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ABSTRACT

A theoretical analysis on the multiple scattering

of electromagnetic waves propagating in a finite inhomogeneous

medium is presented and applied to the study of wave propa-

gation in a clear atmosphere (fine weather conditions).

It is shown that the analysis offers a method of

synthesizing the water vapor density profile in a clear atmos-

phere by measuring the resultant reflections from the density

profile at several different frequencies. It is also shown

that the resultant reflection emerges as the consequence of

multiple scattering of partial reflections from various parts

of the inhomogeneous medium.

The solutions of the multiple scattering approach

are shown to be more accurate than those of the WKB approach,

which neglects the multiple scattering effects.
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TECHNICAL MEMORANDUM

I. INTRODUCTION

When an electromagnetic plane wave of centimeters

or longer wavelength propagates vertically through a clear

atmosphere (fine weather conditions) and produces a reflection,

the reflection is always associated with some identifiable and

abnormally steep gradients of dielectric constant due to in-

homogeneities in the water vapor density in the atmosphere.

Anomalies in dielectric constant gradients of the atmosphere,

however, are not always accompanied by reflections. These

observed features cannot be explained satisfactorily by

present available theories that do not take into considera-

tion the effects of small internal reflections or multiple

scattering of electromagnetic waves propagating in a finite

inhomogeneous medium. However, these observed features can

be explained readily by the theoretical analysis, in the next

section, that includes multiple scattering effects. The analysis

indicates that in general the resultant reflection from these

steep dielectric constant gradients is not large enough to

cause any significant loss of transmission, but is large

enough to be used in probing water vapor concentration profiles
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in the atmosphere. It is shown that the interference effect

of atmospheric water vapor layers with an undulating density

profile is responsible for the measurable resultant reflec-

tion or total cancellation of partial reflections. For a

given profile of water vapor density, the reflection charac-

teristics are found to be sensitive to frequencies used in

probing. For some models of idealized water vapor density

profiles, each model of profile can be determined or synthesized

by one or two reflection measurements at one or two appropriate

frequencies. To determine the water vapor density profile of

arbitrary shape, reflection measurements at more than two

appropriate frequencies will be necessary.

Local anomalous variations of water vapor density

in a clear atmosphere due to temperature inversion, wind

shear, and clear air turbulence (CAT) are usually detectable

as radar echos.(1-4) The determination of these anomalous

water vapor density profiles in a clear atmosphere is important

in characterizing the nature of transmission of infrared radiation

between the surface of the earth and space, since water vapor

is one of the atmospheric gases that cause the bulk of infra-

red resonant molecular absorption.

In the following section we shall present a general

formulation applicable to the analysis of multiple scattering

of electromagnetic waves propagating in a finite inhomogenous

medium which has a slow and smoothly continuous variation in

its dielectric properties along the axis of propagation.
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II. FORMULATION OF THE PROBLEM

A medium which is homogeneous and infinite in

extent in both the x and y directions but finite in extent

and inhomogeneous in the z direction is impinged by a plane

electromagnetic wave in the z direction. The inhomogeneity

is assumed to be in the dielectric property e of the medium

only and the profile of the inhomogeneity in the z direction

is assumed to be arbitrary except for nonvanishing £ and con-

tinuous profile derivatives. The region of the inhomogeneous

medium extends from z = 0 to z = 2. The Maxwell equations
iwt

for the problem,with the time factor e understood are:

dE dH
YoxY = iW , = iE cE;

dz oHxdzdz y (1)

dE dH
x = -iw Hy Y = -iw cE , (2)
dz oy' dz o x

where E and H are, respectively, the electric and magnetic

field, w is the angular frequency of the incident wave, Po

and co are, respectively, the magnetic and electric permit-

tivity of the free space, C is the complex relative electric

permittivity, which is a function of z, and the subscripts

indicate the direction of the field.

Assuming the electric field of the incident plane

wave is linearly polarized in the y direction only, we

obtain the wave equations as:
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(2E 2

2 + k cE = (3)
dz

and

d2H dH
x 1 d x 2

dz 2 C dz dz o x

where k = XwVT is the intrinsic wave number of free space

and ko - is the real phase constant for real E. Note that

Equations (3) and (4) are no longer symmetric in E and H
y x

as in the case of a homogeneous medium, which admits plane wave

solutions with E and H of constant amplitudes and of the
y x

same phase constant. In an inhomogeneous medium we cannot

assume the existence of a plane wave, since a plane wave is

not a solution of Equation (3) or Equation (4). To show that

Ey and Hx do not have the same phase constant, we transform

Equation (4) into the normal form by the substitution

x Hxt (5)

and obtain

d2Hxt 22 1 2 

2 E+ 2 + 21 d 32 Hxt = 0 (6)
dz

2
dz

Since both Equations (3) and (6) are in the same normal form,

their solutions will be of the same form also.

