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DEFINITION OF SYMBOLS

coefficients [equation (6)},(1=1,2,3:;i=1,2,3)

orbital coefficients [equation (12)]

[1/(Nms)] coefficients [equations (6) and (17)] (i=1,2,3,4)
coefficients [equation (5)] (i=1,2,3;j=1,2,3)

cosine (;with Greek symbol immediately following)

transformation matrix from CS Xorto CS Xpr and its elements
(i=1,2,3;j=1,2,3)

desaturation efficiencies (i = x, y, z)

identity matrix

[Nms] z-transform of H

[Nms] average momentum at noon

[Nms] desired momentum bias

[Nms] cosine amplitude of cyclic momentum (from samples)
[Nms] desaturation momentum command

[Nms}] momentum caused by gravity gradient torques

[Nms] cyclic momentum portion of I:_Ig (predicted)

INms] cosine amplitude of cyclic momentum (along Yor predicted)
[Nms] sine amplitude of cyclic momentum (predicted)

[Nms] momentum accumulation per orbit caused by constant
torques

[Nms] maneuver momentum
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DEFINITION OF SYMBOLS {Continued)

[Nms] sine amplitude of cyclic momentum (from samples)

[Nms] total vehicle/CMG momentum

[Nms] intermediate quantity for desaturation command generation
[Nms] sum of MIB momentum since sample at t,

[kg m? ] moment-of-inertia matrix

[kg m?] principal moment-of-inertia matrix

[kg m?] principal moments of inertia (i=x,y, z)

[kg m?] differences of principal moments of inertia (i=x,y, z)

transformation matrix from geometric vehicle CS X, to principal
CS Xp anditselements i=1,2,3;j=1, 2, 3)

gain constants

subscripts indicating present (n) or past (n-1) orbit
unit vector along the direction of the gravity gradient
sine (when followed by Greek symbol)

tangent (when followed by Greek symbol)

[Nm] gravity gradient torque

[Nm] cyclic portion of gravity gradient torque
[Nm] gravity gradient torque used for desaturation

[Nm] nominal gravity gradient torque

vi



DEFINITION OF SYMBOLS (Continued)

Xij
Yij coordinate axes of CS Xij (Appendix A)
Zi
-)—(ij coordinate system as indicated by the subscripts (Appendix A)
o dummy integration variable
(1 o o]
[ay] 0 cay  Say where a can be any Greek symbol
] 0 -say cay |
—cay 0 Sty ]
[ay] 0 1 0 where a can be any Greek symbol
Lsozy 0 cay, ]
-coez s, 0
[o,] -Se,  ca, 0 where o can be any Greek symbol
I 0 0 1
€j, A [rad] desaturation-angles (in CS Xpr)
€i1> €i2 [rad] desaturation angles (in CS er)
ei’, Aei' [Nms] normalized desaturation angles
n [rad] elevation of principal Zpr axis with respect to orbital plane
Nt [rad] timing angle with respect to orbital midnight
Ntd [rad] timing angle with respect to orbital desaturation midnight

Ttm [rad] difference between nyq and ny

vii
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DEFINITION OF SYMBOLS (Conciuded)

Irad] elevation of reference Z, axis with respect to orbital plane
[rad] principal axes transformation angle (Appendix A)

[rad] angle between CS X, and CS X,

ratios of available to commanded maneuver momentum

[rad] angle between CS X, and CS X,

[rad] commanded change of v, at end of desaturation interval
[rad] elevation of the Xpr axis with respect to orbital plane
[rad} see Appendix A for definition

[rad] see Appendix A for definition

[rad] orbital half angle used for desaturation

[rad] variable orbital half angle used for efficiency determination

[rad] shortening of desaturation interval to insure error-free
attitude closing

[rad] attitude deviation (either commanded or error)

[rad/s] orbital angular velocity

viii



TECHNICAL MEMORANDUM X-64628

ANGULAR MOMENTUM DESATURATION FOR SKYLAB
USING GRAVITY GRADIENT TORQUES

SUMMARY

The angular momentum desaturation method for the Skylab is presented. This
method utilizes the gravity gradient torques and therefore minimizes the necessity for mass
expulsion by the thruster attitude control system (TACS). The desaturation method
requires maneuvers about the two principal axes of large inertia. The percentage of the
orbit used for desaturation is selectable. An arbitrary misalignment between the axes of
principal moments of inertia and the geometric vehicle axes is permissible. An angle bias
about the sun line minimizes the momentum accumulation in the orbital plane.

This report is an extensive revision of Reference 1. The desaturation scheme has
been expanded to include arbitrary principal moment-of-inertia axes misalignment, adaptive
maneuver limiting according to the available maneuver momentum, and reduction of the
third-order sampled data system to a second order.

INTRODUCTION

The Skylab Apollo Telescope Mount (ATM) experiments require that the solar
instruments remain inertially fixed (sun-oriented) during the day portion of the orbit.
Gravity gradient, aerodynamic, venting, and other external torques acting on the vehicle
during this time must be absorbed by an angular momentum storage device: in this instance,
a system of three double-gimbaled control moment gyros (CMG’s) {2, 3, 4, 5}. Portions of the
disturbance torques are noncyclic and tend to saturate the CMG system, which has a limited
momentum storage capacity. A method for momentum desaturation that does not require
mass expulsion is desired. The gravity gradient torques acting on Skylab are developed for
small deviations from the sun-oriented reference coordinate system. These equations are
used to show that maneuvers about the two axes of large moments of inertia are sufficient
to desaturate the accumulated momenta about all axes. All attitude maneuvers for
desaturation are made during the night portion of the orbit (unless an insufficient night
portion is available, where part of the daylight portion is used), and the percentage of the
orbit utilized for desaturation is selectable. Expressions for the desaturation angle
commands are developed assuming infinite angular vehicle rates. The effect of finite rates
then introduces an efficiency, which is calculated and compensated for by a change in the
commanded maneuver. An arbitrary misalignment between the principal moment-of-inertia



axes and the geometric axes of the vehicle is acceptable. An angle bias about the sun line
allows the minimization of the momentum component along the projection of the z, axis

into the orbital plane (see Appendix A for coordinate system definitions, etc.).

