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Handbook for the Study of Electric Propulsion Systems

SECTION I

SUMMARY

This report is essentially a compendium of techniques and basic information
useful to the preliminary performance analysis of power-limited (low-acceleration,

electric) propulsion systems applied to space missions. The material is presented

in handbook form and is reasonably complete within itself insofar as a basic under-

standing of the techniques and procedures is required for one to acquire facility

in computing performance. This, in essence, is the objective of the handbook. The

accumulation and organization of the material selected for inclusion was guided by

the desire for simplicity and computational ease while maintaining a sufficient

level of completeness for a general understanding (i.e., to avoid a "cookbook"
approach).

Use of Handbook

It is intended that two specific purposes be served. The first is that the

preliminary analysis of low-thrust, electric propulsion systems could be accomplished

quickly by anyone experienced in calculating vehicle system performance. The
second is the long-range desire to have electric propulsion applied to as many
concepts of missions, flight and propulsion modes, and objectives as possible, a

condition presently deficient when compared to high-thrust (chemical and nuclear)

systems. Of particular importance, however, is not only the evaluation of mission
concepts but also the immediate problem of investigating the related technology

requirements of the major subsystems such as the powerplant, the electric propulsion

units, and the associated surface launch vehicles.

The jet power that an electric propulsion system is capable of producing is

limited by the maximum power available from the power supply. This power limitation,
in addition to the mass of the power system and the long-duration thrusting times,
enters into the performance evaluation through the necessary optimization of the

powered flight trajectory. This coupling between the system parameters and the
powered-trajectory optimization necessarily causes the analysis of power-limited
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systems to be more complex than the study of high-acceleration (impulsive-thrust)
propulsion systems. Consequently, the present effort was centered about two
aspects: first, to uncouple the influence of the system parameters from the tra-
jectory optimization by suitable approximate techniques and to reduce the performance
evaluation to a series of equations; second, to present as much appropriate

heliocentric and planetocentric trajectory information as is currently available
along with auxiliary information related to the application of these trajectories.

Because of certain necessary restrictions, the contents herein are neither
complete in terms of depth of analytical development nor of sufficiently large
scope to include all possible types of interplanetary flight modes and vehicle
subsystems. Enough graphical data and study aids are presented, however, to allow
immediate estimates to be made for the simplest power-limited system and trajectory
model. For more complicated cases (e.g., expanded definition of propulsion system
constituents and vehicle payload) fairly complete equations and related graphs are
offered. Generally, initial approximations to system performance can be made given
the proper trajectory information; such results are usually regarded as sufficiently
accurate for estimating payload potential and overall vehicle mass requirements.

The important mission modes not included in this handbook are trips to a
heliocentric position and velocity (e.g., solar orbiter, 1-AU inclined orbiter,
solar flyby). The variation of power system output as a function of heliocentric
position or of time was also omitted. It should be pointed out, however, that the
analytical approaches discussed herein are independent of flight and power modes;
they are still applicable provided the proper heliocentric trajectory data are
utilized.

Sections II, III, and IV deal primarily with the mass equations of power-limited
systems, the related graphs, and heliocentric and planetocentric trajectory
information. The basic methods and data necessary for estimating the performance
of power-limited systems are presented in these first three sections. Extensions
of the background theory which encompasses certain flight modes are presented in
Section V; the application of these extensions is discussed in Section VI through
several sample analyses. Not all necessary trajectory information is presented in
this handbook; thus a description of the major UARL trajectory computer programs as
well as related mass optimization decks are briefly given in Section VIII. The
Appendices in Section VIIIoffer more detailed information on some of the aspects
covered in the text.

The majority of the information presented herein was 'extracted from three basic

sources: a) Contract NAS8-11309, Study of Low-Acceleration Space Transportation
Systems, performed for the Advanced Systems Office, G. C. Marshall Space Flight
Center; b) Contract NAS2-2928, Study of Trajectories and Upper Stage Propulsion
Requirements for Exploration of the Solar System, performed for the Mission Analysis
Division, OART; and c) United Aircraft Research Laboratories' Corporate-sponsored
programs. The preparation of this report was also under Corporate sponsorship.
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SECTION II

MASS EQUATIONS OF POWER-LIMITED SYSTEMS

Basic Relationships

The power in the exhaust jet of an electric propulsion system is derived from

a separate power supply which is limited in its output. Vehicles employing these

types of propulsion systems therefore undergo power-limited flight and are restricted

to thrust accelerations of not more than 10-3 g. The rocket equation for power-

limited systems must include the mass, mw, and maximum power rating, P, of the power-

plant. The parameter usually employed to denote power system capability is the

powerplant specific mass,

m W
aw =

The thrust from the exhaust jet is given by

F rfpC

where mp is the propellant flow rate and C is the exhaust velocity. The power in

the beam is

P 2I *pC 2

2

The thrustor converts the power supply output into jet power, and its ability to do

so efficiently is accounted for through the thrustor efficiency, I.

P = 7 P

II-1



In general, 1 is a function of the exhaust velocity delivered by the thrustor (i.e.,
the specific impulse for a particular thrustor type and design).

Using the fact that the thrust acceleration, a, at any time is the jet thrust

over the instantaneous mass of the vehicle, m(t), and using the foregoing relation-

ships, then

m(t) mo + I a dtP

It can be seen that to maximize vehicle mass relative to the initial mass, mo, requires

a thrusting program with time which minimizes the integral. This is contrasted to

high-acceleration systems for which minimum f(a/c) dt is sought.

Two general types of thrusting programs have been of interest in the analysis of

power-limited flight. The first mode considers the thrust magnitude and direction

to be completely unconstrained during the flight, ("variable-thrust" operation).

The second mode fixes the thrust magnitude but allows the direction to be unconstrained

("constant-thrust" operation). Generally, constant-thrust operation gives rise to

heliocentric coast periods. In terms of propulsion system design, the latter mode is

desired, since the powerplants and thrustors need not operate over a wide range of

output. In terms of payload, however, the variable-thrust mode yields higher values

than the constant-thrust case because the thrust vector is completely unconstrained.

In general the power supply output is assumed to be constant with time and may

be removed from the integral. However, the outputs of radioisotope and solar power

systems are functions of heliocentric position and/or time, and thus the determination

of a thrusting program using these types of systems must account for the output

variations. For thecase of variable thrust, the efficiency must be included in the

integral since it varies with exhaust velocity.

By referencing the vehicle mass at the end of powered flight to the initial mass,

the rocket equation in nondimensional form becomes

+ a (1)

II-2
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where - ml/mo, the terminal mass fraction,

w-- mW/mO, the powerplant fraction,

J - fa2 dt, the trajectory characteristic.

For convenience and for preliminary mission and system study purposes, X and P were

assumed constant.

The minimization of J for a particular flight is a calculus-of-variations problem

wherein the integral must be minimized subject to the equations of motion and to

certain conditions specified at the boundaries of the trajectory and other points if

required. A minimum value of J assures only maximum final mass fraction and does

not imply maximum payload.

Maximization of Payload Fraction

For a given minimum-J trajectory, the payload is maximized by properly selecting

the powerplant fraction in the case of variable-thrust operation (exhaust velocity

is unconstrained). In the constant-thrust mode, both the optimum exhaust velocity

and powerplant fraction must be determined. Relationships may be derived to give
the optimum parameters; the actual values they take on depend on the definition of

the payload fraction that is used.

Payload Definitions

The payload fraction, pk, could simply be defined as the mass left over at the

end of flight, excluding the powerplant. Thus

/, L - w (2)

Under this definition the payload may be interpreted as consisting of the actual

payload and the miscellaneous and tie-in structure, while the thrustor and propellant

tanks may be considered part of the powerplant. In the latter instance the definition

of ow is changed to mean the propulsion system specific mass, part of which consists

of the powerplant specific mass.

In a first approximation, the mass of the inert tanks depends on the amount of

propellant required and the type of design employed, whereas the tie-in structure

depends to some extent on the mass of the various subsystems which form the propulsion

system. The thrustor mass depends, generally, on the power input and exhaust velocity

II-3
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it is required to accommodate. Thus an expanded definition of payload should include
these dependencies. The basic definition for payload mass can be written

m, : m,- (mw+ mF+ mT + ms)

where the masses of the powerplant, thrustor, tanks, and structure, respectively,

are subtracted from the final mass at the end of thrusting.

The tank mass can be determined by defining a tank propellant mass fraction, p,
similar to that used in high-thrust rocket technology.

mp
p =

mP+mT

The structure mass is assumed to be proportional to the mass of the thrustor,
tank, propellant, and powerplant, in which case a proportionality constant, a, may
be defined

m s

mF+ mT+mP+m W

Normalizing with respect to initial mass and defining a thrustor specific mass
cF(C) - nm/P (a function of C), the nondimensional payload becomes

(3)

Both definitions are now analyzed for maximum payload under the two types of

modes.

Variable-Thrust Payload Maximization

Substituting the rocket equation into the simplified payload equation and setting

the derivative of IL with respect to pw equal to zero, the optimum powerplant fraction

can be determined.

II -4
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OPT

and the corresponding maximum payload is

LMAX

with propellant mass

A/.

where, for convenience

e2 _E QwJ
277

which is a fixed quantity for a particular minimum-J trajectory and type of powerplant.

For the improved payload definition, the same procedure yields

oPT P'('I+- w )
aW

(7)

and the corresponding maximum payload is

AX- I - 2(1+ a) 1 (+ a-F-)I + (+oa)( i+ a' ) 2

w w (8)

II-5

3(1--) (4)

( I )2 (5)

(6):P 



G-110058-28

with propellant mass

(9)
w

Note that if p = 1, OF = O, and a = 0, then Eqs. (7), (8), and (9) revert back to the

original set based on the simplified payload fraction definition, Eqs. (4), (5), and

(6).

The maximum value of powerplant specific mass for a given (variable-thrust)

minimum-J trajectory can be found by requiring that Eq. (8) be greater than or equal

to zero. Hence

2' -w-2' P +r j_ 2 7J

In contrast to the simple condition that 2B < 1, as implied from Eq. (5), the highest

value of p2 is directly reduced by the thrustor specific mass but is also increased

by lowering the value of p, the tank propellant mass fraction. However, lower values

of p, of course, decrease the maximum value of payload fraction attainable for a

given trajectory.

In developing the foregoing equations it has been tacitly assumed that the

power and thrustor efficiency are constant with time. The first assumption appears

to be reasonable for mission study purposes, while the second is strictly a conve-

nience, since the exhaust velocity varies with time for variable-thrust operation.

The payload values derived under these circumstances therefore represent an upper

limit.

Constant-Thrust Payload Maximization

If the exhaust velocity, C, and powerplant fraction, pw, are fixed for a

specific flight, a steering program (which may involve coast periods) must be found

that minimizes J, thereby assuring that the final mass is a maximum. Thus the

resulting value of J depends on the initial values of C and pw and the steering

program based on these values. Consequently, the overall optimization problem is to

determine C, pw, and the proper steering program (and hence J) which maximize the

payload fraction.

II-6
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Substituting the rocket equation, Eq.(l), into the simplified payload definition,
Eq. (2), yields

2+ - / w

where Y2 wJ/2, and TI is some function of C. Since constant-thrust operation is
employed, the exhaust velocity is constant and m can be removed from the integral.

The total derivative of PL with respect to C, Pw, and y2 must be set equal to
zero in order to maximize payload. The approach employed here for both payload
definitions closely follows that developed by Melbourne and Sauer, Ref. II-1. Thus,

: ' ~ 82 2 'dC : ( Y _ d y2 (11)d 2w 77'd C 
+

- dY :0 (1

where 'l= d'/dC.

A characteristic df power-limited systems is that the vehicle at the end of
flight has essentially most of its initial mass. Thus it is expected that changes
in the powerplant mass do not influence, significantly, the final mass or the thrust
acceleration time history. This consideration leads to two important assumptions
(Ref. II-l):-first, the minimum value of J is independent of w,, and second, the average
thrust acceleration over a minimum-J trajectory is independent of pw,. The former
assumption implies that d,/dkw = 0, while the latter permits a relation to be obtained
between C and w,.

The thrust acceleration at any time, in terms of the propulsion system parameters,
is given by

where p is the vehicle mass fraction at any time (Po = 1). For a known minimum-J,
constant-thrust trajectory the average thrust acceleration may be written either as
an arithmetic mean (AM) or geometric mean (GM). Thus

II-7
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aO + a,
a' = - AM,

2
a (a o a, ) /2GM,

where a is a constant. These expressions may be rewritten using the equation for

thrust acceleration.

2) AM,

ai = ( J )1/2

TC

where Tc is the total thrusting time. Using Eqs. (1), (12),

shown that

and (13) it can be

dC

d uw
(14)C [ I +'2 iL C ] AM,

dC

d,4w

_ ''C ] -

GM,

If the total derivative of AL is taken with respect to w,

made of Eq. (14), then the optimum .w is found to be

I

OPT

i. ( I - L, )

in Eq. (11) and use is

AM

I ( 2,) ( C )21+
(15)

GM

L. i _ ( I+ ) ( C )

The solution of these equations requires an iterative procedure between Eqs.

(12), (13), and (15) and a thrustor efficiency function. If the functional

of the thrustor efficiency is given by

'71:a: =

.

II-8
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where d, the efficiency parameter, is to be specified, then the use of the geometric-

mean equations results in closed-form expressions. Figure II-1 demonstrates the

form of f compared to typical thrustors. The optimum values for C and kw and the

corresponding maximum for PL are given by

COPT =

Y2 d2 )

J Tc

y
(16)

( 2d 2 1I/2
d Tc 

WOPT 

2 Y2d2
1+

J Tc

(l+ Y2 d2 )l/2
J Tc

Y

+ y2d2)
'

/ 2

JTc

(17)

(18)

(19)
Ix = y 2 dc2 )/2

~LMAX ~ I-2y(I.- lJ TC

From Ref. II-1, the agreement between the results from an iterative procedure for

Eq. (15) and exact variational calculus solutions is very good and is more than

sufficient for mission and system study purposes. The results from the arithmetic

mean of Eq. (15) are only slightly more accurate than those obtained from the closed-

form expressions Eq. (16) to (19).

If the arithmetic mean in Eq. (15) is desired for a particular form of A, the

corresponding iterative procedure could use Eqs. (16) to (19) to obtain initial

solutions for the desired parameters. As long as the general trend of the particular

efficiency function approximates those of Fig. II-1, such starting guesses will prove

to be well within the region of convergence.

By setting Eq. (19) equal to zero, the value of y , and hence oQ, may be

determined which causes the maximum payload to vanish.

II-9
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WMAX

2 _ _ (20)

J TC

For a given mission (represented by J and Tc) and a particular thrustor (given by
d), the maximum allowable value of powerplant specific mass can thus be estimated.

This equation is quite helpful, since it may be evaluated prior to a trajectory or

system calculation, thereby avoiding negative or zero payloads. In actuality, the
value of J computed for a trajectory depends in part on the value of cw used (see

Eq. (12)). However, the coupling between the propulsion system parameters and the

steering program (determined for minimum J) is quite weak; this is partially confirmed

by the excellent results Melbourne and Sauer obtained from the solutions of Eqs.

(15) and Eqs. (16) to (19). Thus, Eq. (20) yields accurate results based on a constant-

thrust J which was computed using any initial value of w,.

Precisely the same assumptions and procedures as used for the simplified payload

definition could be employed in the case of the improved payload definition. Hence

AM

[1+ aF(C) ] (_ - + (2'u, (a F

WOPT w JL \ l+L/\ n/ \tl+ \W 'w (21)

GM

E[l+ [}(c [( ) ( ( ) ( 

where, in general, the functional dependence of QF and T on C must .be specified.
In addition, the following equations, which are based on the appropriate average
thrust-acceleration definition are required to complete the set along with the rocket

equation.

C - ' e - AM
a

(22)

C a/. J TC GM

II-10
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Suggested Computational Procedure

Except for the closed-form expressions based on the specified form of the

efficiency function, the solution for optimum exhaust velocity and powerplant

fraction requires an iterative procedure. The technique discussed below is based

on actual numerical cases and the attendant problems encountered.

Regardless of the payload definition and the type of thrustor efficiency curve,

the optimum powerplant fraction is derived as a function of the burnout mass fraction

and exhaust velocity, Eqs. (15) and (21). Thus, in general,

/I f(F ,C) (23)

where the rocket equation gives

,+ (1)

and, functionally, X = T(C) and if required, oF = oF(C).

J and a are obtained from a constant-thrust acceleration or constant-thrust

(with or without coast periods) trajectory corresponding to the mission. The power-

plant defines aw and the thrustor type the form of T and 4F.

As stated in the development of the initial constant-thrust equations, a power-

limited system retains most of its original mass, and, consequently, the dependence

of P1 on pw is quite weak. This relative insensitivity suggests that an iteration

between Eqs. (23) and (1) should be employed for a given guess of C, since convergence

is practically assured regardless of the type of iteration procedure used. Successive

substitution has been found to be quite useful, although the method of false position

has been noted to yield an improvement in convergence rate. This latter method is

also quite useful in the iteration for the exhaust velocity. Thus the iteration

between P1 and pw is nested inside the iterative loop for C.

A guess is given for C to initiate the iteration between P! and Pw, i.e., Eqs.

(23) and (1). By using the method of false position, any initial reasonable guess

for pL will converge rapidly to the appropriate w,. With the converged value of k

and pw, Eq. (22) is employed to update C. False-position is applied to the C-loop

II-11
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to obtain a C which is used in the nested iteration for pj and w,. This procedure

has been found to be quite stable for many cases. If C is employed as part of

the nested iteration, multiple solutions to C arise and, in addition, divergence

occurs.

