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deterministic air traffic control (ATC) systems. This thesis proposes
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an airport based computer as soon as it enters the near terminal area
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given a flight plan which, if followed precisely, will lead it to the
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NTA is chosen so that delays are executed far from the outer marker,
and violations of minimum altitude and lateral separations are avoided.
Finally, a solution to the velocity mix problem is proposed.
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INTRODUCTION

The number of landing and take-off operations in the major

airports of the United States has been increasing rapidly in the

last decade as a result of the large demand for air transportation.

The projected rate of growth of scheduled aircraft flights is not

about to become smaller in the foreseeable future. The facilities

available at commerical airports for handling in and out bound

flights obviously must be made more efficient as the volume of traf-

fic increases. Unfortunately, the rate of growth of the volume of

operations in the last decade has been larger than anticipated. As

a result the airports often find their traffic control systems unable

to cope with the demand for landings and take-offs.

The ways to increase air trnasportation efficiency and

capacity are:

a) Improve the air traffic control (ATC) system presently

available.

b) Provide more runways at every airport.

c) Build more airports.

The above suggestions are listed in order of increasing cost and in-

creasing effectiveness. However, the difficulty of implementing the

latter two suggestions is very great. Most of the airports have been

surrounded by cities and the land they have is fixed thus prohibiting
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the construction of more runways. The building of new airports is

greatly hampered by decreasing land availability, and vigorous, nega-

tive reactions from environment and noise minded citizen groups. This

leaves the first suggestion as the only solution to the short range

1 2 4
air congestion problem. Research ' ' has proved that increased effi-

ciency of the ATC system can delay the need to build more airports

for at least two decades.

The alarm that was aroused by the unexpected growth of air

traffic operations led to "patching ups" of the old ATC system. The

improvements were based more or less on intuition rather than analysis.

The result was the present system which consists of many ad hoc rules

and procedures and a lot of intuitive guessing from the air traffic

controllers, who are the sole decision makers in the process.

The aim of this work is to present a nonutopian ATC system

whose major decision maker is a computer. The geometry and some of

the rules of the existing system were changed to adapt them to the

requirements of automation. The air traffic controllers remain as

the ultimate commanders of the system, but their work load is greatly

diminished. Chapter I presents the present ATC system, for comparison

with the proposed scheme, and summarizes previous research relevant to

this work. Chapter II presents in a non-detailed fashion the envisioned

system. In Chapters III, IV and V the details of the system are ana-

lysed. Finally, Chapters VI and VII present conclusions and areas

where the present work can be extended.



CHAPTER I

BACKGROUND IN AIR TRAFFIC CONTROL

This chapter presents the reader with knowledge necessary

to evaluate the subsequent chapters. In section 1.1 the present ATC

system is described and some of its inadequacies are pointed out.

Section 1.2 summarizes the most important of the analytical research

to date and previous suggestions for improvement of the present ATC

system.

1.1 The Present System and Its Problems

A detailed description of the present ATC system has been

treated thoroughly by Simpson , and for this reason will not be dupli-

cated in this thesis. Only the aspects of the system that are rele-

vant to this work will be summarized here.

Consider an aircraft ready for a flight. The pilot has al-

ready filed with the local FAA Flight Service Station a flight plan

which is to be followed more or less closely throughout the flight.

This plan includes many bits of information, such as time of

take-off, air route to be followed, altitude, speed, etc.

All the aircraft that are inside an airport are monitored

by the control tower. When the pilot is ready to take-off, he con-

tacts the tower and is put under the responsibility of one of the

ground controllers. This group is in charge of every aircraft that
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moves inside the airport. They guide the aircraft to and from the

runways, arrange time and order of take-offs and give final clearance.

They are in close communication with the departure controllers, who

take charge of the aircraft after they take-off, and the approach con-

trollers, who are in charge of the aircraft before they land.

As soon as a time interval between landings or other take-

offs is available, the ground controller gives clearance to the pilot

to take-off, and hands the aircraft's flight plan to one of the depar-

ture controllers. He, in turn, monitors the aircraft via radar and

guides it out of the Near Terminal Area (NTA) via voice commands.—the

NTA is a cylindrical region, centered at the airport, of radius 40-60

*
nautical miles (nmi). As soon as the aircraft is at the boundary of

the NTA, its flight plan and all responsibility for control are

"handed off" to the regional control center adjacent to the airport.

The air route traffic control centers (ARTCC) monitor aircraft with

radar and give radio commands. They "hand off" every aircraft leaving

their area to the next ARTCC, and so on, until the aircraft is near

its destination when it is "handed off" to one of the approach control-

lers. They, in turn, observe all approaching aircraft on their radar

screens, determine the landing order and guide the airplanes to the

runway via voice commands.

The system presented here deals with approach control; so,

it is worthwhile to take a closer look at the present system and the

*The ATC system of units accepts as unit of length the nautical mile.
One nmi = 1852 meters ~ 6080 feet ~1.153 statute mile.



11

interactions between the controller and the pilot, during the landing

phase. If there are not too many aircraft in the NTA requiring land-

ing service, the controller gives the pilot a "vector", or direction,

to follow until the first check point called the inner fix, usually

an electronic marker. Subsequently, the controller gives to the pilot

another vector to follow until the final check point before landing.

This check point is called the outer marker (OM) and marks the begin-

ning of an electronically defined descent path, the glide path, which

leads straight to the runway. The OM is usually located about 5-7

n.miles from the beginning, or "threshold", of the runway and at an

altitude approximately 1200 feet above the level of the runway. While

the aircraft is following the glide path the controller has no control

over the aircraft, except when he orders a missed approach maneuver.

This discussion then points out the fact that the ATC system inside

the NTA aims at sequencing the aircraft safely until the OM.

If there are too many aircraft requiring landing service

simultaneously, the controllers delay the aircraft they cannot handle

by "stacking" them at points called the outer fixes. Each "stack"

is a column of altitude levels spaced 1000 feet apart. Each altitude

level can be utilized by only one aircraft at any time. As soon as

the area between the OM and the outer fixes becomes decongested of

traffic, some of the aircraft that are "holding" in the stacks are or-

dered to leave their delay positions and enter the IMS. Aircraft

occupying the lower levels are serviced first. As soon as a lower

level is emptied all the aircraft above move down by one level and
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await their turn.

All the landings utilize the same runway. If the wind direc-

tion changes drastically then all landings are switched to a different

runway, such that the direction of landing is opposite to the wind

direction. The CM, which can be viewed as an extension of the runway,

is shifted accordingly. The positions of the stacks remain unchanged

but all aircraft that are approaching the OM are given new vectors.

The procedures outlined above constitute what is called

landing under instrument flight rules (IFR). Landing under visual

flight rules (VFR), which is essentially a "see and avoid" scheme,

will not be considered here due to the fact that it breaks down under

congestion and bad weather conditions.

The problems of the present ATC system arise because the con-

trollers are the only system decision makers. The worst system in-

efficiencies occur during the landing phase. Since all the aircraft

have to merge at the CM, the approach controllers have to keep in

their minds future positions of the landing airplanes, and make fast

decisions about future vectors to be given out. The fact that differ-

ent aircraft have different speeds makes the situation worse. All

routine information necessary to each pilot is transmitted via voice,

a task which occupies much of the controllers' valuable time. It is

understandable then, that in such an environment the human operators

must be very conservative and allow large margins for the errors due

to the necessarily gross estimates. It is indeed amazing that these

people can keep accidents to such a low figure, and maintain in opera-
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tion a system that was designed to accommodate the traffic loads of

the fifties.

1.2 Summary of Previous Analytical Research

It is evident that before any suggestions for improvement

of the present ATC system are made, its inefficiencies must be made

explicit by studying analytically its various components.

One of the major early analytical studies of ATC was the

2
work of Blumstein. He analyzed mainly the capacity of a runway, i.e.,

the number of landings per hour the runway can support, given random

arrivals of mixed speed aircraft. A result that he obtained was

that with present FAA separation standards (at least 3 n.miles lateral

separation over the OM and one minute time separation on the runway),

a runway cannot handle more than 40 landings per hour. Given that at

present, even at peak congestion, most of the runways do not handle

more than 30-35 landings per hour, there is room for improvement.

The major analytical work, in the sixties was done by Simp-

1 3son , and parts of it were recently extended by Odoni. They investi-

gated analytically practically every aspect of the present ATC system.

The models they reached were simulated and results indicated that the

models roughly agreed with the existing system. Some of their conclu-

sions were as follows:

a) The present holding stacks are not a very efficient delay

method and in fact they lower the capacity of the airport.

b) Most of the present delays occur because of interference
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of the aircraft when they are in the NTA, and not because of en-route

interference.

c) The radius of the area between the outer fixes and the

OM should be as small as possible so as to minimize the interval of

time the aircraft fly from the stacks to the OM.

d) The best design of a terminal area ATC system should

result after extensive simulation, because the terminal area cannot

be analyzed mathematically accurately enough.

e) The computer can be very helpful as a control element

in future syterns.

The state of ATC research, projections of future air traffic

volume, and propositions for improvement of the present system were

4 5
recently studied ' . A major conclusion of these studies was that

automation has to be introduced to relieve the controllers of the tre-

mendous load. At present a study of a semiautomated ATC system is be-

ing conducted. The ARTS III system, as it is called, will still keep

the human controller as the major decision making element.

In addition there is some recent research on concepts for

completely automatic ATC. The ones the author is aware of are those

of Porter , Athans and Porter , Telson and Erzberger and Lee . In

references 7 and 8 a method for controlling air traffic was given,

based on the theory of optimal control of linear systems with quadratic

criteria. References 9 and 10 presented schemes for sequencing and

spacing based on minimum time trajectories of the aircraft from the
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boundary of the NTA until the OM. A major simplifying assumption of

the studies [7] - [10] was that all aircraft have the same speed in-

side the NTA. This assumption was unrealistic, but helped present

some novel concepts.

To construct an ATC system that preserves some of the con-

cepts of [7] - [10] but lifts the simplifying assumption of constant

speeds was the primary motivation to undertake this research.
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CHAPTER II

GENERAL DESCRIPTION OF THE PROPOSED SYSTEM

The terminal ATC system proposed in this thesis is deter-

ministic. By this it is meant that every aircraft entering the NTA

will be automatically controlled by a central, control-tower based

computer. The system is structured so that the computer performs the

tasks of scheduling and spacing, and determines a nominal path as

well as a nominal speed profile for each aircraft.

The assumptions under which the system is analyzed are de-

lineated in section 2.1. In section 2.2 the geometry of the airspace

in the NTA is described. The geometry is suited for computer control-

led ATC. Section 2.3 describes the functions that the computer will

perform. The final section 2.4 discusses some of the reasons for

choosing this particular system.

2.1 Assumptions

a) The identity of each aircraft in the NTA is known to the

ground based control center.

b) The true position of every airplane is known accurately

to the tower while the former flies inside the NTA. The ground based

range measuring equipment at present have accuracy of only 1/3 n.mile

(radar). However, equipment of the next two decades are projected to
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bring the accuracy to about 50 feet. Azimuth at present can be

measured from ground with an accuracy of 2° which is not very satis-

factory. However, the technically feasible accuracy by radar is 0.5° .

It is to be noted that at present ground equipment cannot measure air-

craft altitudes. The on-board altitude measuring devices of most air-

craft are, nevertheless, fairly accurate ( ±30 feet).

c) Every aircraft has a minimum turn radius which depends

on its speed and passengers' comfort. At present the FAA rules specify

a maximum turn rate of 3°/sec. if the speed is less than 210 Knots.

If the speed is higher.than 210 Knots, the maximum turn rate is speci-

fied by the speed and 30° of aircraft bank angle.

d) Only jets will be considered. It seems that in the future

large commercial airports will be segregated only to jets while the

smaller general aviation craft, which constitute a substantial percent-

age of the present fleet, will use smaller airfields.

e) The landing speed of every aircraft will be assumed to

lie between 100 and 150 Knots. The landing speed depends on the load

of the airplane. Table 2.1 shows typical accepted landing speeds for

all the existing types of jet carriers. (Table 2.1 on page 18)

f) All landings and possibly take-offs will utilize the same

runway. Thus, there will be no interference from other runways.

g) No other airports lie in the vicinity of the airport under

consideration.

h) Aircraft will enter the NTA with speeds which can range

from 200 Knots to 300 Knots. This is close to present practice.
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TABLE 2.1

Approach Airspeed in Knots

18

Jet Type

737-100

737-200

DC-9-30

DC- 9- 40

727-100

727-200

707-120

707-120B

720

707-320

707-320B

DC- 8- 61

DC-8-62

DC-8-63

DC-10-10

DC-10-20

747

Operating
Empty Weight

100 Knots

103

105 "

106 "

95

102 "

118 "

115

102 "

117

103

118

108 " .

115

112 "

117

115 "

60% Load
Factor

130 Knots

125 "

125 "

125

122

122 "

142 "

135

123

140 "

122

137 "

135

137

133

135 "

140 "

Maximum
Loading Weight

138 Knots

133

128

128

130

133

146 "

140 "

128

143 "

127 "

143 "

140 "

141 "

137

140 "

144 "

I would like to thank Prof. A. Odoni of M.I.T. for this table.
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i) All aircraft, while in the NTA, must maintain between

them a longitudinal separation of at least d . units of distance.6 r mm

It will be assumed that proper separation exists between jets entering

the NTA. Currently, the FAA standard is d . =3 n.miles. This ismm

frequently, and deliberately violated by the controllers, especially

in hours of congestion. In this report d . will be assumed equal to

2.5 n.miles.

j) It will be assumed that when the aircraft descends its

groundspeed is kept constant. However, the magnitude of the ground-

speed will not affect the maximum descent rate that can be achieved.

In other words, an aircraft will be assumed capable of descending,

e.g., 1000 feet/minute whether it flies with groundspeed equal to

250 Knots or 300 Knots or any other speed less than 300 Knots.

k) The maximum descent rate will be assumed to be 1000 feet/

minute. This corresponds to a descent angle of 5.6° for an air-

craft flying at 100 Knots, and a smaller angle for greater speeds.

The maximum permissible deceleration will be assumed to be 1 Knot/sec.

1) Since most pilots don't like to perform many tasks simul-

taneously, it will be assumed that, at any particular time only one

(or none) of the three tasks, namely descending, turning or decelerat-

ing will be executed.

m) It will be assumed that the wind speed is zero and that

no significant variations of speed occur with changes of altitude and

temperature. This is a gross simplification; however, it does not sig-

nificantly affect the system concepts, and it greatly simplifies the
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analysis.

2.2 The System Geometry

The structure of the airspace around the airport will now

be described. First, a coordinate system (x,y,z) is defined. Its

origin is the outer marker. Since the function of any terminal ATC

system is to funnel aircraft to the OM, this point is picked as the

origin of the coordinate system (see fig. 2.1).

The NTA will be a cylinder with its axis passing through

the OM. The radius of the NTA must be picked as small as possible,

so that the aircraft will be under tower control for the smallest

••,
possible time. Since the average number of aircraft in the NTA at

any time is proportional to its radius (see Simpson ), the computer

at any moment will have the smallest possible number of aircraft to

coordinate. The magnitude of the NTA radius will be determined at

a later section (it will be of the order of 60-70 n.miles).

The NTA will be divided in three major areas each serving a

specific purpose. A rough description of them follows. The outer-

most area, which will be called buffer zone (BZ), will be roughly an

annular cylinder bounded by the boundary of the NTA and another cylin-

drical surface centered at the OM. The radius of this second cylinder

will be about 10 n.miles smaller than the radius of the NTA cylinder,

and will be determined exactly later. When an aircraft is inside the

buffer zone, it is identified by the gound center, and scheduled.
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I
,BUFFER

ZONE

RUNWAY

GLIDE PATH

Fig. 2.1 "Rough"Description of Airspace Segregation Inside NTA
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The area of the NTA the aircraft enters after it crosses the

buffer zone will be called outer merging space (OMS). It is bounded

by the inner boundary of the buffer zone and another roughly cylindri-

cal surface centered at the OM—the zones are described grossly pending

further details of them, to be mentioned next. The tasks of sequenc-

ing, spacing, and holding (if necessary) will be completed while the

jet is in the OMS.

The remaining innermost region of the NTA will be named

inner merging space (IMS). It is in this region that all aircraft will

converge toward the OM. Figure 2.1 illustrates roughly how the air-

space is subdivided.

Aircraft enter the NTA from air routes. We assume that in-

side the NTA there are no fixed air routes, but every aircraft will

be assigned a nominal path that it must follow.

While in the buffer zone and the OMS, aircraft will be

allowed to fly at any of a discrete number of altitude levels. Each

level will carry along a speed that an aircraft must maintain while

it flies on it. The higher altitude levels will allow progressively

higher speeds for noise abatement reasons. The vertical separation

between altitude levels will be at least ,1000 feet to avoid violation

of current accepted separation standards. The topmost altitude level

will carry traffic at no more than the maximum entrance speed which

was assumed to be of the order of 300 Knots. The lowest level will

allow traffic to fly at as low as 200 Knots, the lowest assumed en-
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trance speed. The exact number, specific speeds and vertical separa-

tions of the altitude levels will be determined at a later section.

Any aircraft in the QMS, regardless of what altitude level it is fly-

ing at, will be allowed to specify any landing speed in the range

100 Knots to 150 Knots. Thus, there will be no segregation according

to their desired landing speed.

