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PREFACE

In the late 1960's the highly successful Mariner missions opened an

exciting era of planetary exploration. Our knowledge of the near planets

will soon be further enhanced by the Mariner and Viking missions scheduled

for the early 1970's. In the later half of this decade our exploration of

the solar system will be extended to the outer planets - Jupiter, Saturn,

Uranus, Neptune and Pluto. The alignment of the outer planets in the period

from 1976 to 1980 offers several favorable opportunities for successive fly-

bys of various combinations of the planets. One of the most interesting,

and ambitious, is an opportunity in 1977 for launching a spacecraft on a

mission which includes successive flybys of Jupiter, Saturn, Uranus and

Neptune - the Grand Tour.

Because of the extreme sensitivity of the Grand Tour mission to er-

rors in the encounter trajectory at the intermediate planets, the success of

the mission will depend to a large extent on the effectiveness of the navi-

gation and guidance process during planetary approach. In this study, the

theory of linear estimation was applied to the problem of defining the ap-

proach navigation accuracy and guidance requirements for the Grand Tour

mission.
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ABSTRACT

The navigation and guidance process for the Jupiter, Saturn and

Uranus planetary encounter phases of the 1977 Grand Tour Interior mission

was simulated. The objectives of the investigation were to (1) define ref-

erence approach navigation accuracies, (2) evaluate the relative information

content of the various observation types, (3) survey and define reference

encounter guidance requirements, (4) determine sensitivities to assumed sim-

ulation model parameters, and (5) assess the adequacy of the linear estima-

tion theory.

A linear sequential estimator is used to provide an estimate of the

augmented state vector which consists of the six state variables of position

and velocity plus the three components of a planet position bias. The dis-

tribution of random observation errors is assumed to be Gaussian with zero

mean and known covariance matrix. Navigation accuracies are determined from

an analysis of the error covariance matrix associated with the state esti-

mate. Evaluation of the errors in the estimates for the state and target

vectors are accomplished by direct comparison with the simulated data.

The guidance process is simulated using a non-spherical model of the

execution errors. The uncertainty in the velocity correction is assumed to

originate from: (1) uncertainty in the magnitude of AV due to a random error

in the total impulse applied by the control rocket, and (2) uncertainty in

the orientation of the correction vector due to random errors in the direc-

tion of the thrust vector. A simplified guidance algorithm is developed and

v



used to compute the velocity correction required at a specified time to null

the deviation between the estimated target vector and the nominal target

vector.

Computational algorithms which simulate the navigation and guidance

process were derived from the theory and implemented into two research-ori-

ented computer programs. Programs STEP V and STEP VI were written in FORTRAN

IV for the CDC 6600 system at the University of Texas at Austin. Program

STEP VI utilizes the interactive graphics capability of the CDC 252 display

console to provide a powerful computational tool for the rapid analysis of

interplanetary navigation and guidance problems.
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CHAPTER 1

INTRODUCTION

During the last half of this decade the United States will embark on

one of the most significant scientific investigations of all time--the explor-

ation of the outer planets. Unmanned spacecraft will travel billions of miles

to the outer edge of our solar system and send back data which will help scien-

tists understand the origin and evolution of the universe. The key to the in-

vestigation will be the planet Jupiter, regarded by many as the primary object

of interest in the solar system. Because of Jupiter's powerful trajectory

shaping capability, missions to the outer planets will include a swingby of

Jupiter as a means of reducing launch energy requirements and associated trip

times.( 1)

The alignment of the outer planets in the period from 1976 to 1980 of-

fers favorable opportunities for several multi-planet flyby missions (2,3) some

of these are:

1976-80 Jupiter-Saturn,

1978-80 Jupiter-Pluto,

1978-80 Jupiter-Uranus-Neptune,

1977-78 Jupiter-Saturn-Pluto, and

1976-80 Jupiter-Saturn-Uranus-Neptune (Grand Tour).

Of particular interest is the four-planet flyby mission commonly referred to

as the Grand Tour. The Grand Tour involves successive flybys of the planets

Jupiter, Saturn, Uranus, and Neptune.

1
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1.1 Mission Description

The 1977 Grand Tour Interior Mission departs Earth in September of 1977

and arrives at Neptune nine years later. A profile of the heliocentric trajec-

tory for the nominal mission is shown in Figure 1. Jupiter encounter at an al-

titude of 194,500 km occurs 550 days after Earth departure. The swingby of

Jupiter turns the velocity vector and increases the heliocentric energy so that

the spacecraft encounters Saturn 576 days later. At Saturn the spacecraft

passes inside the rings at an altitude of 9,180 km. The Saturn-Uranus leg takes

1230 days and brings the spacecraft within 13,100 km of Uranus. After an addi-

tional flight time of 998 days the spacecraft swings by Neptune and departs on a

trajectory which escapes the solar system. The heliocentric trajectory lies

very close to the ecliptic plane throughout the mission with a maximum heliocen-

tric inclination of 2.45 degrees for the Jupiter-Saturn leg. Total heliocentric

angle displacement for the mission is 326 degrees. A more detailed definition

of the nominal mission is given in Appendix A.

1.2 Problem Description

From a navigation and guidance standpoint, the Grand Tour mission pre-

sents several unusual problems which have not been encountered in previous in-

terplanetary missions. Some of these are listed below:

(1) Severe guidance requirements. Extreme trajectory error sensitivi-

ties result in a requirement for guidance maneuvers during approach

and during departure at each planet.(4'5'6)

(2) Long round-trip communication time. In addition to operational

problems caused by the time delay (5.5 hours at Uranus), the ac-

curacy of the earth-based doppler data is reduced.(7)
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NEPTUNE ENCOUNTER
6/86 (9 YEARS)

SATURN ENCOUNTER
8/20/80 (3 YEARS)

JUPITER ENCOUNTER
1/22/79 (1.25 YEARS)

Figure 1 Heliocentric Profile of the 1977 Grand Tour Mission
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(3) Large uncertainties in the planetary ephemerides. Uncertainties

(8)
on the order of 0.2 arc-sec are predicted for the late 1970's

(At Uranus 0.2 arc-sec is equivalent to about 3,000 km.)

(4) Encounter constraints. The trajectory must either pass outside

Saturn's rings (exterior mission) or through the small region in-

side the rings (interior mission). Exterior missions have longer

total mission durations, lower launch energy requirements, and

less critical guidance requirements than the interior missions.

(5) Long mission durations. The long trip times (typically about 9

years) and extreme trajectory sensitivity make precision numeri-

cal simulations both difficult and expensive. A high degree of

reliability is required for onboard navigation and guidance sys-

tems.

Because of the extreme sensitivity of multi-planet flyby missions to

errors in the encounter trajectory at the intermediate planets, the success of

the Grand Tour will depend to a large extent on the effectiveness of navigation

and guidance procedures during planetary approach. The spacecraft will arrive

at the sphere of influence of each planet with large uncertainties in the state

of the spacecraft relative to the planet. Approach navigation must reduce this

uncertainty to an acceptable tolerance before an effective guidance correction

can be performed. Guidance corrections based on poor navigation information

will result in an incorrect execution and wasted guidance propellant. If the

execution errors remain uncorrected throughout approach they will be amplified

by the encounter and will require large post-encounter corrections.

Approach guidance correction requirements vary with execution time and

increase sharply a few days prior to encounter. Navigation accuracy also in-

creases during approach due to the improved planetocentric state information
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provided by the observations. Since increased approach navigation accuracy is

reflected in lower post-encounter corrections, the selection of the approach

guidance execution time for minimum guidance propellant is an important opti-

mization problem.

1.3 Technical Approach

In this study the navigation and guidance process for the Jupiter,

Saturn and Uranus planetary encounter phases of the 1977 Grand Tour Interior

mission has been simulated. The objectives of the investigation were to (1)

define reference approach navigation accuracies, (2) evaluate the relative in-

formation content of the various observation types, (3) survey and define ref-

erence encounter guidance requirements, (4) determine sensitivities to assumed

simulation model parameters, and (5) assess the adequacy of the linear estima-

tion theory.

A linear sequential estimator is used to provide an estimate of the

augmented state vector which consists of six state variables of position and

velocity plus the three components of a planet position bias. The distribu-

tion of the random observation errors is assumed to be Gaussian with zero mean

and known covariance matrix. Reference navigation accuracies are determined

from analysis of the error covariance matrix associated with the state esti-

mate. Evaluation of the accuracy of the estimated state and target vector are

accomplished by direct comparison with simulated data.

The guidance process is simulated using a non-spherical model of the

execution errors. The uncertainty in the velocity correction is assumed to

originate from: (1) uncertainty in the magnitude of the correction vector due

to a random error in the total impulse applied by the control rocket, and (2)

uncertainty in the orientation of the correction vector due to random errors
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in the direction of the thrust vector. A simplified guidance algorithm is

developed and used to compute the velocity correction required to null the

deviation between the estimated target vector and the nominal target vector.

In Chapter 2 the computational algorithms and error models used to sim-

ulate the navigation and guidance process are derived from the theory. Sup-

porting derivations are found in Appendices B, C, and D. The computational

algorithms were incorporated into two research-oriented computer programs.

The programs, one an interactive graphics program, are described in Chapter 3.

Chapter 4 contains a comprehensive analysis of the navigation process

during approach to Jupiter, Saturn, Uranus and Neptune. Reference navigation

accuracies are defined for several combinations of Earth-based radar and on-

board angle observations. Appendices E and F supplement Chapter 4.

An analysis of approach guidance is contained in Chapter 5. Guidance

execution times are surveyed to determine the variation of guidance require-

ments and target accuracy during approach to Jupiter, Saturn, Uranus and

Neptune. Sensitivities are defined for the effect of observation accuracy,

guidance execution accuracy, and initial state errors on the guidance process.

Finally, the results of a Monte Carlo simulation of the approach navigation

and guidance process at Saturn encounter are presented. Appendices E, F and

G supplement Chapter 5.

Chapter 6 summarizes the pertinent results and conclusions of the

study and outlines recommended extensions to the work.



CHAPTER 2

THEORETICAL DEVELOPMENT

This chapter contains the theoretical development of the computational

algorithms used to simulate planetary approach navigation and guidance. The

chapter is divided into five sections as follows: 2.1 State Equations, 2.2 Ob-

servation-State Relationships, 2.3 Error Simulation Models, 2.4 Linear Estimation

Theory, and 2.5 Guidance Theory.

2.1 State Equations

In the analysis presented here, the spacecraft motion relative to the

target planet is approximated by a three-dimensional elliptic restricted three-

body model. For this model the target planet is assumed to move about the sun

in an unpreturbed elliptic orbit while the third body (the spacecraft) moves

under the influence of both primaries. The state (position and velocity) of

the spacecraft relative to the target planet is obtained by numerical integra-

tion of the total acceleration resulting from the attraction of the sun and

the planet.

Equation of Motion

The motion of a spacecraft which is perturbed by the sun as it ap-

proaches a target planet, is governed by the vector differential equation

r = V(U + U1 ) (2.1)

7
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where r is the position vector of the spacecraft relative to the planet,

U = is the two-body force function, p is the gravitational parameter of the
o r

planet, r is the magnitude of r, and U1 is the third body disturbing function.

The disturbing function, which expresses the perturbing effect of the sun on

the spacecraft, is given by

U 
1
u

s
(2.2)

t

where ps is the gravitational parameter of the sun, Rt is the magnitude of thes t

heliocentric position vector of the target planet, Rt, and R is the magnitude

of the heliocentric position vector of the spacecraft, R. Recognizing that

V() = -(3), the equations of motion can be written as
r

r tR
3

(2.3)

r )jt

The vector r, R and Rt are defined in Fig. 2.

Eq. (2.3) can be reduced to a system of first order differential equa-

tions by the following transformation

r=v ·1~~~ ~~(2.4)

r 

t

The heliocentric position of the planet, i.e., R
t

in Eq. (2.4), is obtained

from a classical solution of the two-body problem.

The State Vector

The two first order, nonlinear, vector differential equations (Eqs.

(2.4)) can be represented by



TARGET PLANET
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X = F(X,t) (2.5)

where the state vector X is defined as

X =[_ (2.6)

and the 6-vector F is the corresponding right hand side of Eqs. (2.4).

The Augmented State Vector

It is sometimes necessary or desirable to estimate certain parameters

of the dynamical and/or error models whose values are not well established.

For the problem treated here, the uncertainty in the position of the outer

planets was considered large enough to justify its inclusion as a vector to be

estimated. This was accomplished by augmenting the state vector with the

planetary bias vector b. The augmented state vector, a 9-vector, is defined

as

X = v. (2.7)

Since the position vector of the target planet changes very slowly during the

relatively short encounter period, the error in the position vector was as-

sumed to be a constant bias. The augmented state vector is therefore governed

by the vector differential equation

= [------- (2.8)

Analytical expressions for the components of Eq. (2.8) are given in rectangu-

lar cartesian coordinates in Appendix B.
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Linearization of the State Equations: The State Transition Matrix

As discussed in the previous section the n-dimensional state vector,

X, can be defined as the solution to the first order, nonlinear, vector dif-

ferential equation

X(t) = F(X,t) ; X(t ) = X (2.9)
o o

Expanding Eq. (2.9) in a Taylor series about a nominal solution (designated

with an asterisk) yields

X = X + faF/aX]* (X - X*) + ... (2.10)

Neglecting terms of order higher than the first Eq. (2.9) can be written

x = Ax ; x(t ) = x (2.11)

where x = X - X* and A = [DF/DXJ*.

By the theory of linear differential equations(9) the solution of Eq. (2.11)

can be expressed in the form

x(t) = D(t,t )x (2.12)

where 4(t,t
o
) is an nxn transition matrix relating state deviations at time

t to state deviations at time t. Differentiating Eq. (2.12) yields
o

x(t) = k(t,to)xo (2.13)

Subsequent substitutions result in the following development

Ct,to)xo = ACt) x(t)

kCt,t )x = A(t) 0Ct,to)Xo (2.14)

0 = [A(t) O(t,t) - (tt ,t)]x
°
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For a nontrivial solution x will be non-zero. Therefore Eq. (2.4) can be
o

satisfied only if the matrix differential equation governing the state tran-

sition matrix satisfies the relation

$(t,to ) = A(t) ~(t,to); (to,t
o
) = I . (2.15)

The state transition matrix has the following properties:

1) 0(t,t) = I, the nxn identity matrix

2) D(tk,tj ) = 0(tk,ti) 0(ti,tj) for any ti , tj and tk

-1
3) 0(ti,tj ) = $ (t.,ti ) for any ti and t.

