
11 fng SA CR- /:aa 97

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springfield, Va. 22151

UNIVERSITY OF MARYLAND

COMPUTER SCIENCE CENTER
COLLEGE PARK, MARYLAND

"{N72- 12

Unclas
09628

:114 (NAS A-CR- 12 2 2 9 7) AN ADAPTIVE APPROACH TO
THE DYNAMIC ALLOCATION OF BUFFER STORAGE

M.S. Thesis S.C. Crooke (Maryland Univ.)CSCL 09B
1970 86 p 0 /0

G3/08

(NASA CR OR TMX OR AD NUMBER)

. .

ICT EGORY)(CAT

An Adaptive Approach to the Dynamic Allocation

of Buffer Storage

by
Sarah Catherine Crooke

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
Master of Science

1970

APPROVAL SHEET

Title of Thesis: An Adaptive Approach
of Buffer Storage

Name of Candidate:

to the Dynamic Allocation

Sarah C. Crooke
Master of Science, 1970

Thesis and Abstract Approve

Date Approved: 2J

ad: I: '~ -I ' 6 -
Dr. Jack Minker
Associate Professor
Comp'uter Science

tc . /9/t'

ABSTRACT

Title of Thesis: An Adaptive Approach to the Dynamic Allocation of
Buffer Storage

Sarah C. Crooke, Master of Science, 1970

Thesis directed by: Dr. Jack Minker, Associate Professor

Several strategies for the dynamic allocation of buffer storage

are simulated and compared. The basic algorithms investigated, using

actual statistics observed in the Univac 1108 EXEC 8 System, include

the buddy method and the first-fit method. Modifications are made to

the basic methods in an effort to improve and to measure allocation

performance. A simulation model of an adaptive strategy is developed

which permits interchanging the two different methods, the buddy and

the first-fit methods with some modifications. Using an adaptive

strategy, each method may be employed in the statistical environment in'

which its performance is superior to the other method.

ACKNOWLEDGMENT

The author would like to express her sincere appreciation to Dr.

Jack Minker for his continuing guidance and helpful criticism .through-

out the preparation of this thesis.

The author also gratefully acknowledges the financial support

given by the National Aeronautics and Space Administration under Grant

NGR21-002-197 and Contract s which provided funds for the research

performed and for the computer time required.

IYG-A- 4/-oo- ao 0a

ii

TABLE OF CONTENTS

Chapter Page

I. SCOPE OF THESIS 1

II. AN OVERVIEW OF COMPUTER SYSTEM EVALUATION APPROACHES... 6

A. -Development of Computer Evaluation Techniques... 7

B. System Measurement Tools 11

1. Analytical Modeling 12

2. Simulation 12

3. Software Monitoring 14

4. Hardware Monitoring 16

C. The Use of Multiple Measurements 18

D. Specific Applications 19

E. Conclusion 2

III. ANALYSIS OF DYNAMIC ALLOCATION STRATEGIES 22

A. Scope of Analysis 22

1. Function Parameters 23

2. Pooled Versus Private Buffers............ 24

B. Buffer Allocation Algorithms 25

C. Simulation Language 27

D. Simulation Models Developed 29

1. Buffer Allocation (First-Fit) 32

2. Buffer Release (First-Fit) 34

3. Buffer Allocation (Buddy) 36

4. Buffer Release (Buddy) 38

E. Inputs to the Simulation Models 38

iii

Chapter Page

F. Outputs from the Simulation 39

G. First-Fit Model Modifications 46

1. Modification 1. Maintain Available
Buffers by Size 46

2. Modification 2. Reduce Control
Overhead 48

3. Modification 3. Permit Variable
Request Sizes 48

IV. INVESTIGATION OF ADAPTIVE ALLOCATION STRATEGIES........ 57

A. Comparison of Algorithm Characteristics 58

B. Adaptive Strategies Considered 60

C. Adaptive Strategy Simulated 62

D. Results from Simulation of Adaptive Model.... 65

SELTECTED BIBLIOGRAPHY 76

iv

LIST OF TABLES

Table Page

III-1 Comparison of Buddy and First-Fit Allocation
Characteristics 43

III-2 Comparison of Simulated Allocation Characteristics.. 49

III-3 Comparison of Allocated Memory for Different
Average Memory Loss per Allocations 56

IV-1 Results of Simulation Runs Using Request
Distributions I and II........................... 68

IV-2 Results of Simulation Runs Using Request
Distributions III and IV 69

IV-3 Queue Formation Produced as Function of Adaptive
Scheme Employed 73

v

LIST OF FIGURES

Figure Page

III-1 Distribution of Buffer Requests by Size 40

III-2 Comparison of Buffer Request Distributions Input
to and Output from the Simulation Model 41

III-3 Buffer Pool Memory Map Resulting from Simulation
of Buddy Allocation Scheme 44

III-4 Buffer Pool Memory Map Resulting from Simulation
of First-Fit Allocation Scheme 45

III-5 Buffer Pool Memory Maps Resulting from Simulation
of First-Fit Allocation Schemes-Model-1 and

Model-2 47

III-6 Buffer Pool Memory Map Resulting from Simulation
of First-Fit Allocation Scheme Model-3 52

IV-1 Buffer Request Distributions I and II used in
Adaptive Method 66

IV-2 Buffer Request Distributions III and IV used in
Adaptive Method 67

vi

CHAPTER I

SCOPE OF THESIS

The subject of this thesis is the dynamic allocation of buffer

storage which is a basic function of computer 6perating systems. The

allocation methods investigated here are the buddy method and the

first-fit method. This thesis presents the results from the simu-

lation of the basic methods, modifications made to the basic methods,

and the adaptive use of the modified methods.

The work for this thesis was carried out in essentially three

phases: a bibliographic search, development of simulation models of

basic algorithms for the dynamic allocation of buffer storage, and

an investigation of the feasibility and possible advantage of em-

ploying an adaptive method for the dynamic allocation of buffer stor-

age.

The first phase involved performing a bibliographic search of

the computer science literature relevant to computer system evalua-

tion techniques. A bibliography on the literature pertinent to the

monitoring and analysis of computer operating systems was accumulated.

A KWIC (Key Word In Context) index2 5 was prepared for the bibliog-

raphy. Chapter II of this thesis provides an overview of the papers

that appear in the bibliography. The evaluation techniques discussed

include simulation, mathematical modeling, software monitoring, and

hardware monitoring.

In the second phase of the study algorithms suitable for

1

2

handling the dynamic allocation of buffer storage were analyzed. The

analysis technique employed involved the digital simulation of models

written in GPSS-II, a general purpose simulation language. The buddy

method, which is inplemented in the University of Maryland Univac 1108

EXEC 8 operating system, was analyzed. Buffer request distributions

characteristic of the University of Maryland's 1108 EXEC 8 system were

established from memory maps constructed from printouts of the buffer

pool. The buffer request distributions obtained were used as input data

to a simulation model of the buddy method. Validation of the simulation

process was then possible by comparing the simulation outputs indicating

the internal and external fragmentation, the number of searches for

available buffers, and the number of collapses of adjacent buffers with:

the actual operating system characteristics.

The first-fit method for handling the dynamic allocation of buffer

storage was then modeled and simulated. This was followed by modifica-

tions to the basic first-fit model which improved the performance of this

method. Using the same request distributions in the simulation of these

models, the results were compared with the outputs from the buddy method.

It was found that the buddy method performance is best in view of the

EXEC 8 operating system environment.

Underlying this result was the assumption that no significant internal

waste is incurred due to the restriction in the buddy method that the

size of all buffers allocated must be a power of two. There is no guar-

antee that the size of the buffer actually utilized by the requester is

close to but less than some power of two. There is the same probability

that it will be close to but just greater than a power of two, in which

case approximately one half of the allocated buffer will be unused.

3

The buddy model was run again under the assumption that requests were

made for the exact size of buffer needed. It was found that internal

memory waste is a significant factor and may well be unacceptable if

the average size of the buffers requested is large. Comparison of the

outputs of the first-fit method with those from the buddy method in-

dicated that the first-fit method incurred less internal memory waste

than the buddy method, specifically, whenever the average request size

is greater than four times the average overhead of the first-fit method.

Chapter III presents descriptions of the basic algorithms modeled,

modifications made to the basic models, and the results obtained from

the simulation process.

From the results found, it is clear that the performance of: a

given allocation scheme is a function of the buffer request distribu-

tion which is characteristic of the operating environment. It suggests

that alternative strategies may be desirable when the characteristics

of the request distribution changes. The realization of such a strategy

in an actual operating system requires that alternative methods for

performing a given function be made available in the system and that

internal monitors be available in the operating system to detect and

indicate the rate and direction of significant change in the operating

environment; and, that a mechanism be provided for automatically re-

placing one strategy by another as a function of the environmental

change. There is no indication in the computer science literature that

such an adaptive strategy has been proposed or attempted in an actual

system. In general, a system becomes fixed at system design time.

The initial problem associated with such a strategy is in making

4

two independent allocation algorithms compatible. It was found that

modifications to the basic algorithms could be made which did not

seriously degrade the allocation performance and at the same time per-

mitted transition from one to the other automatically without inter-

ruption to system operations. A model of the adaptive method was con-

structed and the performance was determined through the use of digital

simulation. The adaptive model and the outputs from the simulation

process are discussed in Chapter IV.

The significant features and conclusions of this thesis are

sunnmmarized as follows:

* Data obtained from an actual operating system are used in con-

Junction with digital simulation to analyze methods for the dynamic

allocation of buffer storage.

* The allocation methods studied individually included the buddy

method as implemented in the Univac 1108 EXEC 8 system and the first-

fit method.

- Based on the request distribution for buffer storage found in

the University of Maryland Univac 1108 EXEC 8 operating environment,

the performance of the buddy method is better than that of the first-

fit method in terms of allocation times and memory utilization.

* If the average buffer size requested is large, the internal

memory waste introduced by the power of two buffer size restriction

implicit in the buddy method may be unacceptable. Internal waste can

be eliminated through the use of the first-fit method to allocate

buffers of the exact size needed. However, some external waste is

introduced due to the fragmentation of available space.

An adaptive method is investigated where provision is made for

5

either the use of the buddy method, when speed is important and inter-

nal waste is acceptable, or the use of the first-fit method when this

type of waste becomes a serious problem.

An adaptive approach was developed, results from a simulation

model of this strategy were obtained, and based on these results, it

was concluded that if characteristics of the operating environment

change significantly, such an approach should be considered seriously

for implementation.

It is recommended, based on the results of this thesis, that

internal monitors be available on a-selective basis to determine oper-

ating system characteristics, that alternative algorithms suitable for

handling system functions be studied, and that the adaptive approach

be considered whenever system performance can be improved (or main-

tained in unfavorable environments) through the use of alternative

strategies. Note, selective system monitoring should be used only when

the potential improvement in system performance exceeds the overhead

and system degradation introduced by the monitoring process.

CHAPTER II

AN OVERVIEW OF COMPUTER SYSTEM EVALUATION APPROACHES

The need for evaluation arises initially when the need for a

computer system is determined. The need for evaluation is never

satisfied completely thereafter. The original plans for implementing

a computer facility involve the following basic question: 'What

configuration of hardware, software, and personnel is required to

perform the anticipated data processing tasks and generate useful

outputs within a required response time?'. It is clear that many

different system configurations could satisfy the user requirements.

The objective then, is to determine which configuration is 'optimal'.

The optimal configuration must be considered relative to user

requirements. This is the only context in which the term optimal as

applied to computer systemn has meaning. The situation is parti-

cularly difficult because user requirements may change with time.

The system which is finally implemented may not be optimal, but

rather a result of compromises made to best satisfy user requirements.

