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Handbook for the Study of Electric Propulsion Systems

SECTION I

SUMMARY

This report is essentially a compendium of techniques and basic information
useful to the preliminary performance analysis of power-limited (low-acceleration,
electric) propulsion systems applied to space missions. The material is presented
in handbook form and is reasonably complete within itself insofar as a basic under-
standing of the techniques and procedures is required for one to acquire facility
in computing performance. This, in essence, is the objective of the handbook. The
accumulation and organization of the material selected for inclusion was guided by
the desire for simplicity and computational ease while maintaining a sufficient ’
level of completeness for a general understanding (i.e., to avoid a "ecookbook"
approach).

Use of Handbook

Tt is intended that two specific purposes be served. The first is that the
preliminary analysis of low-thrust, electric propulsion systems could be accomplished
quickly by anyone experienced in calculating vehicle system performance. The
second is the long-range desire to have electric propulsion applied to as many
concepts of missions, flight and propulsion modes, and objectives as possible, a
condition presently deficient when compared to high-thrust (chemical and nuclear)
systems. Of particular importance, however, is not only the evaluation of mission
concepts but also the immediate problem of investigating the related technology
requirements of the major subsystems such as the powerplant, the electric propulsion
units, and the associated surface launch vehicles.

The jet power that an electric propulsion system is capable of producing is
limited by the maximum power available from the power supply. This power limitation,
in addition to the mass of the power system and the long-duration thrusting times,
enters into the performance evaluation through the necessary optimization of the
powered flight trajectory. This coupling between the system parameters and the
powered-trajectory optimization necessarily causes the analysis of power-limited
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systems to be more complex than the study of high-acceleration (impulsive-thrust)
propulsion systems. Consequently, the present effort was centered about two

aspects: first, to uncouple the influence of the system parameters from the tra-
jectory optimization by suitable approximate techniques and to reduce the performance
evaluation to a series of equations; second, to present as much appropriate
heliocentric and planetocentric trajectory information as is currently available
along with‘auxiliary information related to the application of these trajectories.

Because of certain necessary restrictions, the contents herein are neither
complete in terms of depth of analytical development nor of sufficiently large
scope to include all possible types of interplanetary flight modes and vehicle
.subsystems. Enough graphical data and study aids are presented, however, to allow
immediate estimates to be made for the simplest power-limited system and trajectory
model. For more complicated cases (e.g., expanded definition of propulsion system
constituents and vehicle payload) fairly complete equations and related graphs are
offered. Generally, initial approximations to system performance can be made given
the proper trajectory information; such results are usually regarded as sufficiently
accurate for estimating payload potential and overall vehicle mass requirements.

The important mission modes not included in this handbook are trips to a
heliocentric position and velocity (e.g., solar orbiter, 1-AU inclined orbiter,
solar flyby). The variation of power system output as a function of heliocentric
position or of time was also omitted. It should be pointed out, however, that the
analytical approaches discussed herein are independent of flight and power modes;
they are still applicable provided the proper heliocentric trajectory data are
utilized.

Sections II, III, and IV deal primarily with the mass equations of power-limited
systems, the related graphs, and heliocentric and planetocentric trajectory
information. The basic methods and data necessary for estimating the performance
of power-limited systems are presented in these first three sections. Extensions
of the background theory which encompasses certain flight modes are presented in
Section V; the application of these extensions is discussed in Section VI through
several sample analyses. Not all necessary trajectory information is presented in
this handbook; thus a description of the major UARL trajectory computer programs as
well as related mass optimization decks are briefly given in Section VIII. The
Appendices in Section VIII offer more detailed information on some of the aspects
covered in the text. ’

The majority of the information presented herein was ‘extracted from three basic
sources: a) Contract NAS8-11309, Study of Low-Acceleration Space Transportation
Systems, performed for the Advanced Systems Office, G. C. Marshall Space Flight
Center; b) Contract NAS2-2928, Study of Trajectories and Upper Stage Propulsion
Requirements for Exploration of the Solar System, performed for the Mission Analysis
Division, OART; and c¢) United Aircraft Research Laboratories' Corporate-sponsored
programs. The preparation of this report was also under Corporate sponsorship.
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SECTION IT

MASS EQUATIONS OF POWER-LIMITED SYSTEMS

Basic Relationships

The power in the exhaust jet of an electric propulsion system is derived from
a separate power supply which is limited in its output. Vehicles employing these
types of propulsion systems therefore undergo power-limited flight and are restricted
to thrust accelerations of not more than 107° g. The rocket equation for power-
limited systems must include the mass, m,, and maximum power rating, P, of the power-
plant. The parameter usually employed to denote power system capability is the
powerplant specific mass,

The thrust from the exhaust jet is given by

where ﬁb is the propellant flow rate and C is the exhaust velocity. The power in
the beam is

J o 2
P - ?mpC

The thrustor converts the power supply output into jet power, and its ability to do
so efficiently is accounted for through the thrustor efficiency, T.
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In general, T is a function of the exhaust velocity delivered by the thrustor (i.e.,
the specific impulse for a particular thrustor type and design).

Using the fact that the thrust acceleration, a, at any time is the jet thrust
over the instantaneous mass of the vehicle, m(t), and using the foregoing relation-
ships, then

[ | ' a2
| a
LA e Y =y T
m(t) Mo 2 j’ nP
o]

It can be seen that to maximize vehicle mass relative to the initial mass, mp, requires
a thrusting program with time which minimizes the integral. This is contrasted to
high-acceleration systems for which minimum I(a/c) dt is sought.

Two general types of thrusting programs have been of interest in the analysis of
power-limited flight. The first mode considers the thrust magnitude and direction
to be completely unconstrained during the flight, ('"variable-thrust" operation).
The second mode fixes the thrust magnitude but allows the direction to be unconstrained
("constant-thrust" operation). Generally, constant-thrust operation gives rise to
heliocentric coast periods. In terms of propulsion system design, the latter mode is
desired, since the powerplants and thrustors need not operate over a wide range of
output. In terms of payload, however, the variable-thrust mode yields higher values
than the constant-thrust case because the thrust vector is completely unconstrained.

In general the power supply output is assumed to be constant with time and may
be removed from the integral. However, the outputs of radioisotope and solar power
systems are functions of heliocentric position and/or time, and thus the determination
of a thrusting program using these types of systems must account for the output
variations. For thecase of variable thrust, the efficiency must be included in the
integral since it varies with exhaust velocity.

By referencing the vehicle mass at the end of powered flight to the initial mass,
the rocket equation in nondimensional form becomes

;-|+L_aﬂ_d_ (l)
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where W, = m /mg, the terminal mass fraction,
Wy = nh/mog the powerplant fraction,
J = ja?dt, the trajectory characteristic.

For convenience and for preliminary mission and system study purposes, T and P were
assumed constant.

The minimization of J for a particular flight is a calculus-of-variations problem
wherein the integral must be minimized subject to the equations of motion and to
certain conditions specified at the boundaries of the trajectory and other points if
required. A minimum value of J assures only maximum final mass fraction and does
not imply maximum payload.

Maximization of Payload Fraction

For a given minimum-J trajectory, the payload is maximized by properly selecting
the powerplant fraction in the case of variable-thrust operation (exhaust velocity
is unconstrained). In the constant-thrust mode, both the optimum exhaust velocity
and powerplant fraction must be determined. Relationships may be derived to give
the optimum parameters; the actual values they take on depend on the definition of
the payload fraction that is used.

Payload Definitions

The payload fraction, w , could simply be defined as the mass left over at the
end of flight, excluding the powerplant. Thus

A W , (2)

L

Under this definition the payload may be interpreted as consisting of the actual
payload and the miscellaneous and tie-in structure, while the -thrustor and propellant
tanks may be considered part of the powerplant. In the latter instance the definition
of o, is changed to mean the propulsion system specific mass, part of which consists
of the powerplant specific mass.

In a first approximation, the mass of the inert tanks depends on the amount of
propellant required and the type of design employed, whereas the tie-in structure
depends to some extent on the mass of the various subsystems which form the propulsion
system. The thrustor mass depends, generally, on the power input and exhaust velocity

I1-3
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it is required to accommodate. Thus an expanded definition of payload should include
these dependencies., The basic definition for payload mass can be written

m, m, - (m,+ m_+m.+mg)

where the masses of the powerplant, thrustor, tanks, and structure, respectively,
are subtracted from the final mass at the end of thrusting.

The tank mass can be determined by defining a tank propellant mass fraction, g,
similar to that used in high-thrust rocket technology.

me

p =
mp+ M,

The structure mass is assumed to be proportional to the mass of the thrustor,
tank, propellant, and powerplant, in which case a proportionality constant, ¢, may
be defined

Mg

Me+ My + mp+m,

q

Normalizing with respect to initial mass and defining a thrustor specific mass
o (C) = m /P (2 function of C), the nondimensional payload becomes

w

() e

Both definitions are now analyzed for maximum payload under the two types of
modes.

Variable-Thrust Payload Maximization

Substituting the rocket equation into the simplified payload eQuation and setting
the derivative of W with respect to by equal tozero, the optimum powerplant fraction
can be determined.

»
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’uw = B(l'B) (Ll-)

- 2
#me-(l-B) (5)

with propellant mass

ko= B (6)

P

where, for convenience

2 . QuJ

Bz ——

which is a fixed quantity for a particular minimum-J trajectory and type of powerplant.

For the improved payload definition, the same procedure yields

- | _ '
#wopt ) B[ P(H__Z_F_) 'B] (7)
w
and the corresponding maximum payload is
P © 1 24 9) 50455 ) 8 + (1v0) (14 55 ) 87 (8)

II-5



G-110058-28

with propellant mass

ke Je(1+22) B (9)

Note that if p =1, o = 0, and o = O, then Egs. (7), (8), and (9) revert back to the
original set based on the simplified payload fraction definition, Egs. (L), (5), and

(6).

The maximum value of powerplant specific mass for a given (variable-thrust)
minimum-J trajectory can be found by requiring that Eq. (8) be greater than or equal
to zero. Hence

2
pre ot o L[l SR ] %
p | + O

In contrast to the simple condition that Bz = l;vas implied from Eq. (5), the highest
value of B® is directly reduced by the thrustor specific mass but is also increased
by lowering the value of p, the tank propellant mass fraction. However, lower values
of p, of course, decrease the maximum value of payload fraction attainable for a
given trajectory.

In developing the foregoing equations it has been tacitly assumed that the
power and thrustor efficiency are constant with time. The first assumption appears
to be reasonable for mission study purposes, while the second is strictly a conve-
nience, since the exhaust velocity varies with time for variable-thrust operation.
The payload values derived under these circumstances therefore represent an upper
limit.

Constant-Thrust Payload Maximization

If the exhaust velocity, C, and powerplant fraction, p, are fixed for a
specific flight, a steering program (which may involve coast periods) must be found
that minimizes J, thereby assuring that the final mass is a maximum., Thus the
resulting value of J depends on the initial values of C and W, and the steering
program based on these values. Consequently, the overall optimization problem is to
determine C, i, and the proper steering program (and hence J) which maximize the
payload fraction.

I1I-6
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Substituting the rocket equation, Eq.(1l), into the simplified payload definition,
Eq. (2) yields

where Y? = o&J/E, and T is some function of C. Since constant-thrust operation is
employed, the exhaust velocity is constant and T can be removed from the integral.

The total derivative of p,_ with respect to C, u,, and v* must be set equal to
zero in order to maximize payload. The approach employed here for both payload
definitions closely follows that developed by Melbourne and Sauer, Ref. II-1. Thus,

2 2 4 2 2

niy? nty p

dp = g mde +<———'——"|>d,uw" — gy? =0  (11)
w

where T'= dn/dc.

A characteristic of power-limited systems is that the vehicle at the end of
flight has essentially most of its initial mass. Thus it is expected that changes
in the powerplant mass do not influence, significantly, the final mass or the thrust
acceleration time history. This consideration leads to two important assumptions
(Ref. II-1): first, the minimum value of J is independent of p,, and second, the average
thrust acceleration over a minimum-J trajectory is independent of My, . The former
assumption implies that dy?/duy = O, while the latter permits a relation to be obtained
between C and py .

The thrust acceleration at any time, in terms of the propulsion system parameters,

is given by

. BN Hy : (12)
a Cu
w

where p is the vehicle mass fraction at any time (wo = 1). For a known minimum-J,
constant-thrust trajectory the average thrust acceleration may be written either as
an arithmetic mean (AM) or geometric mean (GM). Thus

IT-7
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0o +0a _ 1/2
—_—l_-AM‘D a =(°°0|) GM,

where 3 is a constant. These expressions may be rewritten using the equation for

thrust acceleration.

st (et s ()

where T, is the total thrusting time. Using Egs. (1), (12), and (13) it can be

shown that
dc By e 1"
c b4 M, n'c
s - AM
A J (1)
_ -1
dc c 2 n'c
— oz - GM
du, M, L 1+H n ] !

If the total derivative of W is taken with respect to p, in Eq. (11) and use is
made of Eq. (14), then the optimum w, is found to be

[ #.('-#,) .
o 2Ry (2
N .
wlom)
RIS

The solution of these equations requires an iterative procedure between Egs
(1), (12), (13), and (15) and a thrustor efficiency function. If the functional

form of the thrustor efficiency is given by

()
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where d, the efficiency parameter, is to be specified, then the use of the geometric-
mean equations results in closed-form expressions. Figure II-1 demonstrates the
form of T compared to typical thrustors. The optimum values for C and u, and the
corresponding maximum for w, are given by

1/2

2 2
= ST ry d _ Y
Copr - y?2 <|+ J T > ' (|+ y 2 g2 y/z (16)
JTe
2 r?%4?
I+ Yk
. c
FWOPT = y242 \'/2 4 (17)
} (l+——-———)
JTC
Ho= Y
v y2de \!/2 (18)
(+ 355) |
JT¢
" dez'”
Lmax "27(|+'J—Tc')+ y? (19)

From Ref. II-1, the agreement between the results from an iterative procedure for
Eq. (15) and exact variational calculus solutions is very good and is more than
sufficient for mission and system study purposes. The results from the arithmetic
mean of Eq. (15) are only slightly more accurate than those obtained from the closed-
form expressions Eq. (16) to (19).

If the arithmetic mean in Eq. (15) is desired for a particular form of T, the
corresponding iterative procedure could use Egs. (16) to (19) to obtain initial
solutions for the desired parameters. As long as the general trend of the particular
efficiency function approximates those of Fig. II-1, such starting guesses will prove
to be well within the region of convergence.

By setting Eq. (19) equal to zero, the value of v*, and hence @,, may be
determined which causes the maximum payload to vanish.

II-9
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4d? (20)

J Te

For a given mission (represented by J and Tc) and a particular thrustor (given by

d), the maximum allowable value of powerplant specific mass can thus be estimated.

This equation is quite helpful, since it may be evaluated prior to a trajectory or
system calculation, thereby avoiding negative or zero payloads. In actuality, the
value of J computed for a trajectory depends in part on the value of oy used (see

Eq. (12)). However, the coupling between the propulsion system parameters and the
steering program (determined for minimum J) is quite weak; this is partially confirmed
by the excellent results Melbourne and Sauer obtained from the solutions of Egs.

(15) and Egs. (16) to (19). Thus, Eq. (20) yields accurate results based on a constant-
thrust J which was computed using any initial value of ¢,.

Precisely the same assumptions and procedures as used for the simplified payload
definition could be employed in the case of the improved payload definition. Hence

#I(I-#J/p ; AM
| TR ER
- (21)

/’H(I-’ul)/p ; GM

NEEREEICIREE

where, in general, the functional dependence of % and T on C must be specified.

In addition, the following equations, which are based on the appropriate average
thrust-acceleration definition are required to complete the set along with the rocket
equation. :

|+ M,

-,

J
— AM
a

(22)
N BT,

C = —m— GM
|—,J.'

II-10
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Suggested Computational Procedure

Excepﬁ for the closed-form expressions based on the specified form of the
efficiency function, the solution for optimum exhaust velocity and powerplant
fraction requires an iterative procedure. The technique discussed below 1s based
on actual numerical cases and the attendant problems encountered.

Regardless of the payload definition and the type of thrustor efficiency curve,

the optimum powerplant fraction is derived as a function of the burnout mass fraction
and exhaust velocity, Egs. (15) and (21). Thus, in general,

* (. C) (23)

Yopt

where the rocket equation gives

K 2 T
(1)

and, functionally, M = T(C) and if required, % = of(C).

J and a are obtained from a constant-thrust acceleration or constant-thrust
(with or without coast periods) trajectory corresponding to the mission. The power-
plant defines ¢, and the thrustor type the form of T and o .

As stated in the development of the initial constant-thrust equations, a power-
limited system retains most of its original mass, and, consequently, the dependence
of 4y on Wy is quite weak. This relative insensitivity suggests that an iteration
between Egs. (23) and (1) should be employed for a given guess of C, since convergence
is practically assured regardless of the type of iteration procedure used. Successive
substitution has been found to be quite useful, although the method of false position
has been noted to yield an improvement in convergence rate. This latter method is
also quite useful in the iteration for the exhaust velocity. Thus the iteration
between M, and U, is nested inside the iterative loop for C.

A guess is given for C to initiate the lteration between w, and w,, i.e., Egs.
(23) and (1). By using the method of false position, any initial reasonable guess
for py will converge rapidly to the appropriate p, . With the converged value of
and py, Eq. (22) is employed to update C. False-position is applied to the C-loop

IT-11
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to obtain a C which is used in the nested iteration for ui and Py . This procedure
has been found to be quite stable for many cases. If C is employed as part of
the nested iteration, multiple solutions to C arise and, in addition, divergence
occurs.

