# VIBRATION ANALYSIS OF A $1 / 15$ SCALE DYNAMIC MODEL OF A SPACE SHUTTLLE CONFIGURATION 

By E. A. Thornton



# Prepared under Grant No. NASl-9434-20 by OLD DOMINION UNIVERSITY Norfolk, Va. 

## ABSTRACT

The natural frequencies and mode shapes of a $1 / 15$ scale space shuttle dynamics model are analytically determined. The model, a parallel beam type structure with delta wings; is dynamically representative of the-stiffness and mass properties of an early space shuttle design. Important characteristics of the model are elastic interfaces with adjustable spring rates.

Normal mode computations are made using the finite element modeling technique as implemented in the NASTRAN (NASA Structural Analysis) computer program. The feasibility of neglecting elastic deformations in the lower modes was investigated using a rigid body model.

Using NASTRAN, natural frequencies and mode shapes were first calculated for the booster fuselage, orbiter fuselage, and both delta wings in a free-free condition. Next, the fuselages were connected for various spring rates. Then the wings were attached to each fuselage, and the booster and orbiter were analyzed as separate airplanes. Finally, the two airplanes were elastically joined, and the complete model was analyzed.

In the complete model for an interface nominal spring constant of $10^{3} \mathrm{lb} /$ in there were forty modes with frequencies less than 200 HZ . The coupling of the booster and orbiter motions were found to be significantly affected by the spring interface stiffnesses.

## ACKNOWLEDGEMENT

The work report in this report was sponsored by NASA under Master Contract Agreement NASI-9434, Task Order No. 20 through the Langley Research Center, Hampton, Virginia. During the early phase of this work Mr. Howard Adelman of the NASTRAN Management Office acted as contract monitor. The final phase of the work was completed under the direction of the Loads Division with Mr. John L. Sewall acting as monitor. The principal investigator is indebted to these engineers for their assistance as well as to Mr. S. Leadbetter of the Loads Division who is conducting the experimental investigation.

TABLE OF CONTENTS
PageLIST OF FIGURESvi
LIST OF TABLES ..... vii
NOMENCLATURE ..... ix
INTRODUCTION ..... -1
DESCRIPTION OF MODEL ..... 3
COMPLETE MODEL ..... 3
FUSELAGE COMPONENTS ..... 3
WING COMPONENTS ..... 4
ELASTIC INTERFACE ..... 4
FUSELAGE-WING INTERFACE ..... 5
ANALYSIS ..... 6
NASTRAN ANALYSIS ..... 6
FUSELAGE COMPONENTS ..... 6
WING COMPONENTS ..... 8
ELASTIC INTERFACE ..... 10
FUSELAGE-WING INTERFACE ..... 11
BOOSTER AND ORBITER AIRPLANES ..... 13
COMPLETE MODEL
RIGID BODY ANALYSIS ..... 14
RESULTS AND DISCUSSION ..... 15
COMPONENT MODES ..... 15
ELASTICALLY CONNECTED FUSELAGES ..... 19
BOOSTER AIRPLANE ..... 23
ORBITER AIRPLANE ..... 23
COMPLETE MODEL ..... 24
CONCLUSIONS ..... 28
REFERENCES ..... 29
APPENDIX A-ANALYSIS OF ELASTIC INTERFACE ..... 30
APPENDIX B-RIGID BODY ANALYSIS ..... 44

## List of Figures

Figure Title ..... Page
1
Photograph of $1 / 15$ scale space shuttle model. ..... 52
Schematic of $1 / 15$ scale space shuttle model. ..... 53
Photograph of elastic interface between booster ..... 54 and orbiter fuselages.
Schematic of fuselage-wing interface. ..... 55
Schematic of booster delta wing. ..... 56
Schematic of orbiter delta wing. ..... 57
Geometry for multipoint constraint equations. ..... 58
Schematic of booster fuselage-wing interface ..... 59geometry.
Schematic of orbiter fuselage-wing interface ..... 60geometry.
Schematic of booster airplane idealization. ..... 61
Schematic of orbiter airplane idealization. ..... 62
Bending modes of booster fuselage. ..... 63
Bending modes of orbiter fuselage. ..... 64
Plotter orientation for delta wing mode shape ..... 65plots.
Mode shapes of booster delta wing. ..... 66
Mode shapes of orbiter delta wing. ..... 69
Mode shapes of elastically connected fuselages.Liftoff weight distribution. $10^{2} \mathrm{lb} / \mathrm{in}$ nominalsprings.Mode shapes of elastically connected fuselages.73Liftoff weight distribution. $10^{5} \mathrm{lb} / \mathrm{in}$ nominalsprings.
Variation of NASTRAN and rigid body analyses ..... 74frequencies with nominal spring constant.
Figure Title ..... Page
20 Comparison of NASTRAN and rigid body analyses ..... 75 modes. $10^{2}$ lb/in nominal spring.212223. Frequency spectrums for elastically connectedfuselages.
Variation of NASTRAN and rigid body analyses ..... 82frequencies. Elastically connected fuselages.Theoretical flexibility matrix.
Plotter orientation for complete model mode shape ..... 83 plots.Mode shapes of booster airplane. Liftoff weight84distribution.Mode shapes of orbiter airplane. Liftoff weight86distribution.Mode shapes of complete model. $10^{3} \mathrm{lb} / \mathrm{in}$ theoret- 88ical flexibility matrix. Liftoff weightdistribution.Frequency spectrums for booster and orbiter air-93planes and complete model. $10^{3} \mathrm{lb} /$ in theoreticalflexibility matrix. Liftoff weight distribution.
A-1 Schematic of elastic interface. ..... 94
A-2 Displacement components of elastic interface. ..... 95
A-3 Elements of matrix $\left[K_{Z}\right]$. ..... 96
A-4 Elements of matrix [ $\mathrm{K}_{\mathrm{XZ}}$ ]. ..... 96
B-1 Plane motion rigid body model. ..... 97
B-2 General motion rigid body model. ..... 97
B-3 Stiffness matrix in interface coordinates. ..... 98
B-4 Stiffness matrix $\left[K_{1}\right]$ in attachment coordinates. ..... 99
B-5 Elements of $\left[K_{1}\right]$ in generalized coordinates. ..... 100

## List of Tables

Table Title Page
I. Booster and orbiter simulated propellent weights. ..... 102
I I Booster fuselage element properties. ..... 103
I I I Booster fuselage concentrated mass properties. ..... 104
IV Orbiter fuselage element properties. ..... 105
V Orbiter fuselage concentrated mass properties. ..... 106
VI Booster wing grid point coordinates. ..... 107
VII Booster wing element properties. ..... 109
VIII Orbiter wing grid point coordinates. ..... 110
IX Orbiter wing element properties. ..... 111
X ..... 111XIFrequencies of booster and orbiter airplanes.117
XVIII Frequencies of complete model. ..... 118
AI Spring interface dimensions. ..... 119
AII Spring interface flexibility matrix. ..... 120
AIII Spring interface stiffness matrices. ..... 128
BI Mass properties of booster and orbiter rigid body ..... 136
Matrices for elastic interface.
Resequencing of grid points for complete model. ..... 112
Natural frequencies of booster and orbiter fuselages. ..... 113
Natural frequencies of free-free booster and orbiter ..... 114wings.
Frequencies of elastically connected fuselages. ..... 19Nominal springs. Liftoff weight distribution.
Frequencies of elastically connected fuselages. ..... 115 Theoretical flexibility matrix. Liftoff weight distribution.
Comparison of frequencies for elastically connected ..... 116fuselages. Nominal $10^{3} /$ in interface. Liftoff weightdistribution.models.
height of orbiter attachment bracket, see Figure A-1.
[a] flexibility matrix.

A
cross-sectional area.
${ }^{A} \mathrm{P}$
cross-sectional area of one pitch leaf.
${ }^{A_{j}}$

C
d

E
$f_{i}$
G
h

I, Il, I2
Il2
$I_{B X}, I_{B Y}$
${ }^{-} I_{P X}, I_{P Z}$
$I_{Y W X}, I_{Y W Y}$
$I_{1}, I_{2}$
$I_{x X}$
$\mathrm{I}_{\mathrm{XO}}, \mathrm{I}_{\mathrm{YO}}, \mathrm{I}_{\mathrm{ZO}}$
$I_{X B}, I_{Y B}, I_{Z B}$
coefficient in equation of constraint, see equation 4.
width of booster attachment bracket, see Figure A-1.
distance from top of booster attachment bracket to orbiter centerline.
modulus of elasticity.
forces applied at grid point i, see equation (1).
modulus of rigidity.
vertical distance between pitch leafs, see Figure A-1.
area moments of inertia for CBAR elements.
product of inertia for CBAR elements.
area moments of inertia of booster attachment bracket
area moments of inertia of pitch leafs.
area moments of inertia of yaw leafs.
mass moments of inertia of plane rigid body model, see equation ( $B-3$ ).
mass moment of inertia of concentrated masses representing fuselage roll inertia.
mass moments of inertia of rigid body model of orbiter.
mass moments of inertia of rigid body model of booster.


| 12] | NASTRAN flexibility matrix. |
| :---: | :---: |
| $2, z_{z}$ | dimensions of wing attachment brackets, see Figure 4. |
| $\left[\beta_{a}\right],\left[\beta_{b}\right]$ | transformation matrices. |
| ${ }^{3}{ }^{\prime}{ }^{\prime} S_{2} \cdot$ | deflection components. |
| $\theta_{1}, \theta_{2}$, | rotation components about X or Y axes. |
| $\rho$ | mass density. |
| $\theta_{1}, \theta_{2}$, | rotation components about z axis. |
| $\omega$ | circular frequency. |
| NASTRAN notation: |  |
| CBAR | beam element connecting two grid points. |
| CELAS 2 | scalar spring element connecting two grid points. |
| CONM2 | concentrated mass at a grid point. |
| CORD2R | rectangular coordinate system defined by three points. |
| GENEL | general element connecting two grid points; defined in terms of flexibility matrix [z] and transformation matrix [S]. |
| MPC | multipoint constraint; used to define rigid connections. |
| OMITI | defines degrees of freedom to be deleted from problem through matrix partitioning; used to remove mass singularities. |
| NSM | nonstructural mass. |
| PBAR | specifies properties of CBAR element. |
| SEQGP | used to reidentify the sequence of grid points such as to optimize bandwidth of matrices. |

## INTRODUCTION

The determination of the dynamic characteristics of a spacecraft structure is an important step in the development of the overall spacecraft system. This is particularly true for the Space Shuttle since a new concept in space vehicle design is being used. The Space Shuttle will be comprised of a parallel arrangement of the launch vehicle and space vehicle during the launch phase. This arrangement raises the possibility of dynamic effects which have not previously been encountered.

To initiate the dynamic studies of the Space Shuttle configuration, an unpublished analysis was made at LRC of a proposed design supplied by the NASA Manned Spacecraft Center. This analysis, for a straight-wing configuration of the Shuttle, represented the vehicles by an assembly of finite beam elements and lumped masses. Each of the two elastic connections between the vehicles was represented by a single translational spring. Pitch motions of the fuselages and flapping motions of the wings were permitted. Normal mode calculations were made for six different values of the connecting springs. The results of this exploratory study showed that, in general, the modes were significantly controlled by the spring rates of the vehicle connections.

As the next phase in the study of the Space Shuttle dynamic behavior, Langley Research Center designed and procured a $1 / 15$ scale model of proposed straight wing and delta wing configurations of the Shuttle. The vibration characteristics of this model are
being analytically and experimentally investigated.
During an 11 week period at Langley Research Center in the summer of 1970, the principal investigator, under the NASAASEE Summer Faculty Fellowship program, was involved in computations to establish pre-test frequencies and mode shapes for the straight wing configuration of this model. These computations made use of the finite element modeling technique as implemented in the NASTRAN (NASA Structural Analysis) computer program. Some of the results of this work and some preliminary experimental results were presented at the NASA Space Shuttle Technology Conference held at LRC in March, 1971, (reference 1).

The present study is an extension of this work and is concerned with an analytical investigation of the delta wing configuration of this model.

The objectives of this study were to:
(a) Use the NASTRAN finite element computer program to compute the natural frequencies and mode shapes for the $1 / 15$ scale dynamic model of the Space Shuttle with delta wings.
(b) Study the effect of connection spring rates on frequencies, mode shapes, and the coupling between vehicle motion.
(c) Formulate and analyze a rigid body representation of the $1 / 15$ scale model to determine the feasibility of neglecting elastic deformations in the calculation of the lower modes of the system.

In this section a brief description of the delta wing configuration of the $1 / 15$ scale shuttle model will be given. The complete model will be described first, and then the important characteristics of each component will be reviewed. Complete Model

The complete delta wing model is shown suspended by cables in Figure 1 . This figure shows the booster component supporting the orbiter component through two elastic interfaces in a forward mounting position. It is also possible to support the orbiter through a rear mounting position which is not shown. A schematic with the orbiter mounted in the forward position is given in Figure 2. This figure also gives some of the general dimensions and defines the overall coordinate system used to describe the model.

The stiffness and mass properties of the model are based upon the 12,500 lb. payload version of the MSC Space Shuttle Configuration. Each component was designed to closely approximate scaled stiffness and mass distribution curves of the MSC design.

## Fuselage Components

The booster fuselage spar was fabricated from thin walled, tapered aluminum cylindrical sections reinforced by internal bulkheads. The orbiter fuselage spar is similar except that over a major portion of its length the diameter is constant. Each fuselage component has foam ballast weight holders used to support lead weights which simulate the propellant. The
orbiter fuselage includes a lead nose mass to simulate the payload. The locations of the weights are shown in Figure 2, and the values of the added weights are tabulated in Table I.

## Wing Components

Each wing has three spars which were designed to give the proper bending stiffness distribution for the wing. The wings are clamped to the fuselages at three locations through mounting brackets welded to each spar. Over the length of each spar where the mounting bracket is attached the cross section of the spar is constant and has the form of an $H$. Slightly outboard of the mounting bracket the cross changes to a form obtained by welding two angle bars together. This cross section tapers linearly from the fuselage to the wing tip. The three spars are connected by forward-aft members of constant cross section. The forward-aft members are generally angle bars except at the wing tips where flat bars were used. Elastic Interface

The details of one of the elastic interfaces are shown in a photograph in Figure 3. Each of the interfaces was designed to permit varying the nominal spring rates in the pitch and yaw directions. This was accomplished by incorporating removable pitch and yaw leaves. Four sets of spring leaveswith nominal spring constants $10^{2}, 10^{3}, 10^{4}$, and $10^{5} \mathrm{lb} / \mathrm{in}$. were designed for each of the pitch and yaw directions. No scaling considerations were involved in selecting the nominal spring constant values. The values were selected from the results of preliminary calculations made at LRC. The dimensions of these leaves and other interface dimensions are given in Table A-I of Appendix A.

Fuselage-Wing Interface
Some of the details of a typical booster and orbiter fuselage-wing interface are shown in Figure 4. The interface consists of two parts: (1) a top semi-circular bracket welded to the fuselage, and (2) a larger bottom bracket welded to the wing spar. The two brackets are joined by two bolts per side. The overall dimensions of the interfaces for the two fuselage are also shown in Figure 4.

In this section a description of the model has been given. In the next section the idealizations and properties of the mathematical model will be described.

## ANALYSIS

The analysis of the natural frequencies and mode shapes of the $1 / 15$ scale model was made using a NASTRAN idealization and a rigid body idealization.

In the NASTRAN analysis, each component was first analyzed in a free-free condition. As the second step, the fuselage components were connected by the elastic interfaces. As the third step, the wings were attached to each fuselage component, and the booster and orbiter were analyzed as separate airplanes. In the final step, the two airplanes were connected through the elastic interface to represent the complete model.

