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FRETTING  WEAR IN TITANIUM, MONEL-400, AND COBALT - 25-PERCENT 

MOLYBDENUM USING SCANNING ELECTRON MICROSCOPY 

by  Robert C. B i l l  

Lewis  Research  Center  and 

U. S. Army  A i r   Mob i l i t y  R&D Laboratory 

SUMMARY 

The  progressive  development of fretting  damage with increasing  number of fretting 
cycles  was  measured on 99.9-percent  copper,  titanium, Monel-400, and  cobalt - 25- 
percent molybdenum specimens.  Also,  damage  measurements  were  made on several 
high-purity  elemental  metals after 6x10 fretting  cycles.  All tests were  run  in air at 
room  temperature,  except  for a series of tests run on a titanium  specimen  in a nitrogen 
(N2) atmosphere. The fretting  oscillations  were held to  a constant  amplitude  (peak to  
peak) of 7.  5X10-6 meter (0.003 in. ) and a frequency of 55.8*0.2 hertz. The contact 
force  between  the  mating  specimens  was  1.47  newtons (150  g). 
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In addition to  the  progressive  damage  measurements,  scanning  electron  microscopy 
photographs  were  made at various  stages of fretting  in  titanium,  Monel-400,  and  cobalt - 
25-percent  molybdenum. These observations  were  correlated with the damage  measure- 
ments,  enabling a sequence of mechanisms  responsible  for  the  fretting  damage  in  these 
materials  to be identified. Up to at least 100 cycles,  an  adhesion - junction  growth - 
fracture  mechanism  was  most  significant.  After 1000 cycles, the presence of spall-like 
surface  pits  suggested the operation of a subsurface  fatigue  mechanism.  Between  10 000 
and 100 000 cycles, the accumulation of oxidized  debris  suggested that the  fretting  dam- 
age  was  being  caused  by a combination of oxidation  and  abrasion by oxidized  debris  par- 
ticles.  This  hypothesis  was  further  supported by experiments  conducted on a titanium 
specimen  in a N2 atmosphere. The rate of fretting  damage  was  observed  to  decrease 
steadily  in N2, whereas the specimen  tested  in air showed  an  increase  in  the rate of 
damage after about  3x10  cycles. 4 

The  elemental  metals  tested  were  aluminum,  titanium,  iron,  copper,  nickel,  beryl- 
lium,  columbium,  tungsten,  molybdenum,  and lead. These  materials  generally  show 
that  the  fretting  damage  produced by  6x10 cycles  increases  with  the  ratio of oxide  hard- 
ness. It is proposed  that  this  ratio  provides a measure of the  effectiveness of the oxi- 
dized  debris as an  abrasive. 
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INTRODUCTION 

Fretting is a particular  type of wear  process  usually  characterized by a low- 
amplitude  vibratory  sliding  motion  between  two  contacting  surfaces.  Amplitudes as 
smal l  as 5  to 10 may  be  sufficient  to  initiate  fretting  damage (refs. 1 and 2). One of 
the  significant  characteristics  that  separate  fretting  from  other  types of wear  appears 
to be  the  retention of wear  debris  in  the  contact  region. 

Such measurements as specimen weight loss,  damage  scar  volume,  and  fretting 
frictional  force have  been  used  to  describe  fretting  damage.  The  scanning  electron 
microscope (SEM)  provides a unique  opportunity  for  observing  the  progress of fretting 
damage. Such advantages as depth of focus,  range of magnification  (from less than 
X 1 0  to  more  than X10 000), ease of specimen  preparation,  and a sensitivity  to  the  chem- 
ical  composition of microscopic  features of the  specimen  make it very  attractive.  Fur- 
ther  information on the SEM may be found in  reference 3. 

The  purpose of this  study is to  use  the SEM in  conjunction  with  damage  scar  volume 
measurements  to  provide  evidence  needed  to  identify  the  fretting  mechanisms  operating 
in  titanium,  Monel-400,  and  cobalt - 25-percent  molybdenum at room  temperature  in 
air. Also,  several  elemental  metals  were  subjected  to  fretting  in  an  effort  to  determine 
whether  the  ratio of oxide hardness  to  metal  hardness is a measure of a metal 's  resist- 
ance  to  fretting. 

BACKGROUND 

Among the  parameters that affect  the  fretting  process  in a given material   are  the 
normal  force between  the two surfaces,  the  temperature,  the  humidity,  the  contact 
geometry,  and  the  frequency  and  magnitude of the  oscillations (refs. 2 and 4). The ob- 
servations of Feng  and Uhlig (ref. 5) on mild  steel  indicate  that  the  severity of the fret- 
ting  damage  increases as load  and  amplitude  increase;  and  the  damage is observed  to 
decrease as frequency,  humidity,  and  temperature  increase.  They  also  observed that 
the  damage is reduced  in  an  inert  atmosphere. A later  review  article of the  fretting 
Literature  (ref. 6) shows  general  agreement with the  findings of Feng  and Uhlig,  with 
some  uncertainty  about  the  effect of humidity. In  one case it appeared  that  the  fretting 
damage was a minimum  near  50-percent  relative  humidity,  and  in  another  case a maxi- 
mum was observed at about  30-percent  relative  humidity. 

