amplitude of the loop transfer function at the frequency

Aw,.
i
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Appendix C

DATA DEMODULATION

TDRS system specifications call for a BEP (bit error probability) |
6f 10'.6 for the uplink command data and the downlink telémetry. The
uplink bit rate may be either 100 BPS or 400 BPS, whereas the downlink
bit rate is 1000 BPS. The data demodulator is a coherent integrate and

dump detector as shown in Fig, C. 1,

: MULT
DATA [NTEGRATE) e 10 10 pECISION
AND ™ CIRCUIT
INPUT _ BUMP
e,p(t)
CLOCK
EXTR CONTROL
OF DUMP
. TIME
R~7196

Fig. C,1 Data Demodulator

_ For the required BEP, the clock may be assumed to be extracted
with negligible phase jitter. For a data demodulator input consisting of
split-phase data xsp(t), and white gaussian noise, nW(t), the ou'tput, eo(t),
is

e (1 - fxsp(t) e (B dt+ Jn e (1) dt (C.1)

The first integral is simply equal to bT, where.b is either

+1 or -1 depending on whether the data bit was a binary 1 or 0, and T is
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the bit period. The second integral is a gaussian random variable of

mean zero whose variance is given by the statistical average

Jat, Jatyn (t)n () e (t) eeplt) (C.2)

The average over the noise is equal to

n (i) n ()= (3) 8t,-t) (C.3)

where (¥/2) is the double-sided noise power density, and b(tl—tz) is

the Dirac-delta function. The variance is readily seen to be equal to
?=(3)T : (C.4)
F 2 |
The probability of error, or BEP, is

p =11 -ertl [E—~ ) (C.5)
e 2 2
20

9 _ :
- where p =T, The ratio u /202 = T/ % is recognized as the energy
per bit divided by the single-sided noise power density. The required

BEP is realized for values of T/® greater than abuut 12 dB (15. 85).

‘For the case where the noise (or interference) is gaussian but

non-white, the average over the noise is

— % du jelt ‘-tZ)
nc(tl) nc(tz) =-. f '577 Q)n(w) e

-0

1 (C.6)

where ¢n(w) is the power density spectrum of the colored noise.
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Introducing this into Eq. (C.2), the vari_ance‘ is seen to be equal to

® dw | 2 .
J 5 o) B )] | (c.n
-w . .
where Esp(w) is the Fourier transform of esp(-t)._ IE (w l is given .
by
| 2,2 sin(wT/4)
'ES (w)l =T — 5 (C.8)
P (o T/ 4)
If ¢ (w) is essentially constant over the bandwidth of IE (co) lz, the
variance may be approxnnated by En’ the value of @n(w) near the
peak of IE (w)l This is a reasonable approximation for narrowband

RFI whose bandw1dth is much larger than the bit rate,

On the other extreme, if the interference is a sinusoid of
frequency W, which is statistically i_ndépendent of the data clock
(i.e., its phase is random with respect to the phase of the data clock),
the variance is .

. 4
9 sin (wiT/4)

S.T ' (C.9)
! (wiT/4)2

o
where Si is the power in the sinusoid, The maximum value of this
variance occurs for wiT/4 ~ 37/ 8 and is approximately SiTz(O. 525),
With many different types of noise and interference present in addition
. to the white gaussian noise, and with no one noise or interference domi-
nating, the statistics of the random portion of the data demodulator
output may still be considéred to be zero fnean gaussian with a variance
.equal to the sum of the variances of the individual noise or interference
contributions, - The total variance must be such that the ratio }‘1,2/202 is

greater than 12 dB if the required BEP is to be realized.
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Appendix D

AN IMPROVED WIDEBAND FM TDRS SYSTEM

One of the biggest advantages of the wideband FM system concept
is its extreme flexibility insofar as the improvements in performance that
may be attained by making minor modifications in the signal format and
receiver design, The system described in this appendix is an outgrowth
of the analysis conducted under this contract. By analyzing the system
described in Sec. 2 of this report, as was done in Secs. 4, 5, 6, 7 and 8,
we were able to see which communications functions (i, e., data, ranging,
tracking, multiple access) were most susceptible to noise, CW RFI,
narrowband RFI, SSMA interference, and multipath interference. This
indicated where improvements could be made in the wideband FM system.

