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EVALUATION OF NONDESTRUCTIVE TENSILE TESTING

1.0 INTRODUCTION . . .

The realization of the concept of 100 percent nondestructive

testing of wire bonds has eluded semiconductor manufacturers

since thermocompression wire bonding and ultrasonic wire bonding

were first used to connect transistor chips to the outside world.

The qualitative, self-defeating air-pressure test for checking

bonds was set aside when it became apparent that not only were

"good" bonds being weakened, but the only inferior bonds being

detected were those in which the wire was not bonded to the pad

but merely sat on the surface.

Manufacturers then took to verifying the quality of bonds

by tensile testing to destruction a sampling of bonds. What the

quality of the bonds was before, during and after the samples

were evaluated is anybody's guess. There are almost as many

approaches to destructive tensile testing of wire bonds as there

are semiconductor manufacturers. Indeed, a meaningful standard

for tensile testing of wire bonds is still lacking in the

industry*. The differences in angles formed by the wire and the

chip and the wire and the posts; the breaking angles a and 3;

the rate of pull and its constancy and repeatability, and the

direction of pull and the breaking load are some of the factors

which must be considered in determining the quality of chip and

wire bonds.

2.0 DISCUSSION

In the experiments performed in our laboratory, we were

somewhat limited by the fact that we had to take whatever devices

*See Appendix III
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were available from the manufacturer at the time. Instead of

one type of microcircuit with tightly controlled bonding, we had

to choose our samples from several types with varied geometries

and loosely controlled bonding techniques evident. However, the

most severe handicap was the time lost due to the equipment

manufacturer's failure to provide in the early stages of this

program both a workable nondestructive tensile tester and a

microtensile wire/bond tester. .

In order to evaluate the equipment under investigation,- we

required a tensile tester which would measure the breaking load

of the wire/bonds in a repeatable, well-controlled manner. A

commercial Microtensile Wire/Bond Tester, was purchased and

found to be deficient in many regards. We used an in-house

designed tensile tester and restricted the evaluation to the

concurrent pull-testing of wire bond pairs.

We purchased a commercial Microbond Nondestructive Pull-Tester

and found that it did not function in a manner which would be

acceptable to in-line manufacturing requirements. The company

representative attempted to correct the inadequacy, of the machine

but failed to do so. The difficulty centered on the extreme

amount of force required to maneuver the device under test to

its correct location under the hook. The machine was subsequently

replaced by the company and the replacement was found to be

mechanically acceptable.

It was our intention to study the Microbond Nondestructive

Pull-Tester in depth, by performing the series of experiments

listed below. However, due to the limitations of time, equipment,

and material, some of the tests were not carried out .and others

had to be limited in scope.
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2.1 TESTS

2.1.1 Establish Failure Strength Minimum

(A) Concurrent pull-test to destruction of bond pairs*

(B) Pull to destruction of chip bond only:

(1) At 90°

(2) At 45°

(C) Pull test to destruction of post bond only:

(1) At 90°

(2) At 45°

(D) Plot strength frequency distribution of A, B, C

(1) From the above data, established the Failure

Strength Minimum (FSM) to be used as the pre-

stress load for the nondestructive pull tester.

2.1.2 Static Load Life Test

(A) Devices as received

(1) Concurrent pull test to destruction after

1000 hour load at FSM.

(B) Pre-stressed devices

.(•!•) Concurrent pull test to destruction after

1000 hour load at FSM.

2.1.3 Multiple Pre-Stress Test

(A) Extensive pre-stresses at FSM before test to

destruction

(B) Limited pre-stresses at FSM before test to

destruction

(C) Plot strength frequency distribution of B, noting

fallout below FSM and compare with 2.11 (D) above.

'See Figure 1
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2.1.4 Time-Temperature Storage

(A) Devices as received

(1) Store devices @150°C in N2 ambient

(a) Concurrent .test to destruction all bond

pairs after 250 hours.

(b) Concurrent test to destruction all bond

pairs after 500 hours.

(c) Concurrent test to destruction all bond

pairs after 1000 hours.