If the fﬁnctional form of the particular thrustor efficiency curve being
utilized approximates the equation of Fig. IT-1, then appropriate starting guesses
for the above suggested technique may be cbtained from Egs. (16), (17), and (18).

Definitions

a = thrust acceleration
c = exhaust jet velocity
d = thrustor efficiency paraﬁeter
F = thrust
J = [a®at
m = mass
311’3 = thrustor

= payload
Mp = propellant
mg = structure
my = propellant tank

= powerplant
Mg = initial
my = terminal
P = jet power
P = powerplant output power
Te = constant thrust powered time

IT-12
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OF = thrustor specific mass = mp /P

o, =.powerplant specific mass = nM/P

B2 = o,J/27

v = o,J/2

M = thrustor efficiency = p/P

p = tank propellant mass fraction = mp/(mp + my)
o = structure proportionality constant = ms/(m; + my + mp + my )
V! = mass fraction = m/nb

" = payload fraction

Ho = initial mass fraction =1

Iop = propellant fraction

Mo = powerplant fraction

iy = terminal fraction

Summary of Equations
General

Terminal mass fraction:

Bo s QyJ
| w
| + ) Thw
Simplified payload fraction:
#L : F'l - /'Lw

I1-13
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Improved payload fraction:

Variable Thrust, Simplified Payload

Optimum powerplant fraction:

© : B(1-B)

oPT

Maximum payload:

H :(l-B)z

MAX

Propellant:

Variable Thrust, Improved Payload

Optimum powerplant fraction:

p = B ' -B ]
Yoer [ P(1+ 25 )

II-1k
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Maximum payload:

s =|—2(|+0‘)

MAX

(28 + (10

o=

Propellant:

Constant Thrust, Simplified Payload

Optimum powerplant fraction:

r #,('-#,) A
y () ()

w (1-n,) N
() (LY

n = 7(cC)

Closed form: geometric mean, hypothetical thrustor efficiency:

c NP CRI R ALk I - 4
opPT T y? JT. ( y24? )uz
I+
JTe
2r%d?
b+ E;
H =y < Y
w 2 42 1/2
OPT <l+ Y*d )
JTe

IT-15
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- [ — y
P'n . (l+ Y242 )1/2
JTe
_ rza*\® .
Lmax |-27(|+ JTe ty
At zero maximum payload:
Waax ¥ !
2 2
|+ 4d
JTe
Constant Thrust, Improved Payload
( F'l(l_#l)/p
4 2ele) [_ 2 m] <2#. a/c
J ay EPYANE] ETVANET
WorT
mr-p)/p
|+ ag{c) | - 1+4, 17_'(: '+ H, a’:C
Qy 2 Y ay
\
7 = M{C)
a, * afc)

II1-16
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SECTION III

DATA FOR OPTIMUM SYSTEM PARAMETERS

Contained in this section are graphical and numerical data for estimating
power-limited system performance under constant-thrust and variable-thrust operation.
In general the requirements for utilizing these data are variable-thrust J or the
constant-thrust J and powered time for the corresponding heliocentric interplanetary
mission. Methods and data for estimating these requirements are presented in
Section IV, following.

Constant-Thrust Operation

Equations (16) to (20) of Section II are quite useful, since the system
parameters are given by simplified expressions. Accordingly, based on these
equations, Figs. III-1 to -8 present optimum C and Hw, and resulting Wy and maximum
W for values of Y°, the product JcTe, and d = 10, 20, 30, and 40 km/sec (the
efficiency parameter). The maximum power plant specific mass that yields zero
payload for the given J¢ and Tg can be easily found from the nomograph of Fig. III-9.
All of these figures are based on the simplified payload definition and hypothetical
efficiency function, Eqs. (1) and Fig. 1 of Section II, respectively. The notation
Je 1s employed to emphasize constant-thrust operation and to distinguish it from
the variable-thrust J to be given later.

The graphs require Jc and T based oh a constant-thrust or constant-thrust-
acceleration heliocentric trajectory. The powerplant defines & and the thrustor
type gives d. The efficiency parameter, d, is estimated by fitting (approximately)
the hypothetical efficiency functions to the given thruster curve. The appropriate
units for the parameters are given in the figures.

The use of the improved payload fraction definition requires a functional
relationship between thrustor specific mass and exhaust velocity. An example of
empirical data obtained from Ref. 2 is illustrated in Fig. III-10 for electron
pombardment and contact type thrustors. The two curves for each thrustor type
indicate "current” and "improved" technology levels. The curves have been smoothed
and extrapolated to an exhaust velocity of 20 km/sec for purposes of deriving an
analytic fit.

Two analytic fits to the data presented in Fig. ITII-10 have been employed,
first a sum of exponentials and, second, a fourth-degree polynomial. The former
method yields a smooth fit to the data throughout the entire range of C and also
produces a smooth curve for the first derivative. These results are presented in
Table III-1. The fourth-degree polynomial yields exact results at the evenly

III-1
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spaced data points, although the general form is wavy both in the reproduced curve
and its first derivative. Table III-2 presents the basic method, and Table IIT-3
gives the coefficients for the curves of Fig. III-10.

For an accurate reproduction of curves of this type, the sum-of-exponentials
fit is preferred. However,the numerical procedure necessary to obtain the coef-
ficients is quite complicated and does not appear justified in view of the con-
tribution of thrustor mass to the total vehicle mass. Consequently, the polynomial
approximation is preferred for the foregoing reason and further, because the
appropriate coefficients are easily determined, as shown by Table III-2. Any other
thrustor curve may be quickly approximated by the polynomial if input data points
are specified at exhaust velocities of 20, 40, 60, 80, and 100 km/sec.

Variable-Thrust Operation

For the simplified payload fraction definition, the optimum powerplant mass
fraction and other parameters are obtained from Egs. (4), (5), and (6) of Section II.
For convenience,the meximum payload fraction as a function of powerplant fraction
is plotted in Fig. ITI-11 with B a parameter. The points of maximum payload and
optimum powerplant fractions are indicated for any value of B.

Corresponding plots for the improved payload definition (variable-thrust) are
given in Fig. III-12 with the parameters X and M identified as

and
P
M= 555 (1 = ML wax)
Note that, insofar as the powerplant and propellant fractions are concerned, precisely
the same results are obtained for the simplified and improved payload cases provided

the values of p, %, and & are such that X is 1.0. Under these circumstances the
maximum payload is given simply by '

2(1+0) (+0)
Fiwex = /= —F— B +-‘7—Bz

III-2



TABLE III- |

EXPONENTIAL APPROXIMATION TO
THRUSTOR SPECIFIC MASS FUNCTION

< _ o, (- _.)
Qe(C) = o.eo'(?.o ') + Qqje 2(20
Qp, KG/KW C, KM/SEC
qQ, o, a, (o1
ELECTRON BOMBARDMENT, | | 1.63542 0.406626 | 2.46479 1.92452
" , 2| 0.429867 | 0.403804 1.059 91 1.06851
CONTACT, | | —0.0197516 [-0.357073 | 1.10985 0.342079

CONTACT, 2:

aF(C) = e

~0.600736 (-5 -1) {0'590562 cos[(|3° 4.428')( 55— I)] + 0.275432 sin [(|3° 14.428')( 55
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TABLE III-2

DETERMINATION OF COEFFICIENTS FOR THRUSTOR SPECIFIC MASS FUNCTION
) C c \2 c y c y
ar(c) = a0 + ai(55) + %2(z5) + 9s(z5) a4 (35)
QfF, KG/KW
M/
C, KM/SEC INPUT:
C 20 40 60 80 100
Qr | Qro | QF1 | QAr2 | QF3 | AFa
Jo Qro
a, QaFi
Qaz = DX Af2
ds QF3
Q4 Arq
WHERE 5 -0 10 -5 {
—6.41665 17.83331 —-19.50 10.16667 —2.08333
D = 2.95833 -9.83333 12.25 -6.83333 145833
-0.58333 2.16667 -3.0 1.83333 —0.41667
0.041667 -0.16667 0.25 -0.16667 0.041667
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TABLE TO-3

POLYNOMIAL APPROXIMATION FOR THRUSTOR SPECIFIC MASS

4

2 3
C C c c
@g(C) = Qo + 01(20) + 02(20) + 03(20) + 04(20)
A, KG/KW
C, KM/SEC
THRUSTOR TYPE o a, a, a, a,
ELECTRON BOMBARDMENT, | 173 —1.467 4627 —0.84750 | 0057916
2 3.44 — 268666 | 088670 | —0.3833 | 0008333
CONTACT, | 155 — 054083 | 0.089583 | —0.091662 | 0.0004167
2 1.00 —0.53167 0.14333 | —0.023333 | 0.0016667

82 — 8S00I| - 9
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SECTION 1V

HELIOCENTRIC AND PLANETOCENTRIC TRAJECTORIES

The presentation of constant-thrust trajectory information to be used in the
analysis of power-limited space vehicles relies on the assumptions that variations
in powerplant specific mass and either specific impulse (exhaust velocity C) or
powerplant fraction, py, do not significantly affect the value of J over an optimally
steered trajectory and, further, that the power system output is invariant with
either spatial position or time, or both. Under these assumptions, it is possible
to organize the power-limited trajectory information by computing a constant-thrust-
with-coast trajectory such that the vehicle is optimally steered (i.e., J is
minimized) and the payload fraction, K, is maximized for either given C and
optimized W, or given p, and optimized C, all for a given powerplant specific mass
and travel time. The J so computed is therefore characteristic of the particular
trajectory and could be considered an indication of the flight propulsion require-
ments with only the proper selection of exhaust velocity and powerplant fraction
needed to maximize the space vehicle's payload carrying capability at any other
given powerplant specific mass (see Section II, pg. 3).

The foregoing approach was employed in the computation of heliocentric and
planetocentric trajectory requirements for selected planets. Not all planets were
considered for the heliocentric missions simply because of the expense involved.
The data listed herein were available from a series of previcus company and NASA
funded studies. Only constant-thrust, éonstant—power trajectories with optimal
coast were employed in the heliocentric flights; similarly for the planetocentric
spirals, except that no coast periods arise in this type of flight. As implied
by the constant-power assumption, the trajectory information is not applicable to
vehicles powered by solar-electric or radioisotope power systems since the power-
plant is a function of heliocentric position or time, respectively. In the case
of the radioisotope systems, this limitation need not hold if the power decay is
not significant over the operating time.

In the case of mixed-thrust trajectories in which the boundary conditions on
the heliocentric trajectory include nonzero hyperbolic excess speeds, the transition
region between the two gravitational fields encompasses low-thrust operation within
the planet's sphere of influence. Because the heliocentric trajectory optimization
assumes, as part of the boundary conditions, that the planets are massless points,
it is necessary to develop corrections to account for the realistic case in which
the low-thrust vehiecle is affected by the planet's mass. This aspect is discussed
in the final part of this section and in detail in Section VIIT, Appendix B.

Iv-1
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Heliocentric Trajectories

Figure IV-1 displays the characteristic.trajectory requirement, J, as a function
of heliocentric travel time to each of four planets. Rendezvous trajectories are
‘shown for trips to Mercury, Jupiter, and Saturn, and flyby trips to these three
planets as well as to Uranus. All of the information shown was obtained using a
computer program which computes constant-thrust, constant-power, fixed-time tra-
jectories with optimum coast periods (see Section VII for description). The tra-
jectories are all two-dimensional with the planets moving in elliptical orbits. A
fixed powerplant specific mass of 5 kg/kw was used and the exhaust velocity and
powerplant fraction were simultaneously optimized for maximum payload fraction
(simplified definition, Section II, pg. 3). The hypothetical thrustor efficiency
function given at the bottom of pg. 8, Section II, was used with 4 = 20 km/sec.

The planets and types of trajectories chosen were those presently felt to be
missions appropriate to first-generation, unmanned, electrically propelled, inter-
planetary probes. Because only one-way probe missions were considered, the J's are
accordingly the lowest value possible for the corresponding trip time; i.e., the
heliocentric central angle through which the probe traverses is optimum. Although
all of the trajectory data were computed for a certain planetary alignment year
occurring in the early 1980's, the information is considered applicable to other
years for preliminary systems analysis and mission studies.

Trips labeled "rendezvous" are those for which the departure and arrival con-
ditions are the appropriate planet's heliocentric orbital position and velocity;
with respect to the planet the probe is at escape conditions. The flyby trips are
trajectories which leave Earth with its heliocentric position and velocity and pass
through the massless point representing the destination planet. Because of this
terminal condition, the trajectory may also be interpreted as an impacter.

The total time that thrusting is necessary for both rendezvous and flybys trips
is illustrated in Fig. IV-2. Since coasting periods arise in optimum constant-
thrust trajectories, the powered time (or operating time) is always less than the
heliocentric travel time. The hyperbolic excess velocity for planetary flybys is
given in Fig. IV-3. To an observer on the surface of the planet, the probe would
appear to be closing along a radius vector with a speed given by

v = /vE e vE

where V_ is the hyperbolic excess velocity, and V. is the escape velocity at the
planet's surface.
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For the systems analysis of some types of flight modes (described in Section V)
it is convenient to assume that the J-curves of Fig. IV-1 and the powered times
in Fig. IV-2 are approximately linear functions of travel time. The motivation 1s
to quickly obtain trajectory information which may be directly applied to Eags. 16
" to 19 of Section II. Assuming a linear relationship, then the characteristic J
and corresponding powered time are given, respectively, by

My my
- A TH - L3 TH
Ju = Jy —{;— and Tup ° Tup ij— .

where J,, Ty, and Ty, are the heliocentric J, travel time, and powered time,
respectively. The quantities topped by a caret are reference values. The necessary
information for these equations is given in Table IV-1 for both rendezvous and
flybys. Data for Uranus rendezvous were not available. Also indicated at the
bottom of each column is the range of trip times from which the corresponding data
were derived.

As can be seen from Fig. IV-1l, the linear approximation is not strictly correct
and tends to be in error at the higher relative trip times, especially in the casge
of Mercury. However it has been found in most cases of interest that the J so used
results in about 10 to 15% error in the mass fractions. This error was considered
reasonable for mission study purposes. In any event the data of Figs. IV-1 and
Iv-2 could be used as blotted for more accurate analysis.

Planetocentric Spiral Trajectories

The trajectory data for planetocentric spirals represent the requirements for
a low-thrust spiral between escape conditions and & circular parking orbit. Only
constant-thrust outward (departure) and inward (capture) spirals are considered for
both optimal and tangential (or circumferential) steering programs. Two methods of
computing the trajectory characteristics, J, as well as the appropriate vehicle and
propulsion system parameters are given. The first, developed by W. G. Melbourne of
JPL (Ref. IV-1), employs tangential steering. The second approach is based on the
work of Breakwell and Rauch (Ref. IV-2) as modified by Edelbaum (Ref. IV-3) and is
applicable to both tangential and optimal steering programs.

The derivation of the equations in both techniques is given in Section VIII,
Appendix A, Planetocentric Low-Thrust Trajectory Equations. The pertinent equations
and trajectory data are presented here.
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Melbourne's Method

From Appendix A, the time, T, required for a vehicle to reach escape velocity
from a circular orbit of radius R, and with circular velocity V. is given by

¢t r ( -vc/c)
T T gy VT E " (1)
where V; =V uP7Rc, wp being the planet's gravitational parameter. The term I' is
an empirical correction factor designed to give the exact escape time, for tan-
gential steering, as determined from numerically integrated trajectories. It is
a function of the initial thrust acceleration (in units of the gravitational
acceleration at the parking orbit) and is shown in Fig. IV-k.

If 1-T were plotted against the normalized initial thrust acceleration on log
paper the curve would be essentially a straight line. Thus, using the functional
form I' = 1-pAY, a least-squares fit to the experimental points yields an analytic
expression for the correction factor.

0.24323
I =1 - 0.76382(A,) : (2)

where A, is the initial thrust acceleration in terms of g at the parking orbit. In
terms of the familiar system parameters Eqgs. (1) and (2) are, respectively,

Fw 1+ V%C r -V /C ‘
Ty ~ 1728 7 7("‘* ) (3)
and
q
L (/0 (rw/ay)
F=1-P| %00 2 ’
He/ R (1)

where V. and C are in km/sec, T is in days, W, is in kms/secz, R is in km, and
o, is in kg/kw.

In the usual application of finding J as a function of time for given parking
orbit conditions, an iteration is required between Egs. (3) and (4). From Fig. IV-k4
it can be seen that a I’ of about 0.9 corresponds fairly well to thrust accelerations
of from 1072 to 107° g. This is close to the accelerations expected of advanced low-
thrust systems and thus a I' of 0.9 provides a reasonable starting guess for the
following procedure. With time and exhaust velocity, C, given, and the parking
orbit fixed, Eq. (3) is solved for p,/o,. This value is substituted into Eq. (&)
and a new value of I' is computed which in turn is put into Eq. (3) and the entire
process is repeated until T between the two equations agrees within some specified
tolerance.
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Finally the J corresponding to the input quantities is found from

K, _»I‘(l _ e—vc/c)

Gw o1 - %O

It is assumed that T is given as some function of C, e.g., the hypothetical form

at the bottom of pg. 8, Section II. With all other quantities fixed, a range of C's
could be introduced to note the effect on J. Fortunately J is essentially independent
of C as will be shown later. Consequently, for any given thrusting time a
representative C could be used to compute a J which would then be applicable to

any C.