Fretting is encountered as a practical  problem  in  many  design  situations. Some 
typical  examples  include  the  mating  surfaces of press-fit  parts,  the  interface between 
parts  and  fasteners,  precision  instrument  bearings  subjected  to  vibration,  overrunning 
clutch  assemblies,  splines,  and  universal  joints. In jet engines,  fretting is a problem 
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in  the wire friction  dampers of compressor  blades (ref. 7),  in  the  joints  between  the 
disks  and the blades of turbines  and  compressors,  and  in  the  piston  ring that comprises 
the  secondary  seal of the  mainshaft seal assembly. 

Considerable  attention  has  been  given  to  the  effect that fretting  might  have on the 
fatigue  strength of structural   parts.  Using  the  scanning  electron  microscope, Water- 
house  and  Taylor (ref. 8 )  have observed  the  initiation of fatigue cracks  in  the  fretting 
region of 0.7-percent  carbon steel specimens.  Nishioka  and  Hirakawa (ref. 9) subjected 
specimens of various steels to  simultaneous  fatigue  and  fretting  action.  They  attribute 
the  formation of the  fatigue  cracks  in  these  specimens  to  the  combined stress state 
associated with the  normal  contact  force  and  to  the  frictional  force  produced  by  the  fret- 
ting  motion. Direct  measurements of fatigue  life  under  conditions  which  fretting  occurs 
(refs. 10 and 11) show that  the  fretting  action  definitely  reduces  the  fatigue  life.  Thus, 
the  possible  occurrence of fretting should be  considered  in  structural  designs  that  are 
subjected  to  fatig e. 

Bisson,  and  Baile e <(refs. 12 to 14) demonstrates  that  adhesion is responsible  for  the 
initial  stages of fretting  damage, while corrosive  effects  play a secondary  role  in  the 
fretting  process.  More  recent  investigations  (refs. 15 and 16) support  the  findings of 
Godfrey,  with the qualification that the  generation of wear debris  becomes  important  in 
the later  stages of fretting. In an extensive  review  article,  Hurricks (ref. 17) divides 
the  process  into  three  stages: (1) initial  adhesion; (2) the generation of oxidized  debris; 
and (3) steady-state  wear  probably  caused by a fatigue  mechanism. He further  dis- 
cusses  the  mechanism of the  generation of oxide debris  and  points out a possible  connec- 
tion  between  the  corrosion  process  and  crack  sites. 

The  details o the  mechanisms of fretting  are not well  understood.  Work by Godfrey, 

APPARATUS 

A schematic  diagram of the  fretting  apparatus is shown in  figure 1. The  oscillatory 
motion is provided by an  electrically  driven  linear  vibrator,  much  like the driver of a 
radio  speaker.  The  motion is transmitted  directly  to  the  lower  specimen by a rigid 
shaft  leading  through  the  bellows  into  the test chamber. 

The  amplitude  (peak  to  peak) of the  oscillations was monitored by a capacitance 
probe  and was directly  displayed as a deflection on a meter.  Control of the  amplitude 
was effected by controlling the r m s  voltage  to the vibrator. 

The  frequency of oscillation was also  monitored by the  capacitance  probe  and was 
displayed on a digital  counter as cycles  per  secdnd. A variable  oscillator was used  to 
control  the  frequency of the  signal  to  the  vibrator  and  thus  control  the  frequency of the 
fretting  motion. 

3 



The  load  was  applied  to  the  specimen  by  placing  precision  weights  into  the  load  pan, 
which was hung from  the  load  arm.  The  load  arm,  having a 3:l  mechanical  advantage, 
transmitted  the load  through  the  bellows seal in  the  top of the  apparatus  to  the  specimen 
contact  point.  The  beam  could  be  conveniently  positioned  initially by means of the coun- 
terweight. A dial gage  (not  shown) at the  top of the  apparatus  indicated  the  relative de- 
flection of the  top  face of the  bellows seal. This  was  used as a reference  during  the 
actual  loading  procedure. 

When a controlled  atmosphere  was  desired,  the test chamber  was  sealed  and a 
selected  gas was bled  through. A pressure gage (not shown),  mounted at the  top of the 
apparatus,  monitored  the  internal  positive  pressure.  The  pressure was controlled by a 
valve  mounted  downstream  from  the  gage. 

