
At?2~

Technical Report TR-169
NCR 21-002-206

September, 1971

CDL Description of the CDC 6600 Stunt Box

by

Jon B. Hertzog

CASE FILE
COPY

UNIVERSITY OF MARYLAND

COMPUTER SCIENCE CENTER
COLLEGE PARK, MARYLAND

Technical Report TR-169 September, 1971
NCR 21-002-206

CDL Description of the CDC 6600 Stunt Box

by

Jon B. Hertzog

This research was supported in part by Grant
NCR 21-002-206 from the National Aeronautics and Space
Administration to the Computer Science Center of the
University of Maryland.

Abstract

The CDC 6600 central memory control (stunt box) is

described utilizing CDL (Computer Design Language), block dia-

grams , and text. The stunt box is a "clearing house" for all cen-

.tral memory references from the 6600 central and peripheral pro-

cessors. Since memory requests can be issued simultaneously, the

stunt box must be capable of assigning priorities to requests,

of labeling requests so that the data will be distributed correct-

ly, and of remembering rejected addresses due to memory conflicts.

Table of Contents

Abstract
S

1. Introduction

2. Six Maj or Elements

2.1 Peripheral control
2.2 Central control
•2.3 Priority network
2.4 Hopper input network
2.5 Tag Generator
2.6 Hopper

3. CDL Description

3.1 Configuration
3.2 Sequence

4. References

CDL Description of the CDC 6600 Stunt Box

Jon B. Hertzog

1. Introduction

The CDC (Control Data Corporation) 6600 is one of the first computers

which utilizes a parallel hardware systems structure while retaining the con-

ventional serial organization of the computer programs it executes. In its

most typical form, the 6600 consists of a central processor, ten peripheral

processors, twelve channels, central memory and the requisite control cir-

cuitry (i.e., instruction issue control, central memory control, register con-

trol, and reservation control).

As a consequence of this parallel organization, it often occurs that
v

the central processor and one of the peripheral processors will be attempting

simultaneous communications with central memory. Under the correct circum-

stances, this situation, if left unchecked, could generate invalid results.

Thus, it is essential that some method exist for the orderly acceptance and

distribution of requests for central memory time.

The central memory of the 6600 is divided into 32 (or less for some

configurations) independent banks of 4096 60-bit words that can be accessed

sequentially in an overlapping fashion. A memory cycle requires 1000 nano-

seconds for completion but with central memory interleaving allowing a memory

reference every 100 nanoseconds, an effective memory cycle time of 100 nano-

seconds can be realized. To make the most effective use of central memory and

to handle any conflicts that may arise, a region in the central processor known

as central memory control, or, more commonly, the STUNT BOX, exists. It is

to this circuitry that all references to central memory must first be made.

2

Once these references have been received, it is the function of the stunt box

to collect these requests for central memory access and then to distribute

them in an orderly fashion.

Within the 6600 computer system a variety of requests for central

memory references can be made. Each of the peripheral processors can request

read or write operations anywhere in central memory. They can also execute

an exchange jump instruction which interrupts the central processor and requires

central memory access. The central processor can reference memory for instruc-

tion words or to read and store operands. The central processor memory access

is limited to a fixed region in memory which is defined by the contents of

two registers : 1) RA (reference address register)-a base address, 2) FL (field

length register)-a maximum displacement from the base address.

Since the central and peripheral processors can send requests si-

multaneously to the stunt box, there must exist some means of assigning priorities

to these requests, and furthermore, there must be some method for naming each

of the memory requests in order that the data once acquired, will be distri-

buted correctly. In addition, there must be a means of remembering addresses

that have been rejected on the first attempted access because of a memory

conflict.

In general, the stunt box performs the following functions:

(a) it allows several simultaneous memory requests.

(b) it establishes a priority for issuing addresses to central memory.

(c) it issues the addresses to memory at a rate that will make maximum use

of the 32 (or less) independent banks.

(d) it remembers addresses that have not been accepted by the memory and must

be re-issued.

(e) it adds a tag to the addresses to correctly distribute the data.

FROM PERIPHERAL PROCESSOR

oo
Q
<J
g
PJ
PM

PPIR (17-0)

IN

i
! ERW(17-0)

K(4-0)

t
w.