In particular, the modified system offers the following improvements:

1, By PN coding the uplink command data bits with a 511 bit
PN code; whose bits are split-phase, the 100 BPS data is both spread in
frequency and shifted away from the carrier, This results in improved
data demodulation in the presence of multipath interference of all classi-

fications as well as CW and narrowband RFL.

2. By making the command bit rate coherent with the 100 Hz
range tone, bit synchronization and PN code acquisition may be easily

accomplished, as will be described. |

3. By reducing the phase deviation of the command data on the
uplink carrier from 1 radian to n/4 radians, the percentage of the total
signal power in the carrier and the range tones is essentially doubled,
with only a small loss in the percentage power in the data. This helps
wideband FM acquisition, and also reduces the probability of loss of lock,

as well as aiding in ranging.
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'4. Since the data sidebands no longer lie near the carrier they
cannot be used to aid in acquisition, Consequently the wideband FM modu-
lation index is reduced from 5.52 to 5.32 so that the 3rd and 5th order
_ sidebands have equal power and the 4th order sideband has the maximum
available power. The 4th order upper sideband is multiplied by the sum
of the -3r‘d and 5th order upper sidebands in the acquisition aid, and similarly
for the corresponding lower order sidebands. This more than makes up for
the fact that the data sidebands around these subcarrier sidebands are no
longer multiplied together in the ac’quisifion aid system., With the deviation
reduced to 5.32 radians the power in the carrier component is still negli-
gibly sm'al-l, but no longer zero, and the power in the second order side-
bands is reduced to negligible proportions, The power in the first order
sidebands is now at its maximum value. The power in the 7th and higher
order sidebands is now even more negligible than before. Consequently,
there are only 5 sidebands having significant power when 6 = 5,32 radians.
This reduces the percentage of the RF band for which the wideband FM

signal is susceptible to various kinds of RFI,

5. By modifying the range tone format so that the AR tones
directly phase modulate the carrier, the range tone extraction problem is
simplified. The fine and medium fine range tone frequencies are 102,4
kHz and 6.4 kHz as béfore, but the medium coarse and coarse range tone
frequencies are now 800 Hz and 100 Hz. The ratios between these new
frequencies is 8 rather than 16 as before. This means that more power
may be put in the fine and mediﬁm fiﬁe range tones, and the power in the
AR tones may be reduced. In the User transponder the fine range tone is
coherently filtered and tufned around. The medium fine range tone is
tfacked and the tracked tone drives a divide-down chain which generates
the 3.2, 1.6, 800 Hz, 400 Hz, 200 Hz and 100 Hz tones. Ambiguity resolu-
tion is pérformed with the uplink 800 and 100 Hz range tones, The ambiguity
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fesolved tones from the downlink chain and the tracked 6.4 kHz are trans-
: mitted on the downlink. This totally eliminates the problem of turned-
around noise and RFI associated with the AR sidet_one turn-around channel
in the previous system. The problem of turned-around noise and RFI in
the fine range tone turnaround channel is reduced in the new system byAa
quasi-coherent narrowband filtering of the fine range tone prior to trans- '
mission on the downlink, as will be described. The command data clock
is derived from the divider chain, thereby eliminating the need for a bit
synchronizer. The downlink telemetry data clock is also _generaterd from
the divider chain, and this permits the elimination of the data clock gen-
erator in the User and the data bit synchronizer in the ground receiver.:
In addition, the 6.4 kHz range tone tracker generates the PN code chip
rate clock, a subcarrier on which the downlink data is modulated, a
signal used in the quasi-coherent narrowband filtering of the fine range
tone in the User transponder, and frequencies which may be used in the
downlink subcarrier frequency generator. Consequently, this additional
User circuitry actually replaces much of the circuitry that would be

required in the User transponder described in Sec. 2.

Although the lowest frequency range tone is now 100 Hz rather
than 25 Hz, this still provides 3000 kilometers of range ambiguity, This
- should be more than adequate for the TDRS applicatibn.