The intersection of each altitude level with.the boundary

surface of the IMS will define a circle. This circle will be the check

in point for entrance to the IMS (roughly corresponding to the present

outer fixes). The difference, however, is that every point on the

circle is a valid entrance point to the IMS. Figure 2.2 illustrates

the idea. It is to be pointed out that the distances of points, A,B,C

etc. from the OM are not the same as the assumption of a cylindrical

IMS would imply. The same remark holds for points A',B',C' etc. That

is why it was said that the IMS and the QMS are "roughly" cylindrical.

Although a particular aircraft is restricted to fly at one

altitude level while it is outside the IMS, it will not be similarly

segregated inside the IMS. The tasks or "objectives" the pilot will

have to accomplish while in the IMS region are to descend to the level

of the OM and decelerate to the landing speed. A major problem is how

to avoid conflicts between aircraft entering the IMS from different

altitude levels.

The way this problem will be attacked in this thesis is to

demand that no matter from what altitude level an aircraft enters the

IMS, and no matter what its landing speed jLs, it will have to traverse
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the IMS in a_ time interval T0> which is the same for all aircraft.

This concept as will be seen shortly, will simplify the sched-

uling and spacing tasks.

In Chapter IV a method will be given for determining the

minimum To, and the minimum radius of each circle that separates an

altitude level from the IMS.

2.3 Functional Description of the Control Process

Consider an aircraft entering the NTA. There are certain

tasks that are performed by the aircraft and the automated control

system while the aircraft proceeds toward the OM. These will be

described in the order they take place.

A. As soon as his aircraft enters the buffer zone (BZ) of

the NTA the pilot:

a) Identifies it to the ATC system,

b) Radioes position, heading, time of entrance and

landing speed.

c) Starts performing a simple maneuver that, if undisturbed,

will lead the jet to the boundary of the IMS in minimum

time.

The minimum time maneuver is simple enough, given that the

aircraft flies on a particular altitude level and thus maintains constant

known speed, and it can be precalculated. Its analytical description

will be given in Chapter III. The advantage of this type of maneuver

is that the ground computer can readily calculate the expected time
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of arrival (ETA) to the boundary of the IMS. Given that the aircraft

will be controlled to cross the IMS in a prespecified time Tc, and that

the landing speed has been communicated to ground, the computer can

readily also calculate the ETA to the runway.

B. The system now compares the most recently calculated ETA

to the ETA's calculated for the aircraft that are still in the buffer

zone. This is so because the BZ has been designed so that when a vehi-

cle leaves it on its way to the OM, there is no chance that it will

be superceded in landing order by any other jet subsequently enter-

ing the NTA—the details of the design will appear in Chapter IV.

After the comparison the system rearranges if necessary, the landing

order according to a procedure that will be described in Chapter V.

C. Once the landing order has been determined, the system

assumes the task of scheduling the aircraft that are still in the buf-

fer zone. "Scheduling" here is taken to mean the assignment of times

of arrival to the boundary of the IMS (or equivalently, via a trans-

lation by To, to the OM). The only inputs to the scheduling algor-

ithm are the landing order, ETA's and landing speeds. If the aircraft

are spaced far from each other to begin with, the algorithm schedules

them at their ETA's. If the ETA's are too close some of the aircraft

have to be delayed. The algorithm decides which ones are to be de-

layed, and determines the kind of delay maneuvers to be performed.

Take-offs can be inserted between landings, the algorithm will merely

assign larger delays to the aircraft scheduled after a take-off.
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D. Now, the algorithm instructs each pilot at what point of

his minimum time trajectory he must initiate the delay maneuver. This

final instruction is necessary because if an aircraft is closely be-

hind another one, on the same altitude level, and if the algorithm

decides that they both must be delayed considerably, then it is impor-

tant that the second aircraft does not start its delay maneuver much

later than the initiation of the delay maneuver of the first aircraft

because a near miss might occur.

E. All the above calculations are performed by the ground

system while the aircraft is still in the BZ. Thus, the nominal tra-

jectory of every vehicle until the boundary of the IMS is calculated

in an open loop manner. While the aircraft is now in the QMS no

control whatsoever is applied. The system utilizes the time it

will take the aircraft to reach the IMS, to calculate a nominal tra-

jectory, or group of possible trajectories that the pilot can follow

in the IMS so as to lead his aircraft to the OM in time TO- Notice

that there are no holding stacks, since the holding maneuvers are

performed along different points of the minimum time trajectory and

are not all crowded in the boundary of the IMS.

Since the system has precomputed the nominal trajectory

until the IMS, it "knows" the point at the boundary of the IMS where

the aircraft will enter it, and the nominal heading. Given the

"objectives" that must be accomplished in time TQ, namely descent to

the level of the OM and deceleration to the landing speed, there are

infinitely many trajectories and speed profiles that can be used.
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In this thesis, a specific type of turn-straight-turn

trajectory will be postulated for all aircraft, and a speed profile

will be determined for each. Descent will be performed while the

aircraft is not decelerating. It will be seen later that the pilot

will have some choice in picking the descent profile. The computer

will help him by assigning the latest time the pilot can start his de-

scent. The geometry of the airspace will be such that no matter how

the pilot chooses to descent he will not violate separation standards

with any other aircraft.

F. Now the pilot has finished traversing the OMS and has

been given a range of nominal profiles to choose from when he enters

the IMS. The control, however, does not stop here. Throughout the

traversal of the OMS there are errors accumulating from position and

velocity uncertainties which are due to inherent limitations of the

measuring equipment. The control system will observe the position

errors as soon as the aircraft enters the IMS. As a correction the

system can immediately radio to the pilot a new turn-straight-turn

type of trajectory which if followed closely will lead the aircraft

to the OM with correct heading. Furthermore, a new speed profile and

new range of descent profiles can be radioed to the pilot.

Figures 2.3 through 2.6 illustrate everything that was de-

scribed in this section and familiarize the reader with the kind of

trajectories and nominal profiles to be analyzed later.
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Fig. 2.5 Possible Descent Profile Between Points A and B of Fig. 2.4
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Fig. 2.6 Possible Speed Profile Inside the IMS
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2.4 Why Such a System?

In this section the possible advantages of the proposed sys-

tem when compared to the presently existing one are stated. Before

the quality of the suggested system is discussed, its differences with

the present ATC process are mentioned.

At present, the sole decision maker and co-ordinator of the

terminal system is the approach controller. As such, his tasks be-

come immensely complicated during congestion periods. In the proposed

system'the computer not only aids the controller in his decision mak-

ing but does a lot of the deciding itself. So the machine is not

only used as a fast calculator, but also as an accurate controller.

The function of the human is by no means deleted. On the contrary,

it is reserved to handle emergency situations, adverse weather condi-

tions and other unpredictable cases, as well as to replace the com-

puter if andwhen the latter breaks down.

At present control is concentrated in the area between the

holding stacks and the OM—roughly in the IMS of the suggested scheme.

This is so because, with its limited capability, the human brain can-

not predict future aircraft positions far in advance. A fast computer

with a large memory overrides this problem. Taking this into account

the proposed scheme suggests beginning of control as soon as the jet

enters the NTA. Errors, as was described above, can be monitored and

corrected near the OM but by starting control early it is assured

that these errors will not be large.
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The holding stacks are replaced by a dynamic delaying process.

At present the holding stacks are one of the bottlenecks of the terminal

ATC system. This is so because the flow capacity of a holding stack

is smaller than the capacity of the runway (see Simpson, p. 183). So

their elimination seems likely to improve the airport capacities.

The pilot will not be confined to a very strict nominal flight

plan. His flexibility is reflected in his freedom to pick the final

descent profile.

Finally, computational requirements are not very large.

The equations that the computer will be required to solve can be solved

in faster than real time.
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CHAPTER III

AIRCRAFT TRAJECTORIES

In this chapter analytical description of the nominal air-

craft trajectories will be given. This is necessary before the system

geometry is analyzed, because it will provide the insights into the

reasons for the adoption of the particular airspace configuration.

Aircraft will be treated as points moving on a plane. The trajector-

ies that will be prescribed in the OMS will be minimum time ones.

The ones that will be followed in the IMS will be such that an air-

craft will arrive at the OM with proper heading.

Section 3.1 analyzes the minimum time problem. In section

3.2 the kinds of delay maneuvers that will be used are described.

K

Section 3.3 analyzes the trajectories in the IMS. Finally, section

3.4 describes the kinds of speed profiles out of which the computer

will pick the nominal one. In the last section the possible descent

profiles are also described.

3.1 The Minimum-time Trajectory in the CMS

The reasons for which such a trajectory is imposed on every

aircraft entering the NTA are the following:

a) If there is no interference from other aircraft, this

trajectory will lead the jet under consideration to the boundary of
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the IMS in the smallest possible time.

b) The equations involved are explicit, and thus the ground

computer can solve them very fast.

c) The maneuver itself is simple and thus it will be easy

for the pilot to execute it.

3.1.1 Problem Statement

The problem will be stated under the assumptions that the

motion of the aircraft is planar, and the speed is constant. Figure

3.1 illustrates the situation. Point A represents an entering air-

craft with speed V and initially at state (x ,y ,<)>). The problem

roughly is to find a trajectory such that the aircraft arrives at

the circular boundary of the IMS, and headed toward the OM, as

shown in figure 3.1, in the smallest possible time.

The dynamics of the aircraft are represented by the follow-

ing set of equations:

x(t) = v cos <j>(t) (3.1)

y(t) = v sin <j>(t) (3.2)

<£(t) = g tan 6(t) (3.3)
v

where x and y are measured in the co-ordinate system of figure 3.1,

4> is the aircraft heading with respect to the x-axis, g is the accelera-

tion of gravity and 6(t) is the aircraft bank angle (see figure 3.2).

Equations 3.1 and 3.2 are simply the equations of a moving

point. Equation 3.3 needs explanation. As was stated in Chapter II,
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it is assumed that each altitude level "carries" a speed v, at which

all aircraft flying at that level must fly. The value of v was assumed

between 200 Knots and 300 Knots. In this speed range the turn rate

is specified by the bank angle as follows:

If K,R,m denote the centrifugal force experienced during

the turn by the aircraft radius of turn, and aircraft mass respectively

then:

K = R (3.4)

Equilibrium conditions give (see fig: 3.2)

K = mgtan 6(t) (3.5)

2

Thus, -^~ = mg[tan 9(t)]
K

-, . v g[tan 6(t)]
implies _ = v (3>6)

Since <|>(t) = / = , equation (3.3)

Equation (3.3) can be simplified by setting

u(t) = g[tan 9(t)] (3.7)

Since the maximum bank angle currently allowed is 30° u(t) is restricted

by: |u(t)| < g tanf = Y^r = A

Since the heading of the aircraft at the final time must be

along a radius of the IMS the end-time condition on <J) is:

tan <fi(t) = y(t)/
/ x(t) (3.8)

We now formulate an optimal control problem.
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Given the state equations:

= v cos 4>(t)

y(t) = v sin <j>(t)

= u(t)
V

the initial conditions,

[x(o) y(o)
\J \J *_»

the final condition:

X (T) + y2(T) = L2 ; tan <f>(T) =

and the cost functional:

J - /"Tdt.
Jo

Find the control u. , such that (u(t)| <^A, and such that it

minimizes J.

3.1.2 Solution of the Minimum-time Problem

In Appendix A the problem formulated above is solved. The

answer is the following.

a) If tan 4> = o , then the optimal control law is
x
o

u° = 0. The aircraft trajectory is a straight line and the cost func-

tional J is trivially found by:

J = Train = **" ~ L

v (3.9)

b) If tan <J> > ^p_ , then the optimal control law is
x ,o
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u = (-A,0). The aircraft turns clockwise and "hard" for time t

given by:

t v , -i y - — cos <b . -<p - tan o A o - sin

x 4- — sin d>o A ro <yo 'I
v_
A

(3.10)

Then it continues along a straight line until it reaches the boundary

of the IMS. The value of the minimum time is:

where
v (3.11)

n 9

x (t) = x + — sin (b - — sin (<}> - — t)o A o A o v

y°(t) - yo - I COS ̂ o + X COS v

(3.12)

(3.13)

c) If tan <}> < o , then the optimal control law is u° = (A,0).o xo
The aircraft turns counterclockwise and "hard" for time t given by:

s

s - A
tan

v iy + — cos <po A _c

in <f>
- sin —

f 4. * ^(y + - cosc|) ) - — sin

(3.14)

Then it continues on a straight line until it reaches the boundary of

the IMS. The value of the minimum time is:

2 2 1 i
Tmin = s s

v
(3.15)
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where

9 9

x°(t) = x - ̂  sin <J> + ̂  sin (<b + - t)
o A % A »o v

9 o

y°(t) - yo + I COS *o + I COS

3.2 Delay Maneuvers

The scheduling algorithm, which is.described later, will, in

general and especially under congestion, arrange that each aircraft

be delayed by some time t . In this section the maneuvers necessary

to perform delays for any t >0 are described.

The topic of delays has been treated in [1], and from a dif-

ferent viewpoint in [7], [8] and [9], The philosophy in [1] is to

evaluate the effectiveness of any proposed delay maneuver by examining

the ratio t /T, where t is the desired delay and T is the total time

it takes the aircraft to perform the maneuver. The larger the ratio

— , for a given t , the more effective is the delay maneuver. In [7],

[8] and [9] the philosophy was to delay the aircraft by trying to mini-

mize the time the aircraft stays away from its air-route, while it is

performing the delay maneuver. Some of the optimal maneuvers arrived

at, via the two philosophies were identified.

In this thesis the delay maneuvers described in [7],[8] and [9]

will be adopted with one modification. All the delay maneuvers will

be of the "path stretch" type and will be initiated while the aircraft

fly on the straight line parts of their minimum time trajectories.
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The objective has been to pick delay maneuvers that take up both

little time and space.

We define D to be the time it takes an aircraft flying at

speed v to perform a circle of minimum radius.

D =
v

(3.18)

where

v2 - v2\/7"R -
g(tan 30°) g

(3.19)

and g is the acceleration of gravity.

The following types of delay maneuvers are now adopted.

a) If t < D, then the delay is performed via an oscillation

maneuver (or 6-delay) . See figure 3.3 for illustration. The magnitude

of 9 is .calculated by:

5 = ^ (9 - sin 9)

or

6 - sin 9 =

(3.20)

(3.20) is a transcendental equation and can be solved only

numerically. The quantity of interest is the maximum excursion from

the straight line path. This is shown in figure 3.3 to be 2 (R-R cos9).

The maximum angle 9 occurs when t - D. Then the maximum excursion re-

ceives the largest possible value it can have, about 3.4R.

b) If t = D then the delay maneuver to be used is the circle
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2(R-R cos 9)

AIR ROUTE

Fig. 3.3 The Oscillation (or 6 Delay) Maneuver

•• 4R sinin9n^2.8R -I

2 ( R - R cos90) =* 3.4R

Fig. 3.4 Maximum Oscillation Maneuver
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Fig. 3.5 The Circle Maneuver

Fig. 3.6 The Fly-around Maneuver
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maneuver illustrated in figure 3.5.

c) If D < t < 2D then the delay maneuver will be the so-called

fly-around maneuver, illustrated in figure 3.6. The aircraft turns hard

for D/2 seconds then flies backwards for D seconds and then turns
2

hard again for D/2 seconds. The length 1 of the "racetrack" pattern is:

1 = S + 2R = (tD " D)V + 2R
2 (3.21)

The maximum 1 occurs when t = 2D and is

1 = ^ + 2R = (TT+2)Rmax 2 (3>22)

d) If 2D < tn < 3D then since t, = D + t D < t < 2D, theD — D o o —

delay maneuver will be a circle maneuver followed by a fly-around maneu-

ver as described in (c). Note that the same delay could have been ef-

fected by a single fly-around maneuver where the straight line path

would last D seconds. In such cases, however, the length 1 of
2

the "racetrack" pattern would be:

1 = S + 2R = (tD " D)V + 2R
2

and would be larger than the maximum 1 found in 3.22 of part (c).

We asserted earlier that our objective will be to keep the

airspace utilized small. Thus although the fly-around maneuver would

accomplish the delay in a_ shorter time, it would waste more airspace.

We shall postulate in this report that the "lengtH" of the area of the

airspace, required to accomplish a delay, will not exceed the value

of (TT+ 2)R. The reason for this restriction will become more apparent



when we analyze the delay assignment algorithm.

e) If 3D < t then tD = K-2D + t (K = 1,2,...) where

D < t _<_ 3D. The delay maneuver will then be K fly-around maneuvers

of the "maximum racetrack" type, followed by a maneuver as described

in part (d). It is seen again that the airspace utilized has "length"

1
max.

3.3 Trajectories Inside the IMS

While flying through the IMS the aircraft have to accomplish

the following objectives:

a) Reach the OM with a heading toward the runway.

b) Decelerate from the entrance speed v to the landing speed

v , and

c) Descend from the altitude level they are flying to the

altitude of the OM.

All aircraft arrive at the boundary of the IMS headed radially

toward the OM. If they continued flying in a straight line, they would

reach the OM, but the heading would not be along the positive x axis

in general. On the other hand, since only at most one maneuver is al-

lowed at any time, the trajectory that the aircraft will be ordered to

follow must have enough straight line parts. The problem is illustrated

in figure 3.7 (For the illustrations, the z dependence is dropped.