(2) Store devices @200°C in N2 ambient

(a) Repeat (1) (a), (b) and (c) above

(3) Store devices @250°C in N2 ambient

(a) Repeat (1) (a), (b) and (c) above

(4) Store devices @300°C in N2 ambient

(a) Repeat (1) (a), (b) and (c) above

(B) Pre-stressed devices

(1) Repeat (A)(1), (2), (3) and (4) for an equal num-

ber of devices in which each bond pair has been pre-

stressed once at the established FSM.

. ' " • NOTE

As in previous tests: direction of pull

shall be 90° to substrate; failure strength

and mode shall be noted and recorded;

breaking angles a and 6 shall be translated

to the corrective factors (F ) and (FQ) ina p
order to relate the hook load to T.S. and

T.S.R; and the strength frequency distri- v

bution shall be plotted.
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HOOK LOAD

Figure 1. Concurrent pull test of bond pairs

when

- ^ _ = If )

sin a + cos a tan IB a

T.S. (T.S.
cos a

T'S'/0 = sin/3 + COS/3 tana = (F£ 'L

cos a

when a = /

T.S.Q

L
a

T.Sa =
T.S =

= T.S. _
2 sin a

L

2sin/3

Hook Load at moment of fracture
Breaking angle between wire and post
Breaking angle between wire and chip
Tensile Strength of post bond
Tensile Strength of chip bond
Corrective factor for post bond
Corrective factor for chip bond

Figure 1.- Concurrent pull test of bond pair
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2.1.5. Mechanical Evaluation of Visual Rejects

(A) Concurrent pull-test to destruction of bond pairs

(1) • Inspect devices for visual bond rejects and

code for traceability.

(2) Pull-test to destruction.

(3) Compare number of visual rejects with those

failing FSM.

It cannot be emphasized too strongly that in reporting the

strength of^ wire bonds, unless due consideration is given to the

breaking angles, the data are of little value. The breaking

angle is a function not only of the inherent tensile strength of

the bond, but is also dependent on whether each bond pair is made

with an extended loop or a tight loop. The breaking angle can

also be influenced by the position of the bonding pad on the chip

relative to the post. Thus, merely reporting the hook load at

the moment of bond failure says little about the strength of the

wire bond.

All devices used in these experiments were from one manu-

facturer. The devices consisted of uncapped silicon microcircuits

with aluminum metallization. The bonding wire was 0.001" diameter

aluminum, ultrasonically bonded from post (first bond) to chip

(second bond). We separated the devices into types according to

chip size, geometry, and bonding pad layout. The samples were

restricted to three of the different types. Figures 2 and 3 are

Scanning Electron Microscope photographs .of typical bonds.

2.2 TEST RESULTS

2.2.1 Failure Strength Minimum

In order to establish the FSM, a sample of 18 devices was

taken, made.up of 4 devices from Type 1, 6 devices from Type 2,

and 8 devices from Type 3. Since each device has 14 leads, a

total of 252 bond pairs or 504 bonds was involved in the test.
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Each bond pair was concurrently pull-tested to destruction.

The rate of travel of the hook load was 0.178 inches/minute.

The direction of travel was 90° to the substrate.

In order to determine the breaking angles (a and 8) for the

computation of the bond strengths (T.S. and T.S.g), the devices

were coded and the leads were numbered for bond traceability .

Each bond pair from one unit of each type of device was carefully

photographed and the angles measured. See Figures 4 and 5. From

these measurements, . corrective factors (F ) and (Fg) were computed

for each post and chip bond. •

Type 1: F = 0.56 to 1.3; Ave T.S. = (0.86)L=5.6gm
06 Ot

•Type 2: FO = 0.77 to 1.2; Ave T.S.a = (0.99)L=5.4gm

Type 3: F =1.1 to 1.3; Ave T.S. = (1.1 )L = 5.5 gm
Ot Ob

= (VL

Type 1: F^ = 0.52 to 1.5; Ave T.S.g = (l.O)L. = 6.5 gm

Type 2: Fg = 0.92 to 1.5; Ave T.S.^ = (1.2)L = 6.6 gm

Type 3: F = 0.79 to 1.8; .Ave T.S. = (1.3)L = 6.5 gm
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Ta

