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DYNAMIC NUCLEAR POLARIZATION
IN SAMARIUM DOPED LANTHANUM MAGNESIUM NITRATE

by
Charles E. Byvik

ABSTRACT

The dynemic nuclear polarization of hydrogen nuclei by the solid
effect in single crystals of samarium doped lanthanum megnesium nitrate
(sm:IMN) has been studied theoretically and experimentally. The ' equa-
tions of evolution governing the dynamic nuclear polarization by the
solid effect have been derived in detail using the spin temperature
theory. and the complete expression for the steady- state enhancement of
the nuclear pola.riza.tién has been calculated. For well-resolved solid
effect transitions at microwave frequencies o= ®g T W the expression
for the .stea.dy-sta.te enhancement differs from the expression obta.ined by
the rate equation approach by small terms which become zero .a.t |
W = We + Wy, - Experimental enhancements of the proton polarization
were obtained for eight crystals at 9.2 GHz and liquid helium tempera-
tures. The ssmarium concentration renged from 0.1 percent to 1.1 per-
cent as determined by X-ray fluorescence. A peak enhancement of 181
was measured for a 1.1 percent Sm:IMN crystal at 3.00 K. The maximm
enhancements extrapolated with the theory using the experimental data
for pesk enhancement versus microwave powér and correcting for leakage,
agree with the ideal enhancement (240 in this experiment) within

experimental error for three of the crystals. The calculated satellite



separation was within 6 percent of the measured separation for each of
the‘enhancement curves and the peak positive and negative enhancements
were equal for all but two of the crystals. The nuclear spin-lattice
relaxation time was measured for one of the crystals between 1.6° K and
L.,2°2 K. To account for nuclear spin-lattice relaxation, spin diffusion
theory in the rapid diffusion limit was incorperated into the results
of the spin temperature theory of the solid effect. The experimental
regults indicate that the spin temperature theory is a quantitatively
correct approach for the description of dynamic nuclear polarization

by the solid effect for well-resolved solid effect transitions.
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I. INTRODUCTION

In 1953, Overhauserl’2 proposad ﬁhat the polarization of nuclei in
a metallic solid could be changed from its thermal equilibrium value
through the contact hyperfine interaction of the nuclei with the
conduction electrons by séturating the electron spin resonance transition.
The idea of dynamic polarizétion of nuclei was soon extended to non-
metallic materials.5'6 Experimental verification of dynamic nuclear
polarization in metals was reported in 1956.7

Dynamic nuclear polarization (DNP) in ionic solids can occur if
paramagnetic nuclei interact with nearby paramagnetic atoms through the
magnetic dipole-dipole interaction. This is called DNP by the "solid
effect"” and is the subject of this thesis. Two approaches have been
used to describe the dynamics of the "solid effect": the rate equation
approach of Jeffries and co-workersB'll and of Borghini,12 and the spin
temperature theory.l5'l7 The rate equation approach assumes that the
"solid effect" may be described completely by following the time
evolution of the populations Qf the electronic and nuc_car Zeeman levels.
This approach can lead to erroneous results if the spinc are strongly
interacting. The spin temperature theory includes the effect of the
strong spin-spin coupling as weil as the Zeeman interactions and the
lattice in & relatively simple way. Within certain limits, to be
discussed later, the Zeeman and the spin-spin interactions and the latficeA
can each be assigned a thermodynamic reservoir having a temperature and

specific heat. The reservoirs exchange energy with each other through



the applied radio frequency fields, certain dipolar interactions and
spin-lattice interactions. The expression for the. steady state nuclear
polarization resﬁlting from the spin temperature approach reduces to the
expression obtained by the rate equation of the Zeeman populations
(except for a small correction term) in the limit where the electronic
résonance linewidth is smaller than the nuclear resonance frequency.

A material exhibiting this limit is diamagnetic lanthanumvmagnesium
nitrate in which a small percentage of the ianthanum ions are replaced
by paramagnetic samarium ions. At about 9 kOe, 9.2 GHz, and liquid
helium temperatures, the electron spin resonance linewidth of samarium
in this crystal is of the order of 5 MHle and the nuclear resonance
frequency of the protons in the waters of hydration is 38 MHz. This
thesis will compare the results of measurements of the dynamic polari-
zation of protons in a number of single crystals of samarium ions in

lanthanum magnesium nitrate (Sm:IMN) with the results of the spin

temperature theory of the "solid effect.”



IT. THEORY

A. Basic Assumptions

A derivation of the eéuati_ons governing the DNP by the "solid effect”
will be made in this section. The density matrix and spin temperature
theory will be‘the approach used in this derivetion as opposed tovthe
rate equation za.pproach.&'12 The soin temperature theory has the
advantage that the effects of the dipole-dipole interactions may be
included, and yields analytical expfessions for the lineshapes. A
detailed derivation of the "solid effect” using spin temperature theory
is felt necessary as (1) it is not available in the literature, (2) the
published equations governing the "solid effect" are either incomplete
or contain sign errors, and (3) all of the assumptions made are not
clearly stated. (Note in particular ref. 15-17.)

Consider a solid containing N paramagnetic ions per unit volume
(which will henceforth be called "alectrons") having an effective épin
S =1/2 and n nuclei per unit volume having a spin I = 1/2. The
effective Hamiltonian for this paramagnetic system when placed in a
homogeneous magnetic field which has a steady component E; and a high

frequency component ﬁi(t) is given ast?
H =Hgy +Hpy +Hgg +Hpp +Hpg + Hgp, +Hpy, +Hpp (1)

where the terms are the electron Zeeman, the nuclear Zeeman, the
electron dipole-dipole, the nuclear dipole-dipole, the electron-nuclear

dipole-dipole, the electron spin-lattice, the nuclear spin-lattice and



the radio frequency interaction Hamiltonians. Explicitly, they are

N
- - '
Hgy, = 7R Sy - H, (2)
j=1 :
- : |
JCIZ = 7n‘fl ZIZ . HO (5)
o=l
—
2.2 _ — - o 2 - ~> s
Hss = 7e" B }_,rlJB[Sl " 55 - iy (85 - r;5)(8; rij)] (%)
i>j=1
. %; :
2 .o -3 |- - e - - —
Hir =7 B° ) Ry [Ik " Iy - 3Ry, (I - Ry (I Rkl)] (5)
k>1l=1

N n
) 2 - -> = - - - -
R (6)

N n .
— - - - '
JCrf = 7e‘h Zﬁl(t) . Sk + 7n'f1 ZHl(t) . IZ (7)
k=1 1=1

where 7 (7e) is the nuclear (electron) gyromagnetic ratio, both
assumed to be inherently negative; # 1is Planck's constant divided by

-
~en; rij is the vector distance between the S;-th. and Sj—th electron;
- ' '
Ry1
- .
dkl is the vector distance between the Sk-th electron and the I;-th

is the vector distance between the I, -th and Iz-th nuclear spin;



nuclear spin; and ﬁa 'is the high frequency megnetic field interacting
with the electrons and nuclei. The JCéL and X - ‘terms are discussed
by Jeffries.8

The following assumptions are now introduced.

1. The magnetic field HO is much larger than the magnetiq field
experiencéd by each dipole due to the neighboring dipoles. The latter
field is called the local magnetic field. |

2. The magnitude of the electron gyrémagnetic ratio e is much
larger than that of the nuclear gyromagnetic ratio, Tn

3. The ele;tron and nuclear spin-lattice relaxation times, Te
and Tn, are very long compared to the electron and nuclear spin-spin
relaxation times, T2e and T2n’ respectively, and there exists times
t such that

T Ty << b <K T T, Wo (% _wl)'l,(% w*)—l, (8)

-1{n -l /n #Y1 .
where the terms W, ’(N wl> ’(N W‘) will be discussed later.

4. The effects of thé lattice may be ignored for times =
satlsfying the inequality (8) and the rate of energy exchange between
the various spin systems and the high frequency magnetic field Hl(t)
calculated. The effect of the lattice is then reintroduced.