For this study the transition matrix was obtained by numerical integration of

the system of linear differential equations given by Eq. (2.15). Alternately,

the nonlinear differential equation governing the state (Eq. 2.9) can be in-

tegrated n times from t to t to generate the required matrix of numerical
0

partial derivatives. The transition matrix is then formed by

P(tt ) aX(t) (2.16)

Analytical expressions for the elements of the 9x9 A matrix are given in

Appendix B.

2.2 Observation-State Relationships

At any given time the observation vector Y is related to the state

vector X by the nonlinear equation

Y(t) = G(X,t) + ((2.17)
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where C is the random error in the observation. Expanding Eq. (2.17) in a

Taylor series about the nominal state and neglecting terms of order higher

than the first yields

Y(t) = Y*(t) + [DG/DX]* (X(t) - X*(t)) + E . (2.18)

When this linearization is valid, the deviation in the observation can be

expressed as

y(t) = H(t) x(t) + C . (2.19)

where y = Y - Y*, x = X - X* and H(t) = Iac/ax]*.

Recalling from the previous section that

x(t) = D(ti tk) x(tk) (2.20)

the observation deviation at time t. can be expressed in terms of the state

deviation at time tk by

y(t.) = H(ti ) =(ti,tk) x(tk) + i. (2.21)

It is convenient to write Eq. (2.21) as

yi = H.i xk + E (2.22)

and this convention will be used in the following sections. Note that when

i = k, then Hk= i. Analytical expressions for the elements of the H matrix

in rectangular cartesian coordinates are given in Appendix C.

Observation Equations

Four observation types were considered in this study:
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1) Range (p)
Earth-based (Fig. 3)

2) Range-Rate (p)

3) Sun-Planet Angle (a)
onboard (Fig. 4)

4) Star-Planet Angle (B) 

When all four observations occur simultaneously, Y is a 4-vector defined as

follows

Y =T p, P, a, BJ. (2.23)

The Range, the linear distance from the tracking station to the spacecraft,

is defined by

P = (p.p) (2.24)

where p = R - R ,R is the heliocentric distance of a topocentric tracking

station, and R is the heliocentric distance to the spacecraft.

The Range-Rate, the time rate of change of range, is defined by

¢ = (p.p)/p (2.25)

where p = R - R

The Sun-Planet Angle, the smaller angle between the spacecraft-planet line

and the spacecraft-sun line, is defined by

a = cos1[r-R (2.26)

or

r-R2± r'
a = cosL r rR (2.27)

where 0 < a < X and where r is the planetocentric position vector of the

spacecraft.
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Figure 3 Earth-Based Observation Geometry
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Figure 4 Onboard Observation Geometry
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The Star-Planet Angle, the smaller angle between the probe-planet line and the

line from the probe to a navigation star, is defined by

B = cos [-(r.s)/rJ (2.28)

where s is a unit vector in the direction of the navigation star.

Motion of the Tracking Stations

Range and range-rate measurements were assumed to be taken from a

tracking station whose heliocentric position vector Rs is given by

R = R + r (2.29)
s e s

where R is the heliocentric position of the earth, and r is the geocentric

position of the tracking station. Given the right ascension, as, declina-

tion, 6 , and geocentric distance, rs, of the tracking station at time t, the

heliocentric position of the station is defined by

cos 6 cos a (t)
s s

= Re + [E]r
s

cos 6 sin a (t) (2.30)

sin 6
s

where JE] is a 3x3 rotation matrix which transforms the right-ascension de-

clination system to the heliocentric system. If the heliocentric system is

the ecliptic system, [El is defined as

[E] = cos i sin i * (2.31)

O -sin i cos o
The argument i is the obliquity of the ecliptic. Tracking station geometry

is illustrated in Fig. 5.
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Figure 5
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With the assumption that the earth's rotation is uniform, the right

ascension of the tracking station can be expressed as

a (t ) = (t + & (t - t ) (2.32)
S S 0 S 0

where a (t ) is defined at some epoch time t . Differentiation of Eq. (2.30)

with respect to time yields

-cos s sin a (t)
s s

R = Re + [EJr a
s

cos 6 cos a (t) (2.33)
s e s s s s

0

2.3 Error Simulation Models

Errors in the components of the observation, initial state and guid-

ance velocity correction vectors were modeled as normally distributed scalar

random errors with zero mean and known variance. The errors were simulated

by sampling at random from a standard normal distribution (zero mean and unit

variance) and then scaling the error by the square root of the given variance.

The density function for the standard normal error z is given by

p(z) = (27)-
12 exp(-z2/2) . (2.34)

The probability that a sampled value of the standard distribution will be less

(10)than a given value z is given by the cumulative distribution function

z

F = (2r)
-
~

j exp(-z2/2)dz (2.35)

The inverse of Eq. (2.35) can be approximated by the curve fit equation

o + Cl + c2 r
2

z = r - +dr+dr+dr3(2.36)
1 ± d1 + d 2r2 + d3r3
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F = fln(F-2 )]2 (2.37)

where the coefficients ci and di have the following values:

c = 2.515517 d
1
= 1.432788

0 1

c
1
= 0.802853 d

2
= 0.189269

C
3
= 0.010328 d

3
= 0.001308.

Sampling of the standard normal distribution was accomplished by

first sampling at random from a uniform distribution to obtain a value for

F (0 • F l)and then computing the standard normal error from Eq. (2.36).

The simulated error is then computed as the product of the standard error

and the square root of the given variance.

Simulation of the Observations

The observational data were simulated by adding random errors to the

observation value computed from the simulated value of the true state, i.e.,

Y = Yrue + . (2.38)

The true state is obtained by numerically integrating Eq. (2.4) using the

simulated initial state vector. If the components of the error vector are

assumed to be uncorrelated, the observation covariance matrix can be written

.a 2 0 0 0

0 0.20 0
P

R = . (2.39)
0 0 a 2 0

Ot

0 0 0 a 2-
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The errors in the components can then be generated independently by the method

of the preceding paragraph.

Simulation of the Initial State Errors

For the purposes of mission simulations, an initial state error is

specified in one of two ways: 1) input an initial state error, or 2) gener-

ate a random state error. When the second method is used, the components

of the error vector are assumed to be uncorrelated with each other and are

generated by the method described in the previous paragraphs.

Simulation of the Guidance Correction Errors

The uncertainty in the commanded velocity correction AV was assumed

to originate from two independent sources: 1) uncertainty in the magnitude

of AV due to a random error in the total impulse applied by the control rock-

et, and 2) uncertainty in the orientation of the correction vector due to

random errors in the direction of the thrust vector. The error model adopted

for this study and derived below was first proposed by Battin(12)

Consider a coordinate system with the z-axis oriented along the com-

manded correction vector AV as shown in Fig. 6. In the reference coordinate

system the correction vector is given by

AV = iAVi D 0 (2.40)

where D is the transformation matrix which relates the new coordinate system

to the reference coordinate system.

With the assumption that the error in the magnitude of the correction

is a proportional error, the magnitude of the actual correction can be written

IAVI = (1 + K)V (2|(2.41)
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Figure 6 Guidance Correction Geometry
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where K is a small random variable. The actual correction vector is then

given by
sin y cos (

y cos y

where y is a small positive random variable and 0 is a random variable which

is uniformly distributed in the interval -w to i. The error parameters K,

y, and e are assumed to be statistically independent. The error in the ve-

locity correction vector can be expressed as

n = AV - v . (2.43)

With the small angle assumption for y,Eq. (2.43) can be written

n = AVI D {(I + K) y sin ] + K1 o . (2.44)

Now consider the covariance N of the error vector n, i.e.,

N = cov [n] = Etn T ] . (2.45)

Substitution of Eq. (2.44) into Eq. (2.45) yields

0 0

Neglecting the term involving K 2 and simplifying, Eq. (2.46) becomes

2

N = a 2 V + Y I(Trace V)I - V] (2.47)
K 2

V = EJAV AV ]
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where K and y are assumed to be distributed with zero mean and known variances

o 2 = E[K 2 ], and aY2 = E[y2 ].
K Y

2.4 Linear Estimation Theory

When the dynamical system and the observational relationships can be

satisfactorily approximated by linear equations, Eqs. (2.12) and (2.19) re-

spectively, the well developed theory of linear estimation can be employed to

determine the "best" estimate of the state. The statistical principle of max-

imum likelihood is used here to derive a sequential estimation algorithm for

interplanetary navigation. The procedure followed is described in greater de-

tail in Reference 13. Under the assumptions of this study the resulting al-

gorithm is the same as that obtained using the principal of minimum variance.

The estimation problem considered here can be stated as follows. Find

the maximum likelihood estimate xk of the epoch state xk given the sequence of

observation vectors Yl, Y2,"..,Ym which contain random errors. Because the

initial state (injection condition) x is unknown and because the mathematical

model used to describe the dynamical system is inexact, the true epoch state

X
k

is never known.

Maximum Likelihood Estimation

Consider a set of m indpendent random samples Y1, Y2,..".,y drawn

from a population characterized by the joint probability density function

P(Y1lY2 ... Ym;X) = Pl(Ylx) P2(Y2,x ) ... pm(Ym,X)

where x is a parameter of the distribution. The likelihood function is de-

fined as

m
L = T piCYi,x) . (2.48)

i=1 
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The value of x which maximizes Eq. (2.48) is defined as the best estimate x

(in the maximum likelihood sense) and is called the maximum likelihood esti-

mate of x.

The Maximum Likelihood Principle may be stated as follows: select x

to maximize the probability of the occurrence of the sample actually observed.

That is to say, of all possible samples the one that was actually observed is

the one most likely, and therefore x should be chosen to maximize the probabil-

ity of its occurrence.

Statistical Assumptions

Consider the m linear observation-state relationships

yi =Hi = 1,2,...,m (2.49)

where Ei, the observation error vectors, are assumed to be normally distri-

buted about a zero mean and to have a known covariance R, i.e.,

T
[ i0 , EJE. ]T = R6 i ; i,j = 1,2,...,m (2.50)

E[Ei] = 0 , Eij T = R6ij ;

where 6.. is the kronecker delta, i.e., 6. = 0, if i / j and 6.. = 1, if
1] 1] 1]

i = j. Hence, it is assumed that the observation errors are not correlated

in time, i.e.,

E[eiic ] = ] ; i X j . (2.51)

The injection condition, x , and the error in its estimate, x =

x - xo, are assumed to have the following apriori statistics:

E[x ] = E[x ] = 0

(2.52)

TTE[x x ]TE[XoXo J EXoX ] P
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It is further assumed that the injection condition, x , and the ob-

servation errors, Ok, are not correlated, i.e.,

E[x ek i = 0 , for all k. (2.53)

The Likelihood Function

The best estimate of the actual state deviation vector xk will be the

vector xk which maximizes the likelihood function

L = p(y1lY 2,. ',ym Xk) = P(Y1,..,"'Y k) p(xk) (2.54)

where p(y1,Y2,',YmXk) is the joint density function of observations and

state deviation x
k
and where p(xk) is the density function of the random

state vector xk. If no apriori statistics on x are considered then p(Xk )

is constant and the problem reduces to maximizing the conditional density

function p(y1 'Y2,. 'Ym I
k

)

Given the multivariate Gaussian density function for the observation

error vector E.

)-p!2 E~j T R1
p(.E) = (2) -p /2 Iei

-
exp[-½ ei Ri i]1 (2.55)

and introducing the transformation

i = Yi -HiXk (2.56)

the following conditional density function is obtained:

(yixk) = (2-p/2) Ri- exp[-1(yi - Hixk) Ri(yi - HiXk)]. (2.57)

With the assumption that the observation vectors are uncorrelated in

time, the conditional density function can be written
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P(Yl'Y2' '2 y m| Xk) i-l P(Yilxk)
(2.58)

pm
2 m m T -1

= (2Xr) 2 IRil exp [-½ 2 (Yi - (i - Hixk)]

Assuming that the true state is normally distributed about a mean

conditioned on apriori information only, the density function for xk can be

written

p(xk) = 27 n/2 IPkl exp[_-1(x
k

- xk) k(xk -( k)] (2.59)

where xk = D(tk,to)x is the mean at time tk, x = x is the apriori mean,

and Pk = P(tk,to)P 0(tk,t)T is the apriori state covariance matrix mapped

(13)to time tk (
k'

From Eqs. (2.53) and (2.54) the likelihood function Eq. (2.49) can

be written

L = (2 )
-
(m

p +
n)/2 IRI -m / 2 IPklI exp{-½[ l (yi-HiXk) R (Yi-Hi k)

+ (x k T - (xk k X)]} (2.60)

Maximizing the Likelihood Function

Since log L is a monotonic function and reaches its maximum value

when L is a maximum, maximizing log L is equivalent to maximizing L. For

convenience define

J = log L = J1 - 1 J2 (2.61)

where
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J1 = log[(2f)-(mP+n)/2 IRi-m/ 2 IPk] 1 ] ' (2.62)

m T -1
2 i= Z (Yi - Hik) Ri (yi - Hixk 

)

(2.63)

+ (x
k

- -)Tp
(k -k) Pk (x k - k)

For J to be a maximum with respect to the choice of x
k
requires that

the term J2 be a minimum. For an extremal solution the first variation of

J2 must vanish, i.e.,

m
62 = =0 [-(Yi - Hix) R i H. 6x.
2 i=1 1 1 1

- (Hi xk)T R
1

(Yi - Hi)] (2.64)

±(xk - x)T~l + xT _1 -

+ ( x k 6xk + 6xk P (Xk - Xk)

where xk is that value of x
k
which maximizes L.

Since the first two terms on the right hand side are the scalar trans-

pose of each other, they are equal. Likewise the second two terms are equal.

Since 6xk is arbitrary, it is necessary that

m T [H -R
1
(y. H - - _) k O (2.65)

i=l 1 1

Grouping terms leads to

T 1fl-- T -1 -1
[ H R. Hi + Pk Xk]i=l 1 1 i=l 1 k

If the matrix which multiplies xk is non-singular the maximum likelihood

estimate can be obtained as

m T -1 -1 m T -1 k-1
xk = [ Z H. R. H P [ H. R Yi + ] (2.66)

i=1 I I m i=1 I m
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To insure that the solution obtained is a minimum the second varia-

tion of J2 with respect to x
k
must be positive definite, i.e.,

2 = [ Z H R.- H. + k ] (2.67)
2 = x i=l i 1xk

Therefore, for Eq. (2.66) to maximize the likelihood function, Eq. (2.67)

must be satisfied.

Batch Processing

Equation (2.66) can be used to compute the best estimate of the epoch

state, xk, given the observation vectors Y1,. .. ,y and apriori statistics x

and P . The procedure is called "batch processing" if all the observations

are processed in a single batch. Several points regarding Eq. (2.66) should

be noted before proceeding:

1) The solution requires the processing of all observational data.