If the functional form of the particular thrustor efficiency curve being

utilized approximates the equation of Fig. II-1, then appropriate starting guesses

for the above suggested technique may be obtained from Eqs. (16), (17), and (18).

Definitions

a = thrust acceleration

C = exhaust jet velocity

d = thrustor efficiency parameter

F = thrust

J = Sa 2 dt

m = mass

ln = thrustor

mk = payload

nP = propellant

mS = structure

mt = propellant tank

m, = powerplant

nb = initial

ml = terminal

p = jet power

= powerplant output power

= constant thrust powered time

II-12
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aF = thrustor specific mass =--MF/P

cyw = powerplant specific mass = mn/P

-ff2 = Jw/2T

y¥ = (1WJ/2

= thrustor efficiency = p/P

p = tank propellant mass fraction = mp/(mp + mt)

a = structure proportionality constant = ms/(mF + mt + mP + m.n)

= mass fraction = m/mo

AtL = payload fraction

Po = initial mass fraction = 1

PP = propellant fraction

PAw = powerplant fraction

P1 = terminal fraction

Summary of Equations

General

Terminal mass fraction:

JAI

implifie payload fraction:w

Simplified payload fraction:

I-LL ~UI UW

II-13
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Improved payload fraction:

( ( )( )[+ a+Fw ] W

Hypothetical thrustor efficiency:

77 d2

I C

Variable Thrust, Simplified Payload

Optimum powerplant fraction:

W OP: T (,-P)WOPT

Maximum payload:

1 x ( I- )LMAX

Propellant:

P

WOPT : ,[ ,(i+ F ]

Variable Thrust, Improved Payload

Optimum powerplant fraction:
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Maximum payload:

L MA X (1-2(1+-) (4/ a, ' PMAX o

Propellant:

11 , z , I+ -~T ) '

Constant Thrust, Simplified Payload

Optimum powerplant fraction:

OPT

77 - '7(C)

geometric mean, hypothetical thrustor efficiency:

COPT : (+

WOPT

' 2d 2 )
J TC

Y

( I + J TC---

- x

II-15

+ (I+_)( Is a F12

I( , ) '- C )
I, +___ 77

, (I - I, )

I'_-( I y, )- ( ) C
2,(-~,

AM

GM

Closed form:

I /2
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Y

L MAX - 2 (I +
J2d2

JT c

At zero maximum payload:

Qw JMAX

2
+JT

Constant Thrust, Improved Payload

[ at ] [ ( | 2+L,) ( 7)' )] +( 2 IL,) ( aFC )
I.. aF( C ) IF _( I \ c\/P

- I aw I I I +~Li 7 I +1 +aI
aw JL \ I+FL/\ .77/J

+
aF(C )

a w IL (2) 2 ( ')( aC )

1/2

)+r2

WOPT

AM

GM

77 - 7(C)

a F a F(C)

Y2 d2 1/2
t I+ -- c 

k, ( I - k,)/p
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SECTION III

DATA FOR OPTIMUM SYSTEM PARAMETERS

Contained in this section are graphical and numerical data for estimating

power-limited system performance under constant-thrust and variable-thrust operation.

In general the requirements for utilizing these data are variable-thrust J or the

constant-thrust J and powered time for the corresponding heliocentric interplanetary

mission. Methods and data for estimating these requirements are presented in

Section IV, following.

Constant-Thrust Operation

Equations (16) to (20) of Section II are quite useful, since the system

parameters are given by simplified expressions. Accordingly, based on these

equations, Figs. III-1 to -8 present optimum C and Pw, and resulting .l and maximum

AL for values of \ , the product JcTc, and d = 10, 20, 30, and 40 km/sec (the
efficiency parameter). The maximum power plant specific mass that yields zero

payload for the given Jc and Tc can be easily found from the nomograph of Fig. III-9.

All of these figures are based on the simplified payload definition and hypothetical

efficiency function, Eqs. (1) and Fig. 1 of Section II, respectively. The notation

Jc is employed to emphasize constant-thrust operation and to distinguish it from

the variable-thrust J to be given later.

The graphs require Jc and Tc based on a constant-thrust or constant-thrust-

acceleration heliocentric trajectory. The powerplant defines oh and the thrustor

type gives d. The efficiency parameter, d, is estimated by fitting (approximately)

the hypothetical efficiency functions to the given thruster curve. The appropriate

units for the parameters are given in the figures.

The use of the improved payload fraction definition requires a functional

relationship between thrustor specific mass and exhaust velocity. An example of

empirical data obtained from Ref. 2 is illustrated in Fig. III-10 for electron

bombardment and contact type thrusters. The two curves for each thrustor type

indicate "current" and "improved" technology levels. The curves have been smoothed

and extrapolated to an exhaust velocity of 20 km/sec for purposes of deriving an

analytic fit.

Two analytic fits to the data presented in Fig. III-10 have been employed,

first a sum of exponentials and, second, a fourth-degree polynomial. The former

method yields a smooth fit to the data throughout the entire range of C and also
produces a smooth curve for the first derivative. These results are presented in

Table III-1. The fourth-degree polynomial yields exact results at the evenly
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spaced data points, although the general form is wavy both in the reproduced curve

and its first derivative. Table III-2 presents the basic method, and Table III-3

gives the coefficients for the curves of Fig. III-10.

For an accurate reproduction of curves of this type, the sum-of-exponentials

fit is preferred. However,the numerical procedure necessary to obtain the coef-

ficients is quite complicated and does not appear justified in view of the con-

tribution of thrustor mass to the total vehicle mass. Consequently, the polynomial

approximation is preferred for the foregoing reason and further, because the

appropriate coefficients are easily determined, as shown by Table III-2. Any other

thrustor curve may be quickly approximated by the polynomial if input data points

are specified at exhaust velocities of 20, 40, 60, 80, and 100 km/sec.

Variable-Thrust Operation

For the simplified payload fraction definition, the optimum powerplant mass

fraction and other parameters are obtained from Eqs. (4), (5), and (6) of Section II.

For convenience,the maximum payload fraction as a function of powerplant fraction

is plotted in Fig. III-11 with f a parameter. The points of maximum payload and

optimum powerplant fractions are indicated for any value of 3.

Corresponding plots for the improved payload definition (variable-thrust) are

given in Fig. III-12 with the parameters X and M identified as

and

M m I + 0 (I - L MAX)

Note that, insofar as the powerplant and propellant fractions are concerned, precisely

the same results are obtained for the simplified and improved payload cases provided

the values of p, 0 , and ow are such that X is 1.0. Under these circumstances the

maximum payload is given simply by

2(1+0-) (I +0-) 2
tL MAX : I p + le
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TABLE m- I

EXPONENTIAL APPROXIMATION TO
THRUSTOR SPECIFIC MASS FUNCTION

aF(C) = ae (0 - ,)

aF, KG/KW

(3

+ a 2 e 20

C, KM/SEC

CO'

ELECTRON BOMBARDMENT, I 1.63542 0.406626 2.46479 1.92452

.I " , 2 0.429867 0.403804 1.05991 1.06851

CONTACT, I -0.0197516 -0.357073 1.10985 0.342079

CONTACT, 2:

-0i600736 C/, 
aF(C) = e - 0.590562 cos[13° 14.428'1 C I- + 0.275432 sin 1:5

°
14.428' ( I20 '( I -

C3
I

0
0
01C."OD
I

CD

C-2



TABLE mT-2

DETERMINATION OF COEFFICIENTS FOR THRUSTOR SPECIFIC MASS FUNCTION

QF(C) = a + ,() + a( c )+ a3 20 )+ a4 ( c )

aF, KG/KW

C, KM/SEC INPUT:

C 20 40 60 80 100

aF CFO aFi CF2 IF3 (CF4

a 0 ]aFO

a,\ ]aFI

2 = D X aF2

a3 CaF3

a4 aF 4

5

-6.41665

D = 2.95833

-0.58333

0.041667

-10

17.83331

-9.83333

2.16667

-0.16667

10

-19.50

12.25

-3.0

0.25

-5

10.16667

-6.83333

1.83333

-0.16667

-2.08333

1.45833

-0.41667

0.041667

0C
0
(.
O

r'
I,

(3)

WHERE
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TABLE m - 3

POLYNOMIAL APPROXIMATION FOR THRUSTOR SPECIFIC MASS

CF(C) = ao + a,(- Co ) + a2(2--)2+ a3('---)3+ 4('20)4

aF, KG/KW

C, KM/SEC

THRUSTOR TYPE ao 0 j 02 a3 04

ELECTRON BOMBARDMENT, I 11.73 --11.467 4.6271 --0.84750 0.057916

2 3.44 -- 2.68666 0.88670 --0.13833 0.008333

CONTACT, I 1.55 - 0.54083 0.089583 - 0.091662 0.0004167

2 1.00 - 0.53167 0.14333 -0.023333 0.0016667
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SECTION IV

HELIOCENTRIC AND PLANETOCENTRIC TRAJECTORIES

The presentation of constant-thrust trajectory information to be used in the
analysis of power-limited space vehicles relies on the assumptions that variations

in powerplant specific mass and either specific impulse (exhaust velocity C) or

powerplant fraction, pw, do not significantly affect the value of J over an optimally

steered trajectory and, further, that the power system output is invariant with
either spatial position or time, or both. Under these assumptions, it is possible
to organize the power-limited trajectory information by computing a constant-thrust-

with-coast trajectory such that the vehicle is optimally steered (i.e., J is

minimized) and the payload fraction, ILt, is maximized for either given C and
optimized Aw or given pLw and optimized C, all for a given powerplant specific mass
and travel time. The J so computed is therefore characteristic of the particular

trajectory and could be considered an indication of the flight propulsion require-

ments with only the proper selection of exhaust velocity and powerplant fraction

needed to maximize the space vehicle's payload carrying capability at any other

given powerplant specific mass (see Section II, pg. 3).

The foregoing approach was employed in the computation of heliocentric and
planetocentric trajectory requirements for selected planets. Not all planets were
considered for the heliocentric missions simply because of the expense involved.

The data listed herein were available from a series of previous company and NASA

funded studies. Only constant-thrust, constant-power trajectories with optimal
coast were employed in the heliocentric flights; similarly for the planetocentric
spirals, except that no coast periods arise in this type of flight. As implied

by the constant-power assumption, the trajectory information is not applicable to
vehicles powered by solar-electric or radioisotope power systems since the power-

plant is a function of heliocentric position or time, respectively. In the case
of the radioisotope systems, this limitation need not hold if the power decay is

not significant over the operating time.

In the case of mixed-thrust trajectories in which the boundary conditions on

the heliocentric trajectory include nonzero hyperbolic excess speeds, the transition
region between the two gravitational fields encompasses low-thrust operation within

the planet's sphere of influence. Because the heliocentric trajectory optimization
assumes, as part of the boundary conditions, that the planets are massless points,
it is necessary to develop corrections to account for the realistic case in which
the low-thrust vehicle is affected by the planet's mass. This aspect is discussed
in the final part of this section and in detail in Section VIII, Appendix B.
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Heliocentric Trajectories

Figure IV-1 displays the characteristic trajectory requirement, J, as a function

of heliocentric travel time to each of four planets. Rendezvous trajectories are

shown for trips to Mercury, Jupiter, and Saturn, and flyby trips to these three

planets as well as to Uranus. All of the information shown was obtained using a

computer program which computes constant-thrust, constant-power, fixed-time tra-

jectories with optimum coast periods (see Section VII for description). The tra-

jectories are all two-dimensional with the planets moving in elliptical orbits. A

fixed powerplant specific mass of 5 kg/kw was used and the exhaust velocity and

powerplant fraction were simultaneously optimized for maximum payload fraction

(simplified definition, Section II, pg. 3). The hypothetical thrustor efficiency

function given at the bottom of pg. 8, Section II, was used with d = 20 km/sec.

The planets and types of trajectories chosen were those presently felt to be

missions appropriate to first-generation, unmanned, electrically propelled, inter-

planetary probes. Because only one-way probe missions were considered, the J's are

accordingly the lowest value possible for the corresponding trip time; i.e., the

heliocentric central angle through which the probe traverses is optimum. Although

all of the trajectory data were computed for a certain planetary alignment year

occurring in the early 1980's, the information is considered applicable to other

years for preliminary systems analysis and mission studies.

Trips labeled "rendezvous" are those for which the departure and arrival con-

ditions are the appropriate planet's heliocentric orbital position and velocity;

with respect to the planet the probe is at escape conditions. The flyby trips are

trajectories which leave Earth with its heliocentric position and velocity and pass

through the massless point representing the destination planet. Because of this

terminal condition, the trajectory may also be interpreted as an impacter.

The total time that thrusting is necessary for both rendezvous and flybys trips

is illustrated in Fig. IV-2. Since coasting periods arise in optimum constant-

thrust trajectories, the powered time (or operating time) is always less than the

heliocentric travel time. The hyperbolic excess velocity for planetary flybys is

given in Fig. IV-3. To an observer on the surface of the planet, the probe would

appear to be closing along a radius vector with a speed given by

V w=/ Va, + Ve ,

where V, is the hyperbolic excess velocity, and Ve is the escape velocity at the

planet's surface.
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For the systems analysis of some types of flight modes (described in Section V)

it is convenient to assume that the J-curves of Fig. IV-1 and the powered times

in Fig. IV-2 are approximately linear functions of travel time. The motivation is

to quickly obtain trajectory information which may be directly applied to Eqs. 16

to 19 of Section II. Assuming a linear relationship, then the characteristic J

and corresponding powered time are given, respectively, by

MH mH
ATH = J

JH = 3H (7;7 and THP = THP ,
r H

where JH, TH, and THP are the heliocentric J, travel time, and powered time,

respectively. The quantities topped by a caret are reference values. The necessary

information for these equations is given in Table IV-1 for both rendezvous and

flybys. Data for Uranus rendezvous were not available. Also indicated at the

bottom of each column is the range of trip times from which the corresponding data

were derived.

As can be seen from Fig. IV-1, the linear approximation is not strictly correct

and tends to be in error at the higher relative trip times, especially in the case

of Mercury. However it has been found in most cases of interest that the J so used

results in about 10 to 15% error in the mass fractions. This error was considered

reasonable for mission study purposes. In any event the data of Figs. IV-1 and

IV-2 could be used as plotted for more accurate analysis.

Planetocentric Spiral Trajectories

The trajectory data for planetocentric spirals represent the requirements for

a low-thrust spiral between escape conditions and a circular parking orbit. Only

constant-thrust outward (departure) and inward (capture) spirals are considered for

both optimal and tangential (or circumferential) steering programs. Two methods of

computing the trajectory characteristics, J, as well as the appropriate vehicle and

propulsion system parameters are given. The first, developed by W. G. Melbourne of

JPL (Ref. IV-1), employs tangential steering. The second approach is based on the

work of Breakwell and Rauch (Ref. IV-2) as modified by Edelbaum (Ref. IV-3) and is

applicable to both tangential and optimal steering programs.

The derivation of the equations in both techniques is given in Section VIII,

Appendix A, Planetocentric Low-Thrust Trajectory Equations. The pertinent equations

and trajectory data are presented here.
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Melbourne's Method

From Appendix A, the time, T, required for a vehicle to reach escape velocity

from a circular orbit of radius Rc and with circular velocity Vc is given by

C =C r ( -vc/c) 

where Vc = p-R-c, AP being the planet's gravitational parameter. The term r is

an empirical correction factor designed to give the exact escape time, for tan-

gential steering, as determined from numerically integrated trajectories. It is

a function of the initial thrust acceleration (in units of the gravitational

acceleration at the parking orbit) and is shown in Fig. IV-4.

If 1-F were plotted against the normalized initial thrust acceleration on log

paper the curve would be essentially a straight line. Thus, using the functional

form F = 1-pAq, a least-squares fit to the experimental points yields an analytic

expression for the correction factor.

0.24323
r = I - 0.76382(A o ) , (2)

where ;A is the initial thrust acceleration in terms of g at the parking orbit. In

terms of the familiar system parameters Eqs. (1) and (2) are, respectively,

ALW - VcC r (3)

a w 172.8 -', T 3

and
q

(77/C)(/LW/aW)L500 /p/ RC2 ] (4)

where Vc and C are in km/sec, T is in days, Ap is in km3 /sec2, Rc is in kin, and

%a is in kg/kw.

In the usual application of finding J as a function of time for given parking

orbit conditions, an iteration is required between Eqs. (3) and (4). From Fig. IV-4

it can be seen that a F of about 0.9 corresponds fairly well to thrust accelerations
of from 10-

3 to 10-5 g. This is close to the accelerations expected of advanced low-

thrust systems and thus a F of 0.9 provides a reasonable starting guess for the

following procedure. With time and exhaust velocity, C, given, and the parking

orbit fixed, Eq. (3) is solved for fw/cw. This value is substituted into Eq. (4)

and a new value of F is computed which in turn is put into Eq. (3) and the entire

process is repeated until F between the two equations agrees within some specified

tolerance.
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Finally the J corresponding to the input quantities is found from

w Ir( l - e
-

Vc/C)
J = 2000X aw c'

It is assumed that X is given as some function of C, e.g., the hypothetical form

at the bottom of pg. 8, Section II. With all other quantities fixed, a range of C's

could be introduced to note the effect on J. Fortunately J is essentially independent

of C as will be shown later. Consequently, for any given thrusting time a

representative C could be used to compute a J which would then be applicable to
any C.

The foregoing expressions, which are applicable to departure spirals, may be
used to compute capture (inward) trajectories since the latter are equivalent to the
former except that vehicle mass increases rather than decreases. Thus by changing

the ratio Vc/C to a negative quantity while still measuring time positive from the
terminal parking oribt, the above equations apply to capture spirals.