5. The electron and nuclear resonance lines are homogeneously
broadened.2O

Consider the large constant magnetic field E; to be applied along

the z-axis in the laboratory reference frame. Then



N
Ky, = 7e'h H ZSZJ o (9)
J=1
gnd
. .
Hiz = 7 h H, lel . (10)
=1
Define
w =78 - (11)
o =78 (12)
SZ = iszj _ ' '(‘15)
J=1
n .
I, = 'lez - (1)
)

=1

vhere and“wh are the electron and nuclear Larmor.frequencies,

and S, end IZ are the z-components of the total spin of S- and
I-spins, respectively. Since 7o 2> 74, one has >> wy,; fhus if an
oscillating field ﬁa(t) of frequency @ is of the order wg, then the
direct interaction of the nuclear spins with this field is negligible.‘
We apply this oscillating field in.e plane perpendicular to ﬁ;,,so

that equation (7) becomes



N
Jcrf =7, 0 H Z(Sxk cos wt + Syk sin a)t)
k=1
or
.o =7, hHE (8 cosat+S5 sin wt) ,

where Sx and Sy are defined in a fashion similar to SZ in equation

(13). Defining w = 7eHl and noting the identity

e-iaSZt Sy e+iaﬁzt = 8, cos wt + S

v sin wt ,

then
' -1a6,t +iaS,t
Hp=hwe 2 S e 2. (15)
It ié convenient to write the various dipolar interactions as

N S

=y 242 -3

Hog = 70" B Z T3 {Akz + By +Cpy + Dy + By + Ty (16a)
K1=1 S

where

' 2
Akl = Szk SZI (1 - 5 cOSs ekz)

1 2 *s7 + spst
By; = - n (1 - 3 cos Bkl)(sksl + Sksl)
s (g ot st
Ckl = - é- sin ekz cos ekl e (Szksl + SZZSk)
3 1% (g g -
Dy = - Z sin 6., cos 6, ; e (SszZ + Szlsk) (16b)



S R TR ot
Ekl =- i sin ekz e kSZ
+2i9Q . ' '
. 2 l a~a™
P = -2sin” Gy e FUSE;, (16b)
where ekl and ¢kl are the polar coordinates of the vector WY
: -
the z-axis is parallel to Ho, and
+
Sk = Sxk T i Sky .

ﬂ&s and JCII can be similarly written. The effective Hamiltonian now

has the form

. L -1t 1Syt
K = asS, + g1, + Hgg + Hyg + ﬂ&I + we Z° Bye (17)

where the prime indicates that the spin-lattice interactions huave been
omitted. Note that the Hamiltonian has been written in frequency units,
i.e., A =1.

The time evolution of the system described by the Hamiltonian cén
be determined'from the equation of motion of the density matrix, p,

for the system. The density matrix obeys the rela:tionzl

%% = ife, %], o (18) |

again taking A = 1.
Following Redfield,22 we transform the density matrix by a unitary

transformation, R(t), to a frame of reference rotating about the



laboratory z-axis at a frequency . Thus
R -1
p (t) = R(t) o(t) R(t) ,

R
where p (t) is the density matrix in the rotating frame and

R(t) = 1952t | (20)

We do not transform the nuclear spins because they are not subject
to saturating rf fields in these experiments. See Wollan23 for a
discussion of this point.

The equation of motion for the density matrix then becomes

3‘23 - 1R, 1% ()] (21)

where

R . -1
ic (t) = 55, + oI + w8 + R(t) Hes + Hyg + 1T R™(t) (22)
and

A=w -®. . (23)

M&I is not altered by the unitary transformation since

[R(t), “II] =0 .

Hgg and ¥Hpg are of the form



10

- o ’ o I
R(t) Hgg R™H(t) =Hgg + Z:;c‘ss
m

R(t) 3 RTH(t) =H g + ch’;s (21)
g

where the sums are over the values m = 1, *2, JC;S and JC;S are the

secular parts of the dipolar Hamiltoniens, i.e., those which commute

[JCOIS: _R(t)] =[JC<SD>S’ R(t)} =0, | _ (25)

and JCgS and JC?S are the nonsecalar parts of the dipolar interactions.

with R(t):

The nonsecular terms in equation (24) oscillate at frequencies *w, 12w
in the rotating reference frame and may be ignored as discussed by

Redfield22 and Goldman.16 Then from equations (16) and (25)

N | - |
c _ .2 -3 -
Hgs = 7e Zrkz {Akl * Bkz} (26)

©1=1
and
N n
o iﬁ .0 + * -
Hig = ) /), {exiSaxTer * St + ¥l (27)
k=1 1=1 :
where

€C1)<7. = 7.7 dkf (1-3 cos® ekl) (28)
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€xy = - ‘2‘7e7n sin 0y, cos 61 e-iq)k‘l ;3 | (29)
and the star indicates complex conjugate. The Hamiltonian in the
?6tating f;ame is reduced to

R o) o}
;T =88, + apI, + oSy +Hgg + Hpg + Hyy - (30)
Wg define
VJCO =05, + @I +. J('gs (31)
and
V= w_Lsx} Hg + Hop - (32)
Then
’R =3, + V. (33)
Transforming to the interaction representation by a uynitary trans-
formetion
oI(t) = U~L(t) oB(t) U(t) (34)
where
U(t) = e'ﬂc"t, | (35)
one has

ap” _ i[pI, vI(t)‘J | (36)
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where
'vI(t) = U'l(t)v U (t) . (37)

Equation (36) may be integrated and then iterated to obtain the form

i t t Y-1

ol(t) = oX(0) + Z(i)ﬁ / at, f at, f at_

n= 0 0 0

x [[ [pI(o), Vit vI(tr;_l)], ] , vie|, (38

and this result differentiated to obtain

the1

: e 0 £ £
T I D+l :
a%——l[p (o),V(tﬂ + Z(l) j;dtl -L‘dte... "/OH at

n=1

I I I I
X ﬁ:... [e7to), v (+.)), V(105 ooe]s V()| (39)

Note that oY(o) = oo

The basis of the spin temperature theory is to assume at this point
that the density matrix in the rotating frame will have the canonical
form for times t satisfying equation (8). The justification for this
assumption is discussed in refererces 16, 22, and 24. For this system,

. : o

it is assumed that the commuting terms ASZ, “hIz’ and JCSS gan be
considered as thermodynamic reservoirs having inverse temperatures a,
B, and 7, respectively. Fach reservoir is considered to reach internal

equilibrium in a time of the order of its spin-spin relaxation time.
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Therefore, we assume that

e-a(t)ASz - B(t)apIy - 7(tXK§s
o 8185, - B(D)apT, - (+VEs

R (t) = (40)

The inverse temperature, a, is defined as

.
KTep

a =
where k 1is the Boltzmann constant and T,, 1is the electron Zeeman
spin temperature. The inverse temperatures B and » are gimilarly
defined.

The electron-nuclear dipole-dipole reservoir and the nuclear
dipole-dipole reservoir have been ignored in equation (40) as well as
the off-diagonal part of the density matrix. The electron-nuclear
dipole-dipole reservoir (i.e., the 8, I,; terms in equation (27))
contributes to the inhomogeneous broadening of the resonance lines and
is assumed to be negligible.eo This term will also give rise to_a
berrier to spin diffusion and thie will be treated phenoﬁenologically
when spin diffusion is taken into account in section II F. The off-
diagonal Szkli terms in EK;S are retained in V as a perturbation.
The nuclear dipole-dipole interaction may be ignored since its
freguency (~0 kHz) is very small compared to those of the electron
Zeemen, nuclear Zeeman, and electron dipole-dipole interactions in the

rotating freme (all ~5MHz). This term will be important only when spin



1k

diffusion is taken into account. The size of the contribution made by
the off-diagonal part of the density matrix is discussed by Goldman16
and for the time scale considered here, the off-diagonal part may be

ignored. With these approximations, we note that
I R
o (t) = o (t) -

The representation used for the electron system is one in which
o .
més and Sz are diagonal. Since the nuclear dipole-dipole interaction
has been neglected, the nuclei are considered independent particles and
the representation used is one in which all the single particle operators
2 )
IZ and IZZ are diagonal.

In the high temperature approximation, one has
R _ =1 o N
pt(t) = 1 1 - a(t)as, - B(t) @I, - 7(t)Hgg p » (41)

where 1 1is the normalizing factor. This approximation is necessary to
make the calculation tractable, and corresponds to the experimental
conditions enéountered in this work.