We just remember that descent can occur only in the portions of the
»

trajectory that are straight). In addition to the above constraints

the trajectory must intuitively be "close" to the radius of the OM,
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reaching the entrance to the IMS point, in order to minimize inter-

ference from aircraft entering from other points of the IMS boundary.

Finally all the objectives (a)-(c) must take place in a fixed and

prespecified time T (to be determined later).
*

We tried to formulate an optimal control problem that would

seek the best trajectory under the above constraints. The system is

nonlinear with many inputs. The traditional cost criteria, "minimum

energy" or "minimum fuel", did not give satisfactory answers or gave an-

swers that were singular. It was then decided to postulate a "reason-

able" type of trajectory, easy for the pilots and computationally

tractable.

The following type of trajectory was the best we could con-

ceive.

1) The aircraft will start turning hard as soon as it enters

the IMS.

2) The turn will stop when the heading is along a line

which is tangent to the circle of minimum radius R_, centered on the

y-axis, tangent to the x-axis, and on the same half plane as the

entrance point.

3) Then the aircraft just follows this straight line until

it reaches the circle of radius R?. Subsequently, it turns hard along

this circle and ends at the OM with proper heading. While on the

straight line the aircraft can decelerate and descend.

The type of trajectory we have in mind is illustrated in

figure 3.8. Notice that R > R . This is so because v > v , and the
i 2 L
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OM

Fig. 3.9 Geometry of the IMS Trajectory
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minimum radius is smaller if the speed is lower. The chosen trajec-

tory, e.g., ABC-OM is seen to be very close to the radius A-OM. It

is also easily executed by a pilot. What remains now is to calculate

the magnitudes of the turns and the length of the straight portion of

the trajectory.

Consider figure 3.9. The objective is to find the magni-

tudes of a and y and the length CE. The problem will be first solved

for the second quadrant. Then symmetry will dictate the results for

entrance points along the rest of the boundary of the IMS.

Some thought will point out the fact that the magnitude

of the angles a,3,6,e and <J> lie all in the interval [0, y] , for all

entrance points in the second quadrant. We shall hereby denote by

a,B,6,e the magnitudes of the respective angles. From the right

triangle BJD we obtain

(BD) = [ X2 + (y - R )2] /2

° ° (3.23)

6 is given by

6 = f + | c f r o | - e
1 ° (3.24)

where £ is obtained from triangle BJD by

e = tan * y - RJ O 2

~R~1
° (3.25)

From the triangle ABD we obtain via the law of cosines

(AD) = [Rj2 + (BD)2 - 2Rj(BD) cosd]1^ (3.26)
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From the right triangle AGD we obtain

R + R R + R
cosB = /AT.v -*• 3 = cos(AD) - M - v.u» (AD)

(3.27)

From the triangle ABD and the law of sines we obtain

sin(a +B)_ _ sin6
(BD) ~ (AD)

(3.28)

which implies

a = -3 + sin"1[sin6
(3.29)

From the same triangle and the law of sines if also follows that

sln.9 _ sin<S
R " (AD)
1 (3.30)

hence
R

6 =
(3.31)

It is now true that

Y= IT - ( - e) - 6 - B = + e - 6 - 3
(3.32)

(CE) = (AG) = (R + R )tanS
1 2 (3.33)

All the equations (3.23) - (3.33) are explicit relations

and thus computationally easy to implement. It is interesting to note
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that if v is not radially directed, the equations are unaffected.

The significance of this is that if an aircraft enters the IMS with

some error A<f> in its heading <j> , the equations for the calculation

of a and e remain unchanged; thus new values for a,y and (CE) can be

readily found. This observation will be crucial when we discuss

error correction.

Let us now discuss the form of equations (3.23) - (3.33)

for entrance points in the other quadrants. Figure 3.10 shows a

trajectory for the first quadrant. It is easily seen that the only

equations that change are (3.24) and (3.32). In both of them e is

replaced by ir-e so that they look like

6 - f + UJ - Or-e)
2 ° (3.24a)

Y = j + (ir-e) - 6 - g
Z (3.32a)

All the other equations are unchanged.

For an initial condition (x , y , <f> ) in the bottom half

plane the trajectory is symmetrical about the x-axis to the trajec-

tory for the initial condition (x , -y , -<f> ). Thus only equations

(3.23) - (3.33) are again necessary.

The radius R is specified by the following equation
2

L̂R
2 (3.34)

Where <j> = /sec = -rz rad /Tmax / 60 / sec.
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This is so because 100 < v < 150 Knots and in this speed range the
Li

maximum turn rate is specified as 3°/sec and not by the maximum bank

angle. The radius R on the other hand is calculated via equation

(3.19). The value of v will vary with aircraft type and load, thus
JL

R , a,y and (CE) must be calculated separately for every aircraft en-
2

tering the IMS.

Typical values of R and R" are shown in Table 3.1.
i 2

Table 3.1

Ranges of R and R
i 2

V

200 Knots

220 "

250 "

300 "

=•

i g

.99 n. miles

1.19 . "

1.54

2.21 "

VL

100 Knots

120

130

150 "

H 60 VTK — L

TT

.53 n. miles

.636 "

.71

.796 "

It will be seen in Chapter IV that the radius of the IMS will

be at least 25 n.miles. Thus the chosen turn-straight-turn trajector-

ies will be very nearly straight lines in view of the small magnitudes

of R and R . For the analysis of Chapter IV the turns will be com-
i 2

pletely neglected since the error involved will be very small.

3.4 Speed and Descent Profiles in the IMS

The time T in which all aircraft should cross the IMS, and
o

the radius L of the IMS will be chosen later. In this section the sets
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of speed and descent profiles out of which the nominal ones can be

chosen are described, assuming that there is enough time and space

to accomplish all the objectives.

Once L and T are specified then for every initial condition

(X , Y , ij) ) there is a unique value for each of the angles a and Y

and the length CE (ref. figure 3.9). The time that is left to cross

the straight portion of the trajectory is:

V V

(3.35)

We now formalize the problem of finding the profiles.

Consider the aircraft as a point in space with the states

X(t), V(t), Z(t) denoting length, speed and altitude respectively.

The state equations are:

x(t) = v(t) (3-3fi)

(3.37)

u (t) /"i T«>>2 (3.38)

The problem now is the following. Given that the system represented

by the three equations above is at [X(0), V(0), Z(0)] = [0, v, H] at

time t = 0, find the controls u , u restricted by
i 2

-B < u (t) < 0
— i

(3.39)

-A <_ u (t) ̂ 0
2 (3.40)

u (t) u (t) =0
1 2 (3.41)
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so that the system reaches the state [(CE), v , 0] at time T .
L CE

Here B is the maximum deceleration allowable, assumed to

be 1 knot/sec, and A is the maximum descent rate permissible which

was assumed to be 1000 ft/min. The constraint 3.41 merely says that

only one maneuver at a time can be performed.

The system can be written as:

Y(t) = A Y(t) + G u(t)
(3.42)

where Y_(t) =
X(t)
V(t)
z(t)

Y(0) = Y =
— — o

10 1 0
0 0 0
0 0 0 ^

0
V

H

13 =

Y(T ) = Y =
-V CE; -F

0 0
1 0
0 1

(CE)
VT

Assuming that a solution exists it is given implicitly by

the variation of constants formula.

ATCE Y +
—o

ATCE e -TG u(T)dT

or

with

'G U(T) dT = e-

At 1 t 0
0 1 0
0 0 1

so (3.44) can be written

0 0
1 0
0 1

r UI
L u dT =

(3.43)

(3.44)

"l -TCE0'
0 1 0

_0 0 1_

(CE)
v

T
_ 0 _

_ 0
v
H

We thus obtain the three equations:
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'CE

(-T) UI(T) dT = (CE) - TCE VL

(3.45)

u (T) dT = v - v

/ (3-46)

Ua(T) dT = -H (3>4?)

'o
Equation 3.45 can be written as:

'Tc&
[VL-T« (T)] dT = (CE) (3>45a)

so
Equation (3.45a) only says that the integral under the curve v(t) is

the distance travelled (CE), while equations 3.46 and 3.47 are self

explanatory. Along with the constraints on u and u (3.45)-(3.47)
1 2

have infinite solutions, in general. Figure 3.11 illustrates some

possible profiles. Notice that the area under all speed profiles

is the same, and that no descent is occuring while deceleration is

taking place.

We attempted to formulate an optimization problem which if

solved would yield a "best" profile. It was found that the traditional

"minimum energy" or "minimum fuel" types of cost criteria did not

yield satisfactory answers. For example the "minimum energy criterion"

yielded controls that changed continuously with time, a situation

clearly undesirable from the pilot's viewpoint. It will be seen later,

when the radius L of the IMS and the time T are chosen, that a par-
o

ticular kind of speed profile will be postulated for each aircraft,

such that it satisfies equations (3.45)-(3.47), and furthermore, solves

the velocity mix problem (to be defined in the next chapter).
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RATE -X

Fig. 3.11 Descent and Speed Profiles in the IMS.
to #'s 1,2,3 Respectively

A,B,C Correspond
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CHAPTER IV

SYSTEM GEOMETRY

The previous chapter analyzed the kinds of trajectories that

the aircraft will follow while inside the NTA. In this chapter consi-

deration will be given to the magnitude of the three regions in which

the NTA airspace is divided. The philosophy will be to try to pick

each region, namely the IMS the QMS and the buffer zone, as small as

possible. Thus the NTA will be as small as possible. Consequently,

at any time the average number of aircraft inside the NTA, which is

proportioned to the radius of the NTA (see Simpson p. 77), will be

small, and the ground computer will not be required to keep track of

too many airplanes simultaneously.

In section 4.1 the smallest possible radius L of the IMS

and the smallest time T will be found. Remember that T is such that
o o

aircraft of all altitude levels and any landing speed can cross L and

reach the OM, having accomplished all their objectives, in this com-

mon for all time interval. In section 4.2 it will be seen that be-

cause of the velocity mix problem the actual IMS radius cannot be

chosen equal to its minimum value found in 4.1. Then it will be shown

that by increasing L appropriately the velocity mix problem can be

solved. In section 4.3 consideration will be given to the question

"how close can one pick successive altitude levels, and how many alti-
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tude levels are necessary?" In the final section 4.3 the magnitudes

of the QMS and the buffer zone will be picked, after consideration is

given to the functions that take place while the aircraft flies in

these regions.

4.1 Minimum T and Minimum Radius of the IMS

In this section we present the concepts that are necessary

to choose the smallest IMS radius, and the smallest time T .

The particular turn-straight-turn type of trajectories in-

side the IMS chosen in Chapter III are not so important in the analy-

sis. What is important, is the fact that the aircraft must decelerate

and descend. Thus, in order to be able to evaluate quantities of in-

terest explicitly we shall assume throughout this section that the

aircraft do not execute any turns but head straight for the OM, along

the radius of the IMS ending at the entrance point. It was seen in

Chapter III that the actual trajectories are close to being radial.

So we expect that the errors involved will be small. It will be seen

that the results can be modified slightly to account for the turn-

straight-turn trajectories of the aircraft in the IMS.

4.1.1 The Minimum Time To

T must be picked in such a way that every aircraft, no

matter what the speed v, with which it enters the IMS, is and no

matter what its landing speed v is, should have enough time to decel-
JL

erate to its landing speed and descend some altitude H . In this
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way T could be chosen as the common for all aircraft time to cross
o -

the IMS.

Consider an aircraft entering the IMS with speed v (i.e.,

from a particular altitude level located H feet above the level of

the OM) and with landing speed v . Then the smallest time in which
J_i

it can accomplish the two objectives stated above is:

H v - V
t - _

X B (4>1)

where

a) X is the maximum descent rate and,

b) B is the maximum deceleration.

Given that v e[V , V ] (V = 200 Knots, V = 300 Knots), VT e [V T ,VT ]
1 2 1 2 L L i L

2

(V = 100 Knots, V = 150 Knots) and that the highest altitude level
i-il J-*2

will carry traffic at V it is easily seen that the maximum value of
2

t will occur when H = H , v = V , VT = VT .o v V2 2 L Li

"v v - v
T = 2 V

2
 VLl

O, — : - T
1 X B

(4.2)

Thus in the worst case design we are considering, T must

be at least as large as T
°i

T > T
o — o~>

(4.3)

A typical value of T for tL, = 6000 feet X = 1000 ft/min.
°i V2

B = 1 Knot/sec. is T =9.33 minutes.
01

Suppose now that L, the radius of the IMS, has been given.

For an aircraft characterized by (v, v ) there is a smallest time t* in
Li
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Fig. 4.1 Trajectories Inside IMS for the Analysis in Chapter IV

Av(t)

L ~

rate -B

Area A.= Area A_

0 T.

Fig. 4.2 Extremal Speed Profiles for Fixed L
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which it can traverse L. This is accomplished if the aircraft flies

with speed v most of the way and decelerates at rate -B at the very

end. The speed profile is pictured in figure 4.2 (//I). We find t*

from the following two equations.

v - B(t* - t ) = v

t* (4 '4)

= L

(4.5)

From these we can solve for t*.

t* = t*(v, v ) = - + , ~ VI/
V /BV (4.6)

Similarly there is a largest time T in which L can be tra-

versed. This is found if the aircraft decelerates with the maximum

rate B immediately after it enters the IMS, and continues thereafter

with speed v (see fig. 4.2, profile #2). T is found from the follow-
JL

ing two equations.

/

T
1 (v - BT)dT -I- vL(T - Tj) = L

J (4.7a) '
ft

v - BT = v
1 L . (4.7)

From which we find

L (V - V2r n _ r r , / \ _ J ^ _ "

L V 2B V

L L (4.8)

It should be clear that

T(v, VL) > t*(v, VL)
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Let us now try to find the maximum value of t*(v, v ) and
Li

the minimum value of T(v, v ) for ve[V , V ], v e[V , V ]. From
L 1 2 L LI L2

eq. (4.6) it is seen that t* as a function of VT is a convex para-
LJ

bola with vertex (minimum) at v = v. As a function of v, t* is the
ij

sum of a straight line, a constant, and a hyperbola. It has a mini-

mum at v2 = v 2 + 2BL.
j_i

From eq. (4.8) it is seen that T as a function of v is the
Li

sum of a straight line, a constant and a hyperbola. It is monoton-

ically decreasing for 0 < v , v2< 2BL. As a function of v, T is a
Lt

concave parabola with vertex (maximum) at v = VT . The assertion that
Lt

T is a monotonically decreasing function of v in the intervals stated
Li

is based on the fact that 2BL > v2 for ve[V15 V ]. For a first "very

rough" estimate of L of about 20 n. miles (average speed of 120 Knots

for T = 10 minutes) it is seen that 2UL = 2x1 — ~ x 20 n. miles =o Sec

(40) x (60) 2 (Knots)2, so that \/2BL > 360 Knots and the inequality

v < 2BL holds for ve[V , V2] (actually L will be found larger than

this "first estimate") .

In figure 4.3 we plot t*(v, v ) and T(v, v ). It is easily
L L

seen from the discussion above, also illustrated in figure 4.3, that

the maximum value of t* occurs at the point (Vj , V ) while the mini-

mum value of T occurs at (V2 , V T2), i.e.,

(V> V = fc* (V Vi}Li (4.10)

Tmin (V' V = T(V
2> V (4.11)
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t*.T

T(v.

Fig. 4.3 t*(v, VT) and T(v, v )
J-* T.
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The reason for which we wanted to find T . and t* now
mm max

becomes clear. If L is chosen in such a way that T . > t* , thenmm — max

if T is picked in the interval [t* , T . ] it is seen that any
o2 max mm

aircraft, no matter what its entrance speed and landing speed is,

can traverse the length L in time T . The only objective that has

been accomplished during the time T is that the aircraft has deceler-

ated (the equations for t* and T do not include altitude). Thus the

condition:

T . (v, VT) > t* (v, VT)mm L — max L

ve[V , V ], v e[v , V ] . .
1 2 L L I L 2 (4.12)

is a necessary and sufficient condition that a T can be found, such

that all aircraft can traverse a distance L in T and decelerate.
02

Let us find the minimum L for which (4.12) holds. Consider-

ing (4.10) and (4.11), (4.12) becomes:

f V - v ) 2 ( V - V ) 2

L *" 2 L2; L_ *• i VLi;

VT 2B VT - V 2B V
L2 L2 i i

thus

min
VL2

(V - V )2
V 2 L27

2B V_
L2

L .mm
V!

+
2B

which yields

(V - V )2V (V - V )2 V
i Jj-i Lt*- £ Li*. 1

min = 2B(V - V ) 2B(V - V )
L L (4.14)
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For V = 200 Knots, V = 300 Knots, VT = 100 Knots, VT = 200 Knots
i 2 Li I*

and B = 1 Knot/sec, we find L . =16.7 n.miles
min (4.15)

Equation (4.14) denotes that if L > L . then there will always exist— mm

a T .
02

If L = L . then T . = t* = T . This T and the Tmm mm max 02 02 01

found in (4.2) are the two critical numbers that go into finding T .

Since T must be greater than or equal to both of -these numbers, so

that the constraints of descent by H and deceleration to the landing

speed can be met by all pairs of (v, v ), the smallest value of Tl_» o

is the maximum of the two numbers T and T
Ol 02

T = max (T , T )
°min 01 °2 (4.16)

The value of T can be found by either (4.10) or (4.11)
02

with L = L . . We find
mm

T =5.43 minutes ,. ._.
o2 (4.17)

It is thus seen that the limiter in the choice of T will be To 01

unless H^ is picked very small. Thus let us pick

T = T = T > T
0 °min 01 °2

If the same analysis is performed for the turn-straight-

turn type of IMS trajectories, the results are almost the same.

