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DYNAMIC NUCLEAR POLARIZATION

IN SAMARIUM DOPED LANTHANUM MAGNESIUM NITRATE

by

Charles E. Byvik

ABSTRACT

The dynamic nuclear polarization of hydrogen nuclei by the solid

effect in single crystals of samarium doped lanthanum magnesium nitrate

(Sm:LMN) has been studied theoretically and experimentally. The equa-

tions of evolution governing the dynamic nuclear polarization by the

solid effect have been derived in detail using the spin temperature

theory and the complete expression for the steady-state enhancement of

the nuclear polarization has been calculated. For well-resolved solid

effect transitions at microwave frequencies - mwe + an, the expression

for the steady-state enhancement differs from the expression obtained by

the rate equation approach by small terms which become zero at

) = we + n. Experimental enhancements of the proton polarization

were obtained for eight crystals at 9.2 GHz and liquid helium tempera-

tures. The samarium concentration ranged from 0.1 percent to 1.1 per-

cent as determined by X-ray fluorescence. A peak enhancement of 181

was measured for a 1.1 percent Sm:LMN crystal at 3.0° K. The maximum

enhancements extrapolated with the theory using the experimental data

for peak enhancement versus microwave power and correcting for leakage,

agree with the ideal enhancement (240 in this experiment) within

experimental error for three of the crystals. The calculated satellite



separation was within 6 percent of the measured separation for each of

the enhancement curves and the peak positive and negative enhancements

were equal for all but two of the crystals. The nuclear spin-lattice

relaxation time was measured for one of the crystals between 1.60 K and

4.2° K. To account for nuclear spin-lattice relaxation, spin diffusion

theory in the rapid diffusion limit was incorporated into the results

of the spin temperature theory of the solid effect. The experimental

results indicate that the spin temperature theory is a quantitatively

correct approach for the description of dynamic nuclear polarization

by the solid effect for well-resolved solid effect transitions.
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I. INTRODUCTION

In 1953, Overhauserl'
2
proposed that the polarization of nuclei in

a metallic solid could be changed from its thermal equilibrium value

through the contact hyperfine interaction of the nuclei with the

conduction electrons by saturating the electron spin resonance transition.

The idea of dynamic polarization of nuclei was soon extended to non-

metallic materials.3 -6 Experimental verification of dynamic nuclear

polarization in metals was reported in 1956.7

Dynamic nuclear polarization (DNP) in ionic solids can occur if

paramagnetic nuclei interact with nearby paramagnetic atoms through the

magnetic dipole-dipole interaction. This is called DNP by the "solid

effect" and is the subject of this thesis. Two approaches have been

used to describe the dynamics of the "solid effect": the rate equation

approach of Jeffries and co-workers8
-
1 1 and of Borghini,1 2 and the spin

temperature theory.1 3
-
1 7 The rate equation approach assumes that the

"solid effect" may be described completely by following the time

evolution of the populations of the electronic and nuclear Zeerman levels.

This approach can lead to erroneous results if the spins are strongly

interacting. The spin temperature theory includes the effect of the

strong spin-spin coupling as well as the Zeeman interactions and the

lattice in a relatively simple way. Within certain limits, to be

discussed later, the Zeeman and the spin-spin interactions and the lattice

can each be assigned a thermodynamic reservoir having a temperature and

specific heat. The reservoirs exchange energy with each other through

1
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the applied radio frequency fields, certain dipolar interactions and

spin-lattice interactions. The expression for the, steady state nuclear

polarization resulting from the spin temperature approach reduces to the

expression obtained by-the rate equation of the Zeeman populations

(except for a small correction term) in the limit where the electronic

resonance linewidth is smaller than the nuclear resonance frequency.

A material exhibiting this limit is diamagnetic lanthanum magnesium

nitrate in which a small percentage of the lanthanum ions are replaced

by paramagnetic samarium ions. At about 9 kOe, 9.2 GHz, and liquid

helium temperatures, the electron spin resonance linewidth of samarium

in this crystal is of the order of 5 MHz and the nuclear resonance

frequency of the protons in the waters of hydration is 38 MHz. This

thesis will compare the results of measurements of the dynamic polari-

zation of protons in a number of single crystals of samarium ions in

lanthanum magnesium nitrate (Sm:.LMN) with the results of the spin

temperature theory of the "solid effect."



II. THEORY

A. Basic Assumptions

A derivation of the equations governing the DNP by the "solid effect"

will be made in this section. The density matrix and spin temperature

theory will be the approach used in this derivation as opposed to the

rate equation approach.8
-
1 2 The spin temperature theory has the

advantage that the effects of the dipole-di-pole interactions may be

included, and yields analytical expressions for the lineshapes. A

detailed derivation of the "solid effect" using spin temperature theory

is felt necessary as (1) it is not available in the literature, (2) the

published equations governing the "solid effect" are either incomplete

or contain sign errors, and (3) all of the assumptions made are not

clearly stated. (Note in particular ref. 13-17.)

Consider a solid containing N paramagnetic ions per unit volume

(which will henceforth be called "electrons") having an effective spin

S = 1/2 and n nuclei per unit volume having a spin I = 1/2. The

effective Hamiltonian for this paramagnetic system when placed in a

homogeneous magnetic field which has a steady component Ho and a high

frequency component Yll(t) is given as1 9

=X SZ + IZ + XSS S + II + Iis + 3SL +IL + rf (1)

where the terms are the electron Zeeman, the nuclear Zeeman, the

electron dipole-dipole, the nuclear dipole-dipole, the electron-nuclear

dipole-dipole, the electron spin-lattice, the nuclear spin-lattice and

5
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the radio frequency interaction Hamiltonians. Explicitly, they are

XcSZ = Ye 

XCIZ = nf

CeSS = e 2 '

XII = 7n
2

3fiS = 7e 7:

N

Sj .H o

j=l

n

IZ *Ho

i=l

62 2 · Sj 
4) I- S rijS j · ij

h2 R3 Ik I- 3Rk (k Rk)(I k

k>l=l

te2

(2)

(3)

(4)

(5)

N n

e kl [ * I - 3kI (dISk
k=l Z=l (6)

(6)

N n

X lf = Yt $ (t) *S k + 7n l(t) 
k=l 1=1

(7)

where y (ye) is the nuclear (electron) gyromagnetic ratio, both

assumed to be inherently negative; f is Planck's constant divided by

2n; rij is the vector distance between the Si-th and Sj-th electron;

Rkl is the vector distance between the Ik-th and I -th nuclear spin;

dkz is the vector distance between the Sk-th electron and the I1-th
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nuclear spin; and ~l is the high frequency magnetic field interacting

with the electrons and nuclei. The 3SL and 3IL terms are discussed

by Jeffries.8

The following assumptions are now introduced.

1. The magnetic field H
o

is much larger than the magnetic field

experienced by each dipole due to the neighboring dipoles. The latter

field is called the local magnetic field.

2. The magnitude of the electron gyromagnetic ratio ye is much

larger than that of the nuclear gyromagnetic ratio, yn.

3. The electron and nuclear spin-lattice relaxation times, Te

and TnJ are very long compared to the electron and nuclear spin-spin

relaxation times, T
2
e and T2n, respectively, and there exists times

t such that

T2 e'T2n < t < Te,Tn'W] ' (N W 1)- (- W)-l, (8)

where the Wterms Wl,(N W1 )~( , ) will be discussed later.

4. The effects of the lattice may be ignored for times r,

satisfying the inequality (8) and the rate of energy exchange between

the various spin systems and the high frequency magnetic field Hl(t)

calculated. The effect of the lattice is then reintroduced.

5. The electron and nuclear resonance lines are homogeneously

broadened. 20

Consider the large constant magnetic field Ho to be applied along

the z-axis in the laboratory reference frame. Then
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N

sSZ = Ye Ho e Szj
j=l

and

n

Xz -= n fio H I (10)
Z=i

Define

%X ='H (11)
e eo

n = YnHo (12)

Sz - Sz(13)

j=l

n

-Iz = L I
z z (14)

Z=1

where we and w are the electron and nuclear Larmor frequencies,

and Sz and Iz are the z-components of the total spin of S- and

I-spins, respectively. Since 7e >> 'n, one has me >> ah; thus if an

oscillating field Hl(t) of frequency o is of the order we, then the

direct interaction of the nuclear spins with this field is negligible.