2) The solution requires the inversion of an nxn matrix (first

bracketed matrix in Eq. (2.66)).

3) If no apriori data is considered, at least n independent scalar

measurements must be processed to insure that the matrix to be

inverted is full rank.

4) If apriori information is available, a single scalar observation

can be processed to provide a new estimate for all n components

of the state vector.

5) After processing all observational data to obtain a solution for

the initial state x , a new nominal trajectory may be generated

and the data reprocessed to obtain an improved estimate for x .

Successive iterations will reduce errors caused by nonlinear ef-

fects.
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Sequential State Estimation

For the special case when a single p-vector of observations is pro-

cessed (i.e., m = 1) and the it h observation coincides with the epoch time

tk, Eq. (2.66) reduces to

-1
k = (HkT R-1 Hk + Pk1) (HT R1 Yk + Pk Xk) . (2.68)

It can be shown in a straightforward manner that the first term on

the left hand side of Eq. ( 2.64) is the covariance matrix of the estimate

error x = x - x, i.e.,

Pk =E[k - Xk)(xk - )T] (2.69)
k T -1I1 (2.69)

=(Hk R-1 Hk + Pk 1)

Note that x and Pk can be obtained by mapping Xkl and Pk-1 through the

(9)
transition matrix , i.e.,

Xk = c(tktk_l)_k4l (2.70)

Pk = 0(tk'tk-1)Pk- l T(tktk-1 . (2.71)

Thus Eq. (2.68) can be used to sequentially estimate the state after each ob-

servation. Note, however, that the solution of Eq. (2.68) requires the inver-

sion of the nxn matrix, (H1kT R1 Hk + k-1 ). The order of the matrix inver-

sion required to compute Pk can be reduced from nxn to pxp by application of

the Schur identity to Eq. (2.68). The result, derived in Appendix D, is

Pk = Pk - Pk ik (H Pk Hk + R) H Pk (2.72)

Eq. (2.72) offers two important computational advantages over Eq. (2.69).

First, the matrix inversion required is of the order pxp rather than nxn.
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In particular, if a single observation is made (p=l),Eq. (2.72) requires only

a scalar division. Secondly, Eq. (2.72) does not require the inverse of ma-

trix Pk as does Eq. (2.69).

It will be convenient in the discussion which follows to define the

nxp matrix

k Pk HkT (Hk Pk HkT + R)- . (2.73)

Eq. (2.72) can then be expressed as

Pk = (I - K Hk)Pk . (2.74)

Substituting Eq. (2.74) into Eq. (2.68) leads to

~~(IvH\PK Hk ( T - 1 -
= (I - Kk k)k (Hk Yk + Pk- k (2.75)

which can be rearranged to give

x = (I - K Hk)xk + (I - K Hk)Pk R (2.76)

The coefficient of Yk in Eq. (2.76) is just Kk as is shown in the following

development:

(I - Hk)PkHkTR
-

= PkHkTR - PkHkT(Hk Pk HkT + R)-1 HkPkk
T

R
-1

=I - T-Hk''kq, - T11
PkHkT[R I (HkkHkT + R)- ] Hk RkHk R

= PkHk(kPkHkT + R)
- 1

[(HkPkH
T + R)R

-

- HPkHkT R- 1 ] (2.77)

PkHkT (HKPkHkT R)-
1
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Thus Eq. (2.71) can be written

Xk = Xk - KkHkxk + KkYk (2.78)

which can be rearranged to give

Xk = Xk + Kk(yk - Hkxk) . (2.79)

Sequential Estimation Algorithm

The computational algorithm for the sequential estimation scheme de-

rived here can be summarized as follows:

1) Given the observation Yk at the current time tk, and xk-1 and Pk-1

at the previous observation time tkl:

2) Integrate X = F(X,t) from tk_1 to tk with initial condition X(tk_)

= X(tk_1 ) to obtain X*(tk).

3) Integrate ~ = AO from tk_1 to tk with initial condition Dk-1 = I

to obtain 0(tk,tk_).

4) Compute Yk* = G(Xk*, tk) and evaluate k Yk Ykk '

5) Evaluate H
k
using X*(tk).

6) Compute xk and Pk from

k= (tktkl)-1k-l

T
Pk = k(tktkk-1 )P (k-'tk'k-

7) Compute Kk from

Kk = Pk Hk (H Pk HkT + R)-.

8) Compute xk and Pk from
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Xk = Xk Kk[Yk - Hk Xk]

Pk = [I - Kk Hk]Pk.

9) Store xk and Pk.

10) Repeat the process at the next observation time tk+1.

2.5 Guidance Theory

The purpose of the guidance system is to provide the necessary control

of the velocity vector to achieve specified mission objectives. For this

study the mission objectives are specified in terms of a 3-vector of target-

ing parameters. The impulsive velocity change required to null the predicted

deviation in the targeting vector is expressed as a function of the state de-

viation. With the usual assumption of small state deviations,a guidance law

is derived which expresses the commanded velocity correction AV as a linear

function of the state estimate x. This linearization makes possible the de-

velopment of a simple computational algorithm for planetary approach guidance.

Targeting Vector

In general, the targeting vector T is some nonlinear function of the

state, i.e.,

T = T(r,v). (2.80)

For this study the targeting vector was defined as

T = B-T (2.81)

t
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where t is the time of encounter and where B-R and B-T are projections of
e

the targeting vector B along the ordinate and abscissa of the R-T coordinate

system defined in Appendix F. The vector B is the normal vector directed

from the center of the target planet to the approach asymptote.

Expanding Eq. (2.80) about the nominal trajectory and neglecting terms

of order higher than the first yields

T = T* +rkL * + r * 6r (2.82)

When the deviations dr and 6v are small enough so that this linearization is

valid, the deviation of the targeting vector before and after the guidance

correction can be written

6T = M 6r + M2 6v (2.83)

6T = M
1

Sr + M
2

6v (2.84)

where

M
1

= taT/ar]

M2 = [aT/av]

and ( )- and ( )+ indicate quantities just before and after the correction.

Solving Eqs. (2.83) and (2.84) for the required correction gives

+

AV = 6v - 6v = M2 -
1 [6T - 5T-] (2.85)

Substituting back in for dT gives

AV = M - 1 T
+

- (M
1

6r + M2 6v)] . (2.86)
2 2

Assuming a full correction is made, 6T+ = 0 and Eq. (2.86) becomes



AV = -M2 M
1

6r - I 6vM~ Sr - I v

Recalling that

vrJ_v

Eq. (2.87) can be written

AV = Bx

where B = [-M2 i Mlj -I].
2 1I1

Updating the State Estimate Error Covariance Matrix, P

Eq. (2.88) expresses the velocity correction required to null the tar-

get error as a linear function of the deviation of the actual state from the

nominal state. However, since the actual state is never known, it is neces-

sary to compute the commanded guidance correction from the best estimate of

the state x, i.e.,

AV = Bx. (2.89)

Considering execution errors, the actual correction will be

AV' = aV +. n. (2.90)

where n, the execution error vector, is assumed to be distributed with

zero mean and known covariance N, i.e.,

N : E[ nnT] (2.91)

as defined by Eq. (2.47).

If a full correction is made, the new state estimate becomes

34

(2.87)

(2.88)
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x = x + JAV (2.92)

where J = 0-] is a 6x3 compatibility matrix. The error in the state esti-

mate after the correction is given by

x+ =,-
x = x + Jn. (2.93)

The state estimate covariance matrix after the correction is defined by

+ E[k+%+TP =Efx x I. (2.94)

Substituting for x yields

+ Ex a-T x- T T %-T JnnT T]p = E[fx x + x n J + Jnx + inn t I - (2.95)

With the assumption that the execution errors and the state estimate

errors are uncorrelated (i.e., Efx n ] = 0), the covariance of xt becomeserrors are uncorrelated (i.e., EjxT =0,th oa

P = P + JNJ (2.96)

wh- ere V-%-T Twhere P- = Ex x ] and N = E[[n ].

Updating the State Error Covariance Matrix, S

Consider the update of the state error vector

x = x + JAV' . (2.97)

Using Eqs. (2.89) and (2.90) gives

x = x + JBx + Jn (2.98)

Substituting for x yields

x = x + JB(x-x) + Jn (2.99)
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and thus

+ %-
x = (I + JB)x - JBx + Jn . (2.100)

The state error covariance matrix after the guidance correction can be written

S+ = Ex + xT]. (2.101)

Substitution of Eq. (2.100) into Eq. (2.101) yields

T T
S =E[(I + JB)x x (I + JB)T -JBx x (I + JB)T

T T
- (I + JB)x x B J - Jnx (I + JB)T (2.102)

T T
+ JT T T T T

+JBx x B J - x B J + JrT J]

Before simplifying Eq. (2.102), consider the correlation of the state esti-

mate error x and the state deviation x, i.e.,

E[x xT ] = E[x (x + x)T]
(2.103)

EX xT ] E[x xT + Ex IT]

Using the property that the state estimate and the error in the state esti-

mate are uncorrelated14), Eq. (2.103) becomes

E[t xT ] = P. (2.104)

Furthermore, the execution error is assumed to be statistically independent

of both the state deviation and the state estimate error, i.e.,

Enx T ] = EInx ] = 0. (2.105)

Using Eqs. (2.104) and (2.105) and the symmetry property of the covariance

Tmatrix (i.e., P = P), Eq. (2.102) can be simplified to yield
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S= (I + JB)(S - P )(I + JB)T + JNJT .(2.106)

Recalling Eq. (2.96)

S (I + JB)(S - P )(I + JB)T + P (2.107)

Eq. (2.107) is the update equation for the state deviation covariance matrix

when a guidance correction is made.

Velocity Correction Covariance Matrices

Although the true velocity correction, AV, is never known its covari-

ance matrix can be expressed as

T TT T
EIAV AVT = EBx-x B I = BS -BT (2.108)

Likewise, the covariance matrix of the error in the estimate of the

required correction, U, can be expressed by

U = E[(AV - AV) (AV - Av)T]. (2.109)

Substitution of Eqs. (2.88) and (2.89) into Eq. (2.109) leads to the follow-

ing development:

U = Et�)( - Bx)(Bx - Bx) T

U = B E[(x - x)(x- - x)BT (2.110)

T
U = B P B

The covariance matrix of the commanded velocity correction, AV, is defined

by

V A .V ... .1^T,
V = ELAV AV-J. (2.111)
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Substitution of Eq. (2.89) into Eq. (2.111) yields

V = E[B T BT ]

L- %T T
V = BE[x -x )(x - x )TJB

T T T(2.112)
V = BE[x x - x x - x x + x x ]BT (2.112)

V = B[S- - P-]BT

T
since E[x x ] = 0.

Statistics of the Magnitude of the Velocity Correction

Under the assumptions of this study, the commanded velocity correc-

tion can be characterized by the following statistics:

E[AV] = (2.113)

E[V AVT ] V (2.114)

where the expectation is taken over the ensemble of all possible trajectories.

However, to evaluate guidance propulsion requirements the statistics of the

magnitude of the correction, IAVJ, are needed. Unfortunately the mean and va-

riance of IAVI are not readily obtained from Eqs. (2.113) and (2.114). Guid-

ance requirements in Chapter 4 are expressed in terms of the RMS (root-mean-

square) value of JAVI given by(12)

AV = /Trace V (2.115)rms

Statistics of the Targeting Error

The actual error in the targeting vector is given by

ST = T - T* = Bx. (2.116)
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'I'le covdri.nce o LHhe error i: defined by

cov[tT] = E[6T 6TT = E[Mx xT MT (2.117)

where M =a [ * i

Since M is deterministic, Eq. (2.117) can be written

T
cov[6T] = MSM (2.118)

A convenient parameter for evaluating targeting uncertainty is the target RMS

defined by

T = /Trace (MSM
T
) (2.119)

rms

Guidance Algorithm

The computational algorithm for the guidance scheme derived in the pre-

vious section can be summarized as follows:

Given x, P and S at the correction time tk:

(1) Evaluate X = X* + x, M1 and M = [2 ]
(2) Compute T from X and evaluate 6T = T - T*. If 16Tl < E, where E is a

small tolerance, skip to step (7), otherwise go to step (3).

(3) Solve for the linear correction

-1
AV = -M2 6T

2

(4) Update the state vector X = X old + JAV

(5) Evaluate M1 and M
2
at the new state X and repeat steps (2) through (5).

(6) Form B =[-M M1 -- I][- 2 - 1
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(7) Compute covariance matrix N from Eq. (2.47)

(8) Update P :P+ P- + JNJ
T

(9) Update S : S+ = [I + JB][S - P-][I + JB]
T

± P+

(10) Compute V and Trace V :

V = B[S - P-]BT

(11) Compute U and Trace U :

U = BP- B
T

(12) Compute AV : AV = vTracerms rms

(13) Compute T : T = Trace MS Mrms rms

The derivations presented in this chapter constitute the theoretical

basis for the navigation analysis reported in Chapter 4 and the guidance

analysis presented in Chapter 5. In selecting algorithms and error models

to simulate the navigation and guidance process, special emphasis was placed

on methods which are rapid enough to be practical, yet are realistic enough

to be meaningful. The computational algorithms and models were incorporated

into two computer programs which are described in the following chapter.



CHAPTER 3

COMPUTATIONAL DEVELOPMENT

The computational algorithms derived in Chapter 2 were incorporated

into two special purpose computer programs to facilitate the navigation and

guidance analysis. The programs, designated STEP V and STEP VI, were devel-

oped to satisfy the requirement for efficient research-oriented mission

analysis computer programs. They differ only in that STEP V performs in a

conventional batch mode while STEP VI is used in an interactive mode. Both

programs were designed for operation on the CDC 6600 computer. This chapter

contains a general description of the two programs. A more complete documen-

tation is contained in Reference 15.

3.1 Description of the Programs

STEP V is a research-oriented FORTRAN IV computer program designed

specifically for the preliminary analysis of interplanetary missions. The pro-

gram simulates the navigation and guidance process for the encounter phase of a

planetary flyby mission. The nominal and the simulated encounter trajectories

are generated simultaneously through parallel numerical integrations of the

equations of motion. A state transition matrix is generated by numerical in-

tegration of the perturbation equations. All integrations are performed with

a fourth order Adams-Moulton predictor-corrector scheme using a fourth order

Runge-Kutta starter. Observational data are simulated at specified intervals

by adding randomly generated errors to observations computed on the "true"

41



42

(simulated) trajectory. A linear sequential estimation scheme is used to

process the observations and to provide an estimate of the state after each

observation. The error in the estimate is computed by differencing the true

and the estimated states.