The first effect is that both of the surfaces T(v, v ) and t*(v, v )
Li Lt

shift slightly upward (not by the same amount for all (v, v ) pairs).
Li

The upward shift occurs because for a given IMS radius L, the path to
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be traveled is no longer a straight line but a longer path, con-

sisting of both circles and straight lines (see fig. 3.9).

The value of T (cf. eq. (4.2)) also becomes larger, be-

cause part of the trajectory to the OM consists of circles, thus

leaving a straight line portion which is, in general smaller than L

(see fig. 3.9). The increases in T and T are about 10%. Thus
Oi 02

if the value of To - found in (A.16) is increased by 10%, and if

the actual T is chosen greater than or equal to this new T , then
0 °min

all aircraft can reach the OM with correct heading, in time T .

4.1.2. The Minimum Radius L

Now that T is fixed consideration to the value of the mini-
o

mum L will be given. First, we rewrite equations (4.6) and (4.8) with

t* and T replaced by T .

L °(V - V2

T = — + —
2BV (4.19)

£ (V - V2
T = -£- - —

o v 2Bv
L L (4.20)

Now we solve (4.19) and (4.20) for £ and L.

(v - v )2

L = L(v, v ) = TV - -j=
L ° 2B (4.21)

£ = £(v, VT) = T VT + (v " VL)

L ° L —2B
(4.22)

What equations (4.21) and (4.22) imply is that if the air-

craft has some time T at its disposal then the maximum distance it
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B
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Fig. 4.4 Extremal Speed Profiles for Fixed T
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can travel is L and the minimum is £. In the former case the decelera-

tion is delayed until the end, while in the latter it is initiated at

time zero (see figure 4.4). We now look for extrema of L(v, v ) and
Li

i(v, VT ) in the range ve[V , V ] and vTe[VT , VT ].L i 2 L LI L.2

The extrema can be found because both £ and L are parabolas

as functions of v and v . Figure 4.6 illustrates the nature of theLi

curves £(v, v ) and L(v, v ). The minimum value of L is seen to be
i-i Li

at the point (V , V ), while the maximum value of Si is at (V , VT ).
1 LI 2 L.2

If we consider the intersections of a plane v = constant with the

surfaces L(v, v ) and £(v, v ) (see figure 4.6), then the minimum valueLi L

of the segment ML occurs at M, and the maximum value of the segment

JK occurs at K. The reason for which we consider these intersections

is that we would like to find the smallest radius of the IMS for each

altitude level (which as we saw is characterized by the speed v all

aircraft flying on it must have).

What we would like to examine now is whether the point M is

always higher than the point K (of fig. 4.6) for any value of ve[V , V ]
i 2

If it is, then it is easy to see that given v (i.e., the particular

altitude level) the smallest possible radius of the boundary of the

IMS is the value of £(v, v ) at the point K. This is so because any
Li

aircraft with entering speed v (fixed) and landing speed v e[V ,V ]
l_i J_ij Li2

will have enough distance to travel in time T and accomplish its ob-

jectives.

We now state as a theorem and prove an even stronger result.

Theorem: Suppose that we pick the radius of the IMS (same
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L(v. VL)

Fig. 4.6 L(v, VT) and £(v, V T ) ; Fixed T
Li Li O
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For all altitude levels) such that T = T . = T(V,. VT ) (cf. sec-o mm 2 La

tion 4.1.1). If T . > t* , it follows that L(V, , VT ) > £(V, , VT,).mm — max 1 Li — *• L2

Proof: We saw in section 4.1.1 that the value of T for the
- o

particular problem at hand is bound to be governed by the altitude IL

rather than by the value of T 2 . In other words T will in general

be greater than T . Suppose, nevertheless, that we "raise" the sur-

faces ABCD and EFGH of figure 4.3 by increasing L, so that T . =

T(V , VT,) = T . Since L is increased above the critical value L .2 L2 o mm

found in (4.15), the "gap" between T . and t is increased and thus6 v mm max

the condition T . > t* is satisfied.mm — max

From the equality

T(V , VT ) = T
2 L2 ° (4.23)

and equation (4.8) we obtain

\ 'V VL.) .
VL2 " 2BVL* " °

which yields

L = T
<V

We also have that T . > t* or
mm — max

< V -V, „ ) L (V - VT )o 2 L2' > _o i Li
VT 2BVT - V 2BV
L L (4.25)

If we substitute in (4.25) the value of L found in (4.24)
o

we obtain
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or

(V - V. )2 (V - V. )2

T 1 2 L2 2 L2
o 2BVT 2BVT -

L2 L2

(V1 - VL1)2
T \r . . . . . •>> T \r .1

T VT (V - VT )2

0 L2 . 2 L2 .
V 2BV,

1 1

(4.26)

(Vi - \2)2

(V - VT)
i LI
2BV

2B
(4.27)

which is exactly

L(V , VT ) = L . > £(V, , VT ) = £i ' Li min — 2 ' L2 max
(4.28)

Q.E.D.

What the theorem above indicates is that all we need to do,

in order to guarantee that the surface ABCD of figure 4.6 is above the

highest point of the surface EFGH of the same figure, is to pick

T > T (T „ was defined in 4.1.1). Since we have guaranteed that
o — 02 o2

T > T via (4.16) the existence of a minimum value of the IMS radiuso — 02 v -

is ensured.

As was indicated in a previous paragraph of this section,

the minimum values for the radii of the circles where the different

altitude levels meet the IMS, can be found along the line segment FG

of figure 4.6. In other words given v (i.e., given the altitude level)

the smallest value of L , the radius of the IMS for this level, is the

value £(v, VT ).
LZ

Some typical values of £(v, V ) are shown in Table 4.1
J_i2
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TABLE 4.1

Typical Values of £(v, V )

T
o

10 min.

it ii

„ „

n n

ii n

V

200 Knots

220

250

280

300

VLa

150 Knots
„

,,

„

n it

(v, V. )
L2

25.35 n.

25.68

26.39

27.36

28.26

miles

"

"

"

it

The fact that the IMS trajectories are not straight lines

does not affect the analysis of this section at all. The reason is

that, once T is chosen via the analysis of section 4.1.1, we are

ensured that all aircraft no matter where they enter the IMS, will

have enough time to reach the OM and accomplish their "objectives".

Thus in order to find L, we only need to work with the simplest of

the turn-straight-turn trajectories. These occur when the aircraft

enter the IMS of the point (x, y) = (-L, 0), and they are straight

lines.

4.2 Determination of the Actual IMS Radii

In this section we ask the question whether the minimum T

and minimum L found in the previous section guarantee safe separation

between aircraft. It will be seen that they do not. Then it will be

seen that by holding T the same and increasing somewhat the value of

L safe separation can be guaranteed for successive aircraft.
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4.2.1. The Velocity Mix Problem

Consider one altitude level characterized by speed

ve[V , V ] and located H above the level of the OM. Suppose that
i 2 v

T has been chosen by equation 4.16, and the radius L of the circularo j M > v

boundary, where this altitude level meets the IMS, is equal to &(v, V )
J_*2

Consider an aircraft that enters the IMS from this altitude

level. Suppose that it is supposed to land with speed V . It is
i_j2

given time T to descend by H and decelerate to its landing speed. It

is seen that due to the way the radius L was chosen (L = &(v, V •))»
V " V i-i2

this particular aircraft has no flexibility at all with respect to

the speed profile. In other words as soori as it enters the IMS, it

must decelerate to its landing speed V as fast as it can, and then
v - VL2

continue flying for time T - — at speed V . It will then
O D L2

have reached the OM.

On the other hand, if the entering aircraft is to land with

V then, the latest time it can start decelerating is T seconds after
Lil

its entrance to the IMS (cf. fig. 4.7). Thus it is seen that for

this aircraft there is more flexibility in choosing V(t), its speed

profile. We would not like to have to discriminate against heavier

aircraft (which have higher v ). Also we would like to have the speed
L

profile known to ground for tracking purposes.

Thus we shall postulate that the speed profile of any air-

craft inside the IMS is such that the deceleration is delayed until

the very end. Namely the aircraft proceeds for time T with speed v,
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v(t)

vL2 I-

L1

ALTERNATE SPEED PROFILES FOR
AIRCRAFT WITH LANDING SPEED VL]

Fig. 4.7 Speed Profiles for Entrance Speed
Landing Speeds

j, V ] and Extreme
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then decelerates with rate B to the landing speed and continues fly-

ing at VT for the rest of the time. The time T is found by the follow-
L

ing two equations

v - B(T' - T) = v
L (4.29)

= rT° v(t)dt
o

which implies

, V_ ) = VT +/ [V - B(t -T)] dt + (T - T')V
L2 I ̂  o L

(4.30)

Solving for T we obtain

(v, VT ) vTT v - VT' Lz L o L
v - v v - v 2B

L L (4.31)

Thus given L = £(v, V ) and T the speed profile in the
V J-»2 O

IMS of every aircraft entering from the altitude level H is known via

(4.31).

Typical values of T are shown in Table 4.2. on the following

page.

Consider now the minimum separation standards over the OM

and on the runway, between successive aircraft. Let the minimum run-

way time separation between two successive landing aircraft be t , and

the minimum longitudinal separation over the OM be s . Let the land-

ing speed of the first and second aircraft to cross the OM be v,, and
x-i

Vp respectively.

If v-j > Vp the aircraft will be moving apart from each
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TABLE 4.2

Typical Values of T (T = 10 min)

V

200 Knots

n M

ii n

250
M n

n n

300
tf II

II II

(v, VL )

25.35 n. miles
n n

n n

26.39
n n

n n

28.26

M II

II It

VL

150 Knots

120 "

100 "

150 "

120

100

150 "

120 "

100

T

0 min.

3.33 "

A. '37 "

0

2.12 "

2.65 "

0

1.30 "

1.81 "

other along the glide path, so the shortest time t the second can
s

be scheduled after the first is

s

s
"S.2 (A.32)

If, on the other hand, v. < v. then the second one will

be closing in behind the first aircraft and thus the time t would be
S

t1 = t + s(s o v

(4.33)

where s is the distance of the OM from the runway threshold (see also

2 3Bloomstein and Odoni for more extensive discussion).

For t ~ 1 minute, s -. 2.5 n.miles, and vTe[VT , VT ], weO O L Ll L2

obtain values of t of the order of 1 minute.s

After this short diversion, let us go back to the speed
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profiles. Assume that two aircraft enter successively the IMS, from

the same altitude level, at approximately the same point of the cir-

cular bounday of the IMS. Thus, for all practical purposes one,is

"behind" the other. Assume that they enter the IMS t seconds apart

(this was the reason for the diversion above). We distinguish two

cases:

S) v£i ̂  V£2

In this case figure 4.8 shows the two speed profiles for

arbitrary v. and v. satisfying v, < vp . The initial longitudinal

separation between the two aircraft is the area ABCD (t represents
s

the time the second aircraft enters the IMS after the entrance of the

first). This separation will decrease by the area EFGHJK by the time

the first aircraft reaches the OM. Thus the smallest longitudinal

separation in the IMS between the two aircraft will occur over the

OM which is desirable. This because the aircraft have been scheduled

t seconds apart, which in terms of landing speeds means safe separa-
S

tion.

It is not hard to see that for all possible values of t ,
S

as long as v. <_ v. , the minimum longitudinal separation will occur

over the OM. Furthermore, it does not matter what the descent pro-

file of each aircraft is, because they will never be violating the hor-

izontal separation standards.

b) V > V£2

For this case figure 4.9 shows two typical speed profiles.
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v(t)

Fig. 4.8 Spee<T Profiles of Successive Aircraft if v0 < v.
A* l 362

Fig. 4.9 Speed Profiles of Successive Aircraft if v > v.
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The initial separation JLS the area A'B'C'C1. As time progresses the

horizontal separation decreases by the area E'F'MK1 and then, surpris-

ingly, it increases again by the area MG'H'J1. It is thus seen that

the minimum longitudinal separation between the two aircraft occurs
S

at some time t < T . If t = — then the separation at time T is
c o s v 2

 v o

scheduled to be S . However, as it was just seen, at time t the
o J c

separation will be smaller than'S . Since S will usually be equal

to the minimum safe longitudinal separation (about 2.5 n.miles) it

is seen that the aircraft will be dangerously close at some point t .

As a matter of fact it can be easily demonstrated, by plugging in

some values for v, v. and v. , that the separation at time t can even
£1 £2 c

be negative! In other words the aircraft that is to land second can

supercede the first one but then it has to decelerate to its landing

speed which is smaller than v. . Thus since vn > vn the first one
£1 £1 £2

will "catch up" with it and pass it again developing a separation equal

to s over the OM.
o

The situation just illustrated above is exactly what we shall

hereby call the mix problem. One might suggest that the problem arises

because of the particular way the speed profiles were chosen. However,

consideration of the top altitude level (speed v = V ) readily reveals

that the mix problem exists there no matter what the speed profiles

are, and is serious (negative separations).

The next question is whether by using altitude we can prescribe

descent profiles such that whenever minimum horizontal separation stand-

ards are violated, the altitude separation is large enough to guarantee
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safety. Instead of presenting generalized arguments a specific exam-

ple will be given.

Consider the top altitude level at altitude H above the OM.

From equation (4.16) and the discussion of section 4.1.1 it was seen

that in general for reasonable altitudes (eg. E,, > 5000 ft) T will
Hv V2 - V ^2 °

be equal to —^- + . Let this be the case. Consider two
A D

successive aircraft, the first with landing speed equal to V and the

second with landing speed VT . Let t = ^ = ^'^ ̂-mlles =1.5 min.6 v Li s V 100 Knots
LJ!

Figure 4.10 illustrates the speed profiles for the two aircraft. The

values for the different points in time are picked from table 4.2 and

the nature of the particular speed profiles postulated.

It is seen that t =5.8 minutes. Looking at the descent

profile (fig. 4.11) for the second aircraft it is seen that it is
H V - V

fixed, because T = —— + and this aircraft needs
V - V o X B

2 Li
minutes to decelerate, so it must spend all the remaining

o

time descending. On the other hand the first aircraft needs only
V - V V - V
2 L2 . . , L2 Li 5 .

minutes to descend so it has - = -7- minutes to play
D D O

with respect to the descent profile. The area abed of fig. 4.11 is

the region in which the descent profile of the the first aircraft must

lie.

Given this flexibility for aircraft #1 there is a time

te[tl5 t2] when the two aircraft will be on the same level. Consider-

ing the particular values of tx and t2 it is seen that the best alti-

tude profile for the first aircraft would be along the line ad. Then

the longitudinal separation at time tl would be larger than at time t2.
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t, t t =5.8

t(min)

Fig. 4.10 Speed Profiles for Extreme Cases. Aircraft Enter the
IMS From Top Altitude Level

t z(t)

DESCENT PROFILE FOR #2

POSSIBLE
DESCENT
PROFILES FOR#li

11.5

t(min)

Fig. 4.11 Descent Profiles for the Extreme Cases in the Top
Altitude Level
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The longitudinal separation, however, at time t is from figure 4.10

equal to

= Area (ABCD) - Area (EFGHJB)
(4.34)

which with the values involved is found to be d, = .36 n.miles!!
nor

Thus at time t aircraft #2 is intolerably close to #1.

This example demonstrated that the values of T and L
o v

picked in section 4.1 do not guarantee safe separation between succes-

sive aircraft in the IMS.

4.2.2 Solution of the Velocity Mix Problem for One Altitude Level

Since the velocity mix problem described above cannot be

resolved either by prescribing different speed profiles or by order-

ing strict descent profiles, we try to increase T and L .

Consider figures 4.6 and 4.9. If T is increased somewhat

and L is picked at the intersection of the plane v = constant and

the line FG (cf. fig. 4.6), which will have moved upward, the speed

profiles of fig. 4.9 will change but the critical time T will not go

closer to T (see fig. 4.12). So the problem is not alleviated.

A solution is now proposed. It was previously seen that the

mix problem arose because the aircraft had to start decelerating at

an early time. We now propose to increase L , while keeping T the

same, in such a way that the deceleration will occur at the very end.

We cannot pick an arbitrary value of L . Looking at figure 4.6 it

is seen that the value of L(v, v ) at the point M is such that all
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Fig. 4.12 Effect of Increasing Both T and L on the Mix Problem

V(L2

v ( t )

J L

Fig. 4.13 Effect of Increasing Only L , on the Speed Profiles
For One Altitude Level V
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aircraft have enough "room" to accomplish the "objectives" in time

T . However, this value of L has the additional feature that the

speed profiles will be such that the deceleration for all aircraft will

occur very close to the end of time T .

Let us examine the speed profiles for the altitude level V

(for numerical convenience). What we are interested in is the values

of the time points t and t , (cf. fig. 4.13). Since L = L(V , VT )•i 2 V2 2 .Ll

(see fig. 4.6) it is seen that the aircraft with landing speed V
Lil

will have a speed profile such that

V - VT1
L1

(4.35)

For T = 10 min, t is 6.67 min.o 2

For the aircraft that lands with landing speed V , the lat-
-Li

est time t when it should start the deceleration is found via thei

following equation (cf. fig. 4.13)

-To

v(t)dt = L(V V )
o 2 Ll (4.36)

or

(V ' V)2 (V -2 L2 2
(V - V )t + T V + - - - ^— = T V - - -V ;2 L2 i o L2 2B 02 2B

(4.37)

solving for t we obtain

V - V ( V - V ) 2

2 \2 < 2 Ll>
1 o . 2B 2B(V, - VTJ

L (4.38)
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Fig. 4.14 Alleviation of the Mix Problem
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For T = 10 min. t = 6.54 min. Comparing t and t it is seen

that they differ by only .13 min. The same situation arises if a

lower v is chosen.