Breakwell-Rauch Method

This method is based on the development of a systematic theory which accounts
for the influence of the planet and the sun on the motion of the vehicle as it

traverses the two gravitational fields. Using a mathematical perturbation technique

on the planetocentric and heliocentric trajectories, the two positions of the overall

trajectory are matched in order to define a point at which the computation of vehicle

performance for the planet-centered part of the flight ceases for departure or

commences for capture. Thus, to the order of accuracy of the perturbation, this

switching point will cause the calculation of performance to agree with the actual

trajectory profile.

Using the perturbation parameter, p, the mass ratio of the planet to the sun,

the Breakwell-Rauch theory for power-limited spirals is carried out through terms of
order p1/ and 1p2 with errors on the order of p so that it is comparable to the

widely used analysis for high-thrust trajectories. The term of order P4 is quite

important for all the planets while the term of order p 1/ is quite small for the

inner planets although it may be important for trajectories about the massive planets.
The following is based on the analysis carried out to the order of 1/4 SO that
there will be some error in applying the results to the massive planets.

The incremental velocity, AV,, required to reach.the switching point (or time)

is
1/4

VC ml ) (5)

IV-5



G-110058-28

where F is thrust, ml is the vehicle mass at the switching time, and 5 is a constant
whose value depends on the steering program. For tangential steering 5 = 1.757,
while for optimal steering it is 1.840.

The mass ratio required between the switch point and the initial (or terminal)
parking orbit may be determined by introducing the usual system parameters into

Eq. (5). Thus, 1/4

-LI = exp -C I[ - 1.84 00 p/Rc2 /4 J ' (6)

where Wp is the ratio of terminal mass to initial mass. Equation (6) is used as
given for spirals leaving a parking orbit and thrusting to the switch point; hence
an iteration is required to obtain p1. If capture spirals are to be computed,
then the term l 1/4 in the right-hand side of Eq. (6) is fixed at unity (see
Appendix A), thereby eliminating the iteration on pl.

For a fixed planet and given C (the functional form for ~(C)) and thrusting
time, an iteration is necessary between Eq. (6) and

MW I C2 (I - 1 )
aw : 172.8 ' -T (7)

in order to obtain w/~. The procedure is somewhat complicated in the case of
departure spirals since the iteration on p1 is required. The basic approach taken
here is to nest the iteration for pl inside that for Lw/aw. For typical planet-
ocentric trajectories the vehicle retains most of its initial mass so that a
reasonable initial guess for ~p would be unity.

The trajectory requirement can be calculated from

J 2000' (aw )( I ). (8)

If r = 1 in Eq. (4), then it becomes Eq. (8) since p = e-Vc/C.

That J is independent of C is shown in Table IV-2 for both outward and inward
spirals about Earth. Table IV-2 also indicates the small difference in J between
the capture and departure spirals. For all but the most massive planets this
difference is insignificant and is not more than about 4% for the larger planets
if the parking orbit radius is 10 or more planetary radii. Hence all of the
trajectory data have been computed for departure spirals only, and can also be used
for capture spirals with little error. Further, only optimal steering of the
vehicle was considered since the two steering programs result in J's that differ

by approximately 5%.
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The Breakwell-Rauch method was favored over the Melbourne approach because of

the theoretically more accurate trajectory model employed by the former and the fact

that the transition region effects between the gravitational fields were partly

accounted for. However, the Melbourne method is simpler, especially for computing

departure trajectories by means other than a digital computer. A direct comparison

of the two approaches is presented in Appendix A. Briefly, the difference in the J's

may be as high as 20 to 30%; however, the net effect in the vehicle mass fractions

is much less than 10%.

A sample plot of J vs powered time is shown in Fig. IV-5 for a set of planets

and selected parking orbit radii. These data were obtained by the Breakwell-Rauch

method using optimal steering. Note that the curves are approximately straight lines

except in the vicinity of relatively long powered times. Nevertheless, since the

vehicle mass fractions are almost insensitive to some variations in J once a

reasonably accurate J is employed, then a linear fit to the curves of Fig. IV-5

would provide a compact technique of presenting numerous planetocentric trajectory

data. Assuming the curves are of the form

m

(T ) (9)

and using a least-squares criterion for fitting the data, then the parameters J, T,

and m could be tabulated for a particular planet and a given parking orbit radius.

The results of this procedure are given in Table IV-3 where J and T are simply

reference values, m is actually the slope of the log plot (Fig. IV-5), and rp is the

circular parking radius in units of the planet's radius. Values of J and m at other

than the rp's listed could of course be found by interpolation.

Planetocentric Orbit-to-Orbit Spiral

The computation-of trajectory requirements for elevating or lowering a parking

orbit about a planet is based on Ref. IV-1. Only tangential steering is considered

here since the trajectory requirements are quite low for most planet-centered

orbital missions and thrusting times and, as a consequence, the benefits from

optimal steering would be relatively slight. Because of the fact that the spiral

trajectory and corresponding analysis is confined completely within the planet's

sphere of influence and involves no transition region, the performance equations

do not contain the correction factor F. The development of this aspect of planet-

centered spirals is discussed in Appendix A.

The required increment that must be accommodated by the electric propulsion

system is precisely the difference in orbital velocities. Thus a vehicle which

transfers (outward) from a low orbit of radius pO (normalized by the planet's

radius, Rp) to a final high orbit Pl, about a planet of gravitational parameter pp,

will require a terminal mass fraction given by

IV-7
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:u[exp /.Lp12 /1 R (10)

so if the allowed thrusting time is T days and the propulsion system exhaust velocity
is C km/sec, then the characteristic trajectory requirement is

l__ c2 (I _- L) 2

0.0864 T / 1 (11)

where it can be seen that J does not depend on the thrustor power conversion ef-

ficency. Table IV-4 shows the results of a sample calculation for an Earth-centered
spiral which commences from a low orbit of 1.05 and culminates in a series of high
orbits, including the case of a synchronous orbit (p, = 6.6301).

An abbreviated form of Eq. (11) may be developed by noting certain characteristics
of Table IV-4 which could be assumed to hold for any planet. For a given time and

PI, J is essentially independent of C. If this slight variation in J's is acceptable,
then an average J over the range of C's would be a highly accurate estimate for the

J at the given T and pl. Furthermore it can be seen that, regardless of the thrusting
time and terminal orbit, the average J always occurs at an exhaust velocity of
approximately 40 km/sec'.

Hence, for a transfer between two given orbits, Eq. (10) becomes a constant

if C = 40 km/sec and Eq. (11) may be written as a constant divided by the thrusting
time T. The J obtained in this manner will be an estimate of the average J which

may be used in the performance analysis, i.e., where exhaust velocity and powerplant

fraction are varied. Figure IV-6 shows the dependence of J on thrusting time for a

transfer between an Earth-centered orbit of radius 1.05 and a series of terminal
orbits, including the 24-hr synchronous orbit.

Conversely, if T is fixed, then Eq. (11) may be written as a function of p1
by setting C = 40 and substituting Eq. (10) into Eq. (11). A further simplification
of this result may be obtained by noting that a plot of J vs P1 on a semi-log graph,

Fig. IV-7, is almost linear for p, between 2 and 10. A least-squares fit to this

plot would yield a simple relation involving only P1 for the assumed T. The general

form of the equation would be

b
J = Opt,

where a and b are constants determined by the least-squares method. This result

may be expedient for quick performance analyses of transfers to various orbital
radii.
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Either the arithmetic-mean, Eq. (15), or geometric-mean, Eqs. (16) to (19),
results of Section II may be used to determine the exhaust velocity and powerplant

fraction which maximizes net spacecraft mass fraction. Equations (12) and (13) of
Section II may be used to compute the initial and average thrust accelerations,

respectively, if necessary.

In computing the performance of orbit-changing propulsion systems, it is useful
to estimate beforehand the minimum thrusting time which yields zero net mass fraction.

As noted above, for transfers between two given orbits, Eq. (11) can be written so
that J is inversely proportional to the time. Or, using some reference time, T,
and corresponding J, J, then

( 4 )- (12)

With the use of Eq. (19), Section II, and the corresponding thrustor efficiency

function, the desired minimum time may be found by substituting Eq. (12) and setting
the result equal to zero. This procedure is essentially accomplished in Eq. (20) of

Section II, so that putting Eq. (12) into Eq. (20), Section II, the desired result
is obtained.

awd 2

T {JT 2 ) (13)

2 +d d

Note that the dimensionless ratio JT/d2 (appropriate conversion units are
required) contains the reference parameters indicative of the orbital transfer and
the thrustor efficiency. Equation (13) may be utilized in two ways. Given the
powerplant specific mass, the minimum thrusting time may be found which produces

zero maximum net mass fraction, or given a required time, the maximum powerplant
specific mass may be computed for the propulsion system. A generalized non-

dimensional plot of Eq. (13) is shown in Fig. IV-8. Reasonably accurate results may
be obtained from Fig. IV-8 for quick evaluation.

As an example, consider an Earth-centered transfer from an orbit of 1.05 radii

to a synchronous orbit. From Table IV-4 selecting the reference time as 5 days, the
reference J is 50.046 m2 /sec3 . If d = 20 km/sec, then, with the proper conversion

constants for nondimensionality,

0864 JT0864 (50 x 5)
0.084 0.0864 0.05420

d2 (20)2
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With this value, Fig. IV-8 gives awd2 /T = 3.85. Again with the proper conversion

constants,

a d2 a
= 3.85, and = 0.832.

86.4 T T

Thus, for example, if aw = 15 kg/kw, then the minimum allowable thrusting time is

18 days. If T = 12 days, then the maximum allowable specific mass is 10 kg/kw

Corrections for Low-Thrust Hyperbolic Trajectories

For the purpose of computing performance, it is assumed that the electric
spacecraft, after being boosted from or onto the parking orbit, initiates or
terminates its interplanetary trajectory with the planet's heliocentric position
and the velocity resulting from the hyperbolic excess velocity due to high thrust
boost and the planet's heliocentric velocity. In actual operation, the high- and
low-thrust stages will be ignited sequentially so that the electric system does

operate for some period of time within the planet's sphere of influence on a

hyperbolic path. Because there currently does not exist a method of exactly

determining the precise performance values for an overall interplanetary trajectory,

it is necessary to employ velocity and position offsets on the boundaries of the
heliocentric trajectory to replace the effect of the planet.

These offsets are based on the velocity-intercept notion of matching the
planetocentric trajectory far from the planet with the heliocentric trajectory close

to the planet. The vehicle's planetocentric velocity as it recedes from the planet
approaches an asymptotic form as the gravitational field of the planet diminishes.

By extending this asymptote back to zero velocity, an intercept time, tl, may be
defined as the time at which a vehicle escaping from a heliocentric, massless point
planet with zero initial planetocentric velocity would have the foregoing asymptotic
behavior as its velocity profile. For the case of hyperbolic low-thrust trajectories,

the foregoing approach may be simply implemented by considering the case of purely
radial motion. This is justified, heuristically, since hyperbolic trajectories,

after a short period, become essentially radial.

This case may be solved analytically for the constant thrust-acceleration

trajectory to obtain the required offsets of velocity, 6V, and position, 6R. The
vehicle is assumed to start from the center of the planet with an initial hyperbolic
excess speed. If VCO is the initial hyperbolic excess speed, F/m the thrust
acceleration, and lp the planet's gravitational parameter, then:

-1/4

for vo ( ----p) 5 2,

-|Lp) 1/4 (14)
V 2 [2v E(k) - .7K(k)] (mP)
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where

-1/4 2

k2 = I V ° /.Z I p I
2[-8 V-0 M

'
(15)

-I1/4

for v. 0 ( m Lp) > 2,

1/2

where

2

k 2k 

In either case, the position offset is given by

8R =

'/I i - /4 - 4" VCoo/~ ~ - 4

(8 V)- Vo-

2 (F/m)

The detailed development of the foregoing results are presented in Appendix B.

The quantities K(k) and E(k) are, respectively, the complete elliptic integrals of

the first and second kind with modulus k2. Because of K and E, which are tabulated

data, it is expedient for performance calculations to define correction factors D

and C in the velocity and position offsets, respectively, as follows:

1/4

(19)

(20)

8V - Vat = D (M P) I

and

-1/2

BR = c\F)

IV- 11

-1/44

4 ( p

'/4 (16)

E(k)m( F --p) ,M

4 
- 4 

2 [100(m y) ] + j | V ( F - I/4
TIVC , -ff up) + Voo i. -4

(17)

(18)

8V { l _[V/4 2]
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From these definitions and the previous equations, it can be seen that D and C are
functions of V0 (Fp /m)-l/ 4 , the initial velocity parameter. These curves are given
in Fig. IV-9. The velocity offset is in the direction of the initial heliocentric
thrust direction and is always larger than the initial hyperbolic excess velocity.
The position offset is a positive quantity in the same direction and is quite small,
for the inner planets at least, and is usually neglected in performance estimates.

The foregoing results, although based on constant thrust-acceleration tra-
jectories, apply equally well to constant-thrust flights if the thrust acceleration,
F/m,is based on the mass at the juncture of the heliocentric trajectory. In general,
F/m would be known beforehand only for the initial and terminal portions of the
heliocentric trajectory whereas the mass expenditure during the planetocentric
portion would be undetermined. Since 6V-V0o represents the velocity contribution
of the low-thrust system during the planetary phase, an iteration on the planet-
centered terminal mass fraction, PID, would be necessary according to

1/4

8V - VXo = -C In/ D(D = D , (21)

where, functionally,

F -1/4 o

D : D Vo 
o( /'ID ) P (22)

and where F/mo is the initial thrust acceleration upon departure from the parking
orbit (after high-thrust burn) and C is the low-thrust exhaust velocity (not
correction factor). For high-thrust capture onto a planetary parking orbit after
electric thrusting planetocentrically, no iteration is necessary since

/ 1/4 / 1/4

-C InL IC = DmF F/m pO=IH p (23)

wherein kH , the terminal mass fraction for the heliocentric transfer, is known from
the heliocentric trajectory optimization program and .1c is the terminal mass fraction
for the capture phase.

A simpler procedure would be to use the initial heliocentric thrust acceleration

for F/m in the departure case. This is justified primarily because of the relatively
short time the vehicle thrusts in the vicinity of the departure planet and the high
specific impulses associated with electric propulsion. Consequently PD would be
almost unity for departure from Earth.
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In practice the foregoing velocity correction, 6V-Vo , i.e., the right-hand

side of Eq. (21), would be applied to the high-thrust phase by reducing the assigned

initial velocity of the high-thrust system by the amount D(FLp/m)/4. This permits

the constant-thrust computer program to optimize the heliocentric trajectory and the

propulsion parameters as presently performed with the boundary conditions being the

hyperbolic excess speeds and the planets' heliocentric positions (neglecting 6R).

Because the optimization of the high- and low-thrust combination will be

computerized and since the numerous tabular values of the elliptic integrals are

not easily made a part of performance and mass calculations, a simplified functional

form of D and C would be most helpful to the routine computations. A least-squares

curve fit was applied to obtain D and C as functions of VO (Fpp/m)
-

/4. In each

case the form of the equations used was suggested by the shape of the curves in

Fig. IV-9. For D the form was given by

y = ar x + bsx, (24)

which is equivalent to

y = aex Inr + bexns

where a, b, r, and s are parameters to be found such that the sum of the squares of

the residuals is a minimum. The quantities y and x are D and VO (F~ p/m)1/ ,

respectively. The results for the D equation are:

a = 0.052688 r = 0.909470

b = 1.15207 s = 0.394237

The form used for C was

-rx _sx(25)
y = ae + be X (25)

where C = y, and a, b, r, and s are as before. The solution gives

a = 0.346150 r = 0.235156

b = 0.366336 s = 0.0239258

The foregoing curve fits are highly accurate and differ from the exact values by

not more than 1% at any given point.
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TABLE IV-1

PARAMETERS FOR HELIOCENTRIC TRAJECTORY

AND POWERED TIME EQUATIONS

JH = JH () = T HP(T-)
m
HP

TH TH

Mercury

Rendezvous

TH, days

^ 2
JH, m2/sec3

mH

THP, days

mH p

80

181.929

-2.20382

56.161

1.156o17
80 s T < 200

Jupiter

400

103.478

-2.86920

257.175

0.895741
400 < T < 1000

Saturn

700

85.816

-2.78780

437.583

0.908804
700 • T s 1200

Flyby

TH

JH m2/sec3

mH

TH P, days

mHp

70

59.241

-2.86384

43-796

1.291965
70 < T < 160

300

47.092

-2.37067

150.890

1.056036
300 ' T < 800

600

30.230

-2.06470

321.034

o.887848
600 ' T < 1200

600

131.036

-2.59108

329.991

0.907105
600 5 T < 1400

IV-15
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TABLE IV-2

INVARIANCE OF J AND COMPARISON OF EARTH

OUTWARD AND (INWARD) SPIRALS

C Pw /%w J
km/sec n kw/kg m2 /sec3

20 0.7359 (0.7318) 0.02038 (0.02069) 7.313 (7.583)
40 0.8572 (0.8560) 0.02754 (0.02777) 7.340 (7.473)
60 0.9022 (0.9017) 0.03771 (0.03793) 7.354 (7.443)
80 0.9257 (0.9254) 0.04873 (0.04894) 7.363 (7.429)

100 0.9401 (0.9399) 0.06011 (0.06032) 7.368 (7.422)
120 0.9498 (0.9496) 0.07167 (0.07188) 7.372 (7.416)
140 0.9568 (0.9567) 0.08333 (0.08354) 7.375 (7.413)
160 0.9621 (0.9620) 0.09507 (0.09528) 7.377 (7.410)
180 0.9662 (0.9662) 0.1068 (0.1071) 7.379 (7.408)
200 0.9695 (0.9695) 0.1187 (0.1189) 7.380 (7.407)
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TABLE IV-3

PARAMETERS FOR PLANETOCENTRIC SPIRAL TRAJECTORY EQUATION

J = J (T/T)m

MERCURY VENUS

J, m2 /sec3

rp
m radii J, m2/sec3

3.5040
1.5216
0.97289
0.57795
0.41471

0.31343
0.24566
0.18783

T = 15; 15

-0.86560
-0.82282
-0.78826
-0.75918
-0.73352
-0.71024
-0.68874
-0.66868

• T < 90 days

T = 30; 30 • T < 240 days

EARTH

J, m2 /sec3

13.588
6.1181
2.4534
1.3874
0.90752
0.64419
0.48206

0.37439
0.29891
0.24383
0.20233

m

-0.89256
-0.86001
-0.81207
-0.77555
-0.74474
-0.71751
-0.69277
-0.66991
-0.64855
-0.62840
-0.60929

T = 30; 30 • T < 240 days

rp
radii

1.05
2

4
6
8
10

12
14
16
18
20

MARS

J, m2
/sec

3

2.7629
1.2354
0.49032
0.27511
0.17876
0. 12615
0.093900
0.072567
0.057676
0.046845
0.038713

T = 30; 30 s T < 240 days

IV-17

radii
radii

1.05
2

3
4
5
6
7
8

m

1.1
2

4
6
8

10
12
14
16
18
20

10.871
5.1611
2.0600
1.11610

0.75733
0.53630
0.40047
0. 31042
0.24740
0.20146

0. 16691

-0.89108
-0.85981
-0.81075
-0.77341
-0.74193
-0.71410
-0.68882

-0.66547
-0.64365
-0.62308
-0.60355

rp

radii

1.05
2
4
6
8

10
12
14
16
18
20

m

-0.89000
-0.85572
-0.80526
-0.76682
-0.73437
-0.70565
-0.67955
-0.65542
-0.63291
-0.61167
-0.59147
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TABLE IV-3 (Contd.)

