

OPTIMIZED 47 SPHERICAL-SHELL DEPLETED URANIUM-WATER SHIELD WEIGHTS FOR 200- TO 550-MEGAWATT REACTORS

by Millard L. Wohl, Jack Celnik, and Robert D. Schamberger Lewis Research Center Cleveland, Obio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . FEBRUARY 1972

11 A-2503	2. Government Accession N	No.	3. Recipient's Catalog	No.	
 4. Title and Subtitle OPTIMIZED 4π SPHERICAL- WATER SHIELD WEIGHTS FO BEACTORS 	SHELL DEPLETED R 200- TO 550-MEGA	URANIUM- AWATT	 5. Report Date February 1972 6. Performing Organization 	ation Code	
7. Author(s) Millard L. Wohl, Lewis Jack Celnik and Robert D. Schaml Fuels Corporation, Elmsford, Ne	Research Center, and berger, Gulf United Nuc w York	clear	8. Performing Organiza E-6664	ation Report No.	
9. Performing Organization Name and Address			10. Work Unit No.		
Lewis Research Center		F	132-15		
National Aeronautics and Space	e Administration		11. Contract or Grant No.		
Cleveland, Ohio 44135		F	12 Turn of Percett an	d Pariod Covered	
12. Sponsoring Agency Name and Address					
National Aeronautics and Spac	e Administration		1 echnical Mei	Cata	
Washington, D. C. 20546			14. Sponsoring Agency Code		
15. Supplementary Notes		L		·	
				1	
16. Abstract					
Optimization calculations to de	termine minimum 4	4π spherical-she	ll shield weights	were per-	
formed at 200_ 375_ and 550	_megawatt_thermal r	reactor nower le	vels Monte Ca	rlo analyses	
wore performed for a reactor	nowan lowal correspo	onding to 375 mo	reast Monte Cal	densities	
were performed for a reactor	power rever correspo				
for the subset of weeks and			non estis conti	densities	
for the spherical reactor mode	el used varied from 6	64.2 to 256 watts	per cubic centir	neter	
for the spherical reactor mode $(1.81 \text{ to } 7.25 \text{ MW/ft}^3)$. The d	el used varied from 6 ose rate constraint in	54.2 to 256 watts n the optimizatio	per cubic centir n calculations w	neter as 0.25 mrem	
for the spherical reactor mode $(1.81 \text{ to } 7.25 \text{ MW/ft}^3)$. The d per hour at 9.14 meters (30 ft	el used varied from 6 ose rate constraint in) from the reactor ce	34.2 to 256 watts in the optimizatio enter. The resul	per cubic centin n calculations wa ting shield weigh	neter as 0.25 mrem hts were cor-	
for the spherical reactor mode (1.81 to 7.25 MW/ft ³). The d per hour at 9.14 meters (30 ft related with the reactor power	el used varied from 6 ose rate constraint in) from the reactor ce levels and power den (0, 473-0, 0539 h	54.2 to 256 watts in the optimizatio enter. The result insities by a regr	per cubic centin n calculations wa ting shield weigh ression analysis.	neter as 0.25 mrem hts were cor- The cor-	
for the spherical reactor mode (1.81 to 7.25 MW/ft ³). The d per hour at 9.14 meters (30 ft related with the reactor power relation equation is $W_c = 4410$	el used varied from 6 ose rate constraint in) from the reactor ce levels and power den (0.473-0.0539 ln)0P	54.2 to 256 watts in the optimization enter. The result insities by a regright $\rho_{\rm P}^{\rm op}$ where W	per cubic centin n calculations wa ting shield weigh ression analysis.	meter as 0.25 mrem hts were cor- The cor- ght in pounds,	
for the spherical reactor mode (1.81 to 7.25 MW/ft ³). The d per hour at 9.14 meters (30 ft related with the reactor power relation equation is $W_s = 4410$ P the core power level in mea	el used varied from 6 ose rate constraint in) from the reactor ce levels and power den (0.473-0.0539 ln)0P gawatts, and on the	64.2 to 256 watts in the optimization enter. The result nsities by a regring $\rho_{\rm P}$ where $W_{\rm S}$ power density in	per cubic centin n calculations wa ting shield weigh ression analysis. is the shield weight n megawatts per	neter as 0.25 mrem hts were cor- The cor- ght in pounds, cubic foot.	
for the spherical reactor mode (1.81 to 7.25 MW/ft ³). The d per hour at 9.14 meters (30 ft related with the reactor power relation equation is $W_s = 4410$ P the core power level in meg The optimum shield weight for	el used varied from 6 ose rate constraint in) from the reactor ce levels and power den $(0.473-0.0539 \ln p)$ 00P gawatts, and $\rho_{\rm P}$ the ca 375-megawatt. 160	54.2 to 256 watts in the optimization enter. The result nsities by a regring ρ_{p} where W_{s} power density in 0-watt-per-cubic	per cubic centin n calculations we ting shield weigh ession analysis. is the shield weigh n megawatts per c-centimeter (4.	neter as 0.25 mrem hts were cor- The cor- ght in pounds, cubic foot. 53-MW/ft ³)	
for the spherical reactor mode (1.81 to 7.25 MW/ft ³). The d per hour at 9.14 meters (30 ft related with the reactor power relation equation is $W_s = 4410$ P the core power level in meg The optimum shield weight for reactor was 202,000 kilograms	el used varied from 6 ose rate constraint in) from the reactor ce levels and power den $(0.473-0.0539 \ln p)$ gawatts, and $\rho_{\rm P}$ the a 375-megawatt, 160 a (445 000 lb)	54.2 to 256 watts in the optimizatio enter. The result nsities by a regring $\rho_{\rm p}$ where $W_{\rm s}$ power density in 0-watt-per-cubic	per cubic centin n calculations we ting shield weigh ression analysis. is the shield weigh n megawatts per c-centimeter (4.	neter as 0.25 mrem hts were cor- The cor- ght in pounds, cubic foot. 53-MW/ft ³)	