The desaturation angles have been assumed to be small enough to make small angle
approximations valid which allows the principle of superposition and also allows the treat-
ment of the angles as if they were vectors.

To avoid endless repetition in the following discussion, “momentum” is used for
“angular momentum,” *“‘desaturation” is used for “angular momentum desaturation,” and

“yehicle axes” means “‘geometric vehicle axes.”

GRAVITY GRADIENT TORQUE

The gravity gradient torque acting on the vehicle can be expressed as [6]

T, =301 (1] 1 (1)

when the vehicle is in a circular orbit (which is assumed in the further development); {I]is
the vehicle inertia matrix, Q is the orbital rate, r is a unit vector parallel to the radius
vector from the earth center to the vehicle center of mass, and [T] is defined as

0 T, +ry
[r] = +r, 0 Ty
Ty +1y 0

When the torque is expressed in the principal reference system, PR (see Appendix
A for definitions), when [Ip] is the principal moment-of-inertia matrix, and when [e] is

the transformation from the PR system to the P system, the equation (1) becomes

T, = 302[F, el T 1] [e] 1, )



or

with

T, =T +Igd

2g T cen
[ 1 .
) s2n (1 +c2ng) Al
- 3
Ign =5 Q? cn s2n4q AIy
L sn sZntd AIZ

-

+A,; +Aq +Al3-1

Toq & '32‘ Q2 |-Apn +As +As3

L'Alﬁl -Ass +As;
AL = 1,1,
al, = L-1,
AL, = Iy-IX

Ay = +c2n (1 +c2nq)

A = -sn 52144

Az = +ep Sz"td

Ay = -0.5(1+c2n) (1 +c2nyq) + (1 -c2n4g)
Ay = -0.552n (1 +c2n4g)

Ass = +0.5 (1-c20) (1 +c2nyg) - (1 - c2nyg)

Aly €y

3)

4)

(5)



Appendix B gives a detailed derivation of equations (4) and (5) for the case where

the Xpr axis is in the orbital plane, the Zpr axis has an elevation angle of n from the
orbital plane and is generally pointing toward the sun (the z, axis is pointing exactly

toward the sun),! and the e angles are small. The gravity gradient torque has been split
into a nominal part Ign which is not a function of the ¢ angles and a controllable part

Igd‘ which will be used for the desaturation method. The nominal part shows that a bias
momentum accumulates about the Xpr axis (Fig. 1); the others have only cyclic terms
(Fig. 2). Visualization of Ign as a function of time for an arbitrary moment-of-inertia
distribution is described in Reference 7.

? 1007
H, [2%]
ol
601

401

201

0] + t  pae i } {
60 120 180 240 300 ] 360
—n, d[° -

Figure 1. Angular momentum accumulation about the Xpr axis.
MOMENTUM DESATURATION METHOD

General

The development of a desaturation method using the gravity gradient torques
consists of maneuvering the vehicle through angles (¢’s) in such a way that the momentum
accumulation caused by the angles desaturates the stored momentum to keep the total
momentum bounded and to avoid the need for desaturation by the thruster attitude con-
trol system (TACS). The CMG attitude control system executes the ¢ angle commands.

1. nyq is the orbital angle from desaturation midnight (to be explained later).

4
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Figure 2. Typical cyclic angular momentum.

This system is described in References 2, 3, 4, and 5. The desaturation maneuvers

must be consistent with the mission constraints which for Skylab allow maneuvers for part
or all of the night portion of the orbit only. During the daylight part of the orbit, the

¢ angles must be zero except an angle about the vehicle z axis (sun line) which must be
kept constant; therefore, the desaturation loop is only closed on a per orbit basis. The
desaturation method can be separated into two parts. One part consists of the development
of the desaturation momentum commands, using the total momentum profile. The other
part consists of the generation of desaturation angles e, given the desaturation momentum
commands. The latter affects the former and is therefore presented first.

Desaturation Angle Generation

The angular momentum desaturated by a given set of e angles is developed first.
Since this - momentum should be equal to the command, the equations are ’_then inverted.
Inspection of the Aij’s reveals that they are either even or odd functions of n4y. There-

fore, assuming that we have one set of constant angles before midnight, e + Ae, another
set after midnight, e - Ae, and the integration interval is from Nig =P 10 nyq = *p, we
get (Appendix C)



+au 0 0 6x/‘ql
I;Id = 0 +a,,  tays ey/Az
| 0 Q23 +333_ _GZ/Aa ]

{ 0 +ay, +a,3 AeX/A1

+ a1z O 0 Aey/Az (6)

-3 0 0 AEZ/ASJ
with

a;, = ¢2n (2p +52p)

a,, = sn(l-c2p)

a3 = -cn (1-c2p)

a;;, = 05U +c2n)2p +820)+ (2p-520)
a3 = -0.582n (20 +52p)

as3 = 0.5(1-¢c29)(2p +52p)-(2p -52p)

Ar = 2/(3Q AlLy)
A, = 2/(3Q Aly)

As = 2/(3Q AL)

The moment-of-inertia distribution of the Skylab was configured so that Al, is small,
resulting in a small bias momentum accumulation. But a small AI, makes the use of an

€y Or Ae, very ineffective for momentum desaturation, leading to the conclusion that no

X

maneuvers about the Xy, axis will be made, and we have as components of }_Id



Hyx = 21 Aey/(-A2)+ a3 Ae,[As )

Hy -2y, a3 ey/(-Az)
y y
= 8)
Hdz . d23 a33 EZ/ A,
Equation (8) can be rewritten in the following form:
de cn sy 2s2p 0 I ) ey/ (-A;)
- | ©)
Hy, -sn cn 0  -(20-s2p) | [sm cn| |e,/As

Equation (9) shows that resolution into the orbital plane decouples the equation.

