General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

X-T15-72-11

EP;.‘U,,V-
N

ik 65 543

SUPPORT SOFTWARE FOR THE
ADVANCED ON-BOARD PROCