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ABSTRACT

The OGO-6 electric field measurements make it clear that the general

pattern of high latitude electric fields in magnetic time-invariant latitude

coordinates is not highly variable and that when unusual variations, or field

distributions, occur they are relatively isolated in time and spatial extent.

Thus, electric field changes on a global scale cannot, in general, be envoked

as a direct cause of substorms. Polar traverses along the 1 8 h to 6h magnetic

time meridian show that the sum of potential drops across the evening auroral

belt (poleward E) and morning auroral belt (equatorward E) approximately equals

the potential drop across the polar cap (dawn-dusk E). The integrated polar

cap potential drop ranges from 20 to 100 kev and values in the center of this

range (e.g., 40 to 70 kev) are most common under conditions of moderate

magnetic disturbance (e.g., Kp = 3). Roughly near 1 8 h magnetic local time, a

latitudinally narrow strip at the transition between auroral belt and polar

cap fields exhibits unusually large field fluctuations immediately following

the sudden onset of a negative bay at later magnetic local times. It appears

likely that this spatially isolated correlation is related to an effect rather

than a cause of substorm enhancement. Other indications of direct correlation

between electric field behavior and stages of magnetic bay development have

not been found to be repeatable for multiple cases. These preliminary studies

do not, however, rule out the possibility that more subtle relationships will

be found in future studies.



INTRODUCTION

A number of reviews of electric field measurements are currently in

press (Haerendel, 1971; Maynard, 1972; Cauffman, 1972) whereas the most

comprehensive measurements, those of OGO-6, have not been published. Thus,

in place of the review requested by the symposium chairman, presentation of

the gross characteristics of high latitude electric fields, as seen in pre-

liminary analyses of OGO-6 data, appears in order. The variations during

substorms cannot be discussed until a basis exists for comparing variations

at particular times with the general variability observed at times when major

substorm changes are not evident. Thus, in this presentation the general

character of high latitude electric fields is examined first; next, unusual

field distributions are shown; and third, examples during individual substorm

events are given. As discussed later, distinctions between substorm fields

and fields in general are usually not very meaningful because of the continuous

nature of substorms. However, the intensification of activity immediately

following times of sudden negative bay onsets is found to be accompanied by

an abnormal perturbation in the electric field, apparently isolated to the

early evening hours, at the transition between auroral belt and polar cap

convective regions. These perturbations are likely to represent effects,

rather than initial cause, and as such they are probably not, at this stage

of study, as fundamentally important as more general aspects of the field.

It is convenient to refer to the polar region of dawn-dusk electric

fields (or anti-solar convection) as the "polar cap," and to refer to the

adjacent lower latitude region of poleward (evening) and equatorward (morning)

electric fields (or sunward convection at 1 8 h and 6h) as the "auroral belt."

This convenient nomenclature is not, however, always technically accurate.
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For example: (a) aurora can appear in the polar cap region and in the

literature one finds the term polar cap aurora, (b) the belt of sunward

convection is wider than the instantaneous latitudinal width of the belt

where visible aurora is apparent (i.e., visible aurora usually occurs in

strips within the "auroral belt convection"), and (c) the boundary between

solar and anti-solar convection is sometimes very sharp but more often it

is a transition as one would expect in view of convective continuity across

the boundary. Despite these difficulties in definition, examination of

simultaneous OGO-6 particle data (experiment of D. Evans) and detailed studies

(unpublished) of the polar cap-auroral belt transition with Ba+ clouds,

illustrate that the polar cap-auroral belt convective boundary is frequently

the instantaneous high latitude boundary of auroral occurrence. Thus, with

awareness that this nomenclature does not fit all times or situations, it is

used here. On completion of correlative studies it should be possible to

adopt a new nomenclature that will avoid semantic difficulties.