for the spherical reactor mode (1.81 to 7.25 MW/ft ³). The d per hour at 9.14 meters (30 ft related with the reactor power relation equation is $W_s = 4410$ P the core power level in mea The optimum shield weight for reactor was 202 000 kilograms	el used varied from 6 ose rate constraint in) from the reactor ce levels and power den (0.473-0.0539 ln) 00P gawatts, and $\rho_{\mathbf{p}}$ the a 375-megawatt, 160 s (445 000 lb).	54.2 to 256 watts in the optimizatio enter. The resul- nsities by a regring $\rho_{\rm p}$ where W _s power density in 0-watt-per-cubic	per cubic centin n calculations we ting shield weigh ression analysis. is the shield weigh n megawatts per c-centimeter (4.	neter as 0.25 mrem hts were cor- The cor- ght in pounds, cubic foot. 53-MW/ft ³)	
for the spherical reactor mode (1.81 to 7.25 MW/ft ³). The d per hour at 9.14 meters (30 ft related with the reactor power relation equation is $W_s = 4410$ P the core power level in meg The optimum shield weight for reactor was 202 000 kilograms	el used varied from 6 ose rate constraint in) from the reactor ce (0.473-0.0539 ln 00P gawatts, and $\rho_{\rm P}$ the a 375-megawatt, 166 s (445 000 lb).	54.2 to 256 watts in the optimizatio enter. The result nsities by a regring ρ_{p} where W_{s} power density in 0-watt-per-cubic	per cubic centin n calculations we ting shield weigh ession analysis. is the shield weigh n megawatts per c-centimeter (4.	neter as 0.25 mrem hts were cor- The cor- ght in pounds, cubic foot. 53-MW/ft ³)	
for the spherical reactor mode (1.81 to 7.25 MW/ft ³). The d per hour at 9.14 meters (30 ft related with the reactor power relation equation is $W_s = 4410$ P the core power level in mea The optimum shield weight for reactor was 202 000 kilograms	el used varied from 6 ose rate constraint in) from the reactor ce (0.473-0.0539 ln (0.473-0.0539 ln 00P gawatts, and $\rho_{\rm P}$ the a 375-megawatt, 160 a (445 000 lb).	54.2 to 256 watts in the optimizatio enter. The result nsities by a regring $^{\rm Pp}$ where $W_{\rm S}$ power density in 0-watt-per-cubic	per cubic centin n calculations we ting shield weigh ession analysis. is the shield weigh n megawatts per c-centimeter (4.	neter as 0.25 mrem hts were cor- The cor- ght in pounds, cubic foot. 53-MW/ft ³)	
for the spherical reactor mode (1.81 to 7.25 MW/ft ³). The d per hour at 9.14 meters (30 ft related with the reactor power relation equation is $W_s = 4410$ P the core power level in mea The optimum shield weight for reactor was 202 000 kilograms	el used varied from 6 ose rate constraint in) from the reactor ce levels and power den (0.473-0.0539 ln) 00P gawatts, and ρ_{P} the a 375-megawatt, 160 s (445 000 lb).	54.2 to 256 watts in the optimizatio enter. The resul- nsities by a regring $\rho_{\rm p}$ where $W_{\rm s}$ power density in 0-watt-per-cubic	per cubic centin n calculations we ting shield weigh ession analysis. is the shield weigh n megawatts per c-centimeter (4.	neter as 0.25 mrem hts were cor- The cor- ght in pounds, cubic foot. 53-MW/ft ³)	
for the spherical reactor mode (1.81 to 7.25 MW/ft ³). The d per hour at 9.14 meters (30 ft related with the reactor power relation equation is $W_s = 4410$ P the core power level in meg The optimum shield weight for reactor was 202 000 kilograms	el used varied from 6 ose rate constraint in) from the reactor ce levels and power den (0.473-0.0539 ln) 00P gawatts, and $\rho_{\mathbf{P}}$ the a 375-megawatt, 160 s (445 000 lb).	54.2 to 256 watts in the optimizatio enter. The resul- nsities by a regr $\rho_{\rm p}$) where W _s power density in 0-watt-per-cubic	per cubic centin n calculations we ting shield weigh ession analysis. is the shield weigh n megawatts per c-centimeter (4.	neter as 0.25 mrem hts were cor- The cor- ght in pounds, cubic foot. 53-MW/ft ³)	
for the spherical reactor mode (1.81 to 7.25 MW/ft ³). The d per hour at 9.14 meters (30 ft related with the reactor power relation equation is $W_s = 4410$ P the core power level in meg The optimum shield weight for reactor was 202 000 kilograms	el used varied from 6 ose rate constraint in) from the reactor ce (0.473-0.0539 ln 00P gawatts, and $\rho_{\rm P}$ the a 375-megawatt, 166 a (445 000 lb).	54.2 to 256 watts in the optimizatio enter. The result nsities by a regring $^{\rm Pp}$ where $W_{\rm S}$ power density in 0-watt-per-cubic	per cubic centin n calculations wa ting shield weigh ession analysis. is the shield weigh n megawatts per c-centimeter (4.	neter as 0.25 mrem hts were cor- The cor- ght in pounds, cubic foot. 53-MW/ft ³)	
for the spherical reactor mode (1.81 to 7.25 MW/ft ³). The d per hour at 9.14 meters (30 ft related with the reactor power relation equation is $W_s = 4410$ P the core power level in mea The optimum shield weight for reactor was 202 000 kilograms	el used varied from 6 ose rate constraint in) from the reactor ce levels and power den $(0.473-0.0539 \ln p)$ gawatts, and $\rho_{\rm P}$ the a 375-megawatt, 160 s (445 000 lb).	54.2 to 256 watts in the optimizatio enter. The result nsities by a regring $\rho_{\rm p}$ where $W_{\rm s}$ power density in 0-watt-per-cubic	per cubic centin n calculations we ting shield weigh ession analysis. is the shield weigh n megawatts per c-centimeter (4.	neter as 0.25 mrem hts were cor- The cor- ght in pounds, cubic foot. 53-MW/ft ³)	
for the spherical reactor mode (1.81 to 7.25 MW/ft ³). The d per hour at 9.14 meters (30 ft related with the reactor power relation equation is $W_s = 4410$ P the core power level in meg The optimum shield weight for reactor was 202 000 kilograms	el used varied from 6 ose rate constraint in) from the reactor ce levels and power den (0.473-0.0539 ln)0P gawatts, and $\rho_{\rm P}$ the a 375-megawatt, 160 s (445 000 lb).	b4.2 to 256 watts in the optimizatio enter. The result nsities by a regring power density in power density in 0-watt-per-cubic Distribution Statement	per cubic centin n calculations we ting shield weigh ession analysis. is the shield wei n megawatts per c-centimeter (4.	neter as 0.25 mrem hts were cor- The cor- ght in pounds, cubic foot. 53-MW/ft ³)	