In order to make meaningful decisions during the system design phase,

standard measures of system capabilities must be employed. This leads

directly to a consideration of the measures to be used in the evalua-

tion of system performance. One is also led to a consideration of

the techniques to be used for analyzing the system and assigning

values to these measures.

The measures used in evaluating the system are a function of

6

:7

user requirements. Some of the measures related to user requirements

are turn-around-time, throughput, cost, system reliabilityj and codim-

binations of these factors. Assume for the moment that the user is

able to estimate his applications workload and to specify his /

requirements on the system. The problem then becomes one of adopting

a technique or methodology for evaluating possible system configura-

tions in terms of his requirements. A possible configuration here

may be a standard off-the-shelf hardware/software system, or a con-

figuration resulting from some suitable combination of available

hardware/software components which can be integrated to handle the

applications workload, or the design of a new system. Although it is

difficult to evaluate the effect of the personnel within a system, an

attempt must be made to take into consideration such factors as

personnel experience level and expected competence. The capabilities

provided for in a system design may be realized to a large exteht or

may be degraded significantly as a result of the personnel inter-

acting with the total system.

A. Development of Computer Evaluation Techniques

A review of the brief existence of general-purpose computer

systems may put into perspective the current concern for the need for

system evaluation measures and techniques. As late as 1960, the

problem of system configuration presented no serious selection~prob-

lems. There were few equipments and few manufacturers. If a iarge

scale processor were required and funds were available, a ccampter

system could be installed necessitating relatively few decisions on

the part of the user. The application determined whether a scientific

or commercial computer, i.e., binary or decimal, was needed.

Standard software packages inclu ding 0/S, compilers, and assemblers

were furnished with the hardware. Having decided on a vendor, the

hardware configurations were fairly standard. A few options could be

exercised, e.g., the number of physical tape drives to be installed.

During the next few years, experience was gained in the use of

the second generation computers. Among computer users, there was

growing concern due to the lack of well-defined evaluation and

selection techniques. By 1964, the year IBM announced their third

generation computer, the IBM 360, it is significant that one full

session of the AFIPS Spring Joint Computer Conference was devoted to

computer system evaluation. The government, the largest customer of

the computer industry was finding it more difficult to justify, in

terms of value for cost, the purchase of one system as opposed to

others. The number of vendors, the line of computers and options,

the number of programming languages, and operating systems had all

increased. The decisions regarding what computer system to select

had increased accordingly. At this point several approaches were

taken to get a handle on the seemingly unsurmountable-task of com-

puter selection.

In an effort to standardize computer system selection for a

government project requiring the purchase of 150 computers, a method

was proposed which involved assigning weights, that is, numerical

values, to all items in a proposed system. This weighted factors

selection methodl recognized the need for evaluating 'extras' as well

as standard items. The inherent weakness of the method lay in the use

of absolute weights to score too many factors and to Score details

k~~~~~~

9

within each factor in different ways.- The result was that a given

item, e.g., speed, might be weighted for many different reasons so

that its true worth and influence in the final selection could not be

determined accurately. A further objection to this selection method

was that the decisions underlying the system evaluation were largely

a matter of subjective opinion and were based on the evaluators' past

experience. Evaluators are biased by their background, e.g.,

financial or engineering, and in the case of new systems, past ex-

perience may not be reliable as a basis for computer selection

decisions. The value of this method was that it attempted to stand-

ardize the selection of computer systems so that particular vendor

proposals could be treated impartially.

The cost-value selection technique2 resulted as an outgrowth or

extension of the weighted factors selection method. Only two

categories of factors, costs and extras, were recognized. The costs

included those associated with securing and maintaining the computer

system equipment and the support necessary to satisfy the applications

requirements. The 'extras', later translated to dollar cost, included

items of value which were inherent in the costs of one system but not

to all systems under consideration. Ideally, each item, i.e., each

system attribute of value, was considered only once in the evaluation,

either as a direct cost, an indirect cost via increased running time,

or by its value as an 'extra'. 'The reduction of all items to a dollar

cost produced a cocmnon denominator which was then used as a measure

for all systems under consideration. The' basic advantage of this

technique over the'weighted' factors technique lay in the' common

denominator concept which allowed all item costs to be treated

independently,. The cost-values derived for the various systems were

applied as credits to offset the'cost of the system and services.

The system providing the most value for cost was then the system

selected.

Obviously, this method does not solve all the problems involved

in the selection of a computer system. Its primary shortcomings in-

clude its failure to consider interaction of personnel with system

hardware and software, the system design integrity, and validation of

proposed system characteristics. Further, in neither of these

methods is there any attempt to utilize computers to automate the

complex procedure of system evaluation and selection.

In view of the number of details involved in hardware and soft-

ware description, it was clear that a library must be established and

updated as new designs became available. Further, this library would

be effective if it could be referenced automatically. The need for a

complete library of EDP3 information was not new. Auerbach Corpora-

tion very early in 1962 realized the need for standardized reports and

information which could be readily accessed by computer users. The

reports and information made available were and are valuable as a

library resource; however, their role in system evaluation is limited

to the extent that manual system evaluation itself is limited.

Perhaps, the first significant technical development is reflect-

ed in the initial efforts to automate system performance evaluation.

This approach included the use of a tape library which could be

accessed automatically in conjunction with an attempt to model and

simulate the performance of proposed systems. The computer system

11

developed, SCERT'C(tSstems and Computers Evaluation and Review

Technique), '5 was designed to assist in making initial computer

selection decisions, to aid in determining the adequacy of a given

system, to evaluate modifications made to increase system capabili-

ties, and to determine the effects of automating new applications and

software. The development of this evaluation technique was well under

way by 1964 and was reported at that time.

Since 1964, the original version of SCERT has undergone modifi-

cations and has been enlarged to permit evaluation of large complex

systems as well as small special purpose configurations. More

recently, CASE3 0, a simulator comparable to SCERE has been developed

by Software Products Corporation. Of some interest is the fact that

both SCER and CASE are maintained by the developers on a proprietary

basis. Of more importance is the fact that the value of simulation

in computer system performance evaluation is being recognized and

that simulation techniques are being utilized.

B. System Measurement Tools

At the present time, the methods for computer system evaluation

are still somewhere between an art and a science. The scientific

method involving observation, hypothesis, experimentation, and modifi-

cation is difficult to apply to computer systems. This may be true

because it is not possible to conduct controlled experiments on a

ccmplex and variable system or because to modify the physical system

to perform experiments would be too costly and would require

excessive time and effort. The problem of system evaluation has been

attacked on several levels - analytical modeling, simulation, internal

12

software monitoring, and hardware monitoring. The applicability of

any one of these techniques may be limited and the confidence to be

placed in the final evaluation is a function of the level of under-

standing of the user.

1.' Analytical 'Modeling. As evidenced in the recent literature,

much work has been performed in the area of analytical or mathemati-

cal modeling. It is significant that the scope of the modeling

studies has been limited to subsystems of the total system. Attempts

to describe a total system mathematically result in complex unsolvable

models or even if solvable, the models are not sufficiently flexible

to permit modification and further analysis. Although the use of

mathematical analysis has been restricted to logical subsystems of the

total system, the results produced in many instances are directly

applicable in making decisions during system design and later in for-

mulating algorithms for system operational control.

Typical studies in mathematical modeling involve the analysis of

I/O buffering requirements7 , paging characteristics8 , the phenomenon

of thrashing associated with excessive paging9 , time-slicing algori-

thms for multiprogramming , queueing disciplines as applied to job

schedulingl l , and dynamic allocation of system resources 2 . The

models provide a means of thoroughly understanding specific critical

aspects of a computer system. As indicated earlier, mathematical

modeling is not a practical solution to the problem of total system

evaluation. Its applicability should be viewed as local as opposed to

global.

2.'' Simulation. A partial attack on the global problem is through

simulation. The phrase 'partial attack' is used because to make the

13

most effective use of simunlation, it should be used in conjunction

with other techniques such as analytical models, software monitoring,

and even hardware monitoring. A simulation model properly designed

and implemented for a sizable system is expensive, but may be one of

the best tools for accurately predicting and analyzing system perfor-

mance. The proper use of simulation is not easy. If the level of

simulation is too gross, not enough details are simulated and the re-

sulting information content is low. If the level of simulation is

too fine, the cost of performing the simulation due to run time may

be prohibitive. Further, the results produced through simulation are

no better than the assumptions underlying the construction of the

model. The assumptions concerning the behavior of variables within

the real system are perhaps most critical. In many cases the be-

havior of these variables can be represented only through random

sampling of variables assuming a particular distribution. The results

are then valid to the extent that the assumed behavior of the varia-

bles in the simulation approach the actual behavior of the variables

in the system simulated.

To facilitate the expression of the components and logic of cam-

plex systemn, special purpose simulation languages have been develop-

ed. The primary objective of such special purpose languages is to

permit the user to concentrate more on the details of the system simu-

lated than on the mechanics of the language in which the system is

expressed. This is not to say that much simulation work has not been

done in the past using available general purpose compilers such as

FORTRAN, ALGOL, and PL/1. There is an advantage in using general pur-

pose languages since communication of programs is facilitated due to

14

widespread use of these languages, A disadvantage of the use of these

languages is that in order to simulate timing, interrupts, queues, and

control functions accurately, more attention must be given to details

of using the language than to details relevant to the simulation. The

nature of the simulation languages developed varies from general pur-

pose system simulators, e.g., GPSS 1 3 and SIMSCRIPT1 4 , to computer

system simulators, e.g., CSS1 5 and S31, to hardware simulators, e.g.,

17 18Computer Design Language and HARGOL Further, some of the

languages were developed as independent assembly based languages and

some as extensions of existing languages.

In deciding what language to use, certain factors may be

critical - availability of the language for general use, i.e., pro-

prietary or unrestricted, flexibility of the language, and prior ex-

perience with the use of the language. The simulation language, to a

large extent, determines the scope of the simulation possible.

Objectively, the language should be selected or developed to provide

ease in representing the system to be simulated, to permit either

general or detailed descriptions of system components as a function

of the level of simulation required, and to make possible the use of

mathematical models for characterizing alternative modes of system

behavior. The outputs from a simulation study are equally important,

i.e., the measures of system performance produced by the simulation

which provide statistics relating to turn-around-time, throughput,

hardware/software utilization and queueing processes. To be useful,

the' outputs should be a function of user need for detailed or general

information at any desired frequency throughout the simulation run.

3. 'Software Monitoring. Internal software monitoring of an

15

actual computer system is another'means of attacking the problem of

assessing system effectiveness. System analysis, using this technique

has been undertaken at the University of Michiganl 9 and is also being

20used to mcnitor the MULTICS time-sharing system at M.I.T.2. Clearly,

this technique is useful only in conjunction with an operational

system. The monitoring discussed here is not necessarily connected

with the collection of accounting type information. The function of

the monitor is to gather statistics on actual system resource utiliza-

tion, queue formation, job frequency, etc. The outputs then form the

basis for identifying excessive queues if they exist, which in turn

reflect bottlenecks in the system and need for improvement. The

monitoring mechanism must appear to be operating in parallel with the

normal operating system, causing essentially no interference which

would alter the results of the standard mode of operation. Particular

care must be taken in using this technique in that the monitoring is

not actually performed in parallel, and the user must be assured that

the interference, if any, is insignificant with respect to the para-

meters of interest.

Limited use has been made of this technique since the implemen-

tation of the monitoring mechanism is special purpose. Each computer

installation invariably has its own unique operating system which

means each new system monitored requires new routines and reprogramm-

ing to permit evaluation of system performance. Further, comparison

of systems monitored may be difficult due to differences in system con-,

figuration and general operating procedures. It is mn contention that

each operating system must build in a monitoring capability of its own.

This is true for any large system.