J = 20007

The foregoing expressions, which are applicable to departure spirals, may be
used to compute capture (inward) trajectories since the latter are equivalent to the
former except that vehicle mass increases rather than decreases. Thus by changing
the ratio V./C to a negative quantity while still measuring time positive from the
terminal parking oribt, the above equations apply to capture spirals.

Breakwell-Rauch Method

This method is based on the development of a systematic theory which accounts
for the influence of the planet and the sun on the motion of the vehicle as it
traverses the two gravitational fields. Using a mathematical perturbation technique
on the planetocentric and heliocentric trajectories, the two positions of the overall
trajectory are matched in order to define a point at which the computation of vehicle
performance for the planet-centered part of the flight ceases for departure or
commences for capture. Thus, to the order of accuracy of the perturbation, this
switching point will cause the calculation of performance to agree with the actual
trajectory profile.

Using the perturbation parameter, p, the mass ratio of the planet to the sun,
the Breakwell-Rauch theory for power-limited spirals is carried out through terms of
order uL/4 and uyz with errors on the order of p so that it is comparable to the
widely used analysis for high-thrust trajectories. The term of order pb4 is quite
important for all the planets while the term of order uh@ is quite small for the
inner planets although it may be important for trajectories about the massive planets.
The following is based on the analysis carried out to the order of uL“ so that
there will be some error in applying the results to the massive planets.

The incremental velocity, AVy, required to reach the switching point (or time)
is ’
1/4

Avy _ F
% 7 C(mu"" ' (5)
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where F is thrust, my is the vehicle mass at the switching time, and { is a constant
whose valuye depends on the steering program. For tangential steering g = 1.757,
while for optimal steering it is 1.8L0.

The mass ratio required between the switch point and the initial (or terminal)
parking orbit may be determined by introducing the usual system parameters into
Eq. (5). Thus, /4
K = exp —VTC | - 1.84 5(')0 (WC)(#W:QW) './4 )
Pp/R¢ M (6)

where y, is the ratio of terminal mass to initial mass. Equation (6) is used as
given for spirals leaving a parking orbit and thrusting to the switch point; hence
an iteration is required to obtain p, . If capture spirals are to be computed,
then the term p/* in the right-hand side of Eq. (6) is fixed at unity (see
Appendix A), thereby eliminating the iteration on p, .

For a fixed planet and given C (the functional form for T(C))and thrusting
time, an iteration is necessary between Eq. (6) and

Fw 1 c2U-p
ay 1728 7 T - (n

in order to obtain Hw/hh- The procedure is somewhat complicated in the case of
departure spirals since the iteration on w, is required. The basic approach taken
here is to nest the iteration for p, inside that for uw/aw. For typical planet-
ocentric trajectories the vehicle retains most of its initial mass so that a
reasonable initial guess for p, would be unity.

The trajectory requirement can be calculated from

J = 200077(5:)(';#')‘. (8)

If T = 1 in Eq. (4), then it becomes Eq. (8) since w, = e—V@/C.

That J is independent of C is shown in Table IV-2 for both ocutward and inward
spirals about Earth. Table IV-2 also indicates the small difference in J between
the capture and departure spirals. TFor all but the most massive planets this
difference is insignificant and is not more than about 4% for the larger planets
if the parking orbit radius is 10 or more planetary radii. Hence all of the
trajectory data have been computed for departure spirals only, and can also be used
for capture spirals with little error. Further, only optimal stéering of the
vehicle was considered since the two steering programs result in J's that differ
by approximately 5%.
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The Breakwell-Rauch method was favored over the Melbourne approach because of
the theoretically more accurate trajectory model employed by the former and the fact
that the transition region effects between the gravitational fields were partly
accounted for. However, the Melbourne method is simpler, especially for computing
departure trajectories by means other than a digital computer. A direct comparison
of the two approaches is presented in Appendix A. Briefly, the difference in the J's
may be as high as 20 to 30%; however, the net effect in the vehicle mass fractions
is much less than 10%.

A sample plot of J vs powered time is shown in Fig. IV-5 for a set of planets
and selected parking orbit radii. These data were obtained by the Breakwell-Rauch
method using optimal steering. Note that the curves are approximately straight lines
except in the vicinity of relatively long powered times. Nevertheless, since the
vehicle mass fractions are almost insensitive to some variations in J once a
reasonably accurate J is employed, then & linear fit to the curves of Fig. IV-5
would provide a compact technique of presenting numerous planetocentric trajectory
data. Assuming the curves are of the form

m

J = 3(4;)' (9?

T

and using a least-squares criterion for fitting the data, then the parameters J, %,
and m could be tabulated for a particular planet and a given parking orbit radius.
The results of this procedure are given in Table IV-3 where J and T are simply
reference values, m is actually the slope of the log plot (Fig. IV-5), and rp is the
circular parking radius in units of the planet's radius. Values of J and m at other
than the rp's listed could of course be found by interpolation.

Planetocentric Orbit-to-Orbit Spiral

The computation of trajectory requirements for elevating or lowering a parking
orbit about a planet is based on Ref. IV-1. Only tangential steering is considered
here since the trajectory requirements are quite low for most planet-centered
orbital missions and thrusting times and, as a consequence, the benefits from
optimal steering would be relatively slight. Because of the fact that the spiral
trajectory and corresponding analysis is confined completely within the planet's
sphere of influence and involves no transition region, the performance equations
do not contain the correction factor I'. The development of this aspect of planet-
centered spirals is discussed in Appendix A.

The required increment that must be accommodated by the electric propulsion
system is precisely the difference in orbital velocities. Thus a vehicle which
transfers (outward) from a low orbit of radius p, (normalized by the planet's
radius, Rp) to a final high orbit p,, about a planet of gravitational parameter e,
will require a terminal mass fraction given by
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/He/Rp l |

H o= expl — C 7z T 7% ’ (10)
o

P P

so if the allowed thrusting time is T days and the propulsion system exhaust velocity
is C km/sec, then the characteristic trajectory requirement is

2
_ | Ca (1= M)
V% Gosea T I, : - (11)

where it can be seen that J does not depend on the thrustor power conversion ef-
ficency. Table IV-4 shows the results of a sample calculation for an Earth-centered
spiral which commences from a low orbit of 1.05 and culminates in a series of high
orbits, including the case of a synchronous orbit (p, = 6.6301).

An ebbreviated form of Eq. (11) may be developed by noting certain charscteristics
of Table IV-L which could be assumed to hold for any planet. For a given time and
Py, J is essentially independent of C. If this slight variation in J's is acceptable,
then an average J over the range of C's would be a highly accurate estimate for the
J at the given T and py. Furthermore it can be seen that, regardless of the thrusting
time and terminal orbit, the average J always occurs at an exhaust velocity of
approximately 40 km/sec.

Hence, for a transfer between two given orbits, Eq. (10) becomes a constant
if C = 40 km/sec and Eq. (11) may be written as a constant divided by the thrusting
time T. The J obtained in this manner will be an estimate of the average J which
may be used in the performance analysis, i.e., where exhaust velocity and powerplant
fraction are varied. Figure IV-6 shows the dependence of J on thrusting time for a
transfer between an Earth-centered orbit of radius 1.05 and a series of terminal
orbits, including the 24-hr synchronous orbit.

Conversely, if T is fixed, then Eq. (11) may be written as a function of p,
by setting C = 4O and substituting Eg. (10) into Eq. (11). A further simplification
of this result may be obtained by noting that a plot of J vs p; On a semi-log graph,
Fig. IV-7, is almost linear for p, between 2 and 10. A least-squares fit to this
plot would yield a simple relation involving only p; for the assumed T. The general
form of the equation would be

b
J = ap;,

where a and b are constants determined by the least-squares method. This result
may be expedient for quick performance analyses of transfers to various orbital

radii.
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Either the arithmetic-mean, Eq. (15), or geometric-mean, Egs. (16) to (19),
results of Section II may be used to determine the exhaust velocity and powerplant
fraction which maximizes net spacecraft mass fraction. Equations (12) and (13) of
Section II may be used to compute the initial and average thrust accelerations,
respectively, if necessary.

In computing the performance of orbit-changing propulsion systems, it is useful
to estimate beforehand the minimum thrusting time which yields zero net mass fraction.
As noted above, for transfers between two given orbits, Eq. (11) can be written so
that J is inversely proportional to the time. Or, using some reference time, ﬁ,
and corresponding J, 3, then

v = 3(3). (22)

With the use of Eq. (19), Section II, and the corresponding thrustor efficiency
function, the desired minimum time may be found by substituting Eq. (12) and setting
the result equal to zero. This procedure is essentially accomplished in Eq. (20) of
Section II, so that putting Eq. (12) into Eq. (20), Section II, the desired result
is cbtained.

2
a,,d 2

T 5% > (13)

Note that the dimensionless ratio j'f'/d8 (appropriate conversion units are
required) contains the reference parameters indicative of the orbital transfer and
the thrustor efficiency. Equation (13) may be utilized in two ways. Given the
powerplant specific mass, the minimum thrusting time may be found which produces
zero maximum net mass fraction, or given a required time, the maximum powerplant
specific mass may be computed for the propulsion system. A generalized non-
dimensional plot of Eq. (13) is shown in Fig. IV-8. Reasonably accurate results may
be obtained from Fig. IV-8 for quick evaluation.

As an example, consider an Earth-centered transfer from an orbit of 1.05 radii
to a synchronous orbit. From Table IV-4 selecting the reference time as 5 days, the
reference J is 50.046 m®/sec®. If 4 = 20 km/sec, then, with the proper conversion
constants for nondimensionality,

(50 X S
0.0864 —————l- = 0.054.

(20)

o>
—4>

0.0864

a
n
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With this value, Fig. IV-8 gives awdz/T = 3.85. Again with the proper conversion
constants,.

2
a,d

d 2w . 5a32
64T 3.85, an T -0 .

Thus, for example, if o, = 15 kg/kw, then the minimum allowable thrusting time is
18 days. If T = 12 days, then the maximum allowable specific mass is 10 kg /kw

Corrections for Low-Thrust Hyperbolic Trajectories

For the purpose of computing performance, it is assumed that the electric
spacecraft, after being boosted from or onto the parking orbit, initiates or
terminates its interplanetary trajectory with the planet's heliocentric position
and the velocity resulting from the hyperbolic excess velocity due to high thrust
boost and the planet's heliocentric velocity. In actual operation, the high- and
low-thrust stages will be ignited sequentially so that the electric system does
operate for some period of time within the planet's sphere of influence on a
hyperbolic path. Because there currently does not exist a method of exactly
determining the precise performance values for an overall interplanetary trajectory,
it is necessary to employ velocity and position offsets on the boundaries of the
heliocentric trajectory to replace the effect of the planet.

These offsets are based on the velocity-intercept notion of matching the
planetocentric trajectory far from the planet with the heliocentric trajectory close
to the planet. The vehicle's planetocentric velocity as it recedes from the planet
approaches an asymptdtic form as the gravitational field of the planet diminishes.
By extending this asymptote back to zero velocity, an intercept time, t,, may be
defined as the time at which a vehicle escaping from a heliocentric, massless point
planet with zero initial planetocentric velocity would have the foregoing asymptotic
behavior as its velocity profile. 'For the case of hyperbolic low-thrust trajectories,
the foregoing approach may be simply implemented by considering the case of purely
radial motion. This is justified, heuristically, since hyperbolic trajectories,
after a short period, become essentially radial.

This case may be solved analytically for the constant thrust-acceleration
trajectory to obtain the required offsets of velocity, &V, and position, &R. The
vehicle is assumed to start from the center of the planet with an initial hyperbolic
excess speed. If V°<>° is the initial hyperbolic excess speed, F/m the thrust
acceleration, and Me the planet's gravitational parameter, then:

-1/4
for Vmo(mi'/-l-p) < 2,
1/4 (1k)
sv = [2v/Z E() - VZ k(K] (';\—,va) ,

Iv-10
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where
. -1/ 2
2 . L _ 1 (ﬁ. )
“t7 T | Yeembr) (15)
-1/4
F
for Vooo(ﬁ:uP > 2,
1/72
- 2 4
v = 3 Voo, (ﬁ/‘LP + Y Vao(r—n',u'P) - 4 E(k)(m#p),
where
- 4q
-1/4
' L - 4
2 a _V“o(m ke
2 (17)
K = > : . .
=1/4 7 q
Liv (-F—;U-p> + | F /4
) ®o\M . vy Vmo(r_n.'u,p> - 4
In either case, the position offset is given by
2 2
(SV) = Vyu
8R = > (18)

2(F/m)

The detailed development of the foregoing results are presented in Appendix B.
The quantities K(k) and E(k) are, respectively, the complete elliptic integrals of
the first and second kind with modulus k®. Because of K and E, which are tabulated
data, it is expedient for performance calculations to define correction factors D
and C in the velocity and position offsets, respectively, as follows:

/4
8V - Vo, © D(%#P) . . (19)
and
sn - C(F/mjvz | (20)
HMp

Iv-11
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From these definitions and the previous equations, it can be seen that D and C are
functions of V, (Fup/m)_hﬂ , the initial velocity parameter. These curves are given
in Fig. IV-9. %he velocity offset is in the direction of the initial heliocentric
thrust direction and is always larger than the initial hyperbolic excess velocity.
The position offset is a positive quantity in the same direction and is quite small,
for the inner planets at least, and is usually neglected in performance estimates.

The foregoing results, although based on constant thrust-acceleration tra-
jectories, apply equally well to constant-thrust flights if the thrust acceleration,
F/m,is based on the mass at the juncture of the heliocentric trajectory. In general,
F/m would be known beforehand only for the initial and terminal portions of the
heliocentric trajectory whereas the mass expenditure during the planetocentric
portion would be undetermined. Since 6V—V‘oo° represents the velocity contribution
of the low-thrust system during the planetary phase, an iteration on the planet-
centered terminal mass fraction, u,p, would be necessary according to

1/74

Sv - v, Cln D(F/m° /4)
—_— = - - B —— P
@ o Hip Hip ) (21)
where, functionally,
—1/4
F/mg :
D = D | Vo, W,U-P ) (22)

and where F/mo ig the initial thrust acceleration upon departure from the parking
orbit (after high-thrust burn) and C is the low-thrust exhaust velocity (not
correction factor). For high-thrust capture onto a planetary parking orbit after
electric thrusting planetocentrically, no iteration is necessary since

1/4 F/m \/4
~einpe = o) = o( ) (23)

wherein y,u, the terminal mass fraction for the heliocentric transfer, is known from
the heliocentric trajectory optimization program and u,. is the terminal mass fraction
for the capture phase.

A simpler procedure would be to use the initial heliocentric thrust acceleration
for F/m in the departure case. This is justified primarily because of the relatively
short time the vehicle thrusts in the vicinity of the departure planet and the high
specific impulses associated with electric propulsion. Consequently u,p, would be
almost unity for departure from Earth. :
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In practice the foregoing velocity correction, 6V-Vmo , i.e., the right-hand
side of Eq. (21), would be applied to the high-thrust phase by reducing the assigned
initial velocity of the high-thrust system by the amount D(Fup /m)*. This permits
the constant-thrust computer program to optimize the heliocentric trajectory and the
prOpulsion parameters as presently performed with the boundary conditions being the
hyperbolic excess speeds and the planets' heliocentric positions (neglecting 8R).

Because the optimization of the high- and low-thrust combination will be
computerized and since the numerous tabular values of the elliptic integrals are
not easily made a part of performance and mass caleulations, a simplified functional
form of D and C would be most helpful to the routine computations. A least-squares
curve fit was applied to obtain D and C as functions of Vcoo(FLLP /m)"Y*. In each
case the form of the equations used was suggested by the shape of the curves in
Fig. IV-9. TFor D the form was given by

y = ar® 4+ bs*, (24)

which is equivalent to

x Inr xins
: be

y = ae +

where a, b, r, and s are parameters to be found such that the sum of the squares of
the residuals is a minimum. The quantities y and x are D and VO%(FL.LP Jm) "4
respectively. The results for the D equation are:

>

a = 0.052688 r 0.909470

b = 1.15207 S 0.394237

The form used for C was
4

’ (25)

2
- -SX
y = ae ™ 4+ be

where C = y, and a, b, r, and s are as before. The solution gives

0.235156

0.346150 r

a

b

0.366336 ] 0.0239258

The foregoing curve fits are highly accurate and differ from the exact values by
not more than 1% at any given point.

Iv-13
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TABIE IV-1

PARAMETERS FOR HELIOCENTRIC TRAJECTORY

AND POWERED TIME EQUATIONS

5o = 5 (T ny = 8, (2
Ty ik
Mercury Jupiter Saturn
80 Loo 700
181.929 103.478 85.816
-2.20382 -2.86920 -2.78780
56.161 257.175 437.583
'1.156517 0.8957h1 0.908804
80 <T <200 400 < T <1000 700 £ T < 1200
70 300 600
59.241 47.092 3o.23Q
-2.86384 -2.37067 -2.,06470
43,796 150.890 321.034
1.291965 1.056036 0.887848
70 < T < 160 300 < T = 800 600 < T < 1200

Iv-15

Uranus

600

131.036
-2.59108

329.991

0.907105
600 = T < 1400
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km/sec

20
4o
60
80

100

120

4o

160

180

200

TABLE IV-2

INVARTANCE OF J AND COMPARISON OF EARTH

OUTWARD AND ( INWARD) SPIRALS

B2

0.7359 (0.7318)
0.8572 (0.8560)
0.9022 (0.9017)
0.9257 (0.9254)
0.9401 (0.9399)
0.9498 (0.9496)
0.9568 (0.9567)
0.9621 (0.9620)
0.9662 (0.9662)
0.9695 (0.9695)

O OO OO0 OO0 OO0

b /
kw/kg

.02038 (0.
.02754 (0.
.03771 (0.
.ok873 (0.
.06011 (0.
.07167 (0.
.08333 (0.
.09507 (0.
.1068 (0.
.1187 (o.

