
NASA TECHN ICAL
M E M O R A N D U M

NASA TM X- 67985

00

<
</*
<

A STORED PROGRAM CHANNEL PROCESSOR FOR CAMAC

by Robert W. Bercaw
Lewis Research Center
Cleveland, Ohio

TECHNICAL PAPER presented at
Digital Equipment Computer Users Society Meeting
San Francisco, California, November 11-13, 1971



\ STORED "ROGRAM CHANNEL PROCESSOR FOR CAMAC

Robert W.. Bercaw
NASA-Lewis Research Center

Cleveland, Ohio

ABSTRACT

A PDF-15 interface has been developed for the
CAMAC instrumentation standard which implements the fea-
tures of both the addressable I/O bus and the single
cycle data channel. The data channel section forms an
independent I/O processor which executes programs stored
in core. Programs consist of CAMAC commands plus special
control characters and commands.

CO
H
r-
CD

INTRODUCTION

The CAMAC system of instrumentation
has been adopted by numerous laboratories
in Europe and the United States as standard
method for interfacing research apparatus
with the aim of establishing a stable boun-
dary between the instrumentation and the
computing. A brief description of CAMAC
will clarify the objectives of the work
described here. CAMAC replaces the great
variety of I/O busses found on various
models of computers with a single nonpro-
prietary design standardized both mechan-
ically and electrically. It features a bin
or crate which will accept up to 24 modules
A bus or dataway at its rear provides com-
munication to the computer. The CAMAC spe-
cifications restrict the instrumentation
contained in a module only to the extent
necessary to insure compatability with the
crate and dataway.

The dataway has a 24 bit read bus, a
24 bit write bus and a control bus.. The
control bus provides for 16 subaddresses
and for performing up to 32 different oper-
ations on a module (function codes). Pro-
vision is made for polling the stations via
~a~ cTDmTrion~"Q"-response line-.- In -additi-on -to•--
the busses, each individual module has a
pair of private lines for module station
selection (N-line) and one for its servic*
requests (LAM, Look-at-me).

The above characteristics are not
embodied in the I/O bus of any computer
line and thus CAMAQ must itself be inter-
faced to the computer used. The interface
must resolve the time and logical differ-
ences bpfwf'en the two structures and its
design will therefore have a significant
influence on the performance of the total
system. We have designed and built an in-
terface for the POP 15 which implements
both its programmed I/O bus and its data

channel. The section implementing the pro-
grammable I/O bus is a conventional design
driven by IOT instructions, but the data
channel section is quite unusual and avoids
many of the limitations found in other
designs. It operates independently of the
CPU as a true stored-program processor.
Some of its features are:

Full repertoire of standard CAMAC
operations

Arbitrary sequences of CAMAC oper-
ations

Module initiated execution of channel
programs

Module controlled branching of channel
programs

Dual independent data channels
Direct memory increment
Full independence of IOT driven pro-

cessor
Intermixing of 24 and 18 bit data
transfers.

The processor was designed as a two crate
controller, however there is nothing fun-
damental in its design which would prevent
-its-adaptation- to-a-branch-driver.„_

IOT DRIVEN PROCESSOR

Figure 1 illustrates the principal
elements of the IOT instruction driven sec-
tion of the processor. The control section
consists of logic to interpret the compu-
ter's IOT instructions, a command register
to hold the FACN (Function, sub Address,
Crate, and station Number), N-decoder and
dataway clock. There are also the standard
types ot interrupt and Q-test facilities.
A two part buffer register is used in the
write path to resolve word length and
timing differences between the I/O hus nnd
the dataway, but there is enough flexi-



bility in Che dataway timing o^e.ul Clear ions
Co allow read operations Co be performed by
merely gating Che dataway on Co Che I/O
bus, providing some simplification of the
hardware and reducing the number of regis-
Cers which must be saved during interrupts.

