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o ABSTRACT
in

For the first time the Brueckner-Hartree-Fock (BHF) method is applied

to nuclei whose intrinsic structure is nonspherical. One aim is to in-

vestigate whether the energy dependent reaction matrix calculated from a

"realistic" nucleon-nucleon interaction leads to deformations similar to,

or rather different from, those obtained from energy independent interac-

tions in Hartree-Fock (HF) calculations. Reaction matrix elements were

calculated as a function of "starting energy" for the Hamada-Johnston

interaction, using a Pauli operator appropriate to 0 and a shifted os-

cillator spectrum for virtual excited states. Binding energies, single-

particle energies, radii, and shape deformations of the intrinsic state in

unrenormalized as well as renormalized BHF are discussed and compared

12 l6 20
with previous HF studies. Results are presented for C, 0, and Ne.



INTRODUCTION

The connection between the nuclear many-body problem and the predic-

tion of properties of finite nuclei has been studied with increased in-

tensity in the last few years (ref. l). Advances in computational tech-

nology have made it possible to drop the "closed-shell-core" assumption

which was common to most nuclear structure calculations (ref. 2). Thus

it has become feasible to attempt to understand nuclear phenomena in terms

of a microscopic theory without the additional uncertainties -which result

when an inert core is assumed. (The inert core effects are usually mani-

fested through the need for effective charges in calculating electromagne-

tic properties and -the need for effective interactions in obtaining matrix

elements of the nuclear Hamiltonian.)

A natural starting point for many microscopic studies of nuclear systems

has been the Hartree-Fock (HF) method (ref. 3), which has contributed sig-

nificantly 'to our understanding of the properties of nuclei (ref. h). The

use of the HF method has been limited somewhat by the type of interactions

available for use in calculations, but it is certainly the most convenient

method available presently for investigating nuclear many-body systems.

For the most part HF studies have been restricted to the use of (l) phe-

nomenological effective interactions (ref. 5) or (2) various types of

effective interactions based directly or indirectly on nuclear matter

calculations (ref. 6). Microscopic studies of both spherical and deformed

nuclei have been made using such effective interactions. Ultimately,

however, one would like to begin with a "realistic" nucleon-nucleon inter-

action and, with as few approximations as-.possible, calculate nuclear pro-

perties based on a many-body theory. The Brueckner-Goldstone (BG) theory

provides a starting point for such calculations.



3:

Following the pioneering work of Brueckner (ref. 7) and Goldstone

(ref. 8), there came a large number of papers clarifying the theory and

extending It beyond applications to nuclear matter (ref. 9). In recent

years, the usefulness of the nuclear-matter calculations in studying

properties of finite nuclei was demonstrated by Kuo and Brown (ref. 10),

and the development of Brueckner theory for closed-shell nuclei was ad-

vanced considerably by the work of Kohler and McCarthy (ref. 11) and

by Becker, MacKellar and Morris (ref. 12).

There do remain uncertainties in the many-body theory, because of a

lack of understanding of the two-body force and some questions regarding

the importance of higher order Brueckner-Goldstone diagrams (ref. 13) and

three-body clusters (ref. 1^) . However, if one hopes' to understand the

structure of nuclei in terms of a true microscopic picture, a Brueckner-

Hartree-Fock (BHF) type of calculation appears to be the most reasonable

approach presently available.

The application of the BHF method to the investigation of properties

of finite nuclei has thus far been limited to spherical, closed-shell

nuclei. Among the most significant of the calculations made to date have

been those of the Oak Ridge groups (refs. 15 and 16). Self-consistent

BHF studies by Davies et al. demonstrated the ease and reliability with

which such calculations could be made, although they found the nuclei to

be too small and underbound. Several authors suggested that occupation

probabilities may play an important role in BHF treatments of finite

nuclei (ref. 17). The inclusion of occupation probabilities in finite-

nucleus Brueckner calculations by Becker made a substantial difference



in the single particle energies, and it was found that the depletion fac-

tors for normally occupied single-particle orbits were of the order of

15 percent (ref. 17). Subsequent calculations by Davies and McCarthy

show that good results for the binding energy can be obtained when such

higher-order diagrams are included; however, the nuclei are still too

small.