6. The downlink data is modulated by a 51.2 kHz squarewave
prior to modulation on the downlink carrier. This aidsvin the suppression
of multipath interference with data demodulation, and still provides a high
degree of immunity against SSMA interfereﬁce‘since the data is not spread
in fréquency very much, It also prevents interference with tracking by the v
multipath data sideband components and interference with data demodulation
by the multipath subcarrier sidebands, With the data modulated by the
51,2 kHz squarewave, two carrier bands separated by 25. 6 kHz are used
rather than three. Each User will have access to two subcarrier fre-

quencies and either of the two carrier bands, and will select the downlink
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channel in accordance with commands from the DAF. A total of 20 sub-
carrier frequencies ranging from 112, 0 kHz to 144, 0 kHz and spaced by
1, 6 kHz are available (not including the frequency at 128, 0 kHz) thereby

~ providing for simultaneous transmission by 40 Users on the downlink,

Uplink Signal Format

The uplink wideband FM signal consists of a carrier PM modu-
lated by the sum of 4 coherent range tones and 100 BPS data, and wide-

band FM modulated by a sinusoidal subcarrier.

The range tone frequencies are listed in Table D, 1,

Table D, 1

Range Tone Frequencies

- Range Tone Frequency Phase Deviation

Fine | | 102.4 kHz p, = 0.6 radian
Medium F'ine = 16 6. 4 kHz : p2 = 0,5 radian
Medium Coarse — 8 800 Hz | p3 = 0,3 radian
Coarse -~ 8 . 100 Hz p, = 0.3 radian

- The data is modulated by a 511 bit PN code whose bits are split-
phase. The data clock is the 100 Hz range tone frequency. The PN chip

rate is 51,1 kHz, The data phase deviation is #/4 radians.

Tpe wideband FM subcarrief frequency lies between 107 kHz and
133 kHz, the exact frequency being sélected on the basis that a clear channel
approximately 16 kHz wide exists at the upper '4th order subcarrier sideband
frequency, with relatively clear channels aroﬁnd the upper and lower 3rd and
oth order sidebands and the lower 4th order sideband. The modulation index
is chosen to be 5,32 radians, The power in the various sidebands is shown
plotted in Fig. D.1 for the case where 0 = 5,32 radians. At this value the

power in the 3rd and 5th order sidebands are equal, and J4 is at a maximum,
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as is Jl(é), This may be seen in Fig, D.2, The value of 5. 32 is not
critical in that a variation of £0, 1 radian around this value would be quite
acceptable. This means that no feedback circuit would be required in either
 the DAF transmitter or the User spacecraft compound PLL receiver to

maintain the value of § precisely at 5,32 radians.

The data and range tones around each subcarrier sideband are

shown in Fig. D, 3.
The uplink signal may be written as
4

sin_{wct + 6 sin[wsct] + Bxd(t) XPN(t) Xd(t) + .El P, sin(wit)} (D, 1)
i= -

n

e (t)
u

where 0 = 5.32 radians, f = n/4 radians; Py = 0. 6, P, = 0,5, and p3 =P,
- = 0,3 radians, Herei xd(t) is the 100 BPS data, XPN(t) is the 511 bit PN
code, and chz(t) is the 51,1 kHz PN code clock which has the effect of
making the PN code bits split-phase.

"The uplink carrier frequency is now 148,9106 MHz = 149 x(1-,0006).
The_ downlink carrier frequency is 23/25 (148.9106) = 136,99775 MHz, This |
is only 2,24 kHz away from the center of the downlink 136-138 MHz band.
This will permit two additional subcarrier frequencies to be used on the

-
downlink as will be explained shortly.

The User Transponder Compound PLL

A modified compound PLL is utilized in the User transponder to

acquire and track the wideband FM signal, as indicated in Fig. D.4.