16

Very recent efforts:in the area of software monitoring include

the development of monitors by Boole and Babbage2 8 '29 and a software

measurement technique, SIPE, CSystem Internal Performance Evaluation)

developed by I26. Both of these monitoring devices have been de-

signed for the IBM system/360 Time Sharing System. The use of either

of these monitors results in some system degradation during the data

collection and recording mode. The loss of system efficiency incurred

is justified in that analysis of the operation of a large-scale com-

plex operating system requires data that can be obtained only from

'inside' the system as it is operating. The basic feature of internal

monitors is that they have access to, and can selectively record,

system data. Subsequent analysis of the data recorded allows for

locating the low efficiency portions (i.e., bottlenecks) of a con-

figuration and permits determination and improvement of inefficient

software.

Although the actual implementation of an internal monitoring de-

vice is special purpose, the results obtainable fulfill very general

needs. Every operating system should have the capability of self-

monitoring, particularly in areas where performance evaluation is

critical and in cases where the workload characteristics and system

utilization may vary over time. A logical extension to the self-

monitoring concept is system self-modification, i.e., under certain

conditions adjusting parameters within the system which govern system

performance. Clearly, this step can not be taken until performance

under manual control of parameter modification can be evaluated and

understood fully.

4. 'Hadware 'Monitoring. The' design and implementation of

17-

special hardware monitoring devices has been limited due to cost of

implementation primarily. The need for such devices has been.realized

as experience has been gained in the use of large multiprocessing and

multiprogramniing systems. In most cases, the system capabilities are

unknown and means must be devised to determine the system operating

characteristics such as I/0 wait times, overlap of activities,

resource utilization and idle or unproductive times. Hardware

monitoring is especially attractive since, if properly designed, many

signals can be monitored simultaneously, causing essentially no inter-

ference with the system monitored.

One of the earliest uses of hardware monitoring was the direct

couple system implemented by IBM which permitted an IBM 7044 to

monitor the IBM 7094 operating in stand alone fashion2 1. The 7044

acted as a big counter to obtain statistics on instructions processed

in the 7094. This technique is currently being used by Univac to de-

bug and evaluate the 1108 EXEC VIII operating system2 7. In this case,

two 1108's are set up as a multiprocessing system, however, the only

function of one processor is to gather information on the operations

of the other processor. The cost of such monitoring precludes their

general use by individual users attempting to improve system perfor-

nmance.

In 1967, the design of the SNUPER computer was reported22. The

objective of the design project was to develop a monitoring device

which would interface with a computer system, produce a record of

significant .events, and between significant events, provide for

generation and maintenance of on-line displays. The ultimate goal of

this study was to determine the class of instrumentation which could

18

give significant measuresof system performance using a small, low

cost SNUIER computer. If these objectives could be met, the computer

then could be used at more than one computer installation. The most

recent report on this project was given at the AFIPS 1969 SJCC2 3 . The

emphasis in this report was more on the class of parameters which

could be monitored than on the hardware features required to handle

the monitoring.

At the same time, IBM was working on a recording device, the

Time-Sharing System Performance Activity Recorder (TS/SPAR) to be used

in monitoring the class of TSS/360 computers2 4 . Input to this device

was via a specially engineered interface through which the internal

states of the Model 67 system and I/O devices could be monitored. The

report was non-commnittal as to the actual success realized through the

use of the recorder. It was viewed more in terms of its potential for

the future in the areas of multiprocessing, multi-tasking, data set

organization in virtual and real storage, and I/O monitoring. A long

range objective was to provide feedback. capabilities and make the

recorder a system monitor rather than merely a logger of information.

At the present time, any extensive hardware monitoring is

special purpose, expensive and rather inflexible. As a consequence,

hardware monitoring devices, developed and used, by computer system

designers, have had limited use by the general user.

C. The Use of Multiple Measurements

In the preceding discussion, the major methods available for use

in system evaluation have included mathematical modeling, simulation,

internal software monitoring and hardware monitoring. Each of these

19

methods has.its advantages and also.its limitations. In the.evalua-

tion of system performance for a large scale multiprocessing or

multiprogramming system, any one technique may not be a practical or

satisfactory solution. Limiting factors may include cost, complexity

of system, level of confidence in unavoidable assumptions made, in-

flexibility, or interference caused by the monitoring device. A more

practical solution to system evaluation appears to be through the use

of more than one technique.

D. Specific Applications

Perhaps the best example of the use of multiple measurement

tools is found in the research now being conducted on the MULTICS

time-sharing system2 0 . At system design time, certain hardware

features were provided to enhance software measurement. These in-

cluded a central read-only system clock which produces a count per

psec, a time match interrupt, and a CPU memory cycle counter. When

the system became operational, software modules were developed to use

the hardware monitor features and to provide information on frequency

and timing of missing page faults, missing segment faults, linkage

faults, wall-crossing faults, and interrupts. By taking advantage of

the built-in hardware features, the software required was not elabor-

ate. For example, segment usage metering was performed through the

use of the clock and the time matching interrupt. Every 10 isec an

interrupt occurred, at which time the core location was noted and re-

corded. Reduction of the data provided a histogram of segment usage

and indicated most popular segmnents. The results permit localizing

where time was being spent and further which procedures should be made

20

more efficient.

In order to conduct scientific type experiments, i.e., repro-

ducible experiments as far as possible, bench marks were established

for the MULTTCS system. The bench marks took the form of script in-

put which is essentially an established list of commands representing

console users. During test periods, the system configuration is

standardized and the use of the system is restricted, i.e., no other

users are allowed to distort the experiment. One of two modes of

operation then is possible - internal or external. In the internal

mode, the script is read into the main computer. A simulation program

is used to interpret the commands and to trigger the system functions

just as if n consoles were driving the system. When the external

mode is used, the script is interpreted by a PDP-8 computer and inter-

rupts are produced at the main computer exactly as they would appear

if produced directly from console users. A logical consequence of

using bench marks for system evaluation is that optimization of system

performance is in terms of the inputs used. The MULTICS project group

considered this in setting up the script. The commands to the system

included in the script were selected primarily from typical requests

requiring extensive file maintenance and management. Optimization of

the system in terms of these requests results in general system

improvement since in a time-sharing system much time is spent in pag-

ing and file manipulation.

In summary, measurement tools being used in the MULTICS system

include hardware monitoring (provided in system design), software

monitoring, bench marks, and simulation. Evaluation of the' data

obtained through the use of these measurement tools is providing

21

insight into. the operation of time-sharing systems and making system

improvement possible through the analysis of effects produced by'

system modification.

E. Conclusion

Not all system analysts are fortunate enough to have integrated

hardware instrumentation; however, extensive use of all available

evaluation techniques should be considered. One attractive approach

is through simulation, validated by actual system performance as

determined using internal software monitoring. Further, the simu-

lation process may be reduced through the use of results derived from

mathematical modeling of subsystem behavior. The technique or com-

bination of techniques to be selected and implemented for any given

system will depend upon many factors including available hardware

instrumentation, the scope of the evaluation, and the stage of system

development. In any case, system evaluation must be a continuing

effort - in the system design in order to meet user requirements and

later in system operation to determine whether system capabilities

have been exceeded, or the system is being used inefficiently, or

simply to improve or to maintain system performance as user and appli-

cation characteristics change with time.

CHAITER III

ANALYSIS OF DYNAMIC ALLOCATION STRATEGIES

A. Scope of Analysis

The analysis undertaken makes use of simulation models and

internal software monitoring of actual system performance. The

scope of the simulation was restricted to analyzing the characteris-

tics of dynamic allocation of buffer storage for temporary,

unpredictable, and small storage requests. The Univac 1108 super-

visory system, EXEC 8, allocation scheme was the subject of analysis.

This system was selected because of its availability at the University

of Maryland Computer Science Center for observation through software

monitoring. The dynamic allocation schemes for buffer storage

became the subject of analysis because this function is central to

the allocation scheme implemented in the executive system and is a

critical factor in system performance. From time to time the alloca-

tion scheme implemented in the EXEC 8 has come under close scrutiny

of the system analysts. At these times attention has been directed

more toward determining why system performance has become degraded or

nonexistent than toward evaluating the merits of the implemented al-

location scheme as compared with others which might be more effective

under certain operating conditions.

It should be noted that the choice of buffer allocation schemes

as the subject of study was made in view of the fact that the alloca-

tion of small buffers is relatively self-contained as compared with

22

23

dynamic allocation of user programs in a multiprogramnig environment.

In general, allocation of memory to user programs cannot be consider-

ed independent of a particular system design philosophy including

scheduling procedures, priority schemes, and hardware restrictions.

Further, allocation of memory to user programs may be extremely com-

plex involving many variables and parameters which in themselves are

not clearly understood. The interaction of these parameters is then

another order of analysis. The unavoidable complexity and the magni-

tude of such a study dictate that experience should be gained in the

use of the analysis techniques in understanding the basic elements of

a system as a first step. The potential use of these techniques can

then be realized in more extensive studies which should be undertaken.

1. 'Function Parameters. In the allocation of buffer storage,

two factors, time and space, are important. In any given system one

may be more critical than the other. If such is the case, time-space

tradeoffs may be unavoidable. Ideally, the strategies implemented

would be selected only after an analysis of potential schemes had

been performed, which would indicate the strategy incurring the least

penalty and best satisfying the critical space or time requirement.

The two factors of interest in the dynamic allocation of buffer stor-

age may be restated as the 'time to allocate and release buffers' and

memory utilization or 'the percent of total reserved memory which is

effectively used'.

The allocation tine may be increased or decreased depending upon

the allocation strategy adopted and the sophistication and complexity

involved in the programming. The program complexity and possibly the

running time may be increased if a premium is set on the memory use.

24

In any case, there is always some overhead time associated with the

search and maintenance of available buffer storage lists. Contributing

to memory loss are system overhead requirements and waste, so that the

memory utilization factor is always less than 100%. Included in the

system overhead is the amount of storage required for linkage, block

sizes, and use tags. Contributing to the waste are two sources of un-

usable memory: external fragmentation of memory and internal fragsen-

tation caused by fixed request size which requires that the request be

equal to some specified buffer size. Whenever it is necessary to re-

quest a buffer greater than the buffer actually needed, some internal

waste is incurred. The memory loss incurred by fixed request require-

ments may be acceptable and even desirable if space is not the prime

consideration and the implementation is facilitated and/or the alloca-

tion time is reduced.

2. Pooled versus Private Buffers. Buffer storage allocation is

a function common to most operating system executive routines. There

are two ways to assign buffers: either buffers are acquired dynami-

cally as needed from a pooled buffer, or each process requiring storage

has its own private buffer which is sufficiently large to make the

probability of overflow less than some number. The use of pooled

buffers by an executive routine servicing many users through reentrant

routines which require temporary buffers is essential if memory utili-

zation is to be high. This is clear since otherwise for each routine

the memory loss caused by each user is equal to the difference between

the expected maximum buffer needed and the average buffer usage. A

conclusion based on analysis reported by Denning3 1 is that 'pooled

buffers are far superior to private buffers, especially when the num-

ber of users is large'.

25

Another advantage of the pooled buffer lies in the fact that

allocation of additional space for buffers regardless of which routines

are temporarily active need be made only when the total memory allocat-

ed to the pool is near depletion. The term 'near depletion' describes

the situation where a request is made for a buffer of size n and this

request cannot be honored, however, the difference between the total

memory reserved and the total memory allocated is greater than n. Re-

stated, this means that if the used buffers were placed contiguously

in the memory pool, n consecutive memory locations would be available

to satisfy the buffer request. It is highly improbable that all avail-

able space will be used before apparent overflow occurs due to some

degree of external fragmentation introduced in the allocation process.

It is in the interest of maximum memory usage to implement an alloca-

tion scheme which keeps external fragmentation at a minimum or to pro-

vide for memory consolidation periodically. Because of the asynchronous

nature of the executive functions and the many users operating con-

currently in the computer system, buffer consolidation through memory

rearrangement and relinkage would be unfeasible. The objective then

is to evaluate allocation schemes in relation to the operating environ-

ment and decide upon one which keeps external memory loss within

acceptable limits.