The results discussed above indicate that the nuclear many-body

problem is now sufficiently well understood to make it reasonable to

examine the degree to which one can use it to predict nuclear properties

while, at the same time, attempting to refine and extend our present

knowledge of the problem. Since the majority of nuclei are not of the

spherical, closed-shell type, it is of interest to determine whether the

energy dependent reaction matrix obtained from BHF calculations leads

to deformations, gaps, etc, which are similar to those resulting from

standard HF calculations with effective interactions. The light deformed

nuclei provide a good starting point for such a study, since the number

of particles involved is small enough to keep the problem tractable and the

simple HF approximation is understood well enough to provide guidelines

for what is recognized to be a rather complicated problem. Although there

are some conceptual difficulties associated with obtaining physical states

from deformed intrinsic systems when BHF is used, there is still much to

be gained from a study of properties of the intrinsic system. For in-

stance, it would be interesting to see how deformations, single particle

energies, and energy gaps are affected when one does BHF and renormalized



BHf rather than the simpler HF calculation using an energy independent

interaction. One aim of this paper is to discuss and compare such

calculations .

THEORY

The deformed intrinsic HF state of a many-body system is nondegenerate

in the "body-fixed frame, and therefore Goldstone's linked cluster perturba-

tion expansion is valid (ref. 18). If one makes the usual association of

terms in the perturbation series with Brueckner-Goldstone diagrams, then

the only departure from the more familiar spherical situation is that

propagation lines are now associated with deformed single particle states.

It follows that summations and cancellations of particular diagrams are

identical for finite spherical and deformed systems. As usual, summation

of terms corresponding to a series of ladder diagrams is accomplished

by solving the integral equation

h!2 - Es

Here t n o ( E ) is Brueckner's reaction matrix, v is a nucleon-nucleon
Ld. S ±d

interaction with short range repulsion, E is the "starting energy,"
5

Q is the Pauli operator, and h = h + h . The single-particle

Hamiltonians include single-particle (SP) potentials which are defined

to cancel certain classes of diagrams; these potentials are deformed

for the case of interest here.

Because of the hard core in v , it is convenient to define a cor-

related two-particle wavefunction , ty-., "by means of the equation



0 V12*12
(2)

from which one can obtain the integral form of the Bethe-Goldstone equation:

*12 = *12
Q

h!2 - Es

(3)

The solution of this equation is very difficult, so the usual procedure

is to define a "reference" t-matrix

Q
R

to be solved for as a first approximation to the nuclear t-matrix; one

also obtains the reference Bethe-Goldstone equation:

~R
(5)

The nuclear t-matrix may then be obtained through use of the relation

Q Q (6)

Now, it is clear that the solution of equation (5) will also be com-

plicated if ti p contains deformed single-particle potentials. This is

immediately obvious if we try to transform to relative and center-of-mass

coordinates which is necessary since v is nearly always given in that

representation. On the other hand, if we solved equation (5) with a spherical

•n -p
reference operators, h , and Q and then iterated equation (6), the

problem would be greatly simplified. (This is essentially what we have

in mind.)



The calculation of the reaction matrix provides the necessary in-

gredients for a Brueckner-Hartree-Fock calculation. The set of self-

consistent equations to be solved are

h|x^ = ejx̂ ) ' (7)

where

^X|h|y^> = (\\K\v^ + (x|u|y) (8)

and the specific form of /x|u|y\ depends on whether X and y refer

to hole-hole, hole-particle, or particle-particle states (ref. 12). The

dependence of U on the occupied SP states results in a double self-

consistency requirement: the SP states, X, are eigenstates of (K + U) and

U itself depends on the energies of the filled SP states . It therefore

appears that, in order to do BHF correctly, we must recalculate the reac-

tion matrix after each iteration in a self-consistency procedure. For-

tunately this can be avoided by the technique introduced by McCarthy and

Davies (ref. l6), in which t is expressed as a power series:

nE (9)
n=l

If the reaction matrix is calculated for several starting energies, the

coefficients A may be obtained by a suitable fitting procedure. Once

the reaction matrix is obtained as a function of starting energy, it would

be possible after each iteration in the BHF problem to use equation (6) to

make the Pauli corrections. In practice one would probably get sufficiently

accurate results if these corrections were only made for the last two or

three steps in the iterative procedure.
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The usual method of solving equations (?) is to introduce a finite

set of basis vectors which span several major shells. The equations then

become:

b I J

where the coefficients C express the deformed orbitals in terms of a

spherical oscillator representation, i.e.