for the spherical reactor mode (1.81 to 7.25 MW/ft ³). The d per hour at 9.14 meters (30 ft related with the reactor power relation equation is $W_s = 4410$ P the core power level in meg The optimum shield weight for reactor was 202 000 kilograms	el used varied from 6 ose rate constraint in) from the reactor ce levels and power der (0.473-0.0539 ln 00P gawatts, and $\rho_{\mathbf{P}}$ the a 375-megawatt, 160 s (445 000 lb).	b4.2 to 256 watts in the optimization enter. The result insities by a regring ρp^{0} where W_{s} power density in 0-watt-per-cubic Distribution Statement Unclassified -	per cubic centin n calculations we ting shield weigh ession analysis. is the shield wei n megawatts per c-centimeter (4.	neter as 0.25 mrem hts were cor- The cor- ght in pounds, cubic foot. 53-MW/ft ³)	
for the spherical reactor mode (1.81 to 7.25 MW/ft ³). The d per hour at 9.14 meters (30 ft related with the reactor power relation equation is $W_s = 4410$ P the core power level in meg The optimum shield weight for reactor was 202 000 kilograms 17. Key Words (Suggested by Author(s)) Nuclear propulsion Benetor shielding	el used varied from 6 ose rate constraint in) from the reactor ce levels and power den (0.473-0.0539 ln) 00P gawatts, and ρ_{P} the a 375-megawatt, 160 s (445 000 lb).	54.2 to 256 watts in the optimizatio enter. The result nsities by a regring $\rho_{\rm p}$ where $W_{\rm s}$ power density in 0-watt-per-cubic Distribution Statement Unclassified - to	per cubic centin n calculations we ting shield weigh ession analysis. is the shield weigh n megawatts per c-centimeter (4.	neter as 0.25 mrem hts were cor- The cor- ght in pounds, cubic foot. 53-MW/ft ³)	
for the spherical reactor mode (1.81 to 7.25 MW/ft ³). The d per hour at 9.14 meters (30 ft related with the reactor power relation equation is $W_s = 4410$ P the core power level in meg The optimum shield weight for reactor was 202 000 kilograms	el used varied from 6 ose rate constraint in) from the reactor ce levels and power den (0. 473-0. 0539 ln 00P gawatts, and $\rho_{\rm P}$ the a 375-megawatt, 160 s (445 000 lb).	54.2 to 256 watts in the optimizatio enter. The result nsities by a regring $\rho_{\rm p}$ where $W_{\rm s}$ power density in 0-watt-per-cubic Distribution Statement Unclassified - 1	per cubic centin n calculations wa ting shield weigh ession analysis. Is the shield weigh n megawatts per c-centimeter (4.	neter as 0.25 mrem hts were cor- The cor- ght in pounds, cubic foot. 53-MW/ft ³)	
for the spherical reactor mode (1.81 to 7.25 MW/ft ³). The d per hour at 9.14 meters (30 ft related with the reactor power relation equation is $W_s = 4410$ P the core power level in meg The optimum shield weight for reactor was 202 000 kilograms (7. Key Words (Suggested by Author(s)) Nuclear propulsion Reactor shielding Shield weight parametric stud	el used varied from 6 ose rate constraint in) from the reactor ce levels and power den (0.473-0.0539 ln) 00P gawatts, and $\rho_{\mathbf{P}}$ the a 375-megawatt, 160 a (445 000 lb).	b4.2 to 256 watts in the optimizatio enter. The result nsities by a regring $\rho_{\rm p}$ where $W_{\rm s}$ power density in 0-watt-per-cubic Distribution Statement Unclassified - to	per cubic centin n calculations we ting shield weigh ession analysis. is the shield weigh n megawatts per c-centimeter (4.	neter as 0.25 mrem hts were cor- The cor- ght in pounds, cubic foot. 53-MW/ft ³)	
for the spherical reactor mode (1.81 to 7.25 MW/ft ³). The d per hour at 9.14 meters (30 ft related with the reactor power relation equation is $W_s = 4410$ P the core power level in meg The optimum shield weight for reactor was 202 000 kilograms 17. Key Words (Suggested by Author(s)) Nuclear propulsion Reactor shielding Shield weight parametric stud	el used varied from 6 ose rate constraint in) from the reactor ce levels and power den $(0.473-0.0539 \ln p)$ gawatts, and $\rho_{\rm P}$ the a 375-megawatt, 160 s (445 000 lb).	54.2 to 256 watts in the optimizatio enter. The result nsities by a regring $\rho_{\rm p}$ where $W_{\rm s}$ power density in 0-watt-per-cubic Distribution Statement Unclassified - mathematical statement	per cubic centin n calculations we ting shield weigh ession analysis. is the shield weigh n megawatts per c-centimeter (4.	neter as 0.25 mrem hts were cor- The cor- ght in pounds, cubic foot. 53-MW/ft ³)	
for the spherical reactor mode (1.81 to 7.25 MW/ft ³). The d per hour at 9.14 meters (30 ft related with the reactor power relation equation is $W_s = 4410$ P the core power level in meg The optimum shield weight for reactor was 202 000 kilograms 17. Key Words (Suggested by Author(s)) Nuclear propulsion Reactor shielding Shield weight parametric stud	el used varied from 6 ose rate constraint in) from the reactor ce levels and power den (0. 473-0. 0539 ln)0P gawatts, and $\rho_{\rm P}$ the a 375-megawatt, 160 s (445 000 lb). 18. y	54.2 to 256 watts in the optimizatio enter. The resul- nsities by a regr ρp) where W _s power density in 0-watt-per-cubic Distribution Statement Unclassified - 1	per cubic centin n calculations wa ting shield weigh ession analysis. is the shield wei n megawatts per c-centimeter (4. mlimited	22. Price [*]	