We apply this oscillating field in .a plane perpendicular to Ho, so

that equation (7) becomes
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N

'rf =e i 1 Z(Sk cos t +yk s ain t)
k=l

or

~rf = 2e i H1 (Sx cos at + Sy sin ct) ,

where Sx and Sy are defined in a fashion similar to Sz in equation

(13). Defining L = YeH
1

and noting the identity

e-iL zt Sx e+icz t = Sx cos Wt + Sy sin wt ,

then

XrCf ~= fij e z Sx e . (15)

It is convenient to write the various dipolar interactions as

N
JEss: ye2 7, rk

= e2 2 Z k (AkZ + BkZ + Ckz + Dk + EkZ + Fk) (16a)
k>Z=l

where

AkZ = zk Sz= (1 - 3 cos2 0kZ)

BkZ1 - 1 (= - 3 cos2 Okz)(S+S + S-s )

3 s -in k z + +
Ckl Sn Okl cos OkZ e k (SzkSZ + SzzSk)

Dkl = - sin cos eC k l (SzkS + SzZSk)Dk1 = 1 _ , e 8k I z 0k (16b)



8

+2i 3 E sin2 k

Ekl = -W; sin2 BkZ e k2 SkSi

Fk = - sin2 ek, e i SkSl' (16b)

where 8k2 and Pk, are the polar coordinates of the vector rkZ,

the z-axis is parallel to Ho, and

Sk Sxk - Sky

XIS and CII can be similarly written. The effective Hamiltonian now

has the form

X' = eSz + WhIz + 3SS 
+
MIS 

+
XII 

+
el

e
z Sxe (17)

where the prime indicates that the spin-lattice interactions have been

omitted. Note that the Hamiltonian has been written in frequency units,

i.e., = 1.

The time evolution of the system described by the Hamiltonian can

be determined from the equation of motion of the density matrix, p,

for the system. The density matrix obeys the relation2 1

:d = i[P., X'] (18)

again taking h = 1.

Following Redfield,2 2 we transform the density matrix by a unitary

transformation, R(t), to a frame of reference rotating about the
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laboratory z-axis at a frequency w. Thus

p (t) = R(t) p(t) R-l (t) ,

where p (t) is the density matrix in the rotating frame and

R(t) = e idczt (20)

We do not transform the nuclear spins because they are not subject

to saturating rf fields in these experiments. *See Wollan2 5 for a

discussion of this point.

The equation of motion for the density matrix then becomes

dPR R R
dt= i[p (t), Wt)I (21)

where

(t) = + Iz + Sx + (t) SS + IS + I I t) (.22)

and

A = e - . (23)

K I is not altered by the unitary transformation since

[(t), SCII = 

XSS and NIS are of the form
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R(t) 'SS R-l(t) =JCSS + SS

R(t) KIS R-l(t) = CIS + IS (24)

m

where the sums are over the values m = ±1, +2. JoS and XIo are the
Ss Is

secular parts of the dipolar Hamiltonians, i.e., those which commute

with R(t):

[ISI R(t) = SS R(t)] = , (25)

and S and IS are the nonsecalar parts of the dipolar interactions.

The nonsecular terms in equation (24) oscillate at frequencies +±, +±2

in the rotating reference frame and may be ignored as discussed by

Redfield 
2
and Goldman.

1 6 Then from equations (16) and (25)

N
0 2 k>2=1C -3 ~ r -

NXSS T. 'e kI3 I + Bz (26)SB e Vk
k>Z=l

and

N n

XIS /= /L /_kzSzkIzl + EklSzk + kSzkIZ (27)

k=l 1=l1

where

o 3 2
Ek2 = 7'e7n dk - 3 os k



ll

Ekl = - 7e7n sin OkI cos ekl e d3EkI 1 2 Ye~~~n kIdkI (29)

and the star indicates complex conjugate. The Hamiltonian in the

rotating frame is reduced to

XR = ASZ + hIz + LaSx + SS + +IS + ICII (30)

We define

= SzS + Iz + C
o z nI, Ss

and

V = LSx + IS + 3 I I - (32)

Then

3R = C+ V .

Transforming to the interaction representation by a unitary trans-

formation

pI(t) = U-L(t) pR(t) U(t)

where

U(t) e e

(33)

(34)

(35)

one has

dP = i[P , VI(L '~· vtido Iv 
dt

(36)
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where

VI (t) U-l(t)V U (t) . (37)

Equation (36) may be integrated and then iterated to obtain the form

t · tt1 t n_1

P(t)= pI(o) + ( i)n dt dt2 ... ' dt
n

X [[[... [EpI(), VI(tn)], VI(t. ] .) V (tlS (38)

and this result differentiated to obtain

F '.'''" +ii c t t
l

tn-l

dt 2 nL n=l 2 Jt-

Note that pI(o) = pR

The basis of the spin temperature theory is to assume at this point

that the density matrix in the rotating frame will have the canonical

form for times t satisfying equation (8). The justification for this

assumption is discussed in references 16, 22, and 24. For this system,

it is assumed that the commuting terms Sz Iz and SS can be

considered as thermodynamic reservoirs having inverse temperatures a,

i, and y, respectively. Each reservoir is considered to reach internal

equilibrium in a time of the order of its spin-spin relaxation time.
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Therefore, we assume that

-a(t)aSz - D(t)chIz - 7(tNSS

Tr -a(t)zSz - P(t)hIz - y(ts (4)
Tr e

The inverse temperature, a, is defined as

1

where k is the Boltzmann constant and Tez is the electron Zeeman

spin temperature. The inverse temperatures 3 and y are similarly

defined.

The electron-nuclear dipole-dipole reservoir and the nuclear

dipole-dipole reservoir have been ignored in equation (40) as well as

the off-diagonal part of the density matrix. The electron-nuclear

dipole-dipole reservoir (i.e., the SzkIzZ terms in equation (27))

contributes to the inhomogeneous broadening of the resonance lines and

is assumed to be negligible. This term will also give rise to a

barrier to spin diffusion and this will be treated phenomenologically

when spin diffusion is taken into account in section II F. The off-

+ 0
diagonal SzkIl terms in CIS are retained in V as a perturbation.

The nuclear dipole-dipole interaction may be ignored since its

frequency (-5o kHz) is very small compared to those of the electron

Zeeman, nuclear Zeeman, and electron dipole-dipole interactions in the

rotating frame (all 5 MHz). This term will be important only when spin
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diffusion is taken into account. The size of the contribution made by

the off-diagonal part of the density matrix is discussed by Goldmanl6

and for the time scale considered here, the off-diagonal part may be

ignored. With these approximations, we note that

pI(t) = pR(t)

The representation used for the electron system is one in which

RXS and Sz are diagonal. Since the nuclear dipole-dipole interaction

has been neglected, the nuclei are considered independent particles and

the representation used is one in which all the single particle operators

I2 and Izi are diagonal.

In the high temperature approximation, one has

pR(t) = - (1 - C(t)6Sr - (t) %z - Y(t) t)CSS (41)

where r is the normalizing factor. This approximation is necessary to

make the calculation tractable, and corresponds to the experimental

conditions encountered in this work.

Note that the electron and nuclear magnetizations along the z-axis

are proportional to the ensemble average of the operators Sz and Iz,

respectively. Using the density matrix, these values are found as

CSz> = TrpR(t)Sz

and I > = TrpR(t)Izz z
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where <> indicates the canonical ensemble average value and Tr

indicates a sum over the diagonal elements in a space that includes both

the electron and nuclear eigenstates. It follows that the time rate of

change of these expectation values are (in the high temperature limit)

d<S > dpR(t) 2 d
z =-Tr _ Sz _A- ~-LrSz2 (42)

dt dt dt

and

d<Iz> dP(t) -
= T r ITr (43)

dt dt dt

It can be noted from (42) and (43) that the changes in the magnetization

are proportional to the changes of the corresponding inverse temperatures

of the reservoirs. The calculation of the time evolution of the inverse

temperatures using equations (39), (41), (42), and (43) follows.



