DEVELOPMENT OF A WIDEBAND WATTMETER AS A LABORATORY INSTRUMENT

N72-14420

NASA CR-72752

ΒY

L. GENE LANDES and YEN YEH LIU

August 1971 CASE FIL COPY

Distribution of this report is provided in the interest of information exchange and should not be construed as endorsement by NASA of the material presented. Responsibility for the contents resides with the organization that prepared it.

Prepared under Contract No. NAS12-2181

ΒY

BARNES & REINECKE, INC. Chicago, Illinois

LEWIS RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

1. Report No. NASA CR-120829	2. Government Access	ion No.	3. Recipient's Catalog	No.
4. Title and Subtitle DEVELOPMENT OF A WIDEBA	4. Title and Subtitle DEVELOPMENT OF A WIDEBAND WATTMETER AS A		5. Report Date August 1971	
LABORATORY INSTRUMENT			6. Performing Organiz	ration Code
7. Author(s) L. Gene Landes and Yen Yeh Li	iu [.]		8. Performing Organiz	ation Report No.
9. Performing Organization Name and Address			10. Work Unit No.	<u> </u>
Barnes & Reinecke, Inc.			11. 0	Nia
351 East Ohio Street			MAC 12 2101	140 ,
Chicago, Illinois 60611			NAS 12-2101	
12. Sponsoring Agency Name and Address			13. Type of Report an Contractor Re	nd Period Covered eport
National Aeronautics and Space Administration		-	14. Sponsoring Agency	Code
15. Supplementary Notes				
Technical Monitor, Dr. F. G. Schwarz, Power Electronics Branch NASA Lewis Research Center, Cleveland, Ohio				
A portable, solid state, wideband wattmeter has been developed as a general purpose type of laboratory instrument. Its circuit and component investigations and evaluation data are presented. A pro- totype unit was used extensively, and served as the basis for a second instrument incorporating refined circuitry and improved packaging. The wattmeter provides true four quadrant operation which permits instantaneous indication of real power as an oscilloscope display. Major performance factors are: frequency bandwidth DC to 1 MHz ± 1 dB; current range 10 mA to 100 amperes peak; voltage range 1 volt to 1000 volts peak; accuracy ± 2% of full scale reading. Oscilloscope data for typical switching transients in a transistor inverter circuit are included.				
17. Key Words (Suggested by Author(s)) Wattmeter, wideband power me high frequency transient power	eter, instrument	18. Distribution Statement Unclassified - v	inlimited	
19. Security Classif. (of this report)	20. Security Classif. (o	f this page)	21. No. of Pages	22. Price*
Unclassified	Unclassif	ied	45	\$3.00

÷

-

-

٠

-

•

* For sale by the National Technical Information Service, Springfield, Virginia 22151

Dr. F. C. Schwarz Technical Monitor

NAS 12-2181

LEWIS RESEARCH CENTER 21000 Brookpark Road Cleveland, Ohio 44135

Requests for copies of this report should be referred to NASA Scientific and Technical Information Facility, P.O. Box 33, College Park, Maryland. 20740.

TABLE OF CONTENTS

SUMMARY	1
INTRODUCTION	1
CIRCUIT-COMPONENT INVESTIGATIONS	1
Multipliers	3
Voltage Sensing	3
Current Sensing	3
Amplifiers	4
FIRST UNIT; CIRCUIT AND PACKAGE DESIGN	5
SECOND UNIT; CIRCUIT AND PACKAGE DESIGN	5
CONCLUSIONS	8
REFERENCES	8

FIRST UNIT

.

APPENDIX A	PERFORMANCE DATA	A - 1
APPENDIX B	OPERATING INSTRUCTIONS	B-1
APPENDIX C	SCHEMATIC & PARTS LIST	C-1
FIRST UN	IIT	

SECOND UNIT

APPENDIX D PERFORMANCE DATA	D - 1
APPENDIX E OPERATING INSTRUCTIONS	E-1
APPENDIX F SCHEMATIC & PARTS LIST	F - 1
SECOND UNIT	
APPENDIX G NEW TECHNOLOGY APPENDIX	G-1

DEVELOPMENT OF A WIDEBAND WATTMETER AS A LABORATORY INSTRUMENT

By Gene Landes and Yen Yeh Liu

Barnes & Reinecke, Inc. Chicago, Illinois

SUMMARY

A portable, solid state, wideband wattmeter has been developed as a general purpose type of laboratory instrument. The unit provides true four quadrant operation which permits instantaneous indication of real power as an oscilloscope display. Major performance factors are: Frequency Bandwidth DC to 1 MHz \pm 1 DB; Current Range 10 mA to 100 amperes peak; voltage range 1 volt to 1000 volts peak; accuracy \pm 2% of full scale reading.

INTRODUCTION

Many switching and pulse circuits generate spikes during their transition or switching time. This transient power may be of great significance and should be taken into account to avoid catastrophic failures in the active devices. Therefore, the wattmeter which has been developed will provide very useful information of electronic circuits and components. A few possible applications are semiconductor components, transformers, inductors and capacitors which carry currents with abruptly changing waveforms.

CIRCUIT-COMPONENT INVESTIGATION

All known multiplication techniques (Refs. 1, 2 and 3) were considered along with suitable "state of the art" components in order to ascertain which methods to consider for final evaluation and design. Major findings are stated under the following appropriate topic headings.