DISTRIBUTION OF OGO-6 DATA

The OGO-6 measurements were made using the double probe floating potential

technique originally described by Aggson and Heppner (1964). In addition to

dc measurements, the rms signal in each of 5 bands (4-16, 16-64, 64-256,

256-1024, and 1024-4096 Hz) was measured approximately once per second and

dc variations with periods < 60 sec were recorded logarithmically at seven

samples/sec. For brief periods of real time transmission these rates became

multiplied by either 2 or 8. Several samples of the ac (rms) measurements

are shown in Maynard and Heppner (1970). Except for the influence of using

the logarithmic detector together with the direct dc measurements in designating

boundaries, only dc recordings are presented here.
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Figure 1 shows the location of the symmetric probes extending outward

from the solar panels. The spacecraft was stabilized about all 3-axes such

that the measurement axis was always horizontal (i.e., parallel to the earth's

surface) and always perpendicular to the direction of the sun. Highly

accurate measurements were obtained in initial operation during the interval

June 9-22, 1969. A step function change on June 22 exposed solar panel

voltages to the ambient plasma and caused the spacecraft potential to jump

to a large value. Subsequent to this change measurements were only useable

when the satellite was eclipsed from the sun by the earth. Only the June 9-22

measurements are discussed here. During this period the orbit plane was

approximately perpendicular to the noon-midnight meridian as illustrated by

Figures 2 and 3. This was fortunate for two reasons: (a) in this orientation

the quantity vs x B, where vs is the satellite velocity, is small in the

direction of the X-axis (i.e., the measurement axis) of the spacecraft, and

(b) the electric field component measured is dawn-dusk in the polar cap and

dominantly N-S at lower latitudes. This means that the measurements are

centered on the directions of maximum electric field in the polar cap and at

auroral latitudes, as observed in numerous Ba+ release experiments (Foppl

et al., 1968; Wescott et al., 1969, 1970; Haerendel and List, 1970; Heppner

et al., 1971).

The high latitude coverage in magnetic coordinates for one days operation

is shown in Figure 3. As there are 14 or 15 polar passes each day, in each

hemisphere, there are several hundred traverses for study in the June 9-22

interval. Figures 2 and 3 also illustrate that although the north and south

polar measurements are distributed, respectively, toward the night and the

day hours in magnetic coordinates, the north polar sub-satellite ionosphere
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is sunlit whereas the south polar sub-satellite ionosphere is in darkness.

The satellite, however, remains in sunlight throughout all orbits during this

time interval with perigee and apogee at altitudes near 400 and 1100 kms,

respectively, and in middle latitudes.

TYPICAL MEASUREMENTS

(A) Data characteristics

Although the auroral belt field magnitudes are slightly less than average

in Figure 4 (top curve), it shows a relatively typical traverse directly across

the north magnetic pole. The satellite enters the auroral belt near 18h 8m MLT

(magnetic local time) and observes a northward (or poleward) electric field.

The field reverses (+ EX - EX) going into the polar cap and remains relatively

constant in magnitude while crossing the highest latitude region. The field

reverses again (- E
X

- + EX) on entering the auroral belt near 6h 2 6m MLT. The

plus direction in the morning auroral belt is southward (or equatorward).

Figure 4 (bottom curve) shows the south polar measurements from the same

orbit. In spacecraft coordinates the sign of EX in each region is the reverse

of the sign in the N. hemisphere. The satellite enters the morning auroral

belt near 6 h MLT and observes an equatorward field. The field reverses to the

dawn-dusk direction on entering the polar cap and reverses again on entering

the evening auroral belt.

In the Figure 4 plots, and all subsequent similar plots, the (Vs x B)X

field from the satellites velocity Vs and the (ye x B)X field from the earth's

rotation have been subtracted from the measured values. The zero on each scale

is taken from the equatorial crossing points where (v
s
x B)X + (ve x B)X = 0

on the same orbit: the average for the equatorial crossings preceding and

following the polar pass plotted is used. These are computer functions; no

other corrections have been made on the plots shown here.
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The determination of zero's, which means removing contact potentials

from the measurements, by the above method usually gives an excellent fit to

the lower latitude regions adjoining the auroral belts in the northern

hemisphere. The closeness to zero at invariant latitudes ( A) less than 600

in Figure 4 (top curve) is typical but there are many cases where the dis-

placement in this region is as much as 5 volts/km. The fit between equatorial

zero's and measurements taken on the equatorward side of the S. hemisphere

auroral belts is not as close as illustrated by Figure 4 (bottom curve). The

displacement is rather consistently 5 to 10 volts/km. This offset is presently

not fully understood; it could be caused by an error in spacecraft orientation

that affects the v x B calculation as well as some physical effect (e.g., Aggson,

personal communication, has shown that the offset is removed by assuming a

slightly different effective antenna length in the two hemispheres). As it is

not yet understood it is not corrected here using ad hoc assumptions. The

reader is asked to mentally take the offset into account in examining

S. hemisphere plots.

It should also be noted that satellite altitude is ignored in the plots

shown. For exact comparisons of magnitudes at different locations, or with

other measurements, the measurements would need to be referred to a common

altitude level by projection along magnetic field lines. If referred to the

100 km level, which has frequently been used as a reference plane in Ba+

experiments, the maximum magnitude increase would be about 20 percent.