This will be the basis on which we shall proceed to

attack the problem by solving Equations (3) and (6).
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The phase integral of Ey along the direction z, for

Eq. (3) with varying c, is assumed to be of the form

p t= ko g dz , (7)

and the phase integral of Hxt,from Eq.(6), is thus of the

similar form

J koo vj1 +o 2[2l v 3( de 12 dz. (8)
d k 2- Tz 4 j dz

It is evident that for a varying E, the fields E and H are
y x

no longer in phase and the phase difference between them is

m J= o/-p dz = pdp , (9)

where ko/-P is the difference between the phase constants of

Ey and Hx and p has the dimensionless magnitude

lOld 2 3(ddE 3 21

k
2
s dz 2

P = (10)

v2E 3 dd 121+ +_l+ 2 cL dz2 -4 Ed

Note that p is an exact expression and can be evaluated easily

when E is a prescribed function of z. On the other hand, if



-6 -

ds d2
c is aslowly varying function of z such that Ti and - are

dz
all very small, p can take the following simple form:

4k - ( (11)

The criterion to use Eq. (11) is that IPl itself is much smaller

than unity. It is seen from Eq. (9) that for the same length

of an inhomogeneous medium the phase difference between Ey

and H
x

for high frequencies is smaller than that for low

frequencies, or for the same phase difference high-frequency

waves can propagate through a longer distance than low-

frequency waves. In fact, for cases where IPI <<1 holds along

the path, the phase difference m is inversely proportional

to the frequency, as shown in Eq. (25) later. In passing, we

mention that for a complex £, Eqs. (7) through (11) are also

complex quantities.

The qualitative concept of the preceding paragraphs

is intended to depict a clear picture of the nature of electro-

magnetic wave propagation in an inhomogeneous medium. The

actual solution of the problem, however, can be obtained only

be solving the wave equations (3) and (6). It is well known

that Eq. (3), with arbitrary e(z),, has no exact solution in

terms of a finite number of elementary functions. The conven-

tional method of solving Eq. (3) approximately is either the

WKB method[ 5
-
7] or the perturbation method.[8] These approxi-

mate methods do not and cannot consider the effect of internal

reflections or multiple scatterings of waves. In the light

of the concept of the preceding paragraphs, an attempt is

being made in this paper to obtain solutions more accurate

than previously possible by taking internal reflections into

account. The solutions will appear in a form of two coupled first
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order differential equations between the forward wave and

backward wave.

In the formulation that follows we shall use the

phase difference term m of Eq. (9) as a "vehicle" by which

we try to reach the unexplored territory of internal reflec-

tions or multiple scattering of waves in inhomogeneous media.

The solution of Eq. (3) can be cast in a general form as the

sum of a forward wave Eyf and a backward wave Eyb

z

-i k O dz ,

a

i fZko/T dz

y = Eyf + Ey b = A(z) e + B(z)E

(12)

and the solution of Eq. (4), with the aid of Eqs. (5) and (6),

has the similar form

[ i(z)e0 k /(l+p)dz
H
x

= Hxf + Hxb = (z) e + D(Z)e

- i koC (l+p)dz ,

(13)

where A(z), B(z), C(z), and D(z) are functions to be determined

and the multiplying constant 0 in Eq. (13) is used to obtain

the correct dimensions for Hx .

Substitution of Eqs. (7) and (9) into Eqs. (12) and (13) results

in concise forms:

E = A(z)elP + B(z)e
- 1

(14)

Hi ~ ~ ~ . = () e

E;o [C i (pm+ D(z)e-i(p+m)]

For homogeneous media m vanishes and we have C=A and D=-B. For

inhomogeneous media, it is plausible to assume that C and D can

(15)

am
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be expressed, respectively, in terms of A and B, e.g.,

C(z) = A(z)u(z) and D(z) = -B(z)v(z); (16)

or C(z) = A(z)[1 + i(z)], and D(z) = -B(z)[1 + n(z)]

(17)

For slowly varying c, it is expected that the ratio of A/C

or B/D is close to unity, and thus u and v will be close to

unity and i and n much less than unity. In anticipation of

the nonlinear differential equations to be solved later,it

appears advisable to use the forms shown in Eq. (17), so

2 2that omission of nonlinear terms such as 2 or n can be

justified.

We now proceed to (i) express the exact first order

coupled differential equations between A(z) and B(z) in terms

of the new functions i (z) and r (z) [Eqs. (18) through (24)],

(ii) simplify these differential equations by expanding ex-

ponential terms and neglecting higher order terms [Eqs. (25)

through (35)], (iii) obtain the approximate solutions of the

functions i(z) and n(z) under proper boundary conditions

[Eqs. (36) through (48)], and (iv) solve the simplified equa-

tions by an iterative scheme [Eqs. (49) through (57)]. Readers
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not interested in these details may turn to the final solu-

tions, Eqs. (56) and (57), on page 19.