In the rigid body idealization the plane motion of the two elastically connected fuselages was analyzed first. Then a three-dimensional analysis of the complete model was made. NASTRAN Analysis

In this section the NASTRAN idealization of the model will be described. The idealization of each component will be described first. Then two methods of representing the elastic interfaces will be described. Finally, a description of the method of representing the fuselage-wing interfaces will be discussed.

Fuselage Components.- The booster fuselage was idealized by an assembly of ten concentrated masses and nine beam elements. The concentrated masses were represented in NASTRAN using the bulk data card CONM2, and the beam elements were represented by CBAR elements. The idealization and the associated mass and
element properties of the booster fuselage are given in Tables II and III.

In NASTRAN, the beam element CBAR is assumed to have uniform properties. Because of this the cross-sectional properties tabulated in Table II are average values based on the diameter at the mid-point of each element.

Added weights 2 and 4 (See Figure 2) being distributed over relatively short lengths, were represented as concentrated masses at grid points 5 and 8, respectively. Added weights 1 and 3 were distributed uniformly over elements 2 and 3 and are shown as non-structural mass (NSM) in Table II. (Nonstructural mass is a quantity of material which adds mass to a structural element but does not contribute to the stiffness.) The actual mass of each beam element is computed internally in the NASTRAN program from the input data shown in Table II. The NSM property is input on the PBAR beam property card.

Concentrated masses were also used to model local distributions of mass, such as the reinforcing bulkheads. The values of mass and mass moments of inertia shown in Table III for the Liftoff condition are listed as nominal values and test values. The nominal values were computed from the drawings of the model. The test values were obtained by adding laboratory weighed values of the elastic interfaces and rigging brackets to the nominal values.

The mass moment of inertia $I_{x x}$ about the roll axis of the fuselage was represented by concentrations at each grid point. Included in each value of $I_{x x}$ are the roll inertias of the
bulkheads, the added weights, and each element of the fuselage. The inertia of each element was divided equally between adjacent grid points. . In Table III for Liftoff, two values of the roll moments of inertia $I_{x x}$ are shown. The nominal values are based upon the design dimensions of the model. The test values were calculated for slightly different radial locations of the weights used in the experimental vibration tests. The mass moments of inertia of the add-on weights and the fuselage itself about the other two axes, i.e., the "rotatory inertia", was neglected.

The orbiter fuselage was idealized in a manner similar to the booster fuselage. Seven beam elements and eight concentrated masses were used. The idealization and properties of the orbiter fuselage are shown in Tables IV and $V$.

The two added weights of this component were distributed over their supporting beam elements and modeled as NSM. The payload was modeled as a concentrated mass.

For all elements a modulus of elasticity $E=10.1 \times 10^{6}$ $\mathrm{lb} / \mathrm{in}^{2}$ and a modulus of rigidity $\mathrm{G}=3.8 \times 10^{6} \mathrm{lb} / \mathrm{in}^{2}$ were used. The mass density was taken as $\rho=2.539 \times 10^{-4} 1 \mathrm{~b}-\mathrm{sec}^{2} / \mathrm{in}^{4}$. These values were also used for the wing components.

Wing Components:- The booster delta wing is shown schematically in Figure 5. Three coordinate systems were used to locate the grid points and are shown in this figure. The coordinates of the grid points in these coordinate systems are tabulated in Table VI. In NASTRAN, coordinate system 1 was
used as the basic coordinate system, and coordinate systems 2 and 3 were referenced to the basic coordinate system by using the bulk data cards CORD2R.

The wing was idealized using 55 CBAR elements. For the spars which are tapered the average properties of the elements were used. The properties for all elements are tabulated in Table VII. All properties listed in this table are referred to the local beam element coordinate system. Il represents the moment of inertia of the cross section associated with bending in a plane perpendicular to the plane of the wing; I2 represents the moment of inertia associated with bending in the plane of the wing. Il2 represents the product of inertia in the local NASTRAN coordinate system. The sign was established according to the NASTRAN sign conventions given in paragraph 1.3.2 of Reference 2.

The lower half of the fuselage mounting brackets which are welded to the wing spars were represented as concentrated masses. Equal masses of $10.34-4 \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}$ were located at grid points 1-9. The bending stiffnesses of these brackets were neglected.

The orbiter delta wing is shown schematically in Figure 6. The grid points for this wing were located in one basic coordinate system, and these coordinates are tabulated in Table VIII.

The wing was idealized using 29 CBAR elements. As for the booster wing, average values were used for the tapered portions.

The element properties are tabulated in Table IX. The definitions for these quantities are similar to those for the booster wing. Equal concentrated masses of $4.66-4 \mathrm{lb}-\mathrm{sec}^{2} /$ in were located at grid points $1-9$ to represent the fuselage mounting brackets. Elastic Interface.- Therelastic interfaces were modeled in two ways. In the first model the interface was represented using simple linear springs with the nominal spring constants in the pitch and yaw planes. In NASTRAN these are called scalar elements and were input as bulk data through the use of the CELAS2 card.

In the second representation of the elastic interfaces the general structural element GENEL was used. The element describes the elastic interface through a six by six flexibility matrix [z] and a six by six rigid body transformation matrix [S]. These matrices are defined by the equation, (See Reference 3, Section 5.7),

$$
\begin{equation*}
\left\{u_{i}\right\}=[z]\left\{f_{i}\right\}+[S]\left\{u_{d}\right\} \tag{1}
\end{equation*}
$$

where $\left\{u_{i}\right\}$ denotes the set of displacement components at grid point i;
[ $Z$ ] denotes the flexibility matrix;
$\left\{f_{i}\right\}$ denotes the forces at grid point $i$ corresponding to the $u_{i}$ displacements,
[S] a rigid body matrix whose terms are the displacements $\left\{u_{i}\right\}$ due to unit motions of the coordinates $\left\{u_{d}\right\}$, when all $\mathrm{f}_{\mathrm{i}}=0$.
\{ud denotes the set of displacement components at grid point $j$.

For example, the forward elastic interface connects grid point 3 on the booster fuselage and grid point 22 on the orbiter fuselage. In this case

$$
\left\{u_{i}\right\}=\lfloor 22-1,22-2,22-3,22-4,22-5,22-6\rfloor, T
$$

and

$$
\begin{equation*}
\left\{u_{d}\right\}=\lfloor 3-1 ; 3-2 ; 3-3,3-4,3-5,3-6\rfloor, T \tag{2}
\end{equation*}
$$

where 22-1 denotes the displacement component 1 at grid point 22, 22-2 denotes the displacement component 2 at grid point 22 ; etc.

With no applied forces $\left\{f_{i}\right\}$ the displacements $\left\{u_{i}\right\}$ and $\left\{u_{d}\right\}$ are related by the transformation matrix [S]. For the geometry shown in Figure 2,

$$
[S]=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 15.6 & 0  \tag{3}\\
0 & 1 & 0 & -15.6 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

The flexibility matrix [ Z ] was determined for each of the nominal spring constants using the theory developed in Appendix A. The results of these calculations are tabulated there in Table A-II. In addition, for the nominal spring case of $10^{3} \mathrm{lb} / \mathrm{in}$, the flexibility coefficients were measured experimentally at Langley Research Center. The non-zero elements of the theoretical flexibility matrix for the nominal $10^{3} \mathrm{lb} / \mathrm{in}$ case and the experimental values for this case are tabulated in Table X.

Fuselage-Wing Interfaces.- Each fuselage-wing interface was assumed to be rigid. In NASTRAN rigid connections are modeled by writing equations of constraint between the displacement components at the grid points of interest. These equations take the form

$$
\begin{equation*}
\sum_{j} A_{j} u_{j}=0 \tag{4}
\end{equation*}
$$

where $A_{j}$ are coefficients determined from geometry and $u_{j}$ are
the displacement components. The first coordinate in the sequence is assumed to be the dependent coordinate. Equations of the form of (4) are called multipoint constraints and are input as bulk data using MPC cards.

For the fuselage-wing interfaces a general set of multipoint constraint equations were derived as follows. Consider grid points $A$ and $B$ shown in Figure 7. For convenience, the origin of the coordinate system is located at grid point A. Grid point $A$ and $B$ are connected by a fictitious rigid link. The displacements at point $B$ are then related to the displacements at A.by the equation

$$
\left[\begin{array}{l}
u_{1}  \tag{5}\\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5} \\
u_{6}
\end{array}\right]_{B}\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & z_{0} \\
0 & 1 & 0 & -z_{0} & 0 \\
0 & 0 & 1 & y_{0} & -x_{0} \\
0 & 0 & 0 & 1 & 0 \\
0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{1} \\
0 \\
u_{2} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{8} \\
u_{6}
\end{array}\right]=0
$$

Equation (5) represents 6 equations of constraint each of the form of equation (4). The multipoint equations of constraint for NASTRAN were written by substituting appropriate values of $x_{0}, Y_{0}, z_{0}$ in these equations.

The wings were attached to the fuselage by assuming a rigid connection between six grid points at the outboard edge of the mounting brackets on the wing spars and the nearest grid points on the fuselage. Thus the wings were "cantilevered" from the fuselage with the cantilever points below and outboard of the fuselage centerline.

For the booster fuselage-wing interface grid points 6, 8, 9 on the booster fuselage were connected to grid points 34-39 on the booster wing. These connections are shown schematically in Figure 8. The values of $X_{0}, Y_{0}, z_{0}$ used in equations (5) are tabulated in this figure. A total of 36 equations of constraint were written for the booster fuselage-wing interface.

The orbiter fuselage-wing interface was modeled in a similar way and is shown schematically in Figure 9. For this interface, 36 equations of constraint were also written.

Booster and Orbiter Airplanes.- The booster fuselage and delta wing components were connected using the multipoint equations of constraint to give a complete airplane. The same grid point numbers were used for the fuselage; new grid points for the wings were obtained by adding a double zero suffix. A plan view of the booster airplane idealization is shown schematically in Figure 10. The interface masses were equally distributed at grid points 34-39 of this idealization.

The orbiter fuselage and delta wing components were connected in a similar way to yield a complete airplane as shown in Figure ll. New wing grid point numbers were obtained by adding a zero one suffix to the original numbers. The interface masses were equally distributed at grid points 44-49 of this model.

Complete Model.- Using two GENEL elements, the booster and orbiter airplanes were elastically connected to represent the complete model. The forward GENEL element connected grid point 3 on the booster fuselage to grid point 22 on the orbiter fuselage.

The aft GENEL element connected grid point 4 on the booster. fuselage to grid point 26 on the orbiter fuselage.

To reduce the band width of the stiffness matrix for the complete model the grid points were renumbered. This grid point resequencing was input to NASTRAN through the SEQGP bulk data cards. The resequencing of grid points is tabulated in Table XI. Rigid Body Analysis.

Two mathematical idealizations were used for the rigid body vibration analysis. In the first idealization the motion was assumed to be restrained to the pitch plane with longitudinal displacements prohibited. This gave a simple four degree of freedom model. The elastic interface for this case was represented as a scalar spring. In the second idealization, general three dimensional motion was permitted. The booster and orbiter were each allowed to have three displacements and three rotations so that the system possessed twelve degrees of freedom. The elastic interfaces in this case were represented by twelve by twelve stiffness matrices.

The details of these analyses are presented in Appendix B.

In this section the results of the analysis will be presented and discussed beginning first with frequencies and mode shapes of each component. Then the results for the elastically connected fuselages will be described. Next the modes of the booster and orbiter airplanes will be discussed, and finally, the frequencies and mode shapes for the complete model will be given.

## Component Modes

Fuselages.- The natural frequencies of the booster and orbiter fuselages were calculated using the properties given in Tables II-V for the nominal masses and moments of inertia. The booster fuselage has 60 degrees of freedom (DOF) with all displacements permitted; the orbiter has 54 DOF permitting all displacements. The consistent mass matrix option was specified, and the eigenvalue problems were solved by the inverse power method. The natural frequencies of the booster and orbiter fuselages are tabulated in Table XII. For comparison, some preliminary experimental frequencies obtained at $L R C$ are also listed.

For the nominal weights these results show for the booster there are one to three bending modes in the frequency range below 200 HZ depending on the weight condition. For the cases where the weights were added, a torsional mode was also predicted at about 114 Hz . The axial modes were found to be outside of the frequency range of interest. For the orbiter fuselage, the frequencies tended to be substantially higher than the booster fuselage with only the fundamental bending mode below 200 Hz .

The experimental frequencies tend to generally confirm the predicted values particularly in the lower modes. The agreement becomes poorer with an increase in modal number. Better agreement with the experimental values for the higher modes could possibly be found by including the rotatory inertia of the added weights and by further subdivision of the fuselages using more beam elements. Because of the reasonable agreement of the lower modes these steps were not pursued.

The mode shapes of the bending modes of each fuselage are shown in Figures 12 and 13 for the liftoff and burnout weight distributions. These modes correspond to either pitch or yaw bending due to symmetry.

Wings.- In the "free-free" condition with all grid points having 6 displacement components the booster delta wing has 198 DOF, and the orbiter delta has 162 DOF. To reduce the size of the eigenvalue problems the lumped mass option was selected for each wing, and the rotational displacement components were deleted from the eigenvalue problem through the use of the bulk data card OMITI. This reduced the size of the eigenvalue problems for the booster and orbiter wings to 99 and 81 DOF, respectively. Both of these eigenvalue problems were solved using the Givens method. The natural frequencies for the two wing components are listed in Table XIII. Some preliminary experimental frequencies are also listed.

The frequency tabulations show that the wings have relatively dense frequency spectrums compared to the fuselage components. The booster wing has 20 frequencies below 200 Hz , and the orbiter wing has 16 frequencies in this range.

The experimental frequencies show reasonable agreement with the predicted values; however, a large number of the theoretical modes were not detected in the vibration tests. This may be due to a number of reasons including the fact that a number of the frequencies tend to be very closely spaced. Also, it is likely that the higher modes of the analytical model are somewhat in error because of the crudeness of the finite element model.

There are at least two ways in which the mathematical model could have been improved. In the central region of each wing the mounting brackets are welded to the spars. Although the mass of these brackets was included, the stiffening effect of these brackets was neglected. No further attention was given to improving the finite element model of the wing in this region, however, because for the assembled components the fuselage-wing interface was assumed to be rigid. The second way of improving the finite element model concerns the tapered spars. Outboard of the fuselage brackets the wing spars taper to give a relatively rapid variation of EI. For simplicity, one finite element of constant cross section was used to represent each spar between junctions with the fore-aft wing members. For better agreement in the higher modes these sections of the wing should be represented. with more elements. Since this would have roughly doubled the DOF for each wing further subdivision of the elements was not attempted.

The NASTRAN structural plotting capability was used to generate plots for the wing components. Figure 14 shows the plotter view of a typical delta wing. In the plots, each wing is viewed from an aft position at an angle of about $23^{\circ}$ above the $X$ axis. The first nine modes of the booster wing viewed in this manner are shown in Figure 15; the first nine modes of the orbiter wing are shown in Figure 16.

Each wing is symmetrical about the centerline of the fuselage, and the modes are therefore either symmetrical or antisymmetrical about this axis. Most of the modes are characterized by flapping motions, i.e. displacements which are primarily perpendicular to the plane of the wing. For the booster wing, of the mode shapes shown, all modes except 3 and 5 illustrate this type of deformation. Modes 3 and 5 consist of fore and aft deformations in the plane of the wing. For the orbiter wing, all modes shown, except for modes 4 and 7, have primarily out-of-plane displacements. Mode 4 has mainly in-plane displacements, and mode 7 has a large inplane displacement at the centerline but the wing tips move perpendicular to the plane.

Although most wing modes are characterized by a large displacement component in one direction, the modes are generally three dimensional. For this reason, it should be observed that plots of the mode shapes from a single view such as used in Figures 15 and 16 do not show the general complexity of the motion.