It has been assumed so far that the e angles can be reached instantaneously. In the
following, the angle profiles of Figure 3 are substituted. The difference between the ideal
and the actual momentum desaturated is expressed by an efficiency, and we have (the
components are in the orbital coordinate system CS Xpr)

H =E,[H
( dx)act X( dx)ld
H = E (H
( dy)act y( dy)id

= E_{H
(Hdz>act Z( dz)ld {

where

fes]
f

x = (2sp -2p)/[p(1 - c2p)}

[T
[

y = (e -¢c20)/(p s2p)

tri
il

2 = [30/2-(co-c2p)/n]/(20 -52p)

Appendix D gives a detailed development of the E’s. Equations (7) and (9) become
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Figure 3. Desaturation angle profiles.



Hgx = -[(2s0 -52p)/p] [sn Aey/(-Az) +cn Aey/As] (10)

Hgy cn sy ay 0 cn -sn ey/(-Az)

Hy, -sp  ©n 0 a, sp ¢ .eZ/A3
with

ay = 2(cp -c2p)/p
a, = -3p/2+ (co-c2p)/p

Before inverting equations (10) and (11) it is necessary to discuss the orbital desaturation
parameters ay and a,. The behavior of ay, for varying desaturation percentages (or

varying p), normalized with respect to its maximum value, is shown as

- (co -c2p)/p
MAX [(cp - c2p)/p]

in Figure 4. For a given orbital e,, the maximum momentum is desaturated at a desatura-

y
tion percentage of 32.1 percent (p- = 57.8°). Instead of assuming a given angle we can
assume that a constant maneuver momentum is available and that the maneuver angle is
proportional to the available desaturation time. This is shown as

— cp - C2p
MAX (cp - c2p)

The peak of the orbital y-momentum desaturation shifts to a desaturation percentage of
42 percent (p = 75.5°), which is higher than the maximum nighttime available on Skylab
(slightly less than 40 percent).

A comparison of the orbital zz-momentum parameter a, shows that even at the

maximum desaturation percentage (about 40 percent) the same angle would only desaturate
about one fourth in z as would in y. On the other hand, a constant angle about the



6 o
35‘%
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* 1.0
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[
41 l

[

|

|
21 '

|
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o} 30° 60° —p 90°

Figure 4. Relative desaturation capacity about orbital y axis.

z axis (if held for one orbit) is more than three times as effective as the same angle in y.
Since mission constraints allow a constant angle about the vehicle z axis (which desaturates
only orbital z momentum), it will be used exclusively for orbital z desaturation (the
appropriate relationships are developed later).

Equations (10) and (11) show the actually desaturated momentum for a given set
of desaturation angles and the maneuver profile of Figure 3. Assuming that the actual and
the commanded momentum are equal, we can invert these equations. However, one more
constraint must be added to equation (10). If we minimize [Aey/(-A2 1%+ [Ae,/A5]17
(minimum maneyver momentum for Iy = IZ), inversion yields

Aey/(-A2 ) m

» Hax

= (12)
Ae,/As 2sp - s2p cn

10



Inversion of equation (11) results in

eyl (-Az)

EZ/As

cn

-sn

sn

cn

1/a

0

yA

The assumption that all of the orbital z momentum, Hdzo = andy + andZ, will be

desaturated by a rotation about the vehicle z axis allows us to set l/aZ to zero; thus

eylC-Az)

ez/A3

= [(cnHgy - SanZ)/ay]

cn

_Sln

(13)

(14)

The effectiyeness (per orbit) of a rotation Av, about the vehicle z axis must be calculated

to justify this assumption. Evaluation of equation (9) for p =« yields this effectiveness,

where it is again assumed that AIX' is negligibly small (no Hgy):

de

Hdz AvZ~

or

Hyzo =

where

K] =

o

_Srn

21 [Kj35n/(-Az) + Kszon/A; ] Av,

sn

n

Kl2
Ka;

K32

0

0

-2

cn

s

_Sn

cn

1/(-Az)

0

0

1/A4

K22

K2

K23

Kss

0

sz

(15)

is the transformation matrix from vehicle axes to principal axes. Equation (15) shows that
Av, about the vehicle z axis is still only effective for orbital z-momentum desaturation,

11



when considered on a per orbit basis, and does not couple into orbital y-momentum
desaturation (which was to be shown). Some difficulties remain in the area of command
generation which will be discussed later. Inversion of equation (15) results in

Av, = - Hdzo/{zﬂ[Kzs sn/(-A;) + Kssen/A, ]}

- (snHgy, + andZ)/{zn{Kzssn/eAz ) + Kssen/A, 1}
The following approximation can be employed:
CTIX/A4 = Ky3sn/(-Az) + Kjscon/A;

which assumes that the moment-of-inertia misalignment is mostly about the x axis
(Ky; = 1) and that Iy A IZ such that an average can be used.

A, = 0.5[(-A;) + A;l amn

In summary, given three momentum components H,, de, and Hy, in principal

coordinates, the desaturation angle commands in vehicle coordinates are

sz = Ay (Sany + andZ)/(?.nch) (18)
AEX Ku K21 K31 . 0
Aey = | Ky, K>, K3, sn(-Az) [-r/(2sp - 52p)] de 19
L Aey ] LKla Ka; K33d LCnAs |
-fx- | K K2 K3 17 0
P(CﬂHd - San )
= -~ y z
Gy K2 K2, Ki2 cn(-Az) Hep - c2p) (20)
€, Kis K3; K33 -SnA;
- - - - L R

12



Equations (19) and (20) assume that the desaturation angle commands are applied accord-
ing to the profiles in Figure 3 and equation (18) assumes that Av, is applied for a full

orbit (where the change in v, is made right after the desaturation interval at n¢4q = +p;

Z

see Appendix E for nominal v, angle).

z

The maneuver commands before midnight are then (these angles are reached at
ntq = -,/2)

-exl : -exq _Aex-
eyi| = ey + Aey 21)
€,1 LEZ AeZ

L. . A L. .

€42 €x Aex

eya| = €y - Aey (22)
€40 €, AeZ

L “ L |~

The maneuver commands of equations (21) and (22) disregard the fact that the CMG’s
may not have sufficient momentum reserve available to execute the maneuver which will
require reduction of the maneuver angle commands. This is treated in Appendix F.

Figure 5 shows a typical CMG momentum profile.