Guidance corrections, which null the estimated error in the target

vector, can be executed at specified times. Options are provided to plot

time histories of errors in the estimate for the simulated case as well as

pertinent properties of the error covariance matrix associated with the state

estimate. A basic flow chart of STEP V logic is presented in Figure 7.

STEP VI, an adaptation of STEP V, can perform all of the computational

capabilities described above while operating in an interactive mode. The pro-

gram was designed to take advantage of the interactive graphics capability of

the Control Data Corporation 252 Display Console at The University of Texas at

Austin. Primary program functions are shown in Figure 8 and described below.

Overall program control is from the console keyboard. Executions of

STEP VI subprograms which control (1) problem input, (2) input data manipula-

tion, (3) problem setup, (4) problem execution, (5) output data plotting, and

(6) display storage are accomplished by commands from the console keyboard.

In addition, certain display instructions can be input directly from the key-

board to the CDC 252 system. Since the program normally occupies central

memory for the entire working session, storage requirements were minimized by

dividing the program into three functional segments. The control program,

which converts the keyboard commands into STEP VI subroutine calls, is the

main segment and is always resident in central memory. Segment A, comprised

of subroutines which perform functions 1, 2 and 5 shown in Figure 8, is

loaded from disk when one of its subroutines is first called by the main seg-

ment. Segment B replaces Segment A in central memory when a subroutine which
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accomplishes functions 3 or 4 is called by the main segment. To conserve

storage, output data generated by Segment B is stored on disk and read off

by Segment A when the plotting command is given.

3.2 Description of Interactive Program Operation

An interactive session is initiated by reading the program into the

CDC 6600 system input queue as a batch job. When the program is assigned a

system control point and update compilations performed (if any), the main

segment is loaded and a message is displayed on the CRT to indicate that the

program is waiting for a keyboard command. The mission analyst causes the

first problem to be loaded by keying in a simple command (the letter "I").

The command causes Segment A to be loaded, the input routine to read the first

problem, and a problem identification message to be displayed. The analyst

may procede with the first problem or he may sequence to any other problem by

repeating the input command. When the desired problem has been read, the

mission analyst can display all input parameters and execute changes to them

from the keyboard. Changes are accomplished by typing in two identifying num-

bers and the new value of the parameter. When a change is executed, the new

value is displayed to the right of the original input value. When the analyst

is satisfied with all input parameters, he keys in the setup command which

causes Segment B to be loaded, all problem setup operations to be performed, and

the message "GO" to be displayed.

Numerical integration of the trajectories (nominal and simulated), and

thus execution of the problem, are controlled by the keyboard command "GO, I1,

I2." The parameter I1 is an integer which specifies the number of integration

steps to be performed. The parameter I2 is an integration status display indi-

cator. If the status display option is selected, the current time-to-go (to
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encounter) and distance-to-go are displayed on the CRT during execution. If

a guidance correction time has been specified, problem execution will stop

when the correction time is reached. Pertinent guidance data are automati-

cally displayed at that point. The analyst then has the option to execute

the correction and continue, or skip the correction and return problem control

to the keyboard. When the specified integration is complete, problem control

is automatically returned to the keyboard.

At this point the analyst may plot the data generated on the run just

completed by giving a simple plot command. The plot command calls Segment A

back into memory and causes selected data to be automatically scaled and plot-

ted on the CRT. By keying in the appropriate commands the plotted data can be

recorded directly on microfilm and/or stored on magnetic disk for recall later

in the session. Each plot is tagged with the time, the date, and a unique

identification number. The tag information is also recorded on the printed

output.

After completion of a problem the mission analyst may terminate the

session, rerun the problem with new input, or read in a new problem. If a

Monte Carlo analysis has been specified in the input data, the analyst need

only key in the setup command to generate a new set of initial state-errors.

Central processor time for a typical planetary approach problem aver-

ages less than one minute. However, since the program operates in a multi-

programming environment, the elapsed session time for the same problem will

vary from 2 to 5 minutes. Maximum storage required is 70,000 octal locations.



CHAPTER 4

APPROACH NAVIGATION ANALYSIS

A comprehenisve analysis of the approach phase of Jupiter, Saturn

and Uranus encounter was made to define reference approach navigation accu-

racies at those planets. For the purposes of the analysis, the approach

phase is defined as that segment of the encounter trajectory extending from

the SOI (sphere of influence) to periapsis. This is the critical period in

the mission profile when the state of the spacecraft relative to the planet

must be determined with sufficient accuracy to permit the execution of one

or more guidance corrections.

When the spacecraft reaches the target planets' SOI, the uncer-

tainty in its heliocentric state will have been improved by many months of

Earth-based radar tracking data. However, the state of the spacecraft rela-

tive to the target planet will be known to a much lesser degree of accuracy

due to the relatively large uncertainties remaining in the ephemeris of the

outer planets. Approach navigation must reduce this uncertainty to accep-

table levels before an effective guidance correction can be performed. Nav-

igation errors which remain at the time of a guidance correction will result

in an incorrect guidance execution. If the guidance errors remain uncor-

rected, -they will propogate through the encounter resulting in much larger

post-encounter errors.

4.1 Assumed Error Sources
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During the planetary approach phase, navigation errors result from

errors in the observations as well as from errors in the assumed dynamical

model. For this study, the primary source of error was assumed to be a

random noise in the observation. Other sources of observation error not con-

sidered in this analysis include errors in the Earth-based tracking station

location and center-finding errors inherent in the planet and sun sensors.

Since these errors are systematic in nature, they can be reduced signifi-

cantly by including the biases as parameters to be estimated. The principal

source of error in the dynamical model was assumed to be the uncertainty in

the position of the outer planets. Another source of model error not con-

sidered here is due to the uncertainty in the mass of the planet. As with

the other systematic errors the uncertainty can be reduced by including the

planet mass as a parameter to be estimated.

Nominal one-sigma values for the assumed error sources are listed

in Table 1. These data are based on projected improvements in the accuracy

(16)
of the Deep Space Network( Onboard angle errors are considered to be

typical of optical measurement systems currently under development

(17)
at the Jet Propulsion Laboratory Planet position errors are based on an

(18)
expected 0.2 arc-sec uncertainty for each planet . All error sources used

in this study are considered to be on the conservative side of projected

values for the late 1970s.

4.2 Reference Navigation Accuracy

Computer simulations of the navigation process for Jupiter, Saturn

and Uranus encounter were made for the nominal 1977 Grand Tour mission de-

fined in Chapter 1 and Appendix A. For the purpose of defining reference

navigation accuracy data, the following ground rules were adopted:
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Table 1 Nominal One-Sigma Values for Assumed Error Sources

Source One-Sigma Values

Observations:

Range

Range-rate

Sun-planet angle

Star-planet angle

Planet Position:

Jupiter

Saturn

Uranus

15 m

.5 mm/sec

10 arc-sec

10 arc-sec

750 km

1400 km

2700 km
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(1) Continuous Earth-based tracking data are available from a

single station except when the spacecraft is occulted by the

Earth.

(2) An equivalent data rate of one observation every 144 minutes

(0.1 days) for all observation types. A realistic Earth-based

data rate (i.e., one observation per minute) is simulated by

scaling the nominal observation variance by the ratio of the

realistic data rate to the assumed data rate (i.e., the ratio

1/144).

(3) The error in the location of the Earth-based tracking station

is zero.

(4) The initial state error is zero (initial values of the true

and nominal state deviation vectors are equal).

(5) The apriori estimate of the state deviation is zero (x = 0).

The apriori covariance matrix of the estimate, P , is a diag-

onal matrix defined in Table 2.

Reference navigation accuracy data are presented in Figures 9 through

27. These results are based on, and subject to the limitations of, the linear

estimation theory derived in Chapter 2. The data presented are of three basic

types: (1) state estimate uncertainty derived from the state estimate error

covariance matrix, (2) target error ellipses derived from the target estimate

covariance matrix, and (3) target error data obtained from mission simula-

tions.

State Estimate Uncertainty

Reference state estimate uncertainty during Jupiter, Saturn and

Uranus approach are presented in Figures 9 through 11. These data consist
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Table 2 Diagonal Elements of the Apriori State Estimate

Covariance Matrix P
o

Element

(km2 )
2

(km
2

)

(km2)

(km2 /sec2 )

(km2/sec2 )

(km2 /sec2 )

(km2 /se)

(km 2 )

(km2 )(km2 )

Jupiter

5.63 (5)

5.63 (3)

5.63 (5)

4.00 (-8)

4.00 (-8)

4.00 (-8)

5.63

5.63

5.63

(5)

(5)

(5)

Saturn

2.00 (6)

2.00 (6)

2.00 (6)

4.00 (-8)

4.00 (-8)

4.00 (-8)

P
0°1

P
022

P
033

P
0 44

P
055

P
06E

P
077

P
088

P
099

Uranus

7.62 (6)

7.62 (6)

7.62 (6)

8.00 (-8)

8.00 (-8)

8.00 (-8)

1.96

1.96

1.96

(6)

(6)

(6)

7.29

7.29

7.29

(6)

(6)

(6)
9
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of RMS (root-mena-square) values of the uncertainty in the space-craft's

planetocentric position and velocity and the heliocentric position of the

planet, as well as an overall measure of state uncertainty. RMS uncer-

tainty in position, velocity and planet position are defined by the square

root of the sum of the component variances, i.e.,

1

Position RMS (P11 + P22 + P33

Velocity RMS (P + P + P66) (4.1)
=44 + 55 66

1
Planet Position RMS = (P P + P)

(77 + 88 P99

where the variances Pll P22"'''P99 are the diagonal elements of the state

estimate error covariance matrix. Overall state uncertainty is expressed as

the "entropy" of the system. The concept of entropy as a measure of state

(17)
uncertainty is well accepted in the field of information theory1. In

1967 Potter and Fraser
( 1 8

) derived the following expression for the entropy

of a sequential estimator as a function of the determinant of the state es-

timate covariance matrix:

Entropy = (-)log2 IPI + E (4.2)

where E = (n/2)log2 (2re), n is the dimension of the state vector, and e is

the base of the natural logarithm. Although entropy as used here has no

physical significance, it is considered a convenient figure-of-merit for

overall performance of the navigation process.

State Estimate Uncertainty During Jupiter Approach

Reference navigation accuracy data for the state estimate during

Jupiter approach are presented in Figure 9 for (1) range rate, RR, (2) on-

board angles, OBA, and (3) range-rate plus onboard angles, RR + OBA.
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Time histories of position RMS during Jupiter approach are shown in

Figure 9a. From Figure 9a it can be seen that the OBA information alone is

not sufficient to reduce significantly the uncertainty in spacecraft position.

In fact, the information rate from onboard angles is not adequate to prevent

a growth in the position RMS during the period from E-30 (encounter minus 30

days) to E-6 days. Range-rate data alone give much better position accuracy

for the same period. A significant overall improvement in position accuracy

is achieved by combining range-rate observations with the onboard angle ob-

servations.

Velocity RMS time histories for Jupiter approach are shown in Fig.

9b. These data are characterized by a sharp peak in the velocity uncertainty

just prior to encounter, followed by a rapid decrease at encounter. This

phenomena was observed to occur at each planet for all observation types, and

can be explained by the following considerations. The change in the covari-

ance matrix P is governed by two effects, viz., a decrease caused by the in-

formation content of the observations and an increase due to the dynamical

propagation of the covariance matrix. For a short period just prior to en-

counter the information rate is not great enough to offset the growth in the

velocity elements of the covariance matrix, thus causing the velocity RMS to

increase sharply before the information term begins to dominate again. The

onboard angle data reduce the uncertainty slightly up to E-12 days at which

point the characteristic velocity uncertainty growth begins. Range-rate

data give good velocity information up to E-8 days before the velocity un-

certainty growth takes over. Onboard angle data combined with range-rate

data give only slight improvement along most of the curve but virtually

eliminate the velocity uncertainty peak.

Time histories of Jupiter position uncertainty are presented in Fig.

9c. These data show that range-rate observations alone provide a significant
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improvement in the position uncertainty of Jupiter while onboard angle mea-

surements alone provide no information. However, range-rate and onboard

angle measurements compliment each other to provide a significant overall

improvement in Jupiter position uncertainty over the range-rate only case.

State Estimate Uncertainty During Saturn Approach

Reference navigation accuracy data for the state estimate during

Saturn approach are presented in Fig. 10 for (1) range-rate, RR (2) onboard

angles, OBA, and (3) range-rate plus onboard angles, RR + OBA.

Position RMS time histories, Fig. 10a, show that the onboard angles

data give slightly better position accuracy than do the range-rate data up

to about E-15. After E-15 the range-rate data is superior and yields much

better results near periapsis. As was the case at Jupiter, a combination of

range-rate and onboard angle measurements gives much better position accu-

racy than either range-rate or onboard angles alone. Overall position ac-

curacy is considerably better at Jupiter approach than at Saturn approach.

Velocity RMS time histories for Saturn approach are presented in

Figure 10b. As can be seen from Figure 10b range-rate data give a much bet-

ter velocity estimate than the onboard angle data. For onboard angle data

the velocity uncertainty growth starts at about E-5, reaches a peak of 125

km/day and then drops sharply at periapsis. The combined range-rate and on-

board angle data give a steady and rapid decrease in velocity uncertainty.

As can be seen from the time histories of Saturn position uncer-

tainty in Fig. 10c, both range-rate data and range-rate plus onboard angle

data provide an improved estimate of planet position during approach. The

onboard angles alone provide virtually no information regarding planet po-

sition.
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State Estimate Uncertainty During Uranus Approach

Reference navigation accuracy data for the state estimate during

Uranus approach are presented in Fig. 11 for (1) range-rate, RR, (2) on-

board angles, OBA, and (3) range-rate plus onboard angels, RR + OBA.

From the position RMS time histories, Fig. Ila, it can be seen that

the onboard angle data provide better position accuracy at Saturn than do

the range-rate data up to E-10. After E-10, the range-rate data becomes supe-

rior. Range-rate plus onboard data provide a significant improvement over

both the range-rate case and the onboard angle case after E-25.

Velocity RMS time histories for Uranus approach are presented in

Fig. Ilb. As was the case with Jupiter and Saturn, range-rate data provide

better velocity accuracy during Uranus approach than do the onboard angle

data. Unlike Jupiter and Saturn, however, combining onboard angle data with

range-rate data results in a significant decrease in velocity uncertainty

throughout Uranus approach.

Time histories of Uranus position RMS are presented in Fig. 11c.

Only slight improvement in Uranus position uncertainty can be achieved prior

to periapsis passage with range-rate data. Although the onboard angle data

alone provide virtually no Uranus position information, they significantly

reduce the uncertainty when combined with range-rate data.

