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A

'.' ' 1. Introductio-i .

• ' •

' It is kviov/n from, the work of Levi-Civita and Sandman that

singularities:; due to binary .collisions in the J-body problem can-be

regularised. That is given a solution y which "ends" in a -binary

'collision at time t one can ruake a change of phase space variab3.es;
• o

and time scale such that the new variables can be continued as corv-

vergent power1 series in the new time for times beyond the collision

date. This result is satisfactory from the analytical point of view,

but from "the qualitative point of view one would like to know the

phase portrait of solutions near collisions.

A first step in the qualitative study of the 3-body problem

might be to study the topology of the integral surfaces-, that is, the

rcoraenbur.'.^ angular momentum and energy. This has been done by Sreaie

[10] and Saston [7]- These surfaces are not compact and sorie solutions

may "run off" these surfaces in finite time and hence Newton's equa-

tions of motion do not give rise to flows on these integral surfaces

One might guess-that- the bad behavior of solutions is due to collisions

of the bodies'. It is well known that if ' the total .angular laorientuia . .
•

of the 3-bodies, is different from zero then a simotaaeous collision

of all three bodies is impossible. -Thus on. integral surfaces with non-

zero angular momentam one expects the only bad behavior of solutions

will be due to binary collisions. In view of the result that solutions

can be continued through binary collisions one might hope to modify

the integral surface in sorae way so that Newton1 s equations of motion



actually give a flov,r. The purpose of the present paper is to describ'

how this can be done.

One might ask why one should study collisions in the first

place. The set of solutions -which end in collisions is knovrn to have

measure zero and one might argue that hence'it can be neglected. My

answer is that the set of solutions which pass close to collisions

•does not- have measure z.ero and that these solutions can be conveniently

studied by focusing attention on those solutions which do end in col- '

lision. Furthermore one can not decide a priori whether or not -a given

initial - condition, will or will not eventually lead . either to collision

or to a very close approach to collision. Hence the fall phase por-

trait of the solutions can not be understood, without knowing what

happens near collision. ' -

The techniques used, in the present paper were introduced in

[6]. We use surgery to exercise a neighborhood of the "binary, col-

lision set" (see definition 3.1).. The neighborhood is in the form-of

an "isolating block" (see definition 2.3). We.identify the end points

of orbits which cross the block and we show that this identification

''has"a unique 'extension -to' an 'identifi cat ion'"which pa'i'rs 'the'end points

of'.orbits entering the block which end in'a binary collision with the

end points of orbits leaving the block which ccme-fron a binary col-

lision. The problem of regularization is the problem of showing that

the identification of the end points 'of crossing orbits has a con-

tinuous, unique extension. We use this identification to close the

gap left by the surgery thus obtaining the "regulari-zed" phase space



for the 3-body problem. We obtain regularized integral surfaces for

the problem on which the 3-body equations of motion induce flows.

- FirnaHy-we—deserifee-^the--"topology-of- -these—surfaces- -thtrs—arrevrertng-a

question for the planar 3-body problem raised by Birkhoff [1, p, 288]

and again by Wintner [11, Section ^38], -

Throughout the paper vre restrict our attention to the planar

3-body problem. The extension of some of our results to the non-

planar problem may not be trivial.

C. Conley has shown that tripple collisions can not be regularized

by surgery. 'A partial discussion of this result is given in section 6.



2. Regularization by Surgery

: Regularization__Qf_v_ecjb_Qr_field_s^ by_ surger yll§_ disc uss ecLin

[6], We will give in this section a brief description of this process.

Let M be a C manifold and let C be a closed subset of M.

We assume throughout this section that X is a C vector

field defined on M-C. We call C the "singularity" of the vector

field.

Notation 2.1; If a e M-C arid y(t) is an integral curve of X

satisfying y(0) - a we denote Tf(t) by the notation y(t) = a»t.

More generally if AC M-C and T C R and if a-t is defined for

each pair (a,t) e A x T we let

A-T = (a*t: a e A and t e T}.

Definition 2.2; Suppose that Ft M-C -»E is a smooth function and

define F: M-C -> R1 by F(a) = ̂ r F(a«t)| . A. • Also define .F = G
-.-•..- •..-• •' ' '>.-•; . • '.-'• •' ''."••. . •• ' ' '. .d~C. ' ' . - . • t=U- ".. . • . ' •'•• -.-• .-. • • • . . . • - . ; • .



where G = F.

e - f i n i -LLJL2 : Let __ F . : M-C -> R ___ b e_ _a_GniQoth_ funci Lian_ f_o.r_

. . . , k and let

B .= £x e -M-C: F.(x) < 0 for j =. 1, .-. .,k} .-

B is an isolating block for __ X if for each point x e ~B} whenever

F.(x) ~ 0 • anc"1 F-(x) ~ Oj ̂  is ^he case that F.(x). > 0-,] i! d

Isolating blocks have been studied in [2]f [5J, [̂ ], [5]

and the above definition is not the most general that could be given.

Many examples of isolating blocks and the uses of isolating blocks

are given in the papers cited above. The following two examples il-

lustrate how they may naturally occur.

Let M be a compact Riemanian manifold and let G be a

Morse function G: K -> R . Let Y = grad G. Then if c and z

are two non-critical values of G the set G~ [c-^Cpl is an isolating

block fo- the vector field Y on N. If IT 'is the torus and G is

the standard height function on the torus then the shaded region -shown

in figure 1 is an isolating block' for the gradient flow'.

2.
' Consider the vector field Z on R given by x = x, y = -y

2 2
and let F (x,y) = 1-x and F9(x,y) = 1-y . Then B = ((x,y):

J - - - - — - . . . " - 1 - -

F,(x̂ y) < 0 and Fp(x, y) < 0} is an isolating block for Z as shown

i n figure 1 . . . . . - •
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1 / I \

Figure 1

Definition. 2.^: Let B be as in 2.3 and define b = c)B

b+ = {x e B: x - ( -£ ,0 ) fl B = 0 for some . c > 0}

b~ = (x e B; x- (0 ,e) fl B -- * for some e > 0}

A' = (x e B: x-t e B for all t > 0 for which x-t is defined]

IP

" A" - {x- £ B: x-t s B for all t < 0 for which x-t is defined]

a "= A fl b and a" = A~ fl b • •

Define ?r: b -a -»b~-a~ by setting.