Multipliers. - Some of the more promising multipliers which have been considered are listed in Table 1. The G.P.S. Model MU407, a quarter square multiplication type unit, has the best full-scale accuracy but

		;							
ANALOG MULTIPLIER	Input	Linearity 20-30°C	Scale Factor Temp. Co-ef.	Full Scale Accuracy	Abs. Error due to Ø Shift	Fr eq. Resp.	Tem. Co-ef. of Output Offset	Output Offset	Power Sup. Sens.
	+ 10 volts	0.2% (1.0 Max.)			. 2% at 1 MHz	l dB out for 2 MHzt	10mV ⁰ C Max.	100m V/Max.	50m√V Max.
VENDOR AVAILABLE									
Intronics M502	01 + 1	0.5%	0.02%/ ⁰ C	+ 0.5%		3 dB at 3MHz	۱۳∜C	trim to 0	50m // V
M510 (Not available at this time)	0 + 1	1.0%	0.02%/ ^o C	* I		3 dB at 10 MHz	1π√°C		50m√V
Hybrid Systems Corp. 105	01 + 1	0.25%	0.02%/°C	% + 1		3 dB at 10 MHz	lm∜ ^o C	trim to 0	50m//V
G.P.S. Corp. MU 4060 (Not available at this time)	0[+ I		0.02%/°C	0.0%	1 ⁰ at 150 kHz	3 dB at 5 MHz	3m√/°C	trim to	
Motorola MC 1595	0 + I	3.0%		0.75%	1% at 30kHz	3 dB of 3 MHz	20nA/ ⁰ C	50 µАМах.	15 mV/V
G.P.S. Corp. MU407	01 + 1		0.015%/ ² C	+ 0.05%	1 [°] at 30 kHz	0 dB at 1 MHz	0.5m√ ⁰ C		
Bell "Hail-Pak" HM4000	50nA- 2.5A& 0.33A			0.7%		DC – 500 kHz	0.1%/ ⁰ C		
Bell "Hall-Pak" HM4500	5A - 40A & 0.33A			0.7%		DC - 500 kHz	0.1%/ ⁰ C		
Burr-Brown 4094/15C	+ 1 10V	+ 0.5%	+0.1%/ ⁰ C	+ 1%		3 db at 1.5 MHz			+ 100 m√/V
Analog Devices 422	- 10 -	+ 0.7%	+0.03%/ ^P C	+ 0.7%	1 ⁰ at 1 MHz	3 dB at 5 MHz	± 2m√ ⁰ C	÷ 25 mV	%/m / +

TABLE 1. MULTIPLIER EVALUATION TABLE

,

is unsatisfactory in phase shift and full output amplitude response at 1 MHz. It is satisfactory at low levels (about 1 volt).

Hybrid systems model 105 was found to be completely satisfactory for all specified conditions. Maximum amplitude error noted was 0.5% at full output in the third quadrant operation. The maximum frequency error noted was 0.8% for 1 MHz input to both X and Y. This unit was, therefore, chosen for use in the final wattmeter model. All other devices considered, including Hall systems, were found lacking in either accuracy or frequency response.

In order to minimize offset and drift problems in the multiplier, it should be operated in the 1 to 10 volt range for both X and Y. Additional circuits and components have been evaluated and designed with this as a requirement.

Voltage Sensing. - Coupling of the input voltage to the wattmeter is not a problem over the lower specified range of 1 to 10 volts. The 10 to 1000 volt range presents some challenge because of the high common mode voltage and the gain-bandwidth requirement. Several solid state amplifiers are available with about 115 volts common mode voltage rating but only 1 MHz or less gainbandwidth product.

It is apparent that resistive attenuators must be used to reduce the highest voltage input to a safe common mode level. An amplifier must then be used with a gain-bandwidth product greater than 1 MHZ in order to make up the gain loss. One suitable unit is the Burr-Brown 1555/25 which will deliver 1 MHz full power in a closed loop gain of ten circuit.

<u>Current sensing</u>. - The requirement is for a clamp-on probe that will sense 1 mA to 100 amperes over the DC to 1 MHz frequency range. A number of techniques and some commercial sensors cover portions of this requirement - but not all parts simultaneously. Some of the major sensors or systems considered included:

Probe Type	Limiting Specification or Problem Area		
P6042 Tektronix	0-10 amps		
428B H.P.	0-10 amps DC-400 Hz		
1110A H.P.	0-50 amps 50 Hz - 20 MHz		
DC current transformer	DC - l kHz; non-linearity		
Magnetic Modulator	DC - l kHz; micro inch mechanical tolerances		
Sony magneto diode	DC - 1 kHz; 2% lin. 100 mA - 100 amps		
Hudson magnistors	DC - 1 kHz; 2% lin. 1 - 10 amps		

No one probe or sensor covers the entire frequency and current bands. The Tektronix P6042 easily covers the DC to 1MHz frequency range but does not cover the 10 to 100 amperes range. Attempts to procure an extended range unit were unsuccessful.

The DC current transformer and magnetic modulators have been used for years as current measuring devices in power and audio circuits. Miniature units were made up (for evaluation) with a butt gap for a clamp-on probe application. Leakage flux is a serious problem with either design. Mechanical tolerances in the microinch range and repeatability of them with opening and closing of the probe are also a major design problem. Neither problem occurs in normal closed magnetic circuit designs.

Solid state sensors, Sony magneto diodes and Hudson magnistors, were also evaluated. DC stability and noise were more of a problem on the latter item below 1 ampere level. The former item was found useful over a range of 100 ma to 100 amperes in a ferrite core magnetic circuit. Mechanical tolerances are not as critical as for the previous sensors. This is because of the larger air gap.