Target Estimate Accuracy

Reference navigation accuracy data for Jupiter, Saturn, and Uranus

approach target parameters B-R and B-T are shown in Figures 12 through 17.

The data consist of target error ellipses in B-R - B-T target space. The

error covariance matrix associated with the estimate of the target parame-

ters is used to generate a contour of constant probability which, for the



TIME FROM ENCOUNTER (Days)
E-20 E-15 E-10 E-5

TIME FROM SOI (Days)

Figure 11 State Estimate Uncertainty During Uranus Approach

58

5000

4000

3000

2000

1000

0

125

100

75

(Ila) 0
0
I--

v,

0o

-

0

>-

(11c) c
o

0E

-)

L..

a-

50

25

0

5000

4000

3000

2000

1000



59

linearized problem considered here, is an ellipse centered at the estimated

values of B.R and B.T (see Appendix E). The reference ellipses presented in

this chapter are based on one-sigma values for B.R and B.T. Correspondingly,

there is a 40 percent probability that the actual (true) values of the tar-

geting parameters lie within the error ellipse. Error ellipses corresponding

to any probability value P can be derived from the reference ellipse by

multiplying the ordinate and abscissa by the factor [2 ln(P -1)]. For 86 and

99 percent ellipses this quantity has the values of 2 and 3 respectively.

Jupiter Target Error Ellipses

Reference navigation accuracy data for Jupiter approach target pa-

rameters B-R and B-T are shown in Figures 12 and 13. In Fig. 12 the stan-

dard target error ellipses are compared at E-30, E-15, and E-5 days. These

times were selected as representative of the period during which an approach

guidance maneuver will be considered. Fig. 13 demonstrates the relative

navigation accuracy of various combinations of the observation types. The

error ellipses in these figures represent the dispersion of the true target

points (B-R and B-T) relative to the estimated target point. (Recall that

the target point is the point where the approach asymptote pierces the tar-

get plane. See Figure 39 for a definition of error ellipse nomenclature.)

Target error ellipses for range-rate, RR, observations only are

shown in Figure 12a. These data indicate a slight decrease (100-200km) in

both coordinates from E-30 to E-15 days. During the next ten days of track-

ing the B-T coordinate decreases an order of magnitude while the B-R coor-

dinate remains virtually unchanged. Since both the spacecraft approach

asymptote and the orbit plane (and thus T) lie very close to the ecliptic

plane at Jupiter, most of the range-rate information goes into the estimate



E-30 E-15 1000

-500

AB. T 0

TO PLANET

500

B- R
., / ~ , 1000

-500 0 500 -500 0 500 -500 0 500

(c) RR + OBA

Figure 12 Navigation Target Error Ellipses for Jupiter Approach (RR, OBA, RR + OBA)

-1000

-500

0

500

1000

E-30 E-15

E-5
_ B.T~·

(a) RR (b) OBA

o



X CB.R , C

1+p
IB* T

-500 0 500

(a) E-30

-500 0 500 -500 0 500

(b) E-15 (c) E-5

Figure 13 Navigation Target Error Ellipses for Jupiter Approach (E-30, E-15, E-5)

-1000

-500

0

500

1000



62

of the B-T component. B-R is essentially an out-of-plane component and is

therefore more difficult to estimate with range-rate data alone.

In Fig. 12b the orbit determination ellipse for the onboard angles

alone (sun-planet angle, a, and star-planet angle, B) are presented at E-30,

E-15, and E-5 days. Note that onboard angle data give about a 370 km reduc-

tion in both B-R and B-T coordinates from E-30 to E-15. From E-15 to E-5

the B-T (in-plane) information is slightly better than the B-R (out-of-plane)

information.

In Fig. 12c error ellipses for range-rate and onboard angle data

show a rapid reduction in both B-R and B.T components when the data types

are combined. Navigation accuracy is still better in the B-T direction than

in the B-R direction due to high quality range-rate information in the in-

plane direction.

Target error ellipses for various combinations of observation types

are compared in Fig. 13. In addition to the data previously presented in

Fig. 12 the data in Fig. 13 include error ellipses for range-rate plus sun-

planet angle and range-rate plus star-planet angle. The sun-planet angle,

a, being basically an in-plane angle, does not reduce the B-R component sig-

nificantly over the range-rate only case. However, it does provide better

in-plane information than range-rate alone as evidenced by the reduction in

B-T at E-30 and E-15. At E-5 the difference between the range-rate plus sun-

planet angle case and the range-rate case is negligible.

Saturn Target Error Ellipses

Reference navigation accuracy data for Saturn approach target pa-

rameters B-R and B-T are shown in Figures 14 and 15. In Fig. 14 the stan-

dard target error ellipses are compared at E-20, E-10 and E-2 days. The
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relative accuracy of various observation combinations are presented in Fig.

15.

Target error ellipses for range-rate observations are shown in Fig.

1 4a. From that figure, it can be seen that virtually no target information

is obtained from range-rate observations from E-20 to E-10 days. During the

next 8 days of tracking a significant reduction in B-T is achieved with no

significant decrease in B-R uncertainty. In contrast to the range-rate data,

onboard angle data provide good target information throughout Saturn approach

as can be seen from Fig. 14b. The error ellipses at E-20 and E-10 are nearly

circular indicating that the onboard angles provide information of almost

equal value in both the in-plane and out-of-plane directions. Range-rate

plus onboard angle data provide about the same B-R accuracy as the onboard

angle only case, but much improved B-T accuracy.

In Figure 15 the relative accuracy of the various data combinations

is compared at E-20, E-10, and E-2 days. From Fig. 15 it can be seen that

the star-planet angle, B, when combined with range-rate, p, does not reduce

the B-R component at Saturn significantly up through E-10 days. At E-2

days, however, the combination p + B gives a target accuracy comparable to

the + + a + B case and better than the a + B case. As was true at Jupiter

approach, range-rate data alone provides a poor estimate for B.R.

Uranus Target Error Ellipses

Reference navigation accuracy data for Uranus approach target pa-

rameters B-R and B-T are presented in Figures 16 and 17. In Fig. 16 the

standard target error ellipses are compared at E-20, E-10, and E-1 days.

The relative accuracy of various observation combinations are presented in

Fig. 17.



-2000

--1000

AB- T 0

E-1

1000

IAB R
2000

0 1000 2000 -2000 -1000

(a ) RR
0 1000 2000

(b) OBA

-2000 -1000 0 1000 2000

(c) RR+OBA

Figure 16 Navigation Target Error Ellipses at Uranus Approach (RR, OBA, RR + OBA)

-1000

1000 -

2000
-2000

E -20

(r) ~ AB.T T

E-1 ' 'E-10

AB- R

-1000

a)
a)

-2000



20001 , 1 2000I1 M
-2000 -1000 0 1000 2000 -2000 -1000

(a) E-20

-2000

1000 

0

1000

nnn00
0 1000 2000

(b) E-10

P+ p

+ a

/p AB-T

/3

-2000 -1000

P+

p
I - . AB-· R_

0 '1000 2000

(c) E-1

Figure- 17 Navigation Target Error Ellipses at Uranus Approach (E-20, E-10, E-1)

'-,

n .



68

Target error data for range-rate observations are shown in Fig. 16a.

Range-rate data provides practically no target information from E-20 to E-10

days. The error ellipses at E-20 and E-10 are very nearly circular with a

radius of about 2000 km. From E-10 to E-1 the B-T uncertainty is reduced to

below 150 km with essentially no decrease in B-R uncertainty. Onboard angle

data, however, give a uniform decrease in both B-R and B-T as shown in Fig.

16b. Combining range-rate data with onboard angle data results in a smaller

B-T uncertainty than with onboard angle data only (Fig. 16c).

In Fig. 17 the relative accuracies of various data combinations are

compared at E-20, E-10, and E-i days. Significantly, the range-rate data

are ineffective in reducing target errors until well into the approach phase.

Adding the star-planet angle to the range-rate measurement (i.e., p + 6) de-

creases B-R uncertainty significantly while leaving B-T uncertainty virtually

unchanged. Similarly, adding the sun-planet angle to the range-rate measure-

ment (i.e., p + a) results in a large decrease in B-T uncertainty while

leaving B-R uncertainty virtually unchanged. A combination of all three ob-

servations, p + a + 6, yields good target accuracy in both the B-R and B.T

components.

Tables 3, 4 and 5 summarize in tabular form the navigation data pre-

sented in the previous sections.

Overall State Uncertainty

Overall state uncertainties, as measured by the entropy of the esti-

mation process, are presented in Fig. 18 for Jupiter, Saturn and Uranus ap-

proach. These data reflect the fact that although onboard angle measurements

alone contain limited overall state information, they do provide valuable

complimentary information when combined with range-rate data, thus making pos-

sible significantly improved navigation accuracy.



Table 3 Comparison of Navigation Accuracies at Jupiter Approach

TIME E-30 E-15 E-5

OBSERVATION RR OBA RR + OBA RR OBA RR + OBA RR OBA RR + OBA

STATE UNCERTAINTY:

Position RMS (km) 834 820 335 699 891 127 519 988 50

Velocity RMS (km/day) 12 29 12 4 23 3 5 30 2

Planet Position RMS (km) 1008 1299 774 773 1298 342 562 1298 192

Entropy 52 84 49 37 80 32 23 77 20

TARGET ERROR ELLIPSE:

a (km) 719 652 475 559 284 125 554 129 55

b (km) 579 647 191 454 278 88 21 91 19

y (deg) 91 42 90 87 52 92 87 177 90

TARGET ERROR VARIANCES:

02 (km2 ) 5.2(+5) 4.2(+5) 2.3(+5) 3.1(+5) 7.9(+4) 1.6(+4) 3.1(+5) 8.3(+3) 3.0(+3)
B.R

2 (km2) 3.4(+5) 4.2(+5) 3.6(+4) 2.1(+5) 7.8(+4) 7.8(+3) 4.4(+2) 1.7(+4) 3.7(+2)
B (days) 1.2(-7) 6.7(-7) 2.8(-8) 7.3(-7) 6.0(-6) 1.6(-8) 6.9(-9) 1.1(-6) 9.2(-T

a 2 (days2) 1.2(-7) 6.7(-7) 2.8(-8) 7.3(-7) 6.0(-6) 1.6(-8) 6.9(-9) 1.1(-6) 9.2(-11)
te

aM
(D



Table 4 Comparison of Navigation Accuracies at Saturn Approach

TIME E-20 E-10 E-2

'BSERVATION RR OBA RR + OBA RR OBA RR + OBA RR OBA RR + OBA

TATE UNCERTAINTY:

Position RMS (km) 1479 1450 315 1459 1466 147 1009 1440 51

Velocity RMS (km/day) 17 29 16 13 25 11 13 36 6

Planet Position RMS (km) 1957 2425 1470 1810 2423 1206 1209 2422 389

Entropy 60 88 55 51 85 44 37 80 35

ARGET ERROR ELLIPSE:

a (km) 1111 460 441 1053 239 202 1033 72 51

b (km) 1040 437 179 1027 208 90 62 54 28

p (deg) 83 127 94 76 127 96 93 168 96

TARGET ERROR VARIANCES:

02 (km2 ) 1.2(+6) 2.0(+5) 1.9(+5) 1.1(+6) 5.2(+4) 4.0(+4) 1.1(+6) 3.0(+3) 2.5(+3)
B*R

a2 (km 2 ) 1.1(+6) 2.0(+5) 3.3(+4) 1.1(+6) 4.8(+4) 8.4(+3) 6.1(+3) 5.0(+3) 8.0(-2)
B.T

02 (days2 ) 3.0(-7) 3.6(-6) 7.2(-8) 3.1(-7) 1.4(-6) 3.1(-9) 3.4(+9) 2.5(-6) 3.0(-11
t
e

-o0



Table b Comparison of Navigation Accuracies at Uranus Approach

TIME E-20 E-10 E-1

OBSERVATIONS RR OBA RR + OBA RR OBA RR + OBA RR OBA RR + OBA

STATE UNCERTAINTIES:

Position RMS (km) 3270 2790 1699 2805 2803 219 1954 2491 42

Velocity RMS (km/day) 24 42 23 19 34 15 15 34 7

Planet Position RMS (km) 3811 4676 2781 3774 4674 2680 3157 4672 2357

Entropy 55 79 49 47 76 38 32 69 22

ARGET ERROR ELLIPSE:

a (km) 2034 613 595 1992 297 261 1957 58 36

b (km) 2002 603 241 1982 283 115 131 36 28

i (deg) 77 137 92 30 134 92 81 170 99

ARGET ERROR VARIANCES:

G2 (km2 ) 4.1 (+6) 3.7(+5) 3.5 (+5) 3.9(+6) 8.4(+4) 6.8(+4) 3.7(+6) 1.3(+3) 1.3(+3)
B.R

a2B2 (km2 ) 4.0 (+6) 3.7(+5) 5.8 (+4) 4.0(+6) 8.4(+4) 1.3(+4) 1.0(+5) 3.3(+3) 7.7(+2)
B.T

2 (days 2) 2.8 (-4) .1(-4 4.2 (-5) 9.3(-6) 2.3(-6) 1.4(-7) 1.1(-9) 1.6(-6) 2.5(-12
t



72

100

50

( 18a )
Jupiter

( 18b )
Saturn

>-

:l
Ir~

n-

o

L..

0

-25
100

50

0

-25
100

( 18c )
Uranus

a-

0o

LX

50

0

-25

TIME FROM ENCOUNTER (Days)
E-35 E-30 E-25 E-20 E-15 E-10 E-5 E-0

0 5 10 15 20 25 27.9 30 35 40
TIME FROM SOI (Days)

Time Histories of State Uncertainty (Jupiter, Saturn, Uranus)Figure 18



73

Target Errors for Simulated Encounter

The two types of data presented previously are based on assumed sta-

tistical models for the error sources and represent predicted navigation er-

ror statistics for state and targeting components. The actual navigation

errors for any single mission will depend upon observation errors which ac-

tually occur during the course of that single mission. Although the ac-

tual navigation errors are never known apriori, simulation of the orbit de-

termination process using assumed error sources provides a means of studying

the estimation process and evaluating the validity of the predicted error

statistics. Example time histories of actual target errors for simulated

encounters with Jupiter, Saturn and Uranus are shown in Figs. 19 through 27.

For these simulations both the initial state error and the initial state

estimate are, zero, i.e., x = x = 0. The target error is defined as the
o o

true (simulated) value minus the estimated value of the components of the

target vector.

Time histories of the target vector at Jupiter for the simulated

mission are presented in Figs. 19, 20 and 21 for RR, OBA and RR + OBA cases,

respectively. For all three cases the estimation process converged in a

manner consistent with the predicted navigation accuracies listed in Table 3.