-TT(X) = x-a where a - sup(t > 0: x-t e B].

Theorem 2.̂ ; TT is a homeonorphisic.

For a proof see [k-] or [51. This theorea is what makes isolat-



ing blocks useful. An isolating block must certainly isolate something

and the following discussion says what that is.

Definition 2.6: A closed set I C M-C is called an invariant set jpf X

if I°R is defined and if I-R -• I. An invariant set I of X is

said to be isolated -if there exists an open set U containing I such

that . I is the maximal invariant set in U.

It is an easy consequence of the definition of an isolating

block that the maximal invariant set contained in a block is isolated.

Hence the block "isolates" a certain invariant set (which may sometimes

be empty). Conversely we have the following theorems

Theorem 2.7; If 1C M-C is a compact isolated invariant set of X

then there exists an isolating block B such that I is the maximal

invariant set contained in B,

For a proof see [4],

With this preparation we are now ready to say what it means

to "regularize" the singularity C.

Definition 2.8; A closed subset C which is relatively open in C is regulariz-

able if there exists an isolating block B C M-C such that for x e M-C

(l) if (t .t ) is the maximal interval such that x-(t t. )

is defined and if x*t -»C, as t -» tn then x-t must
1 J.

enter and stay in B as t -> t-,. Similarly if :<-t -» C,

as t -»t_ then x-t must enter and stay in B as t -»tn.
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(2) 7r: b'-a -> b -a admits a unique extension as a homeo-

niorphi sni from c tc b .

De f initiĵ  _2_. 9^ Suppose that the singularity C is regular izable and

B is as in 2.8. Then the regularized phase space for X is the space

N obtained from M-C-int B by identifying points-- x e b""" with points

Tf(x) £ b". More precisely define- an equivalence relation ~ on M-C--

int B by x ~ y if x - y or if x -- Tf(y) or y = 7r(x). Let K

be the set of equivalence classes of points of M-C-int B ana let

pi M-C-int B -> N be the natural projection. Give N the quotient top-

ology". Then N is a manifold and p restricted to M-C-B is a

homecEiorphism. Vie identify M-C-B with p(H-C-B).

X induces a flow 9: N X R" -> N as follows:.

(1) Suppose p-s s M-C-B for each s e [0,t). Then define

<P(p,t) = p(p-t).

• (2) Suppose p s p(b) . say p'̂ p) = {x,7r(xj}. If t >0

and .Tr(x)-(0,t) C M-C-B define qp(p,t) =. P(TT.(X) -t) .

If t<0 and x-( t_,0) C M-C-3 define . -qp(p,t) = p ( x - t ) .

(3) Extend ^(p^t) by requiring that

), t2).-

Thus the flow is" defined by following an. integral curve of

X until it hits b, crossing B in zero time and continuing along the
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appropriate integral curve of X.

'_ •_ ' The 2-body problen^ prayadss__an__exjirjple^pi^ tine pr_qcess_gf_re^£r

ularization by surgery. This example is discussed in [6],
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3. The Planar 3-Body Problem

S-&S-S—jaeve—ta-the-- plane -tffider—t-fee- -i-nfitien-ee—of

their mutual gravitational attractions. Vie assume-for simplicity that

each particle has mass 1 and that the gravitational constant is equal!

to 1. Thus the state of the system is specified by &. point (Q, P) =

f 2,6
(q -,q?,q?,p-,,pp, Pr) £ (R } . - Here q_. - specifies the position of the

j- *- 2 j- *- j . j

Jth particle and p. specifies its momentum.
U

3.1: Define C. . = ( (Q ,P) : ' q . - q.} . for i j = 12 3. Define r. . -
. • ij i j - ij

|q.-q. | and q. . = q.-q.. Let C = C ? U C U C? . C is the set
tj J v j-^— -^j/ jX

of "collision" states of the system.

The equations of motion can be formulated as a Hamiltonian

12
system of differential equations defined on R -C.

_3.£: Define R : P^'-C -»R1 b y . . . .

H is the Hamiitonian. function for the system and the. equations of motior

are

=P2 ?2 = ril-12 + r23q
52

=P3 % =rl5ql3 +r23q23'



11

It is convenient to nv-tke ,the canonical change of variables

5 1^. f_= q __n ĵ î  :+ 2̂ -̂p,,]

I,,,

Notice that w is one third the total momentum of the system and z

specifies the center of mass of the system. Without loss of generality

we assume that w - z - 0. . In terras of the new variables the energy

and ar.go.lar momentum functions become

3.5:

= (|y|2 - Ixj"1) .f(ir)!2 - lei"1) + (y-i

x (n) + (x) X (y)].

'- The equations of motion are

3/7: - I = 2ii;+ y f, = -g|'ir5 - (|-x)|5-xr5

X = 2y -, TI y = -x|x['5 - (x-!)|x-§r5

Q

'These equations are defined on . R -C where C = Cn U C? U C, =

t||| =0} U (|x| =0} U (jx-Sl -0).
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The planar 3-boiy prcblein is the problem of studying the flow
o

o-n R with singularity C induced by equations 3»7- The equations

^ 5. 7 adait the functions. . K and J. as _ijit_e_gr_als_.'L • : - =—.-

3_J3: Define K[h,cu] - [PI-h] 0 {J=o>} for h,cu e R1.

It is natural to study the flow on the integral surfaces M[h;co] for

various values of the parameters h and co. A further reduction is

possible by making use of the symmetry which exists in the problem. In

what follows we treat £, x} i\} y as complex variables (thus . £ =

f + iir-j etc.,), • .' '

i Pi
3-9s Define an action * of . R~ on 'E by

-;-^ -, ' ' / \* 'r-k "•z * t = e 2 where ,z = (s,x, i) ;y) e Q.. .