Substitution of Eq. (17) into Eq. (15) yields

H x = [(1(+)ei(p+m) - B(l+n)e i(P+m]
C~ iPO+m

(18)

Differentiating Eq. (14) and making

of Eq. (1), we obtain

Hx V lo
= (IA + i 1 )eip -

Differentiating Eq. (18) and making

of Eq. (1), we obtain

use of the first equation

· :o i dBe -i
(A;OPB iWp dz e

(19)

use of the second equation

Ey = (l+p) (1+)A + iko dz[/T(l+)A] ei(Pm)

ik l1 E d'd
+ ((1+p) (ln)B ko 1 dz[VTc(l+n)B]) ei(p+m)

(20) 
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Equating Eq.(18) to Eq.(19) and Eq.(14)to Eq.(20) yield,

respectively,

dA + dB e ip = ik Tl+0)ei m - A + -(l+n)e
-

i e iPg (21)
jzdz 0 e

dA (l+n) dB -i2(p+m) f eim , [ide
dz - (1+5) dz 'e | 'o(l+S) - d(1+ dz +

(1+) A + (iko im (l+p)(l+rn

__i de +d~ei2m -i2p
+ 2E dz dz (1+ )Be (22)

Combining Eqs. (21) and (22), we obtain the sought-after coupled

first order differential equations:

dA 1 {iko ¢{ -eim [(l+e
dz - -i2 - (l+p) (1+n) - (l+ -(ei

e-i2m]A dz dz A

:+ L 2£ dz + e

+ iko E( l+fn) [1- (l+n) i ]

- (1+p)(l+l+n) + em]e-i2mBe
- i 2 3)
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dB 1 ii k iml
l)dz ( -i2m -/ik m (l+p)(l+n)-(1+5)

ddzz

-(l+p)(l+C) + eljA e i2P (24)

Eqs.(23) and (24) are the formal exact coupled differential

equations which take into consideration the effect of internal

reflections or multiple scattering. These equations can be

simplified somewhat if the exponential terms involving m are

expanded in a series form for small m. This implies that the

total phase difference between E and H must be much lessy x

than one radian at any distance z. From Eq.(9) and (11), we

have the phase difference

z

r(1 rld d2E 3 de 2 1 d

m 2k0"/EL d dz 4 d (25)

for cases where the first derivative of E vanishes at z=0.

It is thus seen that m2 is of the same order of magnitude as

p in Eq.(11) for slowly varying C and m terms shall be

retained at least for the moment in the expansion of e-im
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-+i2m 3 4and e in Eqs. (23) and (24). Neglecting terms of m ,m ,
etc., we obtain under the constraint m2 <<. 1

dA =11 +im ( 1 ik
° [m2 +pim(-n)]A- (21+ dz) Adz = 2 +im dz

dz+ (~Li d + (l-i2m)Be- 2 P

- ik 0 ~[2~1+~ ,p (26)- iko/ [2n+n2-4m2+p-i2m(1+3n)]Bei2p (26)

dB 1(1+i
m - ) iko/[m 2 + n-p-im(_-n)]B

(21+ dz dn)(l-i2m)B+ 1+E d d )Aei2p
1+d d2 dZ a- p

+ ik o7[2 + C2+p+i2m(1++)]Aei2PJ (27)

In Eqs. (26) and (27) 5 and n are still unknown functions to be

determined. In an attempt to simplify Eqs. (26) and (27)

further, we shall assume for the moment and justify later that
d E d qd

, n -dE and dn are of the same order of magnitude as m. We

thus obtain

dA 1f 2. d + dCflC-r Cd 4d = 2 ko/fk [m +nplm-Cm(E-n) d- +imd- oA

14(+d dn )(+i d
dzBd 2 -r 2°n dz28)

2- ik(?2e dz+d-z)(lim( 2C+n)1} 2 2 d(28)- iko/~e[2n-2m2-~q+p-im(2-~+q) ]1 B e - i 2

p

(28
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dB 1 / -2+pimn](1 de d)il im_ )
dz =2 -ik [ +I-p-im( ) 2 dz + d -im- 2 dz2B

+ 1 1 d + dE + im + de
+2 a dz dz 2 2c dz

2k 0 yre 12 E E-TO Ae (29)
+ iko/

0
'[2-2m2-[n+p+im(2+3--n)]Aei 2 p .29)

Noting the fact that, with the aid of Eq.(25),

k /-m = k /Y 1 d 1 dc (29a)
0 0 4k s z 4e dz

we have

dA _ ir 2 1 de d+ ' (30)

+ ( m +n\ i ik [-(2T-2m 2f+p)lBer (1 im - Em 21dz 2 2 e dz

dB _ 1r , p- 2_ 1 dednj 1 i+r d+l
z + 2[T 0 2e dz dz) 2

+* i +im k)+ im de ) de
2Ld z-P2/ 2 dz 2c dz

+ ikoV(2 - 2m2 _ n + P) Ae (31)

Further simplification and rearrangement result in

dA 1 (r··-- - m2 d Fi)- d e A
dA- = 4Jjk0 d/(zn-m -p)-m - dz + dz + (1-i2 p

2 2 adz Ve (2ri-E T'+P) Vdz Be- , (32)
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dB i= 1 ko m2p) - n 1 2 n dn B

+{ 2 dz 22E dzo

(33)

If terms of the order of m2 and p are neglected now, the

following simple equations are obtained:

dA _ (1 d +1 d+() i + 21 dn ik0 nei , (34)i2

dB = 1 d+ 1 dB + (1 dE + ik. J; )ei2 PA (35)
dz 2 dz dz

In order to gain more insight into the problem, we

shall let both i and n vanish, for the moment, in Eqs. (32)

through (35) and obtain, respectively,

dA -'l -i 2 -d2p
dz = iL ko/ +(m2+p) - dA - il ko / pe B, (32a)

idB = ko(m2+p) 1 dB + il kov pe A ; (33a)

1

dA - _ 1dE A , and A = 1/E ; (34a)
dz 4 dz

dB = - ld B , and B = 1/c (35a)
dz 4c dz

We note that Eqs.(34a) and (35a) are the WKB solutions15
-

7 ] for

the amplitudes of both the forward and backward waves. In this

case, the forward and backward waves are not coupled and thus
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cannot exhibit the effects of internal reflections. The

terms containing m 2 and p, shown in Eqs. (32a) and (33a),

have been neglected.