S
<U

Peripheral

Control

EAK(17-0)

j
\o

i
HOPPER
INPUT
NETWORK

TAG-GEN

Ml(TAG)

Address
18 bit i

Ml (FULL)

Ml
M4
M3
M2

HOPPER

FROM CENTRA^ PROCESSOR

-1 c

V
5
2

Central

Control

s
tfuz
H

MO 4 INCR

PRIORITY

NETWORK

Tag ; -
16bit Accept

I
SAR(17-0)

O Q

6

wCMo

PIS.

en
-> OT
PS w
H«en Q53 8H <!

P(17-0)

}Padder

MO(17-0) RA(17-0)

i T
MO+ RA

Figure 1. Stunt Box Block Diagram

2. Six Major Elements

Fig. 1 is a block diagram showing the six major components of

the central memory control. These six major elements are:

(1) peripheral control,

(2) central control,

(3) priority network

(4) tag generator

(5) hopper input network

(6) hopper

These elements are now described below.

2.1 Peripheral Control

Peripheral Control handles addresses and signals from the peripheral

processors requesting storage access. When the peripheral processors send

an address to the stunt box, an accompanying signal informs Peripheral Control

whether it is a read, write, or an exchange jump address. Peripheral Control

then transfers this information to the tag generator to enable the path to

the ERW (exchange/read/write) register. In an exchange jump, this signal also

stops the central processor. When the BRK (breakpoint) signal indicates that

the central processor and central memory have stopped, it starts the EAK (ex-

change address) and the ETK (exchange tag) counters. The EAK then updates

the address of the ERW register for each step of the exchange process upon re-

ceipt of the ACCEPT signal from central memory. When the ETK=16, Peripheral

Control sends an exchange resume back to the peripheral processors. Write

and read resumes are sent back from central memory.

M
<U

s
O
u

s
^h
N»/

Kw

o
r^

I'
PH

?r̂ .

T

I
?
r»-

w

i oi I

. 3
W

T

£
33

3
W

4J
•H

O
•H

O
H

§
&

M) (0
cd M
H <U

t
H
W

Pu

T

60
n)

•3
O

t-<
PQ

ao

n)
M
<u

M
0)

PM

<u
(-1

00

X)
w
Q
Z
W

"

PQ F 1
W
O

X
w

PM
CM

B

2PM

When the peripheral processor address is attempting to gain prior-

ity in the stunt box, the CENBUSY (central busy) flip-flop in the peripheral

processor is set. This prevents any other peripheral processor from attempt-

ing a central memory reference. The CENBUSY flip-flop will only be cleared

after the address has been accepted by central memory. To avoid the situ-

ation where the central processor ties up the hopper such that a peripheral

processor request for memory cannot be honored, the circuitry stops the

central processor, honors the peripheral request, and then restarts the .central

processor.

Conditions for stopping the central processor are:

(1) address in M2 not accepted.

(2) Ml full

(3) M3 full

(4) M4 full

(5) peripheral read or write request.

2.2 Central Control

Central Control handles addresses from the central processor re-

questing access to central memory for instructions or operands. Central

Control controls entry into MO and requests entry (via the priority network)

into Ml. When an operand address is sent by one of the two increment units,

the INADR (increment address flip-flop) will set and the entry signal into

MO is enabled as soon as MO is empty. Simultaneously, the ENCEN (enter central

flip-flop) sets indicating to the priority network that a central processor

address is waiting to enter central memory. When a program address is ready

in P, the PRADR (program address flip-flop) sets, enabling the P to MO sig-

nal if MO is empty and if no operand address is waiting. This signal also

§

c
(U

CO

01

00
•H

sets the ENCEN flip-flop. If a RJP (return jump instruction) or a ENDEX

(end exchange signal) occurs, the DIS (disable flip-flop) sets and the pro-

gram address in P passes through the P-incrementor without being incremented.

2.3 Priority Network

The priority network controls inputs to the hopper by sequencing

entry to the hopper when more than one address attempts to enter at the same

time. The fixed order of priority is as follows:

(1) Address from Hopper

(2) Addresses from the Central Processor

(3) Addresses from the Peripheral Processors

An address from the hopper is given first priority since it is an un-accepted

address resulting from a central memory bank conflict.

Addresses with second priority are from the central processor

(i.e. MO). Since, for the central processor, storage modes cannot be mixed

in the hopper, the read or write tags are examined before priority is granted.