2.0 gm

1.1

1.7

2.6

ToB

2.4 gm

1.6

1.0

3.0

It is clear, that due to the differences in the angles a

and 3, a 2.0 gm load applied concurrently to the types of devices

under consideration will result in unequal stresses to each bond

of any given bond pair. For example/ a 2.0 gm load on a Type 1

device would result in the following stresses for the bond pair

indicated:

Bond Pair

#4

7

9

13

Using a FSM of 2.0 gm, then:

4/18 = ,22% devices failed

12/252 =4.8% bond pairs failed

24/504 =4.8% bonds failed

Parts (B) and (C) of Test 2.1.1 were not carried .out since

we did not have the equipment to pull to destruction any single-

ended bonds to the chip or to the post'.

2.2.2 -STATIC LOAD

This test consists of loading 2.0-gm weights on six bond

pairs. It was difficult to load the wire without rupturing the

bond. After several unsuccessful attempts, we did manage to

hang weights on three bond pairs which were pre-stressed and three

bond pairs which were not. The devices have survived over 700

hours with the 2.0-grrv' static load.

2.2.3 - MULTIPLE PRE-STRESS

Part (A) of this test involved pre-stressing one device up

to 100 times per bond pair with the FSM load of 2.0 gms. It was

intended to pull each" bond pair to destruction following the pre-

stressing in order to compare the data with unstressed bonds

pulled to destruction. However, since only two bond pairs out
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of 13 survived, there was no point in carrying out the test
e

further. The data below would appear to indicate that multiple

stresses of wire bonds may be causing the wire to undergo

detrimental metallurgical changes in the bonds. This would be

an area for further investigation.

Bond # Number Pre-Stresses Before Failure

1 4

2 12

3 26

4 Omit (damaged bond)

5 5

6 18

7 . 31

8 76

9 99

10 . 100

11 29

12 100

13 58

14 38

Part (B) of the multiple pre-stress experiments involved 18

devices- in which each bond pair was stressed five times with the

FSM load of 2.0 gm. Two devices which failed on the fifth loading

were replaced by two others which survived all five loadings.

After pre-stressing each bond pair five times, the bond pairs

were concurrently pull-tested to destruction and the failure mode

and breaking load were noted in each case. The correction factors ,

F and F determined in Test 2.1.1 were applied to the data with the

result that 3/504 or 0.6% of the bonds failed. If the corrective

factors were ignored, as was the apparent case in .the original

data presented by the equipment manufacturer, then our data would

also reflect no bond pair failures after pre-stress, since the

minimum fracture load in each case equaled or exceeded 2.0 gms.

. -11-



2.2.4 - TIME-TEMPERATURE STORAGE

This experiment was performed to determine the effect of

extended storage at elevated temperatures on devices which were

pre-stressed vs devices which were not pre-stressed. Although

one sample set was stored for 500 hours, only the 250-hour

storage test can be reported on at this time.

The sample consisted of 10 devices stored at 150°C; 10

devices stored at 200°C, and 10 devices stored at 250°C in a

nitrogen ambient. Half of the devices were pre-stressed once

with a 2.0-gm load. At the end of the 250-hour period, each

bond pair was pull-tested to destruction and the tensile strength

of each bond was computed from the previously determined correc-

tive factors.

A statistical analysis of the data at the 95% confidence

level reflects no significant differences in the bond strengths

of the control sample and the pre-stressed sample.

Both the pre-stressed and control samples had nearly the

same number of bond failures with the former having 12.7%

failures and the latter 12.2% failures for all three temperature

excursions.

The number of failures for bonds stored at temperature was

about 4-1/2 times the number which saw no temperature excursion.

3.0 STATISTICAL ANALYSES

3.1 INTRODUCTION

A portion of the effort was spent on statistical evaluation

of the problem in setting up the experiments and in statistical

evaluation of the data derived from the experiments.

The integrated circuits purchased for these experiments were

primarily of three configurations, but each had 14 bonded wires

(i.e., 14 chip bonds and 14 post bonds) and were similar in most

respects.