## Elastically Connected Fuselages

Nominal springs.- The frequencies of the elastically connected fuselages were first calculated with NASTRAN assuming plane motion with axial displacements prohibited. A consistent mass matrix was specified, and the inverse power method was used to solve the eigenvalue problem. The frequencies of the first six modes for the nominal weight condition and the four nominal spring cases are tabulated in Table XIV.

Table XIV Frequencies of elastically connected fuselages. Nominal springs. Liftoff weight distribution.

Frequencies, HZ

|  | K lb/in |  |  |  |
| :---: | ---: | :---: | :---: | :---: |
| Mode | $10^{2}$ | $10^{3}$ | $10^{4}$ | $10^{5}$ |
| 1 | 3.53 | 10.96 | 27.50 | 32.21 |
| 2 | 10.16 | 30.15 | 41.24 | 57.60 |
| 3 | 36.90 | 38.61 | 77.89 | 117.1 |
| 4 | 103.9 | 107.3 | 117.1 | 156.0 |
| 5 | 117.3 | 117.4 | 147.3 | 196.9 |
| 6 | 198.8 | 199.0 | 201.5 | 223.5 |

The mode shapes for the nominal $10^{2}$ lb/in spring are shown in Figure 17, and the mode shapes for the $10^{5} \mathrm{lb} / \mathrm{in}$ in spring are shown in Figure 18.

For the $10^{2} \mathrm{lb} /$ in spring, Figure 17 shows the fuselages move as rigid bodies in modes 1 and 2. Moreover, modes 3, 4, and 5 are essentially uncoupled fuselage bending modes for this spring constant. However, as the nominal spring constant is increased the fuselages have coupled deformations in all modes.

This is clearly shown in Figure 18.
The plane motion rigid body analysis was used to predict the frequencies for these spring and weight conditions, and the results are compared with the NASTRAN frequencies in Figure 19. This figure shows the rigid body analysis gives good agreement with the NASTRAN results for the first two modes for spring constants less than $10^{3} \mathrm{lb} / \mathrm{in}$. For spring constants greater than $10^{3} \mathrm{lb}$ /in., the rigid body analysis diverges rapidly from the NASTRAN results. Thus for $K>10^{3} 1 \mathrm{~b} / \mathrm{in}$. , the flexibility of the fuselage components play an important role and cannot be neglected. The mode shapes for the $10^{2} \mathrm{lb} / \mathrm{in}$ case are compared in Figure 20.

Interface matrix representation.- The frequencies for the elastically connected fuselages were also calculated with NASTRAN by representing the elastic interface by its theoretical flexibility matrix. The lumped mass approach was taken and rotational components of displacement in the $X Z$ and $Y Z$ planes were omitted. Each grid point was thus permitted to have all three translational components of displacement and a rotational component of displacement about the X axis. The resulting eigenvalue problem involved 72 DOF and was solved by the Givens method. The test weights were used for these calculations. The frequencies for the first fourteen modes for the four nominal spring cases are tabulated in Table XV.

The predominate motion associated with each frequency is also specified in this table.

With three dimensional motions permitted, the modes become more complex. Generally, the modes may be identified with motion in either the $X Z$ (pitch) plane or $Y Z$ (yaw) plane. However, as Table XV shows, combined pitch-axial modes and roll modes also exist.

Computer plots of these modes were made for the $10^{3}$ lb/in case. The plotter view of the elastically connected fuselages is shown in Figure 2la. Significant displacement components of each end of the fuselages are given in each plot. The positive conventions of the displacement components are shown in Figure 2lb. The first nine modes for the $10^{3} \mathrm{lb} / \mathrm{in}$ case are plotted in Figure 22.

Modes 1-6, 8, 9, and 11 of Figure 22 have essentially uncoupled motion in either the yaw or pitch planes. Mode 7, however, illustrates a strong coupling between axial and pitch plane displacements while mode 10 is characterized by coupling between yaw displacements and roll of the orbiter fuselage.

For the nominal $10^{3} \mathrm{lb} /$ in case, the frequencies were also calculated using the experimentally determined flexibility matrix. These results are compared with the frequencies for the nominal spring constants and the theoretical flexibility matrix in Table XVI. The agreement between the frequencies predicted by the two different flexibility matrices was reasonably close. The only significant difference occurs for the frequency of the combined pitch-axial mode which the theoretical interface matrix predicts to be 75.2 HZ , and the experimental interface matrix predicts as 64.3 Hz .

As Table XVI indicates, the nominal interface predicts the frequencies of the pitch and yaw modes to be identical. The pitch frequencies for the first four modes were predicted fairly well, but the yaw modes and the combined pitch-axial modes were poorly predicted.

Analysis of the elastically connected fuselages shows the connection of the two fuselages produces significantly more frequencies with more complex mode shapes than the individual components possess. This is illustrated in a frequency spectrum plot in Figure $23 a$ where the number of frequencies for the connected fuselages and the fuselage components are presented. The connected fuselages have thirteen frequencies less than 150 Hz while the individual components possess only four frequencies in this range.

Some preliminary experimental data obtained at IRC are plotted in Figure 23b for comparison with the predicted values. The experimental data also shows rather dense frequency spectra at two widely separated frequency bands. Although some experimental and theoretical frequencies appear to be in agreement, a comparison of mode shapes will be necessary before further conclusions can be reached concerning the theoretical-experimental correlation.

The first six modes of the elastically connected fuselages were also calculated using the rigid body analysis and a stiffness matrix representation of the interface. Some of these results are compared with NASTRAN calculated frequencies in Figure 24. Up to $K=10^{3} \mathrm{lb} / \mathrm{in}$, the rigid body analysis predicts the frequencies of the first four modes reasonably well.

Frequencies of the fifth and sixth modes, however, are predicted with considerable error and are not shown. Above $10^{3} \mathrm{lb} /$ in the rigid body analysis results in considerable error even for the first or second modes. These observations are in agreement with the mode shapes shown in Figure 22 where it may be seen that the fuselages undergo significant deformation after the fourth mode.

Booster and Orbiter Airplanes
The booster and orbiter airplanes were both analyzed using the lumped mass approach. To avoid a singular mass matrix all rotational coordinates on the wings were omitted on both airplanes. On the fuselages, the rotations in the $x z$ and the YZ planes were omitted at all grid points except the wing attachment points. Initially it appeared necessary that rotational components in the $X Z$ and $Y Z$ planes at the wing attachment points should also be omitted. This was attempted and resulted in an ill-conditioned mass matrix. Subsequent investigation showed that the multipoint constraint equations removed the apparent mass singularity, and the rotational components at these points should not be omitted. Roll rotations were permitted on both fuselages. The booster airplane was described by 136 DOF, and the orbiter airplane had 110 DOF. Both eigenvalue problems were solved by the Givens method.

The first thirteen frequencies of the booster airplane and orbiter airplane are tabulated in Table XVII. Computer plots of the mode shapes were used to classify the modes according to two types of predominant motion. The plotter orientation
for the airplane components and complete model is shown in Figure 25. Plots of six booster airplane modes are shown in Figure 26, and similar plots for the orbiter are shown in Figure 27.

Both the booster and orbiter were characterized by the fact that only a few modes represented coupling between fuselage and wing displacements. The majority of the modes consisted only of wing motions with little or no fuselage deformation. The wing-type modes were either symmetric or anti-symmetric about the XZ plane.

For the booster, modes 1 and 2 in Figure 26 illustrate coupled motions between the fuselage and wings. The next four modes shown consist solely of either symmetric or anti-symmetric wing deformations. Similar behavior for the orbiter modes is shown in Figure 27. In this case, however, the first four modes consist of only wing deformations and the fifth and sixth modes show fuselage-wing coupling.

## Complete Model

The final representation of the complete model was obtained by joining the two airplane models with the matrix representation for the elastic interfaces: The lumped mass approach was taken with the same rotations deleted as in the airplane analyses. Using the Givens method a matrix eigenvalue problem with 246 DOF was solved. The total computational time (CPU) on a LRC CDC-6600 computer was 2900 seconds.

The frequencies for the nominal $10^{3} \mathrm{lb} / \mathrm{in}$ interface are tabulated in Table XVIII. There were forty modes less than 200 HZ ,
and the frequencies of thirty-two of these are tabulated. Computer plots of the mode shapes were used to classify the modes according to their predominant motion. The ploter view of the undeformed complete model is shown in Figure 25b, and plots of ten selected mode shapes are shown in Figure 28.

Of the thirty two modes tabulated; eight modes involve coupled motions between the fuselages and twenty-four modes involve uncoupled wing motions. Mode 2 (Figure 28 b ) is a good example of a coupled fuselage-wing mode. The uncoupled wing modes occur with either the booster wing vibrating, the orbiter wing vibrating, or both wings vibrating simultaneously. Mode 13 (Figure 28h) shows the booster wing vibrating separately, mode 5 (Figure 28e) shows both orbiter wing vibrating separately, and mode 6 (Figure 28f) shows both wings vibrating in phase in a symmetric mode. Wing modes also occur in which one wing is vibrating symmetrically, and the other is vibrating anti-symmetrically. These are designated as combined wing modes in Table XVIII. Mode 14 (Figure 28i) is an example of this type mode.

The complete model was also analyzed for the nominal $10^{3}$ lb/in case using the experimental flexibility matrix to represent the interface. The agreement between the results was good with all frequencies and mode shapes matching very closely except for one mode. The experimental flexibility matrix introduced a mode at 59.7 HZ not predicted by the theoretical interface. The mode consisted of coupled fuselage-wing deformations.

The connection: of the booster and orbiter airplanes gives a relatively dense frequency spectrum. The theoretical Erequency spectrums for the two airplanes and the complete model are compared in Figure 29a-29c.

Connecting the two airplanes introduces a number of new modes into the frequency spectrum. Examples are the coupled fuselage modes which occur at about 11, 14, 21 and 24 Hz . However, a number of modes in the complete model may be identified with matching modes in the airplane components. For example, the booster wing mode at 65.6 HZ (Figure 28 h ) for the complete model can be identified as the booster airplane wing mode at 65.2 Hz shown in Figure 26f. A number of other modes also can be matched. However, it should be observed that earlier calculations for the fuselage components have shown that the spring interface stiffness plays an important role in the coupling of motions between individual components. Thus it can be reasonably expected that higher spring rates would give a considerably larger proportion of modes with coupled motions between the two components.

Some preliminary vibration test data for the complete model are shown in Figure 29d. As with the fuselage components a number of frequencies tend to be in agreement, but a comparison of mode shapes will be necessary to establish definite correlations.

The rigid body analysis was also performed for the complete model. For the $10^{3} \mathrm{lb} / \mathrm{in}^{2}$ interface the rigid body analysis
predicted the first mode frequency to be 12.1 HZ which is 118 higher than the NASTRAN value. The frequencies of the higher modes were in considerable error. This result was to be expected since Figure 28 from the NASTRAN analysis showed significant deformations in all modes.

## CONCLUSIONS

On the basis of the vibration analysis of the $1 / 15$ scale dynamic model of the Space Shuttle with delta wings the following conclusions were reached:

1. The model has a relatively dense frequency spectrum with about forty modes less than 200 HZ . The mode shapes are generally three-dimensional with coupled fuselage-wing deformations. However, numerous uncoupled wing modes were present.
2. The coupling of the booster and orbiter motions is affected very significantly by the spring interface stiffnesses. A good analytical representation of the interface is necessary. The representation of the interface by its flexibility matrix through the NASTRAN general element appears to be a satisfactory approach.
3. The correlation of the predicted frequencies and preliminary LRC experimental frequency data was generally fair. A final conclusion on this correlation can be reached only after detailed comparison of the mode shapes. Some regions of the analytical model may require further refinements in the finite element representation.
4. It is feasible to use a rigid body analysis to predict the lower modes only for very weak spring interfaces. Generally, for a nominal spring of less than $10^{3} 1 \mathrm{~b} / \mathrm{in}$., a rigid body analysis is satisfactory for predicting only the first mode.
5. Leadbetter, S.A. and Kiefling, L. A., "Recent Studies of Space Shuttle Multibody Dynamics", NASA Space Shuttle Technology Conference, NASA TM X-2274, Vol. III, pp. 3-25, (April. 1971).
6. McCormick, C. W., Editor, "The NASTRAN User's Manual!", NASA SP-222, September 1970.
7. MacNeal, R. H., Editor, "The NASTRAN Theoretical Manual", NASA SP-221, September 1970.

APPENDIX A
Calculation of Elastic Interface Flexibility and Stiffness Matrices

In this appendix the analytical determination of the flexibility and stiffness matrices of the elastic interface will be described. The elements of the flexibility matrix were determined for use in the general structural element GENEL in the NASTRAN program. The stiffness matrices were developed for use in the FORTRAN program for the rigid body vibration analysis. In the first part of this appendix the determination of the flexibility matrices will be described. Next the form of the stiffness matrix will be described in terms of its submatrices. Finally, relations between the stiffness and flexibility coefficients will be derived.

## Flexibility Matrix

A schematic of the elastic interface is shown in Figure A-1, and the positive conventions for the displacements and rotations are shown in Figure $\mathrm{A}-2$.

The flexibility matrix will be defined in terms of the displacements and rotations at the orbiter centerline. For calculating the flexibility matrix, the interface will be assumed rigidly clamped at the booster fuselage. The flexibility matrix then will take the form

where all terms not shown are zero. The flexibility coefficients may be identified as follows:

The coefficient $a_{z}$ may be identified with the axial displacment of the interface, i.e., the displacement in the Z direction; The two by two matrix with subscripts 5 and 3 is associated with displacements in the XZ plane; The two by two matrix with subscripts 9 and 7 is associated with displacements in the YZ plane, and The coefficient $a_{T}$ is associated with torsional deformation of the interface, i.e., with the rotation about the $Z$ axis.

Equations for each of these coefficients will now be derived.

Axial Displacement:
The coefficient $a_{z}$ may be calculated by applying a unit force to the interface at the orbiter attachment point and
computing the displacement $u_{Z}$ (See Figures $A 1$ and A2). For this calculation it is reasonable to assume the axial displacement of the yaw spring is negligible as well as the axial displacements of the booster and orbiter brackets. Then the only displacement contributing to $a_{Z}$ is due to the bending of the four pitch leaves in the $Y Z$ plane. Thus

$$
\begin{equation*}
a_{z}=\frac{\ell^{3} \mathrm{P}}{48 E I_{P X}} \tag{A-2}
\end{equation*}
$$

where $I_{P X}$ represents the moment of inertia of one pitch leaf about an $X$ axis through its centroid.

Displacements in the XZ Plane:
The flexibility coefficients $a_{55}$ and $a_{35}$ are found by applying a unit force at the orbiter centerline in the $x$ direction and calculating the $u_{5}$ displacement and the $u_{3}$ rotation.