Note that the electron and nuclear magnetizations along the z-axis
are proportional to the ensemble average of the operators S, and I,,

respectively. Using the density matrix, these values are found as
R
<8,> = Tro(t)S,

R
and Z<I£> = Trp (t)IZ
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where < > indicates the canonical ensemble aﬁerage value and Tr
indicates a sum over the diagonsl elements in a space that includes both
the electron and nuclear eigenstates. It follows that the time rate of
change of these expectation values are (in the high temperature limit)

R ,
a<s_> ~dp (t)
2 - Tr S, = -An~imrs,® (42)

at ac = at

and
I gy 220) 248 (u3)
at Frami 2 X Z 3t

It can be noted from (42) and (43) that the changes in the magnetization
are proportional to the changes of the corresponding inverse temperatures
of the reservoirs. The calculation of the time evolution of the inverse

temperatures using equations (39), (41), (42), and (43) follows.
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B. Derivation of the Equation of Motion for the

Electron Zeeman Inverse Spin

Temperature, o(t)

From equations (%9) and (42),
. ‘t>
-(arrs,®) 2 -4 nee[R, v(t)]s, + (1)2 T]‘I'r'/\dt' [[oR, v(t)], V(tﬂ S,
0
A N oo
+ (1)3 nTrfdt' fdt" [[pR, v(t"):], v(t'ﬂ , V(t) S,
0 0

t t! t"
+ (i)u nTr/dt‘/dt" [dt"'
0 0 0

R y(e ,Vt"ﬂ,v 9, v(e)|s, + ...
x [[o (1], wen|, v, vee|s, -y

where the superscript I, indicating the interaction representation, has
been dropped. Assuming the trace and the time integrals commute, the

following terms must be evaluated:

c
1

ntr E)R’ _V(t):‘ S,

_ [-R :
C. = nlr L[o , v(£)], v(t):]sZ

N

'c3 = qTr :.EaR, V(t")], ‘V(t'ﬂ, v(ti\s

-

C), = nfr [EDR, v(t")], v(t“)], V(t‘)], v(t)|s, (45)

-

b

Using the identity



i7

tr[a,B]c = o A[B,C] , _ (46)
one has.
Cy = nr [55, FJV(t) =0, - (47)

since
[s,, °]=0.
Using the same identity
Cy = nTr {[pR, V(t')]} {[V(t), szj} . (48)
oB(t) can be written in the following way
R = L {1 -(a-7)8, -(8B-7wI, - 7;@} . (49)
Recalling that
V(t) = o8, (t) +H3g(t) ,

: o
where S_ y(1:) and JCIS(t) are in the interaction representation, we
2

have
C, = 412 Mo - y) Tr Sy(t') Sy(t)
+ 1oy (8- T8 (6) [1,8, (¢1)]

+ 1 oy s.(8) [3, v(e1)] . (50)
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The second term is zero as can easily be seen using equation (46) and

noting that

[Sy(t), I,]=0.

ﬁsing
1 e s,(t) [¥, V(t)]-—TrS(t-t)V,

and integrating C, as noted in (44), we get

t t
2
fdt‘C2 = < ®Aa - 7)fdt' Trs S (t - t')
0 (O
t
. |
+ yQ at' &= TrsS. (t - £')V. 1
oy [arr & ars (e - v) (51)
0

The second term in (51) is also zero. This is shown by letting

=t - t'; then

t
a O
J = Tr[s (t - t')V] = -/ ar {d_T Tr [w8,8,(1) + Sy(T) JCIS]}(52)
But
N o
Tr 5 (g = T S (") Z Z(ekl STy * S Sl | - (53)

+ .
since Il has no diagonal elements. Noting the identity
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sy(T) = - §;(T) sin AT + 5&(T) cos AT , | (54)
where
3 T 3. T
5, (N =e 55 5 e s T (55)

the remaining term in (51) becomes

-y fd'r d [Tr y(T)] =

= -0 de—[TrSS (r). COSAT-TI‘SS (1) sinA‘r].

Note that
TerSy(T) =

since a rotation of n about the y-axis sends Sx . into -Sx and leaves

g&(T) unchanged. Since the trace is invariant the result follows. Then

t
-wlofd‘rc%_-[Tr s,(1)] = tnlfd‘r—TrSS('r) sin AT .

The term Terg;(T) is proportional to the correlation function of the
transverse magnetization, with a correlation time ~Tpe. Since t is
‘ assumed to be very much larger than T2e’ the upper limit of the inte-

gration may be taken to infinity. Thus

) 6[ ar éi: [Trsxsy(+)] = o [Trs, & (1) sin o7) o 0,
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since the correlation function is zero at T = o Equation (51) is

reduced to

t o
2
1 = W - ' - %!
fdt C, X Ao 7)fdt TrSySy(t t') .
0 0

Using exactly the same arguments as used above

% o .
fdt‘ Cy = -, %A(a - 7) [d'l‘ TrSyS,(7) cos AT . (56)
0 0

C, may be calculated using some of the relations developed in

3
finding 02. Expanding C5 we get

03 = -wleA(a -7) TrSy(t") [JC;S(t"), Sy(t):l
+ 1w 2(p - 7) o [1,, x3s(e] (6", s,(t)]
v (B - 7) T (I, #3s(e ) Bs(e)), 8y(¢)]
oo e[, Ve[, e w0 () . 6D
The first term in (57) can be written as

TrSy(t")l:JC;S(t'), s,(t)] = T[s,(t), Sy(t"):ll(';s(t') :

This term is zero for the same reason that equation (55) was zero. The

second term in (57) can be written as

tef1,, Heg(t" )54 (t), S&(t)] = s, (¢, 8,(+)], Iz] Hyg(t") = 0
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since

Esx(t'), s,(t)], IZ:I =0 .

The third term in equation (57) is easily seen to be zero by
inS
Z to the argument of the trace.

applying the unitary operator e

Since SZ commutes with Ig and Jfgs(t), the rotation sends Sy(t)

into -Sy(t) with the result that

el 1 e 3 1), s ()] = -rrlT, 30 (e 2 (£1), s (¢)] =o.
z’? T IS IS ? Ty z? TIS IS ? Ty (58)

The fourth term in equation (57) when integrated over t"  becomes

iywlfdt" Tr JCO,V(t"ﬂ[V(t'),Sy(tﬂ

yo Triv(s') - v(o)} [v(z),8,(¢]]

yo, Te(v(e"), V(£')] 8(t)
oy T V(s [E,(8), V] (59)

The first term above is obviously zero, and the second term can be

expanded to give
- w? °
 Tr V(t')[Sy(t), v] =02 {Zsy(t), Sx:]J{‘IS(t') + [5,(¢M, Sy(t)]lq;
’ (¢] O ' 5
The first term on the right hand side is zero for the same reason that

equation (53) was zero and the second term is zero using the identical

argument leading to equation (58). Therefore, to order of 3, €y = 0.
_ R
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Ch can be evaluated using arguments identical with those used in
evaluating Cl’ C2, and 03’ along with the condition that the terms of

3

the order of aia and € and higher are neglected. The result is

¢, = - a0 ? (o - o) s ("), (e ]Brg(s), sy(+)]

+iwe® (B -7) {Tr 'ﬁsz, Hpg(e" )], sx<t"z|[:fr§s(t'>, 5,(t)]
+ Tr E:Iz, H(t™)], J(’;S(t"ﬂ [s, (£, Sy(t)]} (60)

Tt is now assumed that each nuclear spin interacts with only one
electron. TFor dilute systems, this is an excellent approximation. Thus
the sample is broken up into N equivalent "spheres of influence,"
each containing one electron and %-protons. In this approximation,

one has

* I.. . 6
€5 Iy (61)

=1

o
N
+
J=1

j=1

where the summation is over one sphere of influence, and €; 1is for the

J
jth proton referenced to én electron at the center of the sphere.

Integrating C), as indicated in equation (kb) yields
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N |
. t t' ' t“
fc at = -0 ° (a - 7) Tr |€.|2 I I'fdt'fdt"'[at"'
L 1 5 I T -
3=l 6o o0 O

s (t" - t') et (t" - t')
x 8, (") Sx(t)[el i ie ° :|

n .
: N £ £ t
viog® - m ) [t 1 e far fer
j=1 . 0 0] 0
R (tlll -t') -1 (t"' -t') (62)
() aos T ]

We define I (ah) as
t"

t t! iwn(t" - t')
- " "r "
() —fdt' jdt e fdt 8. (") 8,(t)
0 O 0

and integrate this expression by perts

1 t iwn (‘t" = t') 't" | tMet!
(w) = ,_fdt- e fdt"' s (t"") s, (t)
n 1(1) x x t"__o
no =
1
b iw, (t" - t')
" ”
- far e 5 (t") 8.(8))

0

which reduces to



2L

_ 1 e g |
I(w) = ;“‘f—lofdt'd/ at" s (") 5, (t)

iw, (" '

")
at! jdt" e | Sx(t") sx(t) .