IV-16

02069 )
02777)
03793)
o48ok)
06032)
07188)
08354 )
09528)
1071)
1189)

J
m® /sec®

.313 (7.583)
340 (7.473)
354 (7.443)
.363 (7.429)
.368 (7.422)
.372 (7.416)
.375 (7.413)
377 (7.410)
.379 (7.408)
.380 (7.407)
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TABIE IV-3

PARAMETERS FOR PLANETOCENTRIC SPIRAL TRAJECTORY EQUATION

J=3 (T/f]})m

MERCURY VENUS
Tp n Tp ~
radii J, m®/sec® m radii J, m%/sec® m
1.05 3.5040 -0.86560 1.1 10.871 -0.89108
2 1.5216 -0.82282 2 5.1611 -0.85981
3 0.97289 -0.78826 4 2.0600 -0.81075
Iy 0.57795 -0.75918 6 1.11610 -0.773%1
5 0.h1471 -0.73352 8 0.75733 -0.74193
6 0.31343 -0.71024 10 0.53630 -0.71410
7 0.24566 -0.6887h4 12 0.4ook7 -0.68882
8 0.18783 -0.66868 14 0.31042 -0.66547
- : 16 0.24740 -0.64365
T =155 15 =T = 90 days 18 0.20146  -0.62308
20 0.16691 -0.60355
T = 30; 30 < T < 240 days
EARTH MARS
e . Tp .
radii J, m°/sec® m radii J, m°/sec® m
1.05 13.588 -0.89256 1.05 2.7629 -0.89000
2 6.1181 -0.86001 2 1.2354 -0.85572
4 2.4534 -0.81207 L 0.49032 -0.80526
6 1.3874 -0.77555 6 0.27511 -0.76682
8 0.90752 -0.ThhTh 8 0.17876 -0.73437
10 0.64419 -0.71751 10 0.12615 -0.70565
12 0.48206 -0.69277 12 0.093900 -0.67955
14 0.37439 -0.66991 14 0.072567 -0.65542
16 0.29891 -0.64855 16 0.057676  -0.63291
18 0.24383 -0.62840 18 0.046845  -0.61167
20 0.20233 -0.60929 20 0.038713  -0.591k47
T = 30; 30 S T < 240 days T = 30; 30 < T < 240 days
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TABIE IV-3 (Contd.)

PARAMETERS FOR PLANETOCENTRIC SPIRAL TRAJECTORY EQUATION

J=J (/)"
JUPITER SATURN
Te R I'p "
radii J, m° sec® m radii J, m°/sec m
1.1 357.54 -0.87011 1.1 118.80 -0.85841
5 43.328 -0.7h7h7 5 13.928 -0.72128
10 14,140 -0.65012 10 4 .3632 -0.61281
20 3.9024 -0.50939 20 1.1321 -0.45597
30 1.6516 -0.39974 30 0.4567 -0.33433
T = 30; 30 S T = 240 days T = 30; 30 < T < 204 days
URANUS NEPTUNE
- ) )
radii J, o /sec® . m radii J, m°/sec® m
1.1 46.545 -0.87273 1.1 63.117 -0.88077
5 5.89049 -0.75211 5 8.2738 -0.76874
10 1.9548 -0.65778 10 2.8224 -0.68156
20 0.55017 -0.52164 20 0.82784 -0.55599
30 0.23616 -0.41539 30 0.36695 -0.45793
T = 30; 30 £ T =< 240 days i 30; 30 < T < 240 days
PLUTO
Tp ~
radii - Jd, mg/sec:3 m
1 20.791 -0.87007
2 8.4338 -0.82489
5 2.2691 -0.73632
10 0.73379 -0.63553
20 0.19900 -0.48984
T = 15; 15 < T < 120 days
Iv-18
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TABLE IV-k

REQUIRED J FOR EARTH-CENTERED ORBITAL TRANSFERS

Initial Orbit = 1.05 radii

Terminal Orbit = 4 radii Terminal Orbit = 8 radii
Thrusting Time, Days ' Thrusting Time, Days
> 15 30 5 15 30
C, km/sec J, m°/sec® C, km/sec J, m°/sec®
20 32.895 10.965 5.4826 20 56.37h 18.791 9.3956
30 32.841 10.947 5.4736 30 56.216 18.739 9.3693
4o 32.823 10.941 5.4704 40 56.161 18.720 9.3602
50 32.814 10.938 5.46900 50 56.135 18.712 9.3559
60 32.809 10.936 5.4682 60 56.122 18.707 9.3536
70 32.806 10.935 5.4677 70 56.113 18.704 9,3522
80 32.804 10.935 5.4674 80 56.108 18.703 9.3513
90 32.803 10.934 5.4672 90 56. 104 18.701 9.3507
100 32.802 10.934 5.4670 100 56.101 18.700 9.3502
Avg. J 32.822 10.941 5.4703 Avg. J 56.159 18.720 9.3599
Synchronous Orbit = 6.630 radii Terminal Orbit =10 radii

20 50.216 16.739 8.3693 20 63.378 21.126  10.563
30 50.091 16.697 8.3485 30 63.179 21.060 10.530
Lo 50.047 16.682 8.3412 4o '63.109 21.036 10.518
50 50.027 16.676 8.3378 50 63.077 21.026  10.513
60 50.016 16.672 8.3359 60 63.060 21.020  10.510
70 50.009 16.670 8.3348 70 63.049 21.016 10.508
80 50.005 16.668 8.3341 80 63.042 21.014  10.507
90 50.002 16.667 8.3336 90 63.038 21.013 10.506
100 50.000 16.667 8.3333 100 63.034 21.011 10.506
Avg. J 50.046 16.682 8.3409 Avg. J 63.104 21.031 10.517

Iv-19
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HELIOCENTRIC TRAJECTORY REQUIREMENTS
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HELIOCENTRIC POWERED TIME REQUIREMENTS
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SECTION V

MISSION AND SYSTEMS ANALYSES

The basic insight into the relationships between the trajectory characteristic,
Jd, and the propulsion system parameters, C and i, , was presented in Section II, III,
and IV with reference to maximum terminal mass fraction and net spacecraft mass
fraction. This section is devoted to the application of the previous information
in evaluating specific aspects of power-limited propulsion systems when used in
certain interplanetary flight modes. The purpose is to develop the system equations
for the different flight modes and to present computational aids useful in solving
these equations.

In all of the missions to be considered, the flight commences from a low
parking orbit about Earth and terminates either on a parking orbit about the planet
(for capture missions) or at the time of closest approach to the planet (for flyby
missions). Two propulsion modes are presented. The first involves a single electric
propulsion system that performs all phases of the flight with no staging of any
type. The second consists of mixed high- and low-thrust propulsion with staging of
the individual systems. This latter mode requires heliocentric trajectories in
which either one or both of the boundaries contain hyperbolic excess speeds that are
accommodated by the high-thrust propulsion system. Unfortunately, as of the date of
this writing, insufficient mixed high- and low-constant-thrust trajectory data limits
the discussion to the development of the appropriate equations.

In the case of the single-stage electric propulsion system, three system
variations are treated, all of which require the powerplant specific mass to be
given. The first variation is merely that treated in Sections II and III, namely the
maximization of net spacecraft mass fraction. The second case assumes that the
powerplant mass is given and that the gross vehicle mass and exhaust velocity are to
be optimized for maximum net spacecraft mass (not mass fraction). The final
variation considers both the powerplant mass and gross vehicle mass tc be given and
that the exhaust velocity must be optimized to obtain maximum net spacecraft mass.

Single-Stage Electric Propulsion System

Tra jectory Optimization

The use of a single-stage propulsion system which operates throughout at most
three different gravitational fields requires that the characteristic requirement
for such a three-phase trajectory be a minimum. Usually interplanetary missions are
specified in part by the allowable overall mission duration. In this case the total
duration for the mission, T, is
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T = Ty o+ T+ T, (1)

where the subscripts D, H, and C denote departure time (from Earth), heliocentric
travel time, and capture time, if any, at the planet. From Section IV it was
determined that the J for each phase could be written (approximately) as a simple
function of travel time. Because only the overall mission duration is specified, it
is necessary to determine the constituent times in Eq. (1) which minimize the total
J as given by

That the total J represents the overall trajectory is based on the fact that the
final terminal mass fraction is the product of the individual terminal fractions of
each phase provided no staging occurs.

Ki = Hip MK HMic (3)

Now the mass of the powerplant, m,, is the same throughout the flight so that the’
powerplant mass fraction of each phase can be found in terms of the terminal mass
fractions.

‘ Hw Hw
= ) = T and E .,
Hw = Hwop Fwh = oo Hwe T (L)

Combining the relations of Eq. (4) with the rocket equation (Eq. (1), Section II),
and substituting into Eqg. (3), the overall terminal mass fraction becomes

!
a Ay (Jp *Iu * dc) (5)

e M Hw

where the exhaust velocity is the same for all thrusting phases so that 7 is constant.
Consequently, as expected, the sum of the individual trajectory requirements (parking
orbit-to-parking orbit) should be a minimum to ensure maximum final terminal mass
fraction.

Strictly interpreted, however, the overall trajectory requirement should be
computed as one complete and continuous trajectory accounting for all the perturbing
influences of the planet and the sun of the vehicle's motion. The exact solution of
this multi-body trajectory problem is not tractable for mission study purposes and
therefore the approach is to separately compute the individual planetocentric tra-
jectories while accounting for the transition effects between the planet's and sun's
gravitational fields. This permits the Breakwell-Rauch planetocentric trajectory
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data of Section IV to be used in conjunction with the appropriate heliocentric data.
In addition to the error inherent in the planetocentric spirals about the more
massive planets, there is the actual position error of the vehicle which, because

of the above approach, is due to the assumption that the spacecraft is at the center
of the massless point planet in heliocentric space. This error is neglected in all
of the present analysis.

The overall computational approach is to first find the distribution of powered
times which minimizes the total J for a specified mission duration. This yields
the total minimum J and corresponding total powered time, both of which are required
for determining the optimum exhaust velocity and powerplant fraction. These optimum
parameters may be found by using either the iterative procedure described in Eg. (15),
Section II, or the closed-form expressions in Egs. (16) to (19), Section II.

The procedure is greatly simplified if the trajectory requirement and powered
time equations shown in Tables IV-1 and IV-3 are employed. Assuming for the moment
that the heliocentric travel time, Ty, is given, then the total planetocentric time
is known from

where T, the total mission duration, is specified. The total planetocentric tra-
Jectory characteristic is '

‘ T\ ® T\

A A
Jp = Jp t J¢ = Jo<“p'~ ) + JC<TC>, (7)
Tp c

where the simplified expressions (Table IV-3) have been substituted. Taking the
total derivative of Eq. (7) with respect to T, and T., setting the result equal to
zero, and using Eq. (6), the optimum thrusting period for the departure spiral may

be found |

A me Il = my 1 - me
T Jo Mo Te T=mg
D ~ A Mp TC o
Je Me Tp ’ (8)

An iterative procedure between Eq. (6) and (8) is required to find T, and thus the
optimum distribution of the given total planetocentric thrusting time.

The overall mission reguirement can now be written as a function of the
heliocentric and departure travel times.
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where the entire mission duration is
|

A oamg 7 Toms 1-m,
JC mc T 0 c
T=T, + T, + < _Bb__ Tp!-Mme | (10)

A A
Jp Mp TcMe

Thus the optimum T, can be determined by setting the derivative of Eq. (9) with
respect to Ty equal to zero and keeping in mind that Ty, is a function of Ty by
Eq. (10). After considerable simplification the equation for optimum T, is

a A m, 1- mp I-m, A A my I=my
Mp Yo Th T, Mo -~ Me dc Tu T,'"Me (11)

Ty, = T -
H A A A A

my dy ToMo My Ju TcMe
In this form the equation is amenable to solution by successive substitution or,
preferably, by the method of false position. The latter method converges to a
solution quite rapidly and is very stable.

Equation (11) applies to the general flight mode; namely, planetocentric
departure spiral, heliocentric transfer, and planetocentric capture spiral. The '
second and third terms on the right-hand side of Eq. (11) are, respectively, the
contributions of the departure and capture planet-centered spirals. Consequently,
if the flight mode under consideration is other than the general one, the appropriate
term in Eq. (11) should be omitted. If there is to be no capture at the destination
planet, then the third term should be omitted. This implies that the heliocentric
trajectory is a flyby and the parameters in the heliocentric J and powered time
equations (Table IV-1) must correspond to this type of trajectory. If there is a
high-thrust capture at the planet starting from parabolic, i.e., escape, conditions
then the third term is omitted and the hellocentric rendezvous trajectory data of
Table IV-1, may be used.

If there is a capture spiral but no departure spiral, then the second term must
be deleted. The overall flight mode thus consists of a high-thrust departure from
the initial parking orbit to parabolic (escape) conditions, a low-thrust heliocentric
transfer, and a capture spiral. Under these conditions the rendezvous heliocentric
data of Table IV-1 is applicable. However, if more than parabolic conditions are
provided by the high-thrust system, i.e., hyperbolic excess velocity greater than
zero, then none of the cited heliccentric data are useful. This type of high- and
low-thrust mix requires numerous heliocentric trajectory data involving the departure
hyperbolic excess speed (and capture if necessary), and insufficient information
currently exists to produce a table analogous to Table IV-1l. The basic equations
for the mixed-thrust system are presented later.

V-b
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For completeness, it should be pointed out that once the optimum breakdown of
mission duration has been determined, then the total thrusting time is known. Since
no coast periods occur during the spiral trajectories, then the planet-centered
thrusting time is the travel time; for the heliocentric phase the powered-time equation
(Table IV-1) yields the heliocentric thrusting time. With the powerplant specific
mass (assumed given), the overall J, and the total thrusting time, the optimum exhaust
velocity and powerplant fraction can be found from either Eq. (15) or Egs. (16) and
(17) of Section II or from Figs. ITII-1 to III-8. An estimate of the maximum power-
plant specific mass for the mission may be found from Fig. III-O.

System Variations

The variation in the vehicle system operation are merely constraints on the
system optimization as fixed by general "real life" considerations. That is, it is
not to be expected that a mission will be executed by a space vehicle optimized
solely for maximum payload-to-gross mass considerations; a given type of powerplant
with definite power output and/or mass may have to be used, a restriction may be
placed on the gross mass of the spacecraft by the capability of the launch vehicle,
or the payload mass is dictated by the scientific or communications requirements of
the flight. Regardless of the variation, the objective of this analysis is to
optimally choose the remaining system variables so as to maximize the net spacecraft
mass (not necessarily mass fraction). In order to analyze these different variations
systematically, the following operating definitions were established.

A. Operation at maximum net spacecraft mass fraction. This is the same case
as fully developed in Sections II and III wherein the optimum exhaust velocity and
powerplant fraction are required to maximize net spacecraft mass fraction. No
further discussion of this variation is presented.

B. Fixed power system(powerplant mass and output power). In this instance a
given power system is to be evaluated and, since its mass and output power are
known, it is necessary to determine the exhaust velocity and vehicle gross mass
which yields maximum net spacecraft mass.

C. Operation with fixed power system and given vehicle gross mass. This
situation arises when a particular type of power system is to be used in an
electrically propelled vehicle whose gross mass cannot exceed the orbital payload
capability of the launch vehicle assigned to the mission. As a consequence, the
remaining system parameter available for maximizing net spacecraft mass is the exhaust
velocity.

D. Specified powerplant and payload (net spacecraft mass).' This case is
analyzed under the "Mixed High- and Low-Thrust Propulsion Systems" section below.
Under mixed-thrust operation, in which the analysis requires sequential calculation
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of masses in each stage, the powerplant and the high- thrust propulsion stage
(including mission payload) associated with the electric system must be specified.
This implies that the exhaust velocity is to be optimized in order to minimize the
gross mass of the electric stage.

— — — — — —_— e o o — e o ——— —

A Tixed power system implies that the powerplant mass, m,, and power output, P,
are known or that either of these and the specific mass, o , are known. In the
general case, the exhaust velocity, C, and powerplant fraction, u,, are available
parameters for optimizing. With the powerplant mass, m, , known in the present case,
this means C and the gross vehicle mass, m,, are to be optimized.

The net spacecraft mass, m_ , can be written in terms of C and m,, by using the
simplified definition of Eq. (2), Section II:

m, = - my,

where f = oy J/2 and T is some unspecified function of C. Assuming Yz is .
independent of m,, taking the total derivative of Eq. (12) with respect to C and m,,
and setting the result equal to zero, yields

y2 n d¢c
' Mo, T dmg O (13)

where T = dﬂ/dC. The variation of C with m, can be found by employing equivalent
assumptions to those used in deriving Eq. (15) of Section II. That is, the minimum
value of J is independent of m,, and the average thrust acceleration over a minimum-J
trajectory is also independent of m,.

Now the derivative of C with respect to m, can be written identically as

dc _ Hw dc

dmg Mo duw °

so that the appropriate derivatives in Eq. (lh), Section II, may be substituted to

obtain
-

—I + ‘o]
dc . c H _ nc aM .
- -l (1k)
dc C 2 yle
—_ = - - GM.,
dmO mO |+ M n
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where the notation AM denotes the arithmetic mean case and GM denotes the geometric
mean case. Substituting into Eq. (13), the optimum gross mass may be determined.