Both H and J are invariant with respect to this flew. In face the

flow * is generated by the Hamiltonian function ~ J. Since the.

Poisson Bracket [H., -x J]. is identically zero the 3-bcdy flow generated

by H and the flow * commute. Notice also that H(¥) = K(Z.) and.

j(z) = J(z) where- z is-the complex conjugate of E. We want to re-

move this "symmetry" from the problera.

3.10; Define M[h,<o] ' to be the quotient space of I1[h_,cc] modulo

the action *. Notice that S = (z e M[h,cu]: x{ x| "1 = (1,0)} is a
Q

global-sui'face. of section for the flow * on R -C and every orbit

of *" meets S exactly once. Hence M[h,ai] is diffeomorphic to
o . .

S[h,0)j - S 0 M[h,03]. The 5-body flow on R -C induces a flow on S



in the following-way: If'we denote the 3-body flow on R ~C by the

notation z -> z«t then if w £ S we define w* t = s where s is

The intersection oT~tb7e~set (̂ >T) * IT" "with""S", ~fhe"~f"low~~ *

obviously restricts to the surfaces S[h;co].

As a first step in studying the J-body flow it is useful to

topclogically characterize the surfaces M[h;»] an:l K[h_,CG] which

for most values of the parameters h and. co are. manifolds. We in-

clude below.a discussion, of the topology, of the surfaces , I-.i[ĥ o>] which

we will use later in section 5,

2
3.11: Define V- {(s .s0 sv).e S : s, >0 s.+s. <"s,,}- V is a spheri-_L- i_ ^ j ± ^ ~ £>.

ca.1 triangle with its corners removed. Notice that each point of V .

specifies a unique tria.ngle with sides s } s,,^ s . We think of poirrts

of V as. specifying the. "shape" of the. triangle forrae-d by the. 3-bodies

in the-3-body problem. The. corners, of V correspond vc the double col- .

lision states - namely those states where two particles occupy the sane .

position. -Recall that-the positions-of --the three-particles are specified

by the vectors q ' q^, 4- where' in' terms of the variables ( s ^ x ) ;/e-

•2 ' • 1 '2 i • 1 • '• .
have ..q1. = ,^-(x-.-gl), q^ =.-(.5r.~x) .and ^.^ =•• -,.-?(*.-i-x).. Thus the:.tr.i-. .;.

angle formed by the tliree" particles has sides j s| } \x\ and |x-;[ .

o
3.12; Define pi R -C -> V X (0,«) by

_/. __\ / . ~li , \ - l i i -—i



where

.-!/
1,3

1
2 " 2

3̂ 13: Define ra[h,a>] = p(.M[h,co]). m[h/o] plays the role of a Hills

region in our development. The following proposition characterizing

m[h,co] is proven in [7].

1 2 -1 -1 -1 2
Proposition 3.1'!-: m[h,oo] = [(s,r) ' e V X (0,«): ^-r (s + sy + s )

*~~ ' ^ • P -i- *- ^
2

> 0}.

m[h/u] is shown in figure 2 below for three decreasing values of h < 0:

\

\

figure P

3»15_' Define 2[h,cu] to be the quotient space S X m[h,o)]/ ~ where

is an equivalence relation defined by 1 X (s,r) 1 X (s,r) whenever
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s e c)V. Thus f[h,«)] Is the 3 manifold obtained by sev/ing two copies

of m[h,co] together along the set in[h,o)] 0 dV X R '.

" T'He~l^l±ol:iring~pi:ropb~siirioi'i ~ilf "elsslsritTaTry "proven "in ["7] »

Proposition 3. l6: S[h,o)] is homeoiaorphic to the space obtained from

2 22[h,co] X S by identifying p X S to a point whenever p e

S ke t c h of the p co of ; Each point of l[h f(u] specifies the shape, size

and orientation of the triangle formed by the three bodies in the plane.

k
Thus each point of ,2[h,to] corresponds to a unique point (I,*) e R

such that x\ xj = (1,0). Consider' the set of (l,y) such that

r} rj

(a) I T J | + [yj + y i\ = h + U(i ,x)

(x) X (y). + (|) x (TI) = ox

When ( i ^ x ) corresponds to a point belonging to the interior of ^[h,cu

the set of (TI, y) satisfying (a) and (b) is a 2-sphere. When (|,x)

corresponds to a point belonging to the boundary of £[h,oj] the set of

(r^y) satisfying (a) and (b) is a. poi.t.t and. vrhen . (|,x) does not cor-

respond to a point in - f [h ,cu] this set is empty. Thus 3[h,oo] is a

singular 2-sphere fibre bundle over. J![h,<D]. This fibre bundle turns

out to be a product bundle. • '
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h. Regularization of the 3 -Body Problem

Recall that the equations of motion 3., 8 define a flow with
Q

singularity C on R . In this section 'we construct three disjoint
Q

isolating blocks B. C R -C such that the solutions which end in binary

collisions must enter and remain in one of these blocks as the col-

lision time is approached. We further show that the flow mappings

across these blocks can be extended to diffeomorphisms of b.. onto
JL

b7 for i = 1,2,3.

Definition 4.1; Let y(t) be a solution to the equations 3.7 s.nd sup-

pose that the maximum positive interval of time on which f is de-

fined is [0,t ). It is well known [9] that lim a(t) exists where
t ->t.

2 2 2
cr(t) = ̂ (|x| +| | j - x*|). a(t) is the moment of inertia of the system

p o p
(in the old coordinates a = |q | + | q,-| + |q | ). If 0 < o'(t ) < "

then the solution y(t) is said to end in a binary collision,, It

is well known in this case that the limits lira £( t ) , lira- x.(t),
t -> t, t -> t

lim x(t)-|(t) exist and exactly one of these limits is zero,
t - V t ; ' . - . . - . . . - • . • - •

• '• •- • In what 'follows we -de fine for -each e > 0 a- set B[ e]-. We show

that for sufficiently small e > 0 that this set is an isolating block

for collisions of the type where |(t) -» 0 and we show that the flow

map across B[e] extends to a diffeomorphism of b"[e] onto b [e].