B. Buffer Allocation Algorithms

Basic schemes for dynamic allocation along with algorithms for

implementation have been well defined in the computer science litera-

ture3 2 . Some comparisons of the methods have been made on the basis

of assumed operating environments. The schemes receiving most

26

widespread usage are the' firstfit method, the best-fit method, and

the buddy method. In the' first-fit and best-fit allocation, a list

of available storage is maintained. When buffers are released, they

are returned to the list of available storage either separately or

combined if the released block is contiguous with a block of available

storage. The difference in the two methods is found in the allocation.

In the first-fit method, a request for a buffer of size n is filled

from the first block of available storage encountered on the list

which is greater than or equal to n. In the best-fit method, if no.

block of size n exists, a search of the entire available storage list

is made to find the block of storage which makes the available storage

block minus n a minimum. In general, the best-fit method is implement-

ed less often than the first-fit method because of the time factor in-

volved in the available storage list search for each allocation made.

It has further been found that the best-fit method does not necessarily

reduce the problem of fragmentation32 .

The buddy system which is implemented in the EXEC 8 requires that

the size of requested buffers be a power of two. It should be noted

here that this requirement for standard request sizes may be an impor-

tant factor in memory loss if the user must request buffers which are

larger than actually needed. If no buffer of size 2k is available,

the smallest block 2j which is greater than 2k is split into blocks of

2k ..., 2J~! words each. Upon release of a buffer, halved blocks,

called buddies, are recombined if both are available. More complete

descriptions of the firstfit and buddy algorithms will be given later

since these are the two basic schemes, with some modifications, which

are evaluated.

27

As indicated earlier, the analysis techniques used included.

simulation and some software monitoring of the EXEC 8 operating

system. The simulation permitted an evaluation of the allocation

schemes in terms of time and memory utilization. The data obtained

using internal software monitoring of the executive system provided

request-release distributions representative of those seen by an

actual operating system. Simulation taken alone is valid to the ex-

tent that the assumptions made about the actual behavior of the system

parameters are valid. Software monitoring provides data representa-

tive only of the particular system monitored since, incorporating

alternative schemes into an existing operating system for experimen-

tation purposes is difficult, and in general, is not encouraged by

system analysts responsible for maintaining an 'operating' system.

Validation of the simulation models and increased confidence in the

outputs from the evaluation process resulted through the combined use

of the two techniques.

C. Simulation Language

The schemes for dynamic allocation of buffer storage were modeled

using GPSS-II and processed using the Univac 1108 at the University

of Maryland Computer Science Center. GPSS-II is a general purpose

system simulator designed to permit the study of any system or process

which can be reduced to a series of operations performed on units of

traffic. The structure of the system simulated is described as a

series of blocks, each block describing some step in the action of the

system. A number of block types are provided, each corresponding to

some basic actions or conditions that may occur in a system. In the

28

simulation process, units: of traffic, or transactions, are created

and processed through the' system by the Simulator.

The user of GPSS-II may control the volume of traffic, the

action time in any block, transaction priorities, conditional entry

or exit from blocks, and specify the outputs desired. The outputs

may include information on the number of transactions, i.e., volume of

traffic through portions of the system, the distributions of transit

times for transactions between selected points in the system, the

average utilization of system elements such as facilities and storage,

and information on queue formation at selected points in the system.

The outstanding features of the simulator include the facility with

which continuous or discrete functions may be defined and used in the

simulation process, the control the user has over the routing of

transactions through the system, and the ease with which statistical

data may be collected at critical points in the system.

The models developed to represent the dynamic allocation of

buffer storage assumed the following correspondence between system

components and the elements of the block diagram. Requests for buffer

storage are treated as transactions, and the size of the buffer pool

corresponds to storage capacity. The arrival of requests for buffer

storage were generated assuming a Poisson distribution. The

requests are serviced according to the allocation scheme modeled.

One of the more difficult aspects of the modeling involved con,

trolJling the locations in memory which were allocated for a given

transaction. The GPSS-II language provides for defining storage

capacity, and the simulator retains a record of used and unused stor-

age, but does not record which specific transactions occupy the

29

storage. In order to realistically simulate the allocation process

and determine the extent and type of memory fragmentation characteris-

tic of each allocation scheme used, it was necessary to maintain a

memory map in the models. Total buffer pool overflow was then deter-

mined as a function of whether n consecutive locations were available

regardless of the total number of unused memory locations. In the buddy

allocation model, the memory map of buffer storage was maintained

using GPSS block types under the assumption that the available stor-

age list would remain short, whereas in the first-fit model, the

memory map was maintained using a Fortran subroutine which is per-

mitted as a special GPSS block type. The provision for such routines

is to permit the user to perform certain arithmetic and special

operations in Fortran which cannot be performed conveniently by a

ccabination of ordinary GPSS block types.

D. Simulation Models Developed

The dynamic allocation of buffer storage is an essential function

in an executive program. In order to perform many utility functions

within the system, e.g., input-output, and to maintain control over

system operations, information must be maintained which reflects the

current state of the system operations. Because of their frequent and

asynchronous use, many system routines are coded to be reentrant.

This, in turn, may require that each time a reentrant routine is

executed, a buffer must be established to identify the source of the

caller and to preserve any parameters modified by a call to the routine.

In general, the size of buffers needed for maintaining system control

are small, i.e., on the order of 22 to'2
8
words and the use time of a

30

buffer is relatively short. These two factors, size of buffers and

use duration are important in evaluating alternative allocation

schemes.

In the dynamic allocation of buffer storage, a method must be

adopted for allocating and releasing variable size blocks of memory,

maintaining a list of available or unused blocks, and extending the

buffer pool when it nears depletion. In developing or selecting a

suitable allocation scheme,, decisions are necessarily made, either

explicitly or implicitly, with respect to factors which could affect

the efficiency of the allocation process. In adopting an algorithm,

one, at the same time, adopts decisions such as whether to maintain

one list of all available blocks or to maintain several lists;

whether the blocks on the list should be ordered or unordered, and if

ordered, whether they should be in increasing or decreasing order of

size, or in order of memory address; and, whether requests for buffers

must be a fixed size, one of several specified sizes, or a variable

size. The execution time per allocation, the allocation routine com-

plexity, and the amount of unusable space per allocated block are

ultimately a function of the allocation process implemented. Through

the use of simulation models, algorithms which are based on alternative

approaches can be evaluated in terms of execution time and memory

space tradeoffs. Initially, two basic allocation schemes were model-

ed, the first-fit and the buddy allocation method.

In the first-fit method, one list, essentially unordered, by size,

of available storage blocks is maintained; the buffer request size is

variable; the list is doubly linked so that, upon release of a buffer,

adjacent available buffers in either the forward or backward

31

direction may be cambined with the' buffer being released; and two

words in every allocated block are reserved.for allocation control.

Each time a buffer of size n is requested, the routine is entered.

The list of available storage blocks is searched until the first block

of at least n+2 words is found. The block from which the allocation

is made is reduced by n+2 and the remainder, if greater than zero, is

returned to the list of available storage. The address of the reserv-

ed buffer is then returned to the user.

The other basic algorithm selected for study is the buddy

method. The buddy allocation scheme makes use of (m-l) locations

which serve respectively as heads of the lists of available storage

of sizes 4, 8,...,2 . Circular lists, singly linked, are used for

storing available blocks of storage. Before any storage has been

allocated, list pointers are established so that AVAIL(i)=i, i=2,...,

m-l indicating these lists are initially empty and AVAIL(m) points to

the location of the first available block of size 2m . One word of

overhead in each allocated block is used for allocation control.

Implicit in the list definition is the fact that the maximum request

size is 2m-1 and the minimum request size is theoretically 1, although

in the EXEC 8 implementation of the buddy method, the minimum is

arbitrarily set at 3. Regardless of the exact buffer size requested,

if it is between 1 and 2m-l, a buffer of size 2k is allocated, where k

is the least power of 2 which is greater than the buffer size requests

ed. It should be noted that althougJl a request may be made for any

size buffer within the specified range, the size of buffer allocated

is always a power of two, representing essentially a restricted number

of distinct buffer request sizes. As a consequence, the lists of

32

available storage are maintained'by size.' The basic request and re-

lease algorithms for the first-fit allocation schemes are taken fram

Knuth' S The Art of Ccmputer Progranming, Volume I, entitled'iundamen-

tal Algorithms32. Certain modifications were made to the algorithms

as given, in order to facilitate the implementation and reduce the

simulation running time. For example, in the first-fit algorithm,

the packing of the size, use tag, and link into one computer word was

not actually performed in the simulation model. This reduces the num-

ber of operations to be performed in the simulation process which in

turn reduces the simulation running time. As a result, two additional

words in each allocated block are used for simulation control. Be-

cause it is a simulation, and no practical use is being made of the

n-2 words in an allocated block, this modification does not logically

change the basic algorithm. The only consequence of this change is

that for the simulation model of this algorithm to function properly,

the minimum buffer request must be two words, which is not an un-

reasonable restriction in view of the EXEC 8 requirement which may be

viewed as typical of operating systems. The minimum buffer request

size, plus the standard two words required for linkage and control

guarantees that the four words of control used in the simulation are

available. Minor changes, such as the reversal of the plus and minus

boundary or use tags are a matter of programmer preference and in no

way impose any additional restrictions on the allocation process.

The simulation models of the first-fit allocation and release

algorithms are as follows.

1. ·Buffer Allocation (First-Fit). Let U point to the first

available block of storage, and suppose that each available block with

r33

address P contains the following information: SIZECP)~ the numbher of

words in the block:maintained in the second and last word of each

block; LINK(P), a pointer to the next available block on the list;

LINKB(P), a pointer to the preceding available block on the list; and

TAQ(P), a sign on the size word which is used to control the release

process. TAG(P) = '+' indicates a free block; TAG(P) = '-' indicates

that the block is reserved. A 'roving' pointer, ROVER, is used so

that the search for an available block begins in different parts of

the available list, which avoids initiating the search with the first

available block on the list for each buffer request. F is used in

conjunction with ROVER to determine when all entries on the available

list have been searched. Upon entry to the routine, F is set to zero.

When U, the head of the list, is encountered, F is set to 1. If F=l

and the head of the list is encountered again, this means that the en-

tire list has been searched without finding an available block of ade-

quate size. Since ROVER may be positioned to any block in the list

initially, some portions of the list may be searched twice. Note that

if the search always begins at the first available block on the list

at each request, there is a strong tendency for blocks of small size

to build up at the front of the list, so that in general it may be

necessary to search through many entries in the list before finding a

block which will satisfy a buffer request.

Al: [First entry only, initialize.] Set U, P, and ROVER = address of

first cell of buffer pool. Store size of buffer pool in the second

and last word of block. Set LINKBCP)=O and LINKCP)=Loc(U).

A2: :TInitialize search.] Set P=ROVER, F=O..

A3:' Test end of search.] If P=Loc(U) and FpO, no allocation is

34

possible.' Otherwise;,if P=LocCU), set F=l, P=-U.

A4: JISearch_ list.] If SIZECP)-N, go to A5; otherwise set P=-IINK(P)

and go to A3.

A5: TReserve N locations starting at L.] Set K=SIZE(P)-N. If K=O,

set LINK(LINKB(P))=ROVER, set LINKBCROVER)=LINKB(P). (This removes

an empty block from the available list and sets L to the beginning of

reserved block.) If K$O, set SIZE(P)=K. In either case, set TAG(P)=

'-' to indicate it is reserved and set L=P+K.

The algorithm terminates successfully, having reserved N locations

beginning at P+K. The function of the allocation algorithm for the

simulation process is to reserve buffers as requested and to insure

that each block in the buffer pool has the form given in Diagram 3-1.