PARAMETERS FOR PLANETOCENTRIC SPIRAL TRAJECTORY EQUATION

J = J (T/T)m

JUPITER

rp
radii

1.1

5
10
20

30

Ja me/sec3

357.54
43.328
14.140
3.9024

1.6516

m

-0.87011

-0.74747
-0.65012
-0.50939
-0.39974

rp
radii

1.1

5
10
20

30

SATURN

J, m 2 /sec

118.80
13.928

4.3632
1.1321

0.4567

-0.85841
-0.72128
-0.61281
-0.45597
-0.33433

T = 30; 30 5 T < 240 days

URANUS

J, m2 /sec3

46.545
5.8949
1.9548
0.55017
0.23616

m radii

-0.87273
-0.75211
-0.65778
-0.52164
-0.41539

1.1

5
10

20

30

T = 30; 30 < T < 204 days

NEPTUNE

J, m2/sec3

63.117
8.2738
2.8224

0.82784
0.36695

T = 30; 30 < T s 240 days T = 30; 30 ' T ' 240 days

PLUTO

J, m /sec3

20.791
8.4338
2.2691

0.73379
0.19900

m

-0.87007
-0.82489
-0.73632
-0.63553
-o.48984

T = 15; 15 < T ' 120 days
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m

rp
radii

1.1

5
10
20

30

m

-0.88077
-0.76874
-0.68156

-0.55599
-0.45793

rp
radii

1
2

5
10
20
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TABLE iv-4

REQUIRED J FOR EARTH-CENTERED ORBITAL TRANSFERS

Initial Orbit = 1.05 radii

Terminal Orbit = 4 radii
Thrusting Time, Days

5 15 30
J, m2 /sec3

32.895
32.841
32.823
32.814
32.809
32.806
32.804
32.803
32.802
32.822

10.965
10.947
10.941
10.938
10.936
10.935
10.935
10.934
10.934
10.941

5.4826
5.4736
5.4704
5.4690
5.4682
5.4677
5.4674
5.4672
5.4670
5.4703

C, km/sec

20

30
40

50
60
70
80
90

100

Avg. J

Terminal Orbit =

Thrusting Time,

5 15
J, m2/sec3

56.374
56.216
56.161
56.135
56.122
56.113
56.108
56. 104
56.101
56.159

18.791
18.739
18.720
18.712
18.707
18.704
18.703
18.701
18.700
18.720

Synchronous Orbit = 6.630 radii

50.216
50.091
50.047
50.027
50.016
50.009
50.005
50.002
50.000
50. o46

16.739
16.697
16.682
16.676
16.672
16.670
16.668
16.667
16.667
16.682

8.3693
8.3485
8.3412
8.3378
8.3359
8.3348
8.3341
8.3336
8.3333
8.3409

Terminal Orbit = 10 radii

20

30
40
50
60

70
80
90

100

Avg. J

63.378
63.179
63. 109
63.077
63.060
63.049
63.042
63.038
63.034
63. 104

21.126
21.060
21.036
21.026
21.020
21.016
21.014
21.013
21.011
21.031

10.563
10.530
10.518
10.513
10.510
10.508
10.507
10.506
10.506
10.517
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C, kmn/sec

20

30
40o
50
60
70
80
90

100
Avg. J

8 radii
Days

30

9.3956
9.3693
9.3602
9.3559
9.3536
9.3522
9.3513
9.3507
9.3502
9.3599

20

30
40
50
60

70
80
90

100
Avg. J

i
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HELIOCENTRIC TRAJECTORY REQUIREMENTS
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HELIOCENTRIC POWERED TIME REQUIREMENTS
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FLYBY VELOCITIES AT THE PLANETS
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CORRECTION FOR PLANETARY SPIRAL ESCAPE TIME
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PLANETOCENTRIC SPIRAL
TRAJECTORY REQUIREMENTS
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TRANSFERS BETWEEN EARTH-CENTERED ORBITS
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MAXIMUM POWERPLANT SPECIFIC MASS
OR MINIMUM TIME FOR ZERO NET MASS FRACTION
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SECTION V

MISSION AND SYSTEMS ANALYSES

The basic insight into the relationships between the trajectory characteristic,

J, and the propulsion system parameters, C and Xw, was presented in Section II, III,

and IV with reference to maximum terminal mass fraction and net spacecraft mass

fraction. This section is devoted to the application of the previous information

in evaluating specific aspects of power-limited propulsion systems when used in

certain interplanetary flight modes. The purpose is to develop the system equations

for the different flight modes and to present computational aids useful in solving

these equations.

In all of the missions to be considered, the flight commences from a low

parking orbit about Earth and terminates either on a parking orbit about the planet

(for capture missions) or at the time of closest approach to the planet (for flyby

missions). Two propulsion modes are presented. The first involves a single electric

propulsion system that performs all phases of the flight with no staging of any

type. The second consists of mixed high- and low-thrust propulsion with staging of

the individual systems. This latter mode requires heliocentric trajectories in

which either one or both of the boundaries contain hyperbolic excess speeds that are

accommodated by the high-thrust propulsion system. Unfortunately, as of the date of

this writing, insufficient mixed high- and low-constant-thrust trajectory data limits

the discussion to the development of the appropriate equations.

In the case of the single-stage electric propulsion system, three system

variations are treated, all of which require the powerplant specific mass to be

given. The first variation is merely that treated in Sections II and III, namely the

maximization of net spacecraft mass fraction. The second case assumes that the

powerplant mass is given and that the gross vehicle mass and exhaust velocity are to

be optimized for maximum net spacecraft mass (not mass fraction). The final

variation considers both the powerplant mass and gross vehicle mass to be given and

that the exhaust velocity must be optimized to obtain maximum net spacecraft mass.

Single-Stage Electric Propulsion System

Trajectory Optimization

The use of a single-stage propulsion system which operates throughout at most

three different gravitational fields requires that the characteristic requirement

for such a three-phase trajectory be a minimum. Usually interplanetary missions are

specified in part by the allowable overall mission duration. In this case the total

duration for the mission, T, is

V-1
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T = TD + TH + TC (1)

where the subscripts D, H, and C denote departure time (from Earth), heliocentric
travel time, and capture time, if any, at the planet. From Section IV it was
determined that the J for each phase could be written (approximately) as a simple
function of travel time. Because only the overall mission duration is specified, it
is necessary to determine the constituent times in Eq. (1) which minimize the total
J as given by

J = JD(TD) + JH(TH) + Jc(Tc). (2)

That the total J represents the overall trajectory is based on the fact that the
final terminal mass fraction is the product of the individual terminal fractions of
each phase provided no staging occurs.

Pil 'F HIDFOIHALIC (3)

Now the mass of the powerplant, mw, is the same throughout the flight so that the
powerplant mass fraction of each phase can be found in terms of the terminal mass
fractions.

kLw kLW
/LW = P'WD, /AWH : ID' and /L'wc = . (4)

Combining the relations of Eq. (4) with the rocket equation (Eq. (1), Section II),
and substituting into Eq. (3), the overall terminal mass fraction becomes

aW (JD + JH + JC) (
2 W/W

where the exhaust velocity is the same for all thrusting phases so that f is constant.
Consequently, as expected, the sum of the individual trajectory requirements (parking
orbit-to-parking orbit) should be a minimum to ensure maximum final terminal mass
fraction.

Strictly interpreted, however, the overall trajectory requirement should be
computed as one complete and continuous trajectory accounting for all the perturbing
influences of the planet and the sun of the vehicle's motion. The exact solution of
this multi-body trajectory problem is not tractable for mission study purposes and
therefore the approach is to separately compute the individual planetocentric tra-
jectories while accounting for the transition effects between the planet's and sun's
gravitational fields. This permits the Breakwell-Rauch planetocentric trajectory

V-2
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data of Section IV to be used in conjunction with the appropriate heliocentric data.
In addition to the error inherent in the planetocentric spirals about the more

massive planets, there is the actual position error of the vehicle which, because

of the above approach, is due to the assumption that the spacecraft is at the center

of the massless point planet in heliocentric space. This error is neglected in all

of the present analysis.

The overall computational approach is to first find the distribution of powered
times which minimizes the total J for a specified mission duration. This yields

the total minimum J and corresponding total powered time, both of which are required

for determining the optimum exhaust velocity and powerplant fraction. These optimum

parameters may be found by using either the iterative procedure described in Eq. (15),
Section II, or the closed-form expressions in Eqs. (16) to (19), Section II.

The procedure is greatly simplified if the trajectory requirement and powered
time equations shown in Tables IV-1 and IV-3 are employed. Assuming for the moment

that the heliocentric travel time, TH , is given, then the total planetocentric time

is known from

T - TH = TD + Tc, (6)

where T, the total mission duration, is specified. The total planetocentric tra-

jectory characteristic is

mD m c

JP = JD + Jc = JD + ic (7)
(+D) (- I

where the simplified expressions (Table IV-3) have been substituted. Taking the

total derivative of Eq. (7) with respect to TD and Tc, setting the result equal to
zero, and using Eq. (6), the optimum thrusting period for the departure spiral may
be found

T
D

= TF- mD °mr I-inc
TC i

- MoMTD JcTD mM J Tc I (8)

An iterative procedure between Eq. (6) and (8) is required to find TD and thus the

optimum distribution of the given total planetocentric thrusting time.

The overall mission requirement can now be written as a function of the

heliocentric and departure travel times.

mc

~mJ =J(m D A m (A M-r (.0

MM TD 1 D

i,~ ~ _j (,-mo
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where the entire mission duration is

T = TH + TD + C TD I-m (10)

JD mD C 

m
e

Thus the optimum TH can be determined by setting the derivative of Eq. (9) with

respect to TH equal to zero and keeping in mind that TD is a function of TH by

Eq. (10). After considerable simplification the equation for optimum TH is

I

F ~~~~A A I-mM A A ,-ml- mD I-mH H T l -MM

-rD-M MC J TH = I-m.c (11)
H AmJ TH- Tsm~- THI-mo ' --

m JH T o HJH Tlm, JH TC

In this form the equation is amenable to solution by successive substitution or,

preferably, by the method of false position. The latter method converges to a

solution quite rapidly and is very stable.

Equation (11) applies to the general flight mode; namely, planetocentric

departure spiral, heliocentric transfer, and planetocentric capture spiral. The

second and third terms on the right-hand side of Eq. (11) are, respectively, the

contributions of the departure and capture planet-centered spirals. Consequently,

if the flight mode under consideration is other than the general one, the appropriate

term in Eq. (11) should be omitted. If there is to be no capture at the destination

planet, then the third term should be omitted. This implies that the heliocentric

trajectory is a flyby and the parameters in the heliocentric J and powered time

equations (Table IV-1) must correspond to this type of trajectory. If there is a

high-thrust capture at the planet starting from parabolic, i.e., escape, conditions

then the third term is omitted and the heliocentric rendezvous trajectory data of

Table IV-1, may be used.

If there is a capture spiral but no departure spiral, then the second term must

be deleted. The overall flight mode thus consists of a high-thrust departure from

the initial parking orbit to parabolic (escape) conditions, a low-thrust heliocentric

transfer, and a capture spiral. Under these conditions the rendezvous heliocentric

data of Table IV-1 is applicable. However, if more than parabolic conditions are

provided by the high-thrust system, i.e., hyperbolic excess velocity greater than

zero, then none of the cited heliocentric data are useful. This type of high- and

low-thrust mix requires numerous heliocentric trajectory data involving the departure

hyperbolic excess speed (and capture if necessary), and insufficient information

currently exists to produce a table analogous to Table IV-1. The basic equations

for the mixed-thrust system are presented later.
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For completeness, it should be pointed out that once the optimum breakdown of
mission duration has been determined, then the total thrusting time is known. Since
no coast periods occur during the spiral trajectories, then the planet-centered
thrusting time is the travel time; for the heliocentric phase the powered-time equation
(Table IV-1) yields the heliocentric thrusting time. With the powerplant specific
mass (assumed given), the overall J, and the total thrusting time, the optimum exhaust
velocity and powerplant fraction can be found from either Eq. (15) or Eqs. (16) and
(17) of Section II or from Figs. III-1 to III-8. An estimate of the maximum power-
plant specific mass for the mission may be found from Fig. III-9.

System Variations

The variation in the vehicle system operation are merely constraints on the
system optimization as fixed by general "real life" considerations. That is, it is
not to be expected that a mission will be executed by a space vehicle optimized
solely for maximum payload-to-gross mass considerations; a given type of powerplant
with definite power output and/or mass may have to be used, a restriction may be
placed on the gross mass of the spacecraft by the capability of the launch vehicle,
or the payload mass is dictated by the scientific or communications requirements of
the flight. Regardless of the variation, the objective of this analysis is to
optimally choose the remaining system variables so as to maximize the net spacecraft
mass (not necessarily mass fraction). In order to analyze these different variations
systematically, the following operating definitions were established.

A. Operation at maximum net spacecraft mass fraction. This is the same case
as fully developed in Sections II and III wherein the optimum exhaust velocity and
powerplant fraction are required to maximize net spacecraft mass fraction. No
further discussion of this variation is presented.

B. Fixed power system(powerplant mass and output power). In this instance a
given power system is to be evaluated and, since its mass and output power are
known, it is necessary to determine the exhaust velocity and vehicle gross mass
which yields maximum net spacecraft mass.

C. Operation with fixed power system and given vehicle gross mass. This
situation arises when a particular type of power system is to be used in an
electrically propelled vehicle whose gross mass cannot exceed the orbital payload
capability of the launch vehicle assigned to the mission. As a consequence, the
remaining system parameter available for maximizing net spacecraft mass is the exhaust

velocity.

D. Specified powerplant and payload (net spacecraft mass). This case is
analyzed under the "Mixed High- and Low-Thrust Propulsion Systems" section below.
Under mixed-thrust operation, in which the analysis requires sequential calculation
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of masses in each stage, the powerplant and the high- thrust propulsion stage
(including mission payload) associated with the electric system must be specified.
This implies that the exhaust velocity is to be optimized in order to minimize the
gross mass of the electric stage.

Operation with Fixed Power System

A fixed power system implies that the powerplant mass, n , and power output, P,
are known or that either of these and the specific mass, c , are known. In the
general case, the exhaust velocity, C, and powerplant fraction, AP, are available
parameters for optimizing. With the powerplant mass, mn, known in the present case,
this means C and the gross vehicle mass, mo, are to be optimized.

The net spacecraft mass, mL, can be written in terms of C and m,, by using the
simplified definition of Eq. (2), Section II:

mL =2 - m(12)

mo 77 mW

where y - o J/2 and X is some unspecified function of C. Assuming \~ is
independent of mo , taking the total derivative of Eq. (12) with respect to C and m,,
and setting the result equal to zero, yields

2 y2 7' dC
I + mo0 m 7 dm

°
= O (13)

where 'd = dT/dC. The variation of C with mo can be found by employing equivalent
assumptions to those used in deriving Eq. (15) of Section II. That is, the minimum
value of J is independent of m,, and the average thrust acceleration over a minimum-J
trajectory is also independent of m,.

Now the derivative of C with respect to m, can be written identically as

dC _ lw dC
dm o mo dW '

so that the appropriate derivatives in Eq. (14), Section II, may be substituted to
obtain

dm
o

m
o

2/u. I .r/dC - C [IFLi 3AM,

-1 (14)
dC C [ 2 C ] GM.

dmo mo [I + ]
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where the notation AM denotes the arithmetic mean case and GM denotes the geometric
mean case. Substituting into Eq. (13), the optimum gross mass may be determined.

mw C [ (15)
OPT 2

GM

The optimum C and mo may be computed by iteratively solving between Eq. (15)
and the following definitions for average thrust acceleration, a (also see Eq. (13)
Section II):

m2
a aC = MW + Y2 AM,

1/2

m + 2 GM (16)
a a C = 2n I + )m GM,

where the dependence of 1 on C is to be furnished.