For the RR case the characteristic velocity uncertainty growth, Fig. 9b, is

reflected in an increased B-R error just prior to encounter, Fig. 19a. The

velocity uncertainty for the OBA case, Fig. 10b, is reflected in increased t
e

error near encounter, Fig. 20c. A combination of RR and OBA, Fig. 19c, pro-

vides a significant improvement in estimation accuracy over the RR and OBA

cases.

Figs, 22, 23 and 24 consist of time histories of the target errors

at Saturn for the RR, OBA and RR + OBA cases respectively. For all three
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cases the error histories are consistent with the predicted navigation accu-

racies listed in Table 4. The RR data, Fig. 22, exhibit a B-R error growth

just prior to encounter which coincides with the increase in velocity error

covariance shown in Fig. 10. For the OBA case the velocity uncertainty is

reflected in the error in time of encounter, t , Fig. 23c. Combining RR and

OBA, Fig. 24, results in a significant improvement in all three components

of the target vector.

Time histories of target errors at Uranus are presented in Figs.

25, 26 and 27 for the RR, OBA and RR + OBA respectively. From Fig. 25a it

can be seen that the errors in B.R and B T are not reduced significantly un-

til encounter, a result which is consistent with predicted navigation accu-

racies listed in Table 5. The time-of-encounter estimate is very good after

about E-10 days. The OBA data, Fig. 26, provide a better estimate for B-R

and B-T but give a poor estimate for t just prior to encounter. This re-

sult is consistent with the predicted navigation accuracies presented in

Table 5. A combination of RR and OBA data, Fig. 27, give a significant im-

provement over both RR and OBA data.
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CHAPTER 5

APPROACH GUIDANCE ANALYSIS

Because of the extreme sensitivity of the Grand Tour mission to er-

rors in the encounter trajectory at Jupiter, Saturn and Uranus, the success

of the mission will depend to a large extent on the effectiveness of the ap-

proach guidance procedure. This chapter contains the results of an analysis

of the approach guidance process for the 1977 Grand Tour Interior mission.

The approach phase of the encounter at Jupiter, Saturn and Uranus was simu-

lated to survey and define guidance requirements and target accuracies at

those planets. A sensitivity analysis was conducted to determine the effects

of observation accuracy, guidance execution accuracy, and initial state er-

rors on the approach guidance requirements. Finally a Monte Carlo simulation

of the approach navigation and guidance process at Saturn encounter was con-

ducted for the purpose of testing the adequacy of the linear theory.

5.1 Assumed Execution Errors

In addition to the assumed error sources listed in Table 1, the

analysis of this chapter considers errors in the execution of the guidance

correction. (The execution error model is described in Chapter 2.) The un-

certainty in the velocity correction is assumed to originate from two inde-

pendent sources: (1) uncertainty in the magnitude of the correction due to

a random error in the total impulse applied by the rocket engine, and (2)

uncertainty in the orientation of the correction vector due to random errors
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in the direction of the thrust vector. Nominal values of one-sigma guidance

execution errors were assumed as follows:

Correction magnitude: K = 0.001 (0.1 percent)

Orientation Angle: y = 0.001 degrees (3.6 arc sec).

The factor K relates the execution error to the correction magnitude (error =

KlAvl), and the angle yis the angle between the commanded correction vector

and the actual correction vector.

5.2 Preliminary Considerations

A graphical representation of various covariance matrices associated

with the navigation and guidance process is presented in Figure 28. The ini-

tial state error covariance matrix, So, and the initial state estimate error

covariance matrix, P , are assumed equal at the sphere of influence (SOI).

As the orbit determination process procedes, the estimate of the state im-

proves and the P matrix decreases. The rate of decrease is dependent upon

the frequency and the information content of the observations. The S matrix

increases with time as the initial state uncertainty is propagated along the

nominal trajectory. Since the initial state errors are assumed to be dis-

tributed about a zero mean, the probability ellipse representing S is centered

on the nominal state, X*. The probability ellipse representing P is centered

at the current state estimate, X. The probability ellipse describing the dis-

persion of the state deviation estimate, x, defined by the covariance matrix

S-P, is centered on X*. When a guidance correction is executed, the velocity

components of the P matrix are increased due to the uncertainty in the guid-

ance execution (see Equation (2.96)). The S matrix decreases significantly

at execution due to the input of navigation information. This decrease is
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offset slightly by the added uncertainty resulting from guidance execution

errors (see Equation (2.107)).

As derived in Chapter 2, AV and 6T are given by
rms rms

AV = {Trace IB(S - p)BT ]} (5.1)
rms

T = {Trace [M S MT] (5.2)
rms

where

M = [Ml M2] = [3T/ar 1 T/3v]

B = [-M2 1 N -I]

S = E[xxT ]

P = E[R []

and where the subscripts ( ) and ( )- indicate values of the quantities be-

fore and after the correction. Since the first two components of the target

vector T (i.e., B-R and BT) are of primary interest to this analysis, it is

convenient to adopt the notation T' for the abbreviated target vector, i.e.,

T' =LB. R]

The state estimate error covariance matrix P and the state error co-

variance matrix S were assumed to be equal at the initial time (i.e., at

entry into the target planet's SOI). Nominal values of the diagonal elements

(variances) of the initial state error covariance matrix, P , are listed in

Table 2. Off-diagonal elements of P were assumed to be zero.

The nominal heliocentric velocity Vh* of the spacecraft at the out-

bound SOI is given by

V* = V* + V *
h p (5.3)
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where V* is the nominal planetocentric velocity of the spacecraft and V * is

the nominal heliocentric velocity of the planet. Neglecting the small error

in the planet's heliocentric velocity and assuming that the departure correc-

tion required to account for small heliocentric position errors are negligible,

the velocity correction required at departure is

AV = V - ';3 (5. {)

where V is the actual planetocentric velocity of the spacecraft. At the SOI

Eq. (5.4) can be closely approximated by

AV3 =V - V * .
D D

(5.5)

where V is the hyperbolic excess velocity. Furthermore, at the outbound
D

SOI, the covariance matrix P becomes small relative to the covariance matrix

S, thus

S(t3 ) - P(t3) S(t3 ). (5.6)

The assumptions and approximations just described allow for the computation

of the covariance matrix associated with the departure correction AV
3
with-

out simulating the mission past the time of the second correction, i.e.,

cov[AV 3 ] = C {cov[6T']t }C
3 t 2

T
(5.7)

where C =L
3
T is the matrix of partial derivatives required to map from

approach target space to departure target space (evaluated on the nominal

path at time t2). Analytical expressions for the matrix C are derived in

Appendix G. The RMS value of the departure correction is defined by

1
= (Trace (cov[AV

3
D)} AV

rms3
(5.8)
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5.3 Approach Guidance Requirements and Target Accuracies

Guidance execution times were surveyed to determine the variation of

guidance requirements (AV ) and target accuracy (6T' ) during approach to
rms rms

Jupiter, Saturn and Uranus. Both a one and a two guidance correction strat-

egy was considered for the range-rate (RR) and the range-rate plus onboard

angle (RR + OBA) cases.

One Correction Survey

The variations of AV and 6T' with execution time are shown in
rms rms

Figures 29, 30 and 31 for one correction at approach to Jupiter, Saturn

and Uranus respectively. Since the covariance matrices associated with er-

rors in the state and the state estimate are assumed to be identically equal

at the SOI (i.e., P = S ), the AV is zero initially (see Equation(5.1)).

The AV curves increase slowly at first and then increase asymptotically
rms

as periapsis is approached. The AV curves for the two observation cases
rms

are very nearly the same with the RR curve falling slightly under the RR +

OBA curve. The post-correction target accuracy, 6T' , decreases from SOI
rms

to encounter with the RR curve substantially above the RR + OBA curve for

each planet.

Two Correction Survey

A survey of two approach guidance corrections was made to determine

the effect of execution times on two selected indices of guidance perfor-

mance. The navigation and guidance process was simulated for a matrix of

five values of first correction time (t1 ) and six values of second correc-

tion time (t2). These data include the one-correction data previously pre-

sented since at the SOI the required velocity correction is zero. Repre-

sentative contours of the two performance indices listed below were drawn in
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t I- t
2

space:

I = AV + AV
1 rms1 rms2

I = AV rms AV + V + AV
2 rms1 rms2 rms

3

AV and AV are the RMS values of the guidance corrections at t1 and
rms rms

t2 respectively. AVrms is the correction required to null the velocity er-

ror at departure resulting from target errors remaining after the second cor-

rection. The departure correction requirement was defined by the correction

required at outbound SOI to achieve the nominal hyperbolic excess velocity

D

Surveys of guidance performance index I1 for the RR case and RR +

OBA case are presented in Figures 32, 33 and 34 for Jupiter, Saturn and

Uranus, respectively. These data exhibit a smooth gradient of increasing II

values as both the first and second guidance times increase. The index is

much more sensitive to the second correction time than to the first correc-

tion time. The RR cases have slightly higher I1 values than do the corres-

ponding RR + OBA cases. A comparison of the Jupiter, Saturn and Uranus data,

Figures 32, 33 and 34 respectively, shows that both I1 and the gradient of I1

increase with each successive planet. For all three planets the correction

schedule which yields the lowest values of I1 is a single correction at the

latest time. However, since I1 does not include the effect of target error

remaining after the last approach correction, it is of limited interest as a

performance index.

A more meaningful survey parameter is the performance index 12. Re-

sults of the 12 survey are presented in Figures 35, 36 and 37 for Jupiter,

Saturn and Uranus respectively. For the RR + OBA case at Jupiter, Figure

35a, the contour pattern is very similar to the one for I1, the index 12 being
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much more sensitive to the second correction time than to the first. For a

given first correction the second correction time for minimum 12 appears to

be near E-10 days. For the RR case at Jupiter, Figure 35b, a valley centered

at about E-9 stretches across the survey area. The 12 values for the RR case

are larger than for the RR + OBA case and exhibit a much stronger gradient.

The I
2
values for the RR case are on the order of two times greater than the

corresponding 12 values of the RR + OBA case.

The survey data for Saturn approach clearly define the region of min-

imum 12. For the RR + OBA case, Figure 36a, a valley extends across the

space at t2 = E-3.5. For the RR case the best second correction time de-

creases to t2 = E-3. The 12 values for the RR case are on the order of six

times greater than the corresponding I2 values of the RR + OBA case.

At Uranus the best times for the second correction are again easy to

identify for the two observation cases. For the RR + OBA case, Figure 37a,

the best second correction time is about E-3.5. The RR case exhibits a nar-

row horizontal valley at about t
2
= 2 with a steep 12 gradient above and

below the valley. A vertical ridge extends across the space at about t2 =

E-4.5. The I2 values for the range-rate plus onboard angles case are

roughly 12 times greater than the corresponding values for the RR case.

5.4 Guidance Sensitivity Analysis

The guidance survey presented in Section 5.2 provides important base-

line data for preliminary assessment of the approach guidance propulsion re-

quirements of the Grand Tour. A sensitivity analysis was performed on the

nominal encounter profile at Jupiter, Saturn and Uranus to assess the sensi-

tivity of these results to changes in the assumed error sources. For this

analysis, the error sources and ground rules used for the reference navigation
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accuracy analysis of Section 4.2 were retained. Both range-rate and onboard

angle measurements were included. Additionally, the following approach guid-

ance correction schedule was adopted:

Jupiter - one correction at E-9

Saturn - one correction at E-4

Uranus - one correction at E-3.

Results of the guidance sensitivity analysis are summarized in Table 6.

Standard deviations of range-rate and onboard angle observation er-

rors were decreased to one-tenth of their nominal values (90 percent decrease)

to determine the effect of improved observation accuracy. As can be seen from

Table 6, the approach guidance correction requirements are insensitive to the

observation accuracy. Post-correction target error, however, is moderately

sensitive to changes in both RR and OBA accuracy. For the 90 percent decrease

in RR error the target error decreased 33, 36 and 23 percent at Jupiter,

Saturn and Uranus respectively. The 90 percent decrease in OBA error resulted

in an 80, 87 and 86 percent decrease in target error at Jupiter, Saturn and

Uranus, respectively.

One-sigma guidance correction errors were increased an order of mag-

nitude (900 percent) to measure the effect of degraded guidance execution ac-

curacy. Since only one approach guidance correction was specified, the ap-

proach velocity correction is not a function of guidance execution accuracy.

Target error is relatively insensitive to guidance execution error. For the

order of magnitude increase in the guidance magnitude errors, the resulting

target error increases were 1.14, 2.26 and 7.90 percent at Jupiter, Saturn

and Uranus, respectively. The corresponding target error increases due to

increased orientation error were 1.72, 2.73 and 8.48 percent.



Table 6 Approach Guidance Sensitivities

*See Table 1

JUPITER, t1 = E-9 SATURN, t1 = E-4 URANUS, t1 = E-3

Nominal Change in V 6T' AV 6T' AV 6T'
Error Source Parameter VNominal Parameter rms rms rms rms rms rms

.I a ..ue % m/sec % km % m/sec % km % m/sec % km %

bservations

Range-Rate a- .5 mm/sec -90 0.00 0.0 -32 -33 0.01 0.00 -36 -36 0.00 0.00 -22 -23

Onboard Angles ca,o 10 arc-see -90 0.00 0.00 -78 -80 0.01 0.00 -86 -87 0.00 0.00 -83 -86

Guidance Correction

Magnitude 0 .001 900 0 0 1.12 1.14 0 0 2.24 2.26 0 0 7.60 ?7.9)

Orientation a .001 900 0 0 1.68 1.72 0 0 2.70 2.73 0 0 8.19 8.48
Y

Initial State Error * 100 4.88 214 0.10 0.10 15.19 200 0.15 0.15 19.1 200 0.51 0.52
S

o~~~~~~~~ ..
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The diagonal elements (variances) of the initial state error covariance

matrix, S , were increased by a factor of four (100 percent increase in one-

sigma values) to determine the effect of increased initial state errors. As

can be seen from Table 6, the AV values increase by 214, 200 and 200 percent
rms

at Jupiter, Saturn and Uranus, respectively. Thus, AV is almost directly
rms

proportional to the standard deviation of the initial state errors. The post-

correction target accuracy is relatively insensitive to the covariance of the

initial state errors.

5.5 Monte Carlo Simulation

It is well known that the linear sequential estimation scheme used

here yields poor results, and may diverge, if deviations from the nominal tra-

jectory become too large. Furthermore, the scheme can provide a satisfactory

state estimate while yielding an unrealistic error covariance matrix for the

estimate. The guidance algorithm is also based on linear theory and is in-

valid for large state deviations. Therefore, it is necessary to test the va-

lidity of guidance statistics predicted by the linear navigation and guidance

theory.