MATERIALS 

Titanium,  Monel-400,  and  cobalt - 25-percent  molybdenum  were  chosen  for  the 
study  for two experimental  reasons.  The first is that  the  fretting  scar  surfaces  may be 
readily  cleaned, in an  ultrasonic  cleaner, of grosser  deposits of debris  after  testing. 
This is a necessary  characteristic i f  the SEM study is to  reveal anything more than a 
featureless  smear of debris.  The  second  reason is that  the  volume of the  fretting  scars 
produced  on  these  materials is reproducible  and  representative of the range of fretting 
damage  observed  in  alloys  and  elemental  metals.  Copper,  included  in  the  progressive 
damage  measurements,  was  not  included  in  the SEM study  because  the  oxidized  debris 
required a hard  scrub with an  abrasive  for its removal. It was  felt  that  such a process 
would erase  the  finer  detail of the  fretting  scar. 

The  titanium  specimens  were of 99.9  percent  purity, as were  the  elemental  metals 
used  in  this  study.  The  nominal  composition of the Monel-400  alloy is given  in  table I. 
The  cobalt - 25-weight-percent  molybdenum  alloy  has a hexagonal  close-packed  (hcp) 
structure and has been  observed  to  show low coefficients of adhesion  and  friction  (refs. 
18 and  19). 

SPECIMEN PREPARATION 

The  specimens  were  bullet  shaped,  1.9  centimeters (3/4 in. ) long,  and  0.95  centi- 
meter  (3/8  in. ) in  diameter. One end was machine  ground  to a 0.48-centimeter (3/16- 
in. ) spherical  radius,  and  the  other  end was machined f la t .  The flat end was lapped 
after  fabrication. In an  experiment,  the  round  end of one specimen  (comprising  the 
upper,  stationary  surface) was contacted  against  the flat end of a mating  specimen (com- 
prising  the  lower, mOving surface). 
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Before  running  an  experiment,  the  contacting  surfaces of the  mating  specimens 
were scrubbecbwith  levigated  alumina,  then  rinsed  with  alcohol  followed  by a water  rinse. 
A check w a s  madexpf the water wettability of the  specimen  surface  to  assure  that all oil 
f i lms had  been  removed. In the  case of the  specimens  that  were  examined  in  the SEM, 
the  lapped flat surface w a s  rubbed down on 4/0 grit  emery  paper,  then  mechanically 
polished  using a 0.05;micrometer  alumina  polishing compound. Following  the  polish 
and  rinse,  the  specimen was  ultrasonically  cleaned  to  assure  the  removal of the  polish- 
ing  alumina.  The  purbose of the  polishing  procedure was to  provide a good background 
surface  against which to  contrast  the  fretting  scar. 

\. 
\ 

PROCEDURE 

Running of Fretting  Experiments 

For experiments  that  were  run  in  room air, the  flange  seal shown in figure 1 was 
removed  from  the  chamber.  The  temperature of room air was 23' C f 1' C, and  the 
relative  humidity  was 50 percent f 10  percent.  Experiments  performed on mild  steel 
by Feng  and Uhlig (ref. 5) suggested that the  humidity  variation  in  this  range would have 
a negligible  effect  on  the  experimental  results. 

In the  case of experiments  run  in a flowing inert  atmosphere,  nitrogen  was  fed  into 
the  sealed test chamber. A positive  pressure of 14 to 21 N/m gage (1 to 12 psig)  was 
maintained  in  the  chamber. A constant  flow ra te  of 0.7 to 1.0 cubic  meter  per  hour 
(20 to 30 ft /hr) was run  through  the  system;  and  the  entire  system  was  allowed  to  purge 
for 1/2  hour after  sealing,  prior  to  testing. 

2 1 
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Before  applying  the  load to  the  specimens, it was  necessary  to  locate  the  deflection 
at which specimen-to-specimen  contact  occurred.  This was easily done  by  manually 
deflecting  the  load a rm,  which deflected  the  bellows  downward,  until the vibration  due 
t o  the  oscillatory  motion  transmitted  across  the  specimen-to-specimen  interface could 
be felt. The dial indicator was  then  adjusted  to  read  zero with the  arm  in this position, 
and  the  arm was released.  Deadweights  were  then  loaded  onto  the  weight  pan  attached 
to  the  arm  until  the  dial  indicator  again  read  zero, showing that the  two  surfaces were 
just  contacting.  There  was  sufficient  hysteresis  in  the  springs  and  bellows  to  enable  the 
load  system  to  be  backed  away  from  actual  specimen  contact  until  the  controlled  normal 
load  between  the  two  specimens  was  applied.  For  the  tests  in this study, this normal 
load was 50 grams as measured  in  the  pan, or 1.47  newtons (150 g) at the  specimen- 
specimen  interface. 