Since extensive development work on the Sony magneto diode probe was likely, the two contract items were completed using the Tektronix P6042 probe and a coaxial shunt as current sensors to cover the desired ranges.

<u>Amplifiers.</u> - Wideband voltage amplifiers are needed to amplify the current or voltage sensor signals to the 1 to 10 volt multiplier input level. The voltage amplifier requirement is for a gain of 10. Therefore, the gain-bandwidth requirement is greater than 20 MHz.

Since the overall wattmeter response is to be DC to 1 MHz within 1 dB, the amplifier response must be appreciably better. At the time of this writing suitable amplifiers were:

		Unity	
Sour	ce	Gain-Bandwidth	Cost
Burr-Brown	3260/25	20 MHz	\$95
Burr-Brown	3341/15C	50	69
DDC	VA-23	100	125
Intronics	A501	100	105

The DDC unit is somewhat superior to the other units. For this particular application, a unit such as the Burr-Brown 3341/15C is quite adequate. Two of these units are required in cascade to meet the current signal amplifier requirements.

FIRST UNIT; CIRCUIT AND PACKAGE DESIGN

A simplified diagram of the first wattmeter configuration is shown on Figure 1. Amplifier Al is a differential voltage amplifier and with suitable range switching covers the 1 to 1000 volt range. A3 amplifies the output of Al to the desired 1 to 10 volt range and drives the multiplier X input. Amplifier A2 is a differential amplifier for the current shunt signal. It is followed by two single ended amplifiers, A4 and A5, which raise the signal level to the desired 1 to 10 volts for the multiplier Y input. When the Tektronix P6042 probe is used, only amplifier A5 is needed.

A detailed schematic of the entire wattmeter circuit is shown on drawing 1-8108-110A in Appendix C. This includes ranging and calibration circuits. Ranging circuits are at the first amplifier inputs for both voltage and current signals in order to prevent overloads at the high signal levels. Accidental overvoltage input is prevented by the zener diode clamps CR1-4, at the inputs.

Calibration circuits are also provided at the Al and A2 inputs. They are designed to exercise all amplifiers and the multiplier at 1, 1/2 and full scale at the X and Y inputs for both DC and AC signals. Calibration is not provided at the actual voltage or current shunt input terminals because of the impracticality of providing up to 100 amperes and 1000 volts in a small laboratory instrument.

The package design, of the unit, required careful consideration and some compromises for the prime objectives of (a) good human engineering controls, servicing, assembly (b) good performance; low lead wire capacitance to ground and other circuits. Panel controls were grouped by function; voltage, current and calibrate. Then a rear vertical chassis was designed to locate all parts in close proximity to their associated switches or amplifier modules.

SECOND UNIT; CIRCUIT AND PACKAGING DESIGN

The second wattmeter incorporates a number of improvements over the first unit:

- a. A one volt full scale range
- b. Pearson AC current probe input
- c. Printed circuit board construction
- d. An alternate wideband multiplier to replace the discontinued Hybrid Systems Model 105

A simplified diagram of the second wattmeter is shown on Figure 2. This is essentially the same as the first wattmeter shown on Figure 1 except:

- a. A7 has been added to cover the 0.1 to 1 volt range
- b. A6 and M have been added to provide meter readout
- c. An additional switch position and jack permit Pearson Probe input

A detailed schematic of the second wattmeter circuit is shown on drawing 1-8108-110C in Appendix F. This includes ranging and calibration circuits. Ranging circuits are at the first amplifier inputs for both voltage and current inputs in order to prevent overloads at the high signal levels. Additional amplification, A7, is needed on the one volt range to provide adequate drive to

.

the multiplier. Accidental overvoltage input protection is provided by the Zener diode clamps CR1-4 at the inputs. Zener clamps CR8, CR10, CR24, CR26 permit fast amplifier recovery, A3, A7, and thus facilitate measuring repetitive pulse waveforms where a portion of the signal is overrange. The signal that is within range will then be faithfully reproduced.

Average power indication is provided by meter, M1, and its associated driver, A6. The meter characteristics combined with some circuit filtering provide time averaging from the high frequency end down to about 10 Hz.

CONCLUSIONS

A portable solid state wideband wattmeter has been developed as a general purpose laboratory instrument. DC to 1 MHz response within 1 dB is attainable with present state of the art amplifiers and multipliers.

REFERENCES

Description

1 Greenwood, Holdson, MacRae:

Electronic Instruments Chap. 3 Sect. 11-17, McGraw Hill, 1948

- 2 Zuch, Eugene L: Characteristics and applications of Modular Analog Multipliers. Electronic Instrument Digest, Vol. 5 No. 4, April 1969 PP 10-22
- 3 Vranik, James E: Design and Performance of a High-Frequency Wattage-to-Voltage Converter. NASA TN D-5674, Feb. 1970
- 4 Schwarz, Francise C. and Voulgaris, Nicholas C: A Wide-Band Wattmeter for the Measurement and Analysis of Power Dissipation in Semiconductor Switching Devices. IEEE Transactions on Electron Devices, Sept. 1970

8

No.