(B) Polar crossings with maximum A > 850

Comparison of the N. and S. hemisphere passes in Figure 4 also illustrates

a frequently encountered physical difference in the data from the two polar

regions; that is, the field is conspicuously more irregular in the south polar
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pass. This is true even though the pass is to the magnetic nightside of the

pole and thus the irregularities cannot be directly related to the dayside

field reversals and irregularities discussed later. Although many S. hemisphere

polar passes do show a relatively smooth field across the polar cap, it is

statistically clear that irregularities are more common in the south polar

region than in the north polar region for equivalent magnetic time vs. invariant

latitude locations. There are two approaches to explanation: (1) in terms of

ionospheric conductivity--noting that the sunlit, more conducting, ionosphere

in the N. hemisphere will tend to short out field differences, and (2) in terms

of the stresses producing the convection--noting that because of the solstitial

tilt of the N. pole toward the sun the uniformity of these stresses may be

quite different in the two hemispheres for flux tubes extending to great distances

in the magnetospheric tail. The second approach appears most promising but

requires considerably more complex magnetospheric modeling than attempted to

date.

Figure 5 shows two more passes from roughly 1 8 h to 6h MLT across the

north magnetic pole. The field magnitudes are greater than in Figure 4 although

the 3-hour Kp index is slightly less in Figure 5 (top curve) and slightly

greater in Figure 5 (bottom curve). In general, magnitudes do not relate closely

to Kp but there is a statistical tendency for the integrated electric field

intensity to be greatest when the magnetic disturbance is large, and smallest

when the magnetic disturbance is weak. A magnetic index, such as AE, with

better time resolution than Kp might give a closer relationship; however, from

simple examination of electric field magnitudes relative to the existence of

intense magnetic bays, it is obvious that there would be many deviations from

statistics. This is consistent with the lack of direct relationships between

electric field and magnetic disturbance intensities noted in Ba+ drift

experiments (Haerendel and List, 1970; Wescott et al., 1970).
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A polar traverse at a time when Kp was zero, with no intervals of

Kp > 1 within 12 hours before or after the traverse, is shown in Figure 6.

As the integrated field magnitudes for this traverse are the minimum observed

for a pass across the pole, this case fits the statistical tendency, noted

above, very well. It also illustrates the pitfall of defining the "polar cap"

in terms of measurement thresholds as Frank and Gurnett (1971) have in effect

done in terms of Injun-5 electric field data. Although achieving ± 10 volt/km

threshold levels in select cases, Injun-5 thresholds of ± 30 volts/km were

most common (Cauffman and Gurnett, 1971). Thus, the electric field in a case

such as Figure 6 would likely be barely detectable.

The most important point illustrated by Figure 6 is that the electric

field pattern (i.e., the sequence of signs) is basically the same under very

quiet conditions as during disturbed conditions (Note: treating the weak

field between 2 hOm and 2 h3 m UT as an exception to this statement would be

misleading in terms of other examples). This is consistent with studies which

have shown that the basic pattern, and pattern variability, of high latitude

magnetic disturbance vectors is not dependent on disturbance level (Harang,

1946; Heppner, 1972). The electric field measurements thus reinforce arguments

(Heppner, 1969) against theories which treat the existence and/or sign of

dawn-dusk polar cap electric fields in terms of the direction of interplanetary

magnetic fields.

(C) High latitude nightside traverses (N. Hemi.)

Figure 7 illustrates several typical features for orbits that cross to

the magnetic nightside of the north pole and to the magnetic dayside of the

south pole. These are successive passes during a three hour period with

Kp = 4. Considering here the northern high latitudes, there are two features
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to note. One is the low magnitude in the auroral belt. With the assumption

that the north (late evening) and south (early morning) fields at these local

times are comparable to those at 1 8h and 6 h, the low magnitude is what is

expected for the measured component perpendicular to the sun-earth line

(i.e., the northeast and southeast components, respectively, as labelled

in Figure 7).