The  other  two  parameters  that  were  controlled  to  completely  define  the set of con- 
ditions  under which a fretting  experiment  was  run  were  the  frequency  and  amplitude of 
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the  oscillations.  The  frequency was controlled  to  55.8  hertz f 0.2 hertz,  and  the  ampli- 
tude  was  held  to '75X1Om6 meter  (0.003  in. ) peak  to  peak. 

Examination of Specimens 

All  specimens  were  given  an  ultrasonic  cleaning  after  fretting  to  remove  the  loose 
debris that would otherwise  obscure  the  details of the  fretting  scar  and  make  measure- 
ments of the  scar  very  difficult. 

section  microscope. By this  technique, a plane  beam of light is directed  obliquely (45' 
angle of incidence) at the specimen  surface.  The  reflected  light  beam is viewed  through 
an  optical  microscope  and  appears as a straight  horizontal  line.  Surface  contours 
appear as deviations  from  this  straight  line. This method of examination is analogous 
to viewing a 45' taper  section of the  surface. A typical  exposure  taken  through  the  light 
section  microscope is shown  in figure 2. Curved  surfaces  could  be  viewed as well as 
flat surfaces, but  taking  measurements  from  exposures of curved  surfaces is extremely 
difficult  and  unreliable. For this reason,  wear  measurements  were  made on the flat 
surface. 

The  wear  volume of the  flat-surface  fretting  scars was measured by using a light 

It was assumed  that  the  wear  scars on the flat specimens  were  approximately  in the 
shape of the  cap of a sphere.  The  volume V of these wear sca r s  was then  calculated 
by using  the  formula 

V = O . l X d   X 4 h  2 

where  d is the  wear  scar  diameter  and  h is the  maximum  depth of the  scar.  The 
measured  quantities  d  and h a r e  shown schematically  in  figure 3. 

By using  secondary  electron  imaging,  wear  spots  were  examined at various  levels 
of magnification  in  the SEM. A low-magnification  exposure  (usually X300) allowed  an 
overview of the  entire  fretting  scar. At X900 or X1500 a detailed view of a significant 
portion of the scar  could be made. One or two exposures  were  taken at X3000 to  reveal 
any  interesting  features  observed  in  the  lower  magnification  exposures. 

RESULTS AND DISCUSSION 

The  volume of the  damage sca r s  as a function of the  cumulative  number of fretting 
cycles is shown in  figure 4. Initially, all specimens show a high rate  of increase  in 
wear  volume.  This rate declines with increasing  number of cycles,  possibly  because 
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the  general stress level  decreases as the  contact  area  increases. In the  case of copper 
and  titanium  in air, an  increased rate of damage is observed at fretting  cycles  greater 
than 10 . Notice  that  the  titanium  specimen  tested  in N2 showed  no  increased rate of 
damage.  This  suggests that oxidation  may be  playing an  important  role  in  the later 
stages of the  fretting tests on titanium  and  copper. 

4 

The  results of the SEM study  provide  further  detailed  information  concerning  the 
fretting  mechanisms  for  titanium,  Monel-400,  and  cobalt - 25-percent  molybdenum. 
Before  further  discussion, it would  be  helpful to  consider  some  general  features ob- 
served  in  the SEM micrographs,  examples of which a re  shown  in  figure 5. 

The  features  labeled A in  figure  5(a) have a "taffy" appearance,  suggesting  that  the 
material  had  undergone severe  plastic  deformation followed by fracture.  The  formation 
of such  features is good  evidence that adhesion  between  the  two  surfaces  occurred  and 
led to junction  growth  and fracture.  This  sequence of events is discussed by Bowden 
and  Tabor  (ref.  20),  and  plastic  deformation following adhesion  has  been  directly ob- 
served  using  field  ion  microscopy  techniques  (ref. 21). 

The  region  labeled B in  figure  5(a) is composed of builtup material,  protruding 
above  the  surrounding  surface of the  specimen.  This  material  must  have  been  extruded 
from  the  central  portion of the  damage  scar. 

Figure  5(b)  shows  many  examples of what will be called  "spall-like"  pits. In fig- 
ure  5(c), a higher  magnification  exposure of the region shown in  the  box  in  figure  5(b), 
can be seen  the  presence of serrations,  denoted by "S, " at the  bottom of one of the 
spall-like  pits.  It is suggested that such  serrations  indicate  the  progressive  growth of 
a low- cycle-  fatigue  crack. 

The  features  cited  in  figure  5  are  typical of those  observed  in  titanium  and  Monel- 
400 after various  numbers of fretting  cycles. In the  case of cobalt - 25-percent  molyb- 
denum,  the  features  are  somewhat  different, but their  interpretation is more  straight- 
forward, as will be seen. 