APPENDIX A

FIRST UNIT PERFORMANCE DATA

A - 1

WIDEBAND WATTMETER FREQUENCY RESPONSE TEST CONSTANT AC VOLTAGE AND CURRENT IN OUTPUT WATTS VS FREQUENCY

A - 2

WIDEBAND WATTMETER DC TESTS WITH P6042 CURRENT PROBE

A - 3

APPENDIX B OPERATING INSTRUCTIONS MODEL 8108-110A

<u>General</u> - This wattmeter is designed to work into a cathode ray oscilliscope (CRO) input. The conventional high impedance CRO probe may be used if connected close to the wattmeter output connector or up to 3 feet of coaxial cable may be used direct connected. Current input signal may be from a Tektronix P6042 probe (0-10 amps.) or a B & R shunt assembly. The latter item is necessary for the 10-100 ampere range. The shunt supplied with the wattmeter is 0.01 ohms rated for 5 watts average power.

<u>Operating Voltage</u>. - The unit can be powered from a 115 volt 60 Hz supply. Regulating range for the internal power supply is 105-132 VAC at 47-440 Hz. Maximum power required is 35 watts.

CONTROLS AND CONNECTORS - Figure B-1 shows the front panel controls and connectors on the wattmeter and describes the function of each.

Installation -

5.

- 1. Connect a Tektronix P6042 current probe with a 50 ohm coaxial cable to the wattmeter (or a current shunt to the MS connector).
- 2. Connect the wattmeter to the oscilloscope input with 3 feet or less of 50 ohm coaxial cable.
- 3. Turn all three units on and allow five minutes warm-up time.
- 4. Set the oscilloscope controls as follows:

Volts/div.	;	5 volts
Variable (volts/div	.)	calibrated
input coupling	*	ground
Set the wattmeter of	controls as	follows:
Voltage Calibrate:		DC and 10V
Voltage range:		100 V
Current Calibrate:	·	OFF

FIGURE B-1

Installation - (Cont'd)

5.	Set the	wattmeter	controls	as	follows:	(cont'd)

Current Range:		0-10A for the P6042 probe
	or	10-100A for the
		current shunt

NOTE: If shunt is used, ignore instructions 6 through 12.

6. Set the P6042 controls as follows:

output DC level	mid range
current/div balance	mid range
current/div	1 A

7. Center the trace on the CRT, then switch input coupling to DC.

- 8. Place the probe in the front-panel receptacle. Momentarily depress the DEGAUSS lever and release. (Time required for probe degaussing is 200 milliseconds.)
- 9. Adjust OUTPUT DC LEVEL to center the trace vertically on the CRT.
- 10. Set the CURRENT/DIV switch to the suitable position for the measurement to be made and again degauss the probe.
- 11. Adjust CURRENT/DIV BALANCE to center the trace vertically on the CRT.
- 12. Remove the probe from the front-panel receptacle, move the slider back, and place the probe around the conductor under test. Push the slider forward into the locked position.
- 13. Place the probe around the conductor under test (or insert the current shunt into the circuit per Figure B-2).
- 14. Set the wattmeter calibrate switches to OFF.
- 15. Set the wattmeter voltage range as desired.
- 16. Connect the wattmeter voltage input terminals to the circuit under test.
- 17. Observe the watts output as a vertical scale deflection on the CRO. The watts/volt output sensitivity is determined from the front panel table:

Figure B-2. SHUNT INSTALLATION

- 17. (Cont'd)
 - i.e: for current shunt; 10 x voltage range setting = watts/volt for P6042; P6042 current/div x voltage range = watts/volt calibrate; cal. voltage x calibrate current (voltage equiv.) divided by 10 = output voltage
- 18. If either overrange light comes on, the appropriate range switch should be set to the next larger range. If the output is less than one volt, one or both current and voltage range switches may be set to a lower scale as long as the overrange light does not come on.

CALIBRATION - The wattmeter may be calibrated by external voltage and currents or by use of the built-in calibration. Internal calibration circuits permit exercising all amplifiers and the multiplier at 0, 1/2 and full scale for each input (0, 1/4, 1/2 and full scale on wattage). Normal calibration results are as follows:

VOLTAGE	CURRENT	OUTPUT (VOLTS)
0	0	0 (Checks offset voltage)
10		0 (Checks cross- coupling)
0	10	0 (Checks cross- coupling)
5	5	2.5 (1/4 scale)
5	10	5.0 (1/2 scale)
10	5	5.0 $(1/2 \text{ scale})$
10	10	10.0 (full scale)

all AC values are zero to peak values.