Angular Momentum Sampling

An adequate representation of the momentum accumulation of the Skylab is

Hy = Hys2(nyq-m) +He c2(nyg -m)

+ Hy (g - m)/Q2m) + (H, + Hy) (23)

13
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where neg = 0t I;IS and I;Ic are the amplitudes of the cyclic combonents (see Appendix G),
Hy is the momentum per orbit caused by a constant torque or constant angle; and H, is
the average momentum at noon in excess of the desired bias le [equation (23) is set up
with respect to noon and 74y is with respéct to midnight].

The task of the desaturation method is to center the cyclic components about some
given bias point (_Hb), which is normally zero. This necessitates a determination of -Ha

and Hy. To accomplish this, the total system momentum is sampled at four points in orbit
as shown in Figure 6. The total system momentum is used rather than the CMG momentum
only to avoid invalid readings in case the vehicle is maneuvering at the time the sample is

taken. The sample points are at 2(w/4), 3(n/4), 5(n/4), and 6(n/4) and accordingly
carry the subscripts 2, 3, 5, and 6.

/ntd =0

NOON MIDNIGHT

Figure 6. Orbital angular momentum sampling points.

15



Evaluation of equation (23) at the sample points results in

‘Ho, ] [0 -1 -025 +1] [Hg
Hy3 -1 0 -025 +1| |H,
= (24)
Hs +1 0 +0.25 +1| | Hy
LHt6_ L O '1 +0.25 +1_ LHa+I;Ib-
Inversion of equation (24) yields
_ . _ -
H +0.25 -05 +0.5 -025] [Hyy
H, -0.5 +0.5 +0.5 -05 Hi3
= (25)
Hy -2 0 0 +2 Hys
| m,+H,] Lo +05 +0.5 0 | [Hy |

It should be recognized that as far as Hy and (H, + Hy) are concerned, only the spacing

of the sample points is important; their relationship to n¢q 1S immaterial.

Desaturation Command Generation

A desaturation command of the form
Hy = -H, (26)

would result (in steady state) in an offset of H, = Hy since Hy must be desaturated each
orbit. The following form would eliminate (for the ideal case) the offset:

Hy = - (H, + Hy) @7

The nonideal case (tolerances in the momentum measurements, etc.) still results in an offset.

16



A form that eliminates steady state offsets is

Hy = ZH,-Hy (28)
with

ZH, = ZHyn 1)~ Ha 075 Hyp gy (29)

where (n-1) indicates the value for the past orbit. Any steady state signal needed will now
be provided by EI;Ia, a computed quantity, rather than by a physical offset (Ija). The

sampled data characteristics of equations (28) and (29) are treated in Appendix H.

The fact that a v,-angle is utilized for desaturation of the orbital angular momentum

component introduces a difficulty: A iamp in the orbital z momentum must be considered
as having been introduced by the desaturation itself and its effect on Iilaz must be com-
pensated. A simple example will illustrate the point. Consider only an initial momentum
about the orbital z axis. This momentum is measured as (Haz) 1= HO during the first
orbit. At the end of the first desaturation interval, v, is changed by Awv, so that H,

is eliminated after exactly one orbit. But at noon of the second orbit, v, has not done its
job yet, and (Haz)2 measures the remaining momentum (about 0.55 H, fora 35 percent

desaturation). This remaining momentum is
(Hpz)y = -0.55 (Hy,), \:since (Hy,)p = '(Haz)l]
and it must be subtracted from the orbital z momentum:
(Hap)a = % (Hg3 *+ Hizg)p +0.555 (Hy,)p (30)

For the example (Haz)2 would be zero and (sz)z would have the right value to eliminate
exactly the previously introduced Av,. Equation (30) seemingly contradicts the comments

made with respect to equation (26), but it should be recognized that in steady state there
isno Hy,.; i.e., whatever average torques are acting about orbital z are compensated for

by the appropriate v,,.
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In a sense, the latter fact is a gravity gradient sensor holding the vehicle in a certain
attitude about the sun line. It holds this attitude also if there is rate gyro drift, which is
.compensated for on a per orbit basis by the appropriate Av,. Since the external torques

(besides gravity gradient) are unknown, it is impossible to state what attitude is maintained.
For attitude control, a combination rate gyro/strapdown reference calculation is sufficient,

but a star tracker or other reference is necessary for exact knowledge of the attitude about

the sun line.

The desaturation momentum commands used in equations (18), (19), and (20) are
in principal coordinates, but the angular momentum samples and the desired momentum
bias are in vehicle coordinates. Therefore,

Hy = 2[K] (Hyg-Hyp) G1)
H, = [K] [0.5 (Hz + Hys) - Hpl +0.555 [n] [0,0,(snHyy, + cnHy )1 T (32)
=H, = TH,-H, +0.75 Hyp p) (33)
Hyq = ZH,-Hy 34

So far it has not been considered that the CMG’s can saturate, but if they do, a minimum
impulse bit (MIB) must be fired in the appropriate direction by the TACS to desaturate
the CMG’s immediately or fine pointing is lost. Therefore, the momentum desaturated by
the MIB’s must be included in the samples, or H, and Hy give erroneous results:

Hy = Hi-ZHpyp  (G52,3,5,0)

where Hy is the total system momentum at the sample time and ZTH,,;p is the accumu-

lated MIB momentum fromthe time of the first sample (i=2) to the time of the present
sample. Hj can then be calculated as usual {equation (25)], but H 4 becomes

H, = 0.5 (Hgz + Hyg) - Hy + ZHpy (35)

where TH . is the accumulated MIB momentum from the first sample until the time of

execution of equation (35); thus whatever momentum the MIB’s have already desaturated
does not need to be desaturated by maneuvers.
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APPENDIX A
DEFINITIONS OF SKYLAB COORDINATE SYSTEMS AND ANGLES

Only the coordinate systems (CS’s) needed for the development of the desaturation
method are defined. Some transformations are shown for completeness, but are not needed
for the development, which is pointed out in the definitions (e.g., for X : ny-angle is not
needed). All CS’s are right handed and orthogonal. All angles are defined mathematically
positive and those with a t subscript are orbital y angles.