-

 * For sale by the National Technical information Service, Springfield, Virginia 22151

OPTIMIZED 4π SPHERICAL-SHELL DEPLETED URANIUM-WATER SHIELD WEIGHTS FOR 200- TO 550-MEGAWATT REACTORS by Millard L. Wohl, Jack Celnik,^{*} and Robert D. Schamberger^{*} Lewis Research Center

SUMMARY

Parametric studies were performed to determine weight-optimized 4π sphericalshell uranium-water shield configurations for 200-, 375-, and 550-megawatt spherical reactors. Power densities were 64.2, 160, and 256 watts per cubic centimeter (1.81, 4.53, and 7.25 MW/ft³).

Neutron and gamma-ray Monte Carlo transport analyses were performed for the 375-megawatt, 160-watt-per-cubic-centimeter (4.53-MW/ft³) reactor shield. Neutron and gamma-ray attenuation parameters and secondary gamma-ray production parameters were determined from the results of these Monte Carlo analyses. These parameters were used as input variables for the optimization code UNAMIT.

UNAMIT was then used to perform the optimization analyses for a dose rate constraint of 0.25 mrem per hour at 9.14 meters (30 ft) from the reactor center. The optimized shield weights generated with UNAMIT were correlated with the reactor power levels and power densities by a regression analysis. The correlation is

 $W_{s} = 44100P^{(0.473-0.0539 \ln \rho_{P})}$

where W_s is the shield weight in pounds, P the core power level in megawatts, and ρ_p the power density in megawatts per cubic foot. The optimum shield weight for the 375-megawatt, 160-watt-per-cubic-centimeter (4.53-MW/ft³) case was 202 000 kilograms (445 000 lb).