In calculating the $u_{5}$ displacement the following contributions were considered:
(1) Bending deflection of the yaw leaves as cantilever beams,

$$
\begin{equation*}
\delta_{1}=\frac{\ell_{Y}^{3}}{6 E I_{Y W Y}}+\frac{(a+h) \ell_{Y}^{2}}{4 E I_{Y W Y}} \tag{A-3a}
\end{equation*}
$$

where $I_{Y W Y}$ represents the moment of inertia of one yaw leaf about a $Y$ axis through its centroid.
(2) Deflection at orbiter centerline due to end rotation of the yaw leaves as cantilevers,

$$
\begin{equation*}
\delta_{2}=a \Theta_{1}=\frac{(a+h) \ell^{2} Y}{4 E I_{Y W Y}}+\frac{(a+h)^{2} \ell Y}{2 E I_{Y W Y}} \tag{A-3b}
\end{equation*}
$$

where $\theta_{1}$ is the end rotation at the yaw leaves as cantilefers.
(3) Deflection at orbiter centerline due to rotation of pitch leaves about a local $Y$ axis, midway between the upper and lower pitch leaves,

$$
\begin{equation*}
\delta_{3}=a \theta_{2}=\frac{1}{12} \frac{\left(a+\frac{h}{2}\right)^{2}}{h^{2}} \frac{\ell^{3} \mathrm{p}}{E I_{P Z}} \tag{A-3C}
\end{equation*}
$$

where $I_{P Z}$ represents the moment of inertia of one pitch leaf about a axis through its centroid.
(4) Bending deflection of booster bracket. For this calculation the bracket was assumed to act as a cantilever beam with an effective length $L_{1}$ for bending in $X Z$ plane.

$$
\begin{equation*}
\delta_{4}=\frac{L_{1}{ }^{3}}{6 E I_{B Y}}+\frac{\mathrm{dL}_{1}{ }^{2}}{4 E I_{B Y}} \tag{A-3d}
\end{equation*}
$$

where $I_{B Y}$ denotes the moment of inertia of one arm of the bracket about a $Y$ axis through its centroid. The quantity $d$ is the distance from the top of the bracket to the orbiter centerline.
(5) Deflection at orbiter centerline due to end slope of booster bracket.

$$
\begin{equation*}
\delta_{5}=d \theta_{3}=\frac{L_{1}^{2} d}{4 E I_{B Y}}+\frac{d^{2} L_{1}}{2 E I_{B Y}} \tag{A-3e}
\end{equation*}
$$

The total deflection due to a unit force is

$$
\begin{equation*}
a_{55}=\delta_{1}+\delta_{2}+\delta_{3}+\delta_{4}+\delta_{5} \tag{A-3f}
\end{equation*}
$$

The rotation $u_{3}$ due to this unit load is assumed to be made up of the following components:
(1) The end rotation of the yaw springs as cantilever beams,

$$
\begin{equation*}
\theta_{1}=\frac{l_{Y}^{2}}{4 E I_{Y W Y}}+\frac{(a+h) l_{Y}}{2 E I_{Y W Y}} \tag{A-4a}
\end{equation*}
$$

(2) The rotation of the pitch springs about the local $Y$ axis,

$$
\begin{equation*}
\theta_{2}=\frac{\left(a+\frac{h}{5}\right) \ell_{P}^{3}}{12 h^{2} \cdot E I_{P Z}} \tag{A-4b}
\end{equation*}
$$

(3) The end rotation of the bracket arms as cantilever beams,

$$
\begin{equation*}
\Theta_{3}=\frac{L_{1}^{2}}{4 E I_{B Y}}+\frac{d L_{1}}{2 E I_{B Y}} \tag{A-4C}
\end{equation*}
$$

The total rotation due to a unit force is

$$
\begin{equation*}
a_{35}=\theta_{1}+\theta_{2}+\theta_{3} \tag{A-4d}
\end{equation*}
$$

The flexibility coefficients $\mathrm{a}_{53}$ and $\mathrm{a}_{55}$ are found by applying a unit moment about a $Y$ axis through the orbiter attachment point. By symmetry,

$$
\begin{equation*}
a_{53}=a_{35} \tag{A-5}
\end{equation*}
$$

The rotation $u_{3}$ due to a unit moment has three components similar to the rotation components considered in $a_{35}$. Thus

$$
\begin{equation*}
a_{33}=\frac{\ell Y}{2 E I_{Y W Y}}+\frac{\ell P^{3}}{12 h^{2} E I_{P Z}}+\frac{L_{1}}{2 E I_{B Y}} . \tag{A-6}
\end{equation*}
$$

Displacements in the $Y Z$ plane:
The flexibility coefficients $\mathrm{a}_{99}$ and $\mathrm{a}_{79}$ are found by applying a unit force in the $Y$ direction and calculating the $u_{g}$ displacement and the $u_{7}$ rotation.

In calculating the displacement $u_{9}$ the following contributions were considered:
(1) Bending deflection of the yaw leaves as "guided" (i.e. having zero slope at the top of the yaw leaves) cantilever beams,

$$
\delta_{6}=\frac{\ell_{Y}}{24_{Y W X}} \quad(A-7 a)
$$

where $I_{Y W X}$ represents the moment of one yaw leaf about a $X$ axis through its centroid.
(2) Deflection at orbiter centerline due to axial
deformation of the pitch springs. The axial deformations of the pitch springs permits a rotation of the orbiter bracket about a local X axis. The deflection at the orbiter centerline due to this rotation is $\delta_{7}=\frac{\left(a+\frac{h}{2}\right)^{2} \ell_{P}}{A_{P} E h^{2}}$
where $A_{P}$ is the cross sectional area of one pitch leaf.
(3) Bending deflection of booster bracket. Each arm of the bracket was assumed to act as a cantilever beam with an effective length $L_{2}$ for bending in the $Y Z$ plane,

$$
\begin{equation*}
\delta_{8}=\frac{I_{2}{ }^{3}}{6 E I_{B X}}+\frac{d L_{2}{ }^{2}}{4 E I_{B X}} \tag{A-7C}
\end{equation*}
$$

where $I_{B X}$ represents the moment of inertia of one bracket arm about an $X$ axis through its centroid.
(4) The deflection at the orbiter centerline due to end slope of booster bracket,

$$
\begin{equation*}
\delta_{g}=\frac{L_{2}{ }^{2} d}{4 E I_{B X}}+\frac{d L_{2}^{2}}{2 E I_{B X}} . \tag{A-7d}
\end{equation*}
$$

The total deflection due to a unit force is

$$
\begin{equation*}
a_{99}=\delta_{6}+\delta_{7}+\delta_{9}+\delta_{9} . \tag{A-7e}
\end{equation*}
$$

The rotation considered due to the unit force is assumed to have two components:
(1) The rotation introduced by the axial deformation of the pitch leaves, $\quad \theta_{4}=-\frac{\left(a+\frac{h}{2}\right)^{l}{ }_{P}}{A_{P} E h^{2}}$.
(2) The end rotation of the booster bracket arms bending as cantilever beams.

$$
\begin{equation*}
\theta_{5}=-\frac{L_{2}{ }^{2}}{4 E I_{B X}}-\frac{d L_{2}}{2 E I_{B X}} \tag{A-8b}
\end{equation*}
$$

The total rotation is

$$
\begin{equation*}
a_{79}=\theta_{4}+\theta_{5} \tag{A-8C}
\end{equation*}
$$

The flexibility coefficients $a_{97}$ and $a_{77}$ are found by applying a unit moment about an $X$ axis through the orbiter attachment point and calculating the displacement $u_{g}$ and rotation $u_{7}$. By symmetry,

$$
\begin{equation*}
a_{97}=a_{79} \tag{A-9}
\end{equation*}
$$

The rotation $a_{77}$ due to the unit moment has two components similar to the rotations considered in calculating a79. Thus

$$
\begin{equation*}
a_{77}=\frac{\ell_{P}}{A_{P} E h^{2}}+\frac{L_{2}}{2 E I_{B X}} \tag{A-10}
\end{equation*}
$$

Torsion about $z$ axis:
The flexibility coefficient $a_{T}$ is the rotation about the $z$ axis due to a unit moment about this axis. Four rotations were assumed to contribute to $a_{T}$ :
(1) The rotation of the pitch leaves about a $Z$ axis through the mounting brackets. The pitchleaves are assumed to be clamped at their outer ends,

$$
\begin{equation*}
\phi_{2}=\frac{\ell_{P}}{16 E I_{P Z}} \tag{A-11}
\end{equation*}
$$

(2) The rotation introduced at the top of the yaw springs due to the yaw springs bending in the $X Z$ plane as cantilever beams,

$$
\begin{equation*}
\phi_{2}=\frac{2 \ell_{Y}^{3}}{3 C^{2} E I_{Y W Y}} \tag{A-11b}
\end{equation*}
$$

where $C$ is the distance between the yaw leaves as shown in Figure A-1.
(3) The rotation introduced at the top of the yaw springs due to the slope of the arms of the booster bracket bending as cantilever beams;

$$
\begin{equation*}
\phi_{3}=\frac{2}{C^{Z}}\left[\frac{L_{1}{ }^{2} \ell_{Y}}{2 E I_{B Y}}+\frac{\ell_{Y}{ }^{2} L_{1}}{E I_{B Y}}\right] \text {. } \tag{A-1lc}
\end{equation*}
$$

(4) The rotation introduced at the top of the brackets due to the bending deflections of the arms as cantilever beams.

$$
\begin{equation*}
\phi_{4}=\frac{2}{C^{2}}\left[\frac{L_{1}^{3}}{3 E I_{B Y}}+\frac{\ell_{P_{1}}{ }^{2}}{2 E I_{B Y}}\right] \tag{A-11d}
\end{equation*}
$$

The total rotation is

$$
\begin{equation*}
a_{T}=\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4} . \tag{A-11e}
\end{equation*}
$$

Using the equations derived above, all of the elements in the flexibility matrix for the elastic interface were evaluated. The values of the various dimensions used in the calculations are tabulated in Table $A-I$. For the pitch and yaw leaves a modulus of elasticity, $E=3 \times 10^{7} 1 \mathrm{~b} / \mathrm{in}^{2}$ was used, and for the booster bracket, $E=10^{7} \mathrm{lb} / \mathrm{in}^{2}$. The results of these calculations are tabulated in Table A-II. For each nominal spring constant the results of two calculations are shown. The first calculation in each case was made for effective lengths $L_{1}=5.5$ in. and $L_{2}=2.0$ in. which were found by approximately matching the bracket arm bending deflections to the experimentally measured deflection of the arms. The second calculation neglects the bending of the bracket arms, i.e., the effective lengths are taken as zero.

## Stiffness Matrix

The stiffness matrix for the elastic interface in the coordinates shown in Figure A-2 may be written as

where all elements outside of the dashed lines are zero. The submatrix $K_{Z}$ represents the axial stiffness matrix for $Z$ displacements; $K_{X Z}$ represents the stiffness due to bending in the $X Z$ plane; $K_{Y Z}$ represents the bending in the stiffness YZ plane;
and $K_{T}$ represents the rotational stiffness about the $Z$ axis.
Not all of the elements of this matrix are independent. By symmetry, of course, $\mathrm{K}_{\mathrm{ij}}=\mathrm{K}_{\mathrm{ji}}$. In addition, equilibrium requirements may also be used to establish other relations between the elements in each submatrix.

Axial and Torsional Stiffnesśs Submatrices:
The axial and torsional problems are similar for analytical
purposes. For simplicity, only the axial problem will be considered; the conclusions reached can be applied to both problems. The axial stiffness matrix $K_{Z}$ has the form

$$
\left[K_{2}\right\rceil=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right]
$$

The four elements are related as will now be shown. Applying the definition of $K_{i j}$ as the force at $i$ due to a unit displacement at $j$ with all other displacements zero, the elements of $\mathrm{Kz}_{\mathrm{z}}$ are as shown in Figure A-3. Then equilibrium of forces, requires

$$
\begin{aligned}
\mathrm{K}_{21} & =-\mathrm{K}_{11} \\
\mathrm{~K}_{12} & =-\mathrm{K}_{22} .
\end{aligned}
$$

Since, $K_{21}=-K_{11}$, these equations show there is actually only one independent element of the axialstiffness matrix. Let this be $K_{Z}$, then in general,

$$
\left[K_{Z}\right]=\left[\begin{array}{rr}
K_{Z} & -K_{Z}  \tag{A-13}\\
-K_{Z} & K_{Z}
\end{array}\right]
$$

Similarly, the torsional stiffness matrix is

$$
\left[K_{T}\right]=\left[\begin{array}{cc}
K_{T} & -K_{T}  \tag{A-14}\\
-K_{T} & K_{T}
\end{array}\right]
$$

Bending Stiffness Matrices:
The bending stiffness submatrices $\left[\mathrm{K}_{\mathrm{XZ}}\right]$ and $\left[\mathrm{K}_{\mathrm{YZ}}\right]$ are similar and only one matrix will be considered. The matrix [ $K_{X Z}$ ] is defined, from equation ( $A-12$ ); as

$$
\left[K_{X Z}\right]=\left[\begin{array}{llll}
K_{33} & K_{34} & K_{35} & K_{36}  \tag{A-15}\\
K_{43} & K_{44} & K_{45} & K_{46} \\
K_{53} & K_{54} & K_{55} & K_{56} \\
K_{63} & K_{64} & K_{65} & K_{66}
\end{array}\right]
$$

Because of symmetry there are 10 unknown values in the array. When equilibrium requirements are considered it turns out that only three of the values are independent. This follows from applying the definition of $K_{i j}$ as shown in Figure A-4.
Equilibrium of forces and moments gives the following eight relations,

$$
\begin{align*}
& \sum \text { Forces }=0 \\
& \sum \text { Moments }=0 \\
& \mathrm{~K}_{53}+\mathrm{K}_{63}=0 \\
& K_{33}+K_{43}+\mathrm{LK}_{53}=0  \tag{FigureA4-a}\\
& K_{54}+K_{64}=0 \\
& \mathrm{~K}_{34}+\mathrm{K}_{44}+\mathrm{LK}_{54}=0  \tag{A-16}\\
& \text { (Figure A4-b) } \\
& \mathrm{K}_{55}+\mathrm{K}_{65}=0 \\
& \mathrm{~K}_{35}+\mathrm{K}_{45}+\mathrm{LK}_{55}=0 \\
& K_{56}+K_{66}=0 \\
& K_{36}+K_{46}+L K_{56}=0 . \\
& \text { (Figure A4-c) } \\
& \text { (Figure A4-d) }
\end{align*}
$$

With these eight relations and taking symmetry into account, the matrix above in equation (A-14) can be written as
$\left[K_{X Z}\right]=\left[\begin{array}{ccc}K_{33} & K_{34} & -\frac{K_{33}+K_{34}}{L} \\ K_{34} & \frac{K_{33}+K_{34}}{L} \\ -\frac{K_{34}+K_{34}}{L} & \frac{K_{34}+K_{44}}{L} & \frac{K_{34}+K_{44}}{L} \\ \frac{K_{33}+K_{34}}{L} & \frac{K_{34}+K_{44}}{L} & -\frac{K_{33}+2 K_{34}+K_{44}}{L^{2}} \\ L^{2} & \frac{K_{34}}{L}\end{array}\right]$
The matrix $\left[\mathrm{K}_{\mathrm{Y} Z}\right.$ ] may be found in the same form by changing subscripts appropriately.

As a result of symmetry and equilibrium requirements it has been shown that there are only 8 independent stiffness coefficients: $K_{Z}$ and $K_{T}$ and 3 elements each from the submatrices KXZ and KY.