Eqs.(32) and (33) are the almost exact coupled

first order differential equations in A and B, which must

now be solved in terms of the yet unknown functions i(z) and

n(z). So our next task is to find approximate expressions

for both i and n as a function of z. To obtain approximate

C and n, we shall make use of Eqs.(18) and (19) by equating

the forward wave component of Eq.(18) to that of Eq.(19) and

the backward wave component of Eq.(18) to that of Eq.(19).

The relations thus obtained are:

~+ im =1 dAA(l+S)e =o A + 1 d (36)

= B- 
iwao .dz

_o -im 0D B(l+n)e im B (37) 1 dB

and

-i ko /m [l-(1+I)eim]dz

A = e , (38)

if0 koV7[l-(l-+n) e-im dz

B = e (39)

Using Eqs. (38) and (39) in Eq. (12), we have
z t

i , 0 k°E~(1+) eimdz

yf
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and

-i ko (l+n)e-imdz

E =e 0 (41)yb

Both Eyf and Ey b should individually satisfy Eq.(3), and we

have for Eyf
yf

d2 Eyf (iko re (1+2 ) 2 ei2m rl1+ de + i dz

+ ipkc (l+)] e jEyf (42)

Neglecting terms of the order of E2 and m 2 , we have from

Eq. (42)

dE - i2k / - ik o/ p (43)
dz 0 0

and

= e-i 2 P[K -i [0 k- pei2 Pdz]

where Kg is the constant to be determined by the boundary

condition that the incident fields Eyf and Hxf must be in

phase at z=0. i thus must be zero at z=0, i.e., K =0 and

0 -i2p z i2pE = -ie i 2 p k pe 2 dz (44)
0

Similarly, we have for Eyb
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d 2dE _ ~ 2 2 Fl~-i2m +n de /+-d
2 -ik e k d dz2 SI., ad

dz

ipkos (l+rn eim (45)

d z i2k J T7 + ikV P , (46)

and

n = e~i2Pe + i J k0 / p e i2Pdz

where K is the constant to be determined by the boundary condi-

tion that the phase difference between the reflected fields Ey b and

Hxb at z=k must be identical to that of the forward fields

Eyf and Hxf at z=9. The phase reversal of Hxb has been taken

into consideration by the minus sign in Eq. (17) already.

Only at z=k are the local phases and magnitudes of the reflected

waves not influenced by reflected waves at other locations in

the profile. This implies that n(k) = i(Q) and thus

-i2p() i i2p
K = i()e - i f kov pe (47)

0
and o

n = i ei 2
P
[ ko pei2Pdz - i() i 2 p

) (48)

Eqs. (43), (44), (46) and (48) verify the fact that I, , dz, and
I dz'

dii
are indeed of the order of m as assumed earlier.

With the aid of Eqs.
With the aid of Eqs. (44) and (48), Eqs. (32) through (35)
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can be expressed in terms of known functions i and n. For the

purpose of simple illustration we shall use Eqs.(34) and

(35) to obtain the final solutions for A and B. If we use

Eqs.(32) and (33), the solutions obtained should be more

accurate than those obtained from Eqs.(34)and (35). Taking

advantage of the relations shown in Eqs. (43) and (46), we

have from Eqs.(34) and (35)

dA _ _/1 dE 1 d E +ikoJ~p .- i2pg ~ (49)
Tz (4e d z + 2 dz)A + iko /p e 2 B ,(49)

dB _ 4 dz 1 dB k- p ei
2

PA ;
dz dz + 2 d-z - ik p A 

and

Idz]zA=s e -

2
L i i E4 e 2 ei

2

P (51)A C1 + ko/E p c e e B d (51)

1 nF 1 n

e -C i- ko kp eC e ei2pA dz (52)

where C1 and C2 are constants to be determined by the boundary

conditions for A and B. The first order iteration solutions

of Eqs. (51) and (52) yield

A = 4 e 1 + iC 2 k o/f- p dz , (53)

and

B = eLc 2 - kC
1

/7 p ei2Pd (54)
2-1 
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At z=O +,the normalized boundary condition requires that A=1

(amplitude) and thus C1 = [(0O)]4 . At z=- , we have in

general B=B(Z) and thus

1 1

C2 = [s()]4 B() + i[(O)]4 ko pei2Pdz , (55)

where B(z) vanishes if the first derivative of E vanishes at

z=C. Accordingly, we have the final solutions, for the

case B(,)=O,

A(z) = [() e-2 - koP/ pei2dze ko pe Pd (56)

and

z

B(z) 4e 2 ko/A pei2Pdz

With the aid of Eqs.(44),(47), and (48), we can write A and B

explicitly in terms of i and n:

A(z) '()4e2 i2p (
( n

-i2
-K

(58)
C e [-()e (T e P-KE (58)

and
1

B(Z) = (- e 2 ei2p-_(9)ei 2 p ( (59)

With A and B as known functions of z, the electric and magnetic

fields can be obtained from Eqs. (14) and (18).
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We can calculate the power incident and reflected

at z=0 and the power transmitted at z=k by using the

Poynting theorem for complex vectors. From Eqs. (14) and

(18), we have the average power from the cross product (defined

by X)

1 *^ 1 ip * * -i(p +m
Pavz = 2 Re(EyyXHxx) = 2 Re(Ae P+Be P)A (1+5 )e

-B* (l+n*)e (Q+ Z , (60)

where Re denotes the real part,Athe unit vector, and * the complex

conjugate. At z=0, 5(0)=0, A(O)=l, p(O)=0, and m(0)=0,

1 eoC (0) *
Pav(O) =2Re IT Uo [1+B(0)]{1-B(0)*[1+n(+ ()} (61)

= Re -B(O)B(O)*l+n(O)*]+B(O)-B([+(0)][l+n()i
2 F~

Thus the incident power is 2 Re and the reflection
2 P

o

coefficient at z=0 is

R = -Re{B(O)B(O)*[1 + n(0)*] - B(O) +B(O)*[l+n(O)*]} (62)

If the medium is homogeneous, n(O) vanishes, B(O) is real,

and the reflection coefficient R reduces to the standard form

B(0) . At z=Q, B() must vanish for a smooth transition, and

we have the transmission coefficient
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T = Ref 4 A(k)A())**eiEp(Z)-Q() *-m()*]) . (63)

For homogeneous lossless media, T reduces to the standard form

A2 E ( )
. We point out that Eqs. (62) and (63) are valid

only under the constraints IPI << 1, Im21 << 1, and B(Z)=O.

It is evident that both the transmission coefficient

T and the reflection coefficient R can be easily obtained

once C and n are explicitly evaluated. Since the dimension-

less parameter p[phase integral of Eq.(7)]in Eqs. (44) and (48)

is an integral function of z for a prescribed E(z), double

integrations must be performed to evaluate these equations.

To avoid the double integration, we can transform Eqs.(44)

and (48) explicitly in term of p alone and use p as the

independent variable:

C(P) = -ie i2 P(p)ei2 dp (64)

i2p P i 2 (6)p-p)n(p) = iei2P p(p)ei2Pdp + g(p )e ( (65)

where, from Eq. (11),

~2p(z) 4dz
2

2 d

= d
2

= p(p) (66)
= P( P) pj(66)

4Ldp 2 d
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and

p = P () =oj k
° o dz . (67)

Eqs. (56) and (57) then become, respectively,

(p) P P

A(p) I e - p(p)e 2 p dp p(p)e dp, (68)

and

B(p) i=i 4 e p(p)e i 2 dp (69)

For a prescribed E(p), Eqs. (64)-(69) can be evaluated without

double integration and the relation between z and p can be

expressed through the equation

P

kZ = dp (70)

III. SOLUTION ACCURACY

The formal solution of the wave equation, Eq.(3), is

Eq. (14), which can be explicitly expressed in terms of z with the

aid of Eqs. (56) and (57). We now ask how accurate this solution

is. Since the exact solution for Eq.(3) with arbitrary £(z) is

not known in analytic form it is impossible to state an error

bound of Eq.(14). On the other hand, we can compare the

relative accuracies of the solution in the form of Eq. (14)

and that obtained by the WKB method. The WKB solution of

F��
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1 1

Eq.(3) is E4eiP. If we substitute e 4ei into Eq.(3), we

obtain

d + = 1 d2e 1 E (71)

dz 0o y 4e dz Edz2 (

The residue error terms on the right side of Eq. (71) indicate

that the WKB solution does not satisfy Eq. (3) exactly. The

conventional criterion for using the WKB approximation is

2 5 d2
11 1 d2d 5 (1 d 2 << 1 (72)

4kE dz 

It is interesting to note the almost exact identity between the

conditions of Eqs. (11) and (72).

If we substitute Ae
l

P (with A expressed by Eq.(56))

or Be- p (with B expressed by Eq.(57)) into Eq.(3) we obtain,
3 3

neglecting terms of d 
3
and (dz) respectively,

dz
3

2 2

2y - E dz k2 E ordz2 0 y =dz) ] y
dz2

1 d 2 2 2 q
2 + n ko Ey · (73)

With the aid of Eqs.(44) and (48), it can be shown that both

2 a2 22 v1 2
2k2 and n ko vary between 0 and - ) Accordingly,
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Eq. (73) can be written conservatively with a maximum possible

residue error of -(4 dz) as

d2E 2

dz2 o y y

Comparisons indicate that the residue error of Eq.(74) is at

least five times smaller than that of Eq.(71) for a slowly

varying e where 1 d2 d It is known that if residue
F dz2 dz

error terms vanish in a differential equation the solution

is exact. We infer that solutions with small residue error

are more accurate than those with large residue error, but

we cannot state the bound of accuracy. This heuristic

argument provides evidence that our present solutions, which

take the effect of internal reflections or multiple scattering

into consideration, are more accurate than the WKB solutions

which neglect this effect.