Initial State Errors

A Monte Carlo simulation of the navigation and guidance process during

Saturn approach was conducted for the purpose of checking the adequacy of the

linear theory. The Saturn approach was selected because it is generally con-

sidered to be the most critical encounter from a guidance standpoint. A one-

correction guidance logic was adopted and a simulation was carried out for

two different correction times: t1 = E-10 and t1 = E-4. For this analysis,

the error sources and ground rules used for the guidance survey were retained

except that the "true" initial state vector was simulated by adding a random
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error vector to the nominal state vector. Components of the error vector

were assumed to be uncorrelated and each was generated by sampling from its

respective normal distribution (see Section 2.3). The distribution for each

component is defined by a zero mean and a variance equal to the diagonal ele-

ments of the covariance matrix S Since S = P , the variances are those
o o o

values listed in Table 2. Values of the mean and standard deviation of each

component are listed in Table 7 for the 35 simulation runs.

Monte Carlo Results

The results of the simulations are presented in Figure 38. Actual

values of the target parameters B-R and B-T are plotted with respect to the

nominal target point. The standard probability ellipses representing the

bivariate distribution of the predicted target error are shown for compari-

son. Pertinent statistics of the simulated data are contained in Table 8.

The table contains values for the mean and standard deviation of the target

errors, the magnitude of the velocity corrections, AV', and the magnitude

of the error vector, 16T'J = [6B.R + 6B.T .

Even for the relatively small sample size (35 runs), the correlation

between the simulation statistics and the predicted statistics is reasonably

good for the t2 = E-10 case and very good for the t2 = E-4 case. For the

E-10 case, Figure 38a, the mean of the simulation errors is 2.3 km for 6B.R

and is -14.0 km for 6B-T compared to predicted values of zero for both.

Standard deviations of 6B.R and 6B.T are 185 and 82 km, respectively, com-

pared with predicted values of 201 and 92 km. Theory predicts a AV' RMS

value one percent greater than the value obtained by simulation (3.03 m/sec

compared to 3.00 m/sec). The actual RMS value for the magnitude of the tar-

get error, 16T' j, is 203 km compared with a predicted value of 221 km.
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Table 7 Simulated Initial State Error Statistics

Component

x (km)

y (km)

z (km)

k (km/day)

y (km/day)

; (km/day)

b (km)
x

b (km)
Y

b (kin)

Mean

-122

-196

204

3.06

3.33

-1.18

-350

108

93

One-Sigma

1432

1010

1473

16.2

13.5

16.7

1466

1118

1288

-Ili, ---- I
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Table 8 Monte Carlo Simulation Results

t= E-10 t E-4
Parameter 1 1

Mean 1-Sigma Mean 1-Sigma

AV' (m/sec) 2.85 1.03 7.22 2.70

J6T'| (km) 175 101 96 52

6B.R (km) 2.3 185 2.7 87

6B.T (km) -14.0 82 1.2 46

6te (days) 2.10(-6) 1.95(-5) 2.67(-6) 9.83(-6)
e
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For the E-4 case, Figure 38b, the mean of the simulation errors is

2.7 km for 6B-R and is 1.2 km for 6B.T compared to predicted values of zero

for both. Standard deviations of 6B.R and 6B.T are 87 and 46 km, respec-

tively, compared with predicted values of 86 and 49 km. The AV' RMS value

of the simulation is 7.7 m/sec compared with 7.6 m/sec predicted by theory

(1.5% greater). The actual RMS value for the magnitude of the target error

is 109 km compared with a predicted value of 99 km.

Correlation between theory and simulation should improve as the sam-

ple size is increased. However, based on the analysis discussed above, it

can be concluded that the navigation and guidance algorithm formulated in

Chapter 2 provides an adequate model for preliminary mission analysis of the

Grand Tour. For the example selected for simulation, the theory slightly

over-predicted the simulation RMS values of 16T'I and AV'. For the E-10

case, RMS values of AV' and 16T'I are 6 and 17 percent larger, respectively,

than the corresponding mean values. For the E-4 case the RMS values of AV'

and 16T'I are 7 and 13 percent larger than the corresponding mean values.

Thus, RMS values of correction magnitude and target error magnitude appear

to be good first approximations to the mean of their non-Gaussian distribu-

tions.



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

The investigation reported here was concerned with the simulation

and analysis of the navigation and guidance process for the Jupiter, Saturn

and Uranus encounter phases of the 1977 Grand Tour Interior Mission.

Principal Conclusions

From an examination of the theoretical development of the navigation

and guidance algorithms in Chapter 2, it can be concluded that the error in

the position of the outer planets can be conveniently included as a parame-

ter to be estimated if the error is assumed constant over the encounter

period.

Based on a study of the navigation data presented in Chapter 4 the

following conclusions can be drawn:

1. Range-rate data provide adequate in-plane navigation accuracies

but poor out-of-plane navigation accuracies during the approach

phase at each planet.

2. Although onboard angle data provide relatively poor navigation

accuracies in terms of the planetocentric state of the space-

craft, the data yield good estimates for the position components

of the target vector, i.e., B-R and B-T.

3. Combining onboard angle data with range-rate data leads to a sig-

nificant improvement in overall navigation accuracy at each

planet.

109
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4. Range data, when combined with range-rate data, provide only

slight improvement over the range-rate only data at each planet.

5. Onboard angle data alone does not significantly reduce planeto-

centric spacecraft position uncertainty at Jupiter until the

spacecraft reaches periapsis. At Saturn onboard angle data yield

better planetocentric position accuracy than do the range-rate

data up to aboutE-1i days. The same is true at Uranus where the

crossover point is about E-10 days. Near periapsis the range-

rate data is superior for all three planets.

6. Range-rate data provide better planetocentric velocity accuracy

during planet approach than do the onboard angle data. Combin-

ing onboard angle data with range-rate data does not result in a

significant decrease in velocity uncertainty over the range-rate

only case except at Uranus.

7. Range-rate observations alone provide a significant improvement

in Jupiter and Saturn position uncertainty, but only a slight im-

provement in Uranus position uncertainty. Onboard angle data

alone provide virtually no planet position information.

8. Combined range-rate and onboard angle data provide a signifi-

cantly smaller planet position uncertainty than the range-rate

data alone.

9. Range-rate data provide practically no B-R and B-T information

until the spacecraft is well within the planet's sphere of in-

fluence. As the spacecraft nears encounter the B-T uncertainty

decreases rapidly while the B-R uncertainty decreases at a much

slower rate.
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10. Onboard angle data provide good B-R and B-T accuracy but poor t

accuracy.

11. Adding star-planet onboard angle (an out-of-plane angle) observa-

tions to the range-rate observations decreases B-R uncertainty

significantly. A combination of all three observation types

(range-rate plus both onboard angles) yields good target accuracy

in all three target components.

From a study of the guidance analysis results presented in Chapter 5

the following conclusions are reached:

1. A survey of approach AV requirements for a two-correction
rms

guidance logic indicates that: (a) the sum of the approach and

departure AV values is sensitive to the time of the second
rms

correction, but relatively insensitive to the time of the first

correction; (b) the sensitivity to the second correction time is

greater for the range-rate case than for the range-rate plus on-

board angle case; (c) the optimum correction times for the second

approach corrections is later for the range-rate plus onboard

angle case than for the range-rate case, and (d) the optimum cor-

rection times for the second approach correction are near the

following survey values:

RR RR + OBA

Jupiter E-9 E-10

Saturn E-3 E-3.5

Uranus E-2 E-3.5

2. A sensitivity analysis of the navigation and guidance process

demonstrated that:(a) post-correction target error is relatively
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insensitive to both initial state error and guidance execution

error; (b) post-correction target error is moderately sensitive

to both range-rate and onboard angle observation accuracy, being

more sensitive to onboard angle accuracy than to range-rate ac-

curacy; and (c) guidance correction requirements are insensitive

to observation accuracy but are almost directly proportional to

the standard deviation of the initial state errors.

3. Results of a Monte Carlo simulation of the navigation and guid-

ance process verify that the linear estimation and guidance

theory provides an adequate model for preliminary mission analy-

sis of the Grand Tour.

Recommendations for Future Study

The research reported here uncovered several areas which should be

considered for future study. The following specific studies are recommended:

i. An extension of the analysis reported here to include other ob-

servation types (e.g., moon-star and moon-planet angles) and

other missions (e.g., the three planet Grand Tour missions).

Accordingly, the computer programs STEP V and STEP VI should be

modified to include the capability to simulate and process addi-

tional observation types.

2. A study of the effect of other error sources (e.g., unmodeled

accelerations, planet mass uncertainty, tracking station loca-

tion errors, and planet center finding bias) on navigation accu-

racy and guidance requirements. Computer programs STEP V and

STEP VI could be modified to provide options for estimating (or

including but not estimating) additional error parameters.
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3. A study of the effect of secondary perturbations on the motion

of the spacecraft during encounter. A more sophisticated dy-

namical model which includes planetary oblateness and the per-

turbation of additional bodies should be considered for incor-

poration into the STEP V and STEP VI computer programs.

4. A study of alternate guidance parameters for planetary flyby

missions should be conducted to determine the best target vec-

tor for the Grand Tour missions.

5. The interactive graphics feature of computer program STEP VI

should be further developed to exploit the full capabilities of

the CDC 6600/252 interactive system. For example, additional

problem status displays could be added to automatically display

pertinent data as problem execution proceeds. Also, use of the

light pen feature would greatly improve the manipulation of in-

put data.

6. An analysis of information lag times due to light travel time

should be made to determine the effect on navigation and guidance

requirements.
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APPENDIX A

NOMINAL GRAND TOUR MISSION DATA

Mission/trajectory data for the 1977 Grand Tour Interior mission

are presented in the following tables. Trajectory parameters which define

the four heliocentric legs of the mission are shown in Table 9. The classi-

cal elements which define the orientation of the transfer conics (i, Q, w)

are defined with respect to the equinox and ecliptic of date. Parameters

which define the encounter trajectory are presented in Table 10. The clas-

sical elements which define the orientation of the encounter conics are de-

fined with respect to a planetocentric equatorial coordinate system.

The nominal mission data were generated using a computer program

developed by M. C. Poteet of Convair Aerospace, Fort Worth, Texas. The pro-

gram generates an approximate solution to multi-planet flyby missions by

solving for the heliocentric transfer conics which match the hyperbolic ex-

cess speeds at arrival and departure. The heliocentric solution defines

heliocentric velocity requirements, and thus, the hyperbolic asymptotes, at

arrival and departure. The asymptotes and the excess speed completely de-

fine the planetocentric flyby conic.
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Table 9 Heliocentric Trajectory Parameters

co)

TRANSFER
JULIAN DATE 244- DURATION a e i Q Ao)

LEG DEPART ARRIVE DAYS 106 km degg deg deg
deg

arth-Jupiter 3390.5 3895.8 505.3 951.9 .842 .867 -19.11 2.38 145

Jupiter-Saturn 3895.8 4472.2 576.4 -459.2 2.690 2.449 111.18 - .206 43

Saturn-Uranus 4472.2 5701.8 1229.6 -258.6 6.470 2.379 70.74 113.34 76

Uranus-Neptune 5701.8 6700.0 998.2 -208.6 12.151 2.365 -112.28 -34.98 62



Table 10 Planetocentric Flyby Parameters

-'

ENCOUNTER CONDITIONS EXCESS TARGET
ENCOUNTER DATE ALTITUDE VELOCITY VELOCITY a e PARAMET________________ DATE ALTITUDE VELOCITY PARAMETER, b

JD 244- CIVIL 103 km RADII km/sec km/sec deg 10 km deg103 km

upiter 3895.5 22 Jan 79 194.5 2.73 33.23 12.3 98.8 -838.4 1.32 5.6 718.7

aturn 4472.2 20 Aug 80 2.4 0.04 38.62 16.9 85.5 -132.7 1.47 29.2 143.6

ranus 5701.8 2 Jan 84 13.1 0.56 27.85 21.4 29.7 - 12.6 3.90 100.1 47.6

eptune 6700.0 26 Sep 86 OPEN 23.9 OPEN



APPENDIX B

THE DYNAMICAL EQUATIONS IN RECTANGULAR CARTESIAN COORDINATES

The differential equation of state, Eq. (2.9), can be written in a

rectangular cartesian coordinate system as

X =

x

i

_f_

x

Y
y

z

F1

F2

F3

F4

F5

F6

F7

F8

Fg

(B.1)

where

F = u
1

2

F3 =w

x + X Xt
F4 = - 3 s 3 

r R R

[Y + Y t Y t]

F 3 Zt t ]
6 3 s R3 R 3

r Lt
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F7 0

F8 = 0

F9 0

The heliocentric position components of the target planet can be expressed

as

t t x

Yt = Yt + b (B.2)

Z
t
= Zt* + b

where Xt*, Yt*, and Zt* are the components of the nominal heliocentric posi-

tion vectors obtained from the planetary ephemeris subroutine and b , b and

b are components of bias in the planet position vector. The bias in the

planetary position vector represents an error in the ephemeris of the target

planet which is assumed to be constant over the time period of interest.

The state transition matrix is evaluated by numerical integration of

the matrix differential equation

(t,to) = A(t) (t,to (B.3)

with initial conditons $(t ,t) = I ,

where A(t) = I] is a 9x9 matrix of partial derivatives evaluated on the

nominal trajectory. For convenience the A-matrix can be partitioned into

nine submatrices as follows:

0 I 3 0

A = A
2 1

0 A
2 3 (B.4)

0 0 0t
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The symmetric submatrices A21 and A23 are defined below.

A21 =

a4 1

a5 1

a61

a4 2

a52

a6 2

a4 3

a5 3

a6 3

A23

a4 7

a5 7

a6 7

a4 8

a5 8

a6 8

a4 9

a5 9

a6 9
u

(B.5)

where

aF 4

41 Dx

aF 4

a4 2 ay

aF 4

a4 3 = a

aF5

a5 1 - a

aF
5

a5 2 = a

aF
5

a5 3 -

aF 6

a6 1 ax

aF
6

a6 2 -y

aF6

a6 3 -= a

= [ 23x2 ] [ 2]+ x2
= - + -s R5

3xzJ

a4
2

r s R5 R3

+ [ 3YZ
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3z2 1 3Z2 1
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R
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x
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APPENDIX C

THE OBSERVATION-STATE RELATIONSHIPS IN RECTANGULAR CARTESIAN COORDINATES

The functional relationships between the observations and the compon-

ents of the state vector can be written in a rectangular cartesian coordinate

system as follows:

2 2 2 C
p = [(X - X )2 + (y _ y )2 + (Z - Z )2 (C.1)

s s s

= [(X - X )(X - X ) +(Y Y)(Y - Ys)+(Z Z)(Z-Z )]/p (C.2)

-i12
a = cos [(xXt + yYt + ZZ

t
+ r )/(rR)] (C.3)

c= os {-(xs + ys + zs )/r] (C.4)
x y z

where

X = X * + b + x (C.5)
t x

Y y * + b t Y (C.6)
t y

Z = Z t + b + z (C.7)
t z

R [X2 y2 + z2 (C.8)

r =[x + z + (C.9)

and sx, 5 , and s are the direction cosines of the navigation star direction.