B. Derivation of the Equation of Motion for the

Electron Zeeman Inverse Spin

Temperature, a(t)

From equations (39) and (42),

-(ATrSz2 ) d 
dt

t

i Tr[PR, V(t)] Sz + (i)2 Tr dt'[R, Vt)], V(t Sz

0

+ (i) TTrfdt' t" [[[ , V(t")], V(t' , V(tX Sz

t t' t"

+ (i) ITr dt' Jit" dt"'

x p V(t"' )], V(t , V(t' (t Sz + ...

where the superscript I, indicating the interaction representation, has

been dropped. Assuming the trace and the time integrals commute, the

following terms must be evaluated:

C1 Tr [PR, V(t] Sz

C2 - Tr [PR V(t')], V(t Sz

(45)

C3 = ]Tr [ R V(t")] V(t') V(t S

C4 Tr [[p R, V(t"' )] V(tW)] V(t' ] V(t Sz 
·

Using the identity
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TrEAB C = Tr A[B,C] ,

one has

C1 = ~Pr [Sz, pR]v(t) = 0 ,

since

Sz, PR] = 0

Using the same identity

C2 = jTr ( V(t')]} {[V(t), SB]

oR(t) can be written in the following way

p = _-1 1 ( a - ) Sz (- - Y)JnIz - y

Recalling that

V(t) = lSx(t) + XIS(t) ,

where Sxy(t) and 3CIS(t) are in the interaction representation, we

have

2
C2 = l 

'

A(
m

- ) Tr Sy(t') Sy(t)

+ i wl n (3 - Y) Tr S(t) [IZ} (t')]

+ i y2lTr Sy(t) [Co, V(t')] (50)

(46)

(48)

(49)
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The second term is zero as can easily be seen using equation (46) and

noting that

Using

i Tr Sy(t) U[o V(t)] = d Tr Sy(t - t') V at'i

and integrating C
2

as noted in (44), we get

t

I dt'C2 =

0

t

-12A(a - ) fdt' TrSySy(t - t')

0
t

+ ywl adt' d TrS (t - t')V.
lO. dt' Y
0

(51)

The second term in (51) is also zero. This is shown by letting

T = t - t'; then

d Tr[Sy(t - t')V] = -adr
0

Tr S (T)3S = Tr
y is

Sy [ n.

L( kZ
Z=1

Tr [GlSxSy(T)

+ *

zk Z EkZ

since I
z

has no diagonal elements. Noting the identity

t

0

But

+ 5 (T) 5 )
52).

SzkI = (53)

[Sy(t), Iz] = o .



19

y(T) = - S X(T) sin AT + S (T) cos AT , (54)

where

X T T-is T

Sxy(T) =e Sx y e (55)

the remaining term in (51) becomes

t

-%/·dT d (T)]
0 t

=- j dT [TrSx (.r) Cos AT - TrS S (T) sin aT] 
dT X X

0

Note that

TrSxSy(T) = 0

since a rotation of A about the y-axis sends Sx .into -Sx and leaves

Sy(r) unchanged. Since the trace is invariant the result follows. Then

t t

-wifdT dd [TrSxSy(T)] = l fdT d TrSx x(T) sin AT
O~~~~0 0

The term TrSxSx(T) is proportional to the correlation function of the

transverse magnetization, with a correlation time ~T2e. Since t is

assumed to be very much larger than T2e, the upper limit of the inte-

gration may be taken to infinity. Thus

-0L dT d [TrSxSy(T)] = [TrSx(T) sin AT] 
dT T=O .ip~~(r loll
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since the correlation function is zero at T = o. Equation (51) is

reduced to

t c

dt' C2 =- 12 A(, - Y) dt' TrSySy(t - t')

0 0

Using exactly the same arguments as used above

t 0

adt' C2 = - (_ ) JdT TrSyy(T) cos AT . (56)

0 0

C3 may be calculated using some of the relations developed in

finding C2. Expanding C
3

we get

C3=-12A(a -r) TrSy(t") [Xis(t'), Sy(t)]

+ inl (1 - r) Tr IZ, CS(t"i ][(t )] Sy(t)]

+ iln ( - 7) 'Tr [Iz, QIs(t")1]Ces(t'), Sy(t)]

+ iY
1

TriCo, V(t")3 [V(t'), Sy(t)] + 0 (13) (57)

The first term in (57) can be written as

TrSy(t")[s(t'), Sy(t)] = TSy(t), Sy(t")J[Is(t')

This term is zero for the same reason that equation (53) was zero. The

second term in (57) can be written as

Tr[Iz, cIS(t)][sX(t), Sy(t)] = TrtSx(t ) Sy(t)], Iz CisW(t ) = 0
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since

Sx(t) ) S y(t)] 3 =I O 

The third term in equation (57) is easily seen to be zero by
iAS

applying the unitary operator e Z to the argument of the trace.

Since Sz commutes with Iz and (t), the rotation sends Sy(t)

into -S (t) with the result that
y

x I(t iX W I ) , Sy(t] = -Tr Iz IS(t [ s) , = t 0.

The fourth term in equation (57) when integrated over t" becomes

i7 l 1fdt" Trr[x,V(t" [IV(t'),Sy(t] = 7l TrV(t') - V(O)) [V(tt)Sy(t)]

= 7
1
Tr[V(t'), V(t')] Sy(t)

-7Y Tr V(t')[Sy(t), V] (59)

The first term above is obviously zero, and the second term can be

expanded to give

1 Tr V(t')[Sy(t), V] _= 2 Tr y (t), SjXIS(t') + [Sx(t'), Sy(t)]

+ Wl Tr Sy(t)[W S IS(t') + 0 (q 3)

The first term on the right hand side is zero for the same reason that

equation (53) was zero and the second term is zero using the identical

argument leading to equation (58). Therefore, to order of wl3, C
3
= 0.
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C
4

can be evaluated using arguments identical with those used in

evaluating C1, C2, and C3, along with the condition that the terms of

the order of Il3 and c3 and higher are neglected. The result is

C =- %y 2 (a - ) Tr[Sy(t" ), is(t [IS(t), S (t)]

+ iCn6 I -7) (Tr [[Iz, s(t)], S1(ti ]Ks(t'), sy(t)]

IS+T r ;Z , X·isiS
( t "

_
[Sx(t'), ) (60)

It is now assumed that each nuclear spin interacts with only one

electron. For dilute systems, this is an excellent approximation. Thus

the sample is broken up into N equivalent "spheres of influence,"

each containing one electron and n protons. In this approximation,

one has

n n
N N

ess = Sz E J Ij (61)
j=l j=l

where the summation is over one sphere of influence, and Ej is for the

jth proton referenced to an electron at the center of the sphere.

Integrating C4 as indicated in equation (44) yields
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= -A 2 (a - 7) Tr
1

n

LjlE 2 Ij
j =1

t

I dt'
j a~

o 

X Sx(t ') Stx)ec(t)i _ 

+ icwnl2 (1 - 7) Trni

n
j

j=l
I J12 I+Ir dl 

t'

f dt"

0

-iG n (t" - t'

Ii dt'
O0

t

f dt"

0

(t"' - t') -i( (t"' - t')

I (%) as

iWn (t" - t')t t'

I(n) = f dt' dt" e
0 0

I
0

and integrate this expression by parts

I(W ) = 171dt' ' dt"'
()t e (t" t ) t"

no 00

-i dti" n (t" - t')

dt" e Sx(t") Sx(t)

which reduces to

f C4dt

t"i

f dt"'

0

)]
t t

' dt'
0

We define

(62)

t":=t'

Sx(t"') Sx(t) t"=O

t II

dt"" Sx(t"') Sx(t)

X Sy(t") Sx(t)[eI
i

l
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t
IJc ) = i

(% %/dr'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~J
o

dt" Sx(t") Sx(t)

t t'

- iwS dt' jdt" e
nO 0

Integrating the second term on the right in the same manner,

t

I( = t'
n o

t'

f dt" S (t") Sx(t)

0

f1 t i (t' - t)

LEh2 

t

+ 12 dt' S (t') Sx(t) .