The other feature of note is the roughly monotonic increase in the I -EX

polar cap field between the late evening and early morning hours. This is

probably not solely attributable to the X-axis orientation. The magnitudes,

I -EX I, reached on the early morning (i.e., near 4h MLT) side of the polar

cap are large compared to average polar cap magnitudes along other orbits.

This indicates that the convection is faster poleward from the auroral belt

between 2h and 5 h MLT than it is in other regions of the nightside polar cap.

This characteristic of the polar cap field is not always confined to the

nightside (2 - 5 h); many N. hemisphere 1 8h - 6h MLT traverses also show a

maximum I -EX on the morning side (i.e., near 6h MLT) of the polar cap.

Statistically the tendency for the maximum I -EX I to occur near 6 h in passes

from 1 8 h to 6 h is almost as common as having a roughly constant -EX across

the polar cap as shown previously in Figures 4 and 5. The large field reversals

emphasized by Cauffman and Gurnett (1971) appear to correspond to cases where

I -EX I has a trough-like maximum adjacent to the +EX auroral belt (as defined

in the "Introduction").

(D) High latitude dayside traverses (S. Hemi.)

The traverse after 2 3h3 0 m UT in Figure 7 (bottom curve) is roughly between

6h40m and 1 7h40m MLT and comes close to the magnetic pole. The sequence of

equatorward - dawn-dusk - poleward fields is normal but as noted previously the
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field shows more roughness than in N. polar regions. The traverse following

2 1 h5 0 m UT in Figure 7 (2nd curve) from approximately 7 h3 0 m to 1 6 h5 0 m MLT is

slightly more to the dayside with a maximum A of 840 near noon. In this

example one cannot objectively pick a polar cap boundary in the pre-noon hours;

instead the field is rather chaotic. In the afternoon hours a region of dawn-

dusk field is encountered followed by a more normal evening auroral belt field.

In most cases, the pre-noon dayside field is considerably more chaotic

(or turbulent) than the field in the afternoon hours. The traverse shown in

Figure 8 illustrates this characteristic more strikingly than the Figure 7

examples. Here the pass is roughly from 8 h3 0m to 1 5h3 0 m MLT with a maximum

A of about 750 near noon. Polar cap boundary identification is meaningless

and the only resemblance to polar passes occurs in the afternoon where the

auroral belt field appears relatively normal.

(E) Boundary locations

Designating a low latitude boundary for the auroral belt convection is

often somewhat subjective as the reader can judge from examining examples given.

Roughly the criteria used here correspond to having deflections from the lower

latitude measurements exceeding about 5 volts/kmn although in some cases the

appearance of irregularity structures in other data channels influences the

selection. Auroral belt-polar cap boundaries are more readily picked, by

definition, where the sign reverses and remains reversed for a large distance.

Also as defined "boundaries" can be sharp, suggesting the existence of a shear,

or gradual, suggesting a transition with local convective continuity. Both are

called boundaries for purposes here.

Figure 9 illustrates the distribution of boundary locations for three

levels of magnetic activity. Each plot is for a different day: a disturbed
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day when the average 3-hour Kp was 4, the next for a day with an average

Kp of 2, and the third for a day with an average Kp of 1. The coordinates

are magnetic time and invariant latitude. N. and S. hemisphere points were

first plotted separately to note any systematic differences in the latitude-

time regions where they overlap. As differences were not apparent they were

combined. However, very few polar cap-auroral belt boundaries could be clearly

designated in the S. hemisphere dayside region discussed in the previous section.

Thus, these do not appear and some traverses are not represented as a consequence

of missing data in critical regions. It is apparent that there is considerable

variability in the boundary locations; however by discarding a small fraction

of the points, particularly those near the pole, this impression changes. A

tendency for polar cap and low latitude boundaries to be separated less on the

morning side than on the evening side is evident. This is more clear in

Figure 10.