-12-



3.2 CONSIDERATION OF MEASUREMENTS OF ANGLES

It was required initially to determine whether the three

kinds of circuit could be considered to have been drawn from

the same population as far as bonds were concerned. A physical

measurement such as the angle of the wire at the post and at the

chip bond was considered an appropriate and significant measure-

ment toward such a determination. The further role of the angle

in testing bonds is also of prime importance, as is discussed

above. As elsewhere in this.report, the angle a is the breaking

angle of the post bond, and the angle $ is the breaking angle of

the chip bond (See Figure 1). Histographs of the distribution

of the measured angles of units numbered 1, 5, and 11 are shown

in Figures 6-12. Data for a and g are given in Figure 13.

Although there is a certain amount of right skewness to the

distributions of a,, a«, a_ and 3.. , $„, 3o, and of left skewness

to the distribution of the weighted averages, the amount is not

sufficient to invalidate the use of the mean X. Indeed, the

median is very close to the X value of these distributions as

shown in Figure 14. The mode is not as close in value to the

average X but is still sufficiently close to warrant the use of

X as a significant measure of the central tendency of the distri-

butions. The comparison of the mode with the X value is shown

in Figure 15. In evaluation of the variances of the different

means, the fact that the standard deviation of these distribu-

tions is large (close, to .20°) is significant. The values of the

standard deviations (s) of the samples are shown in Figure 16.

The following hypothesis was then tested: "The sample

distribution of measured angles a, comes from the same population

as the total population."

In order to test this hypothesis statistically, the X and S

of the total population are taken as the measures (particularly

valid in view of the homoscedasticity of the distributions).

Thus M = 19 degrees and a = 18.7 degrees, so that T— - 5 degrees.

-13-
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Figure 13.- Measured angles a.and
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The value of X for the a, sample is 22 degrees, and the corres-

ponding value of the t parameter is 0.6. The probability (from

a table of normal areas and ordinates) is 0.22575 of obtaining

such a value or less.

If a significance factor of .05 (a confidence level of 95%)

is used, the probability of error is less than 0.05 when one

says that the value of X = 22 is not statistically significant

and that the hypothesis is acceptable.

The details are presented in Appendix I.

A similar logical and statistical procedure was employed „

for the other angle parameters. It was established that the ]

various samples could be considered to have been drawn statistically

from the same population.

3.3 CONSIDERATION OF BREAKING STRENGTH DATA

The average X and the standard deviation a of the breaking

strength values as'measured before any prestressing or non-

destructive testing was calculated. Histographs of the distri-

butions of T.S. and T.S.ft are shown in Figures 17 and 18. It
Ob P

must be recalled that T.S. and T.S.g are the components of

T.S., (the breaking force on the wire) at the post and chip

respectively. . .

The average values of breaking strength for each of the

three device types are:

Type

Type

Type

1

2

3

1

2

3

X

X

x

T
a

Ta

T
ry

= 5

= 5

= 5

.6

.4

.5

g

g

g

Overall Average (of classes Type 1, 2, 3) . = 5.5 g

Overall Average (as individuals) = 5.5 g
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Similar values for the tension in the wire at the chip

bond for the breaking force are:

Type

Type

Type

1

2

3

1

2

3

X

Y,/i.

V/\

T

T

T

•

3

3

= 6

= 6

= 6

.5

.6

.5

g

g

g

V

Overall Average (of classes Type 1, 2, 3) T_ = 6.5 g

X*
Overall Average (as individuals) Tg = 6.5 g

The calculation standard deviations for these distributions

are as follows: \

Overall T =5.5 . °Ta = 1.2 g

Overall TQ = 6.5
 0TQ = 2.4 gP P .

Since it has been assumed that the distributions are normal,

and indeed it is seen that the distributions are in fact near

normal, the X and the 0 characterize the distributions.

Statistical analyses were made of the data accumulated on

various types of environmental and mechanical stress tests, with

their controls. -

In order to evaluate the significance of the "Nondestructive"

aspect of bond testing, in respect to bond life, a series of

experiments was performed in which samples as received were tested

to failure, and other sets of samples were subjected to graded

steps of ambient temperature (150°C, 200°C, 250°C) for 250 hours

each.
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The data for these experiments were compared. The T.S.

and T.S.g averages of units placed at 150°C for 250 hours, as

received and after .prestressing, are shown in Figure 19.