( "I_Trc i
27 N AM
EZN Py
Mo .4 . ki _
My oPT 27 |__17‘_§'_1 (15)
ST | o
n
L L .

The optimum C and m, may be computed by iteratively solving between Eq. (15)
and the following definitions for average thrust acceleration, a (also see Eq. (13)
Section II):

- m
GauC = 27me + vy?  am,
t/2
- My y? o (16)

where the dependence of T on C 1s to be furnished.

If the functional form of the thrustor conversion efficiency is given by (see

Fig. II-1):
l
17 = 2 L}
I + (d/C) (17)

then closed-form expressions for optimum exhaust velocity may be derived in both the
arithmetic- and geometric mean cases.

Eliminating m, /m, between the first parts of Egs. (15) and (16) and substituting
Eq. (17) and its derivative, a normal-form cubic in C/d may be obtained:
3 2
o ) C 27
~) - = - £ = 0 AM. 8
(d d aayd : (18)

There is one real root to this equation, provided that

2r? a4
_ > =5
dayd 27
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This is probably so in most cases, since

2 .
2Y J 4
= = = 05 > =5
dayd ad A/ 27

for typical values of J, a4, and d. Hence the optimum dimensionless exhaust velocity
is

. N | - 1/2 \I/3° . 1/21/3
C - g _ N P
don‘( 2 ) b+ 27(J/'dd) - 27<J/ﬁd) AM,
(19)
only if
J 4
30 TN

The dimensionless quantity J/éd encompasses the trajectory requirement, J, the
average thrust-acceleration, &, expected in performing that trajectory, and the
parameter d, indicative of the thrustor conversion efficiency. The combination of
these parameters is a measure of the entire mission and is termed the mission
parameter. '

If it should happen that J/éd = /h727, then the optimum exhaust velocity is

C 2V3

d loer 3
Further, if J/ad < /4/27 then there are three real and unequal roots to Eq. (18)
which are given by -

C

AM.

3
2{_ cos(i + 120° K) , K=0,1, 2 AM (20)

£
d B 3

oPT

where

3/3

U
ad 2 :

cos¢ =

For convenience, the optimum exhaust velocity for the arithmetic-mesn case is
plotted in Fig. V-1 as a function of the mission parameter, J/éd. It is interesting
to note that the optimum exhaust velocity does not depend on the powerplant specific
mass. The optimum gross vehicle mass may be found by substituting Eq. (17) into
the first part of Eq. (15).

Mg ) 2/y? | = (d/c)° (21)
— = > 3 AM
W |opT 3{(d/c) -1 I + (d/c)

v-8
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Equation (21) is illustrated in Fig. V-2 as a function of the system trajectory
characteristic, yz, and for a range of values of C/d. The resulting maximum net
spacecraft mass may be quickly determined from Fig. V-3.

The use of Eq. (17) in the geometric-mean case results in much simpler
expressions for the optimum exhaust velocity and gross mass. Proceeding essentially
as in the AM case, the optimum exhaust velocity can be written as

i/72

<l o= L [ oM (22)
d loer d

where T, is the total powered time. Again, note that the dimensionless quantity

J Tp/3® contains those parameters indicative of the mission as well as the system.
Equation (22) is plotted in Fig. V-1 as a function of the mission parameter. Although
the GM and AM cases show the same trends, they differ markedly. This discrepancy
should not be construed as the actual difference, however, since, for the exact
flight, the mission parameters are not expected to have the same values.

The optimum gross vehicle mass may be written explicitly as a function of the
mission parameter and the system trajectory characteristic, yz.

Mo . iTerd? |1+ SiT/dE . (23)
Mw | opr y? 2+ VuTp/d2

Figure V-4 displays this equation.
Because of the simplified expressions obtained in the GM case, it is convenient
to write the maximum net spacecraft mass in terms of Yz and JT, /d°.

2
M = L7y -1 GM
My MAX | + __2___. . (2)4')

vV JTp 7d2

This result is illustrated in Fig. V-5.

In using the foregoing results it is important that appropriate units be used
so as to render the mission parameter dimensionless. In practice, the geometric-
mean case is much more expedient to use because of the information presented in
Section IV and the fact that the optimum exhaust velocity and gross mass equations
are quite simple. Although the arithmetic mean yields slightly more accurate
results, this improvement does not appear justified for overall system study purposes.
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The additional restriction of a given gross vehicle mass means that the power-
plant mass fraction, pw, = my/m,, is fixed, leaving only the exhaust velocity to be
optimized. Since the net spacecraft mass fraction is

My = Mop,

the problem is to determine the best C given p, such that p. is a maximum.

For any known power-limited trajectory which has been optimized for minimum J
and maximum net spacecraft mass fraction, there corresponds an average thrust
acceleration and optimal value of powered time, exhaust velocity, and powerplant
fraction. If either the exhaust velocity or powerplant fraction is changed and the
entire trajectory again optimized for minimum J and maximum y_, practically the same
values for J, and a will be obtained. The near-constancy of these quantities along
the maximum W line is shown in Table V-1 for a 200-day Earth to Mercury rendezvous
trajectory in which u, was fixed at the indicated value and the exhaust velocity was
optimized for maximum W_. Table V-2 shows the same information for a 1000-day
Earth to Saturn rendezvous. As was found in practically all trajectories so analyzed,
the powered time does differ somewhat from the overall optimum value at very low .
values of u,. As expected this influences the geometric-mean thrust acceleration
so that it too is noticeably different at the lower py 's.

Thus, if information such as given in Tables V-1 and V-2 was available for the
trajectory of interest, it is a matter of interpolating for the particular powerplant
fraction to obtain the optimum exhaust velocity and corresponding maximum net
spacecraft mass fraction. However the necessary trajectory information is time-

. consuming to obtain even by computer. An approximate analytical technique, suf-
ficiently accurate for system study purposes, may be developed by using the assumption
that the average thrust acceleration i1s invariant with W, for a given trajectory.
Using the arithmetic- and geometric-mean definitions as before, Eq. (13), Section II
and its expanded form, Eq. (16) above, the optimum exhaust velocity may be written

aayC = 27puw *+ v?  am,
< 2 y/a (25)
) = + —

where the function 1M(C) must be given to solve for C. If T depends on C according
to Eq. (17), then using the dimensionless mission parameters as before, Eq. (25)
becomes

V-10
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C _ J/ad (c /d)? y?2
- = + AM,
d v2/pw |1+ (craP 2hw
/2
2 2 2 6
c . -'-<| . _y_2> JTp/d . Y 4 . ou (26)
d 2 P/ (v u? | |+ y%/py | JTpsd®

Figures V-6 and V-7, respectively, display the optimum exhaust velocity for the
arithmetic mean and geometric mean as a function of the system trajectory charac-
teristic, yz/uw, and a range of values of the appropriate dimensionless mission
parameter. As an additional aid, Fig. V-8 presents the terminal mass fraction, u,,
for various values of the exhaust velocity. Figure V-8 is actually a general plot
and is applicable to any values of C/d and yz/pw, which are not necessarily in the
same relstion as that implied by Figs. V-6 and V-7. The difference between u; and
W, thus gives the maximum net spacecraft mass fraction. As implied previcusly, the
results of the analysis are valid as long as the given p, is reasonably close to
the overall optimum value for the trajectory. .

If it is desired to utilize the AM part of Eq. (26), then an initial guess for
the iteration on C/d may be obtained by setting JTp/dz = J/éd in the GM equation.-
Since the mission parameters are quite close, the GM equation will yield a starting
solution that will increase the convergence rate. :

Mixed High- and Low-Thrust Propulsion Systems

In all of the heliocentric trajectories presented previously, the boundary
conditions imposed on the vehicle's motion are the departure and arrival planet's
heliocentric position and velocity, the planets being considered as point masses.

In an overall flight mode evaluation sense, speeds other than the implied parabolic
one should be included, as parabolic speed is & special case of zero hyperbolic
speed. From an operational viewpoint, these hyperbolic excess velocities require
high-acceleration devices for planetary departure or capture. In general, therefore,
the analysis of system performance, which in a majority of instances 1s concerned
with minimum gross vehicle mass, should include these high-acceleration systems and
their interaction on the intervening heliocentric low-acceleration propulsion system.

The present discussion is a limited attempt to provide the necessary information
so that a preliminary evaluation, at least, could be made in optimizing the com-
bination of high- and low-acceleration systems. Because of the many different
possible combinations of the departure and arrival hyperbolic speeds for a given
trip time and corresponding date, very little trajectory information as such is
presented. The required data as outlined below may be computed by the heliocentric
power-limited trajectory program described in Section VIT.

v-11



G-110058-28

Mixed-Thrust System Equations

The analysis of the combined high- and low-acceleration systems assumes that
each of the thrusting phases is independent of the other. For planetary departure
from a parking orbit, it is assumed that after high-thrust burnout and staging the
‘interplanetary vehicle (electric system) commences operation at the heliocentric
position of the massless planet with the initial heliocentric velocity consisting
of the planet's velocity and the hyperbolic excess velocity provided by the high-
thrust system. The same assumption holds for the high-thrust capture onto a
planetary parking orbit.

The above assumption neglects the effeect of electric system operation within
the planet's activity sphere; in actuality the thrusting and staging phases would
be sequential. An analysis of the effects of the foregoing assumptions is presented
in Appendix B and the results are briefly discussed below.

The formulation of the overall net spacecraft mass-to-vehicle gross mass fraction
must account for the propulsion and trajectory parameters for both the low- and high-
acceleration systems. For a flight profile consisting of & high-thrust departure
from a parking orbit, a low-thrust heliocentric transfer, and a high-thrust capture
onto a parking orbit, and where staging is employed, the overall net mass fraction
is just the product of the net mass fractions of the individual stages. Thus

ML = HoHMHMC | (27)

where subscripts D, H, and C denote departure, heliocentric, and capture,
respectively for the net mass fraction w. Equation (27) would also hold for a
flight profile ending in a flyby if e is set identically equal to 1.0. It is
assumed that after use each propulsion system is staged.

For a given fixed-time mission, the maximization of Eq. (27) depends solely
on the hyperbolic excess speeds of departure, Vp, and capture, Vc. As would be
 expected, increasing either of the hyperbolic speeds would lower the corresponding
J for the heliocentric flight leading to a higher py. But this also results in a
lower value for pp or pe. Consequently, the high-thrust net mass fractions are a
function of either V, or V, and are opposite in dependence to that of uy which is
a function of both V, and V.

The optimum values that the pair (V,, V¢) would take on depend in part on the
powerplant specific mass and power output, the specific impulses and inert mass of
the high-thrust systems, and the net mass (or payload) to be delivered. Given all
of these characteristies, the exact actual determination of the optimum (Vo, Vo)
requires that at any trial (VD, Ve ) the mass of each propulsion system, and hence
the gross vehicle mass, must be determined. A totally analytical, dimensionless
mass ratio approach is not possible since the high-thrust step mass actually depends
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on the opfimum thrust-to-mass ratio (to minimize velocity loss) and the relationship
of inert mass to incremtnal velocity and accelerated mass. The payoff here is
taken to be minimum gross vehicle mass for the given net delivered mass.

A reasonable simplification of the procedure implied by the optimization of
Eq. (27) may be obtained by eliminating the velocity loss and thrust-to-mass
optimization aspect of the high-thrust system and by neglecting the dependence of
the inert mass of the high-thrust step on incremental velocity (hyperbolic excess
speed) and accelerated mass. Using this approach, Eq. (27) becomes

PLoslt=sop, | FrT—spe|” (28)
where
2 2 (29)
) Vo c) <Ve> (v,)
= ex —) ¢ (== - = ,
fi.2 P (CD.C C o, c C/o ¢ :
and FH = uulvp, Ve).

The terms multiplying ww in Eq. (28) are the high-thrust stage net mass-to-
gross mass fractions, and the expression for p, Eq. (29), is the ideal (no velocity
loss) mass ratio for the high-thrust system at departure from (subscript 1) or
arrival onto (subscript 2) a circular parking orbit. The high-thrust step inert
mass fraction, denoted by 8, is defined as the ratio of the step inert mass to the
mass of the entire step (propellant plus inerts). The rocket exhaust velocity is
C, and the escape velocity, Ve, is evaluated at the parking orbit radius where the
circular velocity is V.. Again, Egs. (28) and (29) may be made applicable to a
flyby flight profile by setting the third factor in Eq. (28) identically equal
to 1.0 which implies that the ideal mass ratio for capture propulsion, Eq. (29),
is also identically 1.0.

From limited cases using variable-thrust heliocentric trajectories and certain
Mars and Venus missions it was found that the optimum hyperbolic excess speeds
usually occurred at 50 to 80% of the corresponding speeds for the all-impulsive
heliocentric transfer. These two-impulse hyperbolic speeds may be determined from
the trajectory program briefly described in Section VII. A suggested procedure,
therefore, would be to initially assign 50 to 80% of the impulsive hyperbolic speed
to the appropriate high-thrust system in order to obtain an estimate for §, and §;.
Holding these values fixed, Egs. (28) and (29) are sequentially evaluated for a
series of values for Vp, and V¢. A plot of w versus Vp for various V;'s should

V-13
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provide sufficient information to interpolate for the optimum (V,, Ve). If deemed
necessary y, may then be reevaluated by updating 6, and 6, using the previously
obtained estimate for optimum (V,, V).

The foregoing "compute and plot" approach could be replaced by a computer program

which uses a direct search procedure on (VD, Vc) wherein the dependence of uy on

(Vp, Ve ) would be given in tabular form. This basic search routine, described in
Section VII and Appendix C, is useful for the restricted case presented above in

which nondimensional ratios are employed throughout. This also means that the
powerplant in such an analysis is a "general" one whose characteristics are not

known until a solution is obtained; i.e., a specific type of powerplant cannot be
evaluated.

A major problem, however, regardless of the approach used in determining the
optimum hyperbolic speeds, is the requirement that the intervening heliocentric,
electric stage's net mass fraction must be known as a function of V, and Vg (Vp only
for flybys). As of this writing, there are insufficient data available to present
a number of plots suitable for a mission analysis; the multiplicity of planets,
trip times, and range of hyperbolic speeds, and the associated computing time and
expense preclude that possibility. Figure V-9 presents a sample case of a 160-day
Mercury rendezvous. Since the propulsion system characteristics are required
under the optimum conditions, the exhaust velocity and powerplant fraction are
also required. '

Optimization of Electric Stage

In the exact determination of optimum (VD, Ve ) wherein the actual masses
associated with each propulsion system is computed, the electric system must be
optimized under the restrictions of a known powerplant mass and net mass (the mass
of the payload and the high-thrust capture propulsion, if there is one). This in
essence represents the fourth electric system variation mentioned earlier in
paragraph D of "System Variations". The restrictions imposed on the electric pro-
pulsion system imply that an exhaust velocity must be found which minimizes the
resultant gross vehicle mass. Because the parameters usually available for maximizing
the net mass fraction are exhaust velocity and powerplant fraction, with both the
net mass and powerplant mass fixed, this leaves the exhaust velocity to be optimized.
This optimum exhaust velocity produces minimum gross vehicle mass which in turn
assures meximum net mass fraction under the given conditions.

v-14
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Using the simplified definition, the net mass, m_ , is the terminal mass, m,,
less the powerplant mass, my.

m_ = m - My

(30)
This means that m; is specified. But m; can be written
m, |
=
P —— em——
| T Mw

where the gross mass of the electric stage is m,, and Ya and T are defined in the
usual manner. Substituting Eq. (31) into (30), the corresponding powerplant fraction
may be found.

Mo |+ b n (32)

This yields the gross mass for a given trip, represented in part by yz, and a given
exhaust velocity, represented by T.

At any given W, , an optimum exhaust velocity may be found which maximizes
for the given heliocentric trajectory. By varying i, the conditions for an overall
maximum p,_ may be determined. Along this locus of maxima, as previously explained,
the average thrust acceleration and J are practically constant. Thus for a given
W, the optimum exhaust velocity is given by Eq. (25). Consequently Egs. (32) and
(25) must be simultaneously solved to obtain the optimum exhaust velocity.

Eliminating the powerplant fraction between these two equations and assuming
M =1/1 + (a/C)?, then

qa m
c g/ad | _ Y2(| . mL) M
d 2 mL 2 W »
Yl + — | + (d/Q)
Mw
- - - - \ 72 (33)
2
m
(M v (1 )
c LY (Hmw) 4 Mw/ 4
~ = ﬁ———- 3 | + |--JT— -1 GM,
d 2 m P m
a1y (1 + == —Lli=-ye(1+ ==
w d2 mw
. - - - J

which are similar in some respects to the AM and GM parts of Eq. (26). 1Instead of
the parameter v* /uy as in Eq. (26), here the system trajectory characteristic is
v?(1+m_/m,;) which involves all of the known quantities concerning the low-thrust
trajectory and propulsion system.

Figures V-10 and V-11 present the optimum exhaust velocity, respectively, for
the arithmetic mean and geometric mean as & funetion of the system-trajectory
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characteristic and a range of values for the appropriate mission parameter. With
these figures it can be immedistely determined if it is possible to perform the
mission as required by the system-trajectory characteristic and mission parameter,
i.e., if there is an optimum C/d under the given conditions.

Note that if a solution exists both the AM and GM plots yield double values for
the optimum exhaust velocity. The desired value to use is, of course, the higher
one since the higher specific impulse lead to a lower gross vehicle mass. This may
also be seen by rewriting Eq. (32) to

2
m_+ My <__d__> 2 T_L_)
—m— - L= |+ (g Y (I * o)l (34)

The mass fraction on the left-hand side of Eq. (34) is plotted in Fig. V-12 against
the system trajectory characteristic. As can be seen, the lower values of exhaust
velocity at a given characteristic lead to low values of the mass fraction, i.e.,
high initial gross mass.