Note here that since this allocation scheme is being used in a simu-

lation process only, no attempt is made to reduce memory overhead,

e.g., LINK, TAG, and SIZE will fit conveniently into one computer

word if time is taken in the simulation to pack them. In general,

then, two words of control are sufficient to maintain control of this

data structure. When buffers are returned to the buffer pool, the

release algorithm assumes that the blocks are in the form maintained

by the allocation process.

2. Buffer Release '(First-Fit). This algorithm puts a block of

N locations starting at address L onto the.available list. Whenever

an upper adjacent block of locations is found to be available,, it is

deleted' from the available list and collapsed into the block currently

being released. If a lower adjacent block is found to:be available,

the' block being released is combined with the block already on the

list. If neither' adjacent block is free, the block currently being

35

Reserved Buffer Format

I SIZE - 4 Words

Free Buffer Format

.. LNK

-TAG Irt:.- SI SZE
- Pointer to next available

buffer on list

- Pointer to preceding
buffer on list

available

SIZE - 4 Words

Diagram 3-1. Buffer Formats

Used in the First-Fit Simulation Model.

TAG='-'

TAG='-'

TAG='+'

TAG=' +'

36

released is sinmply added to the front of the available list..

R1: [Check upper adjacent block.] Set' P=LAN.. If TAGCP)>O,. go to PR3.

R2. rCheck lower adjacent block.] If TAG(L-l)>0, go to R4. Other-

wise, set P1=U, P2=Loc(U), and go to R5.

R3: [Set up for deletion of upper adjacent block.] Set N=N+SIZE(P),

Pl=LINK(P),. P2=LINKB(P), if P=ROVER, set ROVER=Loc(U). x

If TAG (LI-)<O, go to R5, otherwise, set IJNK(P2)=P1 and LINKB(P1)=P2.

R4: [Collapse current block with lower adjacent block.] Set N=N+

SIZE(L-1), set L=L-SIZE(L-1), and go to R6.

R5: [Relink available list.] Set LINK(L)=P1, LINKB(L)=P2, LINKB(P1)

=L, LINK(P2)=L.

R6: rStore size of block returned.] Set SIZE(L)=N, SIZE(L+N-1)=N,

and return.

3. Buffer Allocation (Buddy). The buddy simulation model

developed is based on the allocation and release algorithms presented

in Knuth3 2. This method requires one word for control in each block

and requires that the size of all blocks be a power of 2. This method

keeps separate lists of available blocks of each size 2k where 2<-kSm,

and 2m is the largest permissible buffer size. When a buffer of 2k

words is requested, and no block of this size is available, then a

larger block is split into two equal parts; at some point a block of

the requested size is available. When one block is split into two

equal blocks, these two blocks are called 'buddies'. If at a later

time, both..buddies are .available, they may be collapsed into a single

block.

The usefulness and practicality of this method lies in the fact

that if the address and the size of a block are given, the buddy to'

37

this block is easily found. Let buddyk (x) equal the address of the

buddy of a block of size 2k whose address is x. Then it is found

that:

x+2 k if x nod 2 k=0

bUddyk(X) {x 2 k if x od 2 k+1=2

This function is easily computed with an 'exclusive or' instruction

usually found in binary computer instruction repertoires.

When a block is reserved, only one word is needed to maintain

control. This one word contains a 'use' tag and the block size. If

the block is reserved, TAG(P)=O and if the block is free or available

then TAG(P)=l. When blocks are free, one link field may be used for

maintaining a singly linked list, or two links may be used if doubly

linked lists are desired. In the simulation model, singly linked

lists are used. The buddy system algorithms are as follows.

Assume a request for a buffer of size 2k .

Al: [Initialize, first entry only.] Set AVAIL(i)=i, i=2,...,m-1 and

set AVAIL(m)=location of first buffer of size 2 . Link all buffers

of size 2m and set link of last buffer on 2m list = m, and set all

sizes = m.

A2: [Search lists for first list with block size - k which is non-

empty.] Search AVAIL(i), where k'i~m such that AVAIL(i)Zi. If none,

no allocation is possible for block of size 2k .

A3; [Remove first block from list with available block.] Set

L-AYAIL(i) and AVAIL(i)-LINK(L) where 2i is first available block.

A4 : ITest for i=k.] If i=k, return location L to user as starting

address of reserved block.

A5: ISplit 2i block and put a block on 2i1 list.] Set i=i-l,

38

P=-L+2i, INK(P)=i, SIZE(P)=i, AVAIL(i)=P, and go to A4..

4' 'BufferRelease). Assume a buffer of size 2
k

starting

at location L is to be released.

R1: [Calculate buddy address-using function given earlier.] Set

P=Loc(buddy). If k=m or block at buddy address is not available or

has size < 2 , go to R3.

R2: [Remove from list and combine with buddy.] Set AVAIL(k)=LINK(P),

k=k+l. If P<L, set L=P and go to R1.

R3: [Place block on list k.] Set LINK(L)=AVAIL(k), AVAIL(k)=L,

SIZE(L)=k, and return.

E. Inputs to the Simulation Models

The confidence to be placed in the outputs from a simulation

model is a function of the extent to which the model represents the

system function being simulated. Of equal importance are the assump-

tions necessarily made concerning the behavior of the parameters in

the actual system. To test the models, statistics were needed on the

behavior of the transactions in the model, where the transactions

correspond to requests for buffer allocation and release in the execu-

tive system. In particular, statistics were needed on the request

size distribution and on the rate of buffer request and releases. In

order to test the models with realistic inputs, efforts were made to

gather data characteristic of the EXEC 8 in an actual operating

environment.

In order to approximate a request distribution, memory maps were

constructed from printouts of the buffer pool, EXPOOL. From the

memory maps, it was possible to tabulate the number of allocations of

39

each valid request size at the time the printout was produced. The

distributions of buffer allocations by request size obtained from

these memory maps are shown in Figure III-1. At this point, in-

sufficient data are available to definitely correlate variations

found in request distributions with particular system operating modes,

e.g., batch or on-line. It could be significant in the evaluation of

particular allocation schemes if such correlations are found to

exist.

The buffer request and release rates are not available at this

time. In the simulation process, buffer requests and releases are

being generated assuming a Poisson arrival distribution and an ex-

ponential hold time. Under these assumptions, Figure III-2 then pre-

sents the distribution used as input to the simulation process and

also the distribution constructed from a memory map at the end of the

simulation run. Confidence was gained in the validity of the model

since the distribution is not significantly altered as a result of

the simulation process.

F. Outputs from the Simulation

Performance is being measured in terms of memory utilization and

execution time required for the allocation process. In order to estimate

relative execution times, data were collected on the time-consuming

operations within the allocation processes. The following operations

were tabulated for both the first-fit and buddy allocation models:

the number of searches of the available storage list(s), the number

of memory collapses, the number' of searches required for releasing a

buffer, and the number of splits required to obtain a buffer of

(1) 200 Allocations
(2) 468 Allocations
(3) 343 Allocations
(4) 389 Allocations

(4)

(2)

(3)

(1)

22 26

I z I
)3 24,

Size of Requests

Distribution of Buffer Requests by Size.

40

200.

150

10,0
EO

4o

a)
(D

0

I

50

0

28

Figure III-1.

41

Distribution of Buffer Requests
® Input to Simulation

Distribution of Allocated Buffers
x at End of Simulation Process

Size of Buffers Requested

Figure III-2. 'Comparison of Buffer Request Distributions
Input To and Output From the Simulation Model.

50

40
a)

a,r

E~

0

40

30

20

10

e .

0

42

requested size. In order to estimate memory loss, data were obtained

on the internal memory loss--per allocation. This type of memory-loss-

represents memory used for control and is tabulated in Table III-1.

Also contributing to memory loss is external fragmentation, a relatively

long term effect which is best seen through the use of memory maps.

See Figures III-3 to III-6. The effect of this factor may be quite

significant and contribute to the allocation time through an increase

in the number of searches required to obtain a requested buffer. An

estimate of the severity of this problem can be obtained both from a

memory map obtained after the allocation process has been in progress

for a period of time, and the number of search operations.

Both models, the first-fit and the buddy model, were executed

using identical buffer request rate, size, and hold times. The total

buffer pool was set at 13312 words of memory. Table III-1 gives a cam-

parison of the operating characteristics of the two schemes.

In view of the results obtained, it seems clear that for the

given distribution of requests, the buddy system is superior to the

first-fit method if the prime consideration is either time or space.

This is further substantiated by constructing and comparing the mem--

ory maps at the end of the simulation process. Figures III-3 and III-4

are indicative of the memory loss introduced by the buddy method and

the first-fit method respectively. In the first-fit process, the pro-

blem of external fragmentation is so severe that although there is

sufficient space to satisfy the buffer requests, this space is frag-

mented so there is insufficient contiguous space. As a result, the

requests must be queued and satisfied as releases make memory available,

or the total buffer pool is extended.

43

BUDDY FIRST-FITT

Mean Memory Loss Per
Allocation 1 2

Total Memory Allocated 12200 12200

(no queue) (requests queued for
buffers of size 25
and greater)

Mean Number of Collapses .012 .195

Mean Number of Searches 1.554 8.410

Table III-1. Comparison of Buddy and First-Fit

Allocation Characteristics.

44

I - Available Buffers

I

mia~i~s~r~* ,

Is~ 4

I

200

Memory Location

300

300 500

I
400

Figure III-3. Buffer Pool Memory Map Resulting from Simulation of
Buddy Allocation Scheme. (Map constructed after 926
allocations and 400 releases.)

13000

12500

12000

11500

11000

10500

10000

9500

9000

8500

8000

o 7500

7000

o 6500

C 6000

'- 5500

. 5000

c 4500

2 4000

3500

3000

2500

2000

1500

1000

500

0
1
100

lmlk "

45

[- Available Buffers

o00 I

Lool I I I

O0 l ll *

100 1 ml

00 I m

00 N 3

00 I *

00 I I I I

00 I I
00 -I * I

00 - i

)00

)00 i t

;00

)00

)00

;00

L-

0
I

100
I I

200 300

Memory Location

400 500

Figure III-4. Buffer Pool Memory Map Resulting from Simulation of
First-Fit Allocation Scheme. (Map constructed after
934 allocations and 400 releases.)

130(
125c
120c

115(

110(

105(

100(

95(
901

85

80(

o 75

70

o 65
o 60
LF\

55

. 50

45
w 400

35S

30

25

20

15

10

5

I

46

Thus, the buddy method is found to be superior in this environ-

ment. The questions then:are': 'Under what conditions could the'.

first-fit method be comparable or superior to the buddy method?' and

'What modifications could be made to the basic first-fit algorithm to

permit more efficient operation?'

G. First-Fit Model Modifications

In the original version of the first-fit model, the following

statements characterize the allocation process:

a) the available blocks are maintained on one list.

b) the request sizes are identical to those used in the buddy

method, i.e., request sizes are powers of two and it is

assumed that no waste is incurred due to restricted request

sizes.

c) two words of overhead in each block are used for control.

d) upon request for release of a block, an attempt is made to

collapse this block with adjacent blocks in both the forward

and backward direction.

1. Modification l. Maintain Available Buffers by Size. The

first modification to this algorithm provided for the same number of

lists as used in the buddy method, i.e., one for each acceptable

power of two. Since only a limited number of request sizes are made,

the available blocks are maintained on lists by size. In Figure III-

5, it can be seen from the resulting memory map, that the problem of

external fragmentation has been reduced to the point that it is can--

parable to the buddy method. The results in Table III-2 indicate that

in the first-fit method, the memory overhead per allocated block is still

47

Mod-l
Mod-2

- Available Buffers

VI

I I ']' -A

eU

D77//////,,,ii,,7mT

-a== -~~pai;~F

0 100

Figure III-5.