With the 100 BPS data noﬂ longer located immediately around the
subcarrier sidebands, additional power must be provided for acquisition,
This is accomplished in several ways," First, the 3rd order upper sideband
is added to the 5th order upper sideband and the sum multiplies the 4th
order upper sideband. This yields a higher SNR ét the output of the

multiplies than was the case when 6 = 5,52 and only the 5th order upper
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sideband multiplied'the 4th order upper sideband. Second, the lower 3rd,
4th,‘ and 5th order sidebands are utilized as well as the upper sidebands
in the modified acq.uisition scheme, Third, narrower band sideband and
~ subcarrier bandpass filters are used, with a correspondingly slower
sweep rate, Fourth, reduction of B from 1 radian to 7/4 rac_lians more
than doubles the power in the subcarrier sidebands. Fifth, the bandwidth
of the narrowband 4th order upper sideband filter is reduced from 40 Hz

to 20 Hz, with the fine sweep rate correspondingly slowed.

With the bandwidth of the sideband filters reduced from 600 Hz
to 80 Hz, a degree of discrimination against multiﬁath and R¥1 is achieved,
Further discrimination is obtained by utilizing fwo coarse sweep acquisi-
tion threshold detection systems and stopping the sweep only when both the
upper and lower 3rd, 4th, and 5th oréer sidébands lie ingide their respec-

tive sideband filters.

The carrier loop frequency acciuistion mode does not frequency
divide the hard limited 4th order sideband by 4 and phase detect against
the subcarrier VCO signal. Rather, it phase detects the hard limited
4th order sideband against the frequency-multiplied-by-4 subcarrier VCO
signal, Since the narrowband 4th order sideband bandpass filter is only
20 Hz wide, the tota} sfrequency error when the carrier loop is switched to
the acquisition mode should be less than the seize frequency. This modi-
fied acquisition mode also permits phase acquisition as well aé frequency
acquisition in this mode. In particular, should a large CW RFI component
move into a band +40 Hz around one of the the subcarrier sidebands so that
it might cause the carrier-tracking loop to lose lock, this fact could be
detected by the CW RF] detector shoWn in Fig., D.4, and both the carrier
loop and the subcarrier loop switched to the acquisition mode until the - |
CW RFI sweeps out of this band, This will happen fairly quickly, since
the doppler rate between the User and the earth-based RFI is much higher

than that between the User and the TDRS. Since the carrier loop can

196



maintéin phase lock in the acquisition fnode, th_e commun_ications link will
not be disrupted by the CW RFI. Remember that the subcarrier frequency
was selected so that the 4th order upper sideband fell in a clear channel B
16 kHz wide. Consequently there is no RFI problem with it. If the RFI
-component should happen to lie near one of the other subcarrier' sidebands
used.for acquisition, the narrow bandwidth of the subcarrier loop, even in
the acquisition méde, will help prevent the CW RFI component from unlock-
ing the subcarrier loop. If the gain of the subcarrier acquisition loop is
adjusted sovthat its noise bandwidth is equal to the track loop value of

0.5 Hz instead of the acquisition value of 2,84 Hz (see Sec. 2; 5.3.) during
this handover to the acquisition mode, f:he CW RFI will have even less
chance of disrupting the subcarrier loop since it will sweep in and out of
the subcarrier loop noise bandwidth too quickly for the loop to respond to it.
It is possible to do this since the subcarrier loop is already acquired in this

situation,

~

When the CW RFI detector indicates that the CW RFI is no longer

a threat, it switches the loops back to their track modes,

Finally the bandwidth of the carrier IFarhplifier may now be
reduced from 4 kHz to approximately 500 Hz, since the data sidebands do
not have to be passed by this filter, Also, the IF amplifier preceding the
carrier phase demodulator is widened to 500 kHz in order to pass the

second spectral lobe of the split~-phase bit PN-coded data spectrum.