The average values were calculated: T.S. of all units as

received is 3.8 g; the T.S.R is 4.5 g. The standard deviations

were calculated for these distributions:

S = 3.3 g and SD = 4.1.a ' 8

The average value of T.S. of all prestressed units is

3.7 g and of'T.S.g' 4.3 g. The corresponding standard'deviations

are Sa = 3.2 g and Sg = 2.8 g.

The comparable data for T.S. and T.S.ft as received and pre-

stressed and placed at 200°C for 250 hours yield overall average

values at:

200°C for 250 hours T.S. T.S.0u p

As Received 3.9 4.6

Prestressed 3.4 3.9

The data are shown in Figure 20.

Simularly, for the data shown in Figure 21, resulting from

units placed, as received and after prestressing, at 250°C for

250 hours, the overall values are: As received, etc.: T.S.a
= 2.8, T.S.Q = 3.3, S = 2.3, SQ = 2.8; Prestressed: T.S.P ot p oi
= 3.3, T7s.fi = 3.7, Sn = 2.7, Sfi =3.3p a p

Statistical tests were performed evaluating the significance

of the differences of the overall means, similar to those employed

for the angular measurement data. The significances were evalu-

ated at the 95% confidence level. The results of these tests

showed that the differences of the means for the populations of
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the T.S. of the devices 'Subjected to 150°C for 250 hours as

received and after prestressing are not significantly different

statistically at this confidence level. For similar sets of

data for 200°C, the overall means of the populations are not

significantly different statistically. For similar data from

devices at 250°C, other factors held constant the differences

of the means of the T.S. are not statistically different. It

is noted that there is a statistically significant difference

in the means of the populations of the devices as received and

not subjected to further testing (those used to obtain the MFS)

and the populations subjected to heat (as received and pre-

stressed) .

From these data and analyses, it must be concluded

statistically that a single pull test does not significantly

affect the failure strength of bonds of this type subject to

temperatures up to 250°C for 250 hours, as far as average value

of failure strength is concerned.

Statistical tests were next performed utilizing the chi
2

squared (x ) and the F distributions to evaluate the significance

of the differences of standard deviations. The differences of
o

the variances (a ) were tested at the 95% confidence level.

Considering the prestressed devices put at 150°C for 250 hours,

as compared to the as-received devices subjected to similar

time and temperature treatment, it was found that for the values

of S of the prestressed bond data, the a of the as-received device

data could vary from 2.3 g to 8.3 g without significance' at the

95% confidence level. The value S of the later data is 3.3 g,

well within limits. Therefore, one can conclude that the two

populations are statistically the same in regard to this para-

meter (and have that conclusion wrong is less than 5% of the

cases). Putting this more practically for this application, in

a useful over-simplification, one can conclude that the prestressing

did not cause significant changes in the distribution of the
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bonding strengths. Coupled with the previous conclusions

regarding the mean value, one can conclude that the bond strength

showed no change due to bond testing as far as these tests were

concerned.

Similar consideration of the data at 200°C and 250°C was

taken. It can be concluded that neither the 200°C nor the

250°C testing revealed any significant changes in the bond

strength distribution. Coupled with conclusions regarding the

mean values and sigma values above, it can be concluded overall

that the bond prestress testing did not significantly alter

the bond strengths generally (as regards time and temperature

testing).

A series of tests of multiple stressing was conducted using

a second nondestructive bond tester.

The one, in which it was attempted to stress the bond with

the hook of the instrument for a total of 100 times, showed that

11 out of 13 bonds so stressed failed .before the test (of 100)

was completed. Damage here is obvious.

The next, in which the bonds were stressed 5 times, yielded

16 (out of 18) survivors. The two losses were replaced, and

failure strength tests were .made on 18 bonds which had been pre-

stressed five times each. The T.S. = 5.8 g and T.S.g = 6.7 g

for these .data. Again, it was shown that the difference of these

means from those of the as-received 4ata._is statistically not

significant at the 95% confidence level.

However, in testing the significance of the standard devia-

tion for the 5 times stressed data, S = 29.16 (for n = 18),

compared to the value S = 1.44 .(for n = 14) for as-received bond
Ct ~ r

strength data, it was found that the larger S is indeed signifi-

cant, and alteration of the distribution occurred.