If the functional form of the thrustor conversion efficiency is given by (see
Fig. II-1):

77~ 2
I + (d/C) (17)

then closed-form expressions for optimum exhaust velocity may be derived in both the
arithmetic- and geometric mean cases.

Eliminating mo/mw between the first parts of Eqs. (15) and (16) and substituting
Eq. (17) and its derivative, a normal-form cubic in C/d may be obtained;

() d Bawd 0 AM. (18)
There is one real root to this equation, provided that

2¥

a2a 2 4Bawd 27
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This is probably so in most cases, since

2Y2 J 4

-wd a:d - 0.5 > .bawd 7

for typical values of J, a, and d. Hence the optimum dimensionless exhaust velocity

is

1/s 2 I/2 a/3 1/2 I/3

OPI J/dd +'[c~ ·_ I 2 + 2 AM,
dIOPT ( (J/2d)/{I("d)] } + {I ( JjI/+ )] 2}/3] AM,

(19)

only if

J > 4
ad A·/ 27 

The dimensionless quantity J/ad encompasses the trajectory requirement, J, the
average thrust-acceleration, a, expected in performing that trajectory, and the

parameter d, indicative of the thrustor conversion efficiency. The combination of
these parameters is a measure of the entire mission and is termed the mission

parameter.

If it should happen that J/gd = A4/27, then the optimum exhaust velocity is

c l 2J AMAM.
d OPT 3

Further, if J/gd < /472 then there are three real and unequal roots to Eq. (18)

which are given by

I3 cos + 120 ° K) , K = 0, 1, 2 AM (20)

where

J 3JTcos4 = ad 2

For convenience, the optimum exhaust velocity for the arithmetic-mean case is

plotted in Fig. V-1 as a function of the mission parameter, J/ad. It is interesting
to note that the optimum exhaust velocity does not depend on the powerplant specific
mass. The optimum gross vehicle mass may be found by substituting Eq. (17) into

the first part of Eq. (15).

M 2/y2 I - (d/C)2 (21)

mW OPT 3(d/c)2 - I I + (d/)2 AM
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Equation (21) is illustrated in Fig. V-2 as a function of the system trajectory

characteristic, y2, and for a range of values of C/d. The resulting maximum net
spacecraft mass may be quickly determined from Fig. V-3.

The use of Eq. (17) in the geometric-mean case results in much simpler
expressions for the optimum exhaust velocity and gross mass. Proceeding essentially

as in the AM case, the optimum exhaust velocity can be written as

1/2

d I OPT A Jt d GM (22)e

where Tp is the total powered time. Again, note that the dimensionless quantity
J Tp/d2 contains those parameters indicative of the mission as well as the system.
Equation (22) is plotted in Fig. V-1 as a function of the mission parameter. Although
the GM and AM cases show the same trends, they differ markedly. This discrepancy

should not be construed as the actual difference, however, since, for the exact
flight, the mission parameters are not expected to have the same values.

The optimum gross vehicle mass may be written explicitly as a function of the
mission parameter and the system trajectory characteristic, Y72.

___ | .'JFpd [I +GM. (23)
mW' OPT 22 2+./Tp/d 2

Figure V-4 displays this equation.

Because of the simplified expressions obtained in the GM case, it is convenient

to write the maximum net spacecraft mass in terms of y2 and JTp/d2 .

rL = - I GM

mW "MAx I+ 2 (24)

·/JTp /d 2

This result is illustrated in Fig. V-5.

In using the foregoing results it is important that appropriate units be used
so as to render the mission parameter dimensionless. In practice, the geometric-
mean case is much more expedient to use because of the information presented in

Section IV and the fact that the optimum exhaust velocity and gross mass equations

are quite simple. Although the arithmetic mean yields slightly more accurate
results, this improvement does not appear justified for overall system study purposes.
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Operation with Fixed Power System and given Gross Mass

The additional restriction of a given gross vehicle mass means that the power-

plant mass fraction, AW = mw/mo, is fixed, leaving only the exhaust velocity to be

optimized. Since the net spacecraft mass fraction is

mL = moL~L,

the problem is to determine the best C given Cp such that PL is a maximum.

For any known power-limited trajectory which has been optimized for minimum J

and maximum net spacecraft mass fraction, there corresponds an average thrust

acceleration and optimal value of powered time, exhaust velocity, and powerplant

fraction. If either the exhaust velocity or powerplant fraction is changed and the

entire trajectory again optimized for minimum J and maximum LL, practically the same

values for J, and a will be obtained. The near-constancy of these quantities along

the maximum LI line is shown in Table V-1 for a 200-day Earth to Mercury rendezvous

trajectory in which pw was fixed at the indicated value and the exhaust velocity was

optimized for maximum k1L. Table V-2 shows the same information for a 1000-day

Earth to Saturn rendezvous. As was found in practically all trajectories so analyzed,

the powered time does differ somewhat from the overall optimum value at very low

values of Hw. As expected this influences the geometric-mean thrust acceleration

so that it too is noticeably different at the lower LX 's.

Thus, if information such as given in Tables V-1 and V-2 was available for the

trajectory of interest, it is a matter of interpolating for the particular powerplant

fraction to obtain the optimum exhaust velocity and corresponding maximum net

spacecraft mass fraction. However the necessary trajectory information is time-

consuming to obtain even by computer. An approximate analytical technique, suf-

ficiently accurate for system study purposes, may be developed by using the assumption

that the average thrust acceleration is invariant with Cp for a given trajectory.

Using the arithmetic- and geometric-mean definitions as before, Eq. (13), Section II

and its expanded form, Eq. (16) above, the optimum exhaust velocity may be written

2
aawC = 2 +7 w + 7 AM,

+ 2 )1/2 M,(25)

dawC = 2 Lw lI +Raw GM,

where the function 1(C) must be given to solve for C. If f depends on C according
to Eq. (17), then using the dimensionless mission parameters as before, Eq. (25)

becomes
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C J/8d [ (C/d) A
_ -_ + AM,

d Y2/Uw I + (C/d)2
2FW

1/2

C Y2 JTp/d
2

¥ / 4GM
-=W/I + ·I + /- I GM.d 2 ¥ '-/ W) I + -2 w JTp/d 2

Figures V-6 and V-7, respectively, display the optimum exhaust velocity for the
arithmetic mean and geometric mean as a function of the system trajectory charac-

teristic, Y2/PW, and a range of values of the appropriate dimensionless mission

parameter. As an additional aid, Fig. V-8 presents the terminal mass fraction, p1,

for various values of the exhaust velocity. Figure V-8 is actually a general plot

and is applicable to any values of C/d and ~2/N, which are not necessarily in the

same relation as that implied by Figs. V-6 and V-7. The difference between l1 and

pW thus gives the maximum net spacecraft mass fraction. As implied previously, the

results of the analysis are valid as long as the given p, is reasonably close to

the overall optimum value for the trajectory.

If it is desired to utilize the AM part of Eq. (26), then an initial guess for

the iteration on C/d may be obtained by setting JT,/d2 = J/ad in the GM equation.-

Since the mission parameters are quite close, the GM equation will yield a starting

solution that will increase the convergence rate.

Mixed High- and Low-Thrust Propulsion Systems

In all of the heliocentric trajectories presented previously, the boundary

conditions imposed on the vehicle's motion are the departure and arrival planet's

heliocentric position and velocity, the planets being considered as point masses.

In an overall flight mode evaluation sense, speeds other than the implied parabolic

one should be included, as parabolic speed is a special case of zero hyperbolic

speed. From an operational viewpoint, these hyperbolic excess velocities require

high-acceleration devices for planetary departure or capture. In general, therefore,

the analysis of system performance, which in a majority of instances is concerned

with minimum gross vehicle mass, should include these high-acceleration systems and

their interaction on the intervening heliocentric low-acceleration propulsion system.

The present discussion is a limited attemptto provide the necessary information

so that a preliminary evaluation, at least, could be made in optimizing the com-

bination of high- and low-acceleration systems. Because of the many different

possible combinations of the departure and arrival hyperbolic speeds for a given

trip time and corresponding date, very little trajectory information as such is

presented. The required data as outlined below may be computed by the heliocentric

power-limited trajectory program described in Section VII.
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Mixed-Thrust System Equations

The analysis of the combined high- and low-acceleration systems assumes that
each of the thrusting phases is independent of the other. For planetary departure
from a parking orbit, it is assumed that after high-thrust burnout and staging the

interplanetary vehicle (electric system) commences operation at the heliocentric
position of the massless planet with the initial heliocentric velocity consisting
of the planet's velocity and the hyperbolic excess velocity provided by the high-

thrust system. The same assumption holds for the high-thrust capture onto a

planetary parking orbit.

The above assumption neglects the effect of electric system operation within
the planet's activity sphere; in actuality the thrusting and staging phases would

be sequential. An analysis of the effects of the foregoing assumptions is presented

in Appendix B and the results are briefly discussed below.

The formulation of the overall net spacecraft mass-to-vehicle gross mass fraction
must account for the propulsion and trajectory parameters for both the low- and high-
acceleration systems. For a flight profile consisting of a high-thrust departure

from a parking orbit, a low-thrust heliocentric transfer, and a high-thrust capture
onto a parking orbit, and where staging is employed, the overall net mass fraction

is just the product of the net mass fractions of the individual stages. Thus

-LL = LDDLHFLC (27)

where subscripts D, H, and C denote departure, heliocentric, and capture,
respectively for the net mass fraction A. Equation (27) would also hold for a

flight profile ending in a flyby if )p is set identically equal to 1.0. It is
assumed that after use each propulsion system is staged.

For a given fixed-time mission, the maximization of Eq. (27) depends solely
on the hyperbolic excess speeds of departure, VD, and capture, Vc. As would be
expected, increasing either of the hyperbolic speeds would lower the corresponding
J for the heliocentric flight leading to a higher pH. But this also results in a
lower value for AD or lc. Consequently, the high-thrust net mass fractions are a

function of either VD or Vc and are opposite in dependence to that of pH which is
a function of both VD and Vc.

The optimum values that the pair (VD, Vc) would take on depend in part on the
powerplant specific mass and power output, the specific impulses and inert mass of

the high-thrust systems, and the net mass (or payload) to be delivered. Given all
of these characteristics, the exact actual determination of the optimum (VD, VC)
requires that at any trial (VD, Vc) the mass of each propulsion system, and hence
the gross vehicle mass, must be determined. A totally analytical, dimensionless
mass ratio approach is not possible since the high-thrust step mass actually depends
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on the optimum thrust-to-mass ratio (to minimize velocity loss) and the relationship
of inert mass to incremtnal velocity and accelerated mass. The payoff here is
taken to be minimum gross vehicle mass for the given net delivered mass.

A reasonable simplification of the procedure implied by the optimization of
Eq. (27) may be obtained by eliminating the velocity loss and thrust-to-mass
optimization aspect of the high-thrust system and by neglecting the dependence of
the inert mass of the high-thrust step on incremental velocity (hyperbolic excess
speed) and accelerated mass. Using this approach, Eq. (27) becomes

P'L , A [ H I ] (28)

where

=ex[ (DC )2 + ( , ( C)D,C] (29)

and /LH := H(VD, VC)-

The terms multiplying pH in Eq. (28) are the high-thrust stage net mass-to-
gross mass fractions, and the expression for p, Eq. (29), is the ideal (no velocity
loss) mass ratio for the high-thrust system at departure from (subscript 1) or
arrival onto (subscript 2) a circular parking orbit. The high-thrust step inert
mass fraction, denoted by 6, is defined as the ratio of the step inert mass to the
mass of the entire step (propellant plus inerts). The rocket exhaust velocity is
C, and the escape velocity, Ve, is evaluated at the parking orbit radius where the
circular velocity is Vr. Again, Eqs. (28) and (29) may be made applicable to a
flyby flight profile by setting the third factor in Eq. (28) identically equal
to 1.0 which implies that the ideal mass ratio for capture propulsion, Eq. (29),
is also identically 1.0.

From limited cases using variable-thrust heliocentric trajectories and certain
Mars and Venus missions it was found that the optimum hyperbolic excess speeds
usually occurred at 50 to 80% of the corresponding speeds for the all-impulsive
heliocentric transfer. These two-impulse hyperbolic speeds may be determined from
the trajectory program briefly described in Section VII. A suggested procedure,
therefore, would be to initially assign 50 to 80% of the impulsive hyperbolic speed
to the appropriate high-thrust system in order to obtain an estimate for 61 and 62.
Holding these values fixed, Eqs. (28) and (29) are sequentially evaluated for a
series of values for VD and Vc. A plot of p versus VD for various Vc 's should
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provide sufficient information to interpolate for the optimum (VD, VC). If deemed

necessary PL may then be reevaluated by updating 61 and 82 using the previously

obtained estimate for optimum (VD, VC).

The foregoing "compute and plot" approach could be replaced by a computer program

which uses a direct search procedure on (VD, Vc) wherein the dependence of AH on

(VD, Vc) would be given in tabular form. This basic search routine, described in

Section VII and Appendix C, is useful for the restricted case presented above in

which nondimensional ratios are employed throughout. This also means that the

powerplant in such an analysis is a "general" one whose characteristics are not

known until a solution is obtained; i.e., a specific type of powerplant cannot be

evaluated.

A major problem, however, regardless of the approach used in determining the

optimum hyperbolic speeds, is the requirement that the intervening heliocentric,

electric stage's net mass fraction must be known as a function of VD and Vc (VD only

for flybys). As of this writing, there are insufficient data available to present

a number of plots suitable for a mission analysis; the multiplicity of planets,

trip times, and range of hyperbolic speeds, and the associated computing time and

expense preclude that possibility. Figure V-9 presents a sample case of a 160-day

Mercury rendezvous. Since the propulsion system characteristics are required

under the optimum conditions, the exhaust velocity and powerplant fraction are

also required.

Optimization of Electric Stage

In the exact determination of optimum (VD, Vc) wherein the actual masses

associated with each propulsion system is computed, the electric system must be

optimized under the restrictions of a known powerplant mass and net mass (the mass

of the payload and the high-thrust capture propulsion, if there is one). This in

essence represents the fourth electric system variation mentioned earlier in

paragraph D of "System Variations". The restrictions imposed on the electric pro-

pulsion system imply that an exhaust velocity must be found which minimizes the

resultant gross vehicle mass. Because the parameters usually available for maximizing

the net mass fraction are exhaust velocity and powerplant fraction, with both the

net mass and powerplant mass fixed, this leaves the exhaust velocity to be optimized.

This optimum exhaust velocity produces minimum gross vehicle mass which in turn

assures maximum net mass fraction under the given conditions.
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Using the simplified definition, the net mass, nL, is the terminal mass, ml,

less the powerplant mass, mw.

mL 2 ml - mw
(30)

This means that ml is specified. But m1 can be written

ml _ I

mO I + Y2 m o
(31)

7 mw

where the gross mass of the electric stage is m,, and 2 and 1 are defined in the

usual manner. Substituting Eq. (31) into (30), the corresponding powerplant fraction

may be found.

mO ~ m; +17 (32)
m W

This yields the gross mass for a given trip, represented in part by y2, and a given

exhaust velocity, represented by Q.

At any given Lw, an optimum exhaust velocity may be found which maximizes dL'

for the given heliocentric trajectory. By varying p. the conditions for an overall

maximum PLL may be determined. Along this locus of maxima, as previously explained,

the average thrust acceleration and J are practically constant. Thus for a given

po the optimum exhaust velocity is given by Eq. (25). Consequently Eqs. (32) and

(25) must be simultaneously solved to obtain the optimum exhaust velocity.

Eliminating the powerplant fraction between these two equations and assuming

= 1/1 + (d/C)2 , then

C J./ad I L 
d r2 + MLm, 2 mw

y2 + I+ (d/C)

1/2 (33)

1r2 m L 2 + mL
JTp ( m( j GM,4ITP I I GM,

d 2 , + mw/] I + ML

_ _d 2

which are similar in some respects to the AM and GM parts of Eq. (26). Instead of
the parameter y 2 /pw as in Eq. (26), here the system trajectory characteristic is

y2(l+mL/mw) which involves all of the known quantities concerning the low-thrust

trajectory and propulsion system.

Figures V-10 and V-ll present the optimum exhaust velocity, respectively, for

the arithmetic mean and geometric mean as a function of the system-trajectory
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characteristic and a range of values for the appropriate mission parameter. With

these figures it can be immediately determined if it is possible to perform the

mission as required by the system-trajectory characteristic and mission parameter,

i.e., if there is an optimum C/d under the given conditions.

Note that if a solution exists both the AM and GM plots yield double values for

the optimum exhaust velocity. The desired value to use is, of course, the higher

one since the higher specific impulse lead to a lower gross vehicle mass. This may

also be seen by rewriting Eq. (32) to

M C M (34)mL+ m = I _ [ +( d() 2 ] [Y2(I+ m )] ()

The mass fraction on the left-hand side of Eq. (34) is plotted in Fig. V-12 against

the system trajectory characteristic. As can be seen, the lower values of exhaust

velocity at a given characteristic lead to low values of the mass fraction, i.e.,

high initial gross mass.