*Gulf United Nuclear Fuels Corporation, Elmsford, New York.

en de la seconda de la que en entre en Compositor de la compositor de la seconda de la compositor

INTRODUCTION

Minimum weight shield configurations are desirable in most mobile nuclear powerplant applications. Examples of these are powerplants for nuclear aircraft, air-cushion vehicles, other ocean-going vehicles, and many spacecraft modules.

Previous studies have established parametric 4π -spherical minimum shield weights for nuclear reactors in the 150- to 350-megawatt range (ref. 1). These studies considered various shield material combinations - heavy and light hydrides, heavy hydrides and water, lead and water, and tungsten and water.

One isolated analysis of a depleted uranium-water shield indiated that lower weight shields might be obtained with this combination of materials. The chief advantage of depleted uranium lies in its lower neutron capture rate (than, e.g., tungsten) and its cor-.respondingly lower secondary gamma production rate due to its lower average capture cross section.

As a result the depleted uranium-water material combination was selected for the present parametric optimized shield weight studies for power levels in the range of 200 to 550 megawatts. Powerplants in this power range would have application to nuclear aircraft, air-cushion vehicles, and some ocean-going vehicles. The purpose of this report is to provide parametric depleted uranium-water shield weights for mission planners.

The analysis consisted of the following calculations: A Monte Carlo calculation was made for a reactor-shield configuration at 375 megawatts and a power density of 160 watts per cubic centimeter (4.53 MW/ft^3) to generate the parameters for the optimization code UNAMIT. UNAMIT optimization calculations were performed at power levels of 200, 375, and 550 megawatts for power densities of 64.2, 160, and 256 watts per cubic centimeter $(1.81, 4.53, \text{ and } 7.25 \text{ MW/ft}^3)$. The dose rate constraint was 0.25 mrem per hour at 9.14 meters (30 ft) from the reactor center.

ANALYSIS

The purpose of the analysis performed is to generate 4π optimum unit shield weights in the 200- to 550-megawatt power range and the 35- to 350-watt-per-cubiccentimeter (1- to 10-MW/ft³) power density range. This is done by applying a combination of Monte Carlo neutron and gamma-ray transport codes (SANE 2M and SAGE 4) and the shield optimization code UNAMIT (ref. 2).

This study differs from previous NASA parametric shield optimization studies (e.g., ref. 1) significantly because of the much lower external dose rate constraint. The allowed external dose rate was reduced from the previous specification of 2.5 millirem

per hour at 39.6 meters (130 ft) from the reactor center to 0.25 millirem per hour at 9.14 meters (30 ft). All dose rates referenced in this report are at the 9.14-meter (30-ft) distance.

Geometry

The standard depleted uranium-water shield consisted of 23 spherical shield layers surrounding the reflected reactor core, as shown in table I. This multilayered configuration, determined from experience with a previously analyzed tungsten-water shield

TABLE I. - STANDARD 375-MW REACTOR-SHIELD

Physical region	Туре	Outer radius, cm
1	Core	82.38
2 e	Be reflector	90.0
3	Uranium	93.0
4	Water	100.0
5 ^{``}	Uranium	103.0
6	Water > Mix 1	110.0
7 😨	Uranium	113.0
8	Water	120.0
9 .	Uranium	123.0
10	Water	130.0
:		
11	Uranium	132.0
12	Water	140.0
13	Uranium	142.0
14	Water Mix 2	150.0
15	Uranium (152.0
16	Water	160.0
17	Uranium	162.0
18	Water J	170.0
10	······)	172.0
19	Uranium	100.0
20	Water	190.0
21	Mix 3	192.0
22	Water	210.0
23	Uranium	212.0
24	Water	230.0
25	Water	320.0
26	Air	1000.0

CONFIGURATION

(ref. 1), is the one upon which the Monte Carlo analysis is performed. To account for a 250-fold reduction in the dose rate constraint as compared with the work of reference 1, approximately five additional fast-neutron mean free paths of water and an additional five high-energy gamma-ray mean free paths of depleted uranium were included.

The depleted uranium shield layers for the Monte Carlo analysis were of 2- to 3-centimeter thickness to allow the benefit of self-shielding effects, and also to limit the total number of layers considered to a reasonable number. The water layer thicknesses were selected so as to yield homogenized uranium-water mixture densities, for the optimization calculations, in the nominal range of 3 to 6.5 grams per cubic centi-, meter. To cover this range, three mixtures were considered, called Mix 1, Mix 2, and Mix 3, as indicated in table I. Mix 1 consists of 30 percent depleted uranium plus .70 percent borated water, yielding a homogenized density of 6.4 grams per cubic centimeter. Mix 2 is 20 percent depleted uranium plus 80 percent borated water, giving a mixture density of 4.6 grams per cubic centimeter. Mix 3 is 10 percent depleted uranium plus 90 percent borated water, giving a mixture density of 2.8 grams per cubic centimeter. The elemental composition of the reactor, reflector, shield, and surrounding air is shown in table II.