1 . V (11)
k

The method of Davies, Baranger, Tarbutton and Kuo (ref. ) may be used to

calculate the matrix elements of U in the oscillator representation:

occ.

a'cd

+ —

occ,

2 b'cd n X

where

,ab a b

Although this expression is obtained using an approximation involving the

starting energies, it has been pointed out by Davies et_ al_. that one is

primarily interested in occupied states and related properties , so that

particle-hole and particle-particle matrix elements (which are given only

by eq. (12)) will be less important since the effects on the occupied

states only enter in second order (ref. 16). Furthermore, it has been shown

by Davies and Baranger (ref. 16) that the exact expression gives essentially

the same results for light nuclei .



After obtaining the matrix elements of U as defined in equation (12),

the solution of equation (10) essentially reduces to the standard HF pro-

blem. The binding energy is given by the same expression in both HF and BHF:

occ. _

E. = -

The renormalized BHF (RBHF) takes into account the depletion of normally

occupied single-particle states resulting from two-nucleon correlations

(ref. 1?). The main difference between RBHF and the BHF approximation is

that RBHF includes, along with the BHF contribution to the SP potential

(fig. l(a)), the contribution of figure l(b)

(a) (b) (c)

which, in the unrenormalized Brueckner theory, is regarded as one of two

third-order rearrangement potentials. Brandow urged that such potentials

be included in the definition of the self-consistent field, where it

would renormalize the BHF term, rather than be calculated only as a

rearrangement correction (ref. 19). In the RBHF approximation the SP

potential is that of figure l(c), which includes the contribution of

figures l(a) and (b), and the particle occupation probabilities are set

equal to zero. A complete renorealization of the entire perturbation series

has been obtained by Brandow and is discussed in detail elsewhere (ref. 13).
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DISCUSSION

Reaction matrix elements were calculated as a function of "starting

energy" for the Hamada-Johnston interaction using a Pauli operator appro-

priate to 0 and a shifted oscillator spectrum for the virtual excited

states. Detailed descriptions of the method used to solve the reference

Bethe-Goldstone equations may "be found in reference 12. The t-matrix

so obtained Is essentially the spherical reference t-matrix with which the

deformed calculations are begun, i.e., the oscillator representation of the

t-matrix elements as they appear in equation (12). At the beginning of

each iteration in the solution of the self-consistency problem the starting

energies from the previous iteration are used; however, the Pauli cor-

rections are not made. The "on shell" prescription is used for the

particle-particle matrix elements in the deformed BHF calculations,

although an approximate "off-shell" prescription was used in the original-

spherical calculations (ref. 12). The choice of the shift parameter, C,

used in the calculations has been discussed in reference 12.

Properties of the intrinsic states of C, 0, and Ne have been

calculated for oscillator lengths of 1.57 fm and 1.77 ftn» using BHF and

renormalized BHF. The variational problem was solved subject to the

condition that the deformed intrinsic states possess axial symmetry and

four-fold degeneracy. Expectation values of operators are calculated

with the uncorrelated wavefunctions. The results have not been corrected

for Coulomb and center-of-mass effects; such corrections should almost

cancel each other for the nuclei studied here.
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The HF calculations with which our results are compared are those of

Zofka and Ripka (ZR) in which the effective interaction of Negele was

used (ref. 20). This interaction is a density dependent one which was

found to yield good binding energies, sizes, single-particle energies

and electron scattering cross sections for certain spherical nuclei.

Much of the improvement in "binding energy and radius, however, is due to

adjustment of the strength and range of the interaction to obtain the de-

sired saturation properties of nuclear matter or selected finite nuclei.

It should be noted that the calculations of ZR generally overestimate the

nuclear sizes (and therefore quadrupole moments, etc.) but it is neverthe-

less felt that their results are the most relevant with which to compare

at the present time. ZR refers to the values quoted here as calculation'.II.

For this set of calculations, perturbation theory was used to correct for

the fixed starting energy and Coulomb interaction. Whenever possible, the

ZR values appropriate to neutrons are quoted, since we do not treat the

Coulomb interaction in the calculations reported here.

12Our results for C are presented in table I. As expected from ex-

perience with spherical, close-shell nuclei, the RBHF calculation yields

better values than the BHF for both oscillator lengths. An oblate shape

for the nucleus is predicted, in agreement with the usual HF studies.