Integrating the second term on the right in the same manner,

t t!
I(a)n) = E—i—fdt' fdt" Sx(tn) Sx(t)
no 0

i, (' - t) .
_L[dt' e 8¢(t') Sy(t)

:?

1 1 1
_3!1; S('t)S().

The first term on the right of equation (62) is

2 ISIS {I(wn) + I(-wn)} =

n
N
- % (o - ) Tr z e

o
2 N t
= - —2 (a-7) Tr Z € 2 I+I fdt‘ §x(t' - t)8, cos A(t' - t)
w 2 J

n J=1
n
o N

1 2 _+ _-

+ (('L - 7) Tr z e I, I

o J J 73

=S
T
fui}

fdt' s (t' -t) 8 [}os (w + A)(t' - t) + cos (“’n - A (' - t)]
o (65)
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We use the same procedure to evaluate the second term on the right
of equation (62) as was used to obtain equation (63), and assume that

2 may be replaced by an average over the sphere of influence of

€,
J

the electron, i.e., an € such that

o

i
2 _N
¢ _HZ

J=1

¢ 2 | (64)

In section II F, we evaluate e2 for the conditions corresponding to

- our experiments. Equation (62) becomes

2)

2
fcudt = -A (a - 7) %‘ie—léwo (&) (Tr s,
+a (-7 %E«'o»n -8 + W@ + o) s f

-w (B -7) I%Er(wn n) -, + )| 82 (65)

where

R - Lg @, | (66)
2
+ 2
Wo(w, t ) =Z—n—2—%—g (0, = 8) (67)

The electron spin resonance absorption line shape function g(w) is

defined as
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-]
2 Trl)d'r gx(T)>Sx cos wT

g(w) = (€8)

Tr S 2
A
a.nd» normelized such that

m.

de g(w) = 2n .

[+e] 00
Tr IE IBLdT EX(T) Sy cos GT N Tr'bgd’r EX(T) Sy cos wT
2

The fact that

2 2
Tr S, Tr 8,

was used to obtain equation (65) from equation (63). W° and W are
the transition probabilities per unit time associated with the allowed
electron spin resonance transition and with the solid effect transitions,
respectively.

Combining equation (44) with equations (56) and (65)- (68) leads to

do 22 o)
—=-< -;—;-%)w (&) (o -7)

P
nl -~
+1-\.I-ZW (‘Dn ‘A){wnﬁ - Lo - (‘Dn 'A)7}
nl:
- % W, + 4) {wna + 00 - (0 + A)7} (69)
5 2
where %—“5— is 8 correction factor to the allowed transition probability
w
n

per unit time due to the Cli term in the perturbation expansion. Since
it is usually much less than unity, we drop it from this point on. The

terms a, B, and 7 in equation (69) are rigorously o(0), g(0), and
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y(0). For times t satisfying equation (8), they are approximately

equal to o(t), p(t), and 7y(t), respectively, and we use this approxi-

mation henceforth.

C. Derivation of the Equation of Motion for the

Nuclear Zeeman Inverse Spin Température, B(t)

The derivation of the equation of motion for PB(t) is similar to
the derivation of the equation of notion for aft). Starting from

equations (39) and (43), wve get

%
2 .
- (Tr I,) %:':. = 1n o[ 6B, V(t):l 1, + (1) Tr_([dt' [[pR, y(t')J, v(tzl I,

t
+ (1)7n Trj at' fdt" [[pR, v(+")], V(t'ﬂ? v(e)| I,
o

t! t"

t
+ (i)un Trfdt' fdt"fdt"'

0 v 0

x R oy"y], V(t"ﬂ, v, vl + ...
ﬁ-p ) - (0)

We define traces analogous to the C's of equation (45)

C.' =qTr [pR, v(t)] I

Q
[}

2 n.Tr [E)R,Vv(t')], v(t)] I,

5 =nTr [[EJR, v(£")], V(t')], V(t)] I,

C,' =nTr Ez:R, v(+"")], V(t"):], V(t')], viey |1, - (71)

Q
]
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Cl' and C,' are easily shown to be zero. Evaluating C2'

3

C,' =nTr [pR, v(t)][v(v), 1,]

(8 - Ne_ T [1,, 315 (e)][30(0), 1,]

where the other terms are zero.
Using equation (27), carrying out the commutation relations and

integrating C,' as indicated in equation .(70), we get
2 ’

KN-' n
. oo - * +_ -
fdt Cy' = -, (B - 7) T, Z €1 56k IJIVj

i k=1 j=1
t N -i0 T
xfd'r 8,155 (T) e n

-t -

The product Szigzk () 1is related to the correlation function for the
z-component of the individual electron spins, which involves a correlation
time of the order of T2e‘ The limits on the integral may then be taken

as infinity. This expression reduces to
2
fdt' Cy' = -0 (B - 7)(Tr I,9)W (72)

where

. (73)

5=
C.
0
[l
Ay
=
]
‘_J
'
8



We now use the sphere of influence model to deduce an estimate for
equation (73). In this limit only i =k terms will contribute

significantly to equation (75) and one gets

N
™ % ~ -iw T
o ) [ars.S.. (e
= zi~zi
2 Ve
W, =€ i=1
1 2 2 ’
Tr SZ
where ¢ was defined in equation (64). We now assume the approximationz5
"i\L , 00 ~ —i&nT o0 ~ -i(DnT
T /dT S,35,1 (M) e zTrfdf 5,5, (7) e .
i=1 - -0

Using equation (68) we then have

2
Wy~ %— gw) - (74)

If one assumes a lorentzian lineshape,26 equation (74) leads to the
same result as reference 25. W; as defined by equation (73) is the
transition probability per unit time resulting from the fluctuation of
the z-component of the electron spins due to the electron dipole-dipole
CKgS) interaction. The effect that this term has on the nuclear
relaxation has been discussed in reference 25.

Cy' is found using the same arguments used to obtain equation (60).
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y = -1w1 Ma - 7) Tr{ﬂ:s ("), s, (+)], :KIS(t'][ g(t), I
[[s (t"), JCIS(t")] s (t E‘ICIS(t), 1 ]}
(-7t [[IZ, JCIS(t"')],' sx(t"ﬂ, s, (81| (35 (%) 1]

Making the same assumptions which led to equation (61), and

integrating Cj,' as indicated by equation (70) yields

n
t 1 t"
el + -
j dt Cy' = IJijdt' fdt"fdt"'
J: ) O
1 ia)n(t"-t) -1(1) (t‘" t))
' 1
x 8, (t )Sy(t ) -e
n
ﬁ‘ t t! t"
2 m. \ 2 + - [ " A "
- w (B - 7) ®f T e IjIjj dt'fdt jdt

1 0 0 0

J
J.Ln)n(t"'-t) -iﬂh(t"'-t)>
+ e

x 8 (£")5, (&' >(e' L)

Integrating by parts as done before, and using equations (64), (67),

and (68), equation (75) becomes

fdt c,' = -A(Tr Izz) (W - W) (o -7) +a(Tr 12) W+ W) (B -(7%)
T

Combining equations (72) and (76) with equation (70) yields
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§%=-wl(a—7) - W (9 - ) {wnB-Aa- (wn-A))}

n

_i.w*' (@ +08) {“’nB+Aa— (wn+A)7} . (77)

D. Derivation of the Equation of Motion for the

_Electron Dipole-Dipole Inverse

Temperature, 7(t)

The derivation of the equation of motion for the electron dipole-
dipole inverse temperature, y(t), can be accomplished using the fact
that energy is conserved in the rotating reference frame for times t

satisfying equation (8), provided that
x> >

where ¥_ and V are defined in equations (31) and (32), respectively.