- User Tfansponder Range Tone Tracker

The User transponder range tone tracker replaces various sub-
Systems presently required on board the User in the transponder described
in Secs 2. This modified system also vastly outperforms the subystems

it replaces.
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The subsystems replaced by this new circuitry include:

1. The uplink data bit synchronizer.

2. The AR sidetone turnaround channel,

3, The downlink telemetry clock, and

4. The downlink subcarrier frequency generator .
frequency-divider chain, :

In addition, this new subsystem performs the functions of:

1. PN code acquisition (chip rate and code acquisition),

~and . ' :

2. Downlink telemetry squarewave subcarrier signal
generation. ‘

This obviates the need for a PN code matched filter code ac‘quisi—

tion system and a separate downlink telemetry squarewave subcarrier

signal generator,

The User transponder range tone tracker is shéwn in Fig., D, 5,
The range tohe tracker consists of a PLL, which tracks the 6.4 kHz range
tone, and associated circuitry as indicated. The 6.4 kHz reference fre-
quency is obtained by frequency-dividing-by-eight the output of a 51.2 kHz
VCXO. This approach permits us to obtain coherent signals at 51.2 kHz
and at 12, 8 kHz. The 51, 2 kHz VCXO frequency is hard-limited and
utilized as a subcarrier for the downlink telemetry data, The 12.8 kHz
and the 6.4 kHz frequencies are utilized in the downlink wideband FM
subcarrier frequency generator. The coherent 6.4 kHz reference fre-
quency is successively frequency-divided-by-two down to 100 Hz, Ambi-
guity resolution is achieved by phase comparison of the 800 Hz and the
100 Hz divider chain frequencies with the 800 Hz and 100 Hz range tones.
The dividers are advanced or retarded as necessary to achieve a phase
match. The 3.2 kHlHz and the 1, 6 kHz frequencies in the divider chain are

also utilized in the downlink wideband FM subcarrier frequency generator.
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The 800 Hz and the 100 Hz frequencies in the divider chain are

. used as the medium coarse and coarse range tones on the downlink. The
6. 4 kHz coherent reference frequency is mixed with the 51,2 kHz VCXO

freciuency to produce a frequency at 57. 6 kHz which becomes the medium
fine ranging sidetone on the downlink., This frequency is also multiplied
by 2 and mixed with the 12, 8 kHz frequency to produce a frequency at

128 kHz used in the subcarrier frequency generator,

To demodulate the data, the 51.2 kHz VCXO frequency is mixed
with the 100 Hz frequency from the divider chain to produce the 51,1 kHz
PN code chip rate clock., This drives the shift register used to generate
the local version of the PN code, and also muitiplies the locally generatéd

" PN code so as to produce split phase bits. The 100 Hz frequency in the
‘divider chain is phase coherent with the PN code and the data, and is used
to set the shift register to the proper state so as to make the phése of the
locally generated PN code match that of the received PN code. It also

preovides data bit sync.

The 51.1 kHz frequency is also frequency multiplied by two to
produce a signal at 102, 2 kHz. This is used to mix the fine range tone
frequency down tc 200 Hz, A\V)vhere, with essentially all of the doppler
removed, it is filtered by a narrowband active BPF, It is then mixed
back up to 102, 4 kHz by the 102, 2 kHz frequency. The difference fre-
quency at 102,0 kHz is rejected by a XTAL bandpass filter centered
around 102, 4 kHz, The filter bandwidth is wide enough so that the phase -
shift introduced by the filter when doppler shifts the range tone fr.equency
away from the filter center frequency is small, yet narrow enough to
adequately suppress the frequency at 102.0 kHz. A compensating filter
may be used in the ground receiver range tone demodulator to compensate

for this phase shift,

Finally, the 1 kHz downlink telemetry clock is generated by mixing

the 800 Hz and the 200 Hz from the divider chain as indicated in Fig. D. 5,
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User Transponder Transmitter