APPENDIX C

SCHEMATIC & PARTS LIST - FIRST UNIT

C-2

WIDEBAND WATTMETER - FIRST UNIT

C-3

BILL OF MATERIAL

CLIE	NT:NASA		B & R PROJ	ECT NO.	
Sch	ematic, Wideband Wattı	meter			a- 1
Dw	g. No. 1-8108-110	<u></u>			OF
DETAIL DRAWING NO.	PART NAME	QUANTITY	DESCR	IPTION	REMARKS
Al	Amplifier, Solid State Operational	1	Fast Settling, Analog Device	FET s Model 45K	
A 2	Amplifier, Solid State Operational	1	Wideband, Hig Burr-Brown M	gh Current <u>Aodel 1527/25</u>	
A 3, 4, 5	Amplifier, Solid State Operational	3	Fast Slewing, Burr-Brown M	Wideband [,] <u>Aodel 3341/15</u> (2
C1,4	Capacitor, Fixed, Dip- ped Mica	2	$1.0 PF \pm 0.5$ Elmenco No.	PF, 500 VDC DM5-010D	
C2	Capacitor, Fixed, Dip ped Mica	- 1	33PF ± 5%, 50 CM05ED330J0	00 VDC	· · ·
C 3	Capacitor, Fixed.Dip- ped Mica	1	390 PF ± 5%, CM05 FD391 3	500 VDC 103	
DS1	Neon Lamp and Lamp Holder Assy	1	MS25257-4-C7	7A	
DS2, 3	Incandescant Lamp and Holder	2	MS25256-6-33	0	
Fl	Fuse, Cartridge	1	IA, 250V		
.11	Receptacle, Connec- tor, Electrical	1	MS3102A - 14S-	2P	
J2, 3	Receptacle. BNC. Electrical	2	JAN NO. UG	290/U	
Pl ·	Plug with card. 3- conductor	l	18 AWG, 6 Ft Belden No. 17	406	
R1, 2	Resistor, Fixed, Film,High Stability	2	490 K ohms ±1 RN 65D 4993F	0 <u>,</u>	
R 3 , 1 1 , 2 1	Resistor, Fixed, Film,High Stability	3	1000 ohms ±1° RN 65D 1001	б <u>F</u>	· .
R4, 8,10	Resistor, Fixed, Film,High Stability	3	10 K ohms ± 1 RN 65D 1002F	o ; ₀	
R 5	Resistor, Fixed, Com position	1	91 ohms ±5% RCR20G910JS		
R6	Resistor, Fixed. Com- position	1	62K ohms ±10 RCR05G623JS		
R7, 13, 17, 40	Resistor, Fixed Film, <u>High Stability</u>	4	49.9 K ohms ± RN65D4992F	- 1 0 [/] /0 .	
R9	Resistor, Fixed Film, High Stability	1	200 ohms ±1% RN05D2000F	····	
K12, 14, 18,23,25	Resistor, Fixed,Film, High Stability	5	4. 99 K ohms ± RN65D4991F	= 1 %	
R15,19, 20	Resistor, Fixed,Film, High Stability	3	499 ohms ±1% RN65D4990F		
R16.38	Resistor, Variable Wirewound	2	1000 ohms ±10 Spectrol No. 9)% }4 - 1 - 1 - 1 02	
R22.28 30,41	Resistor, Variable Wirewound	4	2000 ohms ±1(• Spectrol No.)% 94-1-1-202	
R24, 39	Resistor, Fixed, Film High Stability	2	2.49 K ohms = RN65D2491F	£1%	
R 26	Resistor, Fixed, Com- position	1	$\frac{51 \text{ ohms } \pm 5\%}{\text{RCR } 20\text{G510JS}}$	S	

DESIGNERS & ENGINEERS

BARNES & REINECKE INC. CHICAGO, ILLINOIS

C - 4

CLIE	NT: NASA	B & R PROJECT NO.			
<u>Sc</u>	hematic, Wideband Wa		1-8108		
D'	wg. No. 1.8108 -110			SHEET	OF
DETAIL DRAWING NO.	PART NAME	QUANTITY	DESCR	IPTION	REMARKS
R27,29	Resistor, Fixed, Film, High Stability	2	24.9 K ohms ± RN65D2492F	1%	
R 31	Resistor, Fixed, Com- position	1	100 K ohms ±5 RCR07G104JS	% 	·
R 32	Resistor, Fixed, Film, High Stability	1	22.1 K ohms ± RN65D2212F	1%	
R 33, 42	Resistor, Fixed, Film, High Stability	2	$\frac{453 \text{ ohm s} \pm 1\%}{\text{RN65D453DF}}$		
R 34, 36 43, 45	Resistor. Variable Wirewound	4	20 ohms ±1% Clarostat No. 4	3C2-20	
R 35, 37 44.46	Resistor, Fixed, Film, High Stability	4	487 ohms ±1% RN65D4870F		
R47	Resistor, Variable Wirewound	1	20 ohms ±10% Spectrol No. 7	8 <u>-1-1-200</u>	
SWI	Switch, Rotary, Mini- <u>ature ceramic</u>	1	3P5T, Shorting <u>No. PA 2006</u>	g, Centralabs	
SW 2, 3	Switch, Rotary, Mini- ature ceramic	2	5P3T, Non-sho tralabs No. PA	orting, Cen- 2015	
5W , 4 ,5 , 6	Switch, Rotary, Mini- ature ceramic	3	IP12T, Non-sh traiabs No. PA	orting, Cen- A 2001	
SW 7	Switch, Toggle, Sealed Lever	1	SPST - MS350	58-21	
Ul	Current Shunt, Co- Axial, Wideband	1	0 - 100A, 0.01 <u>T & M Reae</u> arc Model No. A-2	ch Product [-01	
U2	Current Probe Unit	1	DC to 500 MHz Tektronix Mod	el P60+2	
U3	Power Supply, DC, Dual-Tracking	1	± 12 to ± 15V. Lambde Model	400 mA LXD-3-152	
U4	Oscillator, Solid State Precision	1	7.07 VRMS, 1	KH2	
U5	Multiplier, Solid State Analog	1	Wideband, Pre Hybrid system	cision s Model 105	
U6	Over-range Detector Assy	1	Dwg # 1-8108-	111 ·	··
				· · ·	· · · · · ·
		<u></u>			
				· · · · · · · · · · · · · · · · · · ·	

BILL OF MATERIAL

DESIGNERS & ENGINEERS

•

.

.

.

•

.