Titanium 

After 100 fretting  cycles,  the  scars  produced on titanium in air (fig. 6) are  little 
different  from  those  produced  in N2 (fig. 7). At th is  stage, the  fretting  scars are simi- 
lar to  unidirectional  sliding  wear  scars but a r e  somewhat  rougher.  This  roughness is 
no  doubt  due to  the  reversed  motion of the fretting  action, but the  basic  mechanisms 
operating  are  probably  adhesion - junction  growth - fracture of junctions.  Also,  mater- 
ial buildup  around  the  edges of the scar  in  figure 6 suggests  the  action of an  extrusion 
process on a fine  scale. 

After 1000 fretting  cycles  in N2 (fig. 8 ) ,  numerous  spall-like  features,  cited  in  the 
discussion of figure 5, appear  on  titanium.  The  bottom of one of these  pits, which 
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happened to be very  free of debris,  reveals  the  serrated  structure,  suggesting  the  pro- 
gressive  development of a subsurface  fatigue  crack.  There is not s o  much  evidence  for 
the continued  action of the  adhesion-initiated  sequence of events, which  operated at 
least  up to 100  cycles.  This  could  be  due  to  the  extreme  strain  hardening of the  surface 
of the  specimen  in  the  vicinity of the wear sca r .  Such strain  hardening would reduce  the 
amount of plastic  deformation  to  fracture  following  an  adhesion  event.  Hence,  there 
would be less  junction  growth  associated  with  adhesion,  reducing  the  amount of surface 
disruption  produced by the  adhesion  mechanism. 

Figure 9 shows  the  fretting  scar  produced  on  titanium  by  1000  cycles  run  in air. 
The  most  significant  feature  that  distinguishes  this  scar  from  the one in  figure 8 (nitro- 
gen  environment) is the  presence of particulate  debris on the  surface.  This  debris is 
particularly  dense  in  the  pits  where it seems  to  collect.  The  appearance of the  edges 
of the  pits  suggests a "leafy" or  layered  structure. It looks as though this  leafy  struc- 
ture  disintegrates  during  fretting,  possibly  through a corrosion  fatigue  cracking  process 
(ref.  22),  producing  much of the  debris  observed.  The  concentration of the  debris 
around  the  edges of the  pit  and  the  ragged  appearance of the  edges  lend  support  to  the 
disintegration  hypothesis. 

The  scar  produced by 10 000 cycles  in N2 (fig.  10) is essentially  the  same as the 
one resulting  from 1000 cycles  in N2 (fig. 7). Similar  spall-like  pits  are  present,  and 
the  surrounding  surface  regions  are  fairly  smooth. 

Similarly,  the  scar  produced by 10 000 cycles  in air (fig. 11) differs only in  size 
and  detail  from  the one  shown  in  figure 9 (1000  cycles  in air). There  appears  to be 
more  debris  in  the  pits,  and  the  leafy  structure  shows  further  evidence of disintegration. 

Examination of titanium  specimens  run  in air for  10  cycles (fig.  12)  again  reveals 5 

the  large  pits, but  the  surface  features  in  the  regions  outside  the  pits  seem  to be ob- 
scured.  This could  be  due to a buildup of compacted  oxide  debris  in  the  contact  region 
(as suggested by the  dark  patches  in fig. 12) o r  to  an  abrasive  action by the  oxidized 
debris  particles. 

Munel-400 

The  Monel-400  specimens  were  tested at room  temperature  in air only. 
After  100  cycles,  Monel-400  (fig.  13)  showed  evidence  that  the  adhesion - junction 

growth - fracture  mechanism  suggested  for  titanium is active. Of particular  interest 
is the  prominent  particle  in  the  center of the  damage  scar shown in  figures  13(a)  and 
(b).  This  particle  may  have  been  either  transferred  from  the  mating  bullet o r  plucked 
out of the flat surface  and bent  back, hinge like,  to its observed  position. In any  case 
it appears  to be firmly  adhering  to  the flat surface at its upper  edge.  Another  signifi- 
cant  feature is the  spall-like  pit  with a serrated bottom  visible  in  figure  13(c).  From 



this feature, it appears  that a low-cycle-fatigue  mechanism  has  already  begun  in Monel- 
400 after 100 cycles.  Also  notice  the  extruded  metal at the bottom of the  fretting  scar 
(fig. 13(a)). 

Figure  14  shows  the  surface of the  Monel  specimen  after it was  subjected  to 1000 
fretting  cycles.  The  general  features are similar  to  those of the s c a r  produced by 100 
cycles.  The  large  fragment  (fig.  14(a)), as wide as the  fretting  scar,  shows  strong 
evidence of having  been transferred  from  the  mating  spherical  surface.  The  roughened 
features on  the  upper  surface of the  fragment,  and  similar  features on the  wear  scar 
just above  the  fragment, are typical of the  elongated  dimples  produced  in  ductile  frac- 
ture. 