Let us now see what the significance of the above result is.

We saw in the previous section that the mix problem arose when the

landing speed of the second of two successive aircraft was smaller

than the landing speed of the first. Consider the same situation

now. From figure 4.14, it is seen that the initial longitudinal

separation is the area (ABCD). This separation remains the same

throughout the flight except when both aircraft are close to the OM.

It is seen that since t ^ t the smallest longitudinal distance

between the two aircraft will occur over the OM which is what we had

aimed for.

Another interesting feature is that since the longitudinal

separation remains safe, it does not matter what the altitude separa-

tion is. Thus the pilot is given full freedom to choose his descent

profile, as long as he descends to the level of the OM in time T .

Typical values of L(v, V ) for different values of v are
J_i*

shown in table 4.3. For smaller values of T it is seen that L is
o v

smaller. Since T is at least 5.5 min (cf. eq. 4.17), it is seen

that the altitude of the highest altitude level will be what will

govern the choice of T via eq. (4.2). The choice of E^ will be

left open in this thesis to be picked by the designer of an actual

ATC system, based on the concepts presented here.
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TABLE 4.3

Typical Values of L(v, V )

T
o

10 min.
11

"

"

8 min.

"

"

"

V

200 Knots

230

270 "

300

200 "

230 "

270

300 "

L(v. VLi)

31.91 n. miles

35.96

41.00

44.45

25.31 "

28.31

32.00

34.45

4.2.3 Conclusions

In this section we found that if the smallest

radius of the circular boundary of the IMS, for any altitude level,

is chosen according to the method of section 4.2.2, then every air-

craft entering the IMS from that particular altitude level, no matter

what speed it lands with, can reach the OM in time T , fixed by equa-

tion (4.16). Safe separation between successive aircraft is guaran-

teed by the choice of the radius L . Finally, the speed profile is

fixed for every aircraft, while the descent profile is left for the

pilot to decide.
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4. 3 ^£le£tion_of_JP<3sitjLpn__of ̂ Altitude Levels

In the previous section, it was seen that safe separation was

guaranteed if the successive aircraft entering the IMS had previously

flown on the same altitude level. No mention was made of successive .

aircraft entering from different altitude levels. In this section,

this new problem is examined. It will be seen that by choosing the

altitude levels appropriately, conflicts will be avoided.

Since L = L(v, V,-,), if we are told that one altitude level

is to carry traffic at speed v, we can immediately determine the minimum

radius of the IMS for this level via the formula

(v-V )2

L = T r~— (4.39)v ov 2B

It is understood that if v > v then Hv > Hv , i.e., higher

altitude levels will handle higher speed traffic.

Now consider two altitude levels Hv and Hy, . Assume that

v > v, so that Hv > Hv, . Because of equation (4.39) it is true that
a b a b

Lv > Lv, . We would like to consider successive aircraft entering the
a b

IMS from these two altitude levels. We distinguish two cases.

a) First aircraft enters the IMS from H_ and second entersvb

from H .
"3

In this case, no matter what the landing speeds of the two

aircraft are, and no matter what their descent profile is, there will

be no conflict whatsoever. This is because the minimum longitudinal

separation between the two aircraft in the IMS will occur over the OM.

Figure 4.15 illustrates the point.
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V a
Xo

y(t) ^#\ /

Fig. 4.15 Speed Profiles for Successive Aircraft Entering the IMS
From Different Altitude Levels

Fig. 4.16 Same Speed Profiles as in Fig. 4.15 with Entrance
Order Reversed
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The deeper reasons for this convenient result are embedded

into the choices for the speed profiles and the lengths Lv and Lv, .
a b

The initial longitudinal separation between the two aircraft is

d(0) = vbtg + (Lva - Lvfa) (4.40)

The second aircraft is faster, and will be closing in behind the first

one. However, Lv and Lv, have been chosen so that the aircraft de-
cl D

celerations will occur close to the OM. That is why there is no

longitudinal conflict.

b) First aircraft enters the IMS from Hv and second enters
a

from Hv, .
b

In this case there is a problem of altitude separation.

Figure 4.16 illustrates two typical speed profiles. The initial

separation is

d(0) = v t - (Lv - Lv, ) (4.41)
as a b

In general d(0) given in (4.41) can be positive negative or

zero, reflecting the fact that Lv - Lv, varies over a wide range with
3 D

v and v, (cf. table 4.3). Thus, if the altitude separation between the
£L D

levels a and b is not large, then the danger of a near miss exists. We

now present a method of choosing Hv so that no conflict will occur.

The case will be examined for t = 1 rain. From the analysis
s

of section 4.2.1 the above chosen t seems to be the smallest scheduled
s

temporal separation between successive aircraft.
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Assume that the highest altitude level is to carry traffic

at speed V~ = 300 knots. We would like to find the quantity H - H
/ V2 v

where v is the speed of the next lower level.

First we examine the following problem. Given v the speed

for the lower altitude level, and that the second aircraft enters the

IMS from H t minutes after the first aircraft has entered the IMS
" 3

from HTT , find the time t , after the entrance of the second aircraft,
V» st

such that ths longitudinal separation d(t ,) between the two is safe

(which will be assumed 2.5 n. miles), and the first aircraft is ahead.

Since the minimum radius of the IMS is different for each altitude

level, and depends on tha speed each level "carries", we expect that

for different values of v (i.e., different IMS radii), the initial

longitudinal separation between the two successive aircraft can vary

considerably depending on the difference V - v = Av.

We distinguish three cases

i) d(0) > 2.5 n. miles

From (4.41) we obtain

d(0) = Vt - (L - L) (4.42)

or

17 (V2"VL1)2\ /d(0) - V. - L(Tov2 - -SrH - (V -

(4.43)

From (4.43), given T , we can calculate the smallest v for which

n. miles. Let us assume from now on that T = 10 min. Then if we define
o
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Av = V_ - v we find that for Av _< 26 knots d(0) is greater than or

equal to 2.5 n. miles so that we don't have to worry about t f.
S I

In othar words, if the altitude level that lies below the

top one "carries" traffic at a speed that is not much smaller than

V2, then successive aircraft, entering the IMS from these levels,

will never be dangerously close inside the IMS, no matter what the

vertical distance between the two levels is.

ii) 0 < d(0) < 2.5 n. miles.

In this case the first aircraft is ahead but not by enough.

If the speed difference is Av, t c is found byst

The condition d(0) < 2.5 indicates that Av > 26 knots. The condition

d(0) _> 0 sets an upper bound on Av via

».45)

from which we find that Av _< 42 knots.

What the above results signify is the following. If the

next to the top altitude level "carries" traffic with speed v such that

26 j< Av = V-v < 42 knots, then at the time the second aircraft enters

the IMS from its own altitude level, the first one is already ahead.

However, it is ahead by a distance smaller than d . . so some time t -mln s £

elapses until safe longitudinal separation is established.
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iii) d(0) < 0

This situation might occur if Av > 42 knots. Then t f can

be found by

t , 2.5-d(0)
sf Av

The ovarall conclusions are that if the speed v is in

the interval [274,300] knots, then there is nothing to worry about

with regard to conflicts. If ve[258,274] knots then some altitude

separation between the aircraft at the time of entrance of the second

one of them, must make up for violation of the longitudinal separation

standard. If vc[200,258] then the same statement of the previous

sentence holds with the addition that the altitude separation must

exist for a longer period of time, because t f is now longer.

We are now equipped with the tools to make a decision about

the magnitude of II . The philosophy is the following. The designer

of the altitude levels is free to pick v. Once v is picked, then

the following procedure is used to find H .

If ve[274,300] knots then the value of the smallest HTJ - H
VT v

is constrained only by FAA standards of vertical separation. The

present standards call for 1000 feet of minimum crossing altitude

separation between aircraft. So if ve[274,300] knots the second

altitude level can be just 1000 feet belox^ the top one.

If 200 < v < 274 knots then t f is calculated from eq. (4.44)

and H_, - H is chosen so that at time t + t , the first aircraft,
V_ v s sf

assuming that during all this time it is descending at the maximum rate
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of X, has reached ths altitude level H (sea fig. 4.17)

Analytically, this becomes

(4.46)

Typical values of \L, „ , . , , / ,- f V_ - H are shown in table 4.4.

TABLE 4.4

Typical values of H - H
2 V

t = 1 min., X = 1000 ft/min, T =10 rain.
s o

270 knots

230 knots

200 knots

1.9 min.

5.15 min.

6.0 min.

H -H

2900 feet

6150 feet

7000 feet

The above discussion and especially table 4.4 give a general

rule of thumb for the choice of H . The rule is that the smaller Av
v

is chosen, the smaller one can pick AH = 11 - 11 . To pick the third
2 V

altitude level (if there is a desire to do so) just replace in the above

procedure the value of V_ by the sneed of the second altitude level and

repeat the steps. Thus the altitude levels can be chosen one after the
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other. It is seen again that with the procedure chosen the altitude

levels will be located in such a way that no conflict will ever occur

in the IMS. Finally we remark that there .is nothing sacred about V

being the speed of the top altitude level. It could very well be some

other one, but the concepts and the nrocedures would remain unchanged.

A. A Length of QMS _and__ Buffer _Zo_ne

So far in this chapter the IMS and the positions of the

altitude levels were defined precisely. What remains to be considered

is the length of the QMS and that of the RZ. In this section these

lengths are picked for each altitude level in a way that suits the

specific functions the QMS and the BZ are designed for.

4.A.I The Traffic "Source Points"

In Chapter II it was mentioned that the delay maneuver, if

any, of each aircraft will be initiated at some point along the

straight portion of the minimum time trajectory. In Chapter III the

different delay maneuvers were described. It was seen (cf. fig. 3.A)

that the furthest an aircraft ever deviates from its straight

trajectory, is when it executes the maximum oscillation maneuver.

Then the excursion from the straight line is approximately 3;A R, where

R is the minimum turn radius for the particular altitude level.

It is apoarent that near misses should be avoided in the QMS.

The most likely time a conflict might occur is when an aircraft is
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executing a delay maneuver and another one's minimum time trajectory

intersects or passes near the delay path.

We shall avoid this difficulty with two conventions. The

first is that traffic is not to enter the NTA from any point of its

circular boundary, but only from a number of points, to be called

"Source Points", distributed on the boundary of the NTA.

The second convention is that delay maneuvers will not be

initiated at any arbitrary point of the straight portion of the minimum

time trajectory, but at points specified by the delay assignment

algorithm, to be described in the next chapter. Here we shall only

pick the source points.

Consider figure 4.18. The trajectories AEGO and BFHO represent

the "worst" minimum time trajectories that can occur. We would like to

arrange the distance (AB) between the source points A and B, so that

the minimum distance between the two trajectories, which is (GH) , is

equal to 3.4 R + d . The reason for this particular valus is the

following. All aircraft whenever delayed, will be required to execute

their delay maneuvers only on one side of their trajectory. Thus the

closest ws would like two trajectories to be is d . plus the maximum
min

excursion from the straight line which was found in fig. 3.4 to be 3.4 R.

The equations applicable are

(AB) = 2RN sin (4>-fw) (4.47)

sin (j> = --_— (4.48)
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NTA BOUNDARY

IMS

QMS

Fig. 4.18 Geometry for Choice of Source Points

TRAFFIC SOURCE POINT

OM

Fig. 4.19 Typical Configuration of Fixed Air Routes Beyond the NTA
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,„ „. 3.4R-K1 ,
(Gil) min ,. ._.

= —- = 2! (4'49)

A typical approximate value for (AB) for v = 250 knots, d . =

2.5 miles, L = 39 n. miles, K^ = 70 n; miles is (AB)= 16.9 n. miles

or arc(AB) = 17 n. miles.

Thus if the traffic source points are chosen every 17 n.miles

along the boundary of this NTA, it is guaranteed that no matter what

the heading of the entering aircraft is and no matter what their delay

maneuvers are, no violation of minimum separation standards will occur

between aircraft entering the OMS from different source points.

In figure 4.19 a possible configuration for the fixed air

routes that end at a sourca point is shown. These air routes are

outside the NTA and will be of no concern to us. The convention of

traffic source points will greatly simplify the delay assignment

algorithm, described later.

4.4.2 The_Length of the__OMS

While inside the OMS each aircraft will be traversing all

or part of the straight line portion of its minimum time trajectory.

At some point of this straight trajectory it will be required to leave

the nominal path and execute a delay maneuver.

The concept of "delay slots" is now introduced. This idea

will help the delay assignment algorithm, and will contribute

significantly in the maintenance of safe separations between successive

aircraft.
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A delay slot (fig. A.20) will be defined to be a section of the

pie shaped area defined by two source points and the OM, bounded by two

circular arcs cocentric with the boundaries of the NTA and the IMS. If

R-, R^ are the radii of the outer and inner arcs respectively then

R. - R- = (TT+2)R + d .1 2 min. (4.50)

The particular value of R - R chosen in (A.50) is such that

there exists "room" in the delay slot for execution of any kind of delay

maneuver. Since from eq. (3.22) the maximum "length" of a delay pattern

is (ir+2)R , and since we would like to keep delay patterns, executed

inside longitudinally adjacent slots, at least d . apart, equation

(4.50) follows.

Typical values for R.. - R« are shown in table 4.5.

TABLE 4.5

Typical Delay Slot Lengths

V

200 knots

220 knots

250 knots

280 knots

300 knots

R

.99 n. miles

1.19 n. miles

. . 1.54 n. miles

1.75 n. miles

2.21 n. miles

1 = Rj-R2

7.64 n. miles

8.62 n. miles

9.41 n. miles

11.5 n. miles

13.87 n. miles
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Fig. 4.20 Illustration of a Delay Slot
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Fig. 4.21 Choice of the Length of OMS
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Now the length of the QMS is chosen so that it can accommodate

an integer multiple of delay slots (cf. fig. 4.21). The greater the

number of slots that can be accommodated longitudinally inside the QMS

is, the larger the number of aircraft that can be delayed simulta-

neously in separate slots (the. details of the delaying process will

be presented in Chapter IV). On the other hand, the longer the OMS

is, the larger the NTA will be.

As an example consider an altitude level that carries traffic

at 250 knots. Suppose that the length of the OMS is chosen to be two

slots. From table 4.5 the length of the OMS is about 19 n. miles. From

table 4.3 (T « 10 min) the radius of the IMS for this plane is about

39 n.miles. The length of the BZ will be shortly found to be of the

order of 10 n.miles. Thus R = 19 + 39 + 10= 68 n.miles. The lengthn

of the boundary of the NTA will thus be 2 R^ = 428 n.miles. Conse-

quently the boundary can accommodate at most 428/17 - 25 source points.

Since two delay slots are allowed for each source point, it is seen that

at most fifty aircraft can be executing delay maneuvers simultaneously!

4.4.3 The Length of the Buffer Zone

The only thing that remains to be considered now, before it

becomes clear how the NTA airspace is divided, is the length of the BZ.

As was mentioned in Chapter II the length of the BZ will be

chosen in such a way, that an aircraft leaving this zone will have been

scheduled, namely its expected time of arrival (ETA) will be known, and

the amount of delay, if any, also known precisely. Thus, before we
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consider the length of the BZ we shall consider the circumstances

under which an aircraft entering the NTA some time after another,

can still be scheduled to land ahead of the first one.

The concepts presented here will be thoroughly discussed when

we describe the scheduling algorithm. Since, however, the geometry and

the algorithms are closely related we must know some of the structure

of the algorithms before the reasons for the choice of the particular

geometry are understood.

Consider one altitude level. For aircraft entering the NTA

at this particular level, a first-come-first-serve scheduling rule

will be adopted. He who enters first, in other words, no matter what

his entrance heading is, will land first.

Suppose an aircraft enters the NTA from one altitude level

H . Suppose that the next aircraft to enter the NTA does so at a lower

altitude level H (v < v). The radius of the boundary of the NTA will

be assumed to be the same for all altitude levels, contrary to the fact

that the radii of the IMS and the QMS might not all be the same. This

fact, coupled with the fact that L 1 < L (the radii of the IMS), shows

that the minimum time trajectory of the aircraft at H . will be longer

than the trajectory of the first aircraft at H . Since vl < v, it is

seen that the slower aircraft will travel a longer path, thus its ETA

will be almost always greater than the ETA of the first aircraft.

This heuristic argument may not be very convincing; it will

be presented more accurately later. However, the point to be made is
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that the landing order of an, aircraft flying at one altitude level,

cannot be changed by an aircraft that enters the NTA subsequently

and at a lower level. If, on the other hand, the aircraft to enter

the NTA next, does so from a higher level, there is a chance that

its ETA will be much smaller than the ETA of the first aircraft. So,

although the aircraft on top entered second, it can still be scheduled

ahead of an aircraft already inside the NTA.