"'n. 0

The first term on the right of equation (62) is

n
N

- Y) Tr i I%
j=l

2

1 (a T-7) Tr
cn 

n

2

+ (n a
n2

IjI (I() + I( -w)
n3 

n

j=1
n
N

7) Tr J Ij =1
j=l

t

I2 I.J dt' Sx(t' - t)S
x

cos A(t' - t)

0

S(t' - t) Sx[co (CD + A)(t' - t) + cos (n - A)(t' - t
x x I n n )(6

(63)

-o 2 (a
1

X dt'

Sx(t") Sx(t) .
i' n (t" - t')

Sx(t' ) Sx(t)
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We use the same procedure to evaluate the second term on the right

of equation (62) as was used to obtain equation (63), and assume that

Ie.j2 may be replaced by an average over the sphere of influence of

2
the electron, i.e., an e such that

n

2 N j2 (64)

j=l

In section II F, we evaluate c2 for the conditions corresponding to

our experiments. Equation (62) becomes

C4dt = -A (a - W) 2 to () (Tr Sz 
N 'Un2

N n n z

A) n [ (Wn - A) + W n + A Tr Sz2 65)

- n Ni(n ) - W WA)n + ] rr S- (65)

where

2

W°(A) =L. g (A) , (66)

+ 2 w 2
W ( A) 2 2 g (n a) (67)

n, 2 2 n

The electron spin resonance absorption line shape function g(w) is

defined as
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2 Tr dT 'x(T) Sx cos oT'

g() Tr (68)
Tr Sz2

and normalized such that

cfda g(o)) = 2

The fact that

co 00

Tr Ij I dT SX(T) SX cos O(rT Tr f dT SX() SX Cos 0-

Tr Sz2 2 Tr Sz2

was used to obtain equation (65) from equation (63). W0 and W± are

the transition probabilities per unit time associated with the allowed

electron spin resonance transition and with the solid effect transitions,

respectively.

Combining equation (44) with equations (56) and (65)- (68) leads to

dt (1 n 2 E) () (a - y)
dtN 2

N A { }

NA W+(l n +)~ + 6- (n A) (69)

where n 2 is a correction factor to the allowed transition probability
N 2

n

per unit time due to the C
4

term in the perturbation expansion. Since

it is usually much less than unity, we drop it from this point on. The

terms C, B, and y in equation (69) are rigorously ar(O), (0o), and
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Y(0). For times t satisfying equation (8), they are approximately

equal to c(t), O(t), and 7(t), respectively, and we use this approxi-

mation henceforth.

C. Derivation of the Equation of Motion for the

Nuclear Zeeman Inverse Spin Temperature, O(t)

The derivation of the equation of motion for P(t) is similar to

the derivation of the equation of motion for a(t). Starting from

equations (39) and (43), we get

_On(Tr Iz
2

) dtdt
= i Tri[

R
, V(t)] Iz + (i)2 Tr dt' [PR V(t')], V(t3 Iz

0
t

+ (i) 3 TrJ dt'

t

+ (i) Tr fdt'

0

x IFrF, v(t""

We define traces analogous to the

C1 1 = n Tr R , V(t)] I
z

r dt" ,[R V(t")], V(t' , V(t I

f dt" fdtt"
o O

V(t", V(t V(t)Iz+ ...

C's of equation (45)

(70)

C2' = l Tr [[p, V(t')], V(t) Iz

C31 = Tr I [pR , V(t")], V(t I, V(t] Iz

C4= n r [p, V(t )t, 1], V(tI , V(t I], V(t)] Iz - (71)
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C l' and C
3
' are easily shown to be zero. Evaluating C

1 5 2

C2 ' = I Tr [pR, V(t')][V(t), Iz]

=-( - Y)mn Tr [Iz, 3Is(t')] [is(t), Iz]

where the other terms are zero.

Using equation (27), carrying out the commutation relations and

integrating C
2
' as indicated in equation.(70), we get

N n

f dt' C2'= n ( - ) Tr L EijEkj II
f 2 -wu (P k Ij j

i,k=l J-1

r~t -iWu T
X dT SziSzk (T) e n

-t

The product SziSzk (T) is related to the correlation function for the

z-component of the individual electron spins, which involves a correlation

time of the order of T2 e. The limits on the integral may then be taken

as infinity. This expression reduces to

f dt' C2' = -n (- - y)(Tr Iz2 )W1 (72)

where

n N
Woo *r -iC T

S ~ n
Tr EijEkj dT SziSzk (T) e

W =1 N j=l ik=l -k= (73)

1 2n Tr 2
Z
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We now use the sphere of influence model to deduce an estimate for

equation (73). In this limit only i = k terms will contribute

significantly to equation ('73) and one gets

co -iCI T

Tr Jdr SziSzi (T) e n
2 zi zi

2 2Tr Sz

where e was defined in equation (64). We now assume the approximation25

n L XiT S, -iW T
n n

Tr dT SziSZi (T) e 1Tr dT SS (T)e

i=l -m -X

Using equation (68) we then have

W g ) (74)2

If one assumes a Lorentzian lineshape,2 6 equation (74) leads to the

same result as reference 25. W1 as defined by equation (73) is the

transition probability per unit time resulting from the fluctuation of

the z-component of the electron spins due to the electron dipole-dipole

(3SS) interaction. The effect that this term has on the nuclear

relaxation has been discussed in reference 25.

C
4
' is found using the same arguments used to obtain equation (60).
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C4 = _iu 2 A(a - y) Tr ([[Sy(tll)) Sx (t i I ]

+ [[sy(t" ),Ics(t")], S (t' [IS(t), Iz ]

-n 1l (P 7) Tr z JIS(t (t SX(t is(t) Iz]n ni

Making the same assumptions which led to equation (61), and

integrating C
4
' as indicated by equation (70) yields

n

N t t' t"

J dt C4 (= ia - y) a2 tr ), Ij IjIj |dt' dt" dt'

/ iW WnIt-t) -iWo(t"-t),

n
N t t' t"

- (- - y) 2 ) l i 1j I2 IjIj t dt" dt"'

j=l 0 0 0

y i(t"'-t) -i0h(t"'-t )
X :3Y(t")S y (t I ) (e + e .(75)

Integrating by parts as done before, and using equations (64), (67),

and (68), equation (75) becomes

f dt C4' = -A(Tr 12) (W - W+) (a - Y) + n(Tr Iz2 ) (W + W) (W -)
z n (76)

Combining equations (72) and (76) with equation (70) yields
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_ = w'(- r) - W- (W -)_ (cn))
dt 1 cn 

- -l w+ (n + A) (on + / - (An + (77)

D. Derivation of the Equation of Motion for the

Electron Dipole-Dipole Inverse

Temperature, Y(t)

The derivation of the equation of motion for the electron dipole-

dipole inverse temperature, y(t), can be accomplished using the fact

that energy is conserved in the rotating reference frame for times t

satisfying equation (8), provided that

<fC> >> <V>
o

where 3Xo and V are defined in equations (31) and (32), respectively.

Then

d<3(>+C
= 0 = Tr(no + WnIz + jSS) t '

dt n s)t

so that

+ S72(T d2 + Tr/ 
2

~/%d2(r Sz + 2(Tr 1 2ss) dt = 0. (78)

Substituting equations (69). and (77) into (78) and using

(Tr Iz2 /Tr Sz2) = n/N, we get
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2W CL2 Wo(A) (a. - 7)
W 2

d n n Wl(P - n)
+

+ n ( - - (W
N W2 n

+ n (ah + A) W+ (n

-A) (¢ - a ( -n +)7

+ ) RA + 'na - (an + A)7 (79)

where

2 2Tr _ Ss)

Tr S 2
z

The term wL
2

is related to the

line. It is found to be '

linewidth of the electron spin resonance

2 1M

3

where M2 is the second moment of the electron spin resonance line.