Symbols Transformation Matrix Definition
Xo Basic orbital CS. Z, toward ascending node;
Yo N/A Yo toward orbital north. (CS X, is not
Zg needed explicitly for desaturation method.)
Xy Reference CS. z, toward sun; Xy in the
Yy Xr = [nX] [ny] X0 orbital plane; yp in northern orbital hemis-
Zy phere. (ny angle is not needed.)
Xor Orbital reference CS. Zoy along projection
Yor Xor = [17X]T X, of z. into orbital plane; y,, toward
Zor orbital north.
Xd Disturbance CS. z4 toward center of earth;
Yd Xgq = Ingd Xop yq toward orbital north. (n=0 indicates
zg orbital midnight; n isa y angle.)
Xyr Vehicle reference CS. For no attitude

= deviation the vehicle geometric axes will be
y = {v,] X

vr o = Pl X aligned with this CS.

Zyr

19
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Transformation Matrix

54
i

v = 19el Xy

>
{

p = KX,

X, = K] X

pr vr

1TmTx

op ~ [vzp pr

Xpr = [1xp] lugel 1¢m! Xor

Definition

Vehicle geometric CS. z, toward the ATM
rack; x, toward CSM. [#c] is the attitude

deviation (commanded or error.)

Principal axis CS. Axes along principal
moment-of-inertia axes; labeling of the axes

such that tr{K] is maximized.

Principal axes reference CS. This is the CS
for the principal axes in the absence of an

attitude deviation.

Orbital principal CS. Zop along the pro-
jection of Zpr into the orbital plane; Yop
toward orbital north. (uZp is not needed.)

Another definition of the CS Xpr showing
the angles 7., and v, which are used in

Appendix G (g Xp is not needed.)



APPENDIX B

DERIVATION OF GRAVITY GRADIENT TORQUE

The gravity gradient torque acting on the vehicle is[equation (2)]

- ~ T
Ig = 3Q°2 [rpr] lel ,[Ip] [e] Tor (BD)
with
L, 0 O
[Ip] =10 Iy 0 principal moment-of-inertia matrix
i 0o 0 1, ]
where
Q orbital rate for circular orbit
Tor unit vector parallel to radius vector from the center of the earth to the
vehicle center of mass
[e] transformation matrix from the principal reference CS Xpr to the
principal axes CS Xp
In the following development it is assumed that the e angles are small and that
Xpr lies in the orbital plane and Zpr points toward the center of the sun. Equation (2)

can be written as

Ty = 397 [F,] {(E] + 1] [1p1] (E] - [€hr, (B2)

21



with

0 -€, te
[e] = +e, 0 €y (B3)
€y tey 0 |
where e, €y and e, are small angles about the corresponding principal axes and [E]

is the identity matrix.

The moment-of-inertia differences will appear so frequently in the following that
new symbols are introduced:

AL = 1,- 1y
ALy = Iy-1,
AL, = L,-1y

Operating on equation (B2) leads to

Ty = 307 (] J11,) - (1] [€) + 18] [1,] - 18] [1,] (€1 ) 1

The term [€] [Ip] [€] contains only square terms in e and is neglected.

- - 1 1.
r ] -1, +ry +Hy -A IZey -A Iyey Iy
Tg = 3Q? +r, 0 Ty -Al e, +Iy -A Ixex_ Ty
Ty +ry 0 -A Iyey -A Ixe X +IZ I,

L E L J L .

22



where Iy,

Iys and 1, are the components of Tor in the principal reference CS Xpr

- - -

_ Y, _
AIXryrZ Ty +r, Tyly trgr, Aly €x
T = 302 ( Alyrzrx + +ryrX R By TyT, AIy €y
A Izrxry T,y +rZ1ry .rxz +ry2 Al e,

- o L. I I -

The torque has been split into two parts: one that is independent of the ¢ angles and can
be considered the nominal part, and one that is dependent on the ¢ angles and can be
controlled.

are developed as follows:

The components of Tor

ror = [0 [ngg] Ingd Txg = (0] lngg) T rg
with
['fltd] = ['ﬂt"ﬂtm]

or

Ty 1 0 O Cniq 0 M 0
ry = 0 c¢n sy 0 1 0 0
r, 0 -=sp cq sngg 0 cnyg -1
-Sntd -
i RO
“n Cd

23



Consequently,

T, =T +T—gd

g~ =gn
with
ALy sn o g
:f_gn = 3Q°2 AIy cn SNt Cnid
AL, sn Snyq Cnyg |

r"'Au tAq2 +A,3 [—AIX €y

T d = % Q2 ‘A12 +A22 +A23 Al €

- Ay - Ay +A;; Al
where
Ay = +2SPn-s2n) g = +c2n (1 +c2ny)
Ap = -Zsnsngqongg = - s2ng
Ay = t2enpsnyqenyg = toms2ngg
Ay = +2stnyg - c*n Pyg) =+ (1 - c2ngg) - % (1+c2n) (1 + c2nty)
Ays = -2spep ey = - % s2n (1 + c2ntd)

A33 = ’Z(Szﬂtd‘szn Cz‘ntd) = + —;——— (1 —C2n)(1 +C217td)"(1 “Czntd)
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APPENDIX C
COEFFICIENT EVALUATION

The following definite integrals are involved in the development of the 34
coefficients of equation (7) or (8)

P
f $2n4q dngg = -[ s2n¢q dngg = - —é— (1-¢c2p)
—p O
0 o
_p O

With these integrals, we obtain (1/22 has been absorbed in the A;’s)

0 0
Ay = 2j A12 d'f]td = "2577 J SZ’ntd dntd = + s (1 - C2p)
- -0
0 0
a;3 = 2 J Ay dngg = +2cnf sZntd dngg = -cn (1-c2p)
-p -p
0 0
A3 = 2[ Agz dngg = - SZnJ (1 +c2nig)dngg = - —%— s2n (2p +s2p)
P by
0 0 0
Ay = ZJ A, dntd = -(1+ 0217)] (I+ C2"td) dntd + 2[ (1- 02’?td) d"td
-p -0 P

= . % (14 c2n) (2o +520) + (20 - 52p)
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0 0
2[ Ais d"td = +(1 +c2n)/ ¢! +°2’7td) d"td'
..p ‘p

+% (1-¢2n) (20 +520) - (20 - $2p)

/

(1-c2nyq) dgg



APPENDIX D
DESATURATION MANEUVER EFFICIENCIES

The maneuver angles cannot be reached instantaneously.because of the limited
vehicle angular velocity imposed by CMG momentum limitations. The angle profiles of
Figure 3 are therefore used and the ratios between the desaturated momentum by the actual
angle profile and the one desaturated by the ideal profile are expressed as efficiencies:

Ey = (de)act / (de id
Py = (de)act / (de)id

E, = (Hdz>act / (Hdz>id

where the components are in CS Xpr' The actual desaturated momentum can be interpreted

as the integration over infinitely small maneuvers with 100 percent efficiency, but with
varying desaturation percentage.