BARNES & REINECKE INC. CHICAGO, ILLINOIS

APPENDIX D

SECOND UNIT PERFORMANCE DATA

SCHEMATIC TEST CIRCUIT

(1) Base current of Power Transistor

(2) Collector current and voltage of Power Transistor

ا SEC/CM بر 10

(3) Collector power dissipation of Power Transistor

(5) Collector power dissipation

SEC/CM بر 10

Note: Wattmeter Settings 10 volts, 10 amps P6042 – 0.5 amps/Div

 (9) Product of collector current and DC voltage
Upper = Pearson transformer input
Lower = Tek. P6042 input

: Wattmeter Settings 10 volts DC CAL VIN 100 amps B&R SHUNT and 10 amps TEK. P6042 – 1 amp/div

WIDEBAND WATTMETER FREQUENCY RESPONSE TEST OUTPUT WATTS VS FREQUENCY

APPENDIX E OPERATING INSTRUCTIONS MODEL 8108-110C

<u>General.</u> - This wattmeter is designed to work into a cathode ray oscilloscope (CRO) input for instantaneous indication of power. An integral panel meter provides a simultaneous indication of true average power. Voltage input is direct to the indicated terminals. Current input may be from a Tektronix P6042 probe (0-10 amps), a B & R shunt assembly, or a Pearson current transformer. One of the latter two items is necessary for the 10-100 ampere range. The shunt is 0.01 ohms rated for 5 watts average power; the transformer is 0.0002 ohms rated at 5000 amps peak, 50 amps rms.

<u>Operating Voltage</u>. - The unit can be powered from a 115 volt 60 Hz supply. Regulating range for the internal power supply is 105-132 VAC at 47-440 Hz. Maximum power required is 35 watts.

<u>Controls and Connectors</u>. - Figure E-1 shows the front panel controls and connectors on the wattmeter and describes the function of each.

Installation. -

- Connect a Tektronix P6042 current probe with a 50 ohm coaxial cable (Tektronix 012-0057-01) and a 50 ohm BNC termination (Tektronix 011-0049-01) to the wattmeter (or a current shunt to the MS connector or Pearson transformer with adapter, B & R 1-8108-111 to the BNC input).
- 2. Connect the wattmeter to the oscilloscope input with 3 feet or less of 50 ohm coaxial cable.
- 3. Turn all three units on and allow five minutes warm-up time.
- 4. Set the oscilloscope controls as follows:

Volts/div	5 volts
Variable (volts/div)	calibrated
input coupling	ground

E-1

Figure E-1

5. Set the wattmeter controls as follows:

Voltage Calibrate:		DC and 10V
Voltage Range:		1000 V
Current Calibrate:		OFF
Current Range:	or	0-10A for the P6042 probe 10-100A for the current shunt

NOTE: If shunt or transformer is used, ignore instructions 6 through 12.

6. Set the P6042 controls as follows:

Output DC level	mid range
Current/div balance	mid range
Current/div	1 A

- 7. Center the trace on the CRT, then switch input coupling to DC.
- 8. Place the probe in the front-panel receptacle. Momentarily depress the DEGAUSS lever and release. (Time required for probe degaussing is 200 milliseconds.)
- 9. Adjust OUTPUT DC LEVEL to center the trace vertically on the CRT.
- 10. Set the CURRENT/DIV switch to the suitable position for the measurement to be made and again degauss the probe.
- 11. Adjust CURRENT/DIV BALANCE to center the trace vertically on the CRT:
- 12. Remove the probe from the front-panel receptacle, move the slider back, and place the probe around the conductor under test. Push the slider forward into the locked position.
- Place the probe or transformer around the conductor under test (or insert the current shunt into the circuit per Figure B-2)
- 14. Set the wattmeter calibrate switches to OFF.
- 15. Set the wattmeter voltage range as desired.
- 16. Connect the wattmeter voltage input terminals to the circuit under test.

- 17. Observe the watts output as a vertical scale deflection on the CRO.The watts/volt output sensitivity is determined from the front panel table:
- 18. If either overrange light comes on, the appropriate range switch should be set to the next larger range. If the output is less than one volt, one or both current and voltage range switches may be set to a lower scale as long as the overrange light does not come on.

<u>Calibration</u>. - The wattmeter may be calibrated by external voltage and currents or by use of the built-in calibration. Internal calibration circuits permit exercising all amplifiers and the multiplier at 0, 1/2 and rull scale for each input (0, 1/4, 1/2 and full scale on wattage). Normal calibration results are as follows:

0			TPUT (VOLTS)
VOLTAGE	CURRENT	METER	SCC	PE PK. VOLTS
0	0	0	0	(Checks offset voltage)
10	0	0	0	(Checks cross- coupling)
0	10	0	0	(Checks cross- coupling)
5	5	1.25	2 .5	(1/4 scale)
5	10	2.,50	5.0	(1/2 scale)
10	5	2.50	5.0	(1/2 scale)
10	10	5.00	10.0	(full scale)

all AC values are zero in peak values.