Relations between the Stiffness and Flexibility Coefficients
To determine the stiffness coefficients in terms of the flexibility coefficients the definition of $\mathrm{a}_{\mathrm{ij}}$ is used. For the interface in extension and torsion this means simply that

$$
\begin{equation*}
\mathrm{K}_{\mathrm{z}}=\frac{1}{\mathrm{a}_{\mathrm{z}}} \tag{A-18}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{K}_{\mathrm{T}}=\frac{1}{\mathrm{a}_{T}} \tag{A-19}
\end{equation*}
$$

For the interface in bending this means that one end is rigidly fixed and a unit force and a unit moment are applied at the free end. The flexibility coefficients can then be used to write, assuming symmetry,

$$
\left[\begin{array}{l}
u_{3} \\
u_{5}
\end{array}\right]=\left[\begin{array}{ll}
a_{33} & a_{35} \\
a_{35} & a_{55}
\end{array}\right]\left[\begin{array}{l}
p_{3} \\
p_{5}
\end{array}\right]
$$

where $\mathrm{p}^{\prime} \mathrm{s}$ denote the applied forces. In terms of the stiffness matrix of the interface in bending

$$
\left[\begin{array}{l}
P_{3} \\
P_{5}
\end{array}\right]=\left[\begin{array}{ll}
K_{33} & K_{35} \\
K_{35} & K_{55}
\end{array}\right]\left[\begin{array}{l}
u_{3} \\
u_{5}
\end{array}\right]
$$

Thus if the flexibility coefficients are known,

$$
\left[\begin{array}{ll}
K_{33} & K_{35} \\
K_{35} & K_{55}
\end{array}\right]=\left[\begin{array}{ll}
a_{33} & a_{35} \\
a_{35} & a_{55}
\end{array}\right]^{-1}=\frac{1}{a_{33} a_{55}-a_{35}{ }^{2}}\left[\begin{array}{rr}
a_{55} & -a_{35} \\
-a_{35} & a_{33}
\end{array}\right]
$$

hence,

$$
\begin{align*}
& K_{33}=\frac{a_{55}}{a_{33} a_{55}-a_{35^{2}}} \\
& K_{35}=\frac{-a_{35}}{a_{33} a_{55}-a_{35^{2}}}  \tag{A-20}\\
& K_{55}=\frac{a_{33}}{a_{33} a_{55}-a_{35^{2}}}
\end{align*}
$$

Using these relations and the equations of equilibrium, (A-16) found above, the stiffness matrix $\left[\mathrm{K}_{\mathrm{XZ}}\right]$ can be found in terms of the flexibilities by: : (A-21)


A similar relation for $\left[K_{Y Z}\right]$ can be found by appropriately changing the subscripts.

Equations (A-18), (A-19), and (A-21) were used to calculate the stiffness coefficients corresponding to the flexibility coefficients given in Table A-II. These stiffness coefficients are tabulated in Table A-III. As in Table A-II, for each nominal spring constant the stiffness coefficients were calculated for two cases of effective lengths of the-booster bracket arms.

In this appendix, equations have been derived which may be used to calculate the flexibility matrix for the elastic interface. In addition explicit relations have been derived which may be used to calculate the elements of the corresponding interface stiffness matrix directly from the elements of the flexibility matrix. Numerical results for the flexibility and stiffness matrices for each nominal case of the elastic interface were presented.

## Rigid Body Vibration Analysis

In this appendix a description of the rigid body vibration analysis will be given. Two analytical models were used for this-analysis. In-the-first-analysi-s-, the-motion-was-assumed to be restrained to the pitch plane with the longitudinal displacement prohibited. This gave a simple four degree of freedom model. In the second analysis, general three dimensional motion was permitted. The booster and orbiter each were allowed to have three translations and three rotations so that the system possessed twelve degrees of freedom.

## Plane Motion

The mathematical model for the case of plane motion is shown in Figure B-1. The generalized coordinates are the vertical translations $Z_{1}$ and $Z_{2}$ of the mass center of each component and the rotations $\theta_{1}$ and $\theta_{2}$ about the mass center. Each elastic interface is represented as a scalar spring having a single spring constant.

For free vibrations, the equations of motion for small oscillations takes the form

$$
\begin{equation*}
[M]\{\ddot{q}\}+[K]\{q\}=0 \tag{B-1}
\end{equation*}
$$

where [M] denotes the mass matrix and [K] denotes the stiffness matrix. For the present problem the generalized coordinates \{q\} are given by

$$
\{q\}=\left[\begin{array}{llll}
Z_{1} & Z_{2} & \theta_{1} & \theta_{2} \tag{B-2}
\end{array}\right]^{\mathrm{T}}
$$

The mass and stiffness matrices were obtained by writing the kinetic and potential energies of the system. Since the generalized displacements are measured from the mass center of each body the mass matrix is diagonal and was found to be

$$
[M]=\left[\begin{array}{llll}
M_{1} & 0 & 0 & 0  \tag{B-3}\\
0 & M_{2} & 0 & 0 \\
0 & 0 & I_{1} & 0 \\
0 & 0 & 0 & I_{2}
\end{array}\right]
$$

From the geometry shown in Figure $B-1$, the relative displacement of each spring was written in terms of the generalized coordinates. With these displacements, the potential energy of the system was derived and written in matrix form to yield the stiffness matrix. For the present problem these calculations gave
$[K]=\left[\begin{array}{ccc}\left(K_{1}+K_{2}\right) & -\left(K_{1}+K_{2}\right) & x_{a} K_{1}-x_{c} K_{2} \\ -\left(K_{1}+K_{2}\right) & \left(K_{1}+K_{2}\right) & -x_{b} K_{1}+x_{d} K_{2} \\ x_{a} K_{1}-x_{c} K_{2} & -x_{a} K_{1}+x_{c} K_{2} & -x_{a} K_{1}+x_{c} K_{2} \\ -x_{b} K_{1}+x_{d} K_{2} & x_{b} K_{1}-x_{d} K_{2} & -\left(x_{a} x_{b}{ }^{2} K_{1}+x_{c}{ }^{2} K_{2}+x_{c} x_{d} K_{2}\right) \\ & -\left(x_{a} x_{b} K_{1}+x_{d} x_{d} K_{d} K_{2}\right) \\ { }^{2} K_{1}+x_{d}{ }^{2} K_{2}\end{array}\right]$
Using the mass and stiffness matrices derived above the eigenvalue problem

$$
\begin{equation*}
[K]\{u\}=\omega^{2}[M]\{u\} \tag{B-5}
\end{equation*}
$$

was then solved to give the system's natural frequencies $\omega$ and mode shapes \{u\}. Since two "free-free" modes are possible, two zero frequencies were found as well as two frequencies
corresponding to the system's modes of: vibration.

## General Motion

Figure B-2 shows the mathematical model for the general case of three dimensional motion. Each component was permitted to have six degrees of freedom: three translations of each mass center and three rotations about each mass center. The positive conventions for these coordinates are shown in Figure B-2. Each spring interface was represented by a twelve by twelve stiffness matrix.

The generalized coordinates in this case may be partitioned into orbiter and booster displacement sets as

$$
\{q\}=\left[\begin{array}{l}
u_{O}  \tag{B-6}\\
u_{B}
\end{array}\right]
$$

where the displacements of the orbiter are

$$
\left\{u_{0}\right\}=\left[\begin{array}{llllll}
u_{10} & u_{20} & u_{30} & \theta_{10} & \theta_{20} & \theta_{30} \tag{B-7a}
\end{array}\right]^{T}
$$

and the displacements of the booster are

$$
\left\{u_{B}\right\}=\left[\begin{array}{llllll}
u_{1 B} & u_{2 B} & u_{3 B} & \theta_{1 B} & \theta_{2 B} & \theta_{3 B}
\end{array}\right]^{T} \quad(B-7 b)
$$

For the fuselages, the coordinate axes through the mass center are principal axes because of symmetry. With the wings attached, this is also a good approximation since the wing mass is relatively small. Thus the displacement coordinates will be assumed to be aligned and referenced to the principal axes. Then the mass matrix is

$$
[M]=\left[\begin{array}{c:c}
M_{0} & 0  \tag{B-8a}\\
\hdashline 0 & M_{B}
\end{array}\right]
$$

where the diagonal elements of [ $M_{0}$ ] are

$$
\begin{equation*}
M_{X O} \quad M_{Y O} \quad M_{Z O} \quad I_{X O} \quad I_{Y O} \quad I_{Z O} \tag{B-8b}
\end{equation*}
$$

and the diagonal elements of $\left[M_{B}\right]$ are

$$
\begin{equation*}
M_{X B} \quad M_{Y B} \quad M_{Z B} \quad I_{X B} \quad I_{Y B} \quad I_{Z B} \tag{B-8c}
\end{equation*}
$$

All off-diagonal elements are zero. ${ }^{M}$ XO denotes the mass associated with the X displacement of the orbiter; $\mathrm{I}_{\mathrm{XO}}$ denotes the mass moment of inertia of the orbiter about an $X$ axis through the center of mass. The other terms associated with the $Y$ and $Z$ subscripts may be similarly interpreted. The analogous quantities for the booster are denoted with the $B$ subscript.

The stiffness matrix for the system is the matrix sum of the stiffness matrices for each interface where each matrix is a twelve by twelve. Thus

$$
\begin{equation*}
[K]=\left[K_{1}\right]+\left[K_{2}\right] \tag{B-9}
\end{equation*}
$$

where $\left[K_{1}\right]$ represents the interface connecting points $a$ and $b$, and $\left[K_{2}\right]$ represents the interface connecting points $c$ and $d$ in Figure $B-2$. For simplicity, the derivation of only the $\left[K_{1}\right]$ matrix will be given. It will be indicated later that the elements of the [ $K_{2}$ ] matrix may be obtained from [ $K_{2}$ ] by making appropriate substitutions.

To derive the stiffness matrix $\left[K_{1}\right]$ it is desirable to begin with the set of coordinates used in Appendix $A$ to represent the interface. These coordinates, and the associated stiffness matrix for the interface in these coordinates are shown in Figure $\mathrm{B}-3$. The sub-matrices in Figure $\mathrm{B}-3$ may be identified as follows:
$\left[K_{z}\right]$ represents the axial stiffness of the interface to relative displacements in the $z$ direction, two by two;
[ $K_{x z}$ ] represents the stiffness of the interface to relative displacements and rotations in the $x z$ plane, four by four; [ $\mathrm{K}_{\mathrm{yz}}$ ] represents the stiffness of the interface to relative displacements and rotations in the yz plane, four by four; and, [ $K_{T}$ ] represents the torsional stiffness of the interface to relative rotations about the $z$ axis, two by two.

It is desired to represent the stiffness of the interface in terms of the displacements at the center of mass. This will be done by writing the potential energy of the interface first in terms of the coordinates of points $a$ and $b$, and then making $a$ coordinate transformation. The potential energy may be written as

$$
v_{1}=\frac{1}{2}\left[\begin{array}{l}
u_{a}  \tag{B-10}\\
u_{b}
\end{array}\right]^{T}\left[\begin{array}{ll}
k_{a a} & k_{a b} \\
k_{b a} & k_{b b}
\end{array}\right]\left[\begin{array}{l}
u_{a} \\
u_{b}
\end{array}\right]
$$

where

$$
\begin{equation*}
\left\{u_{a}\right\}=\left\{u_{1 a} u_{2 a} u_{3 a} \theta_{1 a} \theta_{2 a} \theta_{3 a}\right\}^{T} \tag{B-11a}
\end{equation*}
$$

and

$$
\left\{u_{b}\right\}=\left\{\begin{array}{llllll}
u_{1 b} & u_{2 b} & u_{3 b} & \theta_{1 b} & \theta_{2 b} & \theta_{3 b} \tag{B-11b}
\end{array}\right]^{T}
$$

The submatrices in equation ( $B-10$ ) are found by identifying the $\left\{u_{a}\right\}$ and $\left\{u_{b}\right\}$ displacement components with the displacement components shown in Figure $B-3$, and then appropriately reordering rows and columns in the stiffness matrix. The elements of the submatrices are defined in Figure $B-4$ where $K_{i j}$ denotes an element in the matrix $\left[K_{X Z}\right]$ and $K_{i j}$ denotes an element in [ $K_{Y Z}$ ].

Refering to Figure B-2 the transformation equations between the coordinates at points $a$ and $b$ and the generalized coordinates may be written. Assuming small rotations

$$
\begin{equation*}
\left\{u_{a}\right\}=\left[\beta_{a}\right]\left\{u_{0}\right\} \tag{B-12a}
\end{equation*}
$$

where

$$
\left[B_{a}\right]=\left[\begin{array}{ccc:ccc}
1 & 0 & 0 & 0 & -z_{a} & 0  \tag{B-13}\\
0 & 1 & 0 & z_{a} & 0 & -x_{a} \\
0 & 0 & 1 & 0 & x_{a} & 0 \\
\hdashline 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Similarly,

$$
\begin{equation*}
\left\{u_{b}\right\}=\left[\beta_{b}\right]\left\{u_{B}\right\} \tag{B-14}
\end{equation*}
$$

where

$$
\begin{align*}
& {\left[\beta_{b}\right]=\left[\begin{array}{ccc:ccc}
1 & 0 & 0 & 0 & z_{b} & 0 \\
0 & 1 & 0 & -z_{b} & 0 & -x_{b} \\
0 & 0 & 1 & 0 & x_{b} & 0 \\
\hdashline 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]} \tag{B-15}
\end{align*}
$$

( $\mathrm{B}-10$ ) gives

$$
v_{1}=\frac{1}{2}\left[\begin{array}{c:c}
u_{0} \\
\hdashline u_{B}
\end{array}\right]^{T}\left[\begin{array}{c:c}
\beta_{a}^{T} & 0 \\
\hdashline 0 & \beta_{b}^{T}
\end{array}\right]\left[\begin{array}{l:l}
\mathrm{K}_{\mathrm{aa}} & \mathrm{k}_{\mathrm{ab}} \\
\hdashline \mathrm{~K}_{\mathrm{ba}} & \mathrm{~K}_{\mathrm{bb}}
\end{array}\right]\left[\begin{array}{c:c}
\beta_{\mathrm{a}} & 0 \\
\hdashline 0 & \beta_{\mathrm{b}}
\end{array}\right]\left[\begin{array}{c}
\mathrm{u}_{0} \\
\hdashline \mathrm{u}_{\mathrm{B}}
\end{array}\right]
$$

From this; by inspection,

$$
\left[K_{1}\right]=\left[\begin{array}{c:c}
\beta_{a}^{T} & 0 \\
\hdashline 0 & \beta_{b}^{T}
\end{array}\right]\left[\begin{array}{c:c}
K_{a a} & K_{a b} \\
\hdashline K_{b a} & K_{b b}
\end{array}\right]\left[\begin{array}{c:c}
\beta_{a} & 0 \\
\hdashline 0 & \beta_{b}
\end{array}\right]
$$

Finally, after performing the multiplications,

$$
\left[K_{1}\right]=\left[\begin{array}{ccc:ccc}
\beta_{a}^{T} & K_{a a} & \beta_{a} & \beta_{a}^{T} & K_{a b} & \beta_{b}  \tag{B-16}\\
\hdashline \beta_{b}^{T} & K_{b a} & \beta_{a} & \beta_{b}^{T} & K_{b b} & \beta_{b}
\end{array}\right]
$$

Each of the submatrices is of order six by six. When these operations were carried out the final matrix was obtained. The non-zero elements of the upper triangle of this matrix are listed in Figure B-5. The elements of the lower triangle may be found by symmetry.

The elements of the $\left[\mathrm{K}_{2}\right]$ stiffness matrix may be found from the $\left[K_{1}\right]$ matrix by replacing:

$$
\begin{array}{ccc}
\mathrm{x}_{\mathrm{a}} & \mathrm{by} & -\mathrm{x}_{\mathrm{c}} \\
\mathrm{z}_{\mathrm{a}} & \mathrm{by}_{\mathrm{y}} & \mathrm{z}_{\mathrm{c}} \\
\mathrm{x}_{\mathrm{a}} & \mathrm{by}_{\mathrm{y}} & -\mathrm{x}_{\mathrm{d}} \\
\mathrm{z}_{\mathrm{b}} & \mathrm{by} & \mathrm{z}_{\mathrm{d}} .
\end{array}
$$

These replacements were found by writing coordinate transformations similar to equations $B-12$ and $B-14$ for points $C$ and $d$.

With the mass matrix and the stiffness matrix for the system as given in equations $B-8$ and Figure $B-5$, the free yibration modes were found by solving an eigenvalue problem of the type given in equation ( $B-5$ ). In this case there are six "free-free" modes and six corresponding zero frequencies in addition to six natural modes of vibration.