The modified User transponder transmitter utilizes a modified
wideband FM subcarrier frequency generator but essentially the éame
downlink carrier modulator as shown in Fig. 2,14, The only difference
is that the frequency into the carrier band switch is 1.6 kHz from the
divider chain of the range tone tracker of Fig., D.5 rather than 3,2 kHz,
and the output frequencies of the carrier band switch are (fC/25)/8 +1, 6 kHz
~ rather than (fC/25)/8 +3,2 kHz or (fC/25)/8, That is, only two carrier
bands rather than three are utilized. This fact, plus the modification in
~ the uplink carrier frequency which centers the downlink carrier in the
136-138 MHz.band better than had been the case previously, permits the
utilization of two more subcarrier frequencies at 142, 4 kHz and 144, 0 kHz,.
and the elimination of the subcarrier frequency at 110. 4 kHz, Consequently
the subcarrier frequencies range from 112,0 kHz to 144.0 kHz separated
by 1.6 kHz. The subcarrier reference frequency at 128.0 kHz lies at the
cvente'r of this band of subcarrier frequencies. This fact is utilized in the

modified, and simpler, subcarrier frequency generator,

The modified subcarrier generafor starts with the ffequencies
12,8 kHz, 6.4 kHz, 3.2 kHi, and 1, 6 kHz obtained from the range tone
tracker divider chain, and generates the frequencies at 6.4 +1.6 kHz and
12,8 +1.6 kHz and 12,8 +3,2 kHz. These frequencies are then mixed

with the 128 kHz frequency to produce the subcarrier frequencies.

- For example, if the User is assigned the subcarrier frequencies
‘at 128, 0 +9.6 kHz = 137.6 kHz and 118. 4 kHz, the frequency at 9.6 kHz
is generated by mixing the 12,8 kHz and the 3..2 kHz frequencies to pro-
duce the difference frequency at 9, 6 kHz, This is then mixed with the

128. 0 kHz frequency to producé frequencies at 137.6 and 118, 4 kHz,
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Downlink Signal Format

The downlink wideband FM signal consists of the coherently trans-
ponded carrier PM modulated by the sum of the turned-around 102, 4 kHz
range tone, the medium fine ranging sidetone at. 51,2 + 6.4 kHz =57, 6kllz,
tﬁe ambiguity resolution tones at 800 Hz and 100 Hz, and the 1000 BPS
telemeiry dataiwhich is multiplied by the 51.2 kHz squarewave, and wide-
band ¥M fnodulated by a sinuéoidal subcarrier. The carrier is shifted to
either the ﬁpper or lower carrier band by a frequency which is cohérent

with the range tones and the downlink subcarrier.

4 As a result of the higher SNR on the downlink (necessary to satisfy
‘ the BER for the 1000 BPS data), and as a consequence of the facts that
1. ranging acquisition on the downlink is performed

with the telemetry data turned off,

2, the 800 Hz and 100 Hz range tones are sent down
to the ground essentially noise free as a result of
the ambiguity resolution performed in the User
spacecraft transponder,
the downlink range tone phase deviations may be reduced somewhat. It is

recommended that tentatively the phase deviations of the range tones on

the downlink carrier be chosen as:

pl = 0.5 radians
P, = 0.4 radians
= =0,2 1
p3 p4 0 »rad1ans

It is also recommended that the phase deviation of the data on the
downlink be «/3 (600). This should leave sufficient power in the subcarrier
sidebands and the fine range tone to permit the; range and range rate require-
ments to be met, and to keep the carrier and subcarrier tracking errors

small,.
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The wideband FM modulation index should be set at 6§ = 5,52 in
order to keep- JO( 0) = 0 and thereby eliminate carrier SSMA interference.
As on the uplink, a variation of £0.1 radian in this modulation index may
be tolerated both in the User transponder transmitter and in the ground
receiver wideband FM compound PL.L,, The distribution of signal powers

in the wideband FM subcarrier sidebands for § = 5.52 is shown in Fig. 2. 5.

Ground Receiver Compound PLL

The ground receiver compound PLL is very similar to that of

Fig, D.4. The differences are:

1, The sweep generator must be designed to move the
carrier loop VCXO into the upper or lower carrier
. band and sweep only in that band during acquisition.

2. The carrier loop noise bandwidth must be increased
slightly to account for two-way doppler dynamics.

3. The subcarrier loop VCXO is replaced by a sub-
carrier frequency generator driven by a 128, 0 kHz
VCXO as indicated in Fig., D. 6, '

4, The acquisition aid circuits and the subcarrier band-
pass filters are designed as plug-in units to convert
the general receiver into one designed to track a
specific subcarrier frequency.
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