Figure 10 shows the average boundary locations along the N. hemisphere

18h to 6h meridian using only data that fit the selective criteria stated on

the figure. Only 3-hour Kp levels of 2, 3, and 4 are shown because the number

of crossings fitting the selection criteria at other disturbance levels is not

adequate for comparable statistical significance. The most noteworthy feature

in Figure 10 is the 12 to 140 width of the evening auroral belt. This is wider

than anticipated from studies of magnetic disturbance vectors (e.g., Heppner,

1969). The morning auroral belt is narrower, A = 8 to 120. Another point

of interest is that at 6 h the average latitude of the polar cap boundary does

not decrease with increasing levels of magnetic disturbance as it does for the

other boundaries.
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(F) Locations of maximum field strength

Figure 11 illustrates the N. hemisphere locations where peak field

intensities, maximum IEXI, were encountered for two levels of disturbance,

Kp = 1 and Kp = 4. Only one point is plotted for each zone (evening-polar cap-

morning) for a given satellite traverse. The distribution is only meaningful

relative to the distribution of orbits in magnetic coordinates in the N.

hemisphere (illustrated by Figure 3) and must carefully be viewed with this

in mind. Several features are, however, apparent. One, is that the latitude

of maximum EX in the auroral belt is much more variable under Kp = 4 conditions

than when Kp is 1. A related general feature is that maximum intensities in

the auroral belt occur most frequently in the high latitude portions of the

belt. Another characteristic, consistent with the discussion under (C) above,

is that the maximum polar cap fields, I -EX I, on the nightside occur pre-

dominantly in the early morning hours but near the 1 8 h - 6 h meridian the

maximum I -EX I is likely to be found almost anywhere along the polar traverse.

The location of maximum I -EX I in the polar cap does not appear to be very

dependent on the level of magnetic disturbance.

UNUSUAL FIELD DISTRIBUTIONS

Calling a field distribution "unusual" involves a highly subjective

judgment. Degrees of variance from the most commonly observed field distri-

butions cannot be readily defined and are necessarily related to the scale

examined. Here we are concerned only with the overall profile of a polar

crossing. Figure 12 is somewhat unique in that it permits illustration of

large scale variances in both the N. and S. hemispheres from successive

traverses.
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The non-typical characteristic in the N. hemisphere pass from 1 8 h to

6h MLT (Figure 12) is the reversal back to a + EX region poleward from a

- EX region that normally would be considered to be within the polar cap. Also,

the morning auroral belt field encountered later on this traverse is unusually

weak.

The non-typical characteristic in the S. hemisphere pass from about 5 h4 0 m

to 1 8 h MLT is the highly erratic field, with numerous field reversals, extending

to roughly the midnight meridian from the morning side. If this pass had been

on the dayside this behavior would not have been considered unusual in terms

of the previous discussion (Section D, above). In effect, the unusual

distribution in Figure 12 might be considered to be a consequence of the

morning dayside region of irregular fields expanding spatially toward the

night hours.

An interesting aspect of the Figure 12 examples is that the non-typical

behavior occurs in completely different local time regions, evening and morning,

respectively, in the N. and S. hemispheres even though the measurements are

separated by only one-half an orbital period. A general statement that applies

to practically all non-typical features is that they are seen only in an

isolated region of a given traverse; seldom, if ever, is the field unusual

throughout a polar traverse. This point is re-emphasized by the substorm

examples in the next section.

FIELD BEHAVIOR DURING SUBSTORM EVENTS

The term "substorm" has been used in different context by different

people. The terms "polar elementary storm" and "bay disturbances" are usually

equivalent to "substorm." Here, "substorm" merely means a period of enhanced

magnetic activity at auroral latitudes. As discussed elsewhere (Heppner, 1972)
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one can be somewhat more precise by referring to individual bay enhancements

within a more general period of activity. For example, only rarely can the

beginning or end of a disturbed period be clearly defined but it is often

possible to clearly define sudden onsets of negative bays even though their

occurrences are dependent on the previous existence of disturbance. Thus,

the sudden onset of a negative bay is taken to be an event within a substorm.

In some usages this would be called the onset of a substorm; as long as the

dual meanings are recognized and magnetograms are shown the physical situation,

if not the semantics, should be clear. All the examples previously shown,

except Figure 6, occurred during substorm activity; thus, the substorm field

does not differ from the typical field. More specifically, below, the electric

field behavior preceding, during, and following the occurrence of sudden

negative bay onsets is examined.

First, considering times prior to the sudden onset of a negative bay

(called the growth phase of a substorm by some investigators) the general

consistency of the pattern of high latitude electric fields statistically

suggests that major differences in the electric field distribution are not

likely to be found. This is confirmed by preliminary examination of individual

cases to the extent that one can conclude that if there are significant

differences, these differences must be subtle and not immediately recognizable.