The ideal x desaturation momentum is
(de>id = (1-c2p) Aé’

with
Ae' = snAey/(—Az)-aneZ/As

[cf. equation (7)]. The actual x desaturation momentum is

Ae' A€’

(Hax),., = JO [1-¢2(0 -] da- jo [1-¢20'] da

27



where o is a dummy integration variable and
p' = ap/(2a€’)

Evaluation leads to

A€’

_ [ ,,v o
(de)act _J;) L c2p (1 'XJ) Te Z%] da

r I . Ael
= Ae s2p(l— a,)+s-2a—,
p L 2A€ Ae 0

= A€ (250 -52p)
p

and
X p(a-c2p)
The ideal y desaturation momentum is
(de)i L= ey
with

ey’ = cney/(-Aq) - sne,/As

[see equation (9)]. The actual y desaturation momentum is

ey'
0

(de)act =2 f s2(p - p') da

28



with
p' = ap[Qey’)

Evaluation leads to

ey'
H =2 20 (1- %) da
(tay) [ 50 (1 5)
act 0 2€y

)
€

EE;XI——CZp(l-- o« )Y

2ey 0

(cp - c2p)
and

E, = 2-C2p D2
y 252 (D2)

Note that Ey is always larger than one (for the desaturation percentages considered) since

the actual angle profile has less losses at the beginning and the end of the desaturation
interval than the ideal profile (the torques are a function of ¢2n td)'

The ideal z desaturation momentum is

H = -(2p-82 !
( dz id (20 -s20) ¢,
with

’

e, = sney/(—A2 )+ cneZ/A3

29



[see equation (9)]. The actual z desaturation momentum is

1

€

z
H = - f 2p-p)-52p-p)} d
(dz)act 12(0 - ") -52(p - )] da
0
where
o' = ap/(2e,)
Evaluation yields
€,

|

H = . f 2(1-—"‘-)-2(1- "‘,)d'
( dz)act 5 [p 2e,’ s=p 2e, *

’ :rz +_EZ'_ c2p [1~ 20‘,]62
o ° zdg

= . [.3_ p - —-‘1)— (Cp ~02p)]ez'

?

|

]

N
©
=

]
o R
N\

2

and

—3-p- 1 (cp -c2p)
2 0 (D3)

E. =
z 2p -82p
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APPENDIX E

ORBITAL ELEVATION OF PRINCIPAL z, AXIS, NOMINAL ROTATION
Vzg ABOUT THE SUN LINE, AND GRAVITY
GRADIENT TORQUE PHASE SHIFT 74,

The sine and cosine functions of the orbital elevation n of the principal Zp axis

are needed for equations (18), (19), and (20) and must be calculated from the known
vehicle angles n, and v, and the principal axes misalignment [K]. The transformation

from orbital reference coordinates to principal reference coordinates is

[c] = IK] [v,] [ny] (ED

which results in

Cyi KuCUZ'Kn,SUZ

¢z = Ky sv, + Kizcvy)eny - Kys S«

C13 Ky, SUZ+K12 CUZ)SWX"' Kiacony
Cyy = K21 CUZ - K22 SUZ

Ca2 = (Ka sv, + K2, CUZ)CTIX - Kaasny

C2s = (Kaisv, +Kapcvydsny + Koseny
csi = Ky cv, - Ki, sv,

e = Ky sv, + Ks2 cv,)eny - Kaasny
css = Ky sv, + Ks2 cuy)sny + Kascny

For the sine function of the elevation n of the principal z
error is assumed zero)

p axis we have (the attitude
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sn = -C3 = Kaasny - (Ksisv, + Kspovy)sny (E2)
The cosine function is

cn = /1-5°7 SGN[Ks, s, + Ks; v, )sny + Kaz ony] (E3)
There is no need to know the angle n explicitly; the trigonometric functions are sufficient.

The nominal Vsg rotation about the sun line puts the Xp axis into the orbital
plane, or

which yields
Ku SUZg + K12 CUZg = K13 t’nx

or

J 2}
KiiKis tny - Kiz V(K +Kif) - (Klstﬂx)

= E4
e K7 +Kif D
J 2l
_ Ki2Ky3 tny + K VK +Ki?)- (K5 tﬂx) (ES5)
g Kif +K.7

The phase shift 4, (midnight shift) of the cyclic gravity gradient torques (and

consequently the shift of the resulting momenta) is the angle between the projection of the
%5 axis into the orbital plane and the vehicle orbital x,, axis, which yields

~Ci13
Ci1

Mim =

32



or

Mtm = t‘ll{

1Ky 80, + Kyp 00,8y + Kysonyl

Kll ch - K12 SUZ

}

(E6)
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APPENDIX F

MANEUVER MOMENTUM PREDICTION AND ADAPTIVE
ANGLE COMMAND LIMITING

The maneuver commands of equations (21) and (22) are derived disregarding the
fact that the CMG’s may not have sufficient momentum available to execute the maneuvers.
A prediction of the available maneuver momentum must be made at the time the onboard
digital computer calculates the maneuver commands, which must be scaled down, if neces-
sary, to avoid the introduction of severe crosscoupling.