In attempting a read, no write address is allowed in Ml or M4. In attempting

a write, no read address is allowed in Ml or M4. If modes are mixed, priority

is not granted and entry of the address into the hopper is delayed until

central memory has accepted those addresses and modes are no longer mixed.

Addresses from the peripheral processors are assigned lowest prior-

ity. Thus, peripheral read and write operations from and to central memory

may have to wait for hopper and central processor addresses. There are two

exceptions to this. One was mentioned above in the discussion of Peripheral

Control; the other occurs during an exchange jump. An exchange jump a) stops

the central processor, and b) inhibits communications between the peripheral

processors and the central memory. In this case, exchange jump addresses

10

are the only addresses entering the hopper. With each address sent to the

hopper, a full bit is generated, to indicate that- the hopper register contains

a usuable address.

If there is at least one address request to be sent to central memory,

the priority network sets one of three flip-flops, A, B, or C, to select

which address will be sent to the hopper. Flip-flop A is set if an address

from the hopper is to have priority. Flip-flop B is set if an address from

the central processor is to have priority. Flip-flop C is set if an address'

from one of the peripheral processor is to have priority.

2.4 Hopper Input Network

The hopper input network controls the entry of addresses into the

hopper by means of the priority flip-flops as set by the priority network.

Depending on whether flip-flop A, B, or C is set an address from the hopper,

an address from the central processor, or an address from a peripheral pro-

cessor will enter the Ml register of the hopper.

2.5 Tag Generator

When an address enters the hopper, a six-bit tag is appended to

control the address and data flow. Depending on the source of the addresses,

these tages are generated from three sources:

1) An un-accepted address resulting from a bank conflict retains the tag

that was generated when the address first entered the hopper.

2) An operand or instruction address from the central processor gets its

tag from the translation of the F designators of the increment units

or from the central processor (in case of exit mode stops or return

jumps) and from the priority network.

J.A

PPK

WEN

EXCH

M1(TAG(4))

M1(TAG(3))

Figure 5. Tag Generator

12

24 23 18 17 16

Full
bit

Register selection
A,B, or X

.Set for C.P. memory cycle

("0" A&B reg)

-Set for exchange jump

•Set for any write operation

2 1 0

t

I

t

I I I

5 4 3 2

V '

. . t

1

1 0

JL A ̂ _ ^\ >V .J
-

12 bit address
V Y

Chassis Bank
Selection Selectioi

t t"1i
I
i
V— .

'Not
[Used
i

Figure 6: Address and Tag Format from Stunt Box

13

3) Addresses from the peripheral processors obtain their tags from peri-

pheral control. The ETK (exchange tag counter), which controls the

execution of the exchange jump, generates the tags for all addresses of the

exchange jump package.

2 .6 Hopper

The hopper consists of four registers (Ml, M2, M3, and M4) each

capable of holding an 18-bit address, a 6-bit tag, and a single full bit.
»

(M2 is an exception and does not have a full bit). An address is sent to cen-

tral memory from hopper register Ml. Hopper registers M2-M4 store the address

in case it must be re-issued because of a bank conflict. If the address is

accepted by central memory, it drops out of M2.

In the case of bank conflict, the priority network gates the un-

accepted address from M2 back into Ml every 300 nanoseconds, until it is

accepted by central memory. An address can be accepted only if the specified

bank is free at the time the address is in Ml. Otherwise, it is possible for

another address to request access to the same bank and tie it up for a memory

cycle. Notice, however, that because of the way the hopper is designed, it

is impossible for an address to circulate infinitely long in the hopper.

There are three reasons for this:

1) un-accepted addresses have priority in the hopper,

2) an address in the hopper circulates every 300 nanoseconds,

3) a memory cycle is 1000 nanoseconds.

The six tage bits travel through the hopper with each address.

The hopper serves as a delay line for the tag. This line is extended by two

additional registers, but since they do not affect the operation of the stunt

box, they will not be mentioned in the CDL description of the mechanism. In

each step of flow through the hopper, the tag controls address and data flow.