Note that the radius predicted by the ZR calculation is considerably

larger than experiment, and that their intrinsic quadrupole moment is

30 percent larger than the largest RBHF result. This is not surprising

since the radius given by RBHF is only 2.37 fm, as compared to 2.59 fm

given by ZR. We also observe that deformation increases when occupation
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probabilities are included, and that the level ordering is unchanged.

In all cases, the nucleus is underbound, although ZR's results are 20 per-

12cent larger than the RBHF results. The intrinsic properties of C do not

seem to be very sensitive to the oscillator length. Proton separation

energies are given in the column labelled experiment. Results are given

for neutrons in the (BHF, RBHF) calculations, but the Coulomb effects

should only increase the results by about 2 MeV.

It has been known for some time that ordinary HF calculations do not

provide good results for separation energies, and we observe that the ZR

calculation differs by 20 percent from experiment for the most tightly

bound state, although the p states are well represented. This is some-

what better than previous HF predictions of SP energies, however, since

one usually finds that at least one of the predicted SP energies differs

significantly (̂ 50 percent) from experiment. Unrenormallzed BHF is known

to suffer from large rearrangement corrections and is also not expected to

agree very well with experiment; this too is observed. The RBHF results

are clearly the best of the three calculations.

All of the predictions are within 10 percent of the measured values.

An analogue of Koopmans' Theorem for separation energies in RBHF has re-

cently been established (ref. 21). Thus we may associate the energy of

12the first unoccupied orbit in C with the separation energy of the last
TO

neutron in C. Experimentally, the number is found to be U.95 MeV

(ref. 23). The RBHF prediction Is about U.5 MeV, in very good agreement

with the measured result.
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Table II contains the results for 0. Since these results are for

spherical 0 and this case has been discussed extensively in other studies,

we .do not feel it necessary to go into detail here. Efforts to obtain the

deformed excited state in 0 have thus far been unsuccessful. This

state has been found, in standard HF studies, to be a Up-Uh state lying

some 20 to 25 MeV above the ground state. The Up-^h states which we have

been able to study so far have been very unstable.

20Of the even Z-even N nuclei in the s-d shell, We has proved most

amenable to description by means of standard HF theory. The various pro-

perties of this nucleus which are primarily long range in character may

be obtained with good accuracy from a probate intrinsic state with a rather

large hexadecapole moment. Those properties primarily short-range in

character, particularly the binding energy, are of course poorly given in

standard HF theory.

20Our BHF and RBHF results for Ne are presented in table III. All

the calculations yield probate intrinsic states with the same level

ordering, and as for the preceding cases, the RBHF predictions are some-

20what more satisfactory than the BHF. The rms radius of Ne has not been

measured, but can be inferred from measurements on neighboring nuclei to

be about 2.8 cm. Again we find the BHF and RBHF radius values too small,

and the ZR value somewhat too large, and all the calculations underbind

the nucleus.

In spite of these deficiencies, which are found in BHF and RBHF

calculations for spherical nuclei as well, it is gratifying to note that

the successful features of the standard HF theory seem also to be present

in the Brueckner version. As evidence of this, we may observe the similarity



of values for the "long-range observables" /R2\ , Q?, and Q, , which are

listed in table III for "both HF and RBHF calculations with b = 1.77 fm.

If this similarity persists for other values of the oscillator parameter,

one would be justified in claiming that renormalized Brueckner-Hartree-

20Fock calculations give a fundamental description of Ne with a consistent

degree of accuracy for all its observables. Hopefully this would give

even greater emphasis to investigation of the chief drawback of RBHF

theory, namely its persistent prediction of nuclei which are too small

and too loosely bound.
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TABLE I. - RESULTS FOR C (P IS THE OCCUPATION PROBABILITY FOR STATE A)