The above approach requires that the average thrust acceleration and J for

the AM case or the powered time and J for the GM case be known at each value of

VD, VC) in order to determine the minimum gross mass of the entire vehicle. This

is in contrast to the previously discussed simplified method of analyzing the mixed-

thrust problem wherein dimensionless mass ratios are used throughout and the low-

thrust net mass fraction is required as a function of (VD, Vc). Regardless of the

method employed, the problem as stated in either method is amenable to solution by

the direct search procedure noted previously.
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TABLE V-1

DEPENDENCE OF PARAMETERS ON POWERPLANT MASS FRACTION

200-DAY EARTH-MERCURY RENDEZVOUS*

ew Copt ~ J Tp a (AM) a (GM)
__ km/sec /se days 10 m/sec3 10o m/sec2

0.40 111.15 0.4419 29.11 146.64 1.525 1.516

0.38 105.94 0.4547 29.08 147.08 1.523 1.513

0.36 100.72 o.4667 29.04 147.59 1.520 1.509

0.34 95.47 0.4780 29.00 148.15 1.516 1.505'

0.32 90.21 0.4882 28.96 148.80 1.512 1.501

0.30 14.92 0.4973 28.91 149.55 1.510 1.496
0.28 79.61 -0.5051 28.86 150.43 1.505 1.490
0.26 74.27 0.5111 28.80 151.48 1.500 1.476
0.24 68.90 0.5150 28.74 152.75 1.495 1.476

**0.22118- 63.80 0.5164 28.68 154.22 1.489 1.467

0.20 58.00 0.5143 28.61 156.34 1.481 1.455

0.18 52.48 0.5078 28.55 159.01 1.470 1.442
0.16 46.89 0.4953 28.51 162.72 1.460 1.424
0.14 41.23 0.4740 28.52 168.25 1.446 1.401
0.12 35.54 0.4399 28.70 177.21 1.432 1.369

0.110455 32.83 0.4170 28.91 183.62 1.425 1.350
0.097865 29.30 0.3779 29.47 195.76 1.417 1.320

* d = 20 k=n/sec in X = 1/1+ (d/C)2

** overall optimum for the trajectory
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TABLE V-2

DEPENDENCE OF PARAMETERS ON POWERPLANT MASS FRACTION

1000-DAY EARTH-SATURN RENDEZVOUS*

eLW Co pt L J Tp (AM) a (GM)
__ m/sec _m 2 /sec3 days 1O-3 m/sec2 10-3 m/sec2

0.40 227.42 0.4393 30.41 609.29 0.76008 0.7650
0.38 216.59 0.4520 30.44 608.47 0.76089 0.7661
0.36 205.74 0.4640 30.46 607.56 0.76182 0.7674
0.34 194.88 0.4753 30.50 606.56 0.76285 . 0.7688
0.32 184.00 0.4856 30.54 605.44 0.76403 0.7706
0.30 173.10 0.4948 30.58 604.17 0.76540 0.7725
0.28 162.17 0.5027 30.63 602.74 0.76698 0.7749
0.26 151.21 0.5090 30.70 601.11 0.76882 0.7775
0.24 140.21 0.5135 30.78 599.23 0.77102 0.7807
0.22 129.17 0.5157 30.88 597.04 0.77369 0.7849

**0.21439 126.07 0.5158 30.91 536.36 0.77454 0.7862
0.20 118.07 0.5150 31.01 594.45 0.77698 0.7901
0.18 106.90 0.5106 31.18 591-37 0.78112 0.7966
0.16 95.63 0.5013 31.41 587.62 0.78651 0.8056
0.14 84.24 0.4856 31.74 583.03 0.79378 0.8178
0.12 72.66 0.4606 32.25 577.31 0.80407 0.8363
o.11 66.79 0.4433 32.62 573.96 0.81101 0.8490
o.10 60.84 0.4217 33.11 570.31 0.81975 0.8657
o.09 54.80 0.3946 33.81 566.48 0.83111 0.8884
0.08 48.65 0.3601 34.84 562.86 0.84650 0.9214
0.07 42.49 0.3171 36.32 561.11 0.86555 0.9674
o.o6 36.14 0.2574 39.56 563-79 0.90119 1.0563

* d = 20 km/sec in f = 1/1 + (d/C)2

** overall optimum for the trajectory
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G- 110058-28 FIG. V- 2

OPTIMUM GROSS VEHICLE MASS
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TERMINAL MASS FRACTION
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VARIATION OF J WITH
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SECTION VI

SAMPLE SYSTEMS ANALYSES

In order to demonstrate the application of the procedures and data

in the preceding sections, several typical cases of electric propulsion

analysis are discussed herein. The examples presented are not meant to

but merely to illustrate the methods and to confirm their utility.

presented

system

be exhaustive

Flyby and capture missions to selected planets are used as a basis for the

system calculations. The flight profile that the vehicle executes is basically

a constant-thrust, single-stage operation wherein one propulsion system (complete

with powerplant, thrusters, tanks, structure, etc.) is used to spiral out from an

Earth parking orbit, transfer heliocentrically to the planet and either capture

onto a parking orbit about the planet or fly by. The variations in the vehicle

system are those listed in Section V under "System Variations". The majority of

the following numerical results were obtained from UARL G-110474-1, "The Influence

of Power Systems and Launch Vehicles on Electrically Propelled Interplanetary Probes",

June 1968.

A. Operation at Maximum Net Spacecraft Mass Fraction

Consider a 1000-day flyby to Saturn powered by a SNAP-50 type

a mass of 5750 kg and a power output of 300 kw for a specific mass

initial parking orbit at Earth is 1.05 radii.

From Tables IV-1 and IV-3, the appropriate parameters for the

planetocentric equations are obtained. Thus for the flyby:

power system with

of 19 kg/kw. The

heliocentric and

A

TH = 600 days

JH = 30.230 m2/seC3

THP = 321.034 days

mHP = 0.887848

m H = - 2.06470

and for the Earth departure spiral:

A

J = 13.588 M2 /sec 3 m = -0.89256

Equation (11), Section V, may now be solved iteratively (or by use of the

single-stage optimization program, Section VII), by setting T = 1000 days and omitting

the third term on the right, to obtain TH = 884.73 days, the optimum heliocentric
travel time. The corresponding heliocentric powered time is 453.20 days. Since

there is no capture phase at Saturn the optimum departure spiral thrusting time

VI-1
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at Earth is obtained from Eq. (6), Section V, with Tc = O; thus TD = 115.27 days.
This means that the total powered time for the entire mission is 115.27 + 453.20

568.47 days out of a total 1000 days of travel.

The planetocentric J is 4.0865 m2 /sec3 while for the heliocentric phase it is

13.558 m2/sec3 , giving a total J of 17.645 m2/sec3. This total J and the total

powered time are used in Eqs. (16) to (20), Section II, with aw = 20 kg/kw (instead

of 19 to allow for additional mass)and d = 20lkm/sec, to obtain

iLL = 0.30279 C = 56.268 km/sec

~11 = 0.59607 71 = 0.88783

PLW = 0.29328 aW MAX = 48.054. kg/kw

These mass fraction values are to be used in evaluating the SNAP-50 type power

system for powering the vehicle under maximum net mass fraction conditions. Because

the power system mass is known the gross vehicle mass is immediately found:

MO = 0 25750 19600 kg,
m° ~w 0.293

and the net mass delivered is

mL = 4 LmO = 0.303(19600) = 5940 kg.

Note that if this net mass is insufficient for the mission objectives,a possible
approach, if technically feasible, would be to use two power systems. This in

effect doubles the vehicle gross mass and approximately doubles the net mass.

If the mission is a capture onto a planetary parking orbit, essentially the
same procedure is followed except that Eq. (11), Section V, will involve the third

term on the right-hand side. Once TH is found an iteration between Eqs. (6) and

(8), Section V, will give TD and Tc .

Sample results of a series of calculations for missions to selected planets

are presented in Figs. VI-1 to VI-4. The optimum total J and powered time is given

in Fig. VI-1 as a function of total mission duration for both planetary orbiters and

flybys. A breakdown of the powered times for various mission durations is shown

in Fig. VI-2 for Jupiter missions. Figures VI-3 and VI-4 present variations of the

optimum exhaust velocity and powerplant fraction with powerplant specific mass for
Mercury and Saturn missions.

VI-2
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B. Fixed Powerplant Mass and Output Power

In the preceding analysis the net mass so computed is a maximum only with

respect to the gross mass assuming that the powerplant is characterized only by its

specific mass. If, in addition, the powerplant mass is known, then the net mass

(not mass fraction) should be maximized by properly choosing the exhaust velocity

and gross mass.

Using the above flyby mission as a model along with the SNAP-50 type power

system, the following calculations demonstrate the approach. For simplicity, the

geometric mean of the average thrust acceleration is employed. Thus Eqs. (22) and

(23), Section V, may be solved using the GM mission parameter (assume d = 20 km/sec):

JTp (17.645) (568.47)
= 0.0864 2.165.

Thus
d lo? = 1.572 and C = 31.44 km/sec.
d I OPT

For aw = 20 kg/kw, r2 = awJ/2000 = 0.17645 , so that Eq. (23),

Section V, yields

_ F6-5 1 + /721T6 1
mgO |r | T- = 5.94,
mW IOT- 0.1764 2 + 2 -

whereupon
mo = 5.94(5750) = 34200 kg.

The maximum net mass is found from Eq. (24), Section V,

m L
I

aLn - I = 1.402,

and

mL = 1.402(5750) = 8070 kg.

Instead of the equations, Figs. V-l, V-4, and V-5 may be used although the accuracy

would be reduced.

C. Operation with given Gross Mass and Power System

Assume that an uprated Saturn IB using a two-thirds length 260-in. solid-

propellant first stage is the launch vehicle which places the electric spacecraft

on a 1.05-radii Earth parking orbit. The approximate payload of this launch vehicle

is about 27,400 kg. If this restriction is combined with the use of the SNAP-50

VI-3
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type power system, then the powerplant fraction is known immediately:

mW 5750
ALw m o

0 27400 X 0.210.

The exhaust velocity which maximizes the net mass is found from Eq. (26), Section V,

or by use of Figs. V-6 or V-7. The system trajectory characteristic for the previous
Saturn flyby mission is

y2 0. 17645
=_ :0.17645 0.841.

FLW 0.210

By Eq. (26), geometric mean, the optimum dimensionless exhaust velocity is C/d = 2.03,
so that the thrustor efficiency is

2.032 
X = 2 o2 = 0.805

2.032 + 
Consequently, the terminal mass fraction is

I- = O. 489,
=2 0.841

'7ALW 0.805

and the net mass fraction is

LLi = :1 - ALW = 0.489 - 0.210 = 0.279,

which results in a net mass of

mL 0.279 (27400) = 7650 kg.

VI-4



G - 110058- 28

TOTAL TRAJECTORY REQUIREMENTS FOR
PLANETARY MISSIONS
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OPTIMUM DISTRIBUTION OF POWERED TIMES
FOR JUPITER MISSIONS
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OPTIMUM EXHAUST VELOCITIES AND POWERPLANT FRACTIONS
FOR MERCURY ORBITER AND FLYBY
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OPTIMUM EXHAUST VELOCITIES AND POWERPLANT FRACTIONS
FOR SATURN ORBITER AND FLYBY
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SECTION VII

DESCRIPTION OF RELATED COMPUTER PROGRAMS

Presented below are brief explanatory descriptions of the computer programs
developed either under NASA contract or as part of UAC's corporate funded research.
Typically, the programs were developed as required for the study of power-limited
systems and employ the notation and nomenclature used throughout this handbook.
All were programmed in Fortran V, for use on the UNIVAC 1108 computer. The UARL

deck numbers are given.

Four programs are discussed: 1) heliocentric, power-limited trajectory
optimization, 2) planetocentric trajectory computation, 3) optimization of single-

stage electric propulsion systems and 4) direct search routine.

Heliocentric Trajectory Optimization (F615)

The steering program which minimizes J is determined for a constant-power,
constant-thrust heliocentric trajectory. Up to two coast periods are allowed in
the computation and the occurrence and duration of these are optimized as part of

the overall optimization. Flyby and rendezvous trajectory options are available
with initial hyperbolic excess speed (zero or nonzero) a specified input; for flybys

the final hyperbolic eixcess speed is a computed quantity resulting from the
minimization of J, while for the rendezvous case it is specified.

System options are: (1) optimize both exhaust velocity, C, (i.e., specific

impulse) and powerplant fraction, Aw; (2) optimize C for a fixed XW; (3) optimize

pw for a fixed C; or (4) fix both C and AW. In all cases the optimization of the
system is performed simultaneously with the trajectory optimization. Either two-
or three-dimensional trajectories are allowed.

The basic input consists of the Julian dates for departure and arrival, the

specification of the planets (as numbers starting from the sun outward with Mercury
as 1), the hyperbolic excess speeds, the powerplant specific mass, o;, and the
efficiency parameter, d, in the thrustor efficiency function (see Section I on the
hypothetical thrustor efficiency function). The output includes the trajectory time
history, exhaust velocity, powerplant fraction, net mass fraction (p,), J, and the

powered times (the times of occurrence and duration).

Planetocentric Trajectory Computation (F628)

The trajectory requirements and propulsion system parameters are computed

between the planetocentric parking orbit and the switch point for a constant-power,

constant low-thrust spiral. The trajectory options include either optimal steering
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or tangential thrusting as well as outward or inward spirals. The planet is specified

by a number (as in F615 above) which automatically produces the appropriate

gravitational parameter and planetary radius. The initial (for departure) or final

(for capture) parking orbit radius is input in terms of the planetary radius.

The planetary spiral equations as presented in Section IV (Edelbaum, Breakwell-

Rauch) are solved for a given input thrusting time, T, and a given range of exhaust

velocities, C. Also to be specified is the thrustor efficiency parameter, d. For

each (T, C) pair, the output consists of the time, exhaust velocity, terminal mass

fraction, Al, the ratio of powerplant fraction to powerplant specific mass X /ah,

the trajectory characteristic, J, the initial thrust acceleration, and the average

thrust acceleration (arithmetic and geometric means).

Optimization of Single-Stage Electric Propulsion System (F668)

The thrusting times and propulsion system parameters are determined which

maximize the net spacecraft mass fraction of a single-stage electric vehicle. The

single-stage aspect means that only one electric propulsion system (complete with

power supply, thrusters, propellant, tanks, etc.) is used for all of the powered

phases of the mission. For a fixed flight profile the computations are carried

through for a given input total mission duration, T, and a range of powerplant

specific masses, c%. For each pair (T, aw) the optimum distribution of powered

time, the consequent minimum J, and all of the propulsion system parameters are
determined.

The major input parameters required are the total mission duration, the range

of powerplant specific mass, the thrustor efficiency parameter, the parking orbit

radius (if necessary) at the departure and arrival planets, and the constants in the

J and powered time equations. These latter constants are m, J, and T for the
appropriate phases of the overall trajectory and are listed in Table IV-1.

The sequence of computation involves two parts. First, with the given input,

the optimum distribution of powered time is determined (see Section V) which holds

for the fixed total mission duration. The resulting minimum total J and total

powered time remains the same regardless of the powerplant specific mass. Second,

with the minimum total J and powered time, the closed-form equations for the system

parameters (see Section II) are serially solved for each value in the range of

powerplant specific mass. This entire procedure is basic to three flight options:

(1) heliocentric low-thrust transfer with an initial hyperbolic excess speed and
final planetary spiral capture; (2) low-thrust spiral departure, heliocentric

transfer, and planetary flybys; and (3) spiral departure, heliocentric transfer, and
planetary spiral capture.

The output consists of all the related input, the optimum distribution of

powered time and J's, the total powered time and J, the initial and final thrust

acceleration, and the average thrust acceleration (AM and GM). The system parameters
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that are output for each aw are the maximum net spacecraft mass fraction pL, the
terminal mass fraction, pl, the optimum exhaust velocity, C, and corresponding
thrustor efficiency, I, the optimum powerplant mass fraction, pw, and the maximum
powerplant specific mass that produces zero net spacecraft mass fraction, aw max'

This latter quantity is computed to avoid needless computation if the current
input % is larger than aw max.

Direct Search Techniques (F365)

The basic concept of the direct search procedure is presented in Appendix C.
The purpose here is to discuss the several applications of this technique which were
found useful in the particular study of low-thrust systems. These applications,
in fact, are actually of general utility and the programming of the deck was oriented
in this way.

In brief, the program requires an input function which is to be minimized, and
starting guesses for the variables in the function. In addition, the increments or
step changes in these variables must be given as well as the tolerances in these
variables to which corresponds the accuracy of the final solution. That is, the
tolerances are the ultimate incremental changes in the variables for which one deems
the consequent accuracy in the corresponding solution to be adequate. The output
includes the input along with the initial value of the function and its variables.
The final value of the function is listed together with its inverse (for maximization
problems) and the corresponding values of the variables.

Aside from the direct extremization of a function of several variables, the
method has been found useful in several variations of the basic approach. The first
example is in curve fitting according to the least-squares criterion. Here it is
desired to fit a curve of the form

y = f(a, b, r, s, x)

to a given set of n data points (xi, ye). The problem is to determine the constants
a, b, r, and s. Usually the 2 form desired has a and b as linear constants but with
r and s occurring in xr, erx ,or rx; for example,

y = ae' 2 + beSX.
The problem is greatly simplified by the direct search procedure since a, b may be
determined by the least-squares criterion as explicit functions of the r, s, and
the data points xi. This approach is advantageous since a and b are not usually
known but r and s may be estimated from the form of the curve. The function to be
used in this case for the program is the sum of the squares of the residuals,

R2 (Yi - fi )
2

,
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which is to be minimized. The parameters r and s can usually be guessed from the

shape of the curve so that at each trial value of r and s, a and b are computed and

all are substituted into f. The procedure then actually minimizes R2 which is a

function of the "variables" r and s.

The solution of unwieldy nonlinear equations of several variables is handled
rather well by the deck. If there are n equations in n unknowns

fi( xi, . .. , xn ) = o i 1, . , n

and if the starting values for each of the xi are reasonably well known, then the

solution may be obtained by requiring the following function to be minimized:

F(x,,.., xn) = [f(x, . . . , xn)] 

At the solution, F should be zero to the accuracy implied by the tolerance on each

increment.