The total CMG momentum H; to be predicted can be split into a part Hg that

is unalterable (momentum caused by cyclic components, the average, and the ramp) and a
part H ., that can be changed (the momentum needed for the maneuvering itself and the

momentum already desaturated by the maneuvers at the time in question):

where A is a positive number (A = 1 indicates the unaltered case). The magnitude of this
momentum is not allowed to exceed the saturation momentum Hg,¢ of the CMG’s:

(Hg +AHppap) < (Hg + MHpyp) = Hgyf

or

N= J-(Hge Hypon) & v/ (Hg » Hip )2 + (Hpp g Hip o )IHg,f - (Hg e Hgﬂ/r

H H

- ® )
man =man

We can make the assumption that Hsat2 > (ﬁg . ﬂg); i.e., without any maneuver the system

is not saturated. Then only the plus sign in front of the square root results in a positive A
(a negative value for A makes no sense; i.e., it indicates that a maneuver diametrically
opposite to the one desired is necessary). When A > 1, excess maneuver momentum is
available and no scaling is necessary, whereas A < 1 requires scaling.
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The number of time points where the maneuver momentum is checked must be
minimized and the halfway points for each of the three maneuvers and the point at the
very end of the maneuvers (end of the desaturation interval) have been selected as the check-
points. This is illustrated in Figure F1 which shows the orbital y and z components of
the momenta, necessary for the maneuvering, added to the unalterable momentum, as a
function of n¢q- A different aspect of the same information is shown in Figure F2 where

the z component is plotted as a function of the y component with Nyq s a parameter.

In this representation the saturation can be indicated as a circle about the origin in the
y-z plane. The effect of an x momentum is also disregarded in Figures F1 and F2 (for
clarity), but the equations do not neglect the x component. In the following the \’s
carry a subscript identifying the checkpoints with which they are associated.

Saturation during the second maneuver is caused by a Ae only and can be detected
at checkpbint 2. It requires a reduction of the Ae’s by A, if A, < 1. Checkpoint 2 is at
the maximum momentum (for the second maneuver), if there is no orbital y momentum
to be desaturated, and close to it for the case depicted in Figure F1 (which has a large orbital
y momentum). If saturation occurs at checkpoint 1 or 3, both the ¢’s and the Ae’s
should be reduced proportionally by MIN(A,, A5 ) such that saturation is just reached at
the respective checkpoint. After the checkpoints, the desired momentum still can exceed
the available momentum. Some momentum is always available right after the first maneuver
and attaining the exact attitude is not critical; therefore, it makes no difference if the avail-
able momentum is exceeded after its checkpoint. However, at the end of the third maneuver,
the attitude error must be zero or experiment time will be lost. Figure F1 shows that
enough excess momentum is always available between the start of the third maneuver and
checkpoint 3 to meet the time integral of momentum required for the desired attitude
change. Increasing the commanded rate initially by a factor of u (which will be determined
. below) can be implemented by a fictitious reduction of the third maneuver interval by
Ap. Figure F1 shows that the problem can be linearized (which is slightly conservative)
and the relationships are shown in Figure F3, where the available maneuver momentum is
normalized with respect to the desired maneuver command. The cyclic momentum has been
subtracted, resulting in a sloped saturation line, and the polarity has been reversed for con-
venience. The momentum time integral requirement can be stated as (p is proportional to
time)

..p__ __l__ -A =._p_.. g
T (M -2q) 5 (F1)

where it should be remembered that the ordinate is normalized by the desired maneuver
momentum. Geometric relationships show that

P11 = 7‘1‘ (-2 -04) (F2)

Elimination of p; from equation (F1) yields
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Figure F1. Checkpoints for maneuver momentum.
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— ORBITAL Z MOMENTUM —»

— ORBITAL Y- MOMENTUM —

Figure F2. Orbital z versus orbital y momentum.

37



38

NORMALIZED MANEUVER MOMENTUM ——=

(@]

"~
ol
| -
\
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or

= (s -2) -2/ - D (A -2s) (F3)

Only the minus sign before the square root makes sense. To achieve a velocity increase by
a factor of u by a shortening of the base by Ap resultsin

(520 ]e= %

or

- (1) (5)

A plot of Ap/p is shown in Figure F4. A conservative approximation that eliminates the
need for a square root is

= 1 _1-24
ap = e (& ) (F5)
Bp_ ]
PR
0.25+
= (20 A= 20007 )01
Ap- >‘3-|
N 1.05
1.1
1.2
1.5
] 2
— 4
0 ' ' o5 ' _ 10

Figure F4. Exact Ap/(p/2) versus A;.
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A plot of Ap/p for the approximation is shown in Figure F5. All objectives of the scaling
can be cast into three equations [see equations (18), (21), and (22)]

-ex]1 -ex- -Aex-
eyl = MIN(I,)\I,A:\;) ey +MIN(1,)\1,A2,;\3) Aey (F6)
LGZI €, Aez
[ ex2] [ex | [ Aey ]
ey2 | = MIN(L AL, Rs) ey - MIN(1, 1,29, 05) | Aey (F7)
€,2 eZJ AeZ
L - L. L. =
Av, = - Ay MIN(1, 23) (Sany + andz)/(chnx) (F8®)
0.251 Bp_ 1-x,
A P 2xzh,
Dp
PT )\3= |
| 3
l.2
|.5
2
4
0 ' + + t t } } y
05 — )\4—— 1.0
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For each checkpoint there is a need to identify what constitutes the nonscalable vector
H,); and the scalable vector Hg.;. It is assumed that the components are in vehicle coordi-

nates. In general [see equations (25), (G6), and (G7)],

H

Hpj = Hy +Hy + Ky + KgyiHgy + Kogilly, + Hyp (F9)

gyi—gy = “gzi—gz

where Hg,.: identifies the portion of the momentum already desaturated which is not

affected by the particular ;. Also

H

_ .20
Hyoi = - =~ &+ Hyg (F10)

where e; signifies the change in angle during the maneuver in question and Hgg; is the

portion of the already desaturated momentum which is affected by the particular ;.