Let B, = B[e]o It is clear from the symetry of the problem that we

may similarly construct isolating blocks B2 and B, for collisions

of the type where x(t) -> 0 and where x(t) - s(t) -* 0 respectively.



l6a

In order to define the isolating blocks B[e] it is necessary

to define some functions.

Definition 1+.2;

(a) Choose a smooth function a; R -» (0, 1) having the

_]_
properties that a(t) < -t for t < -1.

(b) Choose a smooth function p: .(Ĉ 00) -* (0, 1) having the

properties:



17

(l) t~ ]p(.t) < l

(2) p ' ( t ) < I and p ' ( t) = 0 if t > 1

(3) P"(t) < 1

P -I
(c) Define for e>0 Vc'. R -C -> R by Fe(S,x,

U|2 - €a(H(| ;x> 1 1 ,y))p(£2) where l = \ 2 x - t \ .

n 1
(d) Define for c >0 G : R -> R by G (I.,*, t],y) =

o
4.3; -De-fine B[ e] = (U,x;T],y) e R -C: F^ < 0, Gg <0}.

It win be shown that for c sufficiently small 3[ej is an isolating
p

block for the flow on R -C. Our choice of E is motivated by the fol-

lowing considerations. Suppose y(t) is an orbit which ends in a

binary collision of mass 2 with mass 3 at time t . (i.e., | i ( H ^ ) | -> 0

as t —> t ). Then it is known [9] that x(t) and x ( t )~£( t ) approach
JL tr

finite limits as t ->t,. Hence there exists i < t^ such that if

T < t < t then F (r("t)) < 0. Furthermore it is known that | i](t){

approaches infinity as t -»t, while y(t) approaches a finite limit'

as . t .-> t . . .Hence, there exists T <..t, such that . T < t <-t -im-

plies G (r(t)) < 0. Therefore we have established the following

proposition.

Proposition 4.k; For any e > 0, if f(t} is' a solution of the equa-

tions 3.7 whose maximal positive interval of existence.is [O^t ) and
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ends in a binary collision where lim §(t) = 0, then there exists
t-*tx

0 < T < t such that r(t) e B[e] for all t e [f,t ).

Our next objective is to show that B[e] is an isolating

block for sufficient small e.

Proposition k.5l Given 5. > 0 there exists e >Q such that for any

point z = (£,x,T],y) belonging to B[e],

(a) F(z) = 0 implies | • T) < 5| || | ̂ |

(b) G ( z ) ^=0 implies £ .T] < 5| i| | nl '

(d) G(z ) =0 implies G( z) >0

Proof of (a) ; F = H*T) - R where

R = eap [6x-y - 31 *y] - 2 (^*y)

:F = 0 implies that §-T] = [i R | || "1| T]| ~1]| ̂ | | T)| . Since F < 0 and
f^T G •"*

G < 0 we compute that | R| < 9^ Ul | T]| + 2eUI I H| &n& hence

|-r R| i| "~| T)| ~ | < T (96 + 2e). By choosing e sufficiently small we

can make this expression less than 8.

Proof of (b) ;

=

G = 0 if and only if |-T] R = 0 where
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R =

•7 ~7

Choose e so small that |x-g| < 2|x| „ Notice that by the choice
2 ?

of p, Ul |x! < e- Hence

Therefore l«n < (7 I R| Ul"2"! ^"^Ul hi < (8s)|

o _ •

Proof of (c); F = ^[|«TJ + ^-TJ] - R. Given 6 >0 there exists € >0

such that |«T] + |«T] > (1-5)| 5) on B[e]. To see this v;e compute that

i-T) + |.f, = 2\T}\2 - Ul"1 + (y-n) - t'U-x)U-x|~3.

By choosing £ small we can obtain the inequality

| .Ti l2 - lil"1]

where 5 = 5 ( e) -» 0 as e ->0.
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Now

i 2 I I -1 I I -1 "i -1 I • 2 .-I

vfaere 8^ = &o(t) -»0 as e -->0. Hence 2| T][ - |5| > (2h + | £| ~ )(!-&„).

However-, -by- choice- of— -%-2h__4--||-j ~- ->-(-l-o,-)-[4| -where—5,- =- 5^(-e-) --»-0- - -

i ° i -1as 6 ^ 0 . Thus it remains to show that | R| < ( 4 - 6 ) | ^ j on B[e] for

sufficiently small e.

- 2[2| y|

For sufficiently small s the following estimates hold on B [ e l :

, |s lh | 2 <2,

Using these estimates it is easy to .show that ||||p.| ->0 as e ->0.

Hence given 5 >0 there exists e >0 such that | R| < o | ^ | ~ on

B[e]. It follows that F > (^-25)| |j-1 on E[s] for sufficiently small e > 0.

O ' ' o " '

Proof of ( d ) ; G = 2| y| + 2y.y - 2e(|r | | + rrr,) and

y = -

We estimate yy > -5e| T]| j xj "^ on B[e], Also n*n = -3| l| 1 l|

3(i"l)(i 'y)U|~5 + (Ty)UI" 5 +-^ where \&\ < SCOh-nl and 5(e) ->

as e"-»0. Fix 0 < 5 < 1. Then 6 = 0 implies ||.T]| < 5| || | q| for

sufficiently small e by (b). We estimate that
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2| s| "3
 + e1/2! T,| 2| I! -3

 + 56|

T /O O 1 1

where b = e ' ,•+ 35e. Since given 52 > 0, | T]| = ( l + ^ l ^ l " for e

sufficiently small we obtain for small e the inequality

-(hi2

Hence for small

1 ° 1 2 J ' 1 1
Proposition ^-.7; B[e] is diffeombrphic to (Dc'-0) XS xD X S ' x R X -E "*".