IV. SAMPLE PROFILES

If we prescribe a Gaussian type of nonvanishing, even

distribution profile for c(p), we have

2
-b p 1-

E(p) = a e PQ , (75)

where a and b are constants to be determined by the prescribed

values at E(p=lp) and E(p=0 or p ). It turns out that for

Eq.(7.5) the evaluation of p(p) from Eqs. (66) yields the constant

p(p) = -b/(2p ) , (76)
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where the values of b and pR must be such that IPI is much smaller

than unity. 5 and n from Eqs. (64) and (65) become,

respectively,

(p) = -(1-e' i 2 p) (77)
4 p 

and

n() = b2 -e 2(P2 (78)Pk
4p[

From Eqs. (68) and (69), we have, respectively,

A(p2. ) x= ex p[ (-e i)]J r -(e- ) (e- i 2p - )]
% 9L 4p 91

b -i2p 2--.)-b2
(exP (1-e )[-( 2I 1-cos 2P , (79)

8p',%

and

B(O) = p[- e 2 (l-e- i4p) 
2

-e i2) (80)

L 8p 91) 4p,%

The transmission and reflection coefficients for lossless cases

are, from Eqs. (63) and (62)

eb 2b2T =Re xp 2(l-cos 2 P j 3 -) (l-cos 2

+ b 1-e i2 )]ib/2p, (81)

L 4p
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b / /2p r b/ i2p 
R = Re(exp [- (1-cos 4 jp 2 (l-cos 2P9 ) [i+ 2(l-e )]

4p 4p

b I -i 4 p - _i 2 p i i 2 p

8p 2)(-e 4p

Next, we prescribe for s(p) another nonvanishing odd

distribution function of the form

e(p) = 1 + a sin(n~rp/p 9) , (83)

where a is an arbitrary constant smaller than unity and n is

a nonzero integer. We have from Eq. (66)

_fn) 2 a[a+sin(nwp/p )]

P(P) = - 12p/) [l+a sin/(nrp/p (84)

where n, a, and pi must be so chosen that IP(P) << 1.

To obtain 5 and n for p(p) of Eq. (84), numerical integrations

have to be performed. Since i and n are directly proportional

to p, it is important to note from Eq.(84) that p is propor-

tional to n 2, indicating that in general the reflected power

increases as the number of "ripples" increases in the dielectric

profile of the finite inhomoqeneous medium.
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For a delta function type of symmetrical distribution

model

(P) =
ab (85)

( -2 22

p 1 2 b2

2p( ) )+b2] P

(86)

For an antisymmetrical distribution function of the

form

e(p) = 1 + a(P - 1
P 9 -

-( p- ) 
2 9 2 )

21 2

-ae
' ( P _ 1 2

P 9 2) 

(~p 12 ] 2

p 2)

we have

2

(87)

we have

p(p) =

(88)
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For an amplitude modulated sinusoidal distribution

function of the form

c(p) = 1 + a[l + b sin(Brp/p )]sin(nTp/p ) (89)

we have

p = -a(2- ) (al+b sinP (l+b + bsin 2nrpsinir-P]

(-a 1 a I - p2 22+ sin 
+a 6bsin n P----cos pT + n +b(n +6 )sin Psin nTr- P

\P PL P P~(~~~~~~

-2n Bb cos n P-cos
P 

[1 + a l+bsinB -P)sin nrr 2
P P

A generalization of Eq.(83) by raising the sinusoidal

variation to Jth power yields the following undulating profile:

E(p) = 1 + a sinJ (ngp/p )
91

(91)

where J = 1, 2, 3, 4, etc.

From Eq.(66), we obtain

(90)
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p(p) = aJ n { (E(p) [(J-l)' sin
( J

(n7p/p) cos (nrp/p)

-sinJ(n9p/pQ)] - aJ[cos(nprp/p ).sin ( T/p) ( e(p)]

(92)

V. Computational Results

We shall now use the above models of profile distribu-

tion for s(p) to compute the plane wave transmission and reflec-

tion in the presence of dielectric constant gradients in a

clear atmosphere.

For practical purposes the refractive index n of a

parcel of atmosphere at absolute temperature T and pressure P

(in millibars) is given by

n / = 1+ c (Pi + de- .106 (93)

where c = 77.60 K/millibar, d=4810°K, and e is the partial

pressure of the water vapor in millibars. It is customary to

speak of the refractivity N in the form

N = (n-l)106 . (94)

The meteorological conditions necessary for the

production of patches of atmosphere with anomalously large

refractive index gradients have yet to be firmly established.

A steep lapse-rate in water vapor content is probably essential

since the correlation between patches of large scattering
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cross section and temperature inversion is quite evident.

Simultaneous radar and refractometer soundings have shown
[ 1

-

3 ]

that the lower atmosphere often contains, in clear air, parcels

or strata which exhibit steep refractive index gradients.

Similar stratification of the lower atmosphere is also observed

in recent soundings by lidars (laser radars) [ 9
-
1 0 ] and

acoustic probing.[ ll] Radar observations[ 2] have shown that

layer structures of the atmosphere are seen almost all of the

time, regardless of season, at various elevations up to 20,000

feet. Lane[ 1 2 ] reports that refractive index changes of 5N

units over a vertical interval of about 10 cm were observed.