Element	Region							
	Core	Reflector	Depleted uranium shield	Mix 1 (heavy) shield	Mix 2 (medium) shield	Mix 3 (light) shield	Borated water shield	Air
		•	A	tom density,	atoms/cm	3	·	
Hydrogen Oxygen Aluminum Zirconium Uranium-235 Beryllium Uranium-238 Boron-10 Boron-11 Nitrogen	1.976×10 ²² 1.184 5.120 1.744 9.79×10 ²⁰ 0 7.80×10 ¹⁹ 0 0 0	0 1.20×10 ²³ 0	0 4.82×10 ²² 0 0 0	4.51×10 ²² 2.26 0 1.446×10 ²² 1.17×10 ²⁰ 5.28 0	5.16×10^{22} 2.58 0 9.64 × 10^{21} 1.33 × 10 ²⁰ 6.02 0	5.80×10 ²² 2.90 0 4.82×10 ²¹ 1.49×10 ²⁰ 6.77 0	6.45×10 ²² 3.37 0 1.73×10 ²⁰ 7.85 0	0 9.0×10 ¹⁸ 0 4.17×10 ¹⁹

	TABLE II.	- MATERIAL COMPOSITIO	\mathbf{NS}
--	-----------	-----------------------	---------------

12

Monte Carlo Calculations for Base Case

A Monte Carlo neutron transport calculation was run with the code SANE-2M to determine the external neutron dose rate. A 10 000 history problem, requiring 50 minutes on the CDC-1604A computer, yielded a neutron dose rate 9.14 meters (30 ft) from the core center of 9.99×10^{-3} millirem per hour for a core power level of 375 megawatts. The statistical uncertainty of this calculation was about ±10 percent.

A second SANE-2M neutron calculation was run to yield secondary gamma-ray sources from each of the shield layers. In order to obtain reasonable statistical accuracy (10 to 30 percent) on the neutron flux in each of the energy bins, a 12 000 history problem was run. This calculation yielded an external neutron dose rate of 8.94×10^{-3} millirem per hour with a statistical uncertainty of ±15 percent.

Secondary gamma-ray sources were calculated for all shield regions using the SANE-2M code. Then, the secondary gamma-ray transport calculations were run at six discrete energies ranging from 1 to 6 MeV. Contributions to the external dose rate from all the secondary gamma-ray source regions were determined for purposes of obtaining the proper slopes of dose-rate-against-radius curves. These, in turn, were used to get attenuation parameters for input to the UNAMIT optimization code (ref. 1). The Monte Carlo-determined contributions to the external dose rate from each shield region for the 375-megawatt shield with homogenized depleted uranium-water mixes is shown in table III.

Region	Material	Inner radius, cm	Outer radius, cm	6-MeV gamma source	Intermediate gamma source (3 to 5 MeV)	2.2-MeV gamma source
				rem/	Dose rate, ^a hr/source neutro	on/sec
1	Depleted uranium	90.0	93.0	2.53×10 ⁻³⁰	1.55×10 ⁻²⁵	0
2	Mix 1	96.5	126.5	3.88×10 ⁻²⁸	8.40×10 ⁻²⁷	0
3	Mix 2	126.5	166.0	1.92×10^{-26}	4.96×10^{-26}	0
4	Mix 3	166.0	221.0	1.47×10^{-25}	1.17×10^{-25}	2.24×10^{-26}
5	Water	221.0	320.0	5.94×10 ⁻²⁶	2.18×10 ⁻²⁸	2.10×10 ⁻²⁷

TABLE III. - SECONDARY GAMMA-RAY DOSE RATE

^aAt 9.14 meters from core center.

The core gamma-ray Monte Carlo transport calculations were also performed in six discrete source energy groups ranging from 1 to 6 MeV. The core gamma-ray contribution was 3.70×10^{-28} rem per hour per source neutron per second. The total gamma-ray dose rate from the standard shield was 4.26×10^{-25} rem per hour per neutron per second or 0.0124 millirem per hour for a core power of 375 megawatts. When this was added to the total neutron dose rate of 0.010 millirem per hour, the total dose rate was 0.0224 millirem per hour, or about a factor of 10 lower than the required dose rate constraint of 0.25 millirem per hour. This will not have a significant effect on input parameters for the optimization calculations in very thick shields such as those considered here.

UNAMIT Optimization Calculations

All optimization calculations were performed with the code UNAMIT (ref. 2). It has a general multicomponent dose rate structure for handling the dose rate contributions of both neutrons and gamma rays. Using the geometric description of an initial shield configuration and source and attenuation parameters, the code varies radii of successive spherical shells, searching for shield layer radii which satisfy the dose rate constraint and yield minimum shield weights. It can reduce layer thicknesses to zero, but cannot physically interchange or add layers. The UNAMIT code requires input parameters for attenuation of primary neutrons, primary gamma rays, and secondary gamma rays and source, or production, parameters for secondary gamma rays.