' . . . 2 • 1 2 ! ] _ . . ! . ! • • • • ' • • • • • •
Proof: Define 9: (D -0) X S XD X S X R ~ X R ->B[e] as follows:

,s1.,d2,s2^,h)' = " ( 6 , x , T j , y ) where

I = ea(h)p(f )d 1 and

x = Xs where X > 0 satisfies the equation

Then i = |2x-||, and F(|jx) < 0.
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-z p p

Observe that {(a/c) s S I | a| < e|b| } is diff'eomorphic to

D2 X S1. We map (d2, s ) e D2 x S1 to (a,b) e S5 where a = (y^r)
_ _ __ _ __ _ __ __ __ o T /O _ __ _ __ _ ._ _ _ ___ _____ __ __ _ _____ _ _ Q - - ____ — -- _ _

and b = s ( l - ja | ) ' . Define u >6 by the equation \i T(a,b) =

,x) . Finally define

2 ?
Notice that r\ and y satisfy the relation j y| < e| r\\ and that

H(|,x, T]^y) = h. cp is the desired diff eomorphism.

_Cg_rollary_ U. 8; b[e] is dif feoraorphic to

S1 X S1 X [(0,1] X^D2 U 1 X . D2] X S1 X R1 X

= S1 X S1 X R2 X S1 X R1 X R1.

It is important to notice that b[ e] ft {l,x,r,,y: S . T J < 0} is

+ 2 1 1 1 '
diffeomorphic t o A X R X S X R X R where •

. . . .1 1
'A = { ( S S . ) ;€ S x S-: s - - S < o).

Q
The 3-body flow on R -C defines a nap w across the block

B (see 2.4). Our next goal is to show that 7T admits a unique ex-

tension as a diffeomorphism of b onto b". We introduce new co-

ordinates by a Levi-Civita transformation and perform an isoenergetic
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reduction to obtain a new vector field which is well behaved. We use

this vector field to show that the map TT extends, to all of b+.

ijv9s Define J~\ £ -0 X C 5 -» € 4 by ••

12 — 1
-^(u,x,v,y) = (5 u ,x, v(u . ) ,y).

$~ is a canonical transformation of the type used by Levi-Civita.

if. 10: Fix h e R and define G: €• -» R by

G(u,x,v,y) = |u|2[H °_^(u,x,v,y)-h].

o o P I
Then G( u^ x, v, y) = A| u| +' y» uv + | v| - 1 where A = | y| - j x|

| x- —u" j - h. Define the vector field Xp on (£ by

. oG ' . o '
u = -T—. v = - v~G>dv} du '

It is well known that J7~ takes the surface (G = 0} to the surface

{H = : h} "and that on {G = 0), D-^Xg)' ="| u| 2XR where X^ is'the'j-body

vector field.

The vector field X_ , is given explicitly by the equations
G

k.11; - u = 2v + yu
TO T O ^ O

v = -2Au - yv - (x- — u )|x- —u | | u|

p
x = 2y| u| + uv

,% _ - y ! v l ~ - ^ l n l r -vl v\ ~-^ • (—11 v ^ l v in I ~ ~\ I nly - —X.I XI I ~i\ - ( _ J l | A | T ^ o U - A y | A - Q U | J|u |



Notice that Xn is 'defined when u =0.
G

-i
Definition 4.12; B[h] = JT~ (B[h]) where B[h] = B 0 [H = h). Then

B[h] = ( (u,x,v,y): | u | < ea(h)p(0

P P
A| u| + yuv -t- I v| = 1

Notice that for e > 0 sufficiently small, B[h] is an isolating block for

the vector field X on the surface (G = 0). Let TT be the map across
G

B[hj defined by the flow generated by X_.

Proposition _4. 13: TT is a diffeomcrphism of b onto b .

" *^
Lemma 4±l4; Given 6 > 0 "one can choose B[h] sufficiently small (i.e.

choose e sufficiently small in the definition of B[h]) so that

1-8 < 1 v| < 1+5 whenever (u, x,v,y) £ B[h]. . •

P P P ' ^ 1 /P P
Proof; Since j y| | u| < e| v| on B[h], we have |yuvj <e ' | v| .

We estimate that- | A|'| u| 2 < e| v| 2 + 5| x| "1| u| 2 + | u| 2| h| . 'Since '" ' ' "

| u| ' < €o(h)p(f) it follows that | xl'1!^2 < c1/2 and hence j A| | u|2. < . . . . . .

e|v| + Je ' -f e ' | h| . Now since B[h] C {G = 0} we must have

A| u| + y• uv + | v| = 1. We have shown that | A| u| +y* uvj <

(e+e1 '2)) vj2 + e1 /2(3+jh! ). It'follows that for e sufficiently small,

| 1 - j v| *"( < 5 which is the desired result.

<Xf

Lenma 4.1 :̂ Suppose that f. [0,T] ->B[h] is an integral curve of the

vector field XQ \iitb r(t) = (u(t) ,x(t) ,v(t) ,y(t)) . Then T < 2 | u ( 0 ) | .



Proof: For t s [0,T] where T = 2| u | the following estimates can
" ' . "' '' \)

be obtained using equations h. 11 and lemma k-.lk and the definition of B:

|u(t) | < 3, 0 < |u(t) | < 7|uQ| (this uses

X()| ^(OlxJ, |y(t)-y0| <B 2(e) |y 0 | ,

where 5.(t) -* 0 as e -> 0 for i = 1,2,3. Since u = 2v + yu we
•z O

have |U(T)| >~ | u | . However ^(T) - ̂(o) < 20 1 u | and this implies

that |u(t)| > ea(h)p(̂ (T)) and hence that Y(T) j. B. This is a con-

tradiction showing that r(t) cannot remain in B for t > 2| u | .

This completes the proof.

Proof of Proposition U._13 1 It is sufficient to show that if y(t) is

an integral curve of X with y{0) e b } then y(t) crosses B[h]

t\s

in. a finite -time. • Observe that • u, x and' y are bounded on B[h];

Hence any integral curve y(t) of XQ must be bounded over a finite

time interval. Since X is without singularity in B[h], y(t)

s\s

must either cross' B[h] in finite time -or must be defined- over an -in-

finite time interval and remain in B[h]. However lemma ̂ .15 rules

out this second possibility. This completes the proof.