The linearized observation-state relationship

y(t) = H(t) x(t) (C.10)

in component form becomes
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hll h12 . hl9

hI19

"21

h3 1

L Lh41 ....... h4 9J

where [ J; indicates that the elements of

the reference trajectory, X*(t).

The elements of the H-matrix are as

6u

6 v

6w

I6b

6b

6bYI

the (t)

(C.11)

matrix are evaluated on

follows:

h = ap
11 ax

ap
h = _
12 ay

h - _z13 az

h ap
14 - u

ap
h15 av

ap
h = _
16 aw

- x - x )/

S

= (z - z )/p5

-= 

= 0

-= 

f6 

I
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h = p h
17 -b hll

x

h - -hh18 - b h12
y

h DP _
19 ab h13

z

h 3 J( - x ) - (x - x )(P/P)I/p21 9x s s

h2 = -x) - (Y - Y) - ()(p//p
22 ays sh223 - [(y - ys) - (y - y )(p/p)]/p

hPa [(, - Zs) - (Z - Z )(P/p)]/p
23 - z s 

h24 -3u 11

h D aP h
25 Dv 12

h = p = h
26 - w h13

h p -h
27 - 3b h21

x

28 - b h22
y

DP h
h2 9 ab h23

z

h r x O (x+X)o 1
31 -x r R -x rR J sin aL Lr R ? R~
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h = VE =Y2 y] (y+Y)] 1
32 = = L L 2 t R2 - -rR j sin a

_h r 7 Zi ( z+z ) 1
33 Los a [2 R2 - rR j sin a

h Da
3 4 = - u

h Da
35 = av

36 = aw-

= 0

= 0

= 0

h37 -= 
x

h3 8 -
y

= Bcos

= COS

= [COS

X x1 1a R
2

- rR sin
R

Y
a -

R
rR sin a

h au z z~ 1
39 o b [os a -2 rR] si a

h = aS = [s + X os8 

h 41 = xs + Y cos B 1

--~~ = si +

42 ay Iy r r sin ¢

h4 2 = y;= z cos 1
~y -[s + ~

43 z =z r r sin a

44 au

hB
h45 = v

= 0

= 0



126

h = L+ = 0
46 3w

h O
47 -b

x

h O
48- b- 0

x

h - = 0
h49 b -

z



APPENDIX D

THE DERIVATION AND APPLICATION OF THE SCHUR IDENTITY

The Schur identity (also called the "inside out rule") can be stated

as follows:

The matrix equation

E = (A + BC)- i (D.1)

is equivalent to

E=A -A BII + CAB CAB] - (D.2)

where A and E are nonsingular nxn matrices and where B and C are any matrices

with dimension nxp and pxn respectively.

Derivation i

Given

E = (A + BC)-
1

(D.3)

E = A + BC . (D.4)

Post-multiplying by E gives

I = AE + BCE

and pre-multiplying by A -
1
yields

A = E

E = A

-1

- A BCE-A BCE

127

then

(D.5)

(D.6)
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Now to eliminate E from the right hand side. First pre-multiply Eq.

(D.7) by C

CE = CA CA- 1 B CE

CE + CA
-
1 BCE = CA- 1

(D.7)

[I + CA 1B]CE = CA- l

CE II + CA-B.]-
1

CA-1

Then substitute Eq. (D.7) into Eq. (D.6) to obtain the desired result:

E = A - A-1BI + CA-lB] CA-

Application

Consider the nxn covariance matrix

Pk = ( + Hk Rk i Hk)~k =(k k k k

-1

which is of the form

E = (A + BC)

where A = Pk

-

,B = H, and C = R Hk. Applying the

D.8) gives

Pk = Pk -Pk HklI + R HkPkHT] R

Schur identity (Eq.

Hk Pk

Eq. (D.10) can be rewritten to obtain the desired result, i.e.,

P - P T HT R)-1 Hk
k =k k k H Tk k Hk k

(D.10)

(D.11)

(D.8)

(D.9)



APPENDIX E

THE DERIVATION AND APPLICATION OF THE ELLIPSOID OF PROBABILITY

In the analysis of navigation and guidance errors, it is sometimes

convenient to display in geometric form the statistical data contained in a

covariance matrix by generating surfaces of constant probability.

Consider a multivariate Gaussian distribution of the random n-vector

z with zero mean and covariance

A = E[z zT (E.1)

The distribution is characterized by the quadratic form

T -1 A + zzT
a = z A z A A (E.2)

The scalar q can be shown to have a chi-square distribution with zero mean,

(19)
unit variance and n-degrees of freedom . Setting q = q1 in Eq. (E.2) de-

fines an "ellipsoid of probability." The probability that z falls within the

ellipsoid corresponding to ql is the probability that q < q1 and is given by

q1 n-2

Pr(ql ,n) =/2T~n/2)j I i
I

2)rP(qln) q7(n j2) exp(-q/2)dq (E.3)
n/2F(n/2)

The lengths of the principal axes of the error ellipsoid are given by

1 ,n
ai 1 ,... (E.4)
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th
where Xi is the i- eigenvalue of the covariance matrix A. The orientations

oF the principal axes are given by the unit vectors

X.

i x.
1 

th
where X. is the i eigenvector of the

1

The Bivariate Case

Consider the 2x2 covariance matrix

all

A =

a2 1

the eigenvalues of A are formed from

|A -

In expanded form, Eq. (E.7) becomes

al

a2 1

- X a12

= 222

a22 -

i = 1,...,n

covariance matrix A.

a12

a2 2

AII = 0

- A(a11 + a22) + alla22 - a12a21

2X = (al + a2 2 ) ± /(al + a2 2 )2

Now let

a ll = 211 =x

a =22
22 y

a12 = a2 1 = x = p .xy xy

(E.5)

(E.6)

(E.7)

- 4(alla22 - a12a21)
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Then,

2A = (a2 + c2) ± I(o2 + c2) 2 - 4(a2 o2 - p 2 02 a2)]1
x y x y X Y x y

2X = (02 + 02) ± [o4 + 2a2 o2 + -4 _ 42 02 + 4p2 02 02]
x y x x y xy xy

2X = (a2 + a2) + [(C2 _- 2)2 + 402 ]
x y x y xy

which yields the eigenvalues

(02 + c2)

2 + [,(a2 - 02)2 + 2 ]½
x y xy

(E.8)

The two eigenvectors

or

and X2 = 
2 VX1 = 0

[A - hiIJXi = 0 ;

Hence from Eq. (E.9)

are defined by AX. =
I.

i = 1,2

-1

a I' -i a12

ta21 a22 - i

(all - h)xi + a2Yi= 0

a21x i + (a22 - )yi = 

Setting x. = 1 gives

X.

Yi-

= 0

(all - h
i
) + a12 yi

:. - all

Yi -

a 1
2

The eigenvectors are then

iXi. ;

(E.9)

i = 1,2 (E.10)

r-
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X. = ; i = 1,2 . (E.11)

The orientation of the error ellipse is specified by the angle p be-

tween the major axis of the ellipse and the x-axis. The angle is given by

cos =e 
I

(E.12)

sin = e2

where

X1 X
2

el = v and e2 =XT2

This can be reduced to

f = tan 1 (A~ J ) (E.13)
xy

The semimajor and semiminor axes of the error ellipse are given by

a = q%1qll

ab IX2q1

For the bivariate case Eq. (E.3) reduces to P (ql,2) = 1 - exp(-q1/2).

The probabilities corresponding to ql = 1,2, and 3 are 0.40, 0.86, and 0.99

respectively. Values of ql corresponding to other given values of P can be

computed from q1 = 2kn(P - 1).

Target Dispersion Ellipse

Consider the error covariance matrix associated with the target



1.33

coordinates B.R and B-T

A =

C2
B.R,B-T B-T _

Figure 39 shows the standard probability ellipse (q1 = 1, P = 0.40) which

represents A. The ellipse is defined by

B R B-T + ( ) + ½2R B2 
a = )eG -

B R B-T 2
2 + [(GB.R B.T B R,B.T

a2 2

= tan ( .RB
- 9 < 90

0 < 0 < 180: = 90 + 
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X2

X1

Figure 39 Standard Probability Ellipse



APPENDIX F

DEFINITION OF THE TARGETING COORDINATE SYSTEM

The targeting vector used in this study is defined by

T = B-T (F.1)

t e

where t is the time of encounter (periapsis) and where B-R and B-T are the
e

components of the vector B in the target (R - T) plane. The vector B, de-

fined as the normal vector directed from the center of the target planet to

the approach asymptote of the encounter hyperbola, is illustrated in Fig.

40.

R - S - T Coordinate System

Let S be the unit vector in the direction of the approach asymptote.

The unit vector T is orthogonal to S and parallel to the reference plane

(e.g., ecliptic plane), i.e.,

T (S x Pref)/IS x Prefl (F.2)

where Pref is the pole of the reference plane. The unit vector R completes

a right-handed orthogonal system, i.e.,

R = S x T . (F.3)

The B-vector targeting system involves the intersection of three planes, i.e.,

the orbit plane, the reference plane, and the target plane. The following
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notes may be helpful in visualizing the system:

(1) T lies along the intersection of the reference plane and the

target plane.

(2) B lies along the intersection of the orbit plane and the target

plane.

(3) The orbit plane and the target plane are orthogonal.

Computations

Give

planet (i.e.

determined a

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

al Algorithm

en the state of a spacecraft in hyperbolic orbit relative to the

., r and v) and the gravitational parameter p, the vector B is

as follows:

= (r.r) distance

v = (v.v)2 speed

C= v2 2p/r energy constant (twice t]
energy per unit mass)

V =c~- hyperbolic excess speed

= (r x v)/Ir x vI unit vector normal to or]
plane

h = v.(W x r) magnitude of angular momE

a = P/C3 semimajor axis

b = h/V semiminor axis

P = (v2 /p-1/r)(1/e)r - (r-v/p)(1/e)v unit vector in the direct
of periapsis

Q = W x P unit vector normal to W <

B = a(e-1/e)P - a/1---e2 Q target vector

-1
H = cos [ae/(a+r)J hyperbolic auxiliary ang:

t = (H3/p) {e tan H - Log[tan(7/4 +
go . H/2)]} time to encounter (perial

14) t = t + t
e go

he

bit

entum

tion

and P

le

psis)

time of encounter
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Additional parameters of the hyperbolic orbit may be computed as follows:

r = a(e-1)P

-1
= r -2 tan (b/a)

f = -2 tan- I[(e+)i/(e-1) tan(H/2)]

S = (w x B)/|W x B

Sd = cos i S - sin i (B/IBI)

-1
i = cos (W )

0 = tan- (Wx/-W )
X Y

periapsis radius vector

turn angle

true anomoly

approach asymptote

departure asymptote direction

inclination

ascending node

15)

16)

17)

18)

19)

20)

21)



APPENDIX G

DERIVATION OF THE TARGET MAPPING MATRIX C

Consider the departure target vector V expressed as a function of
D

the approach target vector T by a Taylor expansion about the nominal path,

i.e.,

V = V * + 6T -+i... (G.1)

Neglecting terms higher than first order yields

SV = C aT (G.2)
D

where C L=- ] D_

In what follows an analytical expression for the linear mapping matrix C

will be derived for a two-body dynamical model.

Consider the geometric relationship between the departure target

vector V , the approach asymptote S, and the miss vector B shown in the
D

sketch below.

\D A 
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The departure target vector can be written as

VD = Vc [cos S - sin p b]
D D

(G.3)

D
where ¢ is the turn angle, b = IBI, and V =

targeting components B-R and B-T yields

Resolving B into the

V. = Vt[cos i S - sin I{(B-R)R + (B-T)T}]
D

D
Taking 8T gives

TT

V

= - [b-aco")S - {sin
(\ -B- R

b sin BR) B-R}R -b - ~ -B-R

+ + ±sinp (B-R)
+B.R

{asin¢ (B-T)
3B*R

sinp ab\
-b (i- aB-R) B-T}T]

= (V-)[b aco S - {sin j + .sinR (B-R)
~B'T~~~~.

sinP (_b \
b I B-R)

R- _ sin-R (B-T)
DBR

sinP /'b \(_ T
b (8B-R) B.T}T]

= 0

2 2 2
Since b B.R + B.T , then

ab B-R
DB-R b

av
D

aB'R

(G.4)

av

D
DB'T

(G.5)

av
D

at
e

(G.6)

(G.7)
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and

Db _ B-T
3B'T b

The turn angle is defined by

cos ii = b2V - 1
}~2

acos -_
ab

b2V4

l2
(G.9)+ 1

4bV4

4bV4

d1d = 2 __4

b V 
p2 --+ 1

p2

2 = -dc cot

acos$ db
= b dB. R

acos4 - acosik db
B-.T Tb dB-T

(G.8)

thus,

and

(G.10)

Define

sin _ /Dc(cost+
b- - -c

(G.11)

and

(G.12)

Then

(G.13)

acos)
DB-R

Likewise

dl (B)

d (bT)

(G.14)

(G.15)



Dsini _
B'-R

asin _-
aB'T

2 (.bR)

d2 ( D)

Now Eqs. (G.4) and (G.5) can be rewritten

av
00b

aB-R
(a 1R + a2 1 S + a3 1T)(b )

D
aB-T a12 R + a22S

= sin [( b ) 1]

V+ a32T)
+a32 ) D

d2 2
- (B.R)
b

= dl(B-R)

= (BR)(BT) (sin p -bd2 )

b
2

2

a
3 1

= d (B-T)

= sin 4 [ ( -bT

all

A = a21

a31

2 d2 2
- _ 1] b (B-T)

a12 °

a22 °

a33 0

and defining
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(G.16)

(G.17)

where

(G.18)

(G.19)

(G.20)all

a2 1

a3 1

a1 2

a2 2

(G.21)

(G.22)

(G.23)

a3 2

Forming

(G.24)

(G.25)

(G.26)
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B = [R S T] (G.27)

leads to

C = (BA) b (G.28)
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