Three types of transfers may be per-
formed; dataless, input and output. Only
a single IOT instruction, loading the com-
mand register, is required for dataless
transfers while two or three lOT's are re-
quired for data transfers depending on the
word size. The lOT's are always made in
the same sequence:

1. Send command word
2. Send or receive high order data
3. Send or receive low order data.

The processor will execute a dataway cycle
whenever the low-order data is transferred
or when che command regisCer is loaded wiCh
a daCaless Cransfer command (i.e. one wiCh
Che F8 bit set).

CHANNEL PROCESSOR

In order to make a transition from
the above processor to a-channel processor,
it is useful to replace Che compuCer which
drives it with a black box. It is then
clear that the computer's main duty is as a
source (and sink) for commands and data.
The CAMAC processor then appears to be oper-
ating autonomously fetching commands from
the box and then executing them, using the
box as a pool for the data transferred to
or from the modules. A program for the
CAMAC channel processor would consist sim-
ply of a list of CAMAC commands which are
executed in sequence by the processor. Of
course, the operation of the processor de-
pends entirely upon the CPU for its opera-
tion, but it will be seen that the CPU can
be replaced by a data channel facility such
as is found in Che POP 15.

The principal requirement for an au-
tonomously operating processor is that iCs
command word fully speci ?•••• its execuCion
phase. CAMAC's function codes are well
suiCed for this since a single bit (F8)
identifies dataless operations while another
(F16) defines the direction of data flow.
There are no provisions for describing Che
word size (18 or 24 bits) or Co conCrol Che
processor iCself, but the 18 bit word size
of the POP 15 provides enough room to in-
clude all the necessary parameters. A chan-
nel processor must also have some method of
addressing data and commands in memory. The
usual method of sequential addressing is
generally adequate for both data buffers
and commands, but ic is desirable and con-

venient to provide for program jumps and
conditional skips. There is little need for
'more general data addressing because of the
parallel IOT driven processor.

i. A simple processor based on these
principles will have the flow chart shown
in Fig. 2. Upon receiving a request, the
processor enters a program by initializing
its program counter. Commands are then
fetched and executed sequentially until an
exiC code .is found in a command. The pro-
gram counCer is incremenCed afCer each
feCch, while Che word counC and current
address registers are incremented after
every data transfer. At the termination of
execution of a program the processor will,
depending on the word count overflow flag,
either pause and wait for a new request or
disable itself and interrupt the computer
CPU.

SPCC HARDWARE

A block diagram of Che scored program
CAMAC channel (SPCC) which we have devel-
oped for Che POP 15 is shown in Figure 3.
The single-cycle daca channel of Che PDF 15
is not shown, but it is used for transfers
of both data and commands between memory
and the processor. The data paths are
identical to those of the IOT driven sec-
tion, excepC for Che addition of the pro-
gram counter which must be loaded through
the I/O bus.

Four different channel programs may
be executed on a time shared basis. A pro-
gram is entered upon the request of an
"event" or flag from an external device
which may be either a LAM or a BNC coaxial
input located on the front panel. The LAM's
enter through a patch panel so that they
may act either as an event input or as a
program interrupt. The event inputs pass
through a monitor which holds requests
until they can be serviced and also sche-

-dules the i-r-servicing .according to_a_fixed
prioriCy scheme. ~

Control of the processor is per-
formed through a unit attached to Che daCa-

. way which looks like a sCandard CAMAC mod-
ule. By giving it module status we have
made it accessible to both the IOT driven
and channel processors. This provides a
communication link between the channel
and CPU programs and allows the channel to
control itself. The module contains word
count and current address registers, over-
flow and error flags and event enables.
There are two sets of registers to provide
two independent subchannels, a requirement
if input and output are to be carried on
simultaneously. Each subchannel contains



a four-bit register to enable the events
using it. Setting a bit in the register
both enables an event and also associates
it with the subchannel. The register is
cleared upon word count overflow and must
be reset after the interrupt has been
serviced. It is made as an extension to the
12 bit word count register to reduce the
number of steps needed to reinitiali3e a
subchannel. The word count overflow flags
are passed to the computer interrupt and
skip facility in the same manner as the
other module Q's and LAM's except that the
channel LAM has its own API channel.