APPENDIX F

SCHEMATIC & PARTS LIST - SECOND UNIT

F-1

SCHEMATIC

WIDEBAND WATTMETER - SECOND UNIT

F-3

BILL OF MATERIAL

SEPT. 22,71

CLIE	ENT: NASA		B & R PROJ	ECT NO.	
SCHEMATIC WIDEBAND WATTMETER S/N 002				1-0100	4
DWG	. NO. 1-8108-110 C			SHEET	OF
DETAIL DRAWING NO.	PART NAME	QUANTITY	DESCR	IPTION	REMARKS
A1,2	Amplifier, Solid State Operational	2	Wide Band, FE Analog Devic	T.Differenti es Model 45R	al
A4,5	Amplifier, Solid State Operational	2	Fast Slewing Burr Brown M	, Wide Band lodel 3342/15	с
A6	Amplifier,Solid State Operational,I	:_1	Fairchild U	A 741 C	
A3,7	Amplifier, Solid State Operational	2	Fast Slewing Burr Brown M	odel 3341/15	с
<u>U1</u>	Current Shunt, Co- Axial, Wide Band	1	0- 100A, 0.0 B&R DWG. 1-8	108-101	HZ
			DC to 50 MHZ	, 1MA/Div	
U2	Current Probe Unit Power Supply, DC	<u> </u>	<u>Tektronix Mo</u> ±12 to 15V.	del P6042 400 mA	· · · · · · · · · · · · · · · · · · ·
<u>U3</u>	Dual-Tracking Oscillator Solid	1	Lambda Model	LXD-3-152 KHz	
<u>U4</u>	State Precision	1	Burr Brown 4	<u>023/25</u>	······································
U5	Solid State	1	Analog Devic	es Model 422	Α
U6	Wideband	1	Pearson Elec	tronic Model	
<u>U7</u>	Adapter	1	B&R DWG, 1-8	108-111	
4,6	NPN	4	<u>2N1711</u>	×	
Q3	Silicon PNP	1			
Q5,7	Transistor Unijunction	2	2N1671B		
SCR1,2	Silicon Controlled Rectifier	_2	100V, 0.8 A C103A, G.E.	RMS	
<u>R1,2</u>	Resistor, Fixed <u>Film, High Stabilit</u>	7 2	499K ohms ± RN70D4993B	0.1%	MFS-1/2
R3,11,2	Resistor, Fixed, <u>1 Film, High Stabil</u>	ty 3	1000 Ohms ± RN65C1001B	0.1%	
R4,68	kesistor, Fixed Film, High Stability	2	RN65D1002F	% 	· / ·- '
R5	Composition		RCR20G910.1S		
90,91	Resistor, Fixed, Film, High Stability	4	49.9 K Ohms RN65C4992B	± 0.1%	
R9	Resistor, Fixed Film, High_Stability	. 1	200 0nms ± 1 RN65D2000F	· · · · · · · · · · · · · · · · · · ·	
R8,10, 13,17,	Kesistor, Fixed, Film, High Stability	, 7	4.99 K Ohmus RN65C4991B	± 0.1%	
20,23,					
R12,14 18	Resistor, Fixed, Film, High Stability	3	499 Ohms ± 0 RN65C4990B	.1%	

DESIGNERS & ENGINEERS

BARNES & REINECKE INC. CHICAGO, ILLINOIS

F - 4

BILL OF MATERIAL

SEP.22, 71

CLIENT: NASA				B&RPROJ	ECT NO.
DWC	MATIC, WIDEBAND WA	TTMETER	<u>S/N 002</u>	SHEET_2	OF4
DETAIL DRAWING NO.	PART NAME	QUANTITY	DESCR	IPTION	REMARKS
R15,19 94	Resistor, Fixed Film, High Stabiliy	3	49.9 Ohms ± . RN65D49R9	1/2 W	
R16,22, 38	Resistor, Variable Wirewound	3	1000 Ohms ± 2 Spectrol No.	20% 41-4-1	
R87,28 30,41	Resistor, Variable Wirewound	4	2000 Ohms ± 2 Spectrol NO.	20% 	
$\frac{R24}{85}$	Resistor, Fixed Film, High Stabilit	у З	2.49 K Ohms RN65C2491B	± 0.1%	
R27,29 86	Resistor, Fixed, Film, High Stabilit	y 3	24.9 K Ohms 1 RN65C2492B	• 0. 1%	
~	Composition Resistor Fixed		RCR07G104JS	י_ק קיייקקייייייייייייייייייייייייייייי	
<u>R32</u>	Film, High Stability	_1	RN652212F	- • /o	·····
R33,42 R34.36	Film, High Stability Resistor, Variable	2	$\frac{RN65D4530F}{20 \text{ Obms } \pm 203}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
43,45 R35,37	Wirewound Resistor Fixed	4	Spectral No. 487 Ohms ± 19	41-4-1	
44,46 R47,52	<u>Film, High Stability</u> Resistor, Variable	4	RN65D4870F	20%	Alt.Mil#
53, <u>54</u> 55,70	Wirewound	6	Spectrol No.	41-4-1	RT12-C2P 103
D/ 8	Resistor, Fixed		620 K Ohms ±	10%	
R48 R49	Composition Resistor, Fixed	1	RCR 20 G 624 1500 Ohms, ±	KS 10%	
	Composition Resistor, Fixed		RCR 20F152KS 220 Ohms ± 10	0%	•••
<u>R50</u> R51,72	Composition Resistor, Fixed		RCR20G221KS 30.9K Ohms±	1%	
P56 58	Film, High Stability Resistor, Fixed		2.2 K Ohms	± 10%	
R57,59	Resistor, Fixed	2	4.7K Ohms ±	5 10%	
R60,63	Resistor, Fixed	<u></u>	$47 \text{ Ohms } \pm 10^{\circ}$	% %	
R61.64	Resistor, Fixed	2	220 K Ohms ±	10% KS	
R62,65	Resistor, Fixed Composition	2	330 Ohms ± 1 RCR 20G 331	0% KS	
R67	Resistor, Fixed Film,High Stability	1	100K Ohms ± RN65D1003F	1% 1/2 W	
R69	Resistor, Fixed Film, High Stabilit	y 1	4.99K Ohms ± RN65D4991F	1% 1/2 W	
R71	Resistor, Fixed Film,High Stability	1	44.2K Ohms ± RN65D4422F	1%,1/2 W	
R83,84	Resistor, Fixed Film, High Stability	2	1000 Ohms ± RCR 20G 1021	5%, 1/2 W S	

DESIGNERS & ENGINEERS

5

.