The mass and inertia properties for the plane motion analysis and the general motion analysis are tabulated in Table BI. These values were found using the corresponding NASTRAN finite element model in each case. The rigid body mass and inertia properties are found in NASTRAN by requesting execution of the Grid Point Weight Generator. The Grid Point Weight Generator is requested by use of the bulk data PARAM card.


Figure 1.- Photograph of $1 / 15$-scale space shuttle model.


Figure 2.- Schematic of $1 / 15$ scale space shuttle model.


Figure 3.- Photograph of elastic interface between booster and orbiter fuselages.



(2)(2)


Figure 7.- Geometry for multipoint constraint equations.


Figure 8.- Schematic of booster fuselage-wing interface geometry.


Figure 9.- Schematic of orbiter fuselage-wing interface geometry.




Frequency, Hz

| Mode | Liftoff | Max Q | Burnout |
| :---: | :---: | :---: | ---: |
| 1 | 36.8 | 53.7 | 83.9 |
| 2 | 117.2 | 137.9 | 243.7 |
| 3 | 198.7 | 252.3 | 464.1 |



Figure 12.- Bending modes of booster fuselage.


Frequency, HZ

| Mode | Liftoff | Empty |
| :---: | ---: | ---: |
| 1 | 103.5 | 141.5 |
| 2 | 229.7 | 451.6 |
| 3 | 460.3 |  |


(a) Mode 1


Empty
(b) Mode 2

Figure 13.- Bending modes of orbiter fuselage.

(a) Plan view of delta wing.

(c) Undeformed wing as seen by plotter.

Figure 14.- plotter orientation for delta wing mode shape plots.

(a) Mode 1, 24.6 HZ .

(b) Mode 2, 26.4 HZ .

(c). Mode $3,27.3 \mathrm{HZ}$.

Figure 15.- Mode shapes of booster delta wing.

(d) Mode $4,28.0 \mathrm{HZ}$.

(e) Mode $5,49.4 \mathrm{HZ}$.

(f) Mode $6,54.4 \mathrm{HZ}$.

Figure 15 (continued) :- Mode shapes of booster delta wing.

(g) Mode $7,65.0 \mathrm{HZ}$.

(h) Mode 8, 64.4 Hz .


* (i) Mode 9, 69.4 HZ.

Figure 15 (concluded). - Mode shapes of booster delta wing.

(a) Mode $1,26.3 \mathrm{HZ}$.

(b) Mode 2, 29.3 HZ .

(c) Mode 3; 31.0 HZ .

Figure 16.- Mode shapes of orbiter delta wing.


Figure 16 (continued). - Mode shapes of orbiter delta wing.

(g) Mode
7, 69.1 HZ.

(h) Mode 8, 73.4 Hz .

(i) Mode 9, 118.4 Hz .
Figure 16 (concluded)

$$
9.118 .4 \mathrm{~Hz} .
$$

Mode shapes of orbiter delta wing.

(e) Mode 4, 103.9 HZ .


Figure 17.- Mode shapes of elastically connected fuselages. Liftoff weight distribution. $10^{2} \mathrm{lb} /$ in nominal springs.

(a) Analytical model

(b) Mode $1,32.21 \mathrm{~Hz}$.

(c) Mode $2,57.60 \mathrm{HZ}$.

(f) Mode 5, 196.9. HZ

Figure 18.- Mode shapes of elastically connected fuselages. Liftoff weight distribution. $10^{5} \mathrm{lb}$ /in nominal springs.


Nominal spring constant, $1 \mathrm{~b} / \mathrm{in}$.

Figure 19.- Variation of NASTRAN and rigid body analyses frequencies with nominal spring constant.

## Frequencies

Rigid body - 3.44 HZ
NASTRAN -3.53 Hz
(a) First mode.

(b) Second mode.

```
Rigid Body
NASTRAN - - - -
```

Figure 20.- Comparison of NASTRAN and rigid body analysis modes. $10^{2} \mathrm{lb} /$ in nominal spring.

(b) Displacement components for mode shapes.

Figure 21.- Plotter view of elastically connected fuselages.


Figure 22.- Mode shapes of elastically connected fuselages. Theoretical flexibility matrix. Nominal $10^{3} 1 \mathrm{D} / \mathrm{in}$.


Figure 22 (continued)- Mode shapes of elastically connected fuselages. Theoretical flexibility matrix. Nominal $10^{3} \mathrm{lb} / \mathrm{in}$.


Figure 22 (continued) - Mode shapes of elastically connected fuselages. Theoretical flexibility matrix. Nominal $10^{3} \mathrm{lb} / \mathrm{in}$.


Figure 22 (concluded). - Mode shapes of elastically connected fuselages. Theoretical flexibility matrix. Nominal $10^{3} \mathrm{lb} / \mathrm{in}$.

$\dot{3}$
0
0
0
0
0
0


Nominal spring constant, lb/in.
Figure 24.- Variation of NASTRAN and rigid body analyses frequencies. Elastically connected fuselages. Theoretical flexibility matrix.

(a) Exploded view of complete model.

(b) Plotter view of undeformed model.

Figure 25.- Plotter orientation for complete model mode shape plots.



Figure 26 (concluded).- Mode shapes of booster airplane. Liftoff weight distribution.


Figure 27.- Mode shapes of orbiter airplane. Liftoff weight distribution.


Figure 27 (concluded).- Mode shapes of orbiter airplane. Liftoff weight distribution.

(b) Mode $2,13.8 \mathrm{~Hz}$.

Figure 28.- Mode shapes of complete model. $10^{3} \mathrm{lb} /$ in theoretical flexibility matrix. Liftoff weight distribution.

(d) Mode $4,23.7 \mathrm{~Hz}$

Figure 28 (continued).- Mode shapes of complete model. $10^{3} \mathrm{lb} /$ in theoretical flexibility matrix. Liftoff weight distribution.


Figure 28 (continued). - Mode shapes of complete model. $10^{3} \mathrm{lb} /$ in theoretical flexibility matrix. Liftoff weight distribution.

(h) Mode 13, 65.6. HZ.

Figure 28 (continued).- Mode shapes of complete model.
$10^{3} \mathrm{lb} /$ in theoretical flexibility matrix. Liftoff weight distribution.


Figure 28 (concluded). - Mode shapes of complete model. $10^{3} \mathrm{lb} /$ in theoretical flexibility matrix. Liftoff weight distribution.



Figure A-1. Schematic of elastic interface.


Figure A-2.- Displacement components of elastic interface.

$K_{21}$
(a)

(b)

Figure $A-3 .-$ Elements of matrix $\left[K_{2}\right]$.

(a)

Figure $A-4$ - Elements of matrix $\left[\mathrm{K}_{X Z}\right]$.


Figure B-1.- Plane motion rigid body model.

(a) Orbiter-booster system

(b) Orbiter displacement

(c) Booster displacements.

Figure B-2.- General motion rigid body model.


Figure B-3.- Stiffness matrix in interface coordinates.


[^0]Figure B-4.- Stiffness matrix $\left[\mathrm{K}_{1}\right]$ in attachment coordinates.

$$
\begin{aligned}
& K_{1,1}=K_{33} \\
& K_{1,4}=K_{13}-z_{a} K_{33} \\
& K_{1,1}=K_{34} \\
& K_{1,11}=K_{23}+z_{b} K_{34} \\
& K_{2,2}=K_{33}^{\prime} \\
& K_{2,4}=K_{13}^{\prime}+Z_{a} K^{\prime} 33 \\
& K_{2,6}=-X_{a} K_{33}^{\prime} \\
& K_{2,8}=K_{34} \\
& K_{2,10}=K_{23}^{\prime}-z_{b} K^{\prime} 34 \\
& K_{2,12}=-X_{b} K^{\prime} 34 \\
& K_{3,3}=K_{A} \\
& K_{3,5}=X_{a} K_{A} \\
& K_{3,9}=-K_{A} \\
& K_{3,11}=-X_{b} K_{A} \\
& K_{4,4}=z_{a}{ }^{2} K_{33}^{\prime}+2 Z_{a} K^{\prime} 13+K^{\prime} 11 \\
& K_{4,6}=-X_{a} Z_{a} K^{\prime} 33-X_{a} K^{\prime} 13 \\
& K_{4,8}=K_{14}^{\prime}+Z_{a} K^{\prime} 13 \\
& K_{4,10}=Z_{a} K^{\prime}{ }_{23}-Z_{a} Z_{b} K^{\prime}{ }_{34}+K^{\prime} 12-Z_{b} K^{\prime} 14
\end{aligned}
$$

Figure B-5.- Elements of $\left[K_{1}\right]$ in generalized coordinates

$$
\begin{aligned}
& K_{4,12}=-2 X_{b}{ }^{\prime}{ }_{34}-x_{b} K^{\prime}{ }_{14} \\
& \mathrm{~K}_{5,5}=\mathrm{Z}_{\mathrm{a}}^{2} \mathrm{~K}_{33}+\mathrm{X}_{\mathrm{a}}^{2} \mathrm{~K}_{\mathrm{z}}-2 \overline{\mathrm{Z}}_{\mathrm{a}} \mathrm{~K}_{13} \mathrm{~F}_{11} \\
& \mathrm{~K}_{5,7}=\mathrm{K}_{14}-\mathrm{Z}_{\mathrm{a}} \mathrm{~K}_{34} \\
& \mathrm{~K}_{5,9}=-\mathrm{X}_{\mathrm{a}} \mathrm{~K}_{2} \\
& K_{5,11}=-Z_{a} K_{23}-z_{a} z_{b} K_{34}-X_{a} X_{b} K_{z}+K_{12}+z_{b} K_{14} \\
& K_{6,6}=X_{a}^{2} K_{33}^{\prime}+K_{T} \\
& K_{6,8}=-x_{a} K_{34}^{\prime} \\
& K_{6,10}=-x_{a} K^{\prime}{ }_{23}+x_{a} z_{b} K^{\prime} 34 \\
& K_{6,12}=X_{a} X_{b} K^{\prime} 34-K_{T} \\
& K_{7,7}=K_{44} \\
& K_{7,11}=K_{24}+Z_{b} K_{44} \\
& K_{8,8}=K^{\prime}{ }_{44} \\
& K_{8,10}=K^{\prime}{ }_{24}-z_{b} K^{\prime}{ }_{44} \\
& K_{8,12}=-\mathrm{X}_{\mathrm{b}} \mathrm{~K}_{44} \\
& \mathrm{~K}_{9,9}=\mathrm{K}_{\mathrm{Z}} \\
& K_{10,10}=Z_{b}{ }^{2} K_{44}^{\prime}-2 Z_{b} K^{\prime}{ }_{24}+K_{22}^{\prime} \\
& K_{10,12}=X_{b} z_{b} K_{44}^{\prime}-X_{b} K^{\prime}{ }_{24} \\
& \mathrm{~K}_{11,11}=2 \mathrm{z}_{\mathrm{b}} \mathrm{~K}_{24}+\mathrm{X}_{\mathrm{b}}{ }^{2} \mathrm{~K}_{\mathrm{z}}+\mathrm{K}_{22}+\mathrm{Z}_{\mathrm{b}}{ }^{2} \mathrm{~K}_{44} \\
& \mathrm{~K}_{12,12}=\mathrm{X}_{\mathrm{b}}{ }^{2} \mathrm{~K}_{44}+\mathrm{K}_{\mathrm{T}}
\end{aligned}
$$

Figure B-5 (continued).- Elements of $\left[K_{1}\right]$ in generalized coordinates

TABLE I
Booster and orbiter simulated propellant weights
(a) Booster add-on weights (Pounds)

| Weight No. <br> (See Figure 2) | Liftoff | Max Q | BuInout |
| :---: | ---: | ---: | :---: |
| 1 | 138.7 | 138.7 | 0 |
| 2 | 22.4 | 22.4 | 0 |
| 3 | 80.6 | 0 | 0 |
| 4 | 13.9 | 0 | 0 |

(b) Orbiter add-on weights (Pounds)

| Position | Liftoff | Empty |
| :--- | :---: | :---: |
| Forward | 60.4 | 0 |
| Aft | 9.9 | 0 |

Table II
Booster fuselage Element properties

Grid point (typical)


Table III

## Booster fuselage

Concentrated mass properties
Liftoff

|  |  | Nominal Values |  | Test values |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Grid Point | $\begin{gathered} \text { Station } \\ x(\text { in }) \end{gathered}$ | $\stackrel{M}{\mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}}$ | $\stackrel{I}{I_{x x}}$ | $\frac{M}{l b-\sec ^{2} / \text { in }}$ | $\begin{gathered} I_{x x} \\ \text { in }-1 b-\sec ^{2} \end{gathered}$ |
| 1 | 0.0 | 0.233-3 | 0.0023 | 0.233-3 | 0.0023 |
| 2 | 11.0 | 0.207-2 | 1.366 | 0.207-2 | 1.47 |
| 3 | 20.3 | 0.184-2 | 4.937 | 0.174-1 | 4.28 |
| 4 | 57.5 | 0.298-2 | 3.636 | 0.139-1 | 2.86 |
| 5 | 66.0 | 0.360-1 | 0.906 | 0.360-1 | 0.83 |
| 6 | 80.97 | 0.362-2 | 0.135 | 0.362-2 | 0.135 |
| 7 | 87.0 | 0.373-2 | 0.148 | 0.373-2 | 0.148 |
| 8 | 101.7 | 0.580-1 | 1.734 | 0.580-1 | 1.69 |
| 9 | 124.2 | 0.455-2 | 0.325 | 0.455-2 | 0.325 |
| 10 | 134.8 | 0.142-1 | 0.345 | 0.246-1 | 0.345 |


|  |  | Nominal |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Max | Q |  | out |
| Grid Point | $\begin{gathered} \text { Station } \\ x(\text { in }) \end{gathered}$ | $\frac{M}{1 b-\sec ^{2} / i n}$ | $\begin{gathered} I_{\mathrm{xx}} \\ \text { in }-1 \mathrm{~b}-\mathrm{sec}^{2} \end{gathered}$ | $\frac{M}{1 b-\sec ^{2} / \mathrm{in}}$ | $\begin{gathered} I_{x x} \\ \text { in }-1 b-\sec ^{2} \end{gathered}$ |
| 1 | 0 | 0.233-3 | 0.0023 | 0.233-3 | 0.0023 |
| 2 | 11.0 | 0.207-2 | 0.0172 | 0.207-2 | 0.0172 |
| 3 | 20.3 | 0.184-2 | 3.588 | 0.184-2 | 0.110 |
| 4 | 57.5 | 0.298-2 | 3.636 | 0.298-2 | 0.158 |
| 5 | 66.0 | 0 | 0.107 | 0 | 0.107 |
| 6 | 80.97 | 0.362-2 | 0.135 | 0.362-2 | 0.135 |
| 7 | 87.0 | 0.373-2 | 0.148 | 0.373-2 | 0.148 |
| 8 | 101.7 | 0.580-1 | 1.734 | 0 | 0.240 |
| 9 | 124.2 | 0.455-2 | 0.325 | 0.455-2 | 0.325 |
| 10 | 134.3 | 0.142-1 | 0.345 | 0.142-; | 0.345 |

Table IV
Orbiter fuselage
Element properties


| Element | Cross section properties |  |  | NSM (lb-sec ${ }^{2}$ /in/in) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | A(in $\left.{ }^{2}\right)$ | $I\left(\right.$ in $\left.^{4}\right)$ | $J\left(\right.$ in $\left.^{4}\right)$ | Liftoff | Empty |
|  | 1.169 | 3.160 | 6.32 | 0 | 0 |
| 11 | 1.458 | 6.138 | 12.28 | $1.042-2$ | 0 |
| 12 | 1.272 | 4.072 | 8.14 | 0 | 0 |
| 13 | 1.272 | 4.072 | 8.14 | 0 | 0 |
| 14 | 1.272 | 4.072 | 8.14 | $0.214-2$ | 0 |
| 15 | 1.272 | 4.072 | 8.14 | 0 | 0 |
| 16 | 1.272 | 4.072 | 8.14 | 0 | 0 |