E. Effects of the Lattice Reservoir

The effect :s- the lattice vibrations (phonons) is introduced by

assuming that each spin-lattice relaxation process takes place exponen-

tially with a characteristic spin-lattice relaxation time, and that

these processes may be added to the equations of evolution for a, i,

and 7.8, 14, 16, 24, 26 Thus equations (69), (77), and (79) become
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_ --W°(A) ( ) + n lW( - A) A n-( - (w A)
dt NA A

d N = -W1 W(n e n A}

- 1 W+( Wn + A) P + -- (+o n + A)M 1 ( L

.. n (W - PL )

n

dZ = 
2

wO(a)(a --) +
dt ~L2

+ ( W(-A)
N Uf2 n

N 2

- A) - -(Wn - A)

+ N +( + A) n + ,L - (wn + A)7) - _ ( - PL)
TD (80c)

where Te, Tn (see section II F), and TD, are the spin-lattice

relaxation times of the electron-Zeeman, nuclear-Zeeman, and electron

dipole-dipole reservoirs,8 14, 16, 24, 26 respectively, and 
L

is the

inverse temperature of the lattice. Note that the electron-Zeeman

inverse temperature does not approach the inverse lattice temperature,

(80a)

(80b)



but the "colder" temperature _e PL. This is a result of the transfor-

mation to the rotating frame which affects the electron Zeeman

interaction, but does not affect the nuclear Zeeman and the secular

electron dipole-dipole interactions.

F. Nuclear Spin Diffusion

The nuclear dipole-dipole interaction, XII' was ignored in the

derivation of the kinetic equations governing the solid effect. This

interaction becomes important if N < n, for there will be large

regions in the solid where the electron-nuclear dipole-dipole interaction

is very small compared to the nuclear dipole-dipole interaction. The

nuclear magnetization in these regions will be spatially transported by

energy conserving transitions resulting from the terms IjIk of CII'

This process is called nuclear spin diffusion. Only a brief discussion

of spin diffusion in the rapid diffusion limit will be given here and

will closely follow the treatment given by Abragam and Borghini.l4

More elaborate discussions of spin diffusion are given elsewhere.2 7 3 1

Each electron can be considered to interact only with the nuclei

within its sphere of influence having a radius R defined by

R i= N)/ (81)

where N is the number of paramagnetic ions per unit volume. An

important parameter is the pseudopotential radius b, which is the
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distance from the electron at which a nucleus has approximately the same

probability of being relaxed by the electron as of being flipped by the

XII terms due to neighboring nuclei, and is given by28

b = 0.68 ( /4 (82)

The term C is

C = 3 2 2.,2 Te (83)
10 e Yn 2 2'(8)

n e

and D is the diffusion constant given approximately by2
9

D = a (84)
10 T2n

Here a is the average distance between nuclei and T2 is the nuclear

spin-spin relaxation time. Another important parameter in spin

diffusion theory is the diffusion barrier radius bo, defined
16 as the

distance from the paramagnetic ion at which the magnetic field at the

site of the nuclear spin due to the ion is equal to the nuclear line-

width and given very approximately as

a ( (85)

The regime of "rapid dif28,30The regime of "rapid diffusion" defined by the inequality
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a, b << b << R, (86)

corresponds to the conditions for the crystals and temperatures reported

in this thesis.

Detailed calculationsl 4 '28 '29' 3 0 show that in the limit of rapid

diffusion, equation (80b) can be written as

d = -W ( - oO) (87)
dt

where

W W1 + W (° n + /) (h + (- (88)
Tn

and

° + { L- ) A 4 + W )nn . _ A

The bars correspond to angular and radial averages within a spherical

The bars correspond to angular and. radial averages within a spherical

shell whose radius r is bounded by

bo <r < R.

In this limit and within these approximations, c , defined in equation

(64), becomes
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2 3 2 2 2 (90)
- 7 e n , (90)

b03 R3

and is the appropriate expression to use in equations (67), (74), and

all three equations (80). Henceforth, we assume that this is done, and

omit the bars over W1 and W
+

, but not over T n One can show

thatl4,30,31

1 4 NC +1 (91)
(91)

T 3 b0 3 Tnt

The first term is due to nuclear relaxation by the desired paramagnetic

impurity (the samarium ions, in our case), and the second term is

"leakage" relaxation by other impurities and by other modes of spin-

lattice interaction. The physical picture is that the relaxation and

rf transitions caused by W tend to drive the inverse temperature 1

to a steady state value given by T0 and at the same time the spin

diffusion mechanism attempts to keep the total nuclear magnetization

spatially homogeneous.

It is left to determine the measured spin-lattice relaxation rate,

1/Tn. In the absence of any radio frequency fields, equation (87) can

be written as

dt= _W - L) (92)
dt T

The time evolution of y must be taken into account also, i.e.,



dy n n WI (Y - P) 1 (Y - p ) (93)
dt 2 TD 

(
L

The general solution for f exhibits two time constants. There are

several limiting cases for which the longer time constant can be easily

evaluated; this will be the measured Tn. One limit is

W1 <<

in which case

Tn = Tn

A second limit is the situation in which

( ( 2 W »(>> W1 (

nTn2 Tn

In this case y will come to quasi-equilibrium (i.e., dy ) in times
dt

t such that

TD (N2wl- << t << W-1, 

n~n2 / 1T

Thus, equation (93) may be solved for y, which is then substituted

into equation (92). The latter can be rewritten as

dat T
n
( Ldt Tn



1 1

Tn Tn

W1

n
2

1 + - W1 TD
Ni2

1 >> ( 2/ 1 D

equation (94) becomes

1 = 1 + W1

Tn T1n

On the other hand, if

1nlj) 
1 «< 2 Wl TD Y/N-\ 

one obtains

1

Tn

1 N( 2 1

Tn + nOn2 D

Combining equations (91) and (94), we get

where

If

(94)

(95)

(96)
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1 _4 NC + W1 (9)

Tn 3 503 Tnr 2W1 D0 1 + ~W 1 Tn

which is consistent with the crystals and temperatures considered in

this thesis. The last term on the right side of equations (94) through

(97) is a result of the coupling of the nuclear spins with the electron

dipole-dipole reservoir.2 5 We note that 1/T
D

is often taken14 to

be 2/Te .



G. Theoretical Dynamic Nuclear Polarization Results

The dynamic nuclear polarization, usually expressed in terms of

the steady-state enchancement E defined as

E = -,

AL

can be deduced from equations (80) and (87) - (89) by setting all the

time derivatives equal to zero and solving for R. The cumbersome

general expression can be deduced from Cramer's Rule and can be found

in appendix A. We find E for several limiting cases.

Consider first the case of well-resolved solid effect transitions,

that is, W , W
1

0; We , W= O . One finds for (an 

+

A) 0 the

result

1 + e Tn

:E = - (98)

1 + W±T(1 +
n T

e )

where Tn is the measured nuclear spin-lattice relaxation time given

in equation (97). For saturating microwave powers (W±T >> 1),
n

equation (98) reduces to

- e

E = - . (99)
n Te

1+-
N Tn

n Te
The term n Te has been called the leakage factor in the litera-

N Tn

ture.1 2 '1 5 If this term is small compared to unity, then equation (99)

becomes

41
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E = + e (100)
IOn

The nuclei have in effect been given the thermal equilibrium temperature

and polarization of the electrons. This first limit,to which equation (98)

applies, corresponds to the experiments reported in this thesis.

A second limit is that of unresolved solid effect transitions,

ignoring all leakage factor effects. In this case, one can deduce

m.e -nAe TD\ 
1 + n(W Tn)+W1Tn +WTel+ +(+ )(W 1Tn +WTn+WTn

n~n TT, e
E= L e

(1 + W1 Tn + WTn + WTn) (1 + WTe + WOTD

This is the Abragam and Borghini result with the addition of the W
1

factors.
1 6 '25 At low microwave powers, this becomes

we (W - W+)Tn

ern 1 + W1Tn

whereas, for saturating levels of microwave power, one gets

We wnA

The leakage factor corrections to these equations requires the full

solution to equations (80) and (87) - (89) and is given in appendix A.