BARNES & REINECKE INC.

CHICAGO, ILLINOIS

BILL OF MATERIAL SEP. 22, 71

×

.

CLIE	INT: NASA	B&RPROJ 1-8108	ECT NO.		
<u>SCH</u>	EMATIC, WIDEBAND WAT	5/N_002	SHEET_3	OF	
DETAIL DRAWING NO.	PART NAME	QUANTITY	DESCR	IPTION	REMARKS
R88,89 90	Resistor, Variable Wirewound		20K Ohms ± 2 Spectrol No.	07 41-4-1	
R92	Resistor, Fixed Film, High Stability Resistor Fixed		$7200 \text{ mms} \pm 00000000000000000000000000000000000$.1%	
R93	Film, High Stability	/ 1	Spectrol No.	41-4-1	
9,11,13	High Conductance	14	IN4454/1N306	4	
15, 16, 18, 19, 18, 19, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10					
21,22			10 101	9 1	
CR2,4	Diode,Zener,Silicor	4	$\frac{10 \text{ volts } \pm 5}{1\text{N}4162\text{A}}$	/6, I W	
CR8,10 24,26	Diode, Zener,Silico Low Leakage	n 4	10 volts ± 5 TRW # LV3100	76, IW A	
17,20	Diode,Zener,Silicon	4	6.8 Volts ± <u>Schauer No.</u>	5%, 1W <u>Sz6.8A</u>	
C1	Capacitor Fixed Dipped Mica	_ 1	100 Pr, 500V CM05 FD101 J	03	
C27,5	Capacitor, Variable	2	2" twisted I #20AWG	nsulating wi	re
C2	Capacitor, Variable 9-35 PF	1	JFD Type DV1 Type A	1-35D	
С3	Capacitor, Variable 90-400 PF	1	Elmenco Type	429	
C4	Capacitor, Factory Selected, 3300 pf	1	CDE CD19FD332	J03	
C7,8,12	Capacitor, Fixed	3	0.1 MFD, 100 225P10491	V	Sprague
С9	Capacitor, Fixed	1	2.0 MFD, 200 2DF-M2	V	Sprague
C10,11	Capacitor, Fixed	2	0.5 MFD, 200 200P-2PS-P50	V	Sprague
C13-26	Capacitor, Fixed <u>Electrolutic,Tantal</u>	<u>um 14</u>	15 UF, 20 V <u>CSR 13E 156</u>	KM	
SW1	Switch,Rotary,Mini- ature Ceramic		6PST, Shortin LAB. <u>No.</u> PA 2	g, Central- 020	
SW2,3	Switch,Rotary,Mini- Ature Ceramic	2	3P5T, Non-Sh tralabd No	orting,Cen- PA2007	
SW4	Switch, Rotary, Mini- ature Ceramic	1	3P5T, Non-Sh tralabs No	orting, Cen- PA2007	
SW7	Switch, Toggle Sealed Lever	1	SPST MS35058	- 21	
J1	Receptacle,Connecto Electrical	r 1	MS31024-145-		
J2,3	Receptacle, BNC, Electrical	2	TAN NO UC-2	904/11	· ··· ··· · · · · · · · · · · · · · ·
DS1	Neon Lamp and Lamp Holder Assy	1	MS25257_/-07	2484 U	
				•	

DESIGNERS & ENGINEERS

BARNES & REINECKE INC. CHICAGO, ILLINOIS

BILL OF MATERIAL SEP. 22, 71

CLIE	NT:NASA			B&R PROJ	ECT NO.
SCH	IEMATIC, WIDEBAND WAT	TMETER	<u>s/n_002</u>	1-8108	4
DWG.	DWG. NO. 1-8108-110 C				OF
DETAIL DRAWING NO.	PART NAME	QUANTITY	DESCR	IPTION	REMARKS
DS2,3	Incandescant Lamp & Holder	_2	MS25256-6-33	0	
F1	Fuse, Cartridge	1	1A, 250 V Ty	pe <u>3AG</u>	
M1	Meter, DC Volt 3 1/2", (+) 10-0-(-) 1	1	\pm 1% Accurac <u>3BA-DVV-10 U</u>	y, IOK Ohms/ 10-A1MV	V <u>Modute</u> c
P1	3-Conductor Binding Post Dual	1	18 AWG, 6 FT <u>Belden No. 1</u>	7406	
E1,2	Assembly	1	<u>H.H. Smith N</u>	o. 269RB	
<u>E3</u>	Binding Post,Hex Nu	<u>it 1</u>	Superior No.	GP 30NC	
	· · · · · · · · · · · · · · · · · · ·				
· ·			·		
				<u></u> .	
			- 		

DESIGNERS & ENGINEERS

:

i.

.

.

.

BARNES & REINECKE INC.

APPENDIX G

NEW TECHNOLOGY APPENDIX

WIDEBAND WATTMETER

After a diligent review of the work performed to date under this contract, no new innovation, discovery or invention was was made. However, it is believed that the wideband wattmeter developed under this contract offers a wider usable frequency response than any existing instrument and is a definite improvement on power measurement technology.

A detailed description of the unit is given on pages 5, 6, 7, and 8. Technical details are given in Appendices D, E, and F.

- 1