In the case of minimizing a function subject to certain constraints on the

variables, the "penalty function" approach of Appendix C could be used. However,

because of the difficulty in choosing the K's in the penalty function (at the

present time) and the fact that most of the problems encountered have reasonably

tractable algebraic expressions for the constraints, it has been found advantageous

to use the following procedure. If the function to be minimized is

y = f(x i) i = , ... , n

subject to the m constraints

tg(xe) = O j = i, .. ., m < n

then each of the constraint equations are solved for a variable as a function of

the other variables (a different variable for each constraint equation). The

remaining variables not solved for in the "constraint" set are then the independent

variables preferably those that have known starting values. Thus the problem

becomes a straightforward one of minimizing f(xi) where some of the xi are given

by the equations from the constraint set.

It sometimes occurs that a minimization problem could be treated semi-analytically

by first setting the partial derivatives of each independent variable equal to zero

and attempting to solve the resulting (usually nonlinear and cumbersome) set of

equations by the approach discussed previously. This is a reasonable procedure

provided no mistakes are made in obtaining the partial derivatives and in the

subsequent algebraic manipulations. It is advantageous to employ the search

procedure, instead, to avoid these errors unless there is a compelling reason for

investigating the equations describing the minimum conditions.

VII-4



G-110058-28

As noted in Appendix C, a final solution as obtained by the direct search
procedure ideally occurs at or near the minimum solution. However because no
sufficiency conditions are available for the success of the method nor, indeed,
for the uniqueness of the solution obtained, it is always necessary to check the
answer,at least for reasonableness, or recompute certain cases by alternative means.
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SECTION VIII

APPENDICES

The following appendices discuss in detail several topics related to low-
thrust systems analysis. They are intended to present additional relevant
information and some insight, although the information given is not of itself
necessary to apply the results of the previous sections. Appendix A develops the
low-thrust planetocentric equations for departure or capture spirals and planetary
orbit-to-orbit changes. The matching of planetocentric and heliocentric low-thrust
hyperbolic trajectories is discussed in Appendix B. The basic notions of the very
useful direct search procedure is given in Appendix C.
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APPENDIX A

Planetocentric Low-Thrust Trajectories

Melbourne's Method*

For a vehicle being accelerated tangentially to its flight path about a planet,

the rate of change of the total orbital energy per unit mass of the vehicle, U, is

du
dt av, (A-i)dt

where a and v are the thrust acceleration and velocity, respectively, of the vehicle.

The total orbital energy of an elliptical orbit is given by

u r ' (A-2)2r

where pp is the planet's gravitational parameter and r is the semimajor axis of the
osculating ellipse. Combining Eqs. (A-l) and (A-2), the growth rate r, of the

osculating ellipse is given by

2r2av

rLP (A-3)

Since the vehicle is experiencing a thrust acceleration which is very much lower
than the local gravity, the orbit of the vehicle does not differ from a circular
orbit so that the vehicle velocity is essentially the orbital velocity, v = ap;/r)

1
/a2

Substituting this expression into Eq. (A-3) yields

2 r 3/2o

F -/2 (I t) ' (A-4)

where the thrust acceleration, a, is given by

ao

C

for an initial thrust acceleration, ao, and constant exhaust velocity, C. Integrating

Eq. (A-4) from an initial orbit, ro, and zero time to some final orbit, r1 , and

terminal time, t1, there results

A-1

* See Ref. IV-1



G-110058-28

C = I exp C (rl ) (A-5)

Given the exhaust velocity, initial thrust acceleration, and the initial and

final orbits, the time required to transfer between orbits may be found. For the

routine calculation of performance in the study of orbit-to-orbit transfers about

a given planet, it is convenient to compute J at varying orbits and times. From

the mass flow considerations and a given time, T, it can be seen that the exponential

term of Eq. (A-5) is the terminal mass fraction, pl. Using the normalizing

quantities characteristic of the planet, Ap and radius, Rp, p1 may be written

p,1 = exp [ P (A-6)C 1/2 1/

where p is the nondimensional initial (final) radius referenced to Rp. The trajectory

requirement may be computed by

C2 (I - (A-)2

J T ,Lu ~ ' (A-7)

which was obtained by combining the rocket equation (see Eq. (1), Section II) and

Eq. (A-5). It should be noted that from the dynamics of the problem the terminal

mass fraction is fixed- immediately by Eq. (A-6) for tangential steering. Con-

sequently, the trajectory requirement, represented by J, is actually a secondary

quantity which assumes its usefulness here only after it has been shown that it is

relatively independent of the propulsion parameters for a given trajectory, (see

Table IV-4 and corresponding text).

For the problem of a spiral to escape conditions, the corresponding time is

found from Eq. (A-5) by setting ro/r1 = 0, i.e., the terminal radius goes to infinity.

The escape time becomes 1/ao, v-pp/ro which is high compared to exact numerical

solutions. An empirical correction factor, F, is employed based on the numerical

data and is derived as a function of the initial thrust' acceleration. In terms of

specific parameters, the escape time is

Tr ( - C/C) (A-8)

where F is shown in Fig. IV-4 and given by Eq. IV-2.

Edelbaum and Breakwell-Rauch Method

The planetocentric motion of a vehicle thrusting along a spiral about a planet

can be described by its radial, r, and tangential accelerations, v.
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v 2 .2
r r

/Lp F '

r- + m v
(A-9)

F CFp r
V =m r 2 v

where the mass rate of change is

F
(A-10)

A nondimensional position, X, velocity, Y, exhaust velocity, Z, and

be defined according to
time, T, may

I/2

X / F/mE r

-1/4

Y = ,p v

-1/4

Z = ( fE isp) C

T (F/mE) 3 /4

where all of the parameters are referenced to the mass of the vehicle at escape, mE.

Substituting these parameters into Eq. (A-9) yields

- 2 j2 mI M
:X - x2 - + m E x

(A-12)

mE X

m X2 Y
The mass ratio mE/m may be eliminated by introducing the dimensionless

characteristic exhaust velocity, W,

W = Z In ME (A-13)m

which is interpreted as the characteristic

system between any point where the mass of

By differentiating Eq. (A-13) with respect
of change of W may be found.

W =m
r

velocity developed by the propulsion

the vehicle is m and the escape point.

to T and using Eq. (A-10), the time rate

W/z
- e (A-14)

A-3

(A-ll)
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It is desirable to solve the differential equations of motion in terms of W

since this represents the requirements of the trajectory on the vehicle. Thus the

independent variable in Eq. (A-i2) is changed from T to W using Eq. (A-14).

(e+W/Z - ) =x y2 (X')2 I

x (A-15)
X'

Y' = I 2
X Y

where a prime indicates differentiation with respect to W. These equations are

completely general and any solution will represent a family of solutions of the

initial Eqs. (A-9) corresponding to different values of thrust-to-mass ratio,

exhaust velocity, parking orbit, and gravitational parameters.

The fact that the vehicle essentially maintains circular orbit conditions

throughout most of its flight can be determined by noting that with thrust-to-mass

ratios of about 10- 3, the value of X and its derivatives becomes small and the

first of Eqs. (A-15) becomes Y2 = X 1 , or in dimensional terms, V = Ap/r, which is
the circular velocity at radius r. Consequently, the spiral trajectory is quasi-

circular as long as the local thrust acceleration is very small. Further, any

spiral trajectory will automatically pass through the initial conditions of other

low-thrust trajectories until the thrust acceleration becomes large and the orbit
ceases to be quasi-circular. A solution of Eq. (A-15) for a given Z will therefore

represent all corresponding low-thrust trajectories. Numerical solutions were

obtained and are displayed in Figs. A-1, A-2, and A-3. Positive and negative

values of Z correspond to departure and arrival trajectories, respectively; a value
of infinity represents constant thrust acceleration (equivalently, infinite specific

impulse or constant vehicle mass).

Of particular interest is Fig. A-2, wherein the slope of the curves for high

circular velocities (left branch) approaches -1 while for high hyperbolic velocities

(right branch) it approaches +1. The appropriate equations for each of these

asymptotes are given in Fig. A-2, neglecting the small effect of Z. As is evident

from Fig. A-2, the (parametric) planetocentric velocity of a thrusting vehicle

approaches an asymptotic form as the planet's gravitational field becomes negligible.

If this hyperbolic asymptote is extrapolated back to zero parametric velocity, then

the requirements on the vehicle may be determined such that the vehicle thrusts only

to this zero parametric velocity point and, by definition, this same vehicle commences

its heliocentric journey with the massless planet's heliocentric position and velocity.

In application, then, one would compute the planetocentric spiral trajectory require-

ments to the defined zero velocity point, then switch the calculations to the helio-

centric frame ignoring the mass of the planet but taking on, as initial conditions,

the point planet's heliocentric position and velocity. This is a distinct advantage

over the Melbourne procedure since the implicit assumption of attaining infinite

radius in finite time need not be made.
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Extrapolating the hyperbolic asymptote back to zero velocity, the characteristic

velocity is W = -0.941. On the circular asymptote the corresponding parametric

velocity is Y = 1.746, the switch point of interest. Now the curves are referenced

to escape velocity so that any point on the circular asymptote yields the

characteristic velocity required to spiral from some initial circular orbit to

escape. The requirements from circular to escape and from switch point (subscript 1)

to escape are:

circular to escape YCE WCE + 0.805

switch to escape YIE - WIE + 0.941

The difference between these two equations therefore gives the requirements from

circular conditions to the switch point.

YCE - YIE = -WCE + WIE

Rewriting into dimensional quantities, and setting Y1E = 1.746, there results

-1/4 1/4

/mF Vc - 1.746 (= .- In mE + In mE

which may be simplified to
1/4

C In = Vc - 1.746 rm ml mE (A-16)

The time spent between the switch point and escape is very small in relation to

the time of the entire trajectory so that ml/mE is practically unity. Introducing

the circular velocity equation into Eq. (A-16), setting ml/mE = 1, and identifying
the terminal mass fraction, p1 = ml/mc, the spiral trajectory requirement may be
written as

Ts - i a to Eq C ( ) exc.746 fo 1/4 Beca(A-17)

This is identical to Eq. (IV-6) except for the constant. Because of the semi-
graphical approach taken above, the constant of 1.746 is not precisely that obtained

from a more exact approach which yields 1.757; both of these values represent the

case of tangential steering. The first value was obtained by Edelbaum (Ref. A-l)

in this analysis while the second was computed by Melbourne in a subsequent study

(Ref. A-2).

In the Breakwell-Rauch approach (Ref. A-3), a systematic theory of a low-thrust

spiral transferring into heliocentric space was developed based on the idea
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illustrated in Fig. A-4. At some time, tl, the vehicle is assumed to start from

rest at the offset point and to be thrusting in the direction of the asymptote to

the spiral trajectory. The heliocentric trajectory is then calculated from the

offset point at time t, with the gravity field of the planet assumed nonexistent. For
an approach spiral, the effect of the planet would be to place the vehicle on the

spiral at the point shown at time tl, rather than to reach the offset point at the

same time. Thus t1 is the point at which the computation of vehicle performance

for the planetocentric portion of the flight ceases, for departure, or starts, for

capture.

It is this point that is sought by the analytical astrodynamic analysis of
Breakwell and Rauch so as to make the calculation of performance agree with the

actual trajectory profile. The approach taken was to approximate the three-body

problem using the method of matched asymptotic expansions. This is a systematic

perturbation procedure which can be carried out to various orders of approximation.

The basic idea is that the trajectory close to the planet is expanded in powers of a

small parameter, such as the mass ratio of the planet to the sun. Another expansion

is made of the heliocentric trajectory in the vicinity of the planet, carried out to

the same order of approximation in powers of the same parameter. These two asymptotic

expansions are then matched in a suitable region near the planet such that both

solutions will give the same answer in this intermediate or "boundary layer" region.

In this way, a composite solution is obtained for the whole problem, close to the
planet, in the boundary layer region, and far from the planet.

The foregoing analysis reduces to a requirement on the characteristic velocity

needed to reach the switch point, tl:

1/4

Vc = 1.84 P ) (A-18)

which can be easily rewritten into Eq. (A-17). The constant, 1.84, is based on
optimal steering.

Consequently, except for the constant, the two approaches to the planetocentric-

heliocentric, low-thrust spiral trajectory problem yield identical results. On the

one hand, the velocity intercept approach must assume that ml/mE z 1, while the
analytical technique requires that the mass ratio of the planet to the sun be

negligible to powers of - or more, which is also a condition on the first approach.

In distinction to both of the foregoing is the early Melbourne method employing
a correction factor on a strictly planetocentric trajectory.

Comparison of Methods

Table A-1 compares the two methods for outward spirals from Mercury commencing

at a parking orbit radius of 1.05 radii. The hypothetical form of the thrustor
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efficiency function was used with d = 20 km/sec. The data shown in the table are
typical examples and, in general, the results of the comparison hold for all

similarly computed planetary spirals.

The Melbourne approach using the planet-centered spirals without asymptotic
matching produces higher J's than the Edelbaum equations. This column is labeled
with the constant 0.76382 which appears in the correction factor, Eq. (IV-2). The
similarity between this equation and Eq. (IV-6), the Edelbaum result, suggests that
the concept of asymptotic matching may be introduced into Melbourne's result
simply by changing the constant to 1.76382. This result is shown in the second
column. The improvement in the data is shown by comparing with the third column,
which is from Edelbaum's method. Although the J's are not in exact agreement, the
important point is that the terminal mass fractions, the actual indicators of
accuracy, differ only in the third decimal place and are in exact agreement if
round-off is used in the fourth place.

For an overall comparison, the results from the optimum steering program are
indicated in the last column. As expected, the J's are the lowest computed. However
the difference between optimal and tangential steering is essentially negligible in
terms of the terminal mass fractions. For practical purposes this conclusion holds
even for the massive planets and very long thrusting times (up to 240 days).

A-7



G-110058-28

REFERENCES

A-1. Edelbaum, T. N.: "A Comparison of Non-chemical Propulsion Systems for Round-

Trip Mars Missions". UA Research Laboratories Report E-1383-2, October 1960.

A-2. Melbourne, W. G., and C. G. Sauer: "Performance Computations with Pieced

Solutions of Planetocentric and Heliocentric Trajectories for Low-Thrust

Missions". JPL Space Programs Summary No. 37-36, Vol. IV, December 1965.

A-3. Breakwell, J. V., and H. E. Rauch: "Asymptotic Matching in Power-Limited

Interplanetary-Transfers". AAS Preprint 66-114, 1966.

A-8



O

0
0

TABLE A-1

COMPARISON OF PLANETOCENTRIC SPIRAL EQUATIONS

Mercury Departure Spirals
Rp = 1.05 d = 20 km/sec

Melbourne; Tangential Steering Edelbaum (Breakwell-Rauch)

0.76382

Ha J; m2 /sec3

0.9384
0.9684

0.9790
0.9842
0.9873

0.9371
0.9680
0.9785
0.9838
0.9871

4.998
5.014

5.019
5.022
5.024

2.610
2.617
2.620
2.621
2.622

1.76382

t_ Jg m2/secs

o.9489
0.9740
0.9826
0.9869
0.9895

0.9461
0.9726
0.9816
0.9862
0.9889

3.398
3.422
3.430
3.434
3.436

1.894
1.906
1.910
1.912
1.913

Tangential, 1.757

aL J, m2/sec3

0.9477
0.9735
0.9822
0.9866
0.9893

0.9450
0.9721
0.9813
0.9859
0.9887

3.562
3.569
3.572
3.573
3.574

1.975
1.978
1.980
1.980
1.981

Optimal, 1.840

J m2 /sec3

0.9485
0.9739
0.9825
0.9868
0.9895

0.9457
0.9724
0.9615
0.9861
o.9889

3.453
3.460
3.463
3.464
3.465

1.925
1.929
1.930
1.930
1.931

Thrusting
Time
(Days)

C
(km/sec)

15 4o
80
120
160
200

30 40
80

120
160
200



MEAN PATH PARAMETRIC VELOCITY AND RADIUS DISTANCE

CONSTANT LOW - THRUST PLANETOCENTRIC SPIRAL
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DEPENDENCE OF MEAN PATH VELOCITY ON CHARACTERISTIC VELOCITY

CONSTANT LOW-THRUST PLANETOCENTRIC SPIRAL
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APPENDIX B

Low-Thrust Hyperbolic Trajectories

As mentioned in Section IV, the corrections to the low-thrust trajectory due
to initial hyperbolic energy and subsequent thrusting within the planet's sphere
of influence may be determined by using the concept of asymptotic velocity intercept.
That is, as the vehicle recedes from the planet (with an initial hyperbolic velocity
due to high thrust), the planetocentric velocity approaches an asymptotic form as
the planet's gravitational field diminishes. This asymptote is extrapolated back
to zero planetocentric velocity to identify an intercept time, t1. By definition,
t1 is the time at which the velocity profile assumes the foregoing asymptotic form.
Consequently t1 is the time on the overall trajectory at which the performance cal-
culations switch to the heliocentric frame, thereby allowing the interplanetary
portion of the trajectory to be computed using the massless point planet's helio-
centric position and velocity (along with the assumed initial hyperbolic velocity

due to high thrust). This general approach is identical to that used in the notion
of matching the planetocentric spiral with the heliocentric trajectory as described
in Appendix A.