Consider the top altitude level characterized by v. An

aircraft entering the NTA at this level will be assigned landing order

immediately. Since the aircraft flies on the top level, the policy

will be that this order is final, i.e., it cannot be changed by an

aircraft entering the NTA subsequently. Thus, the BZ can be very

small. As a matter of fact, the only thing that limits the smallness

of this BZ is the fact that there should be enough room so that an

aircraft entering the NTA at the top level with any heading will enter

the OMS only while it flies the straight portion of its minimum time

trajectory.

The limiting situation is shown in figure 4.22. In this case

Lflz - (AD) « R + (BD) = R + (BO) - (DO) = R + (BO) - (CO)

so

2 2 1/2
T = P -I. fP .t fT - I . T ' l l ' — T — T (L ^1 ̂
L]JZ = R + [R +

 (LOMS + V ] LOMS Lv (4'51)

The expression in (4.51) is in terms of the LQMS and LV

which have already been chosen. Typical minimum values of L are
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Fig. 4.22 Buffer Zone for Top Altitude Level

NTA BOUNDARY

t

PATH OF MINIMUM ETA ETA

PATH OF MINIMUM ETA ETA]

Fig. 4.23 Buffer Zone for a Lower Level
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shown In table 4.6. Thus, if for example, the top altitude level is

chosen to carry speed v = 270 knots, then, if we would like to have

two delay slots in the QMS, the smallest possible radius of the NTA

is, by table 4.6, 65.1 n. miles.

TABLE 4.6

Typical Minimum BZ Lengths for Top Altitude Level

V

200 knots

230 knots

250 knots

270 knots

300 knots

R

.99 n.m.

1.30 n.m.

1.54 n.m.

1.90 n.m.

2.21 n.ra.

W'061^Slots)

15.38 n.m.

18.0 n.m.

18.8 n.m.

22,0 n.m.

27.75 n.m.

L
V

31.91 n.m.

35.96 n.m.

39.0 n.m.

41.0 n.m.

44.45 n.m.

LBZ

1 n.m.

1.40 n.m.

1.84. n.m.

2.10 n.m.

2.55 n.m.

NTA .

48.3 n.m.

55.4 n.m.

59.64n.m.

65.1 n.m.

74.8 n.m.

Let us consider now the choice of the smallest BZ length for

a lower level. Since the upper level has been defined completely, and

since the NTA radius will be the same for all levels, the length

R,. - L is known for the lower altitude level.

Consider an aircraft entering this lower level at time t *» 0,

with heading tangential to the boundary of the NTA. Let immediately

thereafter a second aircraft enter the NTA at the top level with radial

heading. The ETA's of the two aircraft.are found as follows:

ETA.
(RN - (4.52)

top
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From figure 4.22 we have

(ACE) (4.53)
low

or

, ( , R.
ETA, - —— (-2 + sin _ *""—)R. + VRM~-2Ri *» ~ L

1 V- 12 R»,-RI T-OW f N lOW N V,low I N low low

(4.54)

Some thought should show that ETA > ETA.. So, the first to

enter the NTA aircraft has ETA that is higher than the ETA of the

aircraft that entered second. This is so because the second aircraft

entered the NTA at a higher level and thus has speed at least as large

as the speed of the first aircraft. Furthermore, the second aircraft

has to travel a smaller distance till the IMS boundary.

The rule that will be adopted later for scheduling is that

for a situation as described above it will not be always true that the

aircraft with smaller ETA will land first. The only time the second

aircraft will be allowed to land first will be when

ETAX - ETA2 > At (4.55)

where At is about 1 min. In other words, the second aircraft can

supercede the first as long as by doing so it does not oblige the slower

aircraft.to execute a delay maneuver. The motivation and more discussion

about this idea will be presented in chapter V.
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What is of interest here is to find what' is the: maximum value

of ETA - ETA . The extreme situation is described by equations (4.52)

and (4.53). We obtain (ETA. - ETA.)
1 2. max

Vlow ( 2
( + sin

-1 "low
) R,

VRlow low low

top

top
(4.56)

Typical values of this quantity are shown in table 4.7.

TABLE 4.7

Typical Values of (ETA -ETA.)
X £-

top

300 knots

300 knots

300 knots

270 knots

270 knots

270 knots

low

270 knots

250 knots

230 knots

250 knots

230 knots

200 knots

*N

74. Sn.m.

74. Sn.m.

74. Sn.m.

65.1n.m.

65. In.ra.

65 .In.m.

R.low

1.90n.m.

1.54n.m.

1.30n.m.

1.54n.m.

1.30n.m.

.99n.m.

LV
top

44.45n.m.

44.45n.m.

44.45n.m.

41. On .-in.

41.0n.m.

41.0n.m.

L
low

41.0n.m.

39.0n.m.

35. 96mn.

39.0n.m.

35.96nm.

31.91nm.

(ETA. -ETA- )
1 2 max

1.60 min.

2.74 min.

4.00 min.

1.10 min.

2.22 min.

4.67 min.

We are still not ready to find the minimum value of the

BZ. First, let us evaluate (ETA^ETA-) as given in equation
X fi H1£LX

(4.56) but for two aircraft in the same level. In other words, we

calculate the maximum spread of ETA's for one level. We obtain
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AETA - (ETA.-ETA,) , . ..v , 1 2 max(same level)low

1 1(1+.ln-l -K»
lOW

|(2 +

N low

Typical values are shown in table 4.8. See figure 4.23 for

definition of minimum and maximum ETA's for one level.

TABLE 4.8

Typical Values of AETA
low

low

300 knots

270 knots

250 knots

200 knots

*N
74.8 n. miles

65. 1 n. miles

59.6 n. miles

48.3 n. miles

AETA
low

.24 min.

.22 min.

.25 min.

.18 min.

The rule for choice of the minimum length of the BZ is

1) First find (ETA..-ETA0) = AETA from equation (4.56).l 2. max

2) Compare AETA to the quantity At of equation (4.55)

3) If AETA < At then pick the minimum LD,_ for the lower
— Df.

level, the same exact way Ln7 for the top level was
ti/C

picked.

4) If AETA > At but AETA < At + AETA then pick Ln7 / r . .— v, BZ(min)low
exactly as in part 3).
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5) If AETA > At + AETA then pick L__, . x by the
Vlow . BZ<min>

equation

L „, J N = v, (AETA- At - AETA ) (4.58)
BZ(min) low VIQW

This rule which might seem fuzzy now will become clearer

after Chapter V. It is only a formal way of defining the BZ radius,

so that there is no chance that an aircraft can lose its landing order

after it has crossed the BZ.

The LZ found above was the minimum acceptable LB_. The

number of delay slots for the QMS of the lower level can be picked

now as follows. Given the RN chosen for the top level pick N the

number of delay slots for the lower level by the formula

N

where is given by' eq. (A. 49) and the brackets denote the "largest

integer" function.

4 . 5 Conclusions

In this Chapter, the NTA airspace was described. The

particular levels and radii involved were not chosen uniquely. Rather,

tools were given with which a designer who is facing additional con-

straints for a particular airport, e.g., weather patterns, temperature

variation throughout the year, etc., can choose the geometry of the

NTA.
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Once the concepts are understood the tradeoffs between dif-

ferent quantities become clear. For example, it is advantageous to

have the top altitude level carry traffic of low speed because then

the NTA can be chosen smaller. Also it is advantageous to design

successive altitude levels to carry similar speeds, because then

one can place these altitude levels very close together and still

avoid violations of separation standards.



114

CHAPTER V

THE SYSTEM ALGORITHM

In this chapter we describe in detail the decision making

algorithm of the proposed ATC system. The function of this ground-

based facility is to assign to every aircraft that enters the NTA a

precise flight plan. If the pilot follows the directions of the com-

puter, he is ensured that during his approach to the airport he will

encounter no conflicts from other traffic.

In section 5.1 the algorithm is described in block form.

We also describe the functions the pilot executes while under the

control of the ground computer. Subsequently, in section 5.2 the sub-

routines of the system algorithm are described in detail. Finally,

in section 5.3 an informal discussion of the system's computational

requirements is presented.

5.1 Functional Description of the Algorithm.

The ATC system described in this thesis uses the computer

as the major decision element. In figure 5.1 the operations that

occur while the pilot flies through the NTA are shown.

As soon as the pilot enters the NTA he radioes to ground

the aircraft identification, his position, heading, time of entrance,

speed v and landing speed v .Li
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The computer accepts this information and establishes a

"space" in memory where all calculations will be done. The machine

then copies in that space the decision algorithm shown in figure 5.1.

There are many of these working spaces in memory and each one "handles"

one aircraft. The memory space becomes available after the aircraft

enters the IMS and has started executing its IMS trajectory.

For the communication between the parts of the memory where

different aircraft are handled we assume that there exists a table

in memory to be called memory information table (MIT). This table

contains all the geometrical constants of the NTA airspace and in

addition keeps all the information about an aircraft that is of use

when the need to serve a subsequent arrival arises. Figure 5.2

indicates a possible format of the table, which will always be in

memory and will be updated when new aircraft enter the NTA or when

some are close to the OM and thus out of the jurisdiction of the com-

puter.

The algorithm now assigns to the newly entered aircraft an

identification symbol. Next the number of aircraft still in the buf-

fer zones of all altitude levels is determined and updated by one,

to account for the new arrival. In order for the computer to know

how many aircraft are in the BZ the pilots radio to ground the time

they leave the BZ.

Next step is to automatically determine the expected time

of arrival (ETA) of the aircraft to the OM, as well as the type of

the minimum time trajectory (MTT) to be followed until the IMS
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I CALL ORDER-SETA (m-i) |
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I CE I
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Fig. 5.1 The Man-Machine ATC System
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System Constants

Table of Altitude Levels, Associated Speeds and Altitudes of Each One

Table of Co-ordinates of Traff ic Source Points

Table of Radii of IMS, QMS and BZ for Each Level

Table of Number of Delay Slots in OMS of Each Level

T = Time to Cross IMS (Same for All Ai rc ra f t )

B - Maximum Deceleration Rate

X. = Maximum Descent Rate

A = g/^ (g = accel. of gravity) = Maximum Value of
Turn Rate in OMS

mm

t = Minimum Runway Temporal Separation of Two Successive
Landings

At .. = Minimum Time Gap between Two Successive Arrivals, Large
tl Enough for a Take-off to Take Place between the Landings

t , = Minimum Temporal Separation between a Landing Followed by
I J. * AAttla Take-off f t . , < —^ )

Aircraft
ID

Aircraft
ID

Source Point Altitude Level v

Point of Entrance to IMS SETA

Angles of Turn-Straight-Turn IMS

Time to Leave BZ

VT ETAXj

Delay Type Time to Start Delay

Trajectory Speed Profile in IMS

Fig. 5.2 Memory Information Table (MIT)
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boundary. The system algorithm here calls the subroutine ETA-MTT

which returns the control law u°, as well as the switch time t ,
s

ETA, and the point of the IMS boundary where the MTT leads. This

information is transmitted to the pilot who starts executing the man-

euver .

The next function of the main algorithm is to sequence and

schedule the aircraft. The first step of this process is to arrange

the scheduled expected times of arrival (SETA's) of the m-1 aircraft

already inside the BZ. This is done by calling the subroutine ORDER-

SETA which arranges that SETA(ID(1)) < SETA(ID(2))... < SETA(ID(m-l)).

The SETA of the new aircraft is now found by calling the sub-

routine SEQ-SCHED. This subroutine compares the ETA of the new aircraft

with the ETA's (not SETA's) of all other aircraft and according to a

rule, to be described shortly, arranges the landing order of the new

aircraft and computes its SETA. The SETA's of the other aircraft might

be changed in the process.

Once the aircraft enters the OMS its SETA cannot be changed.

If SETA > ETA then the aircraft must be delayed while inside the OMS.

The delay assignment algorithm (DAA) is then called. This subroutine

calls at first the subroutine DELAY-TYPE which returns the type of

delay maneuver to be performed. Then the DAA assigns to the new

aircraft a delay slot where the delay maneuver will be performed,

and computes the exact time when the aircraft should leave the straight

flight and go into the delay path. The type of delay maneuver and

the time to start it are radioed to the pilot.
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The flight plan so far calculated, calls for arrival at the

IMS boundary at time SETA - T . The point at which the aircraft is

supposed to enter the IMS is also known. With this information the

subroutine IMS-NOM is called to calculate the magnitudes of the turns

in the turn-straight-turn trajectory, which will be followed inside

the IMS (see Chapter III). The same routine calculates the speed

profile of the aircraft inside the IMS. This speed profile is such

that the deceleration is delayed until the very end, as discussed in

Chapter IV. In addition, the latest time to start descending is also

calculated by the same routine.

The magnitudes of the angles* the time of the straight flight

TC , the time to start decelerating TDECEL, as well as the latest

time to start the descent are transmitted to the pilot, while he still

flies inside the QMS.

As soon as the pilot enters the IMS he again radioes to

ground his position and heading. If these are different from the ones,

from which IMS-NOM derived the flight plan for the IMS, then this

same subroutine is called again to provide new values of the turn

angles, Tn_, TDECEL and TDESCENT.L>Ci

After the transmission of this last information, automatic

control stops. Thus the space in computer memory, which was reserved

for calculations associated with the aircraft that just entered the

IMS, can be erased and made available for the calculation of the

flight plan of a new arrival to the NTA.
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5.2 System Subroutines

In this section the subroutines that the system algorithm

calls are described in detail. The order of presentation is same as

the order they appear in fig. 5.1.

5.2.1 The Subroutine ETA-MTT

The flow chart for this routine is shown in fig. 5.3. The

inputs are the position (x , y ), heading (<j> ), and speed (v) of the

aircraft at the time it enters the NTA.

The subroutine calculates the control law u°, ETA, t , and
s

point at which the MTT crosses the IMS boundary, via equation (3.9)-

(3.17) which are repeated in the flow chart.

5.2.2 The Subroutine ORDER-SETA

The flow chart for this subroutine is shown in fig. 5.4.

The input to this routine is a number of aircraft. We assume that in

essence the subroutine accepts as input the ID's of a certain number

of aircraft, and arranges their SETA's in increasing order of magni-

tude. Thus, after the subroutine completes its cycle, the "first"

aircraft is the one with smallest SETA.

5.2.3 The Subroutine SEQ-SCHED

This subroutine is an important one. It does the sequencing

and scheduling for each new arrival. Its flow chart is shown in fig.

5.5.
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FUNCTION At(i,j)

I
= Landing Speed of Aircraft ID(i)

v. (j) = Landing Speed of Aircraft ID(j)

At =
d .mm

vL(j) KRETURN

A * _iA L - + s[
1

vL(i)
_i^.] 1

(
I

RETURN

Fig. 5.6 Flow Chart for the Function At
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The inputs are the ID's for the aircraft that are inside

the BZ. The task is to assign a SETA to the last aircraft.

The rule by which landing order is assigned is not accord-

ing to increasing ETA. As was seen in section 4.4.3, in order that

an aircraft, with entry order to the NTA, larger than the entry order

of another aircraft, be assigned smaller landing order, it is neces-

sary that ETA(ID(m)) < ETA(ID(m-n)), where m and m-n denote entry

order. However, the above condition is not sufficient.

The sufficient condition is found as follows.

a) Calculate the minimum allowable temporal separation over

the OM, between the m'th and m-n'th aircraft, via equation (4.32) or

(4.33) depending on whether v (m) 21 VT(
m~n) or V

T(
m) < V

T(
m~n)

J_i J~t Lt Lt

respectively. Call this time At(m,m-n) (The flow chart for the exact

calculation of At is shown in figure 5.6)

b) If ETA(ID(m)) <_ ETA (ID (m-n)) - At(m,m-n) then allow the

m'th aircraft to supersede the m-n'th one in landing order.

c) If ETA(ID(m)) > ETA(ID(m-n)) - At(m,m-n) then the m'th

aircraft will land after the (m-n)'th.

The motivation behind such a rule is that the NTA geometry

is such that aircraft flying the higher altitude levels, tend to have

smaller ETA's. This is so because they fly at higher speeds, and

have;to travel smaller distances to reach the IMS. If strict order-

Ing of ETA's was the sequencing rule, there would be a tendency by

pilots to crowd the top levels, where they would get fast service.

The rule just stated tries to alleviate this problem.
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Now that sequencing is finished the SEQ-SCHED subroutine

schedules the new aircraft, namely computes its SETA as follows:

a) If the new aircraft has not superceded any other one in

landing order, then its SETA will be either At seconds greater than

the SETA of the aircraft scheduled to land just before the new one,

or equal to its ETA. The decision depends on how large the ETA of

the new aircraft is, as shown in fig. 5.5.

b) If the new aircraft has superceded in landing order some

aircraft then its SETA is assigned as in part (a). However, now there

might be a need to reschedule ' the aircraft that have been surpassed.

The rescheduling rule is

SETA(ID(k)) = max SETA (ID (k)), SETA(HXk-l)) +At(k-l, k)

(5.1)

This rule merely says that if the SETA's of the aircraft that must be

rescheduled are close to each other, then these SETA's will be in-

creased, otherwise they will remain unchanged.

5.2.4 The Subroutine DELAY-TYPE

Before we describe the delay assignment algorithm (DAA) we

shall describe the subroutine DELAY-TYPE. . .