The neutron attenuation parameters appropriate for the external neutron dose rate are based on removal cross sections taken from Goldstein (ref. 3). An exception to this are parameters for the outer water layer. Since this layer is followed by air, rather than a hydrogenous medium, removal theory does not apply; so the Monte Carlodetermined fast dose rate falloff was used for this layer. This resulted in a value of 0.100 cm^{-1} compared with a removal cross section of 0.0945 cm^{-1} , which is within the uncertainty of the removal cross section.

Analysis of (1) the slopes of the secondary gamma-ray source strengths as a function of radial distance (ref. 2) and (2) the slopes of the resultant leakage through the separate shield materials as determined by the Monte Carlo calculations led to a classification of three main gamma-ray source types. These are a 6 MeV gamma ray, an intermediateenergy (3- to 5-MeV) gamma ray, and a 2.2-MeV hydrogen capture gamma ray. The 2.2-MeV gamma ray contributes to the leakage mostly from the outermost uraniumwater mix region (mix 3) and the outer water layer.

The Monte Carlo-determined secondary radiation attenuation parameters are tabulated in table IV(a). The attenuation parameters and source parameters in tables IV

Shield range	Material	6-M gamma	leV source	Interm gamma (3 to 5	ediate source MeV)	2.2- gamma	MeV source
			Attenu	nation par	rameter,	, cm ⁻¹	
		μ _n	μ_{γ}	μ_n	μ _γ	μ _n	μ _γ
1	Uranium	0.15	0.44	0.273	0.90	0.273	0
2	Mix 1 (heavy)	.15	. 31	. 273	. 30	. 273	0
3	Mix 2 (medium)	. 133	. 23	.15	. 22	.15	0
4	Mix 3 (light)	.115	.13	. 13	.124	.13	.18
5	Water	. 097	. 048	. 097	. 050	. 099	.040

TABLE IV. - ATTENUATION PARAMETERS

(a) Attenuation parameters pertinent to secondary radiation

(b) Primary radiation attenuation parameters

Shield range	Material	Attenuation paramete cm ⁻¹	
		μ _n	μ_{γ}
1	Depleted uranium	0.1735	0.90
2	Mix 1 (heavy)	. 118	. 30
3	Mix 2 (medium)	. 110	. 22
4	Mix 3 (light)	. 102	.13
5	Water	.100	.05

TABLE V. - SECONDARY GAMMA-RAY DOSE RATE BY SOURCE

TYPE FOR 375-MW SHIELD

Shield region	Material	6-MeV gamma source	Intermediate gamma source (3 to 5 MeV)	2.2-MeV gamma source
		D	ose rate, mrem/	ĥr
1 2 3 4 5	Uranium Mix 1 (heavy) Mix 2 (medium) Mix 3 (light) Water	$\begin{array}{c} 1.620{\times}10^{6}\\ 5.374{\times}10^{5}\\ 3.725\\ 3.317\\ 2.493\end{array}$	7. 456×10^{7} 2. 579×10^{8} 1. 529 8. 632×10^{7} 4. 260×10^{5}	0 0 1.827×10 ⁷ 1.901×10 ⁶

and V may be described as follows (ref. 4): The assumed dose rate - thickness model is of the general form

$$\dot{D} = \sum_{i} \dot{D}_{i}$$

where

$$\dot{\mathbf{D}}_{i} = \mathbf{C}_{i} \exp\left(-\sum_{j=1}^{i-1} \mu_{ij} \mathbf{t}_{j}\right) \exp\left[-(\mu_{n,ii} + \mu_{\gamma,ii})\right] \exp\left(-\sum_{j=i+1}^{k} \mu_{ij} \mathbf{t}_{i}\right)$$

and D is the total dose rate; D_1 is the dose rate from the first layer; D_2 is the dose rate from the second layer, and so forth; t_j is the thickness of the jth region; μ_{ij} is a gamma-ray attenuation coefficient that describes the effect of a change in the thickness of the jth layer on the ith dose rate component; and C_i is a source parameter. In table IV(a), the gamma-ray attenuation coefficients in a specific region apply to gamma-ray sources in that region and all the shield regions internal to the specific region. The primary radiation attenuation parameters used in the UNAMIT calculations are shown in table IV(b). The secondary gamma-ray dose rates, by source, used in the UNAMIT calculations are shown in table V. These correspond to the C_i in the previous equation. The dose rate sources listed in table V in the 6-MeV and 3- to 5-MeV columns for shield region 5, or the outer water region, are sources due to inelastic scattering of neutrons in oxygen. The primary neutron dose rate source term used in the UNAMIT calculations was 3.372×10^8 millirem per hour. The primary gamma-ray dose rate source term was 1.820×10^{12} millirem per hour.

UNAMIT Optimization Results

The parameters for input to UNAMIT are generated from the 375-megawatt, 160-watt-per-cubic-centimeter $(4.53-MW/ft^3)$ reactor shield. In performing the UNAMIT shield optimization calculations, two types of calculations were made:

(1) An optimization calculation where the limiting values of inner and outer shield layer radii are such that the optimized shield contains respective amounts of the uranium-water mixtures not far different from those dictated by the Monte Carlo configuration specified in table I: The shield configuration determined here is called the ''standard shield'' in the following discussion.