The above approach requires that the average thrust acceleration and J for
the AM case or the powered time and J for the GM case be known at each value of
Vp, Vc) in order to determine the minimum gross mass of the entire vehicle. This
is in contrast to the previously discussed simplified method of analyzing the mixed-
thrust problem wherein dimensionless mass ratios are used throughout and the low-
thrust net mass fractidon is required as a function of (V,, V.). Regardless of the
method employed, the problem as stated in either method is amenable to solution by
the direct search procedure noted previously.
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My Copt
_ km/sec
0.40 111.15
0.38 105.94
0.36 100.72
0.34 95.47
0.32 90.21
10.30 14.92
0.28 79.61
0.26 Th.27
0.24 68.90
**0,22118: 63.80
0.20 58.00
0.18 52.48
0.16 46.89
0.14 4i1.23
0.12 35.54
0.110455 32.83
0.097865 29.30

*

DEPENDENCE OF P ARAMETERS ON POWERPILANT MASS FRACTION

TABIE V-1

200-DAY EARTH-MERCURY RENDEZVOUS*

0.4419
0.4547
0.4667
0.4780
0.4882
0.4973
0.5051
0.5111
0.5150
0.5164
0.5143
0.5078
0.4953
0.4740
0.4399
0.4170
0.3779

29.11
29.08
29.04
29.00
28.96
28.91
28.86
28.80
28.7h
28.68
28.61
28.55
28.51
28.52
28.70
28.91
29.47

d = 20 km/sec in T = 1/1+ (a/C)?
*¥ overall optimum for the trajectory
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Te
days

146.64
147.08
147.59
148.15
148.80
149.55
150.43
151.48
152.75
154 .22
156.34
159.01
162.72
168.25
177.21
183.62
195.76

a (AM)

1072 m(sec8

.525
.523
.520
.516
.512
.510
.505
1.

H B R

500

1.495
1.489
1.481
1.470
1.460
1.446
1.432
1.k25
1.417

a (oM)

1078 m{sec2

1.516
1.513
1.509
1.505°
1.501
1.496
1.490
1.476
1.476
1.467
1.455
1442
1.h2k
1.401
1.369
1.350
1.320



G-110058-28

TABLE V-2

DEPENDENCE OF PARAMETERS ON POWERPIANT MASS FRACTION

1000-DAY EARTH-SATURN RENDEZVOUS*

by Copt W J Tp a (AM) a (cM)
_ tan/sec . m? /sec® days 10 °m/sec? 10"° m/sec?
0.40 227.42 0.4393 30.41 609.29 0.76008 0.7650
0.38 216.59 0.4520 30.44 608.47 0.76089 0.7661
0.36 205.74 0.4640 30.46 607.56 0.76182 0.7674
0.34 194 .88 0.4753 30.50 606.56 0.76285 . 0.7688
0.32 184.00 0.4856 30.54 605.44 0.76403 0.7706
0.30 173.10 0.4948 30.58 60k.17 0.76540 0.7725
0.28 162.17 0.5027 30.63 602.74 0.76698 0.7749
0.26 151.21 0.5090 30.70 601.11 0.76882 0.7775
0.2k4 140.21 0.5135 30.78 599.23 0.77102 0.7807
0.22 129.17 0.5157 30.88 597 .0k 0.77369 0.7849

*¥%0.21439 126.07 0.5158 30.91 536.36 0.77454 0.7862
0.20 118.07 0.5150 31.01 594 .45 0.77698 0.7901
0.18 106.90 0.5106 31.18 591.37 0.78112 0.7966
0.16 95.63 0.5013 31.41 587.62 0.78651 0.8056
0.1k 8L .24 0.4856 31.74 583.03 0.79378 0.8178
0.12 72.66 0.4606 32.25 577.31 0.80407 0.8363
0.11 66.79 0.4433 32.62 573.96 0.81101 0.8490
0.10 60.84 0.4k217 33.11 570.31 0.81975 0.8657
0.09 54.80 0.3946 33.81 566 .48 0.83111 0.8884
0.08 48.65 0.3601 34.84 562 .86 0.84650 0.9214
0.07 42,49 0.3171 36.32 561.11 0.86555 0.967h
0.06 36.14 0

2574 39.56 563.79 0.90119 1.0563

% d =20 km/sec in M = 1/1 + (&/C)?
*¥ overall optimum for the trajectory
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EXHAUST VELOCITY FOR MAXIMUM NET SPACECRAFT MASS
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OPTIMUM GROSS VEHICLE MASS FOR
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MAXIMUM NET SPACECRAFT MASS FOR

FIXED POWERPLANT MASS

ARITHMETIC MEAN
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GROSS VEHICLE MASS TO POWERPLANT MASS RATIO
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MAXIMUM NET SPACECRAFT TO POWERPLANT MASS RATIO
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TERMINAL MASS FRACTION
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VARIATION OF J WITH
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EXHAUST VELOCITY FOR MINIMUM GROSS ELECTRIC SPACECRAFT MASS
ARITHMETIC MEAN NET MASS AND POWERPLANT MASS KNOWN
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SECTION VI

SAMPLE SYSTEMS ANALYSES

In order to demonstrate the application of the procedures and data presented
in the preceding sections, several typical cases of electric propulsion system
analysis are discussed herein. The examples presented are not meant to be exhaustive
but merely to illustrate the methods and to confirm their utility.

Flyby and capture missions to selected planets are used as a basis for the
system calculations. The flight profile that the vehicle executes is basically
a constant-thrust, single-stage operation wherein one propulsion system (complete
with powerplant, thrustors, tanks, structure, etc.) is used to spiral out from an
Earth parking orbit, transfer heliocentrically to the planet and either capture
onto a parking orbit about the planet or fly by. The variations in the vehicle
system are those listed in Section V under "System Variations”. The majority of
the following numerical results were obtained from UARL G-11047h-1, "The Influence
of Power Systems and Iaunch Vehicles on Electrically Propelled Interplanetary Probes”,
June 1968.

A. Operation at Maximum Net Spacecraft Mass Fraction

Consider a 1000-day flyby to Saturn powered by a SNAP-50 type power system with
a mass of 5750 kg and a power output of 300 kw for a specific mass of 19 kg/kw. The
initial parking orbit at Earth is 1.05 radii.

From Tables IV-1 and IV-3, the appropriate parameters for the heliocentric and
planetocentric equations are obtained. Thus for the flyby:

T, = 600 days Typ = 321.034 days
Ju = 30.230 m?/sec’ Myp = 0.887848
mH = -2.06470

and for the Earth departure spiral:

A 2,...3 ) '
J = 13,588 m*/sec m = -0.89256

Equation (ll), Section V, may now be solved iteratively (or by use of the
single-stage optimization program, Section VII), by setting T = 1000 days and omitting
the third term on the right, to obtain Ty = 88L.73 days, the optimum heliocentric
tragvel time. The corresponding heliocentric powered time is 453,20 days. Since
there is no capture phase at Saturn the optimum departure spiral thrusting time



G-110058-28

at Barth is obtained from Eq. (6), Section V, with T, = O; thus T, = 115.27 days.
This means that the total powered time for the entire mission is 115.27 + 453,20 =
568.47 days out of a total 1000 days of travel.

The planetocentric J is 4.0865 mz/sec3 while for the heliocentric phase it is
13.558 nf /sec®, giving a total J of 17.645 m®/sec®. This total J and the total
powered time are used in Eas. (16) to (20), Section TI, with o = 20 kg/kw (instead
of 19 to allow for additional mass)and d = EO/km/sec, to obtain

j_ = 030279 . C = 56.268 km/sec
B, = 0.59607 n =.0.88783
pw = 0.29328 Qy max ° 48.054. kg/kw

These mass fraction values are to be used in evaluating the SNAP-50 type power
system for powering the vehicle under maximum net mass fraction conditions. Because
the power system mass is known the gross vehicle mass is immediately found:

m '
_ w _ 5750 -
Mo = oo ey © 19600 kg,

and the net mass delivered is

m_ = # Mg = 0.303(19600) = 5940 kg.

Note that if this net mass is insufficient for the mission objectives,a possible
approach, if technically feasible, would be to use two power systems. This in
effect doubles the vehicle gross mass and approximately doubles the net mass.

Tf the mission is a capture onto a planetary parking orbit, essentially the
same procedure is followed except that Eq. (11), Section V, will involve the third
term on the right-hand side. Once Ty is found an iteration between Egs. (6) and
(8), Section V, will give Ty and Tg. '

Sample results of a series of calculations for missions to selected planets
are presented in Figs. VI-1 to VI-4. The optimum total J and powered time is given
in Fig. VI-1 as a function of total mission duration for both planetary orbiters and
flybys. A breakdown of the powered times for various mission durations is shown
in Fig. VI-2 for Jupiter missions. Figures VI-3 and VI-4 present variations of the
optimum exhaust velocity and powerplant fraction with powerplant specific mass for
Mercury and Saturn missions.

VI-2
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B. Fixed Powerplant Mass and Output Power

In the preceding analysis'the net mass so computed is a maximum only with
respect to the gross mass assuming that the powerplant is characterized only by its
specific mass. If, in addition, the powerplant mass is known, then the net mass
(not mass fraction) should be maximized by properly choosing the exhaust velocity
and gross mass.

Using the above flyby mission as a model along with the SNAP-50 type power
system, the following calculations demonstrate the approach. For simplicity, the
geometric mean of the average thrust acceleration is employed. Thus Egs. (22) and
(23), Section V, may be solved using the GM mission parameter (assume d = 20 km/sec):

JT 17.645) (568.47
P - 00864 - 108870 - 2.5,
d 20
Thus
£ = |1.572 and C = 31.44 km/sec.
d orY
For ay = 20 kg/kw, 72 = @yJ/2000 = 0.17645 , so that Ea. (23),

Section V, yields

Mo _ J2.165 I + J/2.165 - 594
Mw ooy~ 01764 | 5 4 /7165

whereupon
mg = 5.94(5750) = 34200 kq.

The maximum net mass is found from Eq. (24), Section V,

rnL i
Lt - 5 -1 = 1.402,
w
0.1764 (| + ———
( Jz.ms)

and
m, = 1.402(5750) = 8070 kgq.

Instead of the equations, Figs. V-1, V-h, and V-5 may be used although the accuracy
would be reduced.

C. Operation with given Gross Mass and Power System

Assume that an uprated Saturn IB using a two-thirds length 260-in. solid-
propellant first stage is the launch vehicle which places the electric spacecraft
on a 1.05-radii Earth parking orbit. The approximate payload of this launch vehicle
is about 27,400 kg. If this restriction is combined with the use of the SNAP-50

VI-3
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type power system, then the powerplant fraction is known immediately:
py = —W . 5750
w o my 27400
.The exhaust velocity which maximizes the net mass is found from Eg. (26), Section V,

or by use of Figs. V-6 or V-7. The system trajectory characteristic for the previous
Saturn flyby mission is

* 0.210.

Y2 0.17648
Hw - 0.210

= 0.841.

By Eq. (26), geometric mean, the optimum dimensionless exhaust velocity is C/d = 2,03,
so that the thrustor efficiency is

2
= _ﬂs___ = Q.808%

2.03% +1

Consequently, the terminal mass fraction is
- ' -
Pz ———g =

y
S yTIe 0.805

and the net mass fraction is

Ky = M- pw = 0489 -0.210 = 0.279,

which results in a net mass of

m_ = 0.279 (27400) = 7650 kg.

VI-b
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SECTION VII

DESCRIPTION OF RELATED COMPUTER PROGRAMS

Presented below are brief explanatory descriptions of the computer programs
developed either under NASA contract or as part of UAC's corporate funded research.
Typically, the programs were developed as required for the study of power-limited
systems and employ the notation and nomenclature used throughout this handbook.

A1l were programmed in Fortran V, for use on the UNIVAC 1108 computer. The UARL
deck numbers are given. '

Four programs are discussed: 1) heliocentric, power-limited trajectory
optimization, 2) planetocentric trajectory computation, 3) optimization of single-

-stage electric propulsion systems and 4) direct search routine.

Heliocentric Trajectory Optimization (F615)

The steering program which minimizes J is determined for a constant-power,
constant-thrust heliocentric trajectory. Up to two coast periods are allowed in
the computation and the occurrence and duration of these are optimized as part of
the overall optimization. Flyby and rendezvous trajectory options are availlable
with initial hyperbolic excess speed (zero or nonzero) a specified input; for flybys
the final hyperbolic ekcess speed is a computed quantity resulting from the
minimization of J, while for the rendezvous case it is specified.

System options are: (1) optimize both exhaust velocity, C, (i.e., specific
impulse) and powerplant fraction, wy; (2) optimize C for a fixed ww; (3) optimize
w, for a fixed C; or (4) fix both C and . In all cases the optimization of the
system is performed simultaneously with the trajectory optimization. Either two-
or three-dimensional trajectories are allowed.

The basic input consists of the Julian dates for départure and arrival, the
specification of the planets (as numbers starting from the sun outward with Mercury
as 1), the hyperbolic excess speeds, the powerplant specific mass, &,, and the
efficiency parameter, d, in the thrustor efficiency function (see Section I on the
hypothetical thrustor efficiency function). The output includes the trajectory time
history, exhaust velocity, powerplant fraction, net mass fraction (u ), J, and the
powered times (the times of occurrence and duration).

Planetocentric Trajectory Computation (F628)

The trajectory requirements and propulsion system parameters are computed
between the planetocentric parking orbit and the switch point for a constant-power,
constant low-thrust spiral. The trajectory options include either optimal steering

VII-1
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or tangential thrusting as well as outward or inward spirals. The planet is specified
by & number (as in F615 above) which automatically produces the appropriate
gravitational parameter and planetary radius. The initial (for departure) or final
(for capture) parking orbit radius is input in terms of the planetary radius.

The planetary spiral equations as presented in Section IV (Edelbaum, Breakwell-
Rauch) are solved for a given input thrusting time, T, and a given range of exhaust
velocities, C. Also to be specified is the thrustor efficiency parameter, 4. For
each (T, C) pair, the output consists of the time, exhaust velocity, terminal mass
fraction, W, , the ratio of powerplant fraction to powerplant specific mass et /%
the trajectory characteristic, J, the initial thrust acceleration, and the average
thrust acceleration (arithmetic and geometric means).

Optimization of Single-Stage Electric Propulsion System (F668)

The thrusting times and propulsion system parameters are determined which
maximize the net spacecraft mass fraction of a single-stage electric vehicle. The
single-stage aspect means that only one electric propulsion system (complete with
power supply, thrustors, propellant, tanks, etc.) is used for all of the powered
phases of the mission. For a fixed flight profile the computations are carried
through for a given input total mission duration, T, and a range of powerplant
specific masses, o, . For each pair (T, o) the optimum distribution of powered
time, the consequent minimum J, and all of the propulsion system parameters are
determined.

The major input parameters required are the total mission duration, the range
of powerplant specific mass, the thrustor efficiency parameter, the parking orbit
radius (if necessary) at the departure and arrival planets, and the constants in the
J and powered time equations. These latter constants are m, 3, and T for the
appropriate phases of the overall trajectory and are listed in Table IV-1.

The sequence of computation involves two parts. First, with the given input,
the optimum distribution of powered time is determined (see Section V) which holds
for the fixed total mission duration. The resulting minimum total J and total
powered time remains the same regardless of the powerplant specific mass. Second,
with the minimum total J and powered time, the closed-form equations for the system
parameters (see Section II) are serially solved for each value in the range of
powerplant specific mass. This entire procedure is basic to three flight options:
(1) heliocentric low-thrust transfer with an initial hyperbolic excess speed and
final planetary spiral capture; (2) low-thrust spiral departure, heliocentric
transfer, and planetary flybys; and (3) spiral departure, heliocentric transfer, and
planetary spiral capture.

The output consists of all the related input, the optimum distribution of

powered time and J's, the total powered time and J, the initial and final thrust
acceleration, and the average thrust acceleration (AM and GM). The system parameters

VII-2
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that are output for each ¢, are the maximum net spacecraft mass fraction ., the
terminal mass fraction, p, , the optimum exhaust velocity, C, and corresponding
thrustor efficiency, 1, the optimum powerplant mass fraction, u,, and the maximum
powerplant specific mass that produces zero net spacecraft mass fraction, o, pax-:
This latter quantity is computed to avoid needless computation if the current
input o, is larger than ¢ pax-

Direct Search Techniques (F365)

The basic concept of the direct search procedure is presented in Appendix C.
The purpose here is to discuss the several applications of this technique which were
found useful in the particular study of low-thrust systems. These applications,
in fact, are actually of general utility and the programming of the deck was oriented
in this way.

In brief, the program requires an input function which is to be minimized, and
starting guesses for the variables in the function. In addition, the increments or
step changes in these variables must be given as well as the tolerances in these
variables to which corresponds the accuracy of the final solution. That is, the
tolerances are the ultimate incremental changes in the variables for which one deems
the consequent accuracy in the corresponding solution to be adequate. The output.
includes the input along with the initial value of the function and its variables.
The final value of the function is listed together with its inverse (for maximization
problems) and the corresponding values of the variables.