The flow chart for DELAY-TYPE is shown in fig. 5.7. The

routine accepts as inputs the- time T , by which the aircraft is to be

delayed, and its speed v. Then it calculates, via the rules described

in section 3.2, the type of maneuver which will effect the desired

delay, and the length of the delay maneuver (see fig. 5.10)
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Fig. 5.7 Flow Chart for the Subroutine DELAY-TYPE
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5.2.5 The Subroutine DAA

This is another important subroutine. Its purpose is to

define a point during the time the aircraft is flying inside the QMS,

namely in a straight line, at which the aircraft can start its delay

maneuver, if any.

The reason for which a systematic delay assignment procedure

is defined is that the holding stacks are eliminated from our system.

Consequently, the aircraft must be delayed somewhere else. If we do

not define precisely a delaying procedure then there is a chance that

two aircraft which enter the NTA from the same source point come very

close together while they are performing delay maneuvers. This is

possible because if there is no interference from other aircraft, the

delay maneuver can be initiated at any point of the straight part of

the trajectory. Thus, the first pilot might start delaying at some

point while the other pilot might want to wait until he is closer to

the OM to initiate his delay. The situation is pictured in figure 5.9.

The delay assignment algorithm (DAA) mainly consists of

assigning to each aircraft that has to perform a delay maneuver, a

delay slot in which to do it. Furthermore, the kind of delay maneuver

is dictated, and the latest time the aircraft can start on its delay

path and still finish inside the delay slot, is prescribed. Let us

go through the procedure in detail (see fig. 5.8)

The routine accepts as inputs the source point from which

the aircraft entered the NTA, the speed v of the particular altitude

level, and the amount of delay that the aircraft has been assigned
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SUBROUTINE DAA (SOURCE-PT. v. DELAY) I

*| CALL DELAY-TYPE (DELAY, v) [

| O - Number of Aircraft in QMS, at Time t'. That Have Entered NTA from SOURCE-PT j

CALL ORDER-SETA (Q)

Q = Q

M = Number of Delay Slot, at QMS of Level Hy

k = Number of Delay Slot Aircraft ID(O-1) i» Aligned

T > T(Q-I) + DELAY (ID(Q-l)t

Fig. 5.8 Flow Chart for the Subroutine DAA
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by the SEQ-SCHED subroutine.

At first the subroutine DELAY-TYPE is called and thus the

kind of delay maneuver is "learned."

If no other aircraft that have entered the NTA at the same

source point are presently in the QMS, then the DAA assigns to the

aircraft under consideration, the delay slot that is closest to the

IMS (the first one). It subsequently computes the latest time T(Q)

the aircraft should start its delay maneuver, so that the whole delay

path is safely inside the delay slot. The point is illustrated in

figure 5.11. The time I(Q), as well as the delay maneuver are re-

turned to the main program (whence they are radioed to the pilot).

If there is another aircraft ahead of the one considered,

the DAA questions whether the aircraft ahead is to be delayed. If not

then the present aircraft is assigned to the first slot as prescribed

above. If yes then the DAA calculates the time T it will take the
3.

new aircraft to reach the beginning of the delay slot, where the air-

craft ahead is performing or about to perform its delay maneuver.

Then T is compared to the time T(Q-l) + DELAY(ID(Q-l)) by which the
£t

aircraft ahead will have completed its delay. If T is larger then
3.

the new aircraft will reach the slot of the previous aircraft after

the latter has completed its delay maneuver, so the new aircraft can

be assigned to that delay slot. If T is smaller then the new aircraft
3.

is assigned to the next closest to the OM slot.

The DAA in other words allows each aircraft to use a delay

slot and be "undisturbed" while it is executing the delay maneuver
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The only point that deserves further discussion is the

block labelled "Aircraft ID(Q) should not enter QMS". The signifi-

cance of this block is that it signals that all the delay slots are

"occupied". In such a case no more aircraft should be delivered to

the source point thus flagged.

Since there are many source points at each altitude level,

and many levels, it should be clear that saturation is highly unlikely.

However, it is possible.

The only way to alleviate the problem is by metering, namely

feeding every source point from the air routes outside the NTA, with

a limited number of aircraft per hour. This number would depend on

the number of slots and average delay per aircraft. Notice that if

no aircraft is delayed or if the delays are very small, a traffic

source point can accommodate as many aircraft as it is fed, the limit

being dictated by the safe separation standards.

5.2.6 The Subroutine IMS-NOM

This subroutine accepts as inputs some position coordinates

(x,y), a heading (<()) and the speeds v and v with which the aircraft
Li

enters the IMS and lands respectively.The task is to compute the magni-

tudes of the turns a and y (cf fig. 3.9) and the length of the straight

path (CE) of the turn-straight-turn trajectory that is to be followed

inside the IMS. Also the subroutine is to compute the point in time

TDECEL at which the aircraft should start decelerating and the latest

time TDESCENT at which the pilot can start descending. These last
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two points are illustrated in figures 5.13 and 5.14.

The flow chart for the subroutine is shown in figure 5.12.

The calculation of a, y and (CE) is done according to equations (3.23)-

(3.33) of section 3.3. Subsequently the computer calculates the time

that is available to the aircraft to travel the straight part (CE) of

the IMS trajectory via

T = T - a Rl - ^R2
CE o - - (cf. eq. (3.35))

V VL

The nominal speed profile for the straight path is now

calculated via the equation

(v - v ) t + T VT + (V " VL)2 = (CE)L 1 Lt L ^r
2B (5.2)

(also cf. eq. (4.37)) from which we obtain

. _ (CE) TCEVL (V- V2
1 v-v v - VT 2B

L L (5.3)

Thus the real time at which the aircraft should start decelerating is

fvT?

TDECEL = SETA - T + 1 + t,
o - i

(5.4)

OR1
The time SETA - T + - is the real time at which the aricraft is

o v

scheduled to start on the straight part of the IMS trajectory.

This type of speed profile, illustrated in figure 5.13,

delays the deceleration until the very end. In this way as was anal-

yzed in Chapter IV conflicts are avoided.

Next, the subroutine computes the latest time TDESCENT the
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60v.

AD = [R2 t BD2 - ZR,(BD)cot«] l /Z

a = -f + .in-'[.in«(-|§))

T = -f- * € - e - f

(CE) ^

ElTCE " B

TDECEL = SETA - TO D̂
TDESCENT = SETA - TO ,̂ i,,Hj

RETURN

Fig. 5.12 Flow Chart for Subroutine IMS-NOM
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aircraft should start descending, if it is to reach the level of the

OM within the specified time limits, without descending with rate .

greater than 1000 ft/min. At first the amount tu of "flexibility" forH

descent is calculated via

v - VT H

t - T - _ - - -Sr-
H CE B A

(5.5)

What t^ signifies, is that the pilot does not have to start descending

at TDESCENT. He has the; option to start descending as early as

TDESCENT - t . In figure 5.14 some alternate acceptable descent pro-

files are illustrated.

. TDESCENT can now be calculated via

TDESCENT = (SETA - T + — - ) + tT1
° V H (5.6)

5.2.7 The Subroutine SCHED-TAKEOFF

This subroutine whose flow chart is illustrated in fig. 5.15

does not appear anywhere in the flow chart for the ATC landing monitor

of fig. 5.1. The reason is that this routine is independent of

the algorithm for landing, although it uses some of the same subroutines.

It has nevertheless, access to the MIT of fig. 5.2.

This subroutine is called when there is demand for a take-off

at time t'. It calculates the earliest time that clearance can be given

for take-off. This time is called ETTO (for Expected Time of Take-Off).

Since the SETA's of the aircraft that are already inside the

QMS and IMS cannot be changed, the first task of SCHED-TAKEOFF is to
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M = Number of Aircraft Iniide CMS and IMS at time f

N = Number of Aircraft Inside BZ at time t'

[ CALL ORDER- SETA (M+N)

'~l

ETTO

ETTO = SETA(ID(M))SETA(ID(M+1» - SETA(ID(M)) > At .

CORRECTION = At . - (SETA(ID(M+I)) - SETA(ID(M)))

I SETA(ID(j)) = SETA(ID(j))l+ CORRECTION J

= SETA(iD(i-i)) + ttlj—•/ RETURN)

Fig. 5.15 Flow Chart for the Subroutine SCHED-TAKEOFF
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decide whether there is a large enough gap At p between two of these

successive SETA's, so that the take-off can be released during that

gap. If there is, then the take-off is scheduled for t , seconds after

the first one of the successive landings. The values of A t . and

t £ are kept in MIT (cf. fig. 5.2).

If there is no large enough gap between SETA's of aircraft

\
already in the QMS and the IMS, then the subroutine looks at the gap

between the smallest SETA of those aircraft still in the BZ, and the

largest SETA among those aircraft still in the QMS and IMS. If this

gap is large enough the take-off is scheduled there. If not,

then the take-off is still scheduled in that gap. However, now the

SETA of the aircraft in the BZ must be augmented to allow enough tem-

poral separation between the take-off and its landing. The SETA's

of the rest of the aircraft in the BZ are then adjusted if necessary

to account for the correction of the smallest SETA.

5.3 System Computational Requirements

This section is meant to be an informal discussion rather

than an evaluation of the computational requirements of the proposed

system.

It was seen that the minimum NTA size appropriate for this

system is of the order of 50-70 n.miles. The radius of the IMS would

be roughly half of the NTA radius. The system algorithm assumes con-

trol of the aircraft as soon as they enter the NTA and "keeps track"

of them until they reach the IMS, when the final automatic correction

instructions are given. The flight through the BZ and the QMS to-
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gather, for a. nondelayed aircraft, lasts for about 5-10 minutes

depending on NTA size.

The ground computer should have enough memory to perform on

line all the necessary computations, for all the aircraft that are

inside the BZ and the QMS. The average number of aircraft inside the

BZ and QMS over a 5-10 minute period can be found given the average

arrival rate of aircraft to the NTA, and the mean delay for each

aircraft. It should be of the order of 10 aircraft. Thus, the

memory should be large enough to accommodate the system calculations

for at least 10 aircraft simultaneously. Since the computations

to be performed for each aircraft are few, it seems that the computers

that could be the control elements of a system such as here, already

exist.

The speed with which calculations should be made is not a

very important factor. This is so because the calculations for each

aircraft are rather straightforward. Furthermore, most of the time

interval between transmission of data from the aircraft to ground,

and reception of control instructions from on board equipment, will

be spent by communications procedures. These can consume much time

especially when the transmissions are to cover large distances.

All said, it seems to us that hardware is not a problem with

the proposed system.
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CHAPTER VI

CONCLUSIONS

The ATC system proposed in this thesis is deterministic.

The geometry and the particular algorithms were chosen with the objec-

tive to provide each aircraft with a flight plan inside the NTA,

which if followed closely is guaranteed to alleviate all violations

of separation standards. The key ideas on which the design is based,

are the following:

a) The aircraft on their way to the OM are not required to

check past any specific points (called outer fixes in the present ATC

jargon). They can enter the IMS through any point of a circular

boundary. The fact that aircraft enter the NTA only through a discrete

number of traffic source points, does not restrict the entry points

to the IMS to a discrete number. .This is so because aircraft can

enter the NTA with any heading, and different headings call for differ-

ent minimum time nominal trajectories, namely different points of

intersection with the IMS boundary. This makes the system more flexi-

ble.

b) All aircraft that enter the NTA should fly along minimum

time type of trajectories, at constant speed, while they are outside

the IMS. This convention facilitates sequencing and scheduling.

c) All aircraft are; required to travel the IMS in the same

time T . This is crucial to the development of the whole system. It
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simplifies sequencing and scheduling, and allows the computer to cal-

culate nominal trajectories in the IMS far in advance.

d) While in the IMS aircraft can fly on any one of a discrete

number of horizontal altitude levels. The vertical distance between

successive levels can be chosen so that no conflicts occur in the IMS,

where all traffic is merging toward one point.

e) A buffer zone is defined far from the OM. Most of the

computations associated with each aircraft are done while they are

flying in the BZ. Thus control starts early, and the traffic pattern

around the airport can be arranged far in advance.

f) Traffic can enter the NTA from any of a discrete number

of traffic source points. They are chosen so that no violations of

separation standards occur in the QMS, under worst conditions.

g) Delay slots are defined for each source point, large enough

that any type of delay path can "fit" safely inside a slot. The num-

ber of slots can be chosen such that the delaying capacity of the QMS

can exceed the capacities of the present holding stacks.

It has been said that a deterministic ATC system is impracti-

cal. This thesis attempted to demonstrate that, with appropriate air-

space segregation,'a deterministic system can operate in the NTA. The

stochastic nature of traffic does not affect the system operation,

because the latter is designed to accept and .handle all aircraft that

enter the NTA one by one.

It is felt that most of the present ATC system inadequacies

occur in periods of congestion. It was our effort to design the new
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system so that it is insensitive to heavy traffic loads. This was

accomplished by aiming at a worst case design.

It can be seen that with slight modifications the present

ATC system can be adapted to the proposed scheme. The present geom-

etry of the NTA's at different FAA airports is not very much differ-

ent than a "one altitude level" type of geometry, fitting the proposed

system. Actually it was seen that the minimum NTA radii envisioned

here are of the same order of magnitude as the present NTA radii at

different airports. Furthermore, the location of the IMS boundary for

one altitude level is roughly at the same distance from the OK as the

present delay fixes.

No mention of the function of the air traffic controller was

made throughout the analysis. It should not be concluded that his job

is eliminated. On the contrary his function becomes essential in the

safe operation of the proposed system. Notice that nothing was

mentioned about keeping track of deviations of the aircraft from the

nominal trajectories. Here is where the controller would fit in a

realistic system designed around this report's concepts. He can act

as the "feedback correction element" in a closed loop fashion as illus-

trated in figure 6.1. His job would be simplified if the computer

displayed on the controller's radar screen the open loop type of air-

craft nominal trajectories determined automatically. Furthermore, the

controller would be called on to resolve emergency situations and other

adverse conditions which are extremely hard to build into any automated

ATC system.
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Fig. 6.1 Function of Human Controller in the Proposed System
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Finally, it is our feeling that a real time simulation

of the proposed system with realistic traffic situations, is required

to determine the proposed system's effectiveness and its weak points

in comparison with the present ATC system.
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CHAPTER VII

IDEAS FOR FURTHER RESEARCH

The proposed system was designed under certain assumptions.

Lifting these assumptions offers possibilities for further research.

We propose that further research in this area be in two gen-

eral directions. First, the evaluate accurately the effectiveness of

the proposed system under fewer assumptions. Second, to envision new

deterministic systems, perhaps more complicated, based on some of the

concepts of this thesis, and such that they automate more ATC func-

tions, like missed approaches, emergency scheduling, etc. We now

propose more specific areas for future investigation in ATC.

1) Take-off Routing. - Take-off scheduling was included in

the system algorithm described in this thesis. However, no mention

was made of how the takeoffs will be directed out of the NTA. It

seems that the proposed system is equipped to handle this problem au-

tomatically.

The geometry would not be altered at all:. ' A solution would

be to change few traffic source points to "traffic exit points". Since

the source points are picked far apart from each other it would not

be too hard to thus designate "tubes" of airspace through which traf-

fic could exit from the NTA. However, the details of the automatic

take-off routing procedure have to be worked out.
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2) Weather Disturbances. - The system in this thesis was

designed assuming zero wind speed. This is a simplifying assumption

because almost always there is a nonzero wind in the NT A.

We propose that at first the present deterministic nominal

trajectories are studied, assuming there is a constant wind (magni-

tude and direction) blowing in the NTA. In other words, a study must

be made of how the trajectories are altered if a wind speed is added

to the aircraft velocity vector. Subsequently wind gusts could be

studied assuming they can be modeled as white Gaussian noise.

What the study of the trajectories under the influence of

wind should reveal, are the maximum expected errors in arrival times

and IMS boundary positions. The geometry then could be changed accord-

ingly to accommodate for these errors.

Presently when mean wind magnitude and direction is known,

the pilots can adjust the aircraft's controls so that the indicated

air speed reading is some value, from which if the mean wind speed

is added or subtracted, according to some rule of thumb, the true air

speed is known approximately.

.3) Runway Rotation Due to Wind Shifts. - Since most air-

planes have to land and take-off into the wind, when the latter changes

direction, the runway has to be switched. This means switching the

OM also to a new position. All landing traffic inside the NTA, at the

time the switch is taking place, must be rescheduled and rerouted to

the new CM. An automatic procedure for doing this seems very hard

to derive, given that all aircraft have already been assigned nominal
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trajectories.

A solution would be to assume that the switch will occur

say in ten minutes, and start now rescheduling the aircraft that

are entering the BZ so that they land on the "new" runway. Thus,

after ten minutes all aircraft that were in the NTA and were sched-

uled to land on one runway will have done so, while all subsequent

traffic will be arriving at the switched runway. The details of

this scheme remain to be worked out.

4) Two Parallel Runways. - This problem that seems very

hard to solve can be tackled with the geometry of the proposed scheme.

The key idea would be to assign some altitude levels to traffic land-

ing on one runway, and other altitude levels, possibly interspersed

between the first ones, to traffic landing on the other runway. The

hard problem would then be to choose the distances between the alti-

tude levels so that traffic, bound toward one runway, does not inter-

fere with that, bound toward the other one.

5) Intersecting Terminal Airspace from Two or More Airports.

This situation that presently constitutes a very difficult problem of

ATC could be solved with the concepts developed here, provided that

the airports' IMSes do not intersect. The idea would be again to

assign different altitude levels to different airports. If however,

the airports are so close together, that their IMSes intersect the

problem becomes extremely complex. It is our feeling that this pro-

blem should be solved for each particular case, because the solution

should depend very heavily on the proximity of the airports. The
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solution should involve definition of new geometry and maybe new

rules for the automatic choice of the nominal trajectories.