(2) An optimization calculation where there are essentially no constraints on any layer thicknesses: This allows UNAMIT to make greater adjustments in shield layer configuration so that the optimized configuration need not bear as close a resemblance to the Monte Carlo configuration as in case 1 above. The final configuration arrived at here is called the "optimum shield", and it is the optimum shield weights that are considered to be minimum shield weights.

The initial UNAMIT run was performed for a five-layer shield similar to the stepwise-homogenized Monte Carlo shield configuration specified in table I. This standard shield is shown schematically in figure 1(a). The dose rate constraint in this and all the configurations presented in figures 1 to 3 is 0.25 mrem per hour at 9.14 meters (30 ft) from the reactor center.

The weight of the standard shield (fig. 1(a)) for a 375-megawatt power level is 208 000 kilograms (459 000 lb). The optimum shield displayed schematically in figure 1(b) has a weight of 202 000 kilograms (445 000 lb), or 3 percent less than that of the standard shield (fig. 1(a)).

The standard shield shown in figure 2(a) for a reactor power level of 200 megawatts has a weight of 163 000 kilograms (360 0001b). The optimum shield for the 200-megawatt reactor power level, shown in figure 2(b), has a weight of 159 000 kilograms (350 000 lb), or essentially the same as that of the standard shield.

The 550-megawatt standard shield, shown in figure 3(a), has a weight of 252 000 kilograms (557 000 lb). The optimum shield for the 550-megawatt power level has a weight of 237 000 kilograms (521 000 lb), or 7 percent less than that of the standard shield.

The minimum shield weights determined by UNAMIT for the nine reactor-coreparameter configurations analyzed are represented by the points in figure 4. Curves are plotted as a function of reactor outer radius for both constant power level and constant power density. The solid curves connect constant power level points. The dashed curves connect constant power density points.

DISCUSSION OF RESULTS

As can be seen from figure 4, the optimum shield weights vary from 140 000 kilograms (309 000 lb) for the small-core, high-power-density, 200-megawatt reactor to 325 000 kilograms (718 000 lb) for the large-core, low-power-density, 550-megawatt reactor. These weights, again, are for an external dose rate constraint of 0.25 mrem per hour at 9.14 meters (30 ft) from the reactor center, which represents a factor of about 250 more attenuation than was required in earlier parametric minimum shield weight studies.

Figure 4. - Uranium-water shield weights. Dose rate, 0.25 mrem per hour at 9.14 meters (30 ft) from reactor center.

.5--

A curve fit of the shield weight data generated, performed with the computer program RAPIER (ref. 5), yielded the following analytic relation between shield weight, reactor power level, and power density:

$$W_s = 44100P^{(0.473-0.0539 \ln \rho_P)}$$

where W_s is the shield weight in pounds, P the reactor power level in megawatts, and ρ_p the core power density in megawatts per cubic foot. This expression is valid, of course, only in the 200- to 550-megawatt power range and the 64.2- to 256-watt-per-cubic-centimeter (1.810 to 7.25-MW/ft³) power density range covered in the optimiza-tion calculations because these are the ranges over which calculations were made.

Several curves plotted from this equation for power densities of 35.4, 70.7, 124, 177, and 353 watts per cubic centimeter $(1, 2, 3.5, 5, and 10 \text{ MW/ft}^3)$ are shown in figure 5; and, as expected, shields for the highest power density cores (smallest core radius for a given power level) weigh the least.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, November 18, 1971,

132-15.

REFERENCES

- Schamberger, Robert D.; Troubetzkoy, E. S.; Goldstein, R. A.; Cohen, M. O.; and Celnik, J.: MNA and ML-1 Shield Studies. Rep. UNC-5164, United Nuclear Corp., Dec. 30, 1966.
- 2. Troubetzkoy, Eugene S.; and Wohl, Millard L.: UNAMIT: A One-Dimensional 4π Spherical Multilayer Reactor-Shield-Weight Optimization Code. NASA TM X-2048, 1970.
- 3. Goldstein, Herbert: Fundamental Aspects of Reactor Shielding. Addison-Wesley Pub. Co., 1959.
- Lahti, Gerald P.; and Herrmann, Paul F.: Comparison of Tungsten and Depleted Uranium in Minimum-Weight, Layered Shields for a Space Power Reactor. NASA TM X-1874, 1969.
- 5. Sidik, Steven M.; and Henry, Bert: RAPIER: A Fortran IV Program for Multiple Linear Regression Analysis Providing Internally Evaluated Remodeling. NASA TN D-5656, 1970.

NATIONAL AERONAUTICS AND SPACE ADMISTRATION WASHINGTON, D.C. 20546

> OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300

FIRST CLASS MAIL

POSTAGE AND FEES PAID NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

POSTMASTER: If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute ... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge. TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546