Other sections of the processor are
the channel control, which supplies the se-
quencing and command interpretation logic,
and the address multiplexer which generates
the memory addresses for the channel. It
obtains addresses from the program counter,
the two current address registers, the read
lines of the dataway and the event monitor.
The dataway read line input allows the pro-
cessor to perform the direct memory incre-
ment using data from a module as an address.
The event monitor generates a unique ad-
dress for each event (24-27s) from which the
processor initially loads the program coun-
ter.

SPCC OPERATION

The command word used by the processor
is shown in Fig. 4. It has three bits in
addition to the usual CAMAC FACN. The most
significant bit is used to control the con-
ditional skip. The processor will skip the
next command if the Q-response from a mod-
ule is different from the value of this bit.
The High data bit is set when it is desired
to transfer the full 24 bit word by making
two transfers, normally only a single 18 bit
transfer is made. Since channel programs are
usually short, devoting a command to a stop
code would significantly lengthen a program.
Therefore, the processor is stopped by set-
ting an Exit bit in the last command to be
e x e c u t e d . "

Several nonstandard function codes
have been employed to provide special hand-
ling by the processor. F(12) has been em-
ployed to provide for unconditional program
jumps within a page. The processor loads
the 12 least significant bits of the command
Into its program counter when it encounters
this function code. No dataway cycle is ex-
ecuted. Two codes, F(4) and F(6) are used to
invoke the direct memory increment mode.
The processor trims off the F4 bit creating
a read (F(0)) or a read and clear (F(2))
command and then uses the data from the
module as an address at which to increment
memory.

Figure 5 illustrates the sequence of
events in processing an event. In the re-
quest phase, requests are stored in the
event latches until the channel is free.
The latches are then strobed into a regis-
ter and the highest priority event is ac-
tivated. The event table, comprised of four
fixed addresses in memory (24-27), is read
to obtain the address of one of the four
relocatable channel programs. Normally this
address is placed in the program counter,
but because a number of applications employ
programs consisting of a single-command,,
the address can be interpreted as" a com-
mand. A command is denoted by a one -in its
most significant bit. In the fetch phase,
a command is read from memory at the ad-'
dress given by the program counter and, un-
less it is a jump, it is loaded into the
command register and the P.C. is incre-
mented.

The execute phase is then entered
starting with tests of the F8 and "H" bits.
Depending on the results, zero, one or two
data transfers are made with the direction
of data transfer depending on the F16 bit
and then a dataway cycle is executed. In-
cidentally, the burst mode is used if two
data transfers are made. The word count
and current address registers are incre-
mented after each data transfer. If the Q-
response from the module is different from
the one programmed into the command, the
program counter is again incremented to
create a skip. This provides for device
controlled program branching. Finally,the
processor branches on the exit bit, either
returning to the fetch phase or going on
to the exit phase. In this last phase the
entire event register is cleared, but only
the latch of the event serviced is cleared.
The processor then halts and waits for
another event, or if there is an overflow,
it clears the subchannel's enable register
and interrupts the computer for buffer
processing. Note that the interrupt occurs

_when_t_he_ prpgram_is f inished, not: _when the
word count overflows, the "actual~b~uffer
length must exceed the woru count by the
size of the largest event.

When more than one event is used to
fill a buffer, it is desirable to tag each
event so that the buffer can be unpacked
by the main program. An "event active
register" is provided in the control mod-
ule which can be read as part of the event
processing. It contains the number of the
event and has a one in its most signifi-
cant bit. If desired, the MSB can be nul-
led when other modules are read so that
these event tags become unique. The MSB
need never be lost because it is also
read in along with the high order 6 bits



of data. There is a bit in the event active
register which is set whenever there is a
Q-skip. If the test is made before the re-
gister is read, the tag word will indicate
its result.