6) Hardware Requirements. - It would be very useful to

know what kinds of computing and other equipment are necessary for

the automatic communication between aircraft and ground as envisioned

here. Since cost is always a crucial factor when a new system is

proposed, the knowledge of necessary hardware should help determine

the worth of a deterministic ATC system.

7) Automatic Feedback Controller. - An interesting topic

for future research would be to try to build an automatic controller

that corrects in a feedback fashion for the errors from the nominal

trajectories. The idea would be to replace the box labeled "human

controller" in figure 6.1 by a computer. The problem would be compli-

cated by the fact that new correction maneuvers would have to be

initiated every so often. It seems more promising to just adapt the

already prescribed delay maneuvers, and speed profiles on line so that

errors are corrected.

8) Simulation. - No ATC system deterministic or not can be

fully understood without simulation. It is our feeling that a faster

than real time simulation of the proposed system would not be hard to

undertake. The system errors could be studied, when wind and other

uncertainties are introduced in the simulation and a basis for compar-

ison with other proposed schemes, as well as the present ATC system,

established.
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APPENDIX A

THE MINIMUM TIME PROBLEM IN THE QMS

In this appendix the solution to the minimum-time problem stated

in 3.1.1 is presented. The theory of optimal control of nonlinear

systems11 is used to find the necessary conditions for optimality.

Each candidate for the optimal control is then treated separately and

the best solution is chosen.

I. Statement of the Problem

Given the three-state system:

x(t) = v cos cp(t)

y(t) = v. sin cp(t)

q>(t) =
_ u(t)

(A.1)

(A. 2)

(A. 3)

With the boundary conditions:

2. 2 _2
Xo + yo = RN

x2(T)+y2(T) = L2

tancp(T) = y(T)/x(T)

Find the control Ur_ -, such that |u(t)| < A forte [0,T] .and such that

it minimizes the cost functional J = / dt.

" x(0) ~

y(o)

cp(0)

=

" X
o

y_o

_ 9 0 _

II. Necessary Conditions for Optimality

Suppose u°(t), t e [0,T] is the optimal control which transfers

the state of the system from [x , y , ep ] at time t = 0, to [x(T),y(T),cp(T)J
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at some time T, and minimizes J. Let z°'(t) = [x° (t) y°(t) cp°(t)] be

the trajectory of the system corresponding to u°(t). Then by the

minimum principle of Pontryagin, it is necessary that there exists a

vector p0/(t) = [p°(t) p°(t) p°(t)] such that the following conditions

are satisfied.

a) State and co-state dynamics

i°(t) = m [z-(t), p°(t), u°(t)] (A. 10
p°(t) = -|f [z°(t), p°(t), u'(t)] (A.5)

where the Hamiltonian function H(_z, p, u) is defined by

H(_z,p,u) = 1 +px(t)vcos ̂(t) +p (t)vsin9(t)

(A. 6)

Conditions (A. k) and (A.5) thus become

x°(t) = vcos cp°(t) (A. 7)

y°(t) = vsinqf(t) (A. 8)

qf(t) = u°(t)/v (A.9)

p'(t) = 0 (A.10)
X

Py(t) = 0 (A. 11)

P°(t) = P;(t)vsincp
0(t)-p;(t)vcos90(t) (A. 12)

tp A. g
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b) Boundary conditions

z(0) =

~ x° (0) ~

y°(o)

_ c p ' ( 0 ) _

=

~ Xo

yo

.'o.

, 2 2
(xo+yo

o2 o2

)] = x (T) + y (T) - IT = 0

= tanq)0(T) - o = 0
x (T)

z° (T) z°(T)

(A. is)

(A.U)

(A. 15)

(A. 16)

where a,, a_ are arbitrary constants. Notice that (A.13)-(A.15) provide

five equations for the boundaries. If a., and â  are eliminated from the

three equations (A. 16), then the sixth equation at the boundary is ob-

tained. '

c) Hamiltonian minimization

H(z°(t), p , u(t)) (A. 17)

for all t € [0,T]. (A. 17) can be written explicitly:

vcos cp° (t) +p(t) vsincp0 (t)

vcos cp°( t ) +p° ( t ) v s incp° ( t )
ij

d) H ( z ° ( t ) , p°( t ) , u° ( t ) = 0, V t e [ 0 , T ]

V

u(t1 (A. 18)

or

1 + P ( t ) v c o S ( p ° ( t ) + P ^ ( t ) v s i n 9 0 ( t ) + P ^ ( t ) ^-^ = 0 (A, 19)
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e) Control constraint s • • • •- -

j u ( t ) j < A, t e [0,T] (A.20)

III. Candidates for Optimal Control

From (A. 18) we obtain:

p°(t) u°(t) <p°(t) u(t) (A.21)

hence .

i) If p°(t) >0 then u°(t) =-A

ii) If p°(t) <0 then u°(t) = A

iii) If p°(t) = 0 then u°(t) as given by (A.21) can be anything.

We now investigate this particular situation to see if the singular con-

trol u°(t) can be found. Thus suppose p°( t ) = 0 for te [ti,t2] c [0,T]

(tx ^ t2). Then in the same interval p°(t) = 0 or from eq. (A.12)

P°( t ) vs incp°( t ) - p ° ( t ) vcoscp°( t ) = 0 (A.22)

Differentiate both sides of (A.22) to obtain

fp ' ( t ) vcoscp°( t ) + P ^( t )vs incp°( t ) " j ^^ = 0 (A.23)

From (A. 19) since p°(t) = 0, we have

p°(t) vcbs cp°(t) +p°(t) vsin9°(t) =-1 (x Y

(A.23) and (A.2U) readily yield u°(t) = 0.

So the optimal control u°(t) is always defined and is equal to

u°(t). =- Asgnp°(t) (A.25)

where the signum function is defined by:
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if x < 0 152

if x = 0

To obtain some insight into the problem we derive the trajectories

for the three values of the optimal control (see also Telson, p. 6l).

i) If u°(t) = A then cp°(t) = — t +cp., i.e., the aircraft is

turning counterclockwise at the maximum possible rate.

ii) If u°(t) =-A then 9°(t) =-^t+q>£ and the aircraft is

turning clockwise at the maximum rate.

iii) If u°(t) = 0 then cp°(t) = constant i.e., the aircraft is

moving in a straight line.

Figure A.1 illustrates these trajectories.

We now try to find how many times the optimal control can switch

between the three possible values +A, 0, -A. This will depend on the

nature of the function p°(t).

From (A. 25) we obtain that

P̂;(t)=-f [sgnP;(t)]p;(t)=-f |P°9(t)| (A.26)

(A. 26) combined with (A. 19) give:

1+p^(t)vcosq>°(t)+pJ.(t)vs:Ln(p0(t) =|p^(t)| (A.27)

From (A. 10) and (A. 11) we obtain that

p°(t) = p = constant (A. 28)
X. X

P°(t) = Pv = constant (A. 29)j «y

Thus (A.27) becomes:
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u° (t)= A

Fig. A.I Acceptable Aircraft Trajectories for Minimum Time
Operation



= - |p-(t)| 154v I cp I

or

where

tana = p /p (A. 31)

Since the right-hand side of (A.30) is always non-negative, it must

p v
be true that k = — > 1. If k > 1, then p°(t) cannot switch, because

COS LZ ~"~ (p .<

p°(t) is a continuous function of t and thus if p°(t) is to go from
cp cp

positive to negative it must go through zero. Note that k > 1 gives no

switching, in the optimal control sequence, namely u°(t) = 0 or A or -A

for t e [0,T].

To investigate the case of switchings, assume k = 1. Then p°(t)

starts at some value p°(0) which can be positive, negative or zero. If

p°(0) is non-zero then p°(t) will tend toward zero in a sinusoidal fashion.

Once it reaches zero it will either stay there or leave. However, once

p°(t) leaves zero it cannot return to it until the cosine function in
9

eq. (A.30) goes through a complete cycle. What this means is that cp°(t)

fTo see this solve (A. 9) and (A. 12).

O / j_ \ At O / j_ \ 'cp (t) = cpQ - — sgnp (t)

p° (t) = —*— sin[cp° (t) - d] = sin cp - Ct - —

thus

i) If p°(0) > 0 then p°(t) = p°(0) + ? fcos fcp - a - —) - cos(cp - a)l
cp cp cp A L \ ° v / o j

ii) If p°(0) < 0 then
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Fig. A.2 Behaviour of p. (t)

Fig. A.3 Aircraft Trajectory for P;°(t) as in Fig. A.2
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will have to increase (or decrease) by 2ir, i.e., the aircraft must

describe a full circle. The situation which is illustrated in Figs.

A. 2 and A. 3 is clearly time suboptimal.

The conclusion thus is that the control u°(t) can switch at most

twice in the interval [0,T], This leaves as candidates for the optimal

control law the following sequences:

a) u° = 0

-A

+ A

b) u° =(A, 0)

(-A,0)

c) u° = (0, A)

(0, -A)

d) u° = (-A, A)

(A, -A)

e) u° =.(A, 0, A)

(A, 0, -A)

(-A, 0, A)

(-A, 0, -A)

IV. Examination of the Candidates for the Optimal Control Law

In this section we examine the trajectories that are enforced on

an aircraft by each of the candidates for optimal control. Since the

geometry has circular symmetry, it is seen (see Fig. A. 4) that, as long

as the velocity vector of the entering aircraft forms an angle Q with
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OPTIMAL TRAJECTORIES
FOR THE SAME
CONTROL LAW

(Typical 4 places)

BOUNDARY OF NTA

Fig.- A.4 Symmetry of the Control Law
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the radius of the NTA ending at the point of entry, then no matter

where the entrance point is located on the boundary of the NTA, the

control law is the same. Thus, we shall pick one point on the boundary

of the NTA and will consider all possible 0's. ¥e shall assume that

- ? < 9 < ? which will represent an inbound aircraft. Radial symmetry
Ci Ct

also indicates that if u° is the optimal control law for a heading Q,

then the optimal control law for an entrance heading -0 is -u° as il-

lustrated in Fig. A. ̂ . Thus we only need consider 0 < Q < ir/2.

a) i) u° = 0

This control law forces the aircraft to move along a straight

line. It is obvious that the only case in which this trajectory will

meet the boundary conditions is when the aircraft enters with 0=0 or,

what amounts to the same thing, with a heading angle cp such that:

tancpQ = yQ/xo (A. 32)

Figure A. 5 illustrates the situation. It is also apparent that if

(A. 32) is true about the initial conditions then this control is

the optimal one. In this case the value of the cost J is readily

found to be

j = T . = — (A. 33)min v v '

ii) u° = +A

This control law implies that aircraft will meet the boundary

of the IMS before it completes a full turn. Let us calculate the

radius of the turn. This can be found from the equation
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Fig. A.5 Trajectory for the u = 0 Control Law

NTA BOUNDARY

IMS BOUNDARY

Fig. A.6 Trajectories for the Control Laws u = ±A



2
3|r- = mg|tan0|

or
2
vR = :_n (A. 34)

g tan 9

For the maximum allowable entrance speed of 300 knots and maximum

bank angle Q of 30° (which is what u° = +A signifies) we obtain

H K
 5°°2 Xl852 X f5 n. miles ~

10 x(3600)

~ 2.21 n. miles

In this thesis L will be found to be of the order of 40 n. miles

while R^ will be of the order of 70 n. miles. Thus it seems that this

control law will never meet the boundary conditions.

b) i) u° = (-A, 0)

It is easily seen that this control sequence can drive an aircraft

with any initial condition 0 £ (0, ir/2)? to the boundary of the IMS

with the proper heading. It will be seen shortly that this control

low is also the optimal one if 0 e CO , -rr/2). Thus it seems proper to

calculate the switch time t and the cost functional J = T . .s mm

We first solve eqs. (A-7)-(A. 9).

cp°(t) = cp - t . (A. 35)

x°(t) = vcos(o) - - t)\ ' x TO- v

Then

Under the assumption that the aircraft is inbound, the condition
0 e (0, 7T/2) is equivalent to 0 > 0. This, in turn, is equivalent
to tan cp > y /x .To o' o
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Fig. A.6 Trajectory for the Control Law u = (-A,0)



(A. 56)

,

or?
aĴ T̂\t-.rfl*.1 =b̂ ^̂ (t'!

(A- 39)

sin

a 5=

and solve f a 39) for X'(A, 39)

Set cp

= cosx

or

^Becomes cOS e
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and so

x = e + sin - (A. 41)

or

. -i yo - T C O S C P 0 . -ix = tan + sin
v2 . -|7 v2 \2 ( v2 .XQ + T sin cpo |Jyo - T cos cpj + (xo +T sin q>

(A.42)

Equation (A.42) gives the value of the switch angle cp° (t )
S

in terms of the initial conditions, the entrance speed, v, and the

maximum value, A, of the control. To calculate the switch time t just
S

set:

cp° (t ) = x

to obtain

A vcp - — t = x => t = (cp -x) — (A. 43)Yo v s s VMo ' A ^ '

The value of the cost functional J is readily found to be:

[xo 2(tB)+y°2(t ,)] i - L
J = T . = t + (A. 44)mm s v v '

where x° (t ) and y° (t ) are readily calculated by (A. 36) and (A. 37)
S S

ii) u° = (A, 0)

It is readily seen, considering the radial symmetry of the geometry,

that if -7T/2 < 0 < 0 (or equivalently if tan 9 < y /x , and the aircraft

is inbound) then this control law can meet the boundary conditions. The

values of t and T . are given by the following formulas which are
s mm

nothing but (A. 43) and (A. 44) with some sign changes.
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<p°( t ) = x + | t (A, US)

v2 v2 Ax° (t) = x - — sin cp + ^7- sin(cp + — t) (A. U6)
o A o A o °v

v2 v2 Ay° (t) = y + — cos 9 - — cos(cp + — t) (A. U7)

t = (x- 9 ) ^ (A. U8)

where

v2 v2

T y +— c o s<p T -7-. -1 o A x? . -1 Ax = tan - sin
,2v . v2

(A.U9)

(A'50)

c) i) u° = (0, -A)

This control law can drive the aircraft to the boundary of the IMS
n T i -D

with radial heading only if 0 < 9 < sin — - — , where R is the maxi-
%

mum turning radius given by (A. 34) (see Fig. A. 7). Before we plunge

into any calculations it is easy to notice from Fig. A. 7 that the path

ADE-OM is longer than the path ABC-OM, because they are both on the

same side of the straight line A-OM and the former path lies above the

latter. Thus it is evident that the control law u° = (0 , A) is inferior

to the (-A, 0) law.

ii) u° = (0, A)

Symmetry and the reasoning above lead to the conclusion that for

any initial conditions that the control law u° = (-A, 0) will drive to
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BOUNDARY
OF IMS

Fig. A.7 Trajectories for the Control Law u =_(0,-A) and its
Inferiority to the (-A,0) Control. For 8 > 6 . the
Control Law u = (0,-A) Cannot Lead the Air-
craft to the Boundary of the IMS with Radial Heading



166

the boundary of the BIS with radial heading, the control law u° = (0, -A)

is better.

d) u° = (A, -A) or (-A, A)

The reasoning that was used to exclude the control laws u° = A and

u° = - A applies here too. In order for these control laws to give

trajectories that will meet the boundary conditions, the difference

FL. - L must be very small (of the order of 4-5 n.miles). Since in the

system proposed here, this is not the case, it seems futile to examine

these control sequences.

e) i) u° = (-A, 0, -A) or (-A, 0, A)

It is easy to see that these control laws can drive any initial

condition with 0 < Q < 7T/2 to the boundary of the IMS with radial

heading. Furthermore, it can be seen that for any initial state, there

are many possible ways that these laws can meet the boundary conditions

(see Fig. A.8). We will show now that the control law u = (-A, 0) is

superior to any of the above control laws. .To do this consider Fig. A. 9.

The trajectory KABBi-OM corresponds to the (-A, 0) law. The trajectories

KAAJ.A.P-OM and KABCCiCa-OM correspond to the (-A, 0, -A) and (-A, 0, A)

laws respectively. The latter two trajectories are not picked in any

•"•*• specific way, but are just samples of all the possible trajectories

which can be traced by the control laws (-A, 0, +A).

Wow it is obvious that the control law (-A, 0) is superior. It is

better than the (-A, 0 , - A) law because the path KAAxA^-OM is longer

than the path KABBj-OM. Also since the path BCCiC^-OM is longer than
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the straight line path BBx-OM, the control law (-A, 0, A) is clearly

suboptimal.

ii) u° = (A, 0, +A)

By symmetry and the observations made above, these control laws

are inferior to the law u° = (A, 0). , .

V. The Optimal Control Law .

Having analyzed all the possible candidates for optimalitŷ  we

can state the optimal control law as follows.

Theorem; The optimal control law for the problem stated in section I

is the following

a) If tan cp = y /x then u° = 0. T . is calculated from' Yo o' o mm

eq. (A. 33).

b) If tan cp > y /x then u° = (-A, 0). The switch time t ando o o . s

T . are calculated from eqs. (A. 43) and (A. h-k) respectively,mm

c) If tan cp < y /x then u° = (A, 0). .The switch time t and
O O O S

T . are calculated from eqs. (A. hQ) and (A.50) respectively,min
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