There is considerable  particulate  debris  present  around  the  edges of the  fretting 
sca r  on Monel after 10 000 cycles (fig. 15).  This  debris buildup,  coinciding  roughly 
with  the  onset of accelerated wear, may  mark  the  onset of the  operation of an oxide 
particle  abrasion  mechanism. 

Figures  16  and 17 show  the  fretting sca r s  produced  on  Monel by  5x10 and  10 4  5 

cycles,  respectively.  The  fine  crack  network  and  surface  disintegration  indicate a 
simultaneous  surface  oxidation  and  fatigue  action.  The  crack  network is typical of the 
surface  features  produced as a material  oxidizes, when the  surface oxide  film  has a 
smaller  specific  volume  than  the bulk material; this puts  the  oxide  film  in  tension  and 
generally  results  in  cracking. In addition  to  the  crack  network,  the  remnants of disin- 
tegrating spa11 pit  edges  may  be  seen.  These  features  are  similar  to  those  observed  in 
titanium  after  1000 or 10 000 cycles.  Thus,  there is some  evidence  that  the  debris 
generation  in  the  latter  portion of the  fretting  process of Monel  may  come  about  from 
both a fatigue  corrosion  cracking of the  surface  pit  edges  and a direct  surface  oxidation 
mechanism. 

Cobalt - 25-Percent  Molybdenum 

The SEM photographs of the  cobalt - 25-percent  molybdenum  specimens  fretted  in 
air a r e  somewhat  different  from  those of the  titanium  and  Monel-400  specimens.  From 
100 cycles  to 3x10 cycles  (figs.  18  to 20) the  dominant  feature of the  fretting  scars is 
the  presence of fine  scratches  in  the  central  region of the sca r s ,  with the  accumulation 
of debris  (indicated  in  fig.  18)  around  these  scratches.  There is little evidence  for  the 
action of a strong  adhesion  mechanism  in the initial  stages of fretting  in  cobalt - 25- 
percent  molybdenum.  Perhaps this is the  key  to  the  small  amount of fretting  damage 
observed  on  this  material. 
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After 2x10 cycles (fig.  21) the  scratches have nearly  vanished,  and  some  dark 
oxide debris  may be seen at the  edges of the  damage  scar (fig.  21(a)).  The  surface 
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gives  the  impression of having  been  polished  by  the  oxidized  debris. In fact,  the  phase 
distribution  can  be  seen  in  the  high-magnification  exposures,  with  the  molybdenum-rich 
phase  appearing  light. 

Elemental  Metal Study 

So far, the  results-of  this  fretting  study  indicate that  beyond  about 10 000 cycles, 
the  fretting  damage  mechanism is associated  with  oxidation  and  possibly  abrasion by 
the  oxidized  debris.  Certainly,  the  adhesion  and  early  fatigue  processes  developed a 
surface condition that was  either conducive to  oxidation (as in Ti and  Monel) or resistant 
to  it (as in a Co-25Mo). Therefore, it seemed  reasonable  to  examine  the  fretting  dam- 
age in  several  elemental  metals  having a range of oxide- to  metal-hardness  ratios. 
Presumably  the  higher  the  ratio,  the  more  abrasive  the oxide  would  be to  the  metal. 
This  hypothesis was considered by Hurricks (ref. 17) but was not  given a strong en- 
dorsement,  and  Rabinowicz  (ref.  23) has suggested  that  metals  producing  soft  oxides 
have a self-lubricating  capacity  in  sliding  friction  tests. 

To  check  this  hypothesis,  specimens of aluminum,  titanium,  iron,  copper,  nickel, 
beryllium,  columbium,  tungsten,  molybdenum,  and  lead  were  subjected  to a single  ex- 
posure  period of 6x10 fretting  cycles  in air. In figure 22, the  volume of the  fretting 
s c a r s  is measured as a function of the  ratio of oxide  hardness  to  metal  hardness  for 
each  elemental  metal  tested.  The  values of the  ratio of oxide hardness  to  metal  hard- 
ness  were  taken  from  reference 17. In every  case,  the oxide hardness is that of the 
higher  oxide of the  metal,  and  the  metal  hardness  refers  to  the  annealed  state. 
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With a few exceptions  (tungsten  and  beryllium),  the  trend  seems  to be one of in- 
creased  fretting  damage with increased  ratio of oxide hardness  to  metal  hardness. In 
the  case of beryllium  and  tungsten,  very  little  debris was observed;  the real ratio of 
debris  hardness  to  metal  hardness  may  therefore be close  to 1. For purposes of com- 
parison, a high graphitic  carbon  and a low graphitic  carbon are included.  Their  results 
lie  close  to  the  expected  value  for a metal with a 1:l  oxide- to  metal-  hardness  ratio. 
This  should not be surprising, as carbon  produces no solid oxide debris  and  any  debris 
present  in  the  contact  region would be  solid  carbon. 