Then
a<ig> o \3f
3t =0 ="Tr ASZ + wnIz +JCSS St )
so that
2 2\ da 2 - 2\ ap °\2 4y
+A {Tr S £y 0 Tr X + Tr = =0, 8
( Z) at B ( z | at Fos) ae (78)

Substituting equations (69).and (77) into (78) and using

(Tr Iz2/Tr sza) = n/N, we get
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d o ? A°
L=+ E LW -7) + 2-w(8) (o - 7)
L ®r,”

+%%2A—)W- (@, -A){‘DnB - ta - (o -A)r}

+

Ei"'_A_) W (@ + A) {a)nB + 00 - (@ + A)V} (79)

where

(o]
2 TTCKéS)e
L Tr sz2

The term 2 is related to the linewidth of the electron spin resonance

L
line. Tt is found to belu"26

where M2 ig the second moment of the electron spin resonance line.

E. Effects of the lLattice Reservoir

The effect o~r the lattice vibrations (phonons) is introduced by
assuming that eacn spin-lattice relaxation process takes place exponen-
tially with a.characteristic spin-lattice relaxation time, and that
these processes may bé added to the equations of evolution for a, B,

and 7.8’ 1k, 16, 24, 26 Thus equations (69), (77), and (79) become
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da _ _yO(a) (_or..-' y) + %iw‘(wn - ) {wns -t - (@ - {x)r}

® . - (B - 7) - wiw“(wn - 8) {wna - Mo - (o) - A)r}

n

—al)—‘L(wn+A) %B+m-(wn+A)7}-%—(B-BL) - (80p)
n n ’

& - 8% oy ) ¢ B -
= — A a - 7) + 2 =W, (B -7
dt ui? N sz 1
(0, -8) _
+ %- nwL2 W(w, - 2) {E%nB - Lo - (@) - AJ{}
+ A
+%(i)n_+_2_)w+(wn+A){wnB +Aa,-(a>n+A)7} '?rl—(7'BL)'
4 D (80c)

where Te, Tﬁ (see section II F), and TD’ are the spin-lattice

relaxation times of the electron-Zeeman, nuclear-Zeeman, and electron

dipole-dipole reservoirs,B’ 14, 16, 24, 26

respectively, and BL is the
inverse temperature of the lattice. Note that the electron-Zeeman

inverse temperature does not apprcach the inverse lattice temperature,
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w
but the "colder" temperature 75 By, This is a result of the transfor-

mation to the rotating frame which affects the electron Zeeman
interaction, but does not affect the nuclear Zeeman and the secular

electron dipole-dipole interactions.

F. Nuclear Spin Diffusion

The nuclear dipole-dipole interaction, M&I’ was lgnored in the
derivation of the kinetic equations governing the solidveffect. This
interaction becomes important if N << ﬂ, for there will be large
regions in the solid where the electron-nuglear dipole-dipole interactibn
is very small compared to the nuclear dipole-dipole_interaétion. The
nuclear magnetization in these regions will be spatially transported by
energy conserving transitions resulﬁing from the terms Igli of :KII'
This prbcess is called nuclear spin diffusion. Only a brief discussion
of spin diffusion in the rapid diffusion limit will be given here and
will closely follow the treatment given by Abragam and_Borghini.lu‘
Mbre elaborate discussions of spin diffusion are given‘elsewhere.27'31

Each electron can be considered to interact only with the nuclei

within its sphere of influence having a radius R defined by

| R = (l% 1\1)-1/3 s . (81)

vhere N is the number of paramagnetic ions per unit volume. An

important parameter is the pseudopotential radius b, which is the
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distance from the electron at which a nucleus has approximately the same
probability of being relexed by the electron as of being flipped by the

8
m&l terms due to neighboring nuclei, and is given by2

b = 0.68 (%)l/“ . (82)

The term C is

2 2.2 T
C =2y "y A e , (83)
10 ‘e ‘n l*‘“nzTee -

9

p=12_, (8k)

Here & is the average distance between nuclei and T2n is the nuclear
spin-spin relaxation time. Another important psrameter in spin
diffusion theory is the diffusion barrier radius bg, definedl§ as the
distance from the paramesgnetic ion at which the magnetic field at the
site of the nuclear spin due to the ion is equal to the nuclear line-

width and given very approximately &as

by = a (%)1/5 . (85)

28,30

The regime of "rapid diffusion” defined by the inequality
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a, b << b, < R, _ , | (86)

corresponds to the conditions for the crystals and temperatures reported
in this thesis.
Detailed calculationslu’28’29’30 show that in the limit of rapid

diffusion, equation (80b) can be written as

B _ y(F-8,) 8
= (B - Bo) (87)
where
W=W1+W(wn+A)+W'(wn-A)+%— (88) -
n
and

- - _ a -A - A- |
Bo=%—(%—)[BL+£:(W-.-W+)a,+(wl+—n—wr-:-—W'+wn+ w*)y (é)
9

n

The bars correspond to angular and radial averages within a spherical

shell whose radius r 1is bounded by
bo<r<R.

2
Tn this limit and within these approximations, ¢ , defined in equation

(6h),.becomes
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and is the appropriate expression to use in equations (67), (T4), and

all three equations (80). Henceforth, we assume that this is done, and
+ —

omit the bars over wl and W™, but not over ‘Tn. One can show

thattt 30,31

:l—-=———+-——- ) (91)
T

The first term is due to nuclear rzlaxation by the desired paramagnetic
impurity (the samarium ions, in our case), and the second term is
"leakage" relaxation by other impurities and by other modes of spin-
lattice interaction. The physical picture is that the felaxation and
rf transitions caused by W tgnd to drive the inverse temperature B
to a steady state value given by SO and at the same time the spin
diffusion mechanism attempts to keep the total nuclear ﬁagnetization
spatially homogeneous.

It is left to determine the measured spin-lattice relaxation rate,

l/Tn. In the absence of any radio frequency fields, equation (87) can

be written as

B _ ooz (LN (F - .
B -7 (E>(B B) (92)

n

The time evolution of 7y must be taken into account also, i.e.,
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2

dy _ n u)n I _ __l_ -
o . -(ﬁ ;I?)Wl OB -y (93)

The general solution for B exhibits two time constants. There are

several limiting cases for which the longer time constant can be easily

evaluated; this will be the measured Tp: One limit is

in which case
T =Tn.

n

A second limit is the situation in which

: 2
nw
2V (2w, > w, (=)
D @, n
dy

In this case 7 will come to quasi-equilibrium (i.e., T 0) in times

t such that -

Ty,

Nay |
L Wl o« ot <« wl'l, T, -

Thus, equation (93) may be solved for 7, which is then substituted

into equation (92). The latter can be rewritten as

B _ 1 (-
it " T (8 - B)



\

where
W
= 2 (94)
n Tn nw,
1 + W, T
NwLQ 1 D
It
2
@
1 > EuE_ wl b
Neog 2

equation (94) becomes

1
R (95)
Tn TII
On the other hand, if
2
noy,
1 <« ( ’ 2>W1TD,
NCDL
one obtains
2 B
N
1 !
oL =, (%6)
Tn Tn n(l)h ,D

Combining equations (91) and (94), we get



ko

W . :
1 _bxoNe 1, 1 )
1+ ——=W,T
2 1D
Nooy,

which is consistent with the crystals and temperatures considered in

this thesis. The last term on the right side of equations (9%) through

(97) is a result of the coupling of the nuclear spins with the electron
dipole-dipole reservoir.25 We note that l/TD is often takenlh to
be 2/Te-



G. Theoretical Dynamic Nuclear Polarization Results

The dynamic nuclear polarization, usually expressed in terms of

the steady-state enchancement E defined as

can be deduced from equations (80) and (87) - (89) by setting all the
time derivatives equal to zero and solving for E. The cumbersome
general expression can be deduced from Cremer's Rule and can be found
in appendix A. We find E for several limiting cases.

Consider first the case of well-resolved solid effect transitions,

+
that is, W~ wl;éo; wt, w°

1]

0. One finds for (w, * A) =~ O the

result
_ We 4t
E = p (98)
1+ W (1 += 2
n N T,

where T, 1is the measured nuclear spin-lattice relaxation time given
in equation (97). For saturating microwave powers (wiTn >> 1),

equation (98) reduces to

- ®e
"oy
k= o ' (99)

1+ 2 %

N T,

n Te -

The term TT has been called the leakage factor in the litera-
n

ture.t2s10  If this term is small compared to unity, then equation (99)

becomes

L1
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E=t(ie_. (100)
®n

The nuclei have in effect been given the thermal equilibrium temperature
and polarization of the electrons. This first 1limit,to which equation (98)-
épplies, corresponds to the experiments reported in this thesis.