14

To C.P. <

Tag; Gen
(6 bit)

FULL BIT

24 23 18 17

23 18 17

23 18 17

23 18 17

PPRW

STOPCP

To Tag Generator

Hopper jlnput Network
18 bit Address

1

Ml

M4

M3

0 M2

To Hopper Input
Network

Figure 7. Hopper Block Diagram

15

Hopper registers Ml, M4, and M3 have full bits associated with the

address. The purpose of the full bit is to indicate to the priority network

that the address must be reissued to central memory if no accept is returned.

Note that the full bits are also sampled to see if we need to stop the central

processor so that a peripheral address can be accepted.

The hopper can contains maximum of three addresses. An address

must be in Ml at the time the memory cycle for its bank finished so that it

can be accepted by memory, otherwise a bank conflict occurs. The longest

time an address will have to wait to be accepted in memory is when the address

enters Ml 300 ns after the memory cycle started.

16

3. CDL Description

In the CDL description that follows, one modification of the language

has been made. In the labels, instead of mentioning a clock cycle, a time in

nanoseconds, corresponding to the time at which the event actually occurs

in the hardware, is mentioned. Thus for an event that occurs 25 nanoseconds

after time 0, its label will be represented as: /t25/.

3.1 Stunt Box Configuration

Comment, first we describe the inputs coming into the Stunt Box from external

sources.

Terminal, CRD $indicates a CPU read

CWR $iridicates a CPU write

INCH $indicates a fetch operation from CPU

INCRFD(2-0) $ increment uni t F designator

INCR(17-0) $address from increment units

PPREAD $25 ns pulse indicates a PP read CM

PPWRITE $25 ns pulse indicates a PP write CM

EXCHANGE $25 ns pulse indicates a PP exchange jump

PPADDR(17-0) $PP address from PP, A register

BRK $breakpoint—indicates CPU halted

INCR1 $indioate CM request from increment unit 1

INCR2 $indicate CM request from increment unit 2

RJP $indicates CPU return jump instruction

ERRSTP $indicates a CPU error stop condition

17

Comment, now .we describe the outputs sent by the Stunt Box to external sources.

Terminal, CENBUSY
ENDEX
STOPCP

$set to prevent any other PP from attempting a CM reference
$signals end of exchange jump operation
$signal sent to halt CPU

Comment, define the signal that comes from CM indicating accept of request.

Terminal, fvACCEPT $indicates last CM request has been accepted by the
addressed memory bank.

Comment, define the components of the Stunt Box.

Register, PPRW

EXCHFF

EXCH

IN

PPIR(17-0)

ETK(4-0)

EAK(17-0)

ERW(17-0)

INADR

Gl

DIS

P(17-0)

D

PRADR

ENCEN

MO(17-0)

E

F

A

$indicates PP read or write CM

$indicates start of exchange jump operation

$exchange jump flip-flop—on for duration of exchange
jump operation

$set to indicate a PP CM operation

$PP address input register

$exchange tag counter

$exchange address counter (holds temporarily contents
of ERW)

$exchange/read/write register

$indicates CM request from increment units

$temporary flip-flop that indicates either a return
jump or end of exchange jump

^disables incrementing of P register

$program address register

$controls issuing of CPU CM requests (checks to see
if there are outstanding requests, if so, current one
must wait)

$indicates program address (fetch operation)

$enter central

$CPU address holding register for input to hopper

$hopper address must have priority

$not a CPU memory operation

$set priority for hopper address

18

$set priority for CPU address

$set priority for PPU address

$indicates a PP write operation

$write enable

$indicates CPU read or write CM

$indicates transfer from MO to Ml occurred

$reference address register

$field length register

$hopper register

Chopper register

$hopper register

$hopper register

$storage address register

$indicates if CPU address is withing FL limit

Comment, define components of the hopper registers

Subregister, Ml(FULL,TAG,ADDR)=M1(24,23-18,17-0)

M4(FULL,TAG,ADDR)=M4(24,23-18,17-0)

M3(FULL,TAG,ADDR)-M3(24,23-18,17-0)

M2(TAG,ADDR)=M2(23-18,17-0)

Comment, FULL designates the full bit in the hopper register

Comment, TAG designates the tag portion of the hopper register

Comment, ADDR designates the address portion of the hopper register

B

C

PPW

Register, WEN

CPRW

MTRAN

RA(17-0)

FL(17-0)

Ml(24-0)

M4(24-0)

M3(24-0)

M2(23-0)

SAR(17-0)