Corollary 4.l6; TT admits a unique extension as a diffeomorphism from

b+ to b".

Proof: Define TT: b+[h] ->b"[h] by TT = TrTl"1. Since (Ĥ )XP =
'-- ~
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o . ,
I u| X^ it follows that TT = TT on b [h] - a [h]. Hence TT is a con-

tinuous extension of TT to b [h]. Since h was.arbitrary, 7T admits

+ ~4-
a continuous extension to all of b . Let a be the set of points

p in b such that the integral curve of X., through p meets the
u

set C(u,x,v,y): u = 0} as it crosses B. Any point in a is the

limit of points in b-a and it follows that any point in a is the

limit of points in b - a+. Since TT = TT on b - a the extension

7T must be unique. -

In section 5 ~^e will need to know more about the map TT:

b ->b". The following lemma provides the desired information.

Lemma If. 17; Given S > 0 there exists e > 0 such that if

( ^ j X j ^ y ) 6 b [e ]> if angles 9,q> are defined by I = |||(sin 9, cos 0)

and T) =- - | TJ | (sin 9 , cos q>), and i f Tr(6,x,Ti,y) = ( Sx ^ ) then

.|x-?1| < 6 |x | , . ( 2 ) s u i . - U J i . < s , . . . .

(3) ly-yj <6|y | , ( i f ) . I h l - h j i < B | T , | ,

(5) le^t 0+^(9-9))! < 5 where ^ - Jg j t s in 0p cos 8^

(6) 19^(59-28-^)1 < 8 ' where H-J^ = | rjj (sin 9^ 0039^.

Proof; It is shovra in the proof of 4.15 that (l), (J), and (if) hold.

Making use of the fact that H(£,x,r,,y) = H(5,,x,, T] ,,y ,) one can show

that (2)' follows from (l), (3) and (if) . Also in 4.15 it is shown that

|v,-v| < 8| v| for e sufficiently small where _^~(u,v,x,y) = (i ,x,T]^y)
'V*

and ^(u,v,x,y) = (u,,v ,}y. ^y, ). Using this fact and the definition

of ^ conditions (5) and (6) can be shown to follow.



5. The Topology of the Integral Surfaces

. In_s.ectiot\_3_.we__described_ S[_h^col_ as_a_ singular. 2-sphere

fibre bundle over a "Hills region" £[h,(jo]0 Our goal in this section

is to describe the topology of the regularized phase space R[hjCo]

for the 3-t>ody flow on S[h, co]. In figure 3 below we show £[h,o)]

for CD / 0 and h « 0. In this case ,2[h,co] has three components.

2-J-: Define B[h,co, e] = B[e] 0 S[h,cu].

The shaded region represents -the projection of the isolating block

B[hjtOje] into f[h,oo] and the three dotted rays correspond to the

binary collision sets C,, Cp and 0*.

figure 3
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We choose e sufficiently small so that cp given in proposition k,6

is a homeomorphiSDI and B[e] is a regularizing block for the singularity

cr

5<,2: Define B, = B[h,CD,— e]. Then B is an isolating block for the
•'" • • — _L £- J~

3-body flow on S[h,co]<,

5.3? Define W_L = (U,x,Ti,y) e S[h,oj]; for some (r^y.^ (t^r^y.^

B[h,o),e]}.

^.h-t Define an equivalence relation ~ on W, - int B, by setting

z ~ z' if z = z' or if z e b and z' = TT(Z) or if -zf e b, and

z =ir(zf). Define W, to be the quotient space (W,-int B-,)/~.

It is clear that we may similarly define Wp, W-,, B_ C VU,

/\ s^
B, < W,, Wp and W,. Bp and B, are isolating blocks for the flow

on S[h,cu] with the property that any solution in S[h,oD] which

tends, to the binary collision set -C. . must enter B. for j = 2,.3.-
J J

2«_5° Define R[h, CD] to be the regularized phase space for the 3-body

flow on S[ h, co] . Then

' : - 3 ' 3 x,
R[h,CD] = {S[h,co] - U int W.} U { U W.}

J=l J j=l J

/s

where the boundary of W. is identified with the boundary of W..
J <)

We can characterize R[h,o>] once we know the topology of the
3

sets W. and {S[h,cu] - U int W.}. The following propositions
J J



characterize the topology of the sets W. and W.e
u . o

PrQpositio_n_5._6» Let VL = _tJ . JTor_ _e J>_0 suffleientJLy_smaJLL_th.e.

f i 2 1 2jection of W into U* is homeomorphic to R X (D -0) and W. is

1 2 2
homeomorphic t o R x ( D - 0 ) X S .

Proof; Define P« S[h,o>] -> by P(i,x, ij,y) = U ;x). Fix x =

( | x j , 0 ) and fix | a unit vector. Define X(x,£, e) to be the
/\ x\

maximum positive number such that (x, X(x} t,} e)5) e P(W)o Then

/\
x ^ l > £ ) = sup(X: (a), (b), (c), (d) below have a solution r\ y },

(a) A.2 < ea(h)p(l2x-X?|2)

(c) (x)x(y) + (X?)X(TJ) = CD •

o o
| T J | + |y| + y- i j = h + U(X?,x)

x\

Define X (x, £, e) = max{X: X is a solution of (a)} and define

*-i(M,e) = max{X: X < X ( x , | . e ) . X < 2e| x| 2| co| "^ .
-L ™~ & •• ~

:. . . . . - - ^^ .

Lemma ̂ .7; If 0 < X< X̂ x,!, e) then S (X) = {(T],y)s (T],y) satisfy

(c) and (d)} is a 2-sphere.