200

Memory Location

300 400 500

Buffer Pool Memory Maps Resulting from Simulation of
First-Fit Allocation Schemes - Mod-i and Mod-2. (Map
constructed after 926 allocations and 400 releases.)

13000

12500

12000

11500

11000

10500

10000

9500

9000

8500

8000

7500

7000

6500

6000

5500

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0

c)

0

0

So

cL)

or-

a-

i

48

twice that found in the buddy method; and, if execution time is im-

portant, the' mean number of searches to find an available block is

still significantly greater than that found in the buddy system.'

2. "Modification 2. Reduce' Control Overhead. It was noted in

both the buddy method and the first-fit method that the mean number

of collapses per release is small. In the first-fit method, this

represents collapses in two directions, forward and backward. By

making a modification to the algorithm which permitted collapses in

the forward direction only, several consequences were foreseen.

First, the number of collapses would be reduced by a factor of two.

Next, if collapses were attempted in only one direction, one word of

overhead would be adequate for control since the last word in each

block would not be used in the allocation process. This would make

the two methods conparable with respect to memory overhead. Finally,

a possibility of increased external fragmentation would be introduced

due to the fact that adjacent blocks might be available and unusable

because they were. not coalesced into one block. From the memory map

given in Figure III-5, it can be seen that no appreciable increase in

external fragmentation resulted. The results in Table III-2 indicate

an improvement in the overhead required and a reduction in the number

of collapse operations. The mean number of search operations is

essentially unchanged.

3. 'Modification'3. 'Permit Variable Reuest 'Sizes. In each of

the foregoing tests, it was assumed that the number of words requesti

ed was the exact number of words needed by the requestor. Suppose this

were not the case. Then the buddy method, as well as the first-fit_

method, have introduced internal memory waste which has not been apparent

FIRST-FIT
MOD-1

FIRST-FIT
MOD-2

FIRST-FIT
MOD-3

Mean Memory Loss Per
Allocation 2.0 1.0 2.45 4 5.962

Total Memory Allocated 12200 12200 9552 12200

Mean Number of Collapses .035 .015 .045 .012

Mean Number of Searches 2.713 2.713 3.262 1.554

_~~~~~~~~~~~~~~~~~~...

Table III-2. Comparison of Simulated Allocation Characteristics.

t0

BUDDY
MOD-1

50

or considered in the preceding conmparisons. In the case of the'buddy

system, it is impossible to eliminate this kind of memory loss,- if it

exists, since the block sizes are essential to the formulation of the

buddy method. However, the first-fit algorithm imposes no restric--

tion on the buffer size requested. The first-fit simulation model

was then modified to generate exact buffer requests. The original

distribution of request sizes was used to determine the range of a

generated request size. A continuous function was used to obtain the

exact number of words needed. For example, if a block of size 32,

(25), were requested in previous runs, the block size generated in

this test was some number between 24 and 25.

A further modification was made to the first-fit algorithm to

handle a condition which had not been present up to this point.

Since the buffer sizes were now permitted to be any size, a block

returned to the available list could be so small that it would be

virtually useless in satisfying future requests. For example,-

suppose a request size of n is allocated from a block of either n+l

or n+2 words. Then using the existing algorithm, a block of either

one or two words is returned to the available list. Since request

sizes were from the outset of this study assumed to be > 2, it would

be impossible to use available blocks of < 4 words if 2 words--of-

overhead are assumed, or I 3 words if 1 word of overhead is assumed-.

In the interest of returning only useful buffers to the available-

lists, a constant was introduced. If the difference between the'

buffer size requested and' the available buffer from which'the alloca-

tion was made were less than same constant, the whole block was

allocated. In the sirmulation model this constant was set at 4 with

51

the result that no block < 4 is placed on the available lists.

The results obtained using this model were viewed with mixed feel-

ings. On the one hand, the total amount of memory actually allocated

was considerably less than in any previous model and the internal mem-

ory waste per allocation was small. On the other hand, the external

fragmentation problem is again significant as can be seen in Figure

III-6. Also, in Table III-2, it should be noted that the number of

searches to find an available block has increased.

Using the buddy method and fixed request sizes and assuming the

same actual utilization of buffers requested, the mean internal memory

loss per allocation was found to be close to six words per allocation.

It is clear from the size of this number that this memory loss is

rather severe. If the buffers needed are large, there is no guarantee

that the size actually needed is close to but less than some exact

power of two. There is the same probability that it will be close to

but greater than a power of two, in which case approximately one half

of the allocated buffer is unused.

There is the possibility that the requester is careful to make his

requests in segments if significant internal memory loss is incurred by

a single request. For example, if a buffer of 70 words is needed, a

buffer of size 27 may be requested resulting in 57 unused locations.

The alternative procedure is to make two requests, one for a buffer of

26 and one for a buffer of 23 which results in no internal waste. If

this procedure is followed, it is always possible to keep the internal

memory waste small. It should be noted, however, that this is a very

clear case of a space-time tradeoff, since in order to use memory

effectively, it may be necessary to break one request into two or more

52

_ - Available Buffers

A .

I 0 a i

1, I

I U l a

I a m I

I I I - I

0 I [

0 a [I

0 U I I

0 m

0 I

10 J

350-
3000

5onnnn

2000

1500ME

1000mawma_

500

O ___ _ _

300

Location

Figure III-6. Buffer Pool Memory Map Resulting from Simulation of
First-Fit Allocation Scheme - Mod-3. (Map constructed
after 926 allocations and 400 releases.)

Il-13000

12500

12000

11500

11000

10500

1nnnn

9500

900(

850(

8001

750(

700(

650(

6001

550(

500(

450(

400(
Ancd.

co
t:-

o

o

C)

--I

o

0 100 200

Memory

400
I

500

I -

I---
I

53

requests. As a result, :the number of buffers allocated and released

is increased and the total allocation time is incremented accordingly.

H. Memory Waste Determination

In an effort to establish some measurable parameter which could

be used to determine the choice of an algorithm, the data found

earlier reflecting memory utilization was analyzed further. Of

particular interest was a comparison of the memory allocated using

the buddy method with the memory allocated using the first-fit method.

Using the data presented in Table III-2, the following characterization

of memory loss was formulated. The result is an indication of internal

memory waste.

If, as in the buddy system, the size of each buffer is a power

of two, and further, the requests are generated by sanupling a given

probability distribution, then the number, of words allocated can be

written as:

n

N Pi2i =Cl

i=l

where,

N = the number of allocations

Pi = the probability that a request will be made for size
i .2

c I total memory allocated,

Then, if it is assumed that internal loss is incurred due to the fixed

request sizes and if the loss is approximated, as in the simulation

model, by using a uniform distribution, the space allocated using the

first-fit method given exact request sizes is given by;

54

N[~ p i(2
i

(2 2i-1) NE~ (1 - (2 + k] 2 c

i=l

where,

N = the number of allocations

Pi = the probability that a request will be made for size
2i

k = constant overhead per allocated buffer

C
2
= total memory allocated.

Considering memory usage only, a cutoff point can be obtained

which can be used as a factor in determining an internal loss criterion

which is a function of the average request size. The result of re-

writing the above equations is, for the buddy method,

n
N-X = N · = c

1

i=l

and for the first-fit method:

N[X -1/2 X + 1/4 X + k] =c
2

where X is the average request size. NOw setting c =c2 and solving,

= 3/4 X + k

X = 4 k.

This indicates that under the above assumptions whenever the

average request size is greater than four times the average internal

loss of the first-fit method, more memory will be used by the buddy

allocation scheme than by the first-fit method. Since internal memory

loss is not the only consideration, this factor would not be sufficient,

taken alone, to determine that the allocation strategy should be changed.

This is particularly true in view of the fact that the allocation

time using the buddy method is less than that of the first-fit.

55

Ultimately, the criterion used should be based on the allocation and

release times, memory usage, and possibly the measured rate of change

in the request distributions. Further, in a particular application,

the variables, time and space, may be assigned weights as a function

of their relative importance in a given operating system.

In the interest of substantiating the conclusions of the analysis

of relative internal memory loss incurred by the buddy and first-fit

allocation schemes, special simulation runs were made. The request

distribution used for this aspect of the study provided an average

request size of 21.3 words per allocation. Both the buddy and the

first-fit algorithms were used. In the first run the average memory

loss in the first-fit method was 2.3 words per allocation. From the

analysis above, if X, the average request size, is greater than four

times the average internal loss found in the first-fit method, then

more memory will be needed using the buddy method than used by the

first-fit method. The simulation outputs supported this conclusion.

The first-fit allocation routine was then modified so that the average

internal loss per allocation was increased to 4.3. Again the memory

allocated using the first-fit method was somewhat less than that

allocated using the buddy method. A final modification was made to

the first-fit routine to make the average internal loss per allocation

equal to 8.3 words per allocation which is greater than 21.3/4 which

is the crossover figure. In this case, more memory was used by the

first-fit method than in the buddy method. This series of simulation

runs then validates the results of the analysis. See Table III-3 for

a comparison of the simulation results produced in the sequence of the

runs described above.

Current
Memory Used

Total
[Number of Entries

Average '
Memory .Loss per.Allocation

Average Allocation
... per Request

Buddy 9660 19800 5.575 21.3

First-Fit (1) 8248 16788 2.318 18.1

First-Fit (2) 9104 18552 4.277 20.4

First-Fit (3) 10952 2200 8................ 23.2

First-Fit (3) 10952 22400 8.277 23.2

Table III-3. Comparison of Allocated Memory for Different

Average Memory Loss per Allocation.

0o

CHAPTER IV

INVESTIGATION OF ADAPTIVE ALLOCATION STRATEGIES

The remainder of this thesis is concerned with the results of

an attempt to design alternative algorithms which are compatible and

can be executed in turn as a function of the operating environment.

The implementation of an adaptive scheme in a real operating system

depends on the solution of two problems. The first involves select-

ing criteria which accurately reflect change or rate of change of

conditions in an operating environment and providing a monitoring

device which detects and signals the occurrence and direction of any

significant change. The second problem involves devising alter-

native algorithms and determining the operating conditions under

which they are most efficient. If having provided for a monitor

which is capable of detecting operating environmental change, and in

addition, if having determined which algorithm permits most efficient

operation given the environment, the remaining objective is to pro-

vide a mechanism for automatically replacing one algorithm by another

without interruption or serious degradation to the system operation.

The basic algorithms for the dynamic allocation of buffer storage

which were simulated individually are used.

In Chapter III-F, it was found that the buddy method is most

efficient in time required to allocate and release buffers and in

memory utilization if small buffers are predominant in the request

distribution. On the other hand, it was found that the first-fit

57

58

method allows for e.conomic use of memory in cases where the buffers

requested are large and the size of the buffer allocated is unre-

stricted, unlike' the power-of-two restriction implicit in the buddy

method.