Table V

Concentrated Mass Properties

| Grid Point | $x$ (inches) |  | Liftoff |  |  |  | Empty |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Nominal Values |  | Test Values |  | Nominal Values: |  |
|  |  |  | $\begin{gathered} M \\ 1 b-\sec ^{2} / \mathrm{in} \end{gathered}$ | $\begin{gathered} \mathrm{I}_{\mathrm{in}}-1 b-\sec ^{2} \end{gathered}$ | $\begin{gathered} M \\ 1 b-\sec ^{2} / i n \end{gathered}$ | $\begin{gathered} I_{x x} \\ i n_{n}-1 b-\sec ^{2} \end{gathered}$ | M ${ }_{\text {M }} \sec ^{2} /$ in | $\begin{gathered} \mathrm{I}_{x x} \\ \text { in-lb-sec } \end{gathered}$ |
| 20 |  | 0 | 1.345-2 | 0.0152 | 1.345-2 | 0.0152 | 1. 345-2 | 0.0152 |
| 21 |  | 12.0 | 0.197-2 | 1.700 | 0.197-2 | 1.290 | 0.197-2 | 1.700 |
| 22 |  | 27.0 | 0.295-2 | 1.70 .7 | $\therefore 1.855-2$ | 1.298 | 0.295-2 | 1.707 |
| 23 |  | 32.84 | 0.166-2 | 0.0408 | 0.166-2 | 0.0408 | 0.166-2 | 0.0408 |
| 24 |  | 40.5 | 0 | 0.144 | 0 | 0.128 | 0 | 0.144 |
| 25 |  | 52.5 | 0 | 0.144 | 0 | 0.128 | - 0 , | 0.144 |
| 26 |  | 65.2 | 0.166-2 | 0.0563 | $\therefore 1.266-2$ | 0.0563 | $\therefore 0.166-2$ | 0.0563 |
| 27 |  | 76.0 | 0.124-2 | 0.0150 | 0.124-2 | 0.0150 | 0.124-2 | 0.0150 |

Table VI
Booster wing grid point coordinates

Coordinate System 1

| Grid Point | $\mathrm{X}_{1}$ (inches) | $\mathrm{Y}_{1}$ (inches) | $\mathrm{Z}_{1}$ (inches) |
| :---: | :---: | :---: | :---: |
| 1 | 41.33 | 0 | 0 |
| 2 | 20.66 | 0 | 0 |
| 3 | 0 | 0 | 0 |
| 4 | 41.33 | -9.42 | 1.62 |
| 5. | 20.66 | -9.42 | 1.62 |
| 6 | 0 | -9.42 | 1.62 |
| 7 | 41.33 | 9.42 | 1.62 |
| 8 | 20.66 | 9.42 | 1.62 |
| 9 | 0 | 9.42 | 1.62 |
| $34 *$ | 41.33 | -5.82 | 1.00 |
| $35 *$ | 20.66 | -5.82 | 1.00 |
| $36 *$ | 0 | -5.82 | 1.00 |
| $37 *$ | 41.33 | 5.82 | 1.00 |
| $38^{*}$ | 20.66 | 5.82 | 1.00 |
| $39 *$ | 0 | 5.82 | 1.00 |

*Grid points 34-39 were used only for attaching the wing to the fuselage.

Coordinate System 2

| Grid Point | $\mathrm{X}_{2}$ (inches) | $\mathrm{Y}_{2}$ (inches) | $\mathrm{Z}_{2}$ (inches) |
| :---: | :---: | :---: | :---: |
| 10 | 10.0 | 41.33 | 0 |
| 11 | 10.0 | 25.82 | 0 |
| 12 | 10.0 | 10.31 | 0 |
| 16 | 20.0 | 41.33 | 0 |
| 17 | 20.0 | 30.97 | 0 |
| 18 | 20.0 | 20.62 | 0 |
| 22 | 30.0 | 41.33 | 0 |
| 23 | 30.0 | 36.13 | 0 |
| 24 | 30.0 | 30.94 | 0 |
| 28 | 35.0 | 41.33 | 0 |
| 29 | 35.0 | 38.71 | 0 |
| 30 | 35.0 | 36.10 | 0 |

Table. VI continued

Coordinate System 3

| Grid Point | $\mathrm{X}_{3}$ (inches) | $\mathrm{Y}_{3}$ (inches) | $\mathrm{Z}_{3}$ (inches) |
| :---: | :---: | :---: | :---: |
| 13 | 41.33 | 10.0 | 0 |
| 14 | 25.82 | 10.0 | 0 |
| 15 | 10.31 | 10.0 | 0 |
| 19 | 41.33 | 20.0 | 0 |
| 20 | 30.97 | 20.0 | 0 |
| 21 | 20.62 | 20.0 | 0 |
| 25 | 41.33 | 30.0 | 0 |
| 26 | 36.73 | 30.0 | 0 |
| 27 | 30.94 | 30.0 | 0 |
| 31 | 41.33 | 35.0 | 0 |
| 32 | 38.71 | 35.0 | 0 |
| 33 | 36.10 | 35.0 | 0 |

Table VII
Booster wing element properties

| Element | A | Il | $I 2$ | $J$ | $I 12$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1,11,24,10,20,33$ | 0.307 | $0.596-2$ | $0.129-1$ | $0.106-1$ | 0 |
| $2,12,25,9,19,32$ | 0.419 | $0.299-1$ | $0.169-1$ | $0.119-1$ | 0 |
| $3,13,26,8,18,31$ | 0.559 | 0.118 | $0.200-1$ | $0.136-1$ | 0 |
| $4,14,27,7,17,30$ | 0.695 | 0.299 | $0.219-1$ | $0.152-1$ | 0 |
| 40,41 | $0.714-1$ | $0.281-3$ | $0.720-2$ | $0.900-4$ | $-0.895-3$ |
| 50,51 | $0.714-1$ | $0.396-2$ | $0.720-2$ | $0.900-4$ | $+0.895-3$ |
| 42,43 | $0.936-1$ | $0.296-2$ | $0.980-2$ | $0.111-3$ | $-0.308-2$ |
| 52,53 | $0.936-1$ | $0.296-2$ | $0.980-2$ | $0.111-3$ | $+0.308-2$ |
| 44,45 | 0.116 | $0.114-1$ | $0.114-1$ | $0.139-3$ | $-0.622-2$ |
| 54,55 | 0.116 | $0.114-1$ | $0.114-1$ | $0.139-3$ | $+0.622-2$ |
| 15 | 1.33 | 0.857 | 0.143 | $0.320-1$ | 0 |
| $5,28,6,16,29$ | 0.25 | $0.130-2$ | $0.208-1$ | $0.833-1$ | 0 |

Table VIII
Orbiter wing grid point coordinates

| Grid point | $X$ (inches) | $Y($ inches) | 2 (inches) |
| :---: | :---: | :---: | :---: |
| 1 | 28.36 | 0 | 0 |
| 2 | 14.36 | 0 | 0 |
| 3 | 0 | 0 | 0 |
| 4 | 28.36 | 4.928 | 0.8468 |
| 5 | 14.36 | 4.928 | 0.8468 |
| 6 | 0 | 4.928 | 0.8468 |
| 7 | 28.36 | -4.928 | 0.8468 |
| 8 | 14.36 | -4.928 | 0.8468 |
| 9 | 0 | -4.928 | 0.8468 |
| 10 | 28.36 | 14.78 | 2.540 |
| 11 | 19.34 | 14.78 | 2.540 |
| 12 | 10.31 | 14.78 | 2.540 |
| 13 | 28.36 | -14.78 | 2.540 |
| 14 | 19.34 | -14.78 | 2.540 |
| 15 | 10.31 | -14.78 | 2.540 |
| 16 | 28.36 | 24.64 | 4.234 |
| 17 | 24.49 | 24.64 | 4.234 |
| 18 | 20.63 | 24.64 | 4.234 |
| 19 | 28.36 | -24.64 | 4.234 |
| 20 | 24.49 | -24.64 | 4.234 |
| 21 | 20.63 | -24.64 | 4.234 |
| 22 | 28.36 | 29.57 | 5.081 |
| 23 | 27.08 | 29.57 | 5.081 |
| 24 | 25.78 | 29.57 | 5.081 |
| 25 | 28.36 | -29.57 | 5.081 |
| 26 | 27.08 | -29.57 | 5.081 |
| 27 | 25.78 | -29.57 | 5.081 |
| $44 *$ | 28.36 | -3.94 | 0.676 |
| $45 *$ | 14.18 | -3.94 | 0.676 |
| $46 *$ | 0 | -3.94 | 0.676 |
| $47 *$ | 28.36 | 3.94 | 0.676 |
| $48 *$ | 14.18 | 3.94 | 0.676 |
| $49 *$ | 0 | 3.94 | 0.676 |

*Grid points 44-49 were used only for attaching wing to the fuselage.

Table IX Orbiter wing element properties

| Element | A | I1 | I2 | $J$ | I12 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | in $^{2}$ | in $^{4}$ | in $^{4}$ | in $^{4}$ | in $^{4}$ |
| $4,12,20,5,13,21$ | 0.563 | 0.167 | 0.160 | $0.293-2$ | 0 |
| $3,11,19,6,14,22$ | 0.302 | $0.301-1$ | $0.998-2$ | $0.352-2$ | 0 |
| $1,9,17,8,16,24$ | 0.156 | $0.814-3$ | $0.509-2$ | $0.326-2$ | 0 |
| $25,26,27,28$ | 0.125 | $0.651-3$ | $0.260-2$ | $0.260-2$ | 0 |
| $29,30,31,32$ | $0.864-1$ | $0.159-2$ | $0.848-2$ | $0.109-3$ | $-0.618-3$ |
| $33,34,35,36$ | $0.864-1$ | $0.159-2$ | $0.848-2$ | $0.109-3$ | $-0.618-3$ |

Table X
Theoretical and Experimental Flexibility Matrices for elastic interface.

| $\begin{aligned} & \mathrm{Eq} . \\ & (\mathrm{AI}-1) \end{aligned}$ | Nominal $10^{3}$ Case |  |  |
| :---: | :---: | :---: | :---: |
|  | INASTRAN | $\mathrm{z}_{\mathrm{ij}}{ }^{*}$ |  |
|  |  | Theoretical | Experimental |
| ${ }^{5} 5$ | $\mathrm{z}_{11}$ | 0.1041-2 | 0.1035-2 |
| $\mathrm{a}_{53}$ | $\mathrm{Z}_{15}$ | 0.1344-3 | 0.1324-3 |
| ano | $\mathrm{Z}_{22}$ | 0.1055-2 | 0.1215-2 |
| 097 | ${ }^{2} 24$ | -0.0775-4 | -0.216-4 |
| $a_{11}=a_{z}$ | $\mathrm{z}_{33}$ | 0.9962-3 | 0.976-3 |
| $\mathrm{a}_{77}$ | ${ }^{2} 44$ | 0.1112-5 | 0.233-5 |
| $\mathrm{a}_{33}$ | $z_{55}$ | 0.1814-4 | 0.1807-4 |
| $\mathrm{a}_{T}$ | $\mathrm{z}_{66}$ | 0.5263-5 | 0.721-5 |

Table XI Resequencing of grid points for complete model.

${ }^{\text {a Denotes NASTRAN bulk data card for grid point resequencing. }}$
a Denotes NASTRAN bulk data card
boriginal grid point number.
${ }^{\prime}$ Resequenced grid point number.

Table XII Natural frequencies of booster and orbiter fuselages.
(a) Booster fuselage frequencies, HZ.

| . | Mode | Weigint distribution |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Liftoff |  | Max Q | Burnout |  |
|  |  | Theory | , Exper. | Theory | Theory | Exper. |
| Bending | 1 2 3 | $\begin{array}{r} 36.8 \\ 117.2 \\ 198.7 \end{array}$ | $\begin{aligned} & 36.3^{a}, 36.8^{b} \\ & -95.2^{a}, 98.8^{b} \\ & 181.9,177.3 \end{aligned}$ | $\begin{array}{r} 53.6 \\ 137.9 \\ 252.3 \end{array}$ | $\begin{array}{r} 83.9 \\ 242.7 \end{array}$ | 73.7 |
| Torsion | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | $\begin{aligned} & 114.3 \\ & 243.4 \end{aligned}$ | $\begin{array}{r} 88.9 \\ 161.8 \end{array}$ | $\begin{aligned} & 116.8 \\ & 247.5 \end{aligned}$ |  |  |
| Axial | 1 | 240.2 |  | 298.9 |  |  |

a Pitch excitation
b Yaw excitation
(b) Orbiter fuselage frequencies, HZ.

|  |  | Weight distribution |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Liftoff |  | Empty |  |
|  | Mode | Theory | Exper. | Theory |
| Bending | 1 | 103.5 | $103.4^{\text {a }}, 102.7^{\mathrm{b}}$ | 141.5 |
|  | 2 | 229.7 | $205^{\mathrm{c}}, 201^{\mathrm{c}}$ | 451.6 |
|  | 3 | 460.3 |  |  |

${ }^{\text {a }}$ Pitch excitation
b Yaw excitation Approximate

Table XIII Natural frequencies of free-free booster and orbiter wings:

|  | Booster wing |  | Orbiter wing |  |
| :---: | :---: | :---: | :---: | :---: |
| Mode | Theory | Exper. | Theory | Exper. |
| 1 | 24.6 | -26.4 | 26.3 |  |
| 2 | 26.4 | 24.8 | 29.3 |  |
| 3 | 27.3 | 26.4 | 31.0 | $28.5,32.2$ |
| 4 | 28.0 | 26.0 | 61.3 |  |
| 5 | 49.4 |  | 63.2 | 66.9 |
| 6 | 54.4 | 60.4 | 67.5 | 74.5 |
| 7 | 65.0 |  | 69.1 |  |
| 8 | 69.4 |  | 73.4 |  |
| 9 | 69.6 | 73.8 |  |  |
| 10 | 96.1 |  | 118.4 |  |
| 11 | 101.0 |  | 112.5 |  |
| 12 | 107.3 |  | 125.7 |  |
| 13 | 113.2 |  | 128.9 |  |
| 14 | 125.2 |  | 133.4 |  |
| 15 | 142.5 |  | 139.3 |  |
| 16 | 142.8 |  | 177.1 |  |
| 17 | 152.2 |  | 183.8 |  |
| 18 | 155.2 |  |  |  |
| 19 | 182.9 |  |  |  |
| 20 | 194.2 |  |  |  |

Table XV Frequencies of elastically connected fuselages. Theoretical flexibility matrix. Liftoff weight distribution.

| Mode | Nominal spring constant, $\mathrm{lb} /$ in |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $10^{2}$ |  | $10^{3 \mathrm{a}}$ |  | $10^{4}$ |  | $10^{5}$ |  |
|  | HZ | Motion | HZ | Motion | HZ | Motion | HZ | Motion |
| 1 | 4.09 | Pitch ${ }^{\text {b }}$ | 11.21 | Pitch | 27.27 | Pitch | 30.53 | Yaw |
| 2 | 8.73 | Yawb | 17.35 | Yaw | 28.65 | Yaw | 31.35 | Pitch |
| 3 | 8.97 | Pitch | 24.98 | Pitch | 39.73 | Pitch | 54.19 | Yaw |
| 4 | 13.84 | Yaw | 34.38 | Yaw | 44.43 | Yaw | 63.34 | Pitch |
| 5 | 35.37 | Yaw | 37.42 | Pitch | 70.97 | Pitch-axial | 83.51 | Axial-pitch |
| 6 | 35.62 | Pitch | 40.12 | Yaw | 82.51 | Pitch-axial | 104.6 | Yaw |
| 7 | 68.57 | Pitch-axialc | 75.22 | Pitch-axial | 83.88 | Yaw | 113.5 | Yaw |
| 8 | 86.84 | Roll ${ }^{\text {d }}$ | 96.22 | Yaw | 112.3 | Yaw | 117.7 | Pitch |
| 9 | 93.79 | Yaw | 104.9 | Pitch | 115.2 | Yaw | 158.4 | Pitch |
| 10 | 101.1 | Pitch | 110.4 | Roll-yaw | 116.6 | Pitch | 169.5 | Yaw |
| 11 | 112.8 | Yaw | 113.1 | Yaw | 131.2 | Pitch | 177.1 | Yaw |
| 12 | 117.5 | Pitch | 118.7 | Pitch | 137.2 | Yaw | 193.7 | Pitch |
| 13 | 123.6 | Roll | 131.9 | Roll | 155.3 | Yaw-roll | 197.9 | Yaw |
| 14 | 195.0 | Yaw | 195.3 | Yaw | 196.9 | Yaw | 223.9 | Yaw |