Aside from the direct extremization of a function of several variables, the
method has been found useful in several variations of the basic approach. The first
example is in curve fitting according to the least-squares criterion. Here it is
desired to fit a curve of the form -

y = f(a, b, r s, x)

to a given set of n data points (xi, yi). The problem is to determine the constants
a, b, r, and s. Usually thezform desired has a and b as linear constants but with
r and s occurring in x*, e'* , or r*; for example,

er 2

y ae’™ + be®’,
The problem is greatly simplified by the direct search procedure since a, b may be
determined by the least-squares criterion as explicit functions of the r, s, and
the data points x;. This approach is advantageous since a and b are not usually
known but r and s may be estimated from the form of the curve. The function to be
used in this case for the program is the sum of the squares of the residuals,

VII-3
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which is to be minimized. The parameters r and s can usually be guessed from the
shape of the curve so that at each trial value of r and s, a and b are computed and
all are substituted into f. The procedure then actually minimizes R®? which is a
function of the "variables" r and s.

The solution of unwieldy nonlinear equations of several variables is handled
rather well by the deck. If there are n equations in n unknowns

filx,, ..., %xq) =0 i T 0,...,n

and if the starting values for each of the x; are reasonably well known, then the
solution may be obtained by requiring the following function to be minimized:

F(X,, e xn) = Z [fi(xl, e e, Xn)]z

i
At the solution, F should be zero to the accuracy implied by the tolerance on each
increment.

In the case of minimizing a function subject to certain constraints on the
variables, the "penalty function" approach of Appendix C could be used. However,
because of the difficulty in choosing the K's in the penalty function (at the
present time) and the fact that most of the problems encountered have reasonably
tractable algebraic expressions for the constraints, it has been found advantageous
to use the following procedure. If the function to be minimized is

y = f(x;) i = 4,...,nN
subject to the m constraints

gj(xi)=o j =1l,..., m<n

then each of the constraint equations are solved for a variable as a function of
the other variables (a different variable for each constraint equation). The
remaining variables not solved for in the "constraint" set are then the independent
variables preferably those that have known starting values. Thus the problem
becomes a straightforward one of minimizing f(x,) where some of the x, are given
by the equations from the constraint set.

Tt sometimes occurs that a minimization problem could be treated semi-analytically
by first setting the partial derivatives of each independent variable equal to zero
and attempting to solve the resulting (usually nonlinear and cumbersome) set of
equations by the approach discussed previously. This is a reasonable procedure
provided no mistakes are made in obtaining the partial derivatives and in the
subsequent algebraic manipulations. It is advantageous to employ the search
procedure, instead, to avoid these errors unless there is a compelling reason for
investigating the equations describing the minimum conditions.
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As noted in Appendix C, a final solution as obtained by the direct search
procedure ideally occurs at or near the minimum solution. However because no
sufficiendy conditions are available for the success of the method nor, indeed,
for the uniqueness of the solution obtained, it is always necessary to check the
‘answer,at least for reasonableness, or recompute certain cases by alternative means.
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SECTION VIII

APPENDICES

The following appendices discuss in detail several topics related to low-
thrust systems analysis. They are intended to present additional relevant
information and some insight, although the information given is not of itself
necessary to apply the results of the previous sections. Appendix A develops the
low-thrust planetocentric equations for departure or capture spirals and planetary
orbit-to-orbit changes. The matching of planetocentric and heliocentric low-thrust
hyperbolic trajectories is discussed in Appendix B. The basic notions of the very
useful direct search procedure is given in Appendix C.

VIII-1
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APPENDIX A

Planetocentric Low-Thrust Trajectories

Melbourne's Method*

For a vehicle being accelerated tangentially to its flight path about a planet,
the rate of change of the total orbital energy per unit mass of the vehicle, U, is

du

ar = v, ' (A-1)

where a and v are the thrust acceleration and velocity, respectively, of the vehicle.
The total orbital energy of an elliptical orbit is given by
He
T ——— A-2

u 5 (a-2)
where yp is the planet's gravitational parameter and r is the semimajor axis of the
osculating ellipse. Combining Eqs. (A-1) and (A-2), the growth rate r, of the
osculating ellipse is given by

2rlav |
Hp ‘ (A'3)

Since the vehicle is experiencing & thrust acceleration which is very much lower
than the local gravity, the orbit of the vehicle does not differ from a circular
orbit so that the vehicle velocity is essentially the orbital velocity, v =(pP/rPJ?
Substituting this expression into Eq. (A-3) yields

3/2
ar Gy

) PI;Z(I_ 9_%t_) ' | | (A-k)

where the thrust acceleration, a, is given by

0 = — o
L= St
o
for an initial thrust acceleration, a,, and constant exhaust velocity, C. Integrating
Eq. (A-4) from an initial orbit, r,, and zero time to some final orbit, r,, and

terminal time, t,, there results

% See Ref. IV-1
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00f| Vc o <_ro__>|/2 |

¢ T T e T T n (a-5)

_ Given the exhaust velocity, initial thrust acceleration, and the initial and
final orbits, the time required to transfer between orbits may be found. For the
routine calculation of performance in the study of orbit-to-orbit transfers about

a given planet, it is convenient to compute J at varying orbits and times. From

the mass flow considerations and a given time, T, it can be seen that the exponential
term of Eq. (A-5) is the terminal mass fraction, u,. Using the normalizing
gquantities characteristic of the planet, w, and radius, Rp, py may be written

vHp/Rp

= | |
Fio= expl——=F¢ <p|/z - PI/2> , (A-6)
0 |

where p is the nondimensional initial (final) radius referenced to Rp. The trajectory
requirement may be computed by

2 2
ce (=M
i sy ()

which was obtained by combining the rocket equation (see Eq. (1), Section II) and
Eq. (A-5). It should be noted that from the dynamics of the problem the terminal
mass fraction is fixed immediately by Eq. (A-6) for tangential steering. Con-
sequently, the trajectory requirement, represented by J, i1s actually a secondary
quantity which assumes its usefulness here only after it has been shown that it is
relatively independent of the propulsion parameters for a given trajectory, (see
Table IV-4 and corresponding text).

For the problem of a spiral to escape conditions, the corresponding time is
found from Eq. (A-5) by setting r,/r, = 0, i.e., the terminal radius goes to infinity.
The escape time becomes 1/a, Ve /T, which is high compared to exact numerical
solutions. An empirical correction factor, I', is employed based on the numerical
data and is derived as a function of the initial thrust acceleration. In terms of
specific parameters, the escape time is

c? r (' _ e‘Vc/C)
7

T - -
2N Hw/Qyw

(4-8)
where ' is shown in Fig. IV-I and given by Eq. IV-2.

Edelbaum and Breakwell-Rauch Method

The planetocentric motion of a vehicle thrusting along a spiral about a planet
can be described by its radial, ¥, and tangential accelerations, V.
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v iz K L B0
r r r re ™m v
(A-9)
. £ _ P
v - m r2 v ]
where the mass rate of change is
. F
m = < (A-10)

A nondimensional position, X, velocity, Y, exhaust velocity, Z, and time, T, may
be defined according to

1/2 -1/4
< () (e )
e r zZ = me Hp C
(A-11)
-i/4 3 1/4
Y = ('—E_/"'> v T = ——-———-—(Flms) t
meg 7P He

where all of the parameters are referenced to the mass of the vehicle at escape, mE.

Substituting these parameters into Eq. (A-9) yields

X = YZ-—*2 -— ! +mE_x_
X X x 2 m Yy
(A-12)
. m v
Voo - :
Xy
The mass ratio mE/m may be eliminated by introducing the dimensionless
characteristic exhaust velocity, W,
m
3
W = ZIF\T' , (A-13)

which is interpreted as the characteristic velocity develqped by the propulsion
system between any point where the mass of the vehicle is m and the escape point.
By differentiating Eq. (A-13) with respect to T and using Eq. (A-10), the time rate
of change of W may be found.

. me w/Z

W= —= = e . (A-14)

A-3
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Tt is desirable to solve the differential equations of motion in terms of W
since this represents the requirements of the trajectory on the vehicle. Thus the
independent variable in Eq. (A-12) is changed from T to W using Egq. (A-1L).

2w/z ' 2 H2
e (x+1___x_) YR oot
4 Y X X xz !
, (A-15)
Y o= | - :
) X"y

where a prime indicates differentiation with respect to W. These equations are
completely general and any solution will represent a family of solutions of the
initial Eqs. (A-9) corresponding to different values of thrust-to-mass ratio,
exhaust velocity, parking orbit, and gravitational parameters.

The fact that the vehicle essentially maintains circular orbit conditions
throughout most of its flight can be determined by noting that with thrust-to-mass
ratios of about 10'3, the value of X and its derivatives becomes small and the
first of Eqs. (A-15) becomes Y° = X *, or in dimensional terms, V = /ﬁ:7§j'which is
the circular velocity at radius r. Consequently, the spiral trajectory is quasi-
circular as long as the local thrust acceleration is very small. Further, any
spiral trajectory will automatically pass through the initial conditions of other
low-thrust trajectories until the thrust acceleration becomes large and the orbit
ceases to be quasi-circular. A solution of Eq. (A-15) for a given Z will therefore
represent all correspoﬁding low-thrust trajectories. Numerical solutions were
obtained and are displayed in Figs. A-1, A-2, and A-3. Positive and negative
values of 7 correspond to departure and arrival trajectories, respectively; a value
of infinity represents constant thrust acceleration (equivalently, infinite specific
impulse or constant vehicle mass).

Of particular interest is Fig. A-2, wherein the slope of the curves for high
circular velocities (left branch) approaches -1 while for high hyperbolie velocities
(right branch) it approaches +1. The appropriate equations for each of these
asymptotes are given in Fig. A-2, neglecting the small effect of Z. As is evident
from Fig. A-2, the (parametric) planetocentric velocity of a thrusting vehiecle
approaches an asymptotic form as the planet's gravitational field becomes negligible.
If this hyperbolic asymptote 1s extrapolated back to zero parametric velocity, then
the requirements on the vehicle may be determined such that the vehicle thrusts only
to this zero parametric velocity point and, by definition, this same vehicle commences
its heliocentric journey with the massless planet's heliocentriec position and velocity.
In application, then, one would compute the planetocentric spiral trajectory require-
ments to the defined zero velocity point, then switch the calculations to the helio-
centric frame ignoring the mass of the planet but taking on, as initial conditioms,
the point planet's heliocentric position and velocity. This is & distinet advantage
over the Melbourne procedure since the impliecit assumption of attaining infinite
radius in finite time need not be made.
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Extrapolating the hyperbolic asymptote back to zero velocity, the characteristic
velocity is W = -0.941. On the circular asymptote the corresponding parametric
velocity is Y = 1.746, the switch point of interest. Now the curves are referenced
to escape velocity so that any point on the circular asymptote yields the
characteristic velocity required to spiral from some initial circular orbit to
escape. The requirements from circular to escape and from switch point (subscript l)
to escape are: '

circular to escape Yeg = ~—Wgg t+ 0.808

"

switch to escape I -W, + 0944

lE

The difference between these two equations therefore gives the requirements from
circular conditions to the switch point.

Yee — Yie = ~Weg + W

Rewriting into dimensional quantities, and setting Y, = 1.746, there results

-1/4 1/4 m m
F F 3 E
—— -— = — — PR + et
<mE #_P> Ve 1.746 <mE Fp) ( In Mc In ™ > ,
which may be simplified to
: 1/4
m m m
c _ F c [

The time spent between the switch point and escape is very small in relation to
the time of the entire trajectory so that ml/mE is practically unity. Introducing
. the circular velocity equation into Eq. (A-16), setting m,/m; = 1, and identifying
the terminal mass fraction, w = ml/mc, the spiral trajectory requirement may be
written as

| /4
Ye ||~ 1746 F/Me !

b= expy—¢ (-t ‘ 74 (A-17)
C i 7RG 7 )

This is identical to Eq. (IV-6) except for the constant. Because of the semi-
graphical approach taken above, the constant of 1.746 is not precisely that obtained
from & more exact approach which yields 1.757; both of these values represent the
case of tangential steering. The first value was obtained by Edelbaum (Ref. A-1)
in this analysis while the second was computed by Melbourne in a subsequent study
(Ref. A-2).

In the Breakwell-Rauch approach (Ref. A-3), a systematic theory of a low-thrust
spiral transferring into heliocentric space was developed based on the idea

35 i
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illustrated in Fig. A-4. At some time, t,, the vehicle is assumed to start from

rest at the offset point and to be thrusting in the direction of the asymptote to

the spiral trajectory. The heliocentric trajectory is then calculated from the
offset point at time t, with the gravity field of the planet assumed nonexistent. For
‘an approach spiral, the effect of the planet would be to place the vehicle on the
spiral at the point shown at time t,, rather than to reach the offset point at the
same time. Thus t, is the point at which the computation of vehicle performance

for the planetocentric portion of the flight ceases, for departure, or starts, for
capture.

It is this point that is sought by the analytical astrodynamic analysis of
Breakwell and Rauch so as to make the calculation of performance agree with the
actual trajectory profile. The approach taken was to approximate the three-body
problem using the method of matched asymptotic expansions. This is a systematic
perturbation procedure which can be carried out to various orders of approximation.
The basic idea is that the trajectory close to the planet is expanded in powers of a
small parameter, such as the mass ratic of the planet to the sun. Another expansion
is made of the heliocentric trajectory in the vicinity of the planet, carried out to
the same order of approximation in powers of the same parameter. These two asymptotic
expansions are then matched in a suitable region near the planet such that both
solutions will give the same answer in this intermediate or "boundary layer" region.
In this way, a composite solution is obtained for the whole problem, close to the
planet, in the boundary layer region, and far from the planet.

The foregoing analysis reduces to a requirement on the characteristic velocity
needed to reach the switch point, t;:

i’/4

av F
Vo - | - 1.84 (-m—' #p) , (A-18)

which can be easily rewritten into Eq. (A-17). The constant, 1.84, is based on
optimal steering.

Consequently, except for the constant, the two approaches to the planetocentric-
heliocentric, low-thrust spiral trajectory problem yield identical results. On the
one hand, the velocity intercept approach must assume that ml/mE ~ 1, while the
analytical technique requires that the mass ratio of the planet to the sun be
negligible to powers of % or more, which is also a condition on the first approach.
In distinction to both of the foregoing is the early Melbourne method employing
a correction factor on a strictly planetocentric trajectory.

Comparison of Methods

Table A-1 compares the two methods for outward spirals from Mercury commencing
at a parking orbit radius of 1.05 radii. The hypothetical form of the thrustor

A-6
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efficiency function was used with d = 20 km/sec. The data shown in the table are
typical examples and, in general, the results of the comparison hold for all
similarly computed planetary spirals.

The Melbourne approach using the planet-centered spirals without asymptotic
matching produces higher J's than the Edelbaum equations. This column is labeled
with the constant 0.76382 which appears in the correction factor, Eq.(IV-Q). The
similarity between this equation and Eq. (IV-6), the Edelbaum result, suggests that
the concept of asymptotic matching may be introduced into Melbourne's result
simply by changing the constant to 1.76382. This result is shown in the second
column. The improvement in the data is shown by comparing with the third column,
which is from Edelbaum's method. Although the J's are not in exact agreement, the
important point is that the terminal mass fractions, the actual indiecators of
accuracy, differ only in the third decimal place and are in exact agreement if
round-off is used in the fourth place.

For an overall comparison, the results from the optimum steering program are
indicated in the last column. As expected, the J's are the lowest computed. However
the difference between optimal and tangential steering is essentially negligible in
terms of the terminal mass fractions. For practical purposes this conclusion holds
even for the massive planets and very long thrusting times (up to 240 days).

A-T
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TABLE A-1

COMPARISON OF PLANETOCENTRIC SPIRAL EQUATIONS

Mercury Departure Spirals
Rp = 1.05 4 = 20 km/sec

Melbourne; Tangential Steering Edelbaum (Breakwell-Rauch)
0.76382 1.76382 ' Tangential, 1.757  Optimal, 1.840
Thrusting |
Time C
(Days) (km/sec) ™ J, m°/sec” Ba J, m® /sec® ™ J, m /sec® ™y J, m®/sec®
15 40 0.9384 4.998 0.9489 3.398 0.9477 3.562 0.9485 3.453
80 0.968k4 5.014 0.9740 3.422 0.9735 3.569 0.9739 3.460
120 0.9790 5.019 0.9826  3.430 0.9822 3.572 0.9825 3.463
160 0.9842 5.022 0.9869 3.434 0.9866 3.573 0.9868 3.464
200 0.9873 5.02k4 0.9895 3.436 0.9893 3.57h 0.9895 3.465
30 4o 0.9371  2.610 0.9461 1.894 0.9450 1.975 0.9457 1.925
' 80 0.9680 2.617 0.9726 1.906 0.9721 1.978 0.9724 1.929
120 0.9785 2.620 0.9816 1.910 0.9813 1.980 0.9615 1.930
160 0.9838 2.621 0.9862 1.912 0.9859 1.980 0.9861 1.930
200 0.9871 2.622 0.9889 1.913 0.9887 1.981 0.9889 1.931
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APPENDIX B

Iow-Thrust Hyperbolie Trajectories

As mentioned in Section IV, the corrections to the low-thrust trajectory due
to initial'hyperbolic energy and subsequent thrusting within the planet's sphere
of influence may be determined by using the concept of asymptotic velacity intercept.
That is, as the vehicle recedes from the planet (with an initial hyperbolic velocity
due to high thrust), the planetocentric velocity approaches an asymptotiec form as
the planet's gravitational field diminishes. This asymptote is extrapolated back
to zero planetocentric velocity to identify an intercept time, t,. By definition,
t, is the time at which the velocity profile assumes the foregoing asymptotic form.
Consequently t, is the time on the overall trajectory at which the performance cal-
culations switch to the heliocentric frame, thereby allowing the interplanetary
portion of the trajectory to be computed using the massless point planet's helio-
centric position and velocity (along with the assumed initial hyperbolic velocity
due to high thrust). This general approach is identical to that used in the notion
of matching the planetocentric spiral with the heliocentric trajectory as described
in Appendix A.