In view of the lack of significance of the differences of

the mean strength, it may be considered that perhaps the 5 times
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stressing was not sufficiently controlled (reproducible) or that

a large number of other quasi-random factors had influenced the

result.

Histograms of the overall data are shown in Figures 22, 23,

24, and 25.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 STATISTICAL CONCLUSIONS

The statistical conclusion can be summed up as follows. In

none of the populations analyzed was there a significant difference

at the 95% confidence level between means or standard deviation

with one exception. The standard deviations/ but not the means,

of the samples stressed five times, and those not stressed

differed significantly, and the standard deviation of the stressed

samples was the larger.

These conclusions may be translated into engineering, pro-

duction, and reliability terms, based upon experience. Overall,

the conclusion may be reached that under all the circumstances

and controls of the experiments, (with the one exception) the

nondestructive bond pulling was not significantly destructive.

This conclusion of course is severely restricted; for example,

the range of pull forces, the time and temperature excursions,

and the type of bond were limited. It is highly indicative,

however.

The one exception to the nondestructive quality of the

test is, in a way, not surprising and may be considered from

several view points. In general, metallurgically there is a

significant difference between stressing a wire once and a

number of times. Metallurgical phenomena occur: fatigue, work

hardening, creep, etc., begin to influence results after a number

of workings of a. metal. The strength, generally weakened, may

actually increase for a period. It is significant that 2/13

bond pairs lasted for 100 tests.
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The spreading of the data, as identified by the larger value

of standard deviation, may be due to lack of control in the

experiment, in the bond testing equipment itself, or may be due

to a large number of factors of opposite trends, none sufficiently

significant in itself. It is the latter that is considered

operative in the one case of significance of different values.

4.2 PRACTICAL CONCLUSIONS

In view of the above, it has been shown that nondestructive

bond testing was successfully accomplished in the course of this

work. It can be stated that for the usual conditions found in

the semiconductor industry (the limited conditions of these

tests), nondestructive bond testing is not only possible but

would be very valuable as a reliability tool, so long as pre-

cautions are taken as indicated below. Whether the success of

nondestructive testing can be extrapolated to other conditions,

can only be determined by further testing, as suggested below.

4.3 RECOMMENDATIONS

Certain outstanding precautions are in order. Nondestructive

testing must be performed in such a manner as to maintain its

nondestructive character. Operator control is essential. Proper

maintenance, set-up, and functioning of the machine are a

requisite. Frequent check ups are required to assure compliance

with these conditions.

Other points are significant. It must be made certain that

double testing of bonds of units to be used does not occur. This

could happen for example in checking on an operators performance,

on machine performance, in sampling or in inspection procedures.

Great care must be taken to determine properly the minimum

failure strength of lots; awareness of the differences of tech-

nique in bonding, of. differences of materials, and of geometry

is essential.
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A further recommendation is made. Control of bond loops

is minimal and consequent control of breaking angles is almost

nonexistent in the industry. It is important for more meaningful

nondestructive testing of bonds (or for destructive testing of

bonds for that matter) that specifications for control of these

factors be drawn up, implemented, and adhered to.

The use of nondestructive testing of bonds could bring about

improved reliability control, if properly handled, but could also

open a Pandora's box of factors leading to poorer reliability if

misused.

It is recommended that the following series of experiments

be carried out to expand the evaluation of the nondestructive

tensile tester to further limits:

(1) Perform the tensile testing and plot the strength

frequency distribution of single bonds to the chip

and to the post at 90° and 45°.

(2) Perform metallurgical examinations of bonds before

and after 1,000 hour static load life test at FSM ,

load.

(3) Perform metallurgical examinations of bonds before

and after repeated stressing at FSM.

(4) Plot distribution of bond strengths after repeated

stressing. . .

(5) Complete time-temperature storage tests.

(6) Relate visual rejects of bonds to mechanical testing

." at FSM.