A second limit is that of unresolved solid effect transitions,

ignoring all leakage factor effects. In this case, one can deduce

- = 2 Tpn Mo, T
We , - + = A D e D = - =
1+u-;;(w T, -WTy,) +wlTn+w°TeEL+azL T;+<J_ +53%— T;>(w;‘LTn+w Tn +W Tnz'
E=
» 2
- = N
(L+Wy T, +W T, +W Tn)(l +w°Te+u—)2 WOTD)
, : L

This is the Abragam and Borghinilh result with the addition of the W,
factors.l6’25 "At low microwave powers, this becomes
(De (W_ - W+ )-T-n

E= 1+ — —
WOp l+WlTn

b

whereas, for saturating levels of microwave power, one gets

The leakage factor corrections to these equations requires the full

solution to equations (80) and (87) - (89) and is given in appendix A.



TII. EXPERIMENTAL APPARATUS AND PROCEDURE

Figure 1 is a picture of the experimental apparatus used in this
study. The experimental equipment consisted of a nuclear magnetic
‘resonance (NMR) spectrometer, an electron spin resonance (ESR) spectro-

meter, an electromagnet, and a cryogenic system.

A. Nuclear Magnetic Resonénce Spectrometer

The NMR spectrometer is shown schemafically in figure 2. The NMR
detector was of the "Q-meter” type. A detailed discussion of the theory
of operation and of the 1imitations of this detector is given in
reference 32. The rf oscillator was a constant voltage device, and a
ramp generator was used to sweep the frequency. A "]ine-stretcher"
was used to maintain a half wavelength line between the sample coil.and
the varisble capacitor that made up the tank circuit of the "Q-meter."
The sample coil consisted of two turns of teflon coated number 36
'copper wire wound on the crystal. The coil leads were fed through a
small hole drilled in the end wall of the microwave cavity and connected
to the coaxial ceble. Care was taken to have the plane of the sample
coil parallel to the microwave magnetic field to prevent coupling of
the microwave power out of the cavity through the NMR spectrometer.

Standard lock-in detection was used to record the NMR spectra.

B. Electron Spin Resonance Spectrometer

'Tre ESR spectrometer used in this experiment is shown schematically

in figure 3. The spectrometer was & standard circuit employing

b3
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best available copy.

Figure 1.- Apparatus used in the DNP experiments.

h
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Figure 2.- Block diasgram of the nuclear magnetic resonance spectrometer.
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Figure 3.- Block diagram of the electron spin resonance specfrometer.
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a three-port circulator to utilize all the power furnished by the
klystron. The klystron was & Varian Model V58 reflex klystron rated at
500 milliwatts‘at X-band. The klystron frequency was locked to the
resonance frequency of the sample cavity using an automatic frequency
control circuit similar to the Berry and Benton circuit.”” A

sketch of the cryogenic prdbe containing the sample ca?ity and variable.
coupler are shown in figure h. The sample cavity was machined from
brass and gold plated and resonated in the cylindrical TE 111 mode. A
wire was soldered on a diameter or the sample cavity. to short one of the
two degenerate resonant modes.: A small cylindrical section of teflon was
screwed to an end wall of the cavity and used as a crystal mount. The
varisble coupler used was similar to that diécussed in reference 34.

The sample cavity and variable coupler were attached to a length of thin
wall stainless steel type 304 waveguide, and this was soldered to a
flange which bolted to the top of the cryostat. Standard lock-in

" detection was used to record the ESR spectra.

C. Magnet
The magnet employed was a Varian 23 cm electromagnet having a

6.7 cm air gap, with Fieldial(R) and Hall probe control. Coils were
positioned around the pole pieces to provide the magnetic field

modulation necessary for lock-in detection of the signals.

D. Cryogenic System

The apparatus used to measure and control the temperature of the

ligquid helium bath is shown in figure 5. The temperature of the helium
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Figure 5.- Schematic of the cryogenic system.
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bath was monitored by measuring the vapor pressure of the liquid helium
and converting the vapor pressure to temperature using the 1958 Helium-k

Temperature Scale.55 Temperatures below 4,2° K were maintained in the

8 liter helium dewar by pumping over the liquid with mechanical roughing

ptmps having a total pumping capacity of 10 liters/sec; A constant
vapor pressure was maintained by a manostat connected between the helium

bath and the roughing pump as shown.

E. Sample Preparation

The semples were prepared starting with the rare earth oxides
La203 and Sm203 obtained from the Lindsay Division of American Potash
and Chemical Corporation. Both the La203 and SmpOz had a 99.99 percent

rare earth purity. Both oxides contained the naturally occurring

isotopic compositions. The rare earth nitrates were synthesized separately

using reagent grade concentrated nitric acid in the reactions;
(Sm,'La)205 + 6HNO - 2(8m,la) (1\103)5 + 3H0 .

The pure rare earth nitrates were then added to reagent grade magnesium

nitrate in the reactions:

2(La,Sm) (NO3)3 + ZMg(NOz)p + 24Hp0 = (La,Sm)p Mgs(NO5)1p - 2LH0 .

The pure Sm and La double nitrate solutions were allowed to saturate at
room temperature and then mixed tc yield aqueous solutions of samarium

doped lanthanum magnesium nitrate (Sm:LMN). The doped solutibns were
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poured into beakers, placed into a desiccator having concentrated
sulfuric acid acting as a desiccant, and maintained at o° c.

Single crystals of the rare earth double nitrates weighing approxi-
mately 200 mg. could be grown in about 30 hours. The growth habit is a
flat hexagonal plate with the crystal symietryAaxis perpendicular to the
plate. The detailed crystél structure of these salts can be found

8,36

elsevhere.

F. Experimental Procedure

Smell slits were cut into the edges of the sample crystals to
align the two turn NMR coil.. The crystal was glued to the teflon
sample mount on the end wall of the microwave cavity and the probe
immersed in liquid helium. The samarium ESR line was located and
recorded. The angle © between the crystal symmetry axis and the
dé magnetic field was determined and found to be approximately 7° in
all but one case.

With the microwave power off, a thermal equilibrium NMR signal was
recorded by sﬁeeping frequency at a given temperature and magnetic
field. Thermal equilibrium nuclear polarizations at different temper-
atures and magnetic fields were calculated using this result and the
Brillouin function. With the dc magnetic field appvoximately 50 Oe
below the main ESR line the microwave power was turned on and a dynamic
equilibrium allowed to bé established between the various reservoirs.
The enhanced NMR signal was recorded by sweeping frequency. The dc

magnetic field was changed and &fter a few nuclear spin-lattice
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relexation times the NMR spectrﬁm again recorded. We measured the NMR
derivative peak-to-peak height using maghetic field modulation with a
peak-to-peak amplitude of 2.5 Oe and a frequency of 30 Hz. Because of
signal-to-noise problems, the thermal équilibrium MMR measurements had
‘'a relative error of 120 percent, while enhgnced NMR signels had a
relative error of ¥3 - 5 percent. |

The nuclear sbin—lattice relexation times were measured by
enhancing the NMR signal with microwave power, then turning the micro-
wave power off and recording the decay of the NMR derivafive peak.
Any frequency drift in the rf oscillator during the measurements of
T, was corrected by monitoring the frequency and applying a correctiou

voltage to the voltage-controlled oscillator. The data was plotted on

semi-log paper and Tn determined from the slope.



IV. EXPERIMENTAL RESULTS

The experimental results for eight samarium doped lanthanum
magnesium nitrate crystals are summarized in table I. The positions
of the hyperfine lines of Smll+7 and Smlh9 were deteminedl9’ 3T for the
applied magnetic fields a.nd_ frequen_cies 1isted.in table I and found to
be far removed from the solid effect and main ESR transitions,. and
thus they should have no effect on the DNP_process except possibly
through leal;age relexation Tpi.

The magnetic field H, reported as item 3 in the table is the
magnetic field value halfway between the enhancement extremms and is
assumed to be the field at which the main ESR transition occurs for
the frequency reported as item 4, The value of Hy reported is within
15 Oe of the value measured when the ESR tranéition was located and
recorded. The variation of the position of the main ESR line is due
to the backlash in the field control.

The angle, 6, between the crystal synnne’dry axis and the applied

magnetic field was determined using the values

0.736 *0.005

gll

g, = 0.363 $0.10

reported in reference 38. The value for g, was measured for a number
of crystals and found to have a value of 0.732. The value of g;
could not be measured due to the field strength limitations of the

magnet. The parameter g of the electronic system is defined by

25



TABLE I.