Figure 13 provides an example. The magnetogram shows a sudden bay onset at

5hl9
m UT. The N. polar traverse shown at the top of the figure occurred during

15 minutes preceding the onset. There is nothing particularly unusual about

the field distribution with the possible exception of noting that the maximum

in the I -EX I polar cap does not statistically occur frequently in the evening

region. Attaching importance to this deviation would be highly speculative.
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The same magnetogram, Figure 13, relative to another traverse, serves

to illustrate behavior in the polar cap during a sudden onset and in the

morning auroral belt immediately following a sudden onset. The sudden onset

occurs at 8h2 9
T
m UT which is just after the satellite has passed through the

evening auroral belt (Figure 13, center) and is located near 1 8h3 0 m MLT and

A = 770. There is no evidence of any peculiar behavior at the onset time and

the remainder of the traverse is quite normal.

Next, two examples are given for cases where the sudden negative bay onset

occurs minutes before the satellite passes through the evening auroral belt to

polar cap transition. In the first example, Figure 14, the sudden onset

(4h23 _ 4h2 5m UT, Great Whale and Churchill observatories) occurs while the

satellite is in the S. hemisphere morning auroral belt. The field distribution

along this traverse, slightly to the nightside of the pole, is relatively normal

until the region of transition between the polar cap and the evening auroral

belt is approached. Proceeding toward lower latitudes, from roughly 19bh MLT

and A = 77° , a region of very large fluctuations is encountered and this is

then followed by a relatively normal evening auroral belt field. The peak

magnitudes and numerous sharp field reversals between A = 710 and 760 are

definitely not typical.

The second example, Figure 15, illustrates that the effects associated

with the negative bay onset can be even more spatially isolated and reach

greater magnitudes than the Figure 14 example. The negative bay began sharply

at 7 h4 9m UT (Churchill magnetogram) during a period of considerable disturbance

as indicated by the large + AH variation at College, Alaska. At this time the

satellite was entering the N. hemisphere evening auroral belt. The auroral

belt field is not particularly unusual but the field in a narrow zone at the
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polar cap boundary is highly disturbed in terms of several sharp field

reversals and large peak magnitudes. The remainder of the traverse across

the polar cap and morning auroral belt is relatively normal.

From examination of data throughout the various phases of large negative

bays it appears that the unusual behavior at the evening auroral belt-polar

cap boundary occurs only during the early stages of the negative bay event

while I -AH I is increasing. The overall significance of this correlation,

and the lack of correlation in other regions contacted by OGO-6, is not clear

at this stage of analysis. The important point for the present is that these

abnormal fluctuations are seen only in an isolated region.

DISCUSSION

This presentation of OGO-6 measurements in a sense represents a progress

report; it is apparent that the measurements provide a base for future analyses

ranging from fine structure studies to the construction of global convection

patterns. The data from numerous high latitude Ba+ drift studies is in

excellent agreement with the OGO-6 measurements and these two bodies of data

are highly complementary. The OGO-6 measurements allow one to see how the

various regional Ba+ measurements fit into more global patterns and in turn

the 3-dimensional pictures of E vs. time from multiple Ba+ clouds allow one

to see how the electric field varies with time in selected regions. A compre-

hensive discussion is beyond the scope of this presentation but it is interesting

to see how the OGO-6 designations "auroral belt" and "polar cap" fit into

previous studies.

Figure 16 permits comparison with a diagram (left side, Figure 16) the

author was using prior to the OGO-6 results. It is based primarily on: (a)

analyses of magnetic disturbance conducted prior to 1968, and (b) OVl-10
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satellite data which gave a low latitude boundary for the auroral belt

convection (Heppner, 1969). However, the information for drawing a dawn-dusk

polar cap field came from more recent Ba+ drift studies in the polar cap

(Heppner et al., 1971). The comparison, left and right sides of Figure 16,

shows that the average low latitude boundaries for auroral belt convection

agree very well. The principal difference is in the location of the polar cap

boundary. The average boundary, where determined, between the auroral

convection and the polar convection is at a higher latitude near the twilight

meridian than the boundary estimated from magnetic disturbance vectors.

Alternatively, one can say that the belt of auroral convection from OGO-6 is

considerably wider than pictured previously near the twilight meridian. The

difference between diagrams decreases in moving toward midnight from the

twilight hours. The previous picture agrees with OGO-6 in terms of showing

a narrower auroral belt near 6 h than near 1 8 h.