Determination of Intercept Time

The following analysis due to Edelbaum (Ref. B-l) is based on constant thrust
acceleration and purely radial motion. Because the vehicle is given an initial
parabolic or hyperbolic energy condition, the time spent in the vicinity of the
planet is very small and the vehicle quickly assumes radial motion, Fig. B-1. As
in Appendix A, the equations are treated in nondimensional form using the following
normalized quantities:

1/2 -1/4 3/4

x : r , ¥ : V ( T : t ·
X;'(7b) Y = T ii ~LP (B-l)

Thus the normalized radial acceleration is

X= = -I _ (B-2)
x2

Multiplying through by X yields

XX X 2 . (B-3)

which can be integrated from initial conditions (subscript o) to arbitrary final
conditions

X2 X + X X0 + 2
X + I - X + XO I ~~(B-4)

2 x X + 2 Xo

B-1
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The initial energy is

2· y~2
= X 2 I o2*2oUO X0 1 (B-5)

2 Xo 2

where Yo is the initial hyperbolic excess speed due to high thrust.

Notice that as the radial distance increases, the retarding acceleration of the
gravitational field decreases until the planetocentric velocity becomes a minimum.

The radius at which minimum velocity occurs may be found by setting Eq. (B-2) equal

to zero:

X2 = r2 (mF I, or r F/r ) (B-6)

Substituting for Uo in Eq. (B-4) and setting X = 1 and X0 = 0 (the trajectory is
assumed to start at the origin), the minimum velocity is obtained.

MIMN = (4 + 2U o )
1/

2

or VMIN = (V + 4(mF'LP)] 1/2 (B-7)

An example of a typical velocity profile having an initial thrust acceleration of

10- 4 g and initial parabolic energy is illustrated in Fig. B-2. The path for

impulsive departure and subsequent ballistic coast is shown; this is the profile
resulting from an initial parabolic energy condition and no electric propulsion.

The velocity asymptote extrapolated back to zero parametric velocity yields a

parametric intercept time of about -1.2.

Continuing the analysis, the differential equation (B-4) can be solved for

the differential of parametric time to yield

dx
-2 dT= o2 (B-8)

x - Xg + +2 XO X

Substituting Eq. (B-5), the initial energy, and integrating from X = 0 and T = 0 to

arbitrary distance X, there results

x 1/2

dxT X I gXl/dx (B-9)Jf x 2+uox +

which is an elliptic integral.

B-2
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The solution of Eq. (B-9) depends on the initial energy and results in two
cases of interest.

Case 1: -2 S U0 S 2

The integral may be rewritten into tabular form by the following procedure. By
adding and subtracting 2X in the denominator, and factoring, the integrand becomes

( I + UoX +X2) 2 ( Ui
Usin tedfnio4X

(I+X)2 2 4

Using the definition

sin2 = 4X
(I + X)

then
I-X

cose = - X I - cos0
or x = coS,

I + cos4 '

2 (I- cos 1
/

2

dx + cos ( + co- / d.

Thus by letting the modulus 2 = I Uo
k 2 42 4, 0 < k2 < I,

Eq. (B-9) becomes

0 + C/ (I

In terms of elliptic functions, this becomes

cn dT = I - cnu du ,
I + cnu

where
cnu = cos4,

d = // I - k sin 2 du.
Equation (B-10) is now in the form 239.03 tabulated in Ref. B-2. Sil
nondimensional notation, there results

/' T = F(,k) - 2E(,k) +I + X (I + Uo +X ) .
-T - F(~,k) - 2E(4,k) I +X+I 21/2

(B-10)

mplifying into

(B-1l)

B-3

and

(B-10)
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Now the concept of asymptotic matching of the planetocentric and heliocentric
trajectories requires that the time of Eq. (B-ll) be evaluated as the radial position
goes to infinity. Thus as X becomes very large in relation to unity, the elliptic
integrals F and E (first and second kind, respectively) become complete and the
third term of Eq. (B-ll) reduces to /2X. The corresponding velocity at infinity may
be found by introducing X >> 1 in Eq. (B-4). Thus

Xoo = YaO /0 A/

The time as a function of parametric asymptotic velocity is

T V 2' K(k) - 2 ~- E(k) + Y, ; -2 S

therefore

U0 < 2. (B-12)

Case 2: U0 Ž 2

The denominator of (B-9) may be written as the product
and subtracting U7/4 so that

of two factors by adding

X

= ( x - b)(x - c) ]dx,
o

where

b = - -I 

This is in the proper
functions it is

form as given by 237.03, Ref. (B-2). In terms of elliptic

,f2- T = 2(-b)
,/-'C

.r'2 T = 2 X - C) -

2
UO -I4C : 1-

f tn 2 u du,

1/2

-2 v/E E(~,k) ,

(B-13)

sin = x 

2 c-b O k2 1.
k C ; ok

where

and
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For asymptotic matching X >> 1 and E(0, K) becomes the complete elliptic
integral E(K). Hence Eq. (B-13) gives the time in terms of parametric asymptotic
velocity

T=[ ( 2 V E(k), uO 2 2, (B-14)

where, as before, Y., 2 -.

Equations (B-12) and (B-14) are the equations of the asymptotes with initial
energy (actually initial velocity) as a parameter. The intercept time is obtained
by extending the asymptote back to zero velocity , i.e., Y, = O. For example, if

the initial energy were zero (parabolic conditions), then Eq. (B-12) would yield
T1 = -1.19814. Because the intercept time is solely a function of parametric energy,

a new function G(Uo ) may be defined according to T1 = G(U ) so that the intercept
time may be rewritten in dimensional form using the definition for T, Eq. (B-l).

tI = [ ELp O G(UO), (B-15)
where

Uo :'o2 V 2 AL P) F/O ) (B-16)

and

G(U o ) = 7K(k) - 2/72 E(k), -2 US 2

/2(B-17)
G(Uo) = - [2 (u + U-4)] E(k), U0 2 . (B17)

The function G(Uo) is plotted in Fig. B-3 for various values of initial energy.

As is usually the case in performance analysis, the computation of intercept

time is only a small part of the overall analysis. Since the programming of Eqs.
(B-12) and (B-14), with Y=, = 0, involves the evaluation of the elliptic integrals
at different values of k2 , it is convenient to approximate Fig. (B-3) by a curve

fit. Using the form

G(Uo) = o + buo, (B-18)

a least-squares fit was employed on the data of Fig. B-3. The results are

a = -1.86443 r = 0.508984

b = 1.86431 s = -0.193751

B-5
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Since a and b differ (except for sign) in the fifth place, Eq. (B-18) may be further
simplified to

G(UO) = GO r(I-g-r)'

Equation (B-18) is highly accurate, having an error of not more than one unit in the
fifth significant figure.

Velocity and Position Offsets

As can be seen from Fig. B-3, for all initial conditions greater than or equal
to zero, the intercept time is negative, which means that the intercept time, t1 ,
must be subtracted from the heliocentric portion of the trajectory. This alters the
boundary conditions on the heliocentric trajectory, particularly the position of the
point mass planet in space.

A more convenient procedure, which leaves the heliocentric boundary conditions
unaffected, would be to use the asymptotic velocity corresponding to T = 0 in
Eqs. (B-12) and (B-14). This velocity is termed the velocity offset, 8V, and is
found from

8V a Ym = -G(Uo), (B-9)

where G(Uo ) is defined by Eq. (B-17). In dimensional form this equation becomes

Eq. (IV-14) or (IV-16)'of Section IV.

The velocity along the flight path as a function of position is given by

2 X + +u o (B-4)

The position displacement, or offset, is found by requiring X >> 1 so that X2 -X2

the vehicle's velocity at infinity. Thus

·2 

2 X 2 (B-20)

Solving for X, the position offset,
.2 2
Xoo -Y'o 0

X =02 * (B-21)
2

This may be rewritten into dimensional form by using Eqs. (B-l) and (B-19) and

defining 8R as the position offset,

2 2

BR v- v (B-22)
2(F/m O )

which is Eq. (IV-18).

B-6
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Correction for Finite Periapsis Radius

The foregoing analysis was based on an approximation that the initial periapsis
radius was zero; that is, the trajectory was assumed to start at the center of the
planet. The following analysis (Ref. B-3) corrects for this and shows the effect
of starting at a finite periapsis radius. The vehicle is assumed to be injected by
the high-thrust rocket onto the periapsis of a hyperbolic orbit. At this point,
low-thrust propulsion is started. The analysis to follow shows that the effect of
the finite periapsis radius is of order A, the ratio of the mass of the planet to
that of the sun. This is a higher-order effect and may be neglected for purposes of
performance analysis, along with the other higher-order terms (also of order p) which
were neglected in the analysis given above.

The effect of the initial periapsis radius is analyzed by considering the
difference in a linear analysis of having an initial eccentricity of unity or an
initial eccentricity corresponding to the actual trajectory which starts at the
parking orbit radius. The acceleration due to thrust is assumed to be constant in
magnitude and to be directed tangentially. Under this perturbation, the linear
theory predicts that the increase in energy of the orbit will be proportional to
the arc length of the hyperbola. In the following equations, the unit of distance
is the AU and the unit of time is the time required for Earth to traverse one radian
in its orbit. Thus the gravitational parameter of the sun is unity and the
gravitational parameter of the planet, Ap, is given in terms of this unit solar
gravitational parameter.

The radial position, r, along the hyperbola is given by

r = a(e cosh H - I) (B-23)

and the time is

t = 3 (e sinh H -H) (B-24)
VIo

The arc length is

s -e [e22 F(S,k) + e sinS cosh H (B-25)

where the numerical eccentricity of the hyperbola is

2
8e - I+ P

B-7
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and the modulus for the elliptic integrals is

2 I ' e sinh H
k= e with sinO =

. e2 + e sinh H -I

The semimajor axis, a, is taken to be positive and H is the hyperbolic eccentric
anomaly. F and E are the incomplete elliptic integrals of the first and second kind,

respectively.

What is of interest is the change in time and the change in arc length (due

to the change in periapsis radius) as the vehicle gets far from the origin.

Accordingly, the limits of Eqs. (B-24) and (B-25) as given by Eqs. (B-26) and (B-27)

are used.

For H >> 1:

t A £P r + a In (2 r + a) I ]
V23 a a ' _ + n (B-26)

s r+ a I + eI K() - eE )] (B-27)

The effect of the finite planetary radius will be assumed to be reflected in a
change in the initial hyperbolic excess velocity of the trajectory. In order to

calculate this, consider the difference in hyperbolic excess velocity between a

trajectory with unit eccentricity and the actual trajectory. Equation (B-28)

considers the changes due to both the time required to get to a given radius and

the difference in arc length traveled in getting to that same radius.

8Vo = m F vA (S - ) m (t - te ) (B-28)

If the values obtained from Eqs. (B-26) and (B-27) are substituted into

Eq. (B-28), the result is Eq. (B-29) which gives an approximate indication of the

perturbation in initial hyperbolic excess velocity due to a finite periapsis radius.

It should be noted that this perturbation is of order P and will generally be small

enough to be neglected for performance calculations.

V = V I-I + e K( (e)-p eEI V L -Ve n I KIn)e eE( B-29)
6v, vc 3 Me e 

B-8
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APPENDIX C

Systematic Search Technique

The original UARL program for finding the minimum (or maximum) of an n-variable
function was prepared under the direction of D. Fridshal (Ref. C-1). Much of the
basic theory behind the systematic search method is contained in Ref. C-1. This
technique is based on a development by Hooke and Jeeves (Ref. C-2) termed "direct
search". According to both Refs. C-1 and C-2, the direct search method has been
found to be attractive for the following reasons:

1. No techniques of classical analysis are necessarily involved,

2. repeated arithmetic operations are used with simple logic,

3. an approximate solution, improving continuously, is provided at all
phases of the computation, and

4. other classes of problems are readily attacked.

Direct Search

The basic theory of the method is briefly summarized here for the sake of
completeness. For an exhaustive treatment of the subject as well as a formalized
definition of direct search the reader is referred to Ref. C-2.

The problem is to minimize a function of n variables, f(xl, x2, ..., xn). A
solution vector or "point" Pi consists of n components (x1I, x2i, ..., xi ) which
when compared to some other solution PJ is better if and only if

f(xlJ i X2j, ... , Xni,) < f(XiJI X2 . Xn)

A base point, Bo, is determined from initial guesses of the values for the n
components or coordinates. Using the strategy discussed below, an adjacent point,
P1, is generated and compared to the base point, Bo. If P1 is an improved solution
compared to Bo, then P1 becomes the new base point B1, and the "move" which resulted
in P1 is termed a success. If P1 is not better than Bo, then the move was a failure.
A success or failure in a move or step is judged solely by the above inequality.

C-1
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The next trial point, Pr, is determined relative to Br by the present state
Sr. The states make up part of the logic, since they determine directions for moves

in the solution space. They provide new directions if recent moves fail, and they
decide when no further progress can be made.

The search procedure employs two types of moves - exploratory and pattern
moves. Explorations in the n coordinates are made to determine how the function

f(xl, ..., xn) behaves in the neighborhood of the past point. The pattern move
utilizes the behavioral information to provide a substantial reduction of the

function.

The exploratory moves are made one coordinate at a time. Thus, x1 is varied
by an increment +6 while x2, ..., xn remain fixed. This new vector (x1 + 6,
x2, ..., xn) is tested against the base point (xl, ..., x,). If it is better,
the new coordinate value is retained. If it is not, x1 is varied by -6 while

x2, ..., xn remains fixed. If this vector yields a smaller f, x1 - 6 is retained.
If both + and - variations do not reduce f, then the original value, xi, is
retained.

The entire procedure is repeated for the remaining coordinates x2 through

xn. At the completion of the procedure, each coordinate will have associated
with it a direction and a slightly reduced value for f if at least one variation
succeeded. The set of'directions is referred to as a pattern. Hence the pattern

move consists of changing all the coordinates simultaneously in the indicated

directions or patterns as obtained from the exploratory moves.

The new values of the coordinates after the pattern move form the new base

point from which exploratory moves may be made, as discussed above. Alternatively,

the same pattern may be used repeatedly with a test for improvement in the value

of the function made after each move. Each success updates the base point. In

this approach, if a pattern move fails, exploratory moves are then made from the
current base point. The present version of the computer program uses this

approach. The justification for this approach is based on the fact that, for
problems so far encountered, shorter machine times are realized.

If a combination pattern and exploratory move fails and if exploratory moves

from the last base point fail, a decrease in the variation, or step size, 6, is
required. The criterion for a final solution is when 6 is reduced below some input
tolerance, e. Ideally, this final solution occurs when the function is at a

minimum or near-minimum solution. However, the fact that no further progress can
be made beyond the tolerance, e, does not always indicate that a solution has been

found. As is characteristic of direct search methods, no sufficiency conditions

are available for the success of the method. Thus, Hooke and Jeeves recommend the

C-2
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search technique for the following types of problems:

1. Problems for which the answers may be tested, and

2. problems consisting of many separate cases, a few of which can be
checked by alternative means.

If (1) and (2) are not feasible, partial checks may be obtained by using
the method several times, with different starting solutions.

An overall view of the systematic search technique may be obtained from
Figs. C-l, C-2, and C-3 which present the basic logic in flow chart form.

Functions Subject to Constraints

The concept of penalty functions arises from approximating a minimum problem
subject to constraints by another problem which does not involve constraints. Thus,
if the problem is to minimize f(xl, ..., xcn) subject to the m constraints

gJ = gj(xl, ... , xn), j = 1, ..., m < n,

one forms the penalty function P:

m
P = f + E kJ gj,

J=1

where kj are positive constants. The summation in this function represents the
"penalty" terms which will have the effect of reducing the constraint "violations"
to zero since these are non-negative terms. As the kj becomes large positively,
the solution of this minimum problem will approach the minimum solution of the
original problem with constraints. This concept is rigorously analyzed in
Ref. C-3. The rate at which the kj is increased positively is important, since
too fast an increase will halt the procedure, while too slow an increase will
prolong the convergence process.

C-3
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DECK F365 SEARCH
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IS PRESENT VALUE
OF FUNCTION BELOW
THAT AT BASE POINT

, YES -.a

--- NO -

2 SET NEW
BASE POINT

MAKE PATTERN
MOVE AND THEN
EVALUATE FUNCTION H

IS PRESENT VALUE
OF FUNCTION BELOW
THAT AT BASE POINT

-- YES-- -

-- NOT-

0

| IS STEP SIZE DECREASE
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YES

STOP
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EXPLORATORY MOVES

ENTER

INCREASE COORDINATE BY
AMOUNT DX

IS MOVE A SUCCESS, THAT IS, YES
IS F(X(I), ., X(N)) REDUCED

NO

DECREASE COORDINATE BY
AMOUNT 2. *DX

11 RETAIN NEW
IS MOVE A SUCCESS, THAT IS, MYE COORDINATE AND
IS F(X(I), . ., X(N)) REDUCED NEW VALUE OF

F(X (I) , . . . , X(N))

NO

RESET COORDINATE TO
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INCREASE COORDINATE BY DX

EXIT REPEAT PROCEDURE

FOR EACH COORDINATE

FIG. C-2
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PATTERN MOVE

ENTER

if

EXIT

SAVE THE DIRECTIONS OBTAINED
FROM THE LAST SET OF EXPLORATORY
MOVES. THAT IS, SAVE THE LAST
PATTERN.

CALL PREVIOUS BASE POINT
(0) (0) (0)

(X(I), x(2), . . ., X(N))

AND

CALL PRESENT BASE POINT
(I) (I) (I)

(X(I), x(2), . . . ,X(N))

MAKE THE FOLLOWING SUBTRACTIONS

(I) (0) I I (I) (O) I (I) (0) I
X(I) - X(I) , X(2) - X(2) ,. . . , X(N) - X(N)

AND CALL THEM PAT(I), PAT(2), . . ., PAT(N)
RESPECTIVELY.

MOVE ALL THE COORDINATES X(I), I = I, N

BY AN AMOUNT PAT(I), I = 1, N IN THE

DIRECTIONS INDICATED BY THE LAST
EXPLORATORY MOVES.

FIG. C-3