G

19

3.2 Stunt Box Sequence
f

Comment, description of peripheral control

/tOO/ IF (PPREAD+PPWRITE=1) THEN (PPRW«*-1) ELSE (PPRW4-0),

IF (PPWRITE=1) THEN (PPW«-1),

IF (EXCHANGE-1) THEN (EXCHFF<KL,STOPCPf-l) ELSE (EXCHFFf-),

/tOO*EXCHFF/ $initiation of exchange jump operation

ETK4-0,

IF (BRK-1) THEN (EXCH<-1,EXCHFFf-0) ELSE (EXCH^-0)

/tOO*EXCH/ IF (ETK=16) THEN (EXCH4-0,ENDEX4-1)

f • ' '
Comment, check to see if CPU halted to allow a PP address into the hopper

/t25/ IF (ACCEPTf*Ml(FULL)*M4(FULL)*M3(FULL)*PPRW) THEN (STOPCP«-1)

ELSE (STOPCP4-0)

/t25*(PPREAD+PPWRITE-fEXCHFF)/ $is there a PP CM request

IN<-1, CENBUSŶ -1, PPIR4-PPADDR

/t50*IN/ ERW«-PPIR

/t50*(EXCH+PPRW*IN')/ ERW«-EAK

/t75*IN/ EAK-<-EAK add 1,

ETK4*countup ETK

20

Comment, description of central control

/tOO/ G1«-RJP+ENDEX, INADR4-0,

/t25/ INADR4-INCR1+INCR2, D-f-ENCEN'-fMTRAN,

PRADR4-INCH-KJ1, ENCEN<-0, DIS—Gl

/t50*DIS'*EXCH'*ERRSTP'*D*INADRf*PRADR/ P«-P add 1

/t75*D*INADR/ M04-INCR, ENCE1W-1

/t75*D*INADR'*PRADR/ M04-P, ENCEN4-1

Comment, description of priority network

/tOO/ E*-M3(24)*ACCEPT', F^-ENCEN1, A4-0, B4-0,

Comment, check for mixed read and write in the hopper.

/t25*E'*CRD/ IF (Ml(23)'*M4(23) t=l) THEN (CPRW«^L) ELSE

/t25*E'*CWR/ IF ((Ml(23)-«ll(21)f)*(M4(23)4M4(21)')=l) THEN (WEN«-1, CPRW^l)

ELSE (WEN^O, CPRW4-0)

/t50*F'/ IF (MO .GT. FL) THEN (G4-Q) ELSE (G4-1)

/t75*E/ A4-1, M1(FULL)<-1

/t75*(PPRWfEXCH)*F*E'/ C-4-1, ML(FULL)-f-l, CENBUSY^-O, PPRW^-0

Comment, description of hopper input network

/tOO*A'*B'*C'/ M1(FULL)<-0

/tOO*A/ Ml (ADDR)<-M2 (ADDR)

/tOO*B/ M1(ADDR)4-MO add RA, MTRAN-4-1

/tOO*C/ M1(ADDR)«-ERW

Comment, description of the tag generator

/tOO*A/ M1(TAGX-M2(TAG)

/tOO*B/ IF (INADR=1) THEN (M1(TAG(2-0))<-INCRFD) ELSE (M1(TAG(2-0))«-0),

M1(TAG(3))4-1, M1(TAG(4))4-0, M1(TAG(5))<4-WEN*G

/tOO*C/ IF (EXCH=1) THEN (M1(TAG(3-0))4-ETK) ELSE (M1(TAG(3-0)H-0j,

M1(TAG(4))̂ -EXCH, M1(TAG(5))4-PPW, PPW4-0,

Comment, description of the hopper

/t25*Ml(FULL)/ SAR̂ -Ml(ADDR)

/t75/ ' M4<-M1

/t50/ M34-M4

/t25/ M2-<-M3(TAG,ADDR)

END

22

4. Inferences-

1. Y. Chu. Introduction to Computer Organization. Prentice-Hall, Inc.,

1970.

2. J. E. Thornton, Design of a Computer the Control Data 6600, Scott,
Foresman and Company, 1970.

3. Control Data Institute, 6600 Central Processor, Vol. 1 Control and
Memory, 2nd ed., Control Data Corporation, 1968.

4. Control Data Corporation, 6400/6500/6600 Computer Systems Reference.
Manual, Control Data Corporation, rev. H, 1969.