The OGO-6 measurements clearly illustrate that selecting an average or

typical location for the polar cap boundary on the dayside is not very

meaningful because of its variability. A similar, difficulty was noted

(Heppner, 1969) in drawing the previous picture (left side, Figure 16). With

the OGO-6 measurements it becomes necessary to drop speculative boundaries

and thus a dayside polar cap boundary is not shown for OGO-6 in Figure 16.

As indicated on Figure 16, the sum of the potential drops across the

auroral belt at 6h and 1 8h is approximately equal to the drop across the polar

cap, based on rather crude integrations and ignoring altitude changes. More

precise integrations in the future will test the accuracy of the equality and

its variability from orbit to orbit. The integrated change in potential across

the polar cap is nearly always within the range 20 to 100 kilovolts. The most

typical values for moderate disturbance conditions (such as Kp = 3) are in the

center of this range--roughly 40 to 70 kilovolts.
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Figure 17 conveniently summarizes the spatial association of several

characteristics discussed, relative to the average boundaries of Figure 16.

Reasons for the special characteristics of sub-regions, and reasons for

differences in detail between the N and S polar regions, cannot be divorced

from a more general understanding of the forces responsible for the overall

convective pattern and such interpretations are outside the scope of this

presentation. The most important single conclusion that is apparent at this

date is that the high latitude electric field pattern is not highly variable

and that when unusual variations occur they are relatively isolated in time

and spatial extent. This result contradicts models which envoke major changes

in the electric field configuration to explain substorms.
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Figure 11:

Figure 12:

FIGURE CAPTIONS

Illustration of OGO-6 showing the locations of the symmetric

electric field probes.

OGO-6 orbit plane perpendicular to noon-midnight plane in June 1969.

(caption on figure)

Typical EX along successive traverses across the N and S polar

regions.

Typical EX for two N polar traverses

EX for a N polar traverse during very quiet magnetic conditions

(Kp = 0)

Successive N and S hemisphere traverses when the dipole tilt places

the satellite on the night and day sides, respectively, of the

N and S magnetic poles.

A S hemisphere high latitude (non-polar)dayside traverse

Locations of auroral belt and polar cap convection boundaries

for three days having different levels of magnetic activity:

solid dots represent the low latitude boundary of auroral belt

convection, open circles mark the boundary between the evening

auroral belt and the polar cap, crosses mark the boundary between

the morning auroral belt and the polar cap. For the meaning of

"boundary" see text.

(caption on figure)

(caption on figure)

Successive N and S polar traverses showing unusual field behavior

in the evening polar cap (N hemisphere) and morning polar cap

(S hemisphere).
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Figure 13:

Figure 14:

Figure 15:

Figure 16:

Figure 17:

(1) A N polar traverse (top curve) preceding a sudden negative

bay onset at 5h 1 9m UT. (2) A N polar traverse (middle curve)

during which a sudden negative bay onset occurred, 8 h2 9m UT.

A S polar traverse immediately following the occurrence of a

sudden negative bay onset, 4h2 3m - 4 h2 5 m UT.

A N polar traverse immediately following the occurrence of a

sudden negative bay onset at 7h49m UT.

Comparison of average convection boundaries for Kp = 3: previous

picture (left side), OGO-6 measurements (right side).

Locations of sub-regions having special characteristics.
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LOCATIONS OF AURORAL BELT AND POLAR CAP BOUNDARIES

JUNE 14, 1969
3-HOUR Kp RANGE: 3- TO 6-
DAILY Kp SUM: 33

JUNE 15, 1969
3-HOUR Kp RANGE: 2- TO 3-
DAILY Kp SUM: 17

JUNE 18, 1969
3-HOUR Kp RANGE: O' TO 2'
DAILY Kp SUM: 8

SYMBOLS:
* En -- O LOW LATITUDE BOUNDARY
o *Ex --- E,"EVENING'
x -Es-* *EiMORNING

FIGURE 9



AVERAGE "AURORAL BELT" BOUNDARIES AT 18 h AND 6 h MAGNETIC TIME
FROM N. HEMI. PASSES CONFINED TO 18h+lh AND 6 h+lh AND COMPLETE

FOR ALL FOUR BOUNDARY POINTS PER POLAR PASS

90° e

18 h
E NORTHWARD

800

2 3 4

70 °

60 °

5 0

6 h
E SOUTHWARD

2 3 4 5

Kp
FIGURE 10

90O

80 °

70o

w
0
Z

4
-J

z

z

60 

) I I I I I I I I I I
I I

Kp
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