III. EXPERIMENTAL APPARATUS AND PROCEDURE

Figure 1 is a picture of the experimental apparatus used in this

study. The experimental equipment; consisted of a nuclear magnetic

resonance (NMR) spectrometer, an electron spin resonance (ESR) spectro-

meter, an electromagnet, and a cryogenic system.

A. Nuclear Magnetic Resonance Spectrometer

The NMR spectrometer is shown schematically in figure 2. The NMR

detector was of the "Q-meter" type. A detailed discussion of the theory

of operation and of the limitations of this detector is given in

reference 32. The rf oscillator was a constant voltage device, and a

ramp generator was used to sweep the frequency. A "line-stretcher"

was used to maintain a half wavelength line between the sample coil and

the variable capacitor that made up the tank circuit of the "Q-meter."

The sample coil consisted of two turns of teflon coated number 36

copper wire wound on the crystal. The coil leads were fed through a

small hole drilled in the end wall of the microwave cavity and connected

to the coaxial cable. Care was taken to have the plane of the sample

coil parallel to the microwave magnetic field to prevent coupling of

the microwave power out of the cavity through the NMR spectrometer.

Standard lock-in detection was used to record the NMR spectra.

B. Electron Spin Resonance Spectrometer

The ESR spectrometer used in this experiment is shown schematically

in figure 3. The spectrometer was a standard circuit employing

43



Figure 1.- Apparatus used in the DNP experiments. 
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Figure 2.- Block diagram of the nuclear magnetic resonance spectrometer.
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Figure 3.- Block diagram of the electron spin resonance spectrometer.
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a three-port circulator to utilize all the power furnished by the

klystron. The klystron was a Varian Model V58 reflex klystron rated at

500 milliwatts at X-band.' The klystron frequency was locked to the

resonance frequency of the sample cavity using an automatic frequency

control circuit similar to the Berry and Benton circuit.3 3 A

sketch of the cryogenic probe containing the sample cavity and variable

coupler are shown in figure 4. The sample cavity was machined from

brass and gold plated and resonated in the cylindrical TE 111 mode. A

wire was soldered on a diameter of the sample cavity to short one of the

two degenerate resonant modes. A small cylindrical section of teflon was

screwed to an end wall of the cavity and used as a crystal mount. The

variable coupler used was similar to that discussed in reference 34.

The sample cavity and variable coupler were attached to a length of thin

wall stainless steel type 304 waveguide, and this was soldered to a

flange which bolted to the top of the cryostat. Standard lock-in

detection was used to record the ESR spectra.

C. Magnet

The magnet employed was a Varian 23 cm electromagnet having a

6.7 cm air gap, with Fieldial(R) and Hall probe control. Coils were

positioned around the pole pieces to provide the magnetic field

modulation necessary for lock-in detection of the signals.

D. Cryogenic System

The apparatus used to measure and control the temperature of the

liquid helium bath is shown in figure 5. The temperature of the helium
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CRYSTAL MOUNT-

WAVEGUIDE

VARIABLE COUPLER

MICROWAVE CAVITY

LQ)MN CRYSTAL-J \MODE KILLER

Figure 4.- Sketch of the cryogenic sample probe.
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LIQUID HELIUM

Figure 5.- Schematic of the cryogenic system.
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bath was monitored by measuring the vapor pressure of the liquid helium

and converting the vapor pressure to temperature using the 1958 Helium-4

Temperature Scale.35 Temperatures below 4.2° K were maintained in the

8 liter helium dewar by pumping over the liquid with mechanical roughing

pumps having a total pumping capacity of 10 liters/sec. A constant

vapor pressure was maintained by a manostat connected between the helium

bath and the roughing pump as shown.

E. Sample Preparation

The samples were prepared starting with the rare earth oxides

La20
3
and Sm

2
0
3
obtained from the Lindsay Division of American Potash

and Chemical Corporation. Both the La20
3
and Sm20

3
had a 99.99 percent

rare earth purity. Both oxides contained the naturally occurring

isotopic compositions. The rare earth nitrates were synthesized separately

using reagent grade concentrated nitric acid in the reactions;

(Sm,La)2 03
+ 6HNO

3
-*2(Sm,La) (NO3)

3
+ 3H20

The pure rare earth nitrates were then added to reagent grade magnesium

nitrate in the reactions:

2(La,Sm) (No3) 3 + 3Mg(N03)2 + 24H20 -- (La,Sm) 2 Mg3(N03)1 2 · ?4H20

The pure Sm and La double nitrate solutions were allowed to saturate at

room temperature and then mixed to yield aqueous solutions of samarium

doped lanthanum magnesium nitrate (Sm:LMN). The doped solutions were
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poured into beakers,

sulfuric acid acting

Single crystals

mately 200 mg. could

flat hexagonal plate

plate. The detailed

elsewhere.
8
,36

placed into a desiccator having concentrated

as a desiccant, and maintained at 0° C.

of the rare earth double nitrates weighing approxi-

be grown in about 30 hours. The growth habit is a

with the crystal symmetry axis perpendicular to the

crystal structure of these salts can be found

F. Experimental Procedure

Small slits were cut into the edges of the sample crystals to

align the two turn NMR coil. The crystal was glued to the teflon

sample mount on the end wall of the microwave cavity and the probe

immersed in liquid helium. The samarium ESR line was located and

recorded. The angle 0 between the crystal symmetry axis and the

dc magnetic field was determined and found to be approximately 7° in

all but one case.

With the microwave power off, a thermal equilibrium NMR signal was

recorded by sweeping frequency at a given temperature and magnetic

field. Thermal equilibrium nuclear polarizations at different temper-

atures and magnetic fields were calculated using this result and the

Brillouin function. With the dc magnetic field approximately 50 Oe

below the main ESR line the microwave power was turned on and a dynamic

equilibrium allowed to bd established between the various reservoirs.

The enhanced NMR signal was recorded by sweeping frequency. The dc

magnetic field was changed and after a few nuclear spin-lattice
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relaxation times the NMR spectrum again recorded. We measured the NMR

derivative peak-to-peak height using magnetic field modulation with a

peak-to-peak amplitude of 2.5 Oe and a frequency of 30 Hz. Because of

signal-to-noise problems, the thermal equilibrium NMR measurements had

a relative error of ±20 percent, while enhanced NMR signals had a

relative error of ±3 - 5 percent.

The nuclear spin-lattice relaxation times were measured by

enhancing the NMR signal with microwave power, then turning the micro-

wave power off and recording the decay of the NMR derivative peak.

Any frequency drift in the rf oscillator during the measurements of

Tn was corrected by monitoring the frequency and applying a correctiouA

voltage to the voltage-controlled oscillator. The data was plotted on

semi-log paper and Tn determined from the slope.



IV. EXPERIMENTAL RESULTS

The experimental results for eight samarium doped lanthanum

magnesium nitrate crystals are summarized in table I. The positions

of the hyperfine lines of Sm1 4 7 and M1 4 9 were determinedl9 ' 37 for the

applied magnetic fields and frequencies listed in table I and found to

be far removed from the solid effect and main ESR transitions, and

thus they should have no effect on the DNP process except possibly

through leakage relaxation Tnj.

The magnetic field Ho reported as item 3 in the table is the

magnetic field value halfway between the enhancement extremums and is

assumed to be the field at which the main ESR transition occurs for

the frequency reported as item 4. The value of H
o

reported is within

+5 Oe of the value measured when the ESR transition was located and

recorded. The variation of the position of the main ESR line is due

to the backlash in the field control.