We shall use a refractive index change of 50N units (i.e.,

dielectric constant change of about 10ON units) over a vertical

distance of one meter as a realistic maximum allowable limit in

computation (maximum =l1.0001).

We shall use the Gaussian profile of Eq. (75),

the delta function profile of Eq.(85), and the undulating profile

of Eq. (91), since these profiles all represent actual

profiles found in a clear atmosphere. The boundary conditions

prescribed for these profiles are the same, i.e.,

at p = 0 and p. , C(0) = £(pi) = 1

at p=)P1 - k = 1.00012" 9
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Accordingly, we have for

Gaussian profile: E
1

(p)=ae-b(P/p -O 5) 

(75)

where a=l.0001, b=4 kogea=0.00039 9 9 8.

Delta profile: E2 (p)=ab/2[b2 + ( p / p- 0 5 )
2

2
p

2 (85)
(85)

where b=0.5/Vl.l0001-1=50, a=l.000lb=50.005.

undulating profile: e3 (p)=l+a sinJ(nrp/Pz) ,

(91)

where a=0.0001, n=l, 2, 3, etc.

J=l, 2, 3, etc.

We note that the derivatives at p=O and P+ are not continuous

for the above equations except for cases where J>l in Eq.(91).

It turns out that the Gaussian and delta function profiles are

nearly identical, as shown in the profile curves of Figure 1,

and the reflection characteristics shown in Figure la are

accordingly also nearly identical. Figure la also shows the reflec-

tion characteristics for undulating profiles with n=l and various J,

and Figure 2 shows those for cases with J=l and various n. From

Figure 2 we note that the absolute maximum occurs at p,=0 and a

relative maximum appears to occur in the vicinity of p,=n~/2

except for cases with n=l and 2. Figure 3 shows for n=20 and

21 that the relative maxima indeed occur at p =20O/2 =10 and

pt=21f/2 =10.5 respectively. We therefore conclude that
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reflection maxima do not always decrease with increasing pi,

where p= St k /7dz as shown in Eq.(67), and the location of a
0 0

relative maximum depends strongly on the profile involved. For

very large pt. reflection maxima, however, do decrease with

increasing pi. The small discontinuity in derivatives at the

ends of the profile introduces only negligible error, although

it does not meet the boundary conditions imposed by the

analysis.

Since Eq.(91) can represent various shapes of

undulating profile by assigning different J, we show the

reflection characteristics for various n in Figure 4 for J=2,

in Figure 5 for J=3, and in Figure 6 for J=4. Figure 4 indicates

that for J=2 and various n the absolute maximum is the relative

maximum and occurs at p,=nf. Both Figure 5 for J=3 and Figure 6

for J=4 show that there is always a relative maximum atp,=J.n.7/2

and the absolute maximum always occurs at p,=Jnrr/2-nT= n2(J-2).

Summarizing these results, we can generalize that

there is always a relative maximum at p,=Jnf/2 for any J and

the absolute maximum occurs at p =n (J-2) for J>2. For J=2

the absolute maximum merges with the relative maximum and for

J=l the absolute maximum is at p9=O. Minima occur at

intervals of a, except where there is a relative maximum.

From Figures la through 6 we can conclude that

reflection maxima occur when partial internal reflections from

all locations of the inhomogenous medium are added in phase,
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and no resultant reflection occurs when partial internal

reflections result in complete cancellation. To further prove the

validity of the above statement and the correctness of this

theoretical analysis on multiple scattering, we shall extract

some findings from Figures la through 6 and arrange them in

Table I below for various J and n:

Table I. Magnitudes and Locations for the Absolute Maxima

The number within the parentheses is the location of the abso-

lute maximum and the number before the parentheses is the

reflection in db. Table I reveals that in general when n is

doubled the reflection increases by 6db; when n is an order

of magnitude larger the reflection increases by 20db. These

numerical findings are clearly consistent with the reasoning

that when two (or ten) partial reflections of almost identical

magnitudes are added in phase the resultant reflected power

increases by 6db (or 20db).

J n=l n=2 n=3 n=4 n=6 n=20

1 -67(0) -61(0) -57(0) -47(0)

2 -79(s) -73(2w) -70(37) -6 7(4X) -53(20w)

3 -75(X) -7 2 (1.5w) -6 9 (2 T) -55(10w)

4 -79 (w) -73(2w) -70(3w) -67(4r) -53(20w)
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Figures la through 6 are obtained by plotting the

computed results of power reflection coefficient R of Eq.(62).

The power transmission coefficient T is computed from Eq.(63).