The following constants apply to the momentum ramp Hy :

Kyx1 = 0.5-0.375 p/n
Koo = 0.5

K,k3 = 0.5+0.375 p/n
K4 = 0.5+0.5p/n

The following constants are associated with the cosine amplitude Ijgy (or H)
and the sine amplitude f_lgz (or I:IS) of the cyclic momenta [see equations (25), (G6),

and (G7)]. Linearization was applied.

Kgy1 = -1.50+057
Kegy2 = 1
Kgy3 = -15p+057
Kgy4 =-1.8p+045
Koz1 = -1
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ngz =0
ng3 = 4 1
Kgpq = -1.7p+0.857

The desaturation momentum components must be in vehicle space, and the portion
that will be desaturated by Av, after the desaturation interval (i.e., the orbital z momen-

tum) must be subtracted:

- - -

Hdvx de 0

Hayy | = KIT < | Hyy | - (saHgy +cnHy,) | sn

LHdvz ] _Hdz cn
The portion of the momentum that must be considered unscalable is

Hyq = 10,0,01T

- T
Hgnz = 0.5 MIN(1, A1, 25) [0, Hyyy, Hyy, ]

Hy,3 = 10,0,01T
MIN(1, Ay, s, 03) Hgyx

Hona | MIN(I, A1, 25) Hyyy

MIN(L, Ay, As) Hyy,

The portion of the desaturation momentum that can be scaled is

Hge = 10,0,01T

- T
I_——IdSZ - [O'SHdvx’ 0,0]

— T
Hysz = [Hdvx’ Hdvy’ Hdvz]
Hyes = 10,0,01T

42
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The attitude changes during the maneuvers are

- T
€1 = lexpseyps €511
€3 = [-Bey, -Aey,-Ae,] T

€3 = lexy, €y), = (€50 - Av,)] T

where equations (18), (19), and (20) supply the €’s and the Ae’s (i.e., the angles before
scaling) but

€4 = lexp ey2: = (€57 - Av,)] T

where equgtions (F7) and (F8) supply the €’s and Av, (i.e., the angles after scaling).
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APPENDIX G
CYCLIC MOMENTUM COMPONENTS

The cyclic momentum components can be extracted from the samples [equation
(23)]. However, in some cases one or more samples are invalid or missing, and an alternate
way of determining the cyclic momentum components must be available.

The intended use is not critical, and it can be assumed that the large moments of
inertia (about the Yp and Zp axes) are identical. This assumption allows a rotation about

the Xp axis without a change in the gravity gradient torque vector. It is then convenient

to develop the torque with the Xp axis out of the orbital plane by an angle v e and with

Z
the Zp axis in the orbital plane:

0
Ig = 3Q2% Alry |1,
| ]
with
-rx ] -cvze S0 0] Fcntd 0 S"td- [0 ]
fy | = |[vze  Cvge 0 0 1 0 0
LrZ ] ] 0 0 1_ _’S"td 0 C"td_ _-1_
_'Cvze S”td-
= Svze SMtd
L'c"td |
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or
Ty =+ 2 0 Aoy |-s2ayg G1)
S0 (1- CZntd)

Since we are only interested in the cyclic components, the bias in the z component can be
ignored:

0
T = + 3 Q% Alowge |2n4g (G2)
Svze C2014
Integration yields
_ 0"
- 3
ch =7 QAICUZe C2ntd (G3)
SUze 82149

where the average over one orbit has been set to zero. To be useful the cyclic momentum
components should be in vehicle components:

0

Hooy = 5 Qalevge [o]Iny) Ing] T logel T | c2me (G4)

Svze $2M¢4

e

where 74, is the angle about orbital y between the projection of the Xy axis into the
orbital plane and the z, axis into the orbital plane. Evaluation of equation (G4) yields
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with

I;Igvc = I;Igy c2n td + I;Igz s2n td (GS)

“CV, CN iy SVgze T S, (cny cv,0 + sy SM svze)

- 3
I;Igy =0 QAlcv,, ' SV, Cllyy SVze T OV, (Cny CUZe 8Ty SR4, Sv,6) (G6)
Sy CVye + Cx SNim SVze
cv, SN ¢m + st Snx Cim
_ 3
}_Igz iy QAIs2v,,  |-sv, Sy + Oy SNy Cyy G

Cy CMim

Only the terms Szntd and c2nyq must be updated frequently; the rest can be updated once
per orbit. If Ve and 74 can be considered small, equations (G6) and (G7) can be sim-

plified to
Cvy Vg t SV, CRy
Hgy = 5 QAL | sv, 00+ v, ony (G8)
_Snx
Sv, Sty
Hy, = % QAL | cv, sny | vge (G9)
C'I)X

46

An estimate must be made on v,,:

Ve = (Vg -v,g) Oy



where Vg is the z rotation needed to put the Xp axis into the orbital plane (see Appendix
E for its derivation). Further simplification is possible if v,e can be considered negligible:

sv, Cny
- 3
I;Igy T QAL | cv, eny (G10)
_Snx
0
ng =10 (G1D
0

I;Igy of equation (G10) is the resolution of a momentum along the orbital y axis into vehicle
components.
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APPENDIX H

SAMPLED DATA SYSTEM

The following equations are needed to treat the desaturation method as a sampled
data system:

Hn = Hl’l—l +Hk+Hdn-1 (Hl)
2Hn = 2Hn_1 +Kn Hn+Kn_1 Hl’l-l (H2)
Hgp = ZHp-Hy (H3)

[see equations €28) and (29)] where H is the total accumulated momentum and H, =H.
Hy is the momentum accumulation per orbit.

Application of the z transform results in

h=z'h+h+z"hy (H4)
*h = z“Eh+Knh+z“Kn_1h (H5)
hg = Zh-hy (Ho)
or
h _ (z-1)* (HT)

hy 2-Q+Kpz+(1-Ky

The characteristic equation

22 -(2 +Kn)Z + (1 -Kn_l)
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results in

215 = 05[(2+Kp) + VZ+ K -HT-K, ]

K,, is selected to be -1, which yields
z1p = 05¢ W

This results in an oscillatory system for
K,-1<0.75

and the equivalent system® to equations (27) for

n-1 —

since the z =1 is cancelled by the numerator in H7.

1. Only true as long as no nonlinearities are encountered.

(H8)
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