Proof; It is sufficient to show that the plane C(X) = ((^ y) which

satisfy (c)} contains a point inside the sphere D(X) = ((n,y)

2
which satisfy (d)). D(X) contains the ball of radius R where R =

(Xs,x) ]. The plane C(X) is distance p from zero where p =
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2 2 P -1 ? 2
CD (|x| +X~)~ . Thus it is sufficient to show that p < R . For e

sufficiently small and 0 < X < X (x,|, e) we estimate that R >

•̂ •X" . The inequality p < R follows from the inequality X <

~\ /•* — P 1
x| CD" - which holds whenever 2e < --. This completes the proof

of the lemma. The following lemma is also needed:

XV /̂

Lemma 5.8° ^(x>£j£) ^s a continuous function of x and £ and

(x,|) e P(W) if and only if 0 < | || < X(x, || £| ~1, e) „ Furthermore

yv /N /\ ^

for co = 0, X(x, ̂ e) = \ (x, |.e) and for CD / 0_, X(x̂ |,e) < X-j_(x, |,

Proof; Consider the equations

(c)' (x) x (y) =CD (d)« h|2

/N

Let XpCx^l^e) = max{Xs (a), (b), (c)', (d)' have a solution}. For e

sufficiently small the equations (c)1 and (d)1 approximate the .equa-

tions (c) and (d) and we must have. X(x^^e) < 2A,p(x, |, e)_. We compute

that X,-(x,|, e) = maxfXs X < X (x>̂ ,e), X < e| x| |ccj~ }. Notice that

for CD = 0,- (b), (c)̂  (d) always have a solution and hence for CD = 0,

• ' • 2
Now suppose CD / 0. . The 2-sphere S (X) varies continuously

/N 2

with X. Thus if X = X(x, £,e), S ( X) must intersect only the bound-

ary of the cone K= {(̂ ,,y) which satisfy (b)}. In this case the equa-

tions (b), (c), (d) can be written as one equation
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(e) E(X,x.,|) > 0 where

E(X,x, £) = sup{e(X,x,|, T],y): T},y e S } and

1 /P

e1'

1/2 ~'

XX f̂ t '̂

Notice that e(X,x, £,T|,y) is continuous in all its variables and that

for 0 < X < X0(x,|j e), we have -g-e < 0. It follows that E is continuous and

that E is monotonically decreasing in X for fixed (x,f). Therefore

/N XS

X(x, Ij e) = max[X: E(X, x,|) > 0} is also continuous and (x, |) e P(W)
/\

if and only if 0 < X < X(x ,£ ,e ) .

We now give the proof of proposition 5.61 Define f: R x

(D2-0) -> P(W) by f ( t , d ) - = (i ,x) where x = t(l,0) and ^ =

X(x,d|d | ,£)d. f is the desired homeomorphism. For (!,x) e P(w)

( ( * \ > y ) l (5,x, ^y) e w) is a 2-sphere by the previous lemmas. Thus W

is a 2-sphere fibre bundle over P(W) and the 2-sphere fibres do not

1 2 2
"twist". Hence W is homeomorphic to R X (D -0) X S .

^ 2 2 2 2 2
Definition 5.JS Let X = {x e R-7: x-L+x2 < 1, x^Xg+x > 1/2, -2 < y. < 2}

Let XL = (x e X: -1 < x < 1). Let Y = (x e X: x^+x| = 1} and let

(0,cp,x-) be coordinates on S X Y where Q and cp are angular x

variables. Define
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e S1 X Y: 8 + 7T/2 < 9 < 6 - 7T/2)

— —

e S X Y: 0 - TT/2 < ep < 0 + TT/2)
™ «

f(0,<P,*5) = (0 + U(cp-e), 3q>-29-7T,x5).

Define {R X K - S X D } to be the space obtained from S X X by

identifying points of S X Y which correspond to each other by the map

f. The notation is meant to .be suggestive since this space is homeo-

morphic to R X r (where F* denotes real protective space) minus

1 3a set homeomorphic to S X D .

Proposition 5.8; Let W = W1 and let B = B . For e sufficiently

small there exists a homeomorphism a: W - int B -»R X S X X and a

homeomorphism y:R XS XX-^R XS XX- such that the diagram

r r

a(b
+)

commutes. Notice that W - int B depends on e.

* ~ 1 3 1 5
Corollary 5.9: W = W is homeomorphic to (R X r - S X D )

Proof; The homeomorphism is

Before giving trie proof of 5.8 we include some motivation.
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Fix £ a unit vector and fix x' = (|x|,0). Then the part of

W over the ray {(X|,x); 0 < X < X(x,̂ ,e)} is a 2-sphere fibre bundle

as shown in figure k below. B intersects each fibre for 0 < X <

/\

A,(x, £,e/2) in a shaded annulus as shown. Thus the part of W - int B

over the ray is homeomorphic to a solid cylinder minus an open ball as

is also shown in figure h.

—e-.

figure



Proof of proposition 5.8; Suppose (l,x, r^y) e W - int B. If

0 < U| < X(x,|,e/2) where | = tUI'1, define ff(6,x,T|,y) =

t = / 1+(1-| i| )[X(x,£, e/2)]~ if sgn(x«y) = 1 and | y| > e| r\\

L-(l-| || )[X(x,|,e/2)]~1 ' if sgn(x-y) = -1 and | y| 2 > e| t]| '

~-~ \y\ HI" sgn(x*y) if | i| = X(x,£, e/2) and | y| < <

We have seen previously that

Y = {(6,x,T],y) £ W-int B: X(x,t,£/2) < | l| < X(x,|,e)}

\̂ -

is homeomorphic to R x S X S x [X(x,f, e/2), X(x,|, e)]. Thus extend

a to map Y onto R X S XX. It can be. shown that a is the desired homeo-

morphism. Observe that if (l,x, ̂ y) e SB then c^s^x^Tj^y) =

(I *l s ̂ 1 ̂ 1 ^ ̂ 1 ̂ 1 »^) •

In order to construct the homeomorphism y we need the fol-

lowing: .