(7) Perfc-rm functional electrical testing both before

and after environmental testing such as constant

acceleration and thermal shock.
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APPENDIX 1

COMMONALITY OF THREE TYPES OF DEVICE

Consider the distribution of the weighted average of the

a angular measurements as the population from which samples may

be derived and the first moment,

n

X = x±fif or m = 19°

and the root of second moment about the mean

h
* / —\2

X. - XPf. , or a = 18.7°

degrees as the proper measures of central tendency and variation

respectively of a normal population.

Considering for example the 14 measurements of a, as a

sample, set up the hypothesis that this sample is indeed derived

from the normal population defined above by M = 19 degrees and

a = 18.7 degrees. • ,

In order to test the hypothesis, set up the X normal

distribution with M- = 19 degrees and a= = 18'7° *. 5°. The X"x x
normal curve has approximately 1/4 the spread of the X normal

curve. The value of X for the a, sample_ is 22°; the corresponding
'v »*»—• o o T r\

value of the statistical parameter t = ~ *> = — ̂  — = »6. The
°X 5

probability (from a table_pf normal areas and ordinates) of

obtaining a value of t = ~_X derived from the. integral / <j>(t)dt

is P (t S .6) = .22575. If a significant factor of .05 is used

(corresponding to a 95% confidence level) , it is clear that the
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probability of the value of t = .22575, and hence of X - 22 is

such that the difference in values is not statistically signifi

cant, and the hypothesis is acceptable.

The above is validated procedurally by the following con-

siderations. The sample mean is:

n

- ?*"x = •n

In repeated samples, each X. is a variable and in repeated

samples X also is a variable. The moment generating function

of X is : ' " >;

Mx(e) = M
[XI + ... + xj

(e) =% + ... xn (I)

The sampling is random so that the variables X. are independent.

Hence,

Mx(0) =

Note that each term on the right is a moment generation function

of the variable X. Thus,

Mx(6) =

Now, for X normally distributed

oV

Mx_m(6) = e
 2
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and

Hence,

m -f er

Mv(6) = eA

It is clear that if X is normally distributed with mean M and

standard deviation a and random samples of size N are drawn', the

sample mean X, will be normally distributed with mean M and

standard deviation a//N.
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APPENDIX 2

DISTRIBUTION OF AND CONFIDENCE LIMITS FOR a2

If X is normally distributed .with zero mean and unit
2

variances, the sum of the squares of N random samples has a x

distribution with n degrees of freedom. This is shown by con-
2

sidering the x function

/vv

in which v is the number of degrees of freedom (F is the well-

known gamma function). By using the moment generating function
2

for the X distribution, .

M 0(8) = (1 - 29)
x2

in a manner similar to that of Appendix I, it can be seen that
2 2if X is normally distributed with variance a and S is the

2
sample variance based on a random sample of size.N, then NS /a

has a x distribution with N-l degrees of freedom.

2From a table of the distribution values of x / the confidence
2

limits on cr may be determined for a sample and population as
2 2

defined above. For 95% confidence limits, two values of x / XT
2

and x2
 are found (for N-l degrees of freedom) such that the

probability is 0.975 that X2 > X2 and is 0.025 that X2 < X2.
1 N c 2 2 2

Thus, the probability is 0.95 that —=— is bounded by X-^ and X»

or that the confidence limits is 95% that the a is bounded by
NS2 NS2

the values —j— and —-;—•
1 X2x
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A similar consideration in reference to the F distribution

,vl -2/2
f(P, =

V + V

v.,F)

leads to the use of the F distribution to test the compatability

of two variances.
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APPENDIX 3

TENSILE TESTER .

A meaningful technique for the tensile testing of wire bonds

would be one utilizing a microtensile tester which would (1)

allow the breaking angles a and 3 to be equalized before the

breaking load is applied, (2) record the breaking force at the

moment of wire fracture, (3) permit the measurement of the

inherent tensile strength of the raw wire, and (2) perform the

tensile testing at a constant and repeatable rate.

We have such a tensile tester in our laboratory and it was

once hoped that it could be used to promulgate a standard tech-

nique 'for the meaningful evaluation of the quality of wire bonds.

Curves have been developed for the determination of tensile

strengths, breaking loads and breaking angles when the breaking

angles have been equalized, and these curves are included in

this appendix as Figures 26, 27 and 28.
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