Summary of experimental parameters:
in oersteds halfway between enhancement extrema;
degrees between the applied magnetl
item 7 is the mweasured nuclear spin-

ESR (NMR) transition; item 10 is the satellite separation in oersteds, measured and calculated;

item 13 gives the percent dilution of samarium in the crystal solution and the measured dilution in the crystal;
6, 7, and 13;
discussed in the text;

1.

O @ =~ O\

5

1.
12,

13.

1k,
15.
16.
7.
18.

CRYSTAL _
TEMPERATURE (°K)
Hy (0e)

ve (GHz)

0 (degrees)

Te (sec)

T, (sec)

o, (00

aHpp (0e)

SATELLITE SEPARATION (Oe)
Measured
Calculated

Elax

Emax

SAMARTUM DILUTION (%)
Solution
Measured?

{(L+n 'I‘e/NTn)

E' .

So

E' (1 + n Tg/NT,)

Ejdeal

8Taken from figure 1l.

Ttem 1 is the crystal desigpnation; item 2 is the measured temperature in degrees Kelvin; item 3 is the magnetic field
item 4 is the microwave frequency in gigahertz used to induce the forbidden transitions; item 5 is the angle in

¢ field Hy, and the crystal symmetry axis; item 6 is the electron spin-lattice relaxation time in seconds taken from reference 39
lattice relaxation time unless otherwise noted; item 8 (9) is the measured derivative peak-to-peak line width in oersteds of the
item 11 (12) is the meximum positive (negative) enhancement measured;

item 14 is the leakage factor calculated from items

bMeasured samarium concentrations vere made by

X-ray flourescence.

item 15 is the infinite power enhancement, calculated from the d dence of enh nt on microwave power, neglecting tbe leakage factor; item 16 is
item 17 is the enhancement corrected for leakage; and item 18 is the ideal enhancement and is discussed in the text.
1 2 3 b 5 6 7 8
k.23 3,06 1.8l 1.87 4.22 h.22 3.1 1.85 Lk.22 3.0 h.24 3.49 2.6  h.o21
8915 8925 8903 8900 8952 8926 8908 8898 8908 8872 8935 8918 8879 8912
———- 9.112 9.330 9.121 9.155 9.156 9.128 9.118 9.120 9.089 9.147 9.127 9.081 9.110
o 0 7 7 7 6 6 6 7 7 7 7 k{ 8
2.5 x 10-5 0.0018 0.10 0.10 2.5X 1079 2.5 x 1077 0.0015 0.10 2.5 x 1079 0.002 2.5 X 107 3.1x 1074 o011 2.5 x 1075
42 1008 2508 200 15 152 1002 250% 158 1082 15 57 54 46
3.5 5.2 -—--- 5 5 5 5 5 5 5 6 6 6 k.6
JR— I T & 10 12.5 10 ———- 14 9.5 8.4 —.—- 8.7 c——-
73 T4 —-e T Th T2 T4 T4 T4 5 T T 75 78.4
———- Th.k .- Th2  TH6 ™ T T Th K Th.3 4.3 4.3 Th.2
6k 8 22 38 36 23 50 17 56 W7 30 64 95 35
64 80 “eem 35 4o 2k 50 17 56 181 32 79 122 35
2. B2 08 % o8 5 o8 1 o o o3 oo
——- —— 06 5 1.01 1.01 1,05 2.2 1.0l 1.04 1.01 1.0k 1.6 -ee-
——— 117 23.8  ---- 197 co-- 7 —— 187 202 100 115 B
———- 0.4 0.070 ---- k.21 —— 0.52  ---- 2.40 0.422 2.45 0.81 e e
R ———— 245 190 19 ——— 81 am-- 189 210 101 120 PO
2k0 2ko 240 240 2ko 2uo 240 240 240 ) 240 240 240 240 240

HG



where BM. is the Bohr magneton. For axially symmetric crystals like

Sm:IMN, one can show »19
- —1/2
g(e) = [gi coscO + gf singe] .

There was indication from the 1iterature39 that the semarium ion

is hlghLy reJected by the host lattice of IMN. A single crystal of
samarium magne51um nitrate was grown and used as a standard to determine
the actual concentration in the Sm:IMN using X-ray fluorescence. The
solution and measured dilutions of Sm:IMN for each of the crystals is
listed as item 13 in table I. ‘The measured dilution of samarium in IMN
was used to calculate the leakage factor % ;ﬁ, which occurs in the
denominator of equation (98). The electron spin-lattice relaxation
time Tg was calculated from the expression

L -sure13x107 19 4 1.6 x 1610 ¢~/

e

(101)

which was determined experimentally by Larson and Jeffries39 for
dilute Sm:IMN in the parallel orientation under conditions similar
to ours. The crystals we used were not all in the parallel orienta—
tion when the data was taken, but Tg for Sm:IMN does not vary

- Lo
appreciably in this temperature range for angles © S 100.
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A reproduction of the derivative of an ESR absorption signal is
given in figure 6. Most of the crystals used in this experiment
exhibited a similar asymmetry. The derivative peak-to-peak values
AH;p of the ESR absorption line for the crystals are listed in table I.

Figures 7 and 9 are enhancement curves for two crystals. The
enhancement is the ratio of dynemic to thermal‘equilibrium proton polar-
ization. The solid lines are smooth curves through the data points.
Figures 8 and 10 are the variations of the peak enhancements as a
function of microwave power for the same two crystals. It is evident
that the pesk enhancement is Limited by microwave power. The enhance-

ment versus relative microwave power data was fit by computer to the

equation
E=E' S (102)
S+ SO
This is equation (98) expressed in terms of E (= E/BL) and E'
defined as
%e
E' = — 0 - (103)
1+32
N T,

(The one (1) in the numerator of equation (98) is neglected compared
to other terms in the numerator.) S is the microwave power in
arbitrary units (maximum experimental power corresponds to S =1),
and S, is a constant determined in the computerized least squares

fit.
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0 Oe

Figure 6.- The derivative of the ESR absorption line for crystél L
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Figure 7.- Enhancement curve for crystal 2 at 3.06° K.
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"Figure 8.- Enhancement of the polarization peak as a function of
relative microwave power for crystal 2.

65



200,
CRYSTAL 6
T=3.0°K
1501
100L.
501-

8880 8900 8920

-100}-

—1506.

—200.L

Figure 9.- Enhancement curve for crystal 6 at 3.0° K.
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Flgure 10.- Enhancement of the polarization peak as a function of
relative microwave power for crystal 6.
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The values of E' and Sj determined by the computer fit are
given as items 15 and 16, respectively, in table I. The curves dréwn
in figures 8 and 10 are equation (102) using the E' and S, values
fhus determined.

The experimental peak enhancements can be compared to the ideal

enhancement, Eideal’ which is the ratio of thé electron and nuclear

Larmour frequencies, that is,

We o
Eiqeal = & 7 (204)
by correcting for the leskage factor (nT./NT,). The result of this

correction is given as item 17 in table I.

The nuclear spin-lattice relaxation time, T, was measured as &

function of bath temperature between 1.6° K and 4.2° K at a constant
magnetic field value of 8970 Oe using crystal 7. These data are
‘shown in figure 11. |

A theoretical enhancement curve can be drawn if a line shape
function for the ESR absorption is assumed. Equation (98) can be

written in the form

1+ E'(ii g(ai)
= \So

E = g(0)

' *(’s%)gg( @H;

(105)




0.07.
0.06}~
0.05}
0.04
1 -1
T, (sec™)
0.031-

0.02}

0.01

T(K)

‘Figure 11.- The inverse of the nuclear spin lattice relaxation time
of crystel 7 versus bath temperature for H = 8970 Oe.
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using the terms defined in equations (102) end (103). We use here
the shorthand notation g(AH) for glw, ¥ A) which appeared in
equation (67). Equation (102) was written'for the peak enhancement

at g(0). The curve in figure 12 is equation (105) plotted for
érystal b with meximum microwave power (S =1 in our units), assuming

a Caussian line-shape function2®

glam) _ -2(am)?/(aiE,)? (106)

with parameters from table I for crystal 4. The circles are the

measured DNP enhancements.