One must, of course, be  cautious  in  drawing  conclusions  from figure 22. Oxidation 
r a t e s   a r e  not considered,  nor are  the  mechanical  properties of the  metal  aside  from  the 
oxide- to  metal-hardness  ratio. It is an  indication,  though,  that  the  abrasive  aspect of 
fretting  wear  should  be  considered. 
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CONCLUSIONS 

The  combination of wear  volume  measurements  and  scanning  electron  microscope 
(SEM) observations of fretting  in  titanium, Monel-400,  and  cobalt - 25-percent  molyb- 
denum leads  to  the following  conclusions: 

1. Fretting  occurs as a sequence of three  mechanisms: 
Stage I: Fretting  damage is initiated  by  an  adhesion - junction  growth - fracture 

process,  much as in  unidirectional  sliding.  This  process  dominates  the first few hun- 
dred  fretting  cycles. 

Stage II: The  cyclic  stresses  associated with the  fretting  motion  lead  to  the  de- 
velopment of a fatigue  process which is clearly  in  evidence  after 1000 cycles. 

Stage III: Fretting  in air produces  significant  amounts of loose  oxidized  debris. 
The  generation of this debris  seems  to be  aided by a fatigue  corrosion  cracking  process, 
as is made  evident by the  disintegration of material  around the fatigue-associated sur- 
face  pits. It seems that this debris  can  either  enhance  fretting  damage  through  an  abra- 
sive  action or mitigate it through a lubrication  action. It is observed that th is  third 
stage is suppressed  in  titanium  specimens  fretted  in a N2 atmosphere. 
Notice that the order of the  second  and  third  stages is essentially  reversed  from that of 
the  model  proposed by Hurricks. 

2. Cobalt - 25-percent molybdenum resists  fretting  damage far more  than  any of 
the  other  materials  examined  in th i s  study. SEM observations  give  indications that this 
is due  to  the  small  development of adhesive  and  fatigue  damage  in  the  initial  stages of 
fretting. 

3 .  Experiments  performed on elemental  metals show a trend of increasing  fretting 
damage as the  ratio of oxide hardness  to  metal  hardness  increases.  This is interpreted 
to  mean that the  abrasiveness of the oxide particles  against  the  base  metal is a signifi- 
cant  parameter  in  evaluating  the  fretting  resistance of a metal. 

Lewis  Research  Center, 
National  Aeronautics and Space  Administration, 

and 
U.S. Army A i r  Mobility R&D Laboratory, 

Cleveland,  Ohio,  November 12, 1971, 
132-15. 
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TABLE I. - NOMMAL COMPOSITION 

OF MONEL-400 

Element  Composition of 
Monel- 400, 

w t %  

Ni 

Balance c u  
. 5 0  Si 
.024 S 

2.50 Fe 
2.00 Mn 

. 3  C 
66 

CD-11081-17 

Figure 1. - Fretting apparatus. 
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Figure 2. - Light  section view of damage scar  produced  on  titanium 
specimen  after lo5 fretting cycles against  titanium in  air.  Relief 
magnification, 1.4 times as great as in-plane  magnification. 

c") 

Direction of oscillation 

Typi al sca shape after 
10 $ 5  to  10 cycles 1' 

i 
- 

Direction of oscillation 

Typi al  scar shape after 
10 or  more cycles 8 

Figure 3. -Model of fretting  wear scar, shaving  direction d across 
which  l ight  section  measurements  were made. 
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10-2 
Titanium  against  t itanium in N2 

V Copper against  copper in a i r  

0 ""_ Monel  against  Monel in a i r  
A _ _ _ _ _  Titanium  against  t itanium in a i r  

0 "" Co-25Mo against Co-25Mo in a i r  

10% 
102 103 18 105 106 

Number  of  fretting  cycles 

Figure 4. - Fretting wear volume  as  function  of  number  of  fretting c d e s  Frequency, 
55.8 hertz;  normal  force, 1.47 newtons  (150g):  amplitude, 75x10 f .  meter. 
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lb) Magnification. X u x ) .  

( a )  Magnification. XWO. 

IC) Magnification. X1500. 

Figure 5. - Scanning  electron  micrographs  showing  features  generally  observed in fretting  scars of titanium  and  Monel-4". 