The angle, 8, between the crystal symmetry axis and the applied

magnetic field was determined using the values

ga, = 0.736 +0.005

g£ = 0.363 +0.10

reported in reference 38. The value for g,, was measured for a number

of crystals and found to have a value of 0.732. The value of gA

could not be measured due to the field strength limitations of the

magnet. The parameter g of the electronic system is defined by
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TABLE I. Summary of experimental parameters: Item 1 is the crystal designation; item 2 is the measured temperature in degrees Kelvin; item 3 is the magnetic field
in oersteds halfway between enhancement extreme; item 4 is the microwave frequency in gigahertz used to induce the forbidden transitions; item 5 is the angle in
degrees between the applied magnetic field Ho, and the crystal symmetry axis; item 6 is the electron spin-lattice relaxation time in seconds taken from reference 39,
item 7 is the measured nuclear spin-lattice relaxation time unless otherwise noted; item 8 (9) is the measured derivative peak-to-peak line width in oersteds of the
ESR (NMR) transition; item 10 is the satellite separation in oersteds, measured and calculated; item 11 (12) is the maximum positive (negative) enhancement measured;
item 13 gives the percent dilution of samarium in the crystal solution and the measured dilution in the crystal; item 14 is the leakage factor calculated from items
6, 7, and 13; item 15 is the infinite power enhancement, calculated from the dependence of enhancement on microwave power, neglecting the leakage factor; item 16 is
discussed in the text; item 17 is the enhancement corrected for leakage; and item 18 is the ideal enhancement and is discussed in the text.

1. CRYSTAL

2. TEMPERAIRE (OK)

3. Ho (Oe)

4. Ve (GHz)

5. e (degrees)

6. Te (sec)

7. Tn(sec)

8. tNp, (Oe)

9. &Hp (Oe)

10. SATELLITE SEPARATION (0e)
Measured
Calculated

11. Emax

12. Ea
x

13. SAMARIUM DILUTION (%)
Solution
Measuredb

14. (1 + n TeNTn)

15. E'

16. S
o

17. E' (I +n Te/NTn)

18. Eideal

1

4.23

8915

2.5 x 10-5

42

3.5

_ _ _ 

2

3 .o6

8925

9.112

0

O.0018

looa

5.2

74
74.4

78

80

20 15

_ 117

.... 0.44

240 240

3 -

1.81 1.87

8903 8900

9.130 9.121

7 7

0.10 0.10

250a 200

---- 5

.... 13

22

15
0.1

10.6

23.8

0.070

245

240

4

4.22

8952

9.155

7

2.5 x 10 - 5

15

5

10

74 74
74.2 74.6

38 36

35 40

20 20
0.3 0.3

5 1.01

.... 197

. 4.21

190 199

240 240

6

4.22

8926

9.156

6

2.5 x 10-5

15a

5

12.5

3.1

8908

9.128

6

0.0015

100a

5

10

1.85

8898

9.118

6

0.10

2508

5

4.22 3.0

8908 8872

9.120 9.089

7 7

2.5 X 10 - 5 0.002

15a 108a

5 5

14 9.5

4.24

8935

9.147

7

2.5 x 10- 5

15

6

8.4

72 74 74 74 75 74
74 74 74 74 74 74.3

23 50 17 56 147 30

24 50 17 56 181 32

25 25
o.8 o.8

1.01 1.05

.... 77

.... 0.52

---- 81

240 240

25 25
o.8 1.1

2.2 1.01

.... 187

---- 2.40

-_-- 189

240 240

25
1.1

1.04

202

0.422

210

240

20
0.3

1.01

100

2.45

101

240

aTaken from figure 11.

bMeasured samarium concentrations were made by
X-ray flourescence.

2.6

8879

9.081

7

0.011

154

6

8

4.21

8912

9.110

8

2.5 x 10-5

46

4.6

7

3.49

8918

9.127

7

3.1 X 10
' 4

57

6

74
74.3

64

79

20
0.3

1.04

115

o.81

120

240

U4

75
74.3

95

122

20
0.3

1.6

240

78.4
74.2

35

35

20
_ _ _ 

240
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7e"
g -

DM .

where M is the Bohr magneton. For axially symmetric crystals like

Sm:LMN, one can show8 ,1 9

g(e) = cos2e + g2 sin2]

There was indication from the literature3 9 that the samarium ion

is highly rejected by the host lattice of LMN. A single crystal of

samarium magnesium nitrate was grown and used as a standard to determine

the actual concentration in the Sm:IMN using X-ray fluorescence. The

solution and measured dilutions of Sm:LMN for each of the crystals is

listed as item 13 in table I. The measured dilution of samarium in LMN

n ewas used to calculate the leakage factor N Te which occurs in the
Tn

denominator of equation (98). The electron spin-lattice relaxation

time Te was calculated from the expression

1 = 3.4 T + 1.3 x 10
- 2 T9 + 1.6 x +10 e-55/T (101)

Te

which was determined experimentally by Larson and Jeffries3 9 for

dilute Sm:LMN in the parallel orientation under conditions similar

to ours. The crystals we used were not all in the parallel orienta-

tion when the data was taken, but Te for Sm:LMN does not vary

appreciably in this temperature range for angles 10
appreciably in this temperature range for angles e 0 100.
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A reproduction of the derivative of an ESR absorption signal is

given in figure 6. Most of the crystals used in this experiment

exhibited a similar asymmetry. The derivative peak-to-peak values

aHe of the ESR absorption line for the crystals are listed in table I.
pp

Figures 7 and 9 are enhancement curves for two crystals. The

enhancement is the ratio of dynamic to thermal equilibrium proton polar-

ization. The solid lines are smooth curves through the data points.

Figures 8 and 10 are the variations of the peak enhancements as a

function of microwave power for the same two crystals. It is evident

that the peak enhancement is limited by microwave power. The enhance-

ment versus relative microwave power data was fit by computer to the

equation

E = E' (102)
S+ SO

This is equation (98) expressed in terms of E (= l/PL) and E'

defined as

we

E' = (103)
1 + n Te

N Tn

(The one (1) in the numerator of equation (98) is neglected compared

to other terms in the numerator.) S is the microwave power in

arbitrary units (maximum experimental power corresponds to S = 1),

and So is a constant determined in the computerized least squares

fit.
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10 Oe
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Figure 6.- The derivative of the ESR absorption line for crystal 4.
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Figure 7.- Enhancement curve for crystal 2 at 3.06° K.
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'Figure 8.- Enhancement of the polarization peak as a function of
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Figure 9.- Enhancement curve for crystal 6 at 3.00 K.
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Figure 10.- Enhancement of the polarization peak as a function of
relative microwave power for crystal 6.
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The values of E' and So determined by the computer fit are

given as items 15 and 16, respectively, in table I. The curves drawn

in figures 8 and 10 are equation (102) using the E' and S
o

values

thus determined.

The experimental peak enhancements can be compared to the ideal

enhancement, Eideal, which is the ratio of the electron and nuclear

Larmour frequencies, that is,

We
Eideal a

n
' (104)

by correcting for the leakage factor (nTe/NTn). The result of this

correction is given as item 17 in table I.

The nuclear spin-lattice relaxation time, Tn, was measured as a

function of bath temperature between 1.60 K and 4.20 K at a constant

magnetic field value of 8970 Oe using crystal 7. These data are

shown in figure 11.

A theoretical enhancement curve can be drawn if a line shape

function for the ESR absorption is assumed. Equation (98) can be

written in the form

1 + E'! S,%(L)(0

E = (SO g o) (105)

1 g(b)



0.07,

0.06k

0.05L

0.02 _

0.01L

1.2 1.6 2.0 24 2.8 3.2 3.6 4.0 4A

T (°K)

Figure 11.- The inverse of the nuclear spin lattice relaxation time
of crystal 7 versus bath temperature for H = 8970 Oe.
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using the terms defined in equations (102) and (103). We use here

the shorthand notation g(AH) for g(an + A) which appeared in

equation (67). Equation (102) was written for the peak enhancement

at g(O). The curve in figure 12 is equation (105) plotted for

crystal 4 with maximum microwave power (S = 1 in our units), assuming

a Gaussian line-shape function26

g(AH) -e2(AH)2/(~ 2 (106)
g(0)

with parameters from table I for crystal 4. The circles are the

measured DNP enhancements.
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Figure 12.- Theoretical enhancement curve assuming a Gaussian line
shape for the ESR and the experimental data for crystal 4.