In computing these coefficients numerical integration is used

in evaluating A(z) of Eq.(68) and B(z) of Eq.(69), since p(p)

is in general not analytically integrable. The power trans-

mission coefficient T is not plotted since it is very close to

unity. The following Table II shows the numerical values of a

sample calculation:

Table II. Sample Calculations for the case a=.0001, n=20, J=2

RHOL=68.00 RT=-.99999982 RR=.00000014 LR=-68.62

RHOL=66.00 RT=.99999999 RR=.00000000 LR=-94.82
RHOL=64.00 RT=.99999630 RR=.00000300 LR=-55.22
RHOL=62.00 RT=.99999548 RR=.00000394 LR=-54.04
RHOL=60.00 RT=.99999992 RR=.00000006 LR=-72.23

RHOL=58.00 RT=.99999970 RR=.00000023 LR=-66.47

RHOL=56.00 RT=.99999995 RR=.00000003 LR=-74.93

KZ=67.99633503 RS=.99999996
KZ=65.99656296 RS=.99999999
KZ=63.99673271 RS=.99999930
KZ=61.99684858 RS=.99999943
KZ=59.99697590 RS=.99999998
KZ=57.99709606 RS=.99999993
KZ=55.99721003 RS=.99999998

RT = Real part of the transmission coefficient.

RR = Real part of the reflection coefficient.

LR = 10 log1 0 (RR) in db

KZ is evaluated from Eq.(70)

RS is the sum of RT and RR and is extremely close to
unity. This also indicates the validity of the
theoretical analysis.
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VI. APPLICATION TO PROBING OF ATMOSPHERIC WATER VAPOR PROFILE

To illustrate the nature of the problem, we shall

start with a hypothetical case: given two profiles of the

forms eA=1+0.0001 sin (4ip/p2 ) and eB=1 +0.000 1 sin (4~p/p ),

how can we distinguish the profiles from each other by simple

reflection measurements? Inspection of Figures 4 and 6 indi-

cates that for n=4 at p .=4w the reflections for both J=2 and

J=4 should be the same, whereas at p,=8f the reflection for

J=2 is zero and that for J=4 is about -73db. To translate p2

back to physical parameters we use the definition of p2 from

Eq.(67), i.e.,

p, =f koV (z)dz = /(z)dz

o o

where ko is the free space wavelength.

For E(z) extremely close to unity along the profile, p= 2wT

Accordingly, pz is directly proportional to the length Z of

the profile and inversely proportional to the wavelength.

For Z=10 meters, X =2.5 meters for p =87 and X =5 meters for

p =4~f. In other words, reflection measurements at X =5 meters

should yield identical values for both profiles whereas at

Ao=2.5 meters no reflection should be observed for the profile

with J=2.
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In actual cases, the situation is reversed since the

profile is the unknown to be found. In such cases we have to

measure the actual reflections at a number of wavelengths and

then find the correct profile to fit these measurement points.

The process of curve fitting could be started by assuming an

initial guess profile and then reducing the difference between

the measured points and computed points by an iterative

procedure such as the method of least squares. The questions of

stability and rapidity of convergence and uniqueness of solu-

tions will of course arise in this kind of synthesis problem

but will not be discussed in this paper. Similar questions

are also raised in determining atmospheric parameters for in-

verse problems in radiative transfer[ 1 3 ] .

VII. SUMMARY AND DISCUSSIONS

A theoretical analysis of the multiple scattering of

electromagnetic wave propagation in a finite inhomogeneous

medium has been presented.

The present analysis not only offers a way

to synthesize the water vapor density profile in a clear

atmosphere by reflection measurements at different frequencies,

but also offers a satisfactory explanation of the facts that in

a clear atmosphere(i) a radar echo is always associated with

some identifiable steep gradients of refractive index, and (ii)

steep gradients of refractive index, however, are not always

accompanied by radar echos. Because of the multiple scat-

tering effect of waves, radar echoes depend strongly on the
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profile of refractive index and the frequency used. For a

given profile the echo at one frequency may be the maximum,

and at another frequency there may be no reflection at all.

It is implicitly assumed in the analysis that the

clear atmosphere has a nonuniform but stationary distribution

of molecules at various height levels. This means that not only

is the time-average distribution of the density of the molecules

uniform local-wise, but also at any instant the density of the

molecules also does not exhibit statistical fluctuations about

the local average. Another approach[ 1
-

4][12] [ 14
-

16] to this

scattering problem is based on random fluctuations of refractive

index produced in some way by turbulence in the atmosphere and

relates radar echoes from the clear atmosphere to incoherent

back-scattering from local patches with large irregular

fluctuations in the refractive index. Since it has been

recognized that no single model or mechanism is likely to

furnish a complete explanation, the present approach represents

an attempt to provide additional insight into the problem.

We have assumed in the models of water vapor profile

that the refractive index is real because the attenuation of

electromagnetic radiation of wavelength longer than a few centi-

meters by water vapor in the atmosphere is negligibly small. For

electromagnetic waves passing through thin layers of light
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clouds, we might also use a real refraction index for water

vapor at low microwave frequencies. For light clouds with

sparsely distributed small water droplets, the Mie scattering

effect of the water droplets might be neglected and only the

effect of water vapor need be considered.

For thick and heavy clouds, attenuation will be

appreciable and at the same time frequency dependent. The

analysis in this paper could be applied directly to a thick

and heavy cloud or even rain if an equivalent complex dielec-

tric constant could be obtained for the heavy cloud or rain.

It is clear that in these cases the complex dielectric constant

itself is frequency dependent as well as height dependent.

1011-CCHT-P 1 C.C.H. Tang
cds
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