A. Comparison of Algorithm Characteristics

A brief review of the steps taken in simulating the basic

algorithms is appropriate here since the characteristics of the allo-

cation methods are determining factors in making the algorithms ccm-

patible. The buddy method requires that allocations be made in

blocks which are powers of two. In this study all available buffer

space is initially placed on one list in blocks of size 29. The
~~~~~~~2.. 8

range of acceptable requests was from 22 to 28 words in powers of 2.

In turn, one list was maintained for each power of two, from 2 to 8.

In the allocation phase the split operation insures that each avail-

able buffer on a given list is a power of two and that the start

location, x, of that block is such that x modulo 2
i
is zero. The

proper release and collapse of adjacent blocks are also dependent on

the size and start location of the buddy of the block being released.

In the first-fit method as simulated originally, requests for

buffers were in powers of two and all available storage was main-

tained on one list. It was found that the number of searches requiri

ed to find an available block of adequate size was large and also

that core was fragmented to such an extent that requests for block

sizes 25 and greater were queued. A modification was rmade to maidn-

tain the-available storage on 8 lists as in the buddy system. The

number of lists and the size of the blocks maintained is arbitrary.



59

The selection of this scheme was in anticipation of an investigation

of compatible modes of allocation, The result was that fragmentation

of core and the average number of searches to locate an available

block of adequate size were reduced, Further modifications to the--

first-fit algorithm reduced the overhead per allocation to one word,

making collapse of adjacent blocks possible in the forward direction

only. Next, the request sizes were unrestricted, which resulted in

the maintenance of some essentially unusable small blocks. Finally,

to eliminate this latter effect, if the- difference-between the buffer~

size requested and the available buffer from which the allocation was

made were less than 4, the entire block was allocated. The descrip-

tion of this last modification is correct but incomplete. The imple-

mentation of this modification also insured that the size of every

buffer allocated would be an even nultiple of 4, where 4. is the-

smallest useful block maintained on the available storage lists. The-

internal memory loss per allocation introduced by this modification is

always less than 4. Here again the attempt to maintain the available..

storage blocks with start locations which are a pawer of two was.;

deliberate. It was hoped that the transition from the first-fit method

to the buddy method would be facilitated.

The algorithms at this point have the following characteristics.

in common. Available storage is maintained on eight lists, the start-

location of any allocated or available buffer is a power of 2, and-

requests are unrestricted as to size. The difference in the two

inethods are the following. The buddy method allocates blocks in-

powers of two while the first-fit allocates blocks in multiples of 4...

In the buddy scheme the start location of every block on an available-



60

list 2i is a multiple of 2i. In the first-fit method to the start loca-

tion of a block on an available list 2i is a multiple of four and only

by coincidence is it a multiple of 2i. The buddy allocation method does

not place any- limit on the internal memory loss per allocation. The

first-fit method insures that the internal memory loss per allocation

will be less than four. This upper limit on internal memory loss which

is characteristic of the first-fit method is the basis for attempting to

make the two modes of allocation interchangeable in an operating environ-

ment in which the power of two block size restriction produces a high

average memory loss per allocation when using the buddy method.

B. Adaptive Strategies Considered

In view of the differences in the two methods, the transition

from the buddy method to the first-fit method presented no difficulties

The dependence of efficient split and collapse operations on the block

size in the buddy method presented problems in going from the first-

fit method to the buddy method. An analysis of these problems and

attempts at their solution then become of primary importance.

Some of the alternative approaches considered to resolve these

problems are discussed here prior to presenting the scheme which was

simulated. For a solution to be acceptable the following conditions

were used as guidelines. The efficiency of the allocation and

release operations in the buddy method should be preserved. If

either operation must be degraded, then it should be the release oper-

ation since the time required to satisfy a request for a buffer in a

time-sharing environment is usually more critical than the time to



return buffers to the
'
available storage lists. Further, if either

the normal allocation or the release operation must be degraded, then

it should be for a limited period of time after which the allocation

process should return to its normal efficiency.

If the time to honor requests were no problem, then when the

buddy method is initiated, all buffers on the available lists could

be tested and modified to be acceptable to the buddy method. This

direct approach to the problem guarantees the latter condition, that

is limited interruption. This is not feasible since the time requir-

ed to modify these lists is indeterminate and system operations for

which the buffers are requested are very often time sensitive.

In both the first-fit and the buddy method, the same number of

lists and list pointers to available storage are maintained. If the

same list is used for both methods, the following difficulties are

encountered. There is no assurance that a buffer on the list is the

proper size or has an acceptable start location. This means that in

the allocation process each buffer must be tested for size and start

location. It may be found that a list is not empty, however, no

buffer of adequate size is on the list. If this is the case, then

the next higher list must be searched. When a buffer is found of

adequate size, the procedure for allocating that block may be time-

consuming. The following situations may exist. If the buffer start

-location is acceptable, an allocation is guaranteed, however, if the

buffer is larger than requested, the remainder must be placed on the

appropriate list which may be any list with buffers of size less than

or equal to the buffer size requested. If the start location is not

acceptable, then the lowest acceptable start location in the available

61



62

buffer must be determined. The initial portion of the buffer must be

placed on another list and now another test on size is needed. If the

size is adequate, then proceed as for the case with an acceptable

start location outlined above. If the size is now inadequate,

continue the list search until a block of adequate size is encountered

and repeat the test, split, and return of unneeded portions of buffers

to the appropriate available lists.

In view of the difficulties present in going from the first-fit

to the buddy method, suppose then that the first-fit method is modi-

fied so that buffers are always allocated with acceptable start

locations as required in the buddy method. This reduces the number of

operations required to allocate in the buddy method but it is still

necessary to return portions of buffers to the appropriate list and a

test for correct size must be made on every buffer considered for

allocation. Further, there is no convenient way of determining when

return to normal buddy allocation can be made.

The next modification considered was that of maintaining separate

lists of available storage in the two methods. Now when the buddy

method is initiated, its lists are empty. Allocations can be made

from the first-fit lists as outlined above until the lists are deplet-

ed. During this time the allocation of a buffer may be a lengthy

procedure. The value of this approach lies in the fact that the dura-

tion of degraded performance is limited, that is, until the first-fit

lists are empty, after which normal buddy allocation can be resumed.

C. Adaptive Strategy Simulated

The allocation scheme selected for simulation is as follows. Two



63

separate lists of pointers to available storage are maintained. When

going from the buddy method to the first-fit method, the header' list

consisting of eight pointers to available buffers is transferred

directly to the first-fit header list and the buddy header list is

cleared. Allocations are then made using the first-fit allocation

and release process with no further interruption to the system. When'

it is determined that the buddy allocation method should be initiated,

a word is set equal to the largest buffer on the first-fit available

list.

With each buffer request, the buddy routine is then entered. If

the buffer requested is less than the flag word, the first-fit alloca-

tion routine is entered, and if possible the allocation is made by

that routine. If the buffer requested can not be satisfied, the flag

word is reset indicating that all future requests equal to or greater

than the flag word should be allocated using the buddy method. Very

rapidly the first-fit lists are depleted and all allocations are then

made using the buddy allocation method. The time loss in this pro-

cess is the time it takes for the one test which determines whether

the allocation should be made using the first-fit or the buddy method.

Memory loss is incurred during the transition phase since both

allocation schemes must be present in core until the first-fit lists

are depleted. A savings in memory space per allocation nay be realiz-

ed since the first-fit overhead per allocation is still limited and in

general is less than that of the buddy method.

The foregoing discussion has been concerned with the allocation

process primarily. The effect on the release process must also be

considered, Since the buffer being released could have been·



64

allocated using either :.the.buddy mthod or the firstsfit method, the

size and start location tcust be checked prior to returning a buffer

to an available storage list. If the buffer were allocated using the

buddy allocation, it is clear that the normal release procedure could

be followed, If the buffer were allocated using the first-fit

method, then the release procedure becomes more involved. If the

size is not a power of two, it is necessary to check the start

location, determine the largest buffer for which that start location

is acceptable, return a buffer to the list of that size, reduce the

size of the returned buffer by that amount and continue this process

until the entire buffer has been returned to the available lists. To

eliminate the initial testing prior to release in the case where the

allocation was made using the buddy method, it was decided that the

buddy allocation should insert a negative sign on the size of the

buffer when it is allocated. When a buffer is returned which was

allocated using the buddy method, a sign test is the only additional

operation introduced in the release process.

When buffers are returned which were allocated using the first-

fit method, the splitting operations required to return the buffer to

the appropriate available lists increases the number of small buffers

on the available lists. This is not a serious problem since the

primary reason for making a transition to the buddy method is because

the average buffer size requested is decreasing. The only serious

penalty paid is in the time required to split and return the'buffers

to the lists if they were allocated using the first-fit rmethod and

are not a power of two. These operations become more infrequent

after the buddy allocation has been in operation for a period of time.



65

D. Results from SimLlation of Adaptive Model:

The following conditions were used for the final simulation runs

in this study. Four request distributions were selected with average

request sizes of 17.3, 24.8, 18.7, and 37.4 respectively. The distri,-

butions were used in pairs, 17.3 with 24.8, and 18.7 with 37.4. (See

Figures IV-1 and IV-2.) The distributions selected are not represen-

tative of any actual operating system request distributions, but are

used to represent changes in request distributions which could occur

within an operating system. The total number of buffers which were

both allocated and returned to available storage was set at 1000. The

adaptive system was run using the buddy method to allocate requests

generated using distribution I followed by the first-fit method to

allocate requests generated using distribution II. The methods were

then reversed so that the first-fit method was used with distribution

I and the buddy method with distribution II. Two additional runs

were made, one with the buddy method throughout and one with the first-

fit throughout. The distributions were then interchanged and the

same procedure was followed to produce four more runs. The second

pair of distributions, distribution III and IV, were used in the same

way to complete the simulation study.

Table IV-1 presents the memory usage results of the simulation

runs using the request distributions I and II. Table Iy-2 presents

the results using distributions III and IV. In the first set of data,

no queues of requests were formed. All buffers could be allocated as

requested. In the second set of data, queues were formed in all runs.

In an actual system, imore memory would be allocated to the buffer pool

so that queues would not be present. In the simulation this procedure



1.0

.9

.8

.7

.6

.5

.4

.3

.2

II

XI = 17.3

XII= 24.8.

.. v ~ ~~I I I I I I _

22 23 2 25 26 27 28
Buffer Size

Cumulative Request Distributions I and II

.5

.4

.3

.2

.1

22 23 24 25 26
Request Distributions

27 282I and 2
I and II

Figure IV-1. Buffer Request Distributions I and
Adaptive Method.

II Used in.

66;

aL

3

4-

Q)

O

rl

>a



1.0 .

.9

.8

.7 -

.6

.5

.4 -

.3

.2

.1

22 2 2 525 6 27 28

Cumulative Request Distributions III and IV

.4

.3

.2

.1

xII =

Request Distributions III and IV

Figure IV-2. Buffer Request Distributions III and IV Used in
Adaptive Method.

67

a)
N

.H

C')

a)
:r4

a)

0

-p

18.7

= 37.4



68

Current' Total Ayerage ' .Queues
Memory Number Memory

.C............................ ............ Contents: .Entries ...... Loss:: ...
~~~~. . . . . .. ' ' ' ' ' ' . . . . .' . . . . . . . . . .' ' ". . . . . . . ' ''.. . . . . . . . . . . . . . . . . . . .·

First-Fit -+ First-Fitt 10064 24976 2.324 None

Buddy FRirstsFit 10456 27404 3.862 None

First-Fit + Buddy 11712 27 480 3.910 None

Buddy Buddy 12104 29908 5.448 None

Distribution I followed by Distribution II.

First-Fit + First-Fit 8608 27004 2.373 None

First-Fit -+ Buddy 9556 28416 3.267 None

Buddy + First-Fit 9304 30908 4.845 None

Buddy -+ Buddy 10252 32320 5.740 None

Distribution II followed by Distribution I.

Table. IWrl. Results of Simulation Runs

UJsing Request Distributions I and I1,

with Average Request Sizes of 17.3 and 24.8 Respectively,

After 1579 Requests and 1000 Releases.

. . . - -1 - 1 - - - -... I I I I . . . I I

69

Number Current Total Requests Total Average
of Memory Numberl on Requests Memory

............ .Requests. Contents .· Entries .: --.Queue. - .-Loss.

F F 1574 13040 32160 640 32800 2.410

. . . .2 ' ' /... I I

B - F 1584 13380 34980 2048 37028 4.340

F + B 1579 12220 32328 6368 38696 4.398

B -*B 1567 14268 37584 4128 41712 6.941

Distribution III followed by Distribution IV.