[^1]Table XVI Comparison of frequencies for elastically connected fuselages. Nominal $10^{3} \mathrm{lb} /$ in interface. Liftoff weight distribution.

| Nominal Interface Scalar springs ${ }^{\text {a }}$ |  | Interface Flexibility Matrix |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Theoretical Matrix ${ }^{\text {b }}$ |  | Experimental Matrix ${ }^{\text {b }}$ |  |
| H2 | Motion | Hz | Motion | Hz | Motion |
| 10.7 | Pitch | 11.2 | Pitch | 11.3 | Pitch |
| 10.7 | Yaw | 17.4 | Yaw | 16.3 | Yaw |
| 25.9 | Pitch | 25.0 | Pitch | 25.1 | Pitch |
| 25.9 | Yaw | 34.4 | Yaw | 33.5 | Yaw |
| 36.3 | Pitch | 37.4 | Pitch | 37.3 | Pitch |
| 36.3 | Yaw | 40.1 | Yaw | 38.5 | Yaw |
| 93.8 | Pitch | 75.2 | Pitch-axial | 64.3 | Pitch-axial |
| 93.8 | Yaw | 96.2 | Yaw | 88.4 | Roll |
| 110.5 | Pitch | 104.9 | Pitch | 95.5 | Yaw |
| 110.5 | Yaw | 110.4 | Roll-yaw | 102.6 | Pitch |
| 191.0 | Pitch | 113.1 | Yaw | 112.9 | Pitch |
| 191.0 | Yaw | 118.7 131.9 | Pitch <br> Roll | $\begin{aligned} & 116.7 \\ & 123.9 \end{aligned}$ | Pitch Roll |

$\mathrm{a}_{\text {Test }}$ weights. Inverse power method with consistent mass matrix. $\mathrm{b}_{\text {Test }}$ weights. Givens method with lumped mass matrix.

Table XVII Frequencies of booster and orbiter airplanes.
(a) Booster airplane.

Frequencies, HZ

| Predominate motion |  |  |  |
| :---: | :---: | :---: | :---: |
| Coupled fuselage and wing modes | Wing modes |  |  |
| Pitch $^{\mathrm{a}}$ | Yaw $^{\mathrm{b}}$ | Symmetric ${ }^{\text {c }}$ | Antisymmetric $^{\mathrm{c}}$ |
| $30.0^{\mathrm{d}}$ | $30.7^{\text {d }}$ | $65.2^{\text {d }}$ | 42.5 d |
| 33.9 |  | 65.9 | $63.8^{\mathrm{d}}$ |
| 122.3 |  | 117.4 | 69.5 |
| 128.1 |  |  | 67.5 |
|  |  | 119.8 |  |

a pitch refers to displacements in the $X Z$ plane.
b Yaw refers to displacements in the YZ plane.
C Symmetry and antisymmetry refer to the $X Z$ plane.
d The mode shapes for these frequencies are plotted in Figure 28.
(b) Orbiter airplane.

Frequencies, HZ

| Predominate motion |  |  |  |
| :---: | :---: | :---: | :---: |
| Coupled fuselage and wing modes | Wing modes |  |  |
| Pitch $^{\mathrm{a}}$ | Yaw $^{\mathrm{b}}$ | Symmetric ${ }^{\mathrm{c}}$ | Antisymmetric ${ }^{\mathrm{c}}$ |
| $79.6^{\mathrm{d}}$ | $76.1^{\mathrm{d}}$ | $33.1_{\mathrm{d}}$ | $41.6^{\mathrm{d}}$ |
|  |  | $70 . \mathrm{d}^{\mathrm{d}}$ | 71.7 d |
|  |  | 132.7 | 128.1 |
|  |  | 138.8 | 141.7 |
|  |  | 152.2 | 149.7 |
|  |  |  | 198.9 |
|  |  |  |  |

${ }^{a}$ Pitch refers to displacement in the XZ plane.
b Yaw refers to displacements in the $Y Z$ plane.
C Symetry and antisymmetry refer to the XZ plane.
d The mode shapes for these frequencies are plotted in Figure 28.
Table XVIII Frequencies of complete model

| Coupled fuselage and wing modes |  | Booster wing modes |  | Orbiter wing modes |  | Coupled booster and orbiter wing modes |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pitch ${ }^{\text {a }}$ | Combined pitch and yawa | Sym.b | Antisym.b | Sym. | Antisym. | Sym. | Antisym. | Comined ${ }^{\text {c }}$ |
| $\begin{gathered} 10.9 \mathrm{~d} \\ 20.9 \\ 130.3 \end{gathered}$ | $\begin{aligned} & 13.8^{\mathrm{d}} \\ & 23.7 \mathrm{~d} \\ & 32.9 \\ & 78 . \mathrm{d}^{\mathrm{d}} \\ & 92.0 \end{aligned}$ | $\begin{aligned} & 65.6^{\mathrm{d}} \\ & 118.8 \\ & 123.8 \\ & 129.4 \end{aligned}$ | 119.9 | $\begin{array}{r} 73.2 \\ 132.8 \\ 139.1 \end{array}$ | $\begin{aligned} & 30.2^{\mathrm{d}} \\ & 70.2 \\ & 71.0 \\ & 132.9 \\ & 142.9 \\ & 150.2 \end{aligned}$ | $\begin{aligned} & 30.9^{\mathrm{d}} \\ & 33.6 \\ & 35.5 \end{aligned}$ | $\begin{aligned} & 47.2^{\mathrm{d}} \\ & 63.6 \end{aligned}$ | $\begin{aligned} & 64.4 \\ & 69.6 \\ & 93.8 \\ & 118.5 \\ & 147.9 \end{aligned}$ |

[^2]Table A-I
Spring Interface Dimensions

| Nominal. Spring <br> $(1 \mathrm{~b} / \mathrm{in})$ | $t_{p}$ inches | $t_{y}$ inches |
| :---: | :---: | :---: |
| $10^{2}$ | 0.0188 | .0237 |
| $10^{3}$ | 0.0406 | .0511 |
| $10^{4}$ | 0.0874 | .1101 |
| $10^{5}$ | 0.188 .2 | .2371 |


| Dimension | Value <br> inches |
| :---: | :---: |
| a | 6.5 |
| h | 1.6 |
| $\ell_{\mathrm{P}}$ | $2.0^{\mathrm{a}}$ |
| $\ell_{\mathrm{Y}}$ | $2.0^{\mathrm{b}}$ |
| $\mathrm{L}_{1}$ | 5.5 |
| $\mathrm{~L}_{\mathrm{l}}$ | 2.0 |
| d | 9.0 |
| C | 8.0 |

a In equations $A-3 c, 4 b, 6,7 b, 8 a, 11$ an effective length $\ell_{P}=3.0$ inches was used.
$b$ In equation $A-11 b$ and llc an effective length $\ell_{Y}=2.75$ inches was used.
TABLE A-II


## Page Intentionally Left Blank

TABLE A-II Continued


$A T=0.52633350 E-05 . \quad A Z=0.99616353 E-03$


$A 77=0.59693936 E-06$

$$
A Z=0.99856064 E-04
$$


 ㅇㅇㅇㅇ $-05$山以い 山以 心 $\begin{array}{ll}0 & 0 \\ 0 & 8 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 3 & 0\end{array}$ 0
0
0
0
0
0
0
0
0
0

山山しّ 80
08
08
08
08
0
0
0
pənuṬquos II-V דIG甘山
SPRING INTERFACE FLEXIBILITY MATRIX

|  | PITCH SPRING | $T=0.08740$ | YAW | SPR |  | $T=0.11010$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | －．． | $\begin{aligned} & \text { EFFECTI } \\ & \text { LI }=5.5 \end{aligned}$ | NGT |  |  |  |
|  |  | X2 PLANE | BIL | TI |  |  |
| A55\％ | $0.60748188 E-03$ | A53 $=0.72781408 E-04$ |  |  | A33 | 0.9305515 |
|  |  | Y 2 PLANE | 81L | ITIE |  |  |
| A99＝ | $0.13383578 E-03$ | A97＝－0．4 | 58 E | －05 | A 7 | 0.5969393 |


$A T=0.42543296 E-05$
 XZ PLANE FLEXIBILITIES
EFFECTIVE LENGTHS
$L 1=5.5 . L 2=2.0$ NOMINAL 10＂CASE

NAS MVA
$0.42543296 E-05$ ALB．9985064E－O4
$0.42543296 E-05 \quad A Z=0.99856064 E-04$
NASTRAN FLEXIBILITY MATRIX ZII．JI
TABLE A－II Continued


## NOMINAL $10^{4}$ CASE <br> NOMINAL 10

$T=0.08740 \quad$ YAW SPR
$T=0.11010$
$T=0.08740 \quad$ YAW SPRING $T=0.11010$
EFFECTIVE LENGTHS
$L I=0.0 \quad$ LI $=0.0$
$X Z$ PLANE FLEXIBILITIES
A53＝ $0.53393908 E-04 \quad$ A33 $=0.76555150 E-05$
YZ PLANE FLEXIBILITIES
A97 $=-0.29051058 E-05 \quad A 77=0.44693936 E-06$
$A 55=0.37551938 E-03$
$A 99=0.11878578 E-03$

## PITCH SPRING

A99＝0．11878578E－03

[^3]$$
70-3 ヶ 9095866^{\circ} 0=Z \forall
$$


TABLE A－II Continued
$T=0.23720$


## NOMINAL $10^{5}$ CASE


EFFECTIVE LENGTHS
$L 1=5.5: 12=2.0$
$T=0.18820$
YAW SPRING
XZ PLANE FLEXIBILITIES


## S31157．18．37s 3 NVTd $2 \lambda$


S0ーア9カรLG8Lを・0＝1山的山心
00

$$
\begin{aligned}
& O C O .00000000 E \\
& 00-0.28491299 E .
\end{aligned}
$$

$$
\begin{aligned}
& 80 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 00 \\
& 00 \\
& 0 \\
& 0
\end{aligned}
$$

$300000000^{\circ} 0$

m



$A \cdot 77=0.20755944 E-06$
papntouos II－甘 GTGYi
SPRING INTERFACE FLEXIBILITY MATRIX NOMINAL $10^{5}$ CASE －－－－－－－－－－－－－．－－－

S31117181×37」 3NV7d $2 \lambda$
EFFECTIVE LENGTHS
$\mathrm{L}=0.0, L 2=0.0$ $T=0.18820 \quad$ YAW SPRING
xz plane flexibilities


9NIydS HOLId
SO－366て「6ヶET•O＝＝L6V
カローヨ2992LL8！•0＝66

III-甘 aTgUu

 $K T=0.13430865 E 06$
ponutzuos III－ษ ヨTgษu



$$
\text { ZAY XIVIVN SS } 3 N \pm J I 1 S
$$

mann
0000
w w w w
べ～のは

$\begin{array}{ll}\circ & 0 \\ \infty & 0 \\ 0 & 0\end{array}$
 ○～のか－
$K T=0.24593928 \mathrm{E} 06$
$K Z=0.99670079 E 02$
panuṭuod III-甘 דTGVエ
SPRING INTERFACE STIFFNESS MATRICES



$K Z=0.10038512 E \cdot 04$
pənuţuod III-甘 gTAGU
SPRING INTERFACE STIFFNESS MATRICES


$$
\text { ZXY XIyI甘W SS } 3 N \rightarrow a l \perp S
$$

 $K T=0.53082985 E 06$ o




## ZXX xlyIVW SS3NJylls

 EFFECTIVE LENGTHSL1 5.5 L2 2.0
> $T=0.11010$ $T=0.08740 \quad$ YAW SPRING NOMINAL $10^{4}$ CASE 2NIydS HOLId

ZKY XIyIVN SSJNaylls

panutzuod III-甘 GTGY山
SPRING INTERFACE STIFFNESS MATRICES


 KTE O.22430694E 07
pənuţuoj III-ษ criari
SPRING INTEPFACE STIFFNESS MATRICES

$K T=0.26414812 E 06$

ZKY XI\&L甘W SS3N」allS

TABLE A-III Concluded
 NOMINAL $10^{5}$ CASE



|  | Mass ${ }^{\text {a }}$ | Center of Mass ${ }^{\text {b }}$ |  |  | Mass Moments of Inertia |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Body | $\begin{gathered} M \\ \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in} \end{gathered}$ | inches |  |  | $\mathrm{I}_{\mathrm{XX}}$ | $\begin{gathered} I_{Y Y} \\ \text { in-lb-s } \end{gathered}$ | $\mathrm{I}_{Z Z}$ |
| Booster fuselage | 0.799 | 60.7 | 0 | 0 | 12.1 | 847.6 | 847.6 |
| Orbiter fuselage | 0.230 | 34.0 | 0 | 15.7 | 2.97 | 68.0 | '68.0 |
| Booster airplane | 0.853 | 64.8 | 0 | -0.23 | 39.9 | 1134.5 | 1160.6 |
| Orbiter airplane | 0.273 | 36.0 | 0 | 15.6 | 6.9 | 93.1 | 96.9 |

a Masses and moments of inertia are based on test weights.
b See Figure 2 for the coordinate system.


[^0]:    ${ }^{*} K_{i j}$ denotes an element of $\left[\mathrm{K}_{\mathrm{XZ}}\right]$.
    **K'ij denotes an element of [ $K_{Y Z}$ ].

[^1]:    Flane.
    zz
    $\mathrm{b} /$ in case are plotted in Figure 22 . citch refers to motion primarily in the $x 2$
    Axial denotes displacement along the $X$ axis
    Roll denotes rotation about the $x$ axis.

[^2]:    a Pitch refers to displacements in the $X Z$ plane; yaw refers to displacements in the YZ pla Symmetric and antisymmetric refer to the $X Z$ plane.
    combined modes indicate mode in which one wing vibrates symmetrically and the other
    d The mode shapes for these frequencies are plotted in Figure 28.

[^3]:    $00300000000^{\circ} 0$ | 0 |
    | :--- |
    |  |
    | 0 |
    | 0 |
    | 0 |
    |  |
    |  |
    |  |
    |  |
    |  |
    | 0 |
    | 0 | ㅇㅇㅇ $8:$山号 08

    08
    0
    0
    0
    0
    0
    0
    0
    0 8
    8
    8
    8
    8
    0
    0 $50-3$
    00
    00
    00
    $70-3$
     $\infty 08080$
    080808
    08080 N
    $\begin{array}{lll}0.00000000 E & 00 & 0.00000000 E \\ 0.00000000 E & 00-0.2905105 B E-05\end{array}$ $00300000000^{\circ} 0$
    $50-385015062 \cdot 0-00$
    
    山出出岩岩
    山 w w w w $00000000^{\circ} 0$ ع0－3
    
    
    
    
     0.00000000 E 000.00000000 E 0