65

40

30} -

10—

Figure 12.- Theoretical enhancement curve assuming a Gaussian line
shape for the ESR and the experimental data for crystal 4.
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V. DISCUSSION OF RESULTS AND CONCLUSIONS

The major objectives of this research were to derive the equations
governing the dynamic nuclear polarization by the solid effect using
the spin temperature theory (egqs. (80)) and to test this theory in the
limit of well-resolved solid effect transitions. Single crystals of
samarium doped lanthanum magnesium nitrate were used#since the solid
effect transitions of the samarium ion in the host lattice of lanthanum
magnesium nitrate are well resolved from the main ESR transition.

The theory predicts a maximum, "ideal" enhancement E,. .. given
in equation (104 ) for complete saturation at the center of the solid
effect trensition with negligible leakage. For the situations realized

in this thesis
Eidea.l = 2’-!-0.

Data of the peak enhancement as a function of relative microwave
power were obtained for crystals 2 through 7. In each case, the data
indicated that insufficient power was available to completely saturate
the solid effect transition (see, for example, figs. 8 and 10). The
meximum enhancement can be predicted from this data if it is assumed
that the enhancement as a function of power is'given by equation (98),
which was rewritten as equation (102). The extrapolated value of
infinite microwave power enhancement (E' in eq. (102)) is given as
jtem 15 in table I. Saturation was almost complete at 1.81° K for

crystal 3 since the observed peak enhancement was 22 and the value E'

66
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'Cwas 23 8 After the leakage factor was taken 1nto account, the extrapo-ﬂi
lated maxlmum enhancement (1tem 17 in table I) was 245. This value is
well w1th1n experlmental error (+2O percent) of the theoretical value,
2&0. The extrapolated max1mum enhancements of crystals 4 and 6 were
: 20 percent lower than Eldeal even when corrected for leakage, wh1ch 1s":
the lower limit of our experlmental error. The remalnlng crystals were .
not anahyzed as above, or showed low enhancements The reasons for thei
‘latter are not understood. o -
The theory predlcts that for well-resolved SOlld effect trans1t10ns.:

~the enhancement extremums should be symmetrically s1tuated about the o

- main ESR trans1t10n and at

Since it was difficult to establish the position of thencenter of the i-
main ESR transition'with respect to the positions of the peak-enhance-."
L ments,‘the solid effect separation (labeled as satellite separation, |
item 10 of table I) was used. This separation in oersteds should be
2H, 5;

This value was calculated and is shown in table I. The measured
separation isvinwexcellent agreement with the calculated separatlonv
for each crystal-and'is_well uithin the 5 Qe variation due/to,backlash
in the incremental fleld”controller. | | .’

The.theory_also predicts that for saturation conditions the abso-

lute value of the enhancement extremums should be the same, that is,
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Fpax = Fnax -

A comparison of items 11 and 12 in table I indicates that this isltrue
for most of the crystals and temperatures. However, in the values for
_crystal 6 at 5.00 K and crysfal T af theltwo lower temperatures, Eiax
is up to 22 percent less thgn E;ax' This behavior has been observed

before9 and wés attributedAto random drifting in the microwave
apparatus. | | |

The theoretical exéression for the steady-state enhancement curve
is a function of the ESR line-shape and microwave power. If these are
known, a curve can be drawn predicting not only the positions of the
enhancement extrerums but also the shape of the enhancement curve.
However, the ESR line-shape function was not computed from the measured
ESR derivative curve in this experiment. Instead, a theoretical
enhancement curve was drawn assuming a Gaussian line-sha.pe26 for the
ESR line and using the values of E' and §, determined from the
"enhancement versus microwave power data for crystal 4; this is shown
in figure 12 along with the experimental enhancement data for this
cr&stal. The enhancement curve determined in this way is very sensitive
to the derivative peak-to-peak width of the main ESR line.

The enhancement curves drawn through the experimental data in
figures 7 and 9 do not agree with the theory in the region between the
enhancement extremums. At approximately 10 Oe on either side of the
enhancement extremms, the value of the enhancement should be +1. This

deviation is attributed to the distorted line-shape of these crystals.



69

The theory of spin diffusion was incorporated into the sbin
temperature theory of the SOlld effect in order to account for the
nuclear spln-lattlce relaxation time. Only the case of rapid spin
diffusion wa.s considered; with the result that the nuclear spin-lattice

erelaxation rate should be given by equation (97), as can be seen from
the analysis in section IIF and the data in table II. If we assume
that there is no leakage relaxation (T,, ~ ) and since the first term
on the right Eide of equation (97) is negligible compared to,the last

term, then for crystal 7 we find

w2
1 n“n Te
Tn = — + =5 57
Wi N ~
14

where we have used the relation 2TD = Tg. The nuclear spin-lattice

relaxation time calculated from this equation results in times of the
order of 102 seconds at h;2° K and 105 seconds at 1.6° K. These
calculeted relaxation times differ from the experimentally determined
relaxation times by one order of maghitude at 4.2° K and three orders
of magnitude at 1.6° XK. This deviation may be due to other pare-
magnetic impurities in the crystal that would result in a non-
negligible leakage relaxation time. This mechahism would result in

a measured relaxation time shorter than the theory would predict.
Tnsufficient work was done to understend this discrepancy.

In conclusion, the equations governing the dynamic nuclear polar-

ization by the solid effect using the spin temperature theory have
»been derived. For well-resolved solid effect transitions at microwave

frequencies w= We g Wy the expression for the steady-state
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TABLE TI.- NUCLEAR RELAXATION AND SPIN DIFFUSION PARAMETERS

. Samarium

dilution (%)%
R (om)
n/N
T, (sec)®
T, (sec)®
T, (sec)

D (nm?/sec)

. C (nm6/sec )3

a (om)
b (mm)
%o (nm )
Wy (sec™1)

5 ‘
= 1 (seé'l)

Ny

<_i> (sec™1)®
T,

FOR Sm:IMN
0.1

5,2
2l , 000
2.5x10™2 - 0.10
| 3.6%10°°
1.3%x10°0
930
7.2x10°3 - 1.8x10°°
0.2
3,6x1072 - 4.5x107)
1.2

2,0x1072

3.1 X 107

209)(10-5 - 7-2 X10-9

- 8y_rgy fluorescence.

Pprom reference 39.

1.1

2.4

2,200
2.5x1077 - 0.10
3».6x10"8 |
4.3x10°6

930

7.2x10"3 - 1.8x1076

0.2

3.6% 1072 - 4.5x10"2

1.2

2.2x107*

3,1 x 107

3.2x10°% - 7.9x10°8

CEstimated from ESR peak-to-peak linewidth assuming that ESR
line is completely.,homogeneously broadened.

dpor T, >> 1.

epstimated from equation (91).

T0
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enhancement differs from the expression obtained by the rate equation
approach by smell terms which become 3zero at ='we + w,. The
maximum énhancements extrapolated with the theory from those obtained
experimentally agreé with‘the jdeal enhancement within experimental
error for three of the crystals. The calculated satellite separation
was within 6 percent of the ‘measured separatioﬂ for each of the enhance-
ment curves, and the peak positive and negative enhancements were equal
for all but two of the crystals. These results indicate that the spin
temperature theory is.é quentitatively correct approach for the
description of dynamic nuclear polarization by the solid effect for

well-resolved solid effect transitions.
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VII.  APPENDIX

Complete Expression of the Steady-State Enhancement

A.
The complete expression for the enhancement of the nuclear polar-

ization can be obtained £rom equations (80) by setting all the time

derivatives equel to zero and solving for using Cramer's Rule.

The result is
E:i:g
B, Q
where
—[we on-B pTe n(‘bn"A)gTD
P=1+WT|—+ o=+ —
[ we wp+b 1 Te o (o + 8)% Tp
+ W (- — + ™ rET R 5 —
Tn wL Tn
WD (1 = = |+ W T L+ T =
2_Te N w2 T
.’ L Tn
- = - Awe T w2 T
+_w°Te(wlTn+w+Tn+w'Tn)1+ e D L
of Te N"%Tn

T
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and

- To o (0p - 8)° Tp
Q=l+WT |1+l 2400 =
n N N 2 T
Ty o, n
- T n(a)n+A)2TD‘
+ WiT l+_%_—e-+ﬁ 5 =
n T, @ Ty
[ Lén
Tyl + 5 =3 ==
wLTn
: A2 T — _
N D - o+ -
+one <1+:§E;>(1+wlTn+WTn+WTn)
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