The prime advantage in using the SPCC
over the IOT driven processor is in its
speed of data transfer and in the reduced
interrupt handling,but it can also be used
to pre-edit data". One example is in nuclear
physics experiments having two or more
ADC's run in coincidence, but where it is
also important to record the high rate
singles spectra. The processor can branch
on a flag raised by the coincidence unit,
using the direct increment if it is a
single or recording all of the data into a
buffer for more elaborate processing by the
CPU if it is a coincidence. A second ex-
ample is provided by synchronous data
transmission, type II, where there are con-
trol bytes transmitted along with the data
which are used to indicate when data re-
cording starts and stops. The SPCC can look
for these controls and only record valid
data.

An overview of the information flow
in the processor and computer is shown in
Fig. 6. General purpose system routines
have been written by Mr. T. Fessler to pro-
vide interrupt handling, data buffer man-
agement and construction of the table con-
taining the program addresses. An array
with the global "EVENTS", containing the
channel programs, must be provided. It has
been found that these programs are very
easily constructed using the MACRO assem-
bler. Details of the processor and software
will be presented in a forthcoming NASA
Technical Note.

ACKNOWLEDGEMENTS

The author is indebted to T. Fessler
"and J~"Arnold~ for'-their- suggestions and
encouragement. The project was greatly
aided by test programs provided by
T. Fessler.

REFERENCES

"CAMAC A Modular Instrumentation System
for Data Handling". EURATOM Report EUR
AlOOe, March 1969.
CAMAC Tutorial Issue, IEEE Transactions
in Nuclear Science,- Vol. NS-18, No. 2,
April 1971 and references therein.

2
PDF 15 Systems Reference Manual, DEC-15-
ER2E-D.



I/O BUSS OATAWAY

READ/WRITE (18)-

ADDRESS (6)-|

IOP (3)

IOT
DECODE

READ (6)

READ HIGH DATAWAY

READ (18)

READ LOW DATAWAY

WRITE (6) -

F8-F16

WRITE (18) •

COMMAND
REGISTER

'

CLOCK

\ STATION i , ,-M,
DECODE N(24)

, si, :

DATALESS

LOAD COMMAND REG.
EXECUTE DATAWAY CYCLE

CS-61010

OUTPUT

LOAD COMMAND REG.
(LOAD HIGH DATA REG.)
LOAD LOW DATA REG.
EXECUTE DATAWAY CYCLE

INPUT

LOAD COMMAND REG.
(READ HIGH DATAWAY)
READ LOW DATAWAY
EXECUTE DATAWAY CYCLE

FIG. 1 CAMAC PROCESSOR OPERATED BY THE PROGRAMMED I/O BUS

REQUEST

INITIALIZE
PROGRAM COUNTER

LOAD COMMAND REG.
PC + 1 - PC

EXECUTE E. G.
READ LOW DATAWAY
+ l-CA, WC + l -WC

DATAWAY CYCLE

C S - A I O I I

FIG. 2 FLOW CHART FOR A SIMPLE CAMAC DATA-CHANNEL PROCESSOR



CAMAC CHANNEL PROCESSOR

I/O BUS
READ
WRITE

DATA
CHANNEL
CONTROL

I/O BUS
ADDRESS

API PI
& SKIP

TO MODULES

EXTERNAL
EVENT
INPUTS

0

FIG. 3 CAMAC CHANNEL PROCESSOR

COMMAND W O R D
17

Q F A H E C
i i i i

N

F FUNCTION CODE
A SUB ADDRESS
C CRATE
N STATION NO.
Q EXPECTED Q-RESPONSE (NO SKIP)
H -24 BIT TRANSFER (2 WORDS)
E EXIT AFTER EXECUTION

SPECIAL FUNCTION CODES

F (4) INCREMENT MEMOR^ DATAWAY SEES F (0)
F (6) INCREMENT MEMORY; DATAWAY SEES F (2)
F(12) UNCONDITIONAL JUMP

CS-61013

FIG. 4 COMMAND STRUCTURE FOR THE SPCC



REQUEST FETCH EXECUTE EXIT

FIG. 5 FLOW CHART FOR SPCC PROGRAM EXECUTION

EVENT
TABLE

EVENTS

Q-SKIPS

FIG. h OVKRVTEW OF DATA FLOW IN A SPCC SYSTEM