Determination of Intercept Time

The following analysis due to Edelbaum (Ref. B-1) is based on constant thrust
acceleration and purely radial motion. Because the vehicle is given an initial
parabolic or hyperbolic energy condition, the time spent in the vicinity of the
planet is very small and the vehicle quickly assumes radial motion, Fig. B-1l. As
. in Appendix A, the equations are treated in nondimensional' form using the following
normalized quantities:

1/2 -1/74

- 3/4
- F Fup F -1/4
X = r(MF'P) ’ Y = V( m , T = t(—M—) TP (B-l)
Thus the normalized radial acceleration is
X =Y = | - ..l_a. . (B-2)
. X
Multiplying through by X yields
ce . X 4
XX = X =<7 . (3-3)

which can be integrated from initial conditions (subscript o) to arbitrary final
conditions

-
N

. 2
| Xo | B-4)
+ — - —— o —
= X x Xo + 3 XG5 (
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The initial energy is

. 2
Un = X: ] - Y”o
o - 2 - XO = 2 : (B"5)

where Yo, is the initial hyperbolic excess speed due to high thrust.

Notice that as the radial distance increases, the retarding acceleration of the
gravitational field decreases until the planetocentric velocity becomes a minimum.
The radius at which minimum velocity occurs may be found by setting Eq. (B—2) equal
to zero:

t/2

) ()

Substituting for U, in Eq. (B-4) and setting X = 1 and X, = O (the trajectory is
assumed to start at the origin), the minimum velocity is obtained.

172
(4 + 2Ug)

XMiN
172 (B-7)

2 F 172
or VN G V°°o + 4(-nTP»p)

An example of a typical velocity profile having an initial thrust acceleration of
107* g and initial parabolic energy is illustrated in Fig. B-2. The path for
impulsive departure and subsequent ballistic coast is shown; this is the profile
resulting from an initial parabolic energy condition and no electric propulsion.
The velocity asymptote extrapolated back to zero parametric velocity yields a

- parametric intercept time of about -1.2.

Continuing the analysis, the differential equation (B-4) can be solved for
the differential of parametric time to yield

dx
J2 dr = ,
Xe | | (8-8)
X =Xo* 5= - %t ¥

Substituting Eq. (B-5), the initial energy, and integrating from X = 0 and T = O to
arbitrary distance X, there results

X

X V2
| x d
T = —= . (B-9)
2 [JX2+ on+| .

which is an elliptic integral.

B-2
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The solution of Eq. (B-9) depends on the initial energy and results in two
cases of interest.

Case 1: -2 < Uys2

The integral may be rewritten into tabular form by the following procedure. By
adding and subtracting 2X in the denominator, and factoring, the integrand becomes

172
1/2
X _ X !
| + UgX + X2 1 +x% | - 3% __ (J__EQ_)
(|+x)2 e 4
Using the definition
S|nz¢ = ax 5 -
(1 + X)
then
| =X | -
cos¢ = or X = _.._ﬂs.;?.,
I+ X | + cos¢
172
and dx = 2 | — cos¢ / p
o t+cos¢ \I|+ cose -
) V)
Thus by letting the modulus k% = -é- - -7“1 . o<k,
Eq. (B-9) becomes s
| -—
JET - < cos¢> de —
I + cosd/ (1 - kZsin?¢) (B-10)
(]
In terms of elliptic functions, this becomes
= N (B-10)
- nu -

I + cnu
o}

where
cnu = cos¢,

dp = /1 - kzsin2¢ du.
Equation (B-lO) is now in the form 239.03 tabulated in Ref. B-2. Simplifying into
nondimensional notation, there results

2VX

I + X

V2T = Fle,k) — 2E(d,K) + (1 +UgX +x2)'/2. (B-11)

B-3
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Now the concept of asymptotic matching of the planetocentric and heliocentric
trajectories requires that the time of Eq. (B-11) be evaluated as the radial position
goes to infinity. Thus as X becomes very large in relation to unity, the elliptic
integrals F and E (first and second kind, respectively) become complete and the
‘third term of Eq. (B-11) reduces to /ZX. The corresponding velocity at infinity may
be found by introducing X >> 1 in Eq. (B-4). Thus

The time as a function of parametric asymptotic velocity is therefore

T = /2 Kk = 2V2Z E(K) + Yoo ; =2 S UgS 2. (B-12)
Cage 2: Ug 2 2

The denominator of (B-9) may be written as the product of two factors by adding
and subtracting U? /4 so that

X
/2
JZT o= [ X
(x-bix-o | 9%
0

where
. 2 2
b = - |2 - [/l _, ¢ = —fY% , [fY _,
2 4 ' 2 ]

This is in the proper form as given by 237.03, Ref. (B-2). In terms of elliptic
- functions it is
u

J2T = —-—2(,_.._2) tn2udu,

o]
(B-13)
2
JET - x(x-c)]"
V2T s 2| ST -2J/-¢ E(¢,K),

where

and

B-4
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For asymptotic matching X >> 1 and E(¢, K) becomes the complete elliptic
integral E(K). Hence Eq. (B-13) gives the time in terms of parametric asymptotic

veloei
city 12

T = Yy — 2<Uo+,/ug-4> E(k), Up22, (B-1k)

where, as before, Yo ~ /2X.

Equations (B-12) and (B-14) are the equations of the asymptotes with initial
energy (actually initial velocity) as a parameter. The intercept time is obtained
by extending the asymptote back to zero velocity , i.e., Yo = O. For example, if
the initial energy were zero (parabolic conditions), then Eq. (B-12) would yield
T, = -1.19814. Because the intercept time is solely a function of parametric energy,
a new function G(U,) may be defined according to Ty = G(U,) so that the intercept
time may be rewritten in dimensional form using the definition for T, Eq. (B-1).

3.1/4
t (F/mg)
I Hp Gluy), (B-15)
where )
. - cf
‘ Yoo, V°Eo F /2 | (F/mo)
Yo = 27 7 2 (r’n_of""> T To \ He ’ - (B-16)
and .
Glug) = V2 K(k) — 24/2 E(k), =-25Ups2
/2
GlUg) = - [2 <uo + /Ug_q)] E(k), Ug 22. (B-17)

The function G(U,) is plotted in Fig. B-3 for various values of initial energy.

As is usually the case in performance analysis, the computation of intercept
time is only a small part of the overall analysis. Since the programming of Egs.
(B-12) and (B-14), with Yo = O, involves the evaluation of the elliptic integrals
at different values of k®, it is convenient to approximate Fig. (B-3) by a curve
fit. Using the form

Glug) = OUB + bug, . (B-18)

a least-squares it was employed on the data of Fig. B-3. The results are

0.508984

o
'

-1.86443 r

o
n

1.86431 S -0.19375I

B-5
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Since a and b differ (except for sign) in the fifth place, Eq. (B-18) may be further
simplified to -
r s-r
G(UQ) = QUg (l-Uo )

‘Equation (B-18) is highly accurate, having an error of not more than one unit in the
fifth significant figure.

Velocity and Position Offsets

As can be seen from Fig. B-3, for all initial conditions greater than or equal
to zero, the intercept time is negative, which means that the intercept time, t,,
must be subtracted from the heliocentric portion of the trajectory. This alters the
boundary conditions on the heliocentric trajectory, particularly the position of the
point mass planet in space.

A more convenient procedure, which leaves the heliocentric boundary conditions
unaffected, would be to use the asymptotic velocity corresponding to T = O in
Egs. (B-12) and (B-14%). This velocity is termed the velocity offset, 8V, and is
found from

v E v, = -G Uy, (B-.l9)

where G(U, ) is defined by Egq. (B-17). In dimensional form this equation becomes
Eq. (IV-14) or (IV-16) of Section IV.

The velocity along the flight path as a function of position is given by

‘2
X - I -
5 * X+ 3+, (B-4)

The position displacement, or offset, is found by requiring X >> 1 so that kz - ki,
the vehicle's velocity at infinity. Thus

.2
o L Y,
2 B 2 (B-20)
Solving for X, the position offset,
.2 2
_ xoo‘Yooo :
X = —= ) (B-21)

2

This may be rewritten into dimensional form by using Eqs. (B-1) and (B-19) and
defining SR as the position offset, :

2 2
SR = (._B.Y_)____Yﬁ (B-22)
Z(F/mo)

which is Eq. (IV-18).

B-6
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Correction for Finite Periapsis Radius

The foregoing analysis was based on an approximation that the initial periapsis
radius was zero; that is, the trajectory was assumed to start at the center of the
‘planet. The following analysis (Ref. B-3) corrects for this and shows the effect
of starting at a finite periapsis radius. The vehicle is assumed to be injected by
the high-thrust rocket onto the periapsis of a hyperbolic orbit. At this point,
low-thrust propulsion is started. The analysis to follow shows that the effect of
the finite periapsis radius is of order w, the ratio of the mass of the planet to
that of the sun. This is a higher-order effect and may be neglected for purposes of
performance analysis, along with the other higher-order terms (also of order'u) which
were neglected in the analysis given above.

The effect of the initial periapsis radius is analyzed by considering the
difference in a linear analysis of having an initial eccentricity of unity or an
initial eccentricity corresponding to the actual trajectory which starts at the
parking orbit radius. The acceleration due to thrust is assumed to be constant in
magnitude and to be directed tangentially. Under this perturbation, the linear
theory predicts that the increase in energy of the orbit will be proportional to
the arc length of the hyperbola. In the following equations, the unit of distance
is the AU and the unit of time is the time required for Earth to traverse one radian
in its orbit. Thus the gravitational parsmeter of the sun is unity and the .
gravitational parameter of the planet, pp, is given in terms of this unit solar
gravitational parameter.

The radial position, r, along the hyperbola is given by

r = alecoshH - 1) | (B-23)
and the time is
t = —#5'3 (e sinhH - H) - (B-2k)
[ -]
The arc length is
. e -1 .
s = ae % F(¢,k) + e sing cosh H (B-25)

where the numerical eccentricity of the hyperbola is

2
Fp Voo

Hp

B-T7
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and the modulus for the elliptic integrals is

2 . 1 . ) ] e sinhH
kK= < with sing = —
Je? + e2sinhH -1

The semimajor axis, a, is taken to be positive and H is the hyperbolic eccentric
anomaly. F and E are the incomplete elliptic integrals of the first and second kind,
respectively.

What is of interest is the change in time and the change in arc length (due
to the change in periapsis radius) as the vehicle gets far from the origin.
Accordingly, the limits of Egs. (B-24) and (B-25) as given by Egs. (B-26) and (B-27)
are used.

For H >> 1:
Hp r + a r+a
t =~ - In (2 ) + In
Vo3 a a e (B-26)
S & r + | + 32__1 K (l_ - 1 | S
a e e) ~eE\T (-27)

The effect of the finite planetary radius will be assumed to be reflected in a
change in the initial hyperbolic excess velocity of the trajectory. In order to

calculate this, consider the difference in hyperbolic excess velocity between a
trajectory with unit eccentricity and the actual trajectory. Equation (B-28)
considers the changes due to both the time required to get to a given radius and
~ the difference in arc length traveled in getting to that same radius.

BVeo = -,::,- \t (s = Sg=1) ~ % (t = te:) (B-28)

If the values obtained from Egs. (B-26) and (B-27) are substituted into
Eq. (B-28), the result is Eq. (B-29) which gives an approximate indication of the
perturbation in initial hyperbolic excess velocity due to a finite periapsis radius.
It should be noted that this perturbation is of order W and will generally be small
enough to be neglected for performance calculations.

SV = —fo%‘r—i,- I —Ine + eze-l K(%) - eg(_"!.) | (B-29)

B-8
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APPENDIX C

Systematic Search Technique
The original UARL program for finding the minimum (or maximum) of an n-variable
function was prepared under the direction of D. Fridshal (Ref. C-1). Much of the
basic theory behind the systematic search method is contained in Ref. C-1. This
technique is based on a development by Hooke and Jeeves (Ref. C-2) termed "direct

search". According to both Refs. C-1 and C-2, the direct search method has been
found to be attractive for the following reasons:

1. No techniques of classical analysis are necessarily involved,
2. repeated arithmetic operations are used with simple logic,

3. an approximate solution, improving continuously, is provided at all
phases of the computation, and

4, other classes of problems are readily attacked.

Direct Search

The basic theory of the method is briefly summarized here for the sake of
completeness. For an exhaustive treatment of the subject as well as a formalized
definition of direct search the reader is referred to Ref. C-2.

The problem is to minimize a function of n variables, f(X;, Xz, ..., X, ). A
solution vector or "point" P; consists of n components (x,, Xz, 5 e xni) which
when compared to some other solution Py is better if and only if

f(xli: Xags 0 X“i) < f(xlj) dey ) an)~

A base point, B,, is determined from initial guesses of the values for the n
components or coordinates. Using the strategy discussed below, an adjacent point,
P,, is generated and compared to the base point, B,. If P, is an improved solution
compared to B,, then P, becomes the new base point B, and the "move" which resulted
in P, is termed a success. If P, is not better than B,, then the move was a failure.
A success or failure in a move or step is judged solely by the above inequality.
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The next trial point, Pr; is determined relative to B, by the present state
S:. The states make up part of the logic, since they determine directions for moves
in the solution space. They provide new directions if recent moves falil, and they
decide when no further progress can be made.

The search procedure employs two types of moves - exploratory and pattern
moves. Explorations in the n coordinates are made to determine how the function
f(x, ceny X, ) behaves in the neighborhood of the past point. The pattern move
utilizes the behavioral information to provide a substantial reduction of the
function.

The exploratory moves are made one coordinate at a time. Thus, x; is varied

by an increment +b while Xz, ..., X, remain fixed. This new vector (x + O,

Xp, ..., Xz) is tested against the base point (x, ..., X, ). If it is better,

the new coordinate value is retained. If it is not, x 1is varied by -0 while

Xz, ..., X, remains fixed. If this vector yields a smaller f, x; - & is retained.

If both + and - variations do not reduce f, then the original value, X, is
retained.

The entire procedure is repeated for the remaining coordinates xs through
X,. At the completion of the procedure, each coordinate will have associated
with it a direction and a slightly reduced value for f if at least one variation
succeeded. The set of ‘directions is referred to as a pattern. Hence the pattern
move consists of changing all the coordinates simultaneously in the indicated
directions or patterns as obtained from the exploratory moves.

The new values of the coordinates after the pattern move form the new base
point from which exploratory moves may be made, as discussed above. Alternatively,
the same pattern may be used repeatedly with a test for improvement in the value
of the function made after each move. Each success updates the base point. In
this approach, if a pattern move fails, exploratory moves are then made from the
current base point. The present version of the computer program uses this
approach. The justification for this approach is based on the fact that, for
problems so far encountered, shorter machine times are realized.

If a combination pattern and exploratory move fails and if exploratory moves
from the last base point fail, a decrease in the variation, or step size, 6, is
required. The criterion for a final solution is when & is reduced below some input
tolerance, €. Ideally, this final solution occurs when the function is at a
minimum or near-minimum solution. However, the fact that no further progress can
be made beyond the tolerance, €, does not always indicate that a solution has been
found. As is characteristic of direct search methods, no sufficiency conditions
are available for the success of the method. Thus, Hooke and Jeeves recommend the
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search technique for the following types of problems:
1. Problems for which the answers may be tested, and

2. problems consisting of many separate cases, a few of which can be
checked by alternative means.

If (1) and (2) are not feasible, partial checks may be obtained by using
the method several times, with different starting solutions.

An overall view of the systematic search technique may be obtained from
Figs. C-1, C-2, and C-3 which present the basic logic in flow chart form.

Functions Subject to Constraints

The concept of penalty functions arises from approximating a minimum problem
subject to constraints by another problem which does not involve constraints. Thus,
if the problem is to minimize f(x,, ..., X ) subject to the m constraints

g3=g3(x1) ceey Xn)) J=1, ..., m<n,

one forms the penalty function P:

m
=1

where k; are positive constants. The summation in this function represents the
"benalty" terms which will have the effect of reducing the constraint "violations"
to zero Since these are non-negative terms. As the k; becomes large positively,
the solution of this minimum problem will approach the minimum solution of the
original problem with constraints. This concept is rigorously analyzed in

Ref. C-3. The rate at which the ky 1s increased positively is important, since
too fast an increase will halt the procedure, while too slow an increase will
prolong the convergence process.

c-3
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EXPLORATORY MOVES
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PATTERN MOVE

ENTER

SAVE THE DIRECTIONS OBTAINED
FROM THE LAST SET OF EXPLORATORY
MOVES. THAT IS, SAVE THE LAST
PATTERN.

CALL PREVIOUS BASE POINT
(0)y (0) (0)
(x(n, xt2), . . . ,X(N))

AND

CALL PRESENT BASE POINT
) (n (1
(x(, x(2), . .. ,X(N)

MAKE THE FOLLOWING SUBTRACTIONS
I m o | | 1) (0) | l m (0)

X1 - x{i) x(2) — x(2) X(N) — X(N)
AND CALL THEM PAT(), PAT(2), . . ., PATIN)
RESPECTIVELY.

|
MOVE ALL THE COORDINATES X(I),1 =1, N

BY AN AMOUNT PAT(I), I =1, N IN THE

DIRECTIONS INDICATED BY THE LAST
EXPLORATORY MOVES.

EXIT