V. DISCUSSION OF RESULTS AND CONCLUSIONS

The major objectives of this research were to derive the equations

governing the dynnaic nuclear polarization by the solid effect using

the spin temperature theory (eqs. (80)) and to test this theory in the

limit of well-resolved solid effect transitions. Single crystals of

samarium doped lanthanum magnesium nitrate were used since the solid

effect transitions of the samarium ion in the host lattice of lanthanum

magnesium nitrate are well resolved from the main ESR transition.

The theory predicts a maximum, "ideal" enhancement Eideal given

in equation (104) for complete saturation at the center of the solid

effect transition with negligible leakage. For the situations realized

in this thesis

Eideal = 240.

Data of the peak enhancement as a function of relative microwave

power were obtained for crystals 2 through 7. In each case, the data

indicated that insufficient power was available to completely saturate

the solid effect transition (see, for example, figs. 8 and 10). The

maximum enhancement can be predicted from this data if it is assumed

that the enhancement as a function of power is given by equation (98),

which was rewritten as equation (102). The extrapolated value of

infinite microwave power enhancement (E' in eq. (102)) is given as

item 15 in table I. Saturation was almost complete at 1.810 K for

crystal 3 since the observed peak enhancement was 22 and the value E'

66
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was 23.8. After the leakage factor was taken into account, the extrapo-

lated maximum enhancement (item 17 in table- I) was 245. This value is

well within experimental error (+20 percent) of the theoretical value,

240. The extrapolated maximum enhancements of crystals 4 and 6 were

20 percent lower than- Eideal -even when corrected for leakage, which is

the lower limit of our experimental error. The remaining crystals were

not analyzed as above, or showed low enhancements. The reasons for the

latter are not understood.-

The theory predicts that for well-resolved solid effect transitions

the-enhancement extremums should be symmetrically situated about the

-main ESR transition.and at

e wn

Since it was difficult to establish the position of the center of the

main ESR transition with respect to the positions of the peak enhance- .

ments, the solid effect separation (labeled as satellite separation,

item 10 of table I) was used. This separation in oersteds should be

"n2H e
e

This value was calculated and is shown in table I. The measured

separation is in excellent agreement with the calculated separation

for each crystal and is well within the 5 Oe variation due to.backlash

in the incremental field controller.

The theory also predicts that for saturation conditions the abso-

lute value of the enhancement extremums should be the same, that is,
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Eax = Eax

A comparison of items 11 and 12 in table I indicates that this is true

for most of the crystals and temperatures. However, in the values for

crystal 6 at 3.0° K and crystal 7 at the two lower temperatures, E~ax

is up to 22 percent less than Ema
x
. This behavior has been observed

before9 and was attributed to random drifting in the microwave

apparatus.

The theoretical expression for the steady-state enhancement curve

is a function of the ESR line-shape and microwave power. If these are

known, a curve can be drawn predicting not only the positions of the

enhancement extremums but also the shape of the enhancement curve.

However, the ESR line-shape function was not computed from the measured

ESR derivative curve in this experiment. Instead, a theoretical

enhancement curve was drawn assuming a Gaussian line-shape26 for the

ESR line and using the values of E' and So determined from the

enhancement versus microwave power data for crystal 4; this is shown

in figure 12 along with the experimental enhancement data for this

crystal. The enhancement curve determined in this way is very sensitive

to the derivative peak-to-peak width of the main ESR line.

The enhancement curves drawn through the experimental data in

figures 7 and 9 do not agree with the theory in the region between the

enhancement extremums. At approximately 10 Oe on either side of the

enhancement extremums, the value of the enhancement should be +1. This

deviation is attributed to the distorted line-shape of these crystals.
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The theory of spin diffusion was incorporated into the spin

temperature theory of the solid effect in order to account for the

nuclear spin-lattice relaxation time. Only the case of rapid spin

diffusion was considered, with the result that the nuclear spin-lattice

relaxation rate should be given by equation (97), as can be seen from

the analysis in section II F and the data in table II. If we assume

that there is no leakage relaxation (TnZ = 0) and since the first term

on the right side of equation (97) is negligible compared to the last

term, then for crystal 7 we find

2
1 n n Te

Tn = l + 2 2'

14where we have used the relation 2TD = Te . The nuclear spin-lattice

relaxation time calculated from this equation results in times of the

order of 102 seconds at 4.20 K and 105 seconds at 1.60 K. These

calculated relaxation times differ from the experimentally determined

relaxation times by one order of magnitude at 4.20 K and three orders

of magnitude at 1.60 K. This deviation may be due to other para-

magnetic impurities in the crystal that would result in a non-

negligible leakage relaxation time. This mechanism would result in

a measured relaxation time shorter than the theory would predict.

Insufficient work was done to understand this discrepancy.

In conclusion, the equations governing the dynamic nuclear polar-

ization by the solid effect using the spin temperature theory have

been derived. For well-resolved solid effect transitions at microwave

frequencies X z we + wnf the expression for the steady-state



TABLE II.- NUCLEAR RELAXATION AND SPIN DIFFUSION PARAMETERS

FOR Sm:LMN

1. Samarium
dilution (%)a

2. R (nm)

3. n/N

4. Te (sec)b

5. T2e (sec)C

6. T2n (sec)

7. D (nm2/sec)

8. C (nm6 /sec)d

9. a (nm)

10. b (nm)

11. bo (nm)

12. W1 (sec 'l )

mo2
13- W1 (sec- 1

14 1 (sec-l)

iTn

0.1

5.2

24,000

2.5xl10-5 - 0.10

3.6x 10
'

8

4.3 x10- 6

930

7.2x10-3 - 1.8x10- 6

0.2

3.6x10' 2 - 4.5x 10-3

1.2

2. 0xO -
2

3.1 x 105

2.9x10-5 - 7.2x1O-9

2.4

2,200

2.5x 10
-
5 - 0.10

3.6 x 108

4.3 xio-6

930

7.2 x10-3 - 1.8x10-6

0.2

3.6x10- 2 - 4.5 x10 3

1.2

2.2 x 10 1

3.1 x 105

3.2 x10- 4 - 7.9 xio 8

aX-ray fluorescence.

bFrom reference 39.

CEstimated from ESR peak-to-peak linewidth assuming that ESR
line is completely homogeneously broadened.

dFor ahTe >> 1.

eEstimated from equation (91).
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enhancement differs from the expression obtained by the rate equation

approach by small terms Which become zero at a) = we + wn. The

maximum enhancements extrapolated with the theory from those obtained

experimentally agree with the ideal enhancement within experimental

error for three of the crystals. The calculated satellite separation

was within 6 percent of the measured separation for each of the enhance-

ment curves, and the peak positive and negative enhancements were equal

for all but two of the crystals. These results indicate that the spin

temperature theory is a quantitatively correct approach for the

description of dynamic nuclear polarization by the solid effect for

well-resolved solid effect transitions.
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VII. APPENDIX

A. Complete Expression of the Steady-State Enhancement

The complete expression for the enhancement of the nuclear polar-

ization can be obtained from equations (80) by setting all the time

derivatives equal to zero and solving for P using Cramer's Rule.

The result is

E P

OL Q

where

P=1 _- + OeP = 1 + W-T +
Cn -A

Wn

+ W°Te(l + e )+ W

Tn Te
N Tn

n (% - A)2 TD

N 4 2 n

n Te n (hn + A)2 TD
N- N 2 

Tn, D TnL

N 2-l~~n~l+~U )

+ W°Te(WlTn + W+Tn + W-Tn)
A we TD n n TD)

+ + 

d~2 Te N aL T
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+ Wtn we +
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and

nTe n
+n +N

N
n

n Te

2
+ n n
N 2

L

+ WOTe(1

( _n - A) 2 T2D

+ ' (n + A)
2

TD
+N 2EL

TD)

,2 TDi

+L q e,

2

coL

+ n W+-n -w )

W -TD
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