Lemma 5.10; Given 6 > 0, for e > 0 sufficiently small the map orra"

is within 6 of the map f. More precisely^ if (|x|>0,9,t)' € a(b*)

where Qfq> are angle variables let
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and let

Then

8, |0-02 | <5

and

Proof; For e sufficiently small lemma 4.17 implies that

and

It follows that | t -tp| < 5 for small . e.- (We use the fact that

^ ^
X(xjl^e) becomes less and less dependent on | as e -»0.) Lemma 'i. 1?

also implies that l'0-!-̂ ! < 5 and |cp "-̂ oi < s ?or e sufficiently

small since, a "preserves" the .angle variables... 0,9. . . . . . ; , . . . - . ,

We now finish the proof of 5.8. It follows from 4.5 (a) and

(b) and the definition of a 'that CT(T) is diffeomorphic and very

close to J3f fl_P/ . Thus we can choose a homeoniorphism T, : _py ->

a(b ) which is close to the identity. Define yx: a(b ) - >_Q/~ by

r2 = cnra" -T-j-f" . T2
 is close to the identity by lemma 5.10. Then

y U To is a homeomorphism of R X S X S X R onto itself which

is close to the identity. Furthermore the diagram



lI

commutes. Since y U y is close to the identity, y U y extends

to a homeomorphisin y of R X S x X onto itself which is the
1 1 1 1

identity outside a neighborhood o f R x S X S X R o y i s t h e d e -

sired homeomorphism0 This completes the proof,,
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6. The Isolating Block for Tripple Collision

The well known Lagrange-Jacobi identity can be used to show
o

that there exists an isolating block such that any orbit which ends in

a tripple collision must enter and remain in this block.

o -,

6.1: Define !• R -C -» R by

+ 3 N 2

p o p
In terms of the variables q. and p., I = |qJ + | qJ + |q.?| .

The Lagrange-Jacobi identity is

*i(l,x,T],y) = U(S,x) + 2H(S,x,T],y) = U+2h.

Notice that y(t) ' is a solution of equations 5.7 which ends in tripple

collision as t -> t (i.e. | i ( t ) | ' ->0 , |x(t) | -> 0 as t -> t ) if and

only if l(y(t)) -> p . as . t. -> t . . ' . . . . . . . . . . .

.6.2:. pefine : E^[e].= .((-6,x,Tj,y):.I(| ,x,ii,-y)-e < 0). Every solution .... . . .

which ends in tripple collision must eventually enter and remain in

B^[e]. '

Proposition 6.3; For e >0 .sufficiently small BjTe] is an isolat-
es

ing block for the 3-body flow on R -C.

Proof; Choose e sufficiently small so that l(l,x,ij,y) < e implies
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that U(!,:x) + 2h > 0. Then I >0 on' B,[e] and hence B.[e] is an

isolating block.

Recall that tripple collision can only occur when the total

angular momentum is zero. Hence consider the 3-t>ody flow on S[h,0].

After regularization of binary collisions one obtains as before the

regularized phase space R[h,0] and an induced flow on R[h,0]c How-

ever this new flow still has a singularity due to tripple collisions.

B, = B, [e] n S[h,0] can be considered as an isolating block for the

flow in R[h,0], G. Conley iias^ shown that the flow map 7T̂ : b, -a, ->

b^-a. does not admit a continuous extension as a map from b. onto

b.. Thus tripple collisions can not be geometrically regularized.

This result compliments and in fact implies the classical result that

solutions to equations 3.7 cannot in general be analytically con-

tinued beyond tripple collisions, Conley further shows that for each

2 2
point (*,x) with- j || + | x| sufficiently, small, there exists a

choice of velocities (T-.jV-,) such that the orbit through the point

(£,X,T) ,y.,) ends in tripple collision. These results depend on some

facts about the topology of b. and b,. The following proposition

topologicaliy characterizes these sets.

Proposition 6.kl

2 2 1 5
(a) b. is homeomorphic to (S -3D) X S U 3[R X Y -

1 3 2 'S X u ] where S -3D denotes the 2-sphere with three disks removed

2 2and where the boundary of (S -3D) X S is identified in the obvious
; 1 3 1 3

way with the boundary of 3[R X -Y - S X D ].
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(b) b, is homeomorphic to

where D denotes the lower heaji sphere of S^} [(-°°,0] X K - S X D"']

denotes the space obtained from S X X by identifying points via the

map f as in 5. (X = X fl {x e R . x, < 0}). We identity
— 2 — •

(B(S2-3D) } XD with 3 [ S ( S 1 X D 5 ) ] where 8 ( S 1 X D 5 ) denotes

1 2 2 1
S X [x e X; x-+ x ~ "o anc^ ** < 0).

Sketch of the proof. Using 5,8 choose r±: (V± - int BI) -» R X [S X X]

for i = 1,2^3 to be a homeomorphism such that the diagram

r. ,-. -L
(W. •; int B.) > R X [S X X]

1 1 1 iI . X . I .

I x ~ rY r, . • , >k
: ^ R1

 x [R1 X P5 - S1 X D3]

commutes where i- and j are the natural projections and yv is induced

by T.. It can be shown that there exists a homeomorphism k of R x

(S XX) onto itself which is the identity on the factor (S XX) and

which takes y. (K 0 (W. - int B . ) ) onto (r) X (S" X X) for some r e R1.

It follows that j-k-r. : b^ 0 (W. - int B.) -> (r) X [R1 x P - S1 X D5] is



to

3
a homeomorphism. (b, - U W.) is easily seen to be homeomorphic to

(S2-3D) X S2. Assertion (a) follows since b^ = (b^ - U VL) U (b^ fl

-3-._ - •_ 1=1
U W.).
i=l 1 + 3

To prove assertion (b) one' shows that b, - U W. is homeomorphic

2 -t-
to (S -3D) X D . The homeomorphism j -k« r - : t,. H (W. - int B.) ->

•• 1 H- 1 1

R1 X [R1 X P5 - S1 X D5] takes bj n (W. - int BI) into (r) X

3 1 3
[(-oo^O] X K - S X D ]. Assertion (b) follows since

+ + +^ = (\>k - u w ) u (\>k n u w^.
1=1 . i=l
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