17 



Figure 6. - Scanning  electron  micrographs of titanium  fretted  against  titanium  for  102cycles in room-temperature  air.  Frequency, 55.8 hertz; 
normal force, 1.47 newtons (150 gl: amplitude, 7 5 ~ 1 0 - ~  meter. 
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Figure 7. - Scanning  electron  micrographs of titanium  fretted  against  titanium  for  102cycles in nitrogen at  room  temperature.  Frequency, 55.8 hertz: 
normal force, 1.47 newtons (150 g); amplitude, 7 5 ~ 1 0 ' ~  meter. 
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Figure 8. - Scanning  electron  micrographs of titanium  fretted  against  titanium  for lo3 cycles in  nitrogen  at  room  temperature.  Frequency, 55.8 
hertz;  normal force, 1.47 newtons (150 g); amplitude, 7 5 ~ 1 0 - ~  meter. 
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Figure 9. - Scanning  electron  micrographs  of  titanium  fretted  against  titanium for lo3 cycles in a i r  at room  temperature.  Frequency, 55.8 hertz; 
normal force, 1.47 newtons (1% g); amplitude, 7 5 ~ 1 0 - ~  meter. 
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Figure 10. - Scanning  electron  micrographs of titanium  fretted against t itanium for lo4 cycles in  n i t rogen at room  temperature.  Frequency, 55.8 
hertz;  normal force, 1.47 newtons 1150 g): amplitude, 7 5 ~ 1 0 . ~  meter. 
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Figure 11. - Scanning  electron  micrographs of titanium  fretted  against  titanium  for lo4 cycles in a i r  at  room  temperature.  Frequency, 55.8 hertz: 
normal force, 1.47 newtons (1% g); amplitude, 7 5 ~ 1 0 - ~  meter. 
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Figure 12. - Scanning  electron  micrographs of titanium  fretted  against  titanium lor lo5 cycles in a i r  at room  temperature.  Frequency, 55.8 hertz: 
normal force, 1.47 newtons 11% g); amplitude, 7 5 ~ 1 0 - ~  meter. 
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(a1 Magnification, X3MJ. 

~~ ~~ 

(bl Magnification, XWO. 

(c)  Magnification, X3OOO. 

Figure 13. - Scanning  electron  micrographs of  Monel  fretted  against  Monel  for  102cycles in  a i r  at  room  temperature. Frequency, 55.8 hertz:  normal 
force, 1.47 newtons (150 g): amplitude, 7 5 ~ 1 0 - ~  meter. (Note transfer  particle(P) in  (a)  and (bl.) 
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( a )  Magnification X300. (b )  Magnification XWO. 

(c)  Magnification, X3000. 

Figure 14. - Scanning  electron  micrographs of Monel  fretted against  Monel  for lo3 cycles i n   a i r  at room temperature.  Frequency, 55.8 hertz: 
normal force,  1.47  newtons (150 g): amplitude, 7 5 ~ 1 0 . ~  meter. (Note what  appears to be a transfer  fragment (P I  i n  ( a )  and (b).I 
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Figure 15. - Scanning  electron  micrographs of Frlonel fretted  against  Monel for 104cycles in a i r  at room  temperature.  Frequency, 55.8 hertz; 
normal force,  1.47 newtons (150 9); amplitude, 7 5 ~ 1 0 - ~  meter. 
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Figure 16. - Scanning  electron  micrographs of  Alone1 fretted  against  Monel for 5x104 cycles in  a i r  at room  temperature.  Frequency, 55.8 hertz; 

normal force, 1.47 newtons (150 g); amplitude. 7 5 ~ 1 0 - ~  meter. 
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Figure 17. - Scanning  electron  micrographs of Monel  fretted  against  Monel  for lo5 cycles in a i r  at room  temperature.  Frequency. 55.8 hertz: 

normal force, 1.47 newtons (150 9); amplitude, 7 5 ~ 1 0 - ~  meter. 
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Figure 18. - Scanning  electron  micrograph of Co-25Mo fretted  against Co-EM0 

for  102cycles in a i r  at room  temperature.  Frequency, 55.8 hertz:  normal 
force, 1.47 newtons (150 g);  amplitude, 7 5 ~ 1 0 - ~  meter.  (Note the  debris (U) 
around  the scratches.) 



Figure 19. - Scanning  electron  micrographs of C0-25MO fretted  against  Co-ZMo  for IO3 cycles in  a i r   a t  room  temperature.  Frequency, 55.8 hertz; 
normal force, 1.47 newtons 1150 g); amplitude, 7 5 ~ 1 0 - ~  meter. 
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Figure 23. - Scanning  electron  micrographs of Co-25Mo fretted  against  Co-EMo  for IO4 cycles in a i r  at  room  temperature.  Frequency, 55.8 hertz: 
normal force, 1.47 newtons (150 g); amplitude, 7 5 ~ 1 0 - ~  meter. 
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la) Magnification, X200. (b)  Magnification, X900. 

(c)  Magnification. XmO. 
Figure 21. - Scanning  electron  micrographs of Co-25Mo fretted  against Co-25Mo for &lo5 cycles i n   a i r  at room  temperature.  Frequency, 55.8 

hertz; normal  force, 1.47 newtons (150 9):  amplitude, 7 5 ~ 1 0 - ~  meter. 
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Figure 22. -Fret t ing wear volume  after 6x105 cycles  as  function of 
ratio of oxide hardness to metal  hardness. 
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