A

b, fm

Calculation

-E/A,
MeV

(R2)V2, fm

A ,
MeV

( Q 2 > - ^

(Q4>, fm4

1

K> v
V

MeV

c,
MeV

1.57

BHF

k.6

2.17

12.7

-25. U

17.7

(l/2+, 1.0)
-1*6.2

(3/2", 1.0)
-23.2

(l/2~, 1.0)
-21.8

1*8. 61i

RBHF

5.6

2.30

11.2

-29.6

23.it

(l/2+, O .Rl )
-35. U

(3/2~, 0.82)
-16.5

(l/2~, 0.83)
-15-5

16. Sk

1.77

BHF

k .5

2.25

11.9

-26.6

19.1

(1/2* , 1.0)
-1*3.9

(3/2~, 1.0)
-21. R

(l/2~, 1.0)
-20 >

^O.j6

RBHF

5.2

2.37

10.U

-30.7

26.7

(l/2+, 0.8>0
-3l*.5

(3/2", o . R U )
-15.9

(1/2", 0.«5)
-lU.Q

38.76

1.67

ZRa

6.ti

2.59

9.8

-1*0.9

( + )
-28

(-)
-15

(-)
-15

Exptb

7.7

2 . U O +_ 0.03

35.5 1 1.0

15.0 + 0.5

15.0 1 0.5

The orbital energies in the ZR column refer to proton separation energies,
^Proton separation energies from ref. 22.
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TABLE II. - RESULTS FOR 0

"b,fm

Calculation

-E/A,
MeV

(R2)1/?, fln

A ,
MeV

< Q 2 > , fm2

<Q 4 > ' ^

<V V

e X '

MeV

c,
MeV

1.57

BHF

6.2

2.16

18.0

0.0

0.0

(l/2+, 1.0)
-56.7

(3/2~, 1.0)
-30.0

(l/2~, 1.0)
-30.0

(l/2~, 1.0)
-23.5

50. h6

RBHF

7.3

2.2T

16.9

0.0

0.0

(l/2+, 0.79)
-1*3.9

(3/2~, O . f i O )
-21.3

(l/2~, 0.80)
-21.3

(l/2~, 0.80)
-17.0

U R . 6 U

1.77

BHF

6.2

2.25

17.2

0.0

0.0

(l/2+, 1.0)
-5k. Q

(3/2~, 1.0)
-28.3

(l/2~, 1.0)
-28.3

(l/2~, 1.0)
-22.6

U2.62

RBHF

7.0

2.33

15.8

0.0

0.0

(l/2+, 0.83)
-Ii3.6

(3/2~, 0.82)
-20.9

(l/2~, 0.«2)
-20.0

(l/2~, 0.82)
-16.8

li0.6U

1.67

ZRa

7.5

2.72

17.0

0.0

0.0

(+)
-33

(-)
-17

(-)
-17

(-)
-17

Exptb

7.Qfi

2.67 ± 0.03

^315

21.8

21.8

15.7

orbital energies in the ZR column refer to proton separation energies,
^Proton separation energies from ref. 22.



TABLE III. - RESULTS FOR 2°Ne

b , f m

Calculation

-E/A,
MeV

(R2)1^ ft,

A ,
MeV

(Q2>, f*2

< Q 4 > > ^4

K> V

V

MeV

c,
MeV

1.57

BHF

5.8

2.36

7.6

56.9

130.7

(1/2* , 1.0)
-61.5

(l/2~, 1.0)
-38.2

(3/2", 1.0)
-32.1

(l/2~, 1.0)
-27. 1

(l/2+, 1.0)
-18.6

50. U6

RBHF

7.1

2.H7

7 . U

63.6

150.7

(l/2+, 0.79)
_h7.7

(l/2~, 0.79)
-28.3

(3/2~, 0.80)
-22.8

(l /2~, 0.79)
-19 .U

(l/2+, 0.81)
-12.0

^8.63

1.77

RHF

6.1

2.U6

7-9

62.1

167.7

(l/2+, 1.0)
-59-9

(1/2", 1.0)
-36.5

(3/2~, 1.0)
-30.3

(l/2~, 1.0)
-25-9

(l/2+, 1.0)
-18. U

U2.62

RBHF

6.9

2.56

7.5

70. U

202.9

(l/2+, 0.83)
-U7.3

(l/2~. 0.81)
-27.8

(3/2~, 0.82)
-22.3

(1/2", 0.81)
-19.1

(l/2+, 0.82)
-12.*

U0.6U

1.83

ZRa

7.1

3.05

6.9

97.9

(+)
-3U

(-)
-23

(-)
-17

(-)
-17

(+)
-10

Exptb

a. 2

(2.55)b

(69.8)b

(2lMb

aProton separation energies as referred to in table I.
values are obtained from a standard HF calculation with b = 1.77