F +F 1564 10928 37364 0 37364 2.398

F B 1541 11388 38232 392 38624 3.360

B - F 1598 13592 44312 4608 48920 6.451

B -+ B 1643 14828 47076 4928 52004 8.159

. .

Distribution TV followed by Distribution III.

Table YIV2. Results of Simulation Runs

using Request Distributions III and IV,

with Average Request Sizes of 18.7 and 37.4 Respectively,

After 1000 Releases.

70

was not possible, so the length of the queues serve as a measure of

the severity of the memory loss incurred using the alternative

allocation schemes to handle different request distributions.

The results obtained are discussed in terms of memory loss only

since the coding of the adaptive model was not optimized and, as a

result, timing performance data were not available. In all cases, it

was found that internal memory loss was at a minimum when the first-fit

was used throughout. The maximum internal memory loss occurred when

the buddy method was used throughout. These results are as expected

and further substantiate the results of the analysis of Chapter III-H.

Beyond this observation, these cases are of little interest.

Of special interest here is the performance of the two methods

enmployed adaptively. The total memory allocated was found to be

least when the buddy method was used to allocate the smaller average

request sizes generated using distribution I followed by the first-

fit method to allocate the larger average request sizes generated

using distribution II. This can be seen from the data presented in

Table IV-1. The total memory used in this case was 27404 words.

Keeping the distributions in the same order and reversing the methods

used with them respectively, the total memory used was 27480 words.

The difference in this case was 76 words, a very small differential.

When the first-fit method was used to allocate requests generated

using distribution II followed by the buddy method to allocate

requests generated using distribution I, the memory used was 28416

words. Again reversing the methods and keeping the distributions in

the same order, the-memory used was 30908 words. Here, the difference

is 1492 words, or approximately a 5% memory increase,' a slightly

71

larger differential but probably not significant.

Using distributions III and IV, queues were formed. Used in this

comparison is the total number of words requested, that is the number

of words actually allocated and the number of words represented by

queued requests. The buddy method used with distribution III follow-

ed by the first-fit used with distribution IV-resulted in requests

totaling 37028 words of memory. By reversing the methods, 38696

words were requested. The difference is 1678 words or approximately

a 5% memory increase. When the first-fit method was used with

distribution IV followed by the buddy method with distribution III,

the total memory requested was 38624 words. Reversing the methods

resulted in memory requests of 48920 words. The difference here is

9296 words, an approximate increase in memory of 25%, which is quite

significant. The reason for this is that the buddy method, used to

allocate large average request sizes, had introduced internal waste and

as a result had quickly exceeded the buffer pool. Subsequent large

requests were then queued so that when the first-fit method was initiat-

ed to handle the smaller requests, there-were many large request on

queues which still needed to be serviced.

Table IV-3 presents data pertinent to the queue formation in

these last runs. The presence of queues is important. The number of

queue entries at the end of the run and the maximum contents of the

queues indicate the interactive effect of the two methods when used

adaptively. In going from distribution Iy to III, the number of queue

entries at the end of the simulation run is an indication of how well

a given method recovers and handles queues once they have been formed.

It should be pointed out that the buddy method used throughout gave

72

the worst recovery performance. This can be seen in Table IV-3. It

was also evidenced in this case by the increased simulation run time.

In using distribution III followed by distribution IV, the queue

formation was worst when going from the first-fit method to the buddy

method. This is a result of the external fragmentation of returned

buffers which were allocated using the first-fit method. Since some

of the large buffers returned were split, there was an increase in the

number of requests for large buffers which could not be satisfied.

In summary, it was found that in all cases, the total memory

allocated was less when the buddy method was used to allocate the

smaller request sizes and the first-fit was used to allocate the

larger request sizes. When no queues are formed, the difference is

minimal and the use of an adaptive strategy does not appear to be

warranted. It is precisely the case where the memory pool is limited

that an adaptive strategy is needed. When queues are formed and the

buddy method is used with the larger average request sizes, the inter-

nal memory waste is significant and the.duration of degraded allocation

performance continues even beyond the point at which the request dis-

tribution again becomes favorable for use with the buddy method. It

is quite clear in such cases that advantage is realized by using the

allocation methods adaptively as a function of the request distributions.

In using such an adaptive structure where the method used is

based on the request distribution, it appears that the use of the

average request size at any given time may not be sufficient. The

rate of change in request sizes may be equally important. Using the

average request size and the rate of change in request size, it would

73

Buffer -MaxYijm Total Queue Contents
.... ..'i:'f, 1.'ISie' '¥ Queue ,Length' i'JRequests :Queueda: : :'.at .End of'Run

F - F 25 2 2 0.

26 6 6 6

2................ 2.....

B-F 25 5

.6~~~28 12

27 6

..... I.......I.........28.........

F -B 25

.6

27

28

37

41

0lo

5

18

7

2

108

79

15

8

0

12

6

2

37

41

O10

5

B-B 25 21 101 21

26 22 57 22

27 6 18 6

2 5 8 5

Distribution IV followed by Distribution III

with Average Request Sizes of 37.4 and 18.7 Respectively.

Table IV-3. Queue Formation Produced as Function of

Adaptive Scheme Erployed,

I

-- --Bufferl --.Maximum ---- - --Total-- - Queue Contents
' Si'e ''ueue Length''' Ruests Queueda at End 'of Run

F -F 26 1 1 0

27 1 2 0

28 1 2 0

F - B 26 2 7 0

27 1 1 0

28 -.3 -3 : 8

22 2 21

23 ~'6 65

24 16 69

25 27 155

26 21 79

27 10 31

28 16 21

22 14 242

23 31 357

24 24 285

25 27 235

26 21 104

27 14 36

2813 19
'2 -13-'1

.. . "

0

0

0

0

4

16

4

14

8

10

8

8

.' 11

Distribution TII followed by Distribution IV

with Ayerage Request Size of 18.7 and 37. 4 Respectively.

Table IVY3 Ccontinued). Queue Formation Produced

as Function of Adaptive Scheme Enrployed.

B - F

B+B
4f

~~--n.----. ----- r--- -- --- ~~~.

I

i

I

i

I

75

be possible to predict' that alternative methods should be employed so

that the methods could be interchanged prior to depleting the buffer

pool and prior to experiencing degraded performance in the allocation

process.

Assuming that the modifications made to the basic methods did

not change their relative allocation times significantly, that is, the

buddy method is faster than the first-fit method, and given the

results of this study that the internal memory loss incurred by the

first-fit is less than that of the buddy method, then it follows that

an adaptive scheme should be employed. As a result, optimal space-time

tradeoffs can be made as the system is operating. In an actual operating

system, this requires that there be internal system monitoring which

provides an estimate of average request sizes and the rate of change

in the request size. With this information and an adpative strategy,

such as that simulated in this study, the algorithms could be inter-

changed based on the system operating characteristics prior to system

degration which results as a function of a given algorithm being used

in an unfavorable environment.

BIBLIOGRAPHY

1. Rosenthal, S., "Analytical Technique for Automatic Data Process-
ing Acquisition", Proc. AFIPS 1964 SJCC, 359-366.

2. Joslin, E. O., "Cost-Value Technique for Evaluation of Computer
System Proposals", Proc. AFIPS 1964 SJCC, 367-381.

3. Auerbach Standard EDP Reports, Auerbach Information, Inc.,
Philadelphia, Pa.

4. Herman, D. J., Ihrer, F. C., "The Use of a Computer to Evaluate
Computers", Proc. AFIPS 1964 SJCC, 383-395.

5. Ihrer, F. C., "Computer Performance Projected Through Simulation",
Computer Autom., 17,4 (April 1967), 22-27.

6. Calingaert, P., "System Performance Evaluation: Survey and
Appraisal", CACM 10,1 (January 1967), 12-18.

7. Shemer, J. E., "A Mathematical Analysis of Input/Output Inter-
ference in a Time-Sharing Information Processing System",
Technical Information Series R63CD13, GE Co., Phoenix, Arizona,
November 1963.

8. Shemer, J. E., Shippey, G. A., "Statistical Analysis of Paged
and Segmented Computer Systems", IEEE Trans. EC-15 (December
1966), 855-863.

9. Denning, P. J., "Thrashing: Its Causes and Its Prevention",
Proc. AFIPS 1968 FJCC, 915-922.

10. Coffman, E. G., "Analysis of Two Time-Sharing Algorithms
Designed for Limited Swapping", J.ACM 15,3 (July 1968), 341-353.

11. Coffman, E. G., Kleinrock, L., "Feedback Queueing Models for
Time-Shared Systems", J.ACM 15,4 (October 1968), 549-576.

12. Denning, P. J., "Resource Allocation in Multiprocess Computer
Systems", (Ph.D. Dissertation), Tech. Report. MAC-TR-50, MIT,
Cambridge, Mass., 1968.

13. General Purpose System Simulator II (GPSS-II). "Reference
Manual", Univac Manual No. UP-4129.

14. Markowitz, H. M., Hausner, B., Karr, H. W., Simscript: A Simu-
lation Programming Language, Prentice Hall, Inc., Englewood
Cliffs, New Jersey, 1963.

76

77

15. Computer System Simulator/360 Program Description and Operations
Manual, (IBM Confidential), IBM Form No. Y20-0130.

16. Cohen, L. J., Associates, System and Software Simulator: S3,
Technical Manual, (AD679-269 - AD679-272).

17. Chu, Y., "An Algol Like Computer Design Language", CACM 8,10
(October 1965), 607-615.

18. Grice, A., Hargol - A Hardware Oriented Algol Language, Internal
Report No. VA5, August 1966, A/S Regnecentralen, Copenhagen,
Denmark.

19. Pinkerton, T. B., Program Behavior and Control in Virtual Storage
Computer Systems, (Ph.D. Dissertation), Technical Report 4,
University of Michigan, Ann Arbor, Michigan, 1968.

20. Saltzer, J. H., "The Instrumentation of Multics", ACM 2nd
Symposium on O/S Principles, October 1969, 167-174.

21. Conti, C., "System Aspects: System/360 Model 92", Proc. AFIPS
1964 FJCC, 81-95.

22. Estrin, G., Hopkins, D., Coggan, B., Crocker, S. D., "SNUPER -
Computer - A Computer in Instrumentation Automation", Proc. AFIPS
1967 SJCC, 645-656.

23. Russell, E. C., Estrin, G., "Measurement Based Automatic Analysis
of Fortran Programs", Proc. AFIPS 1969 SJCC, vol. 34, 723-732.

24. Schulman, F. D., "Hardware Measurement Device for IBM System/360
Time-Sharing Evaluation", Proc. ACM 22nd National Conference,
103-109.

25. Crooke, S., Minker, J., "Key Word in Context Index and Bibliogra-
phy on Computer Evaluation Techniques", University of Maryland
Technical Report 69-100, December 1969.

26. Deniston, W. R., "SIPE: A TSS/360 Software Measurement
Technique", Proc. of ACM 24th National Conference, 229-245.

27. Roek, D. J., Emerson, W. D.,-"A Hardware Instrumentation Approach
to Evaluation of a Large Scale System", Proc. of ACM 24th
National Conference, 351-367.

28. Systems Measurement Software (SMS/360), User's Guide for CUE-l,
Boole and Babbage, Report No. 135, February 1969.

29. Systems Measurement Software (SMS/360), User's Guide for PPE,
Boole and Babbage, Report No. 41, May 1969.

78

30. News Briefs in Datamation, March 1969, p. 109.

31. Denning, P. J., "A Statistical Model for Console Behavior in
Multiuser Computers", CACM4 11,9 (September 1965), 605-612.

32. Knuth, D. E., The Art of Computer Prograrmming, Vol. 1, Fundamental
Algorithms, Addison - Wesley, IMenlo Park, California, 1968.

33. MTinker, J., Crooke, S., Yeh, J., "Analysis of Data Processing
Systems", University of Maryland Technical Report No. 69-99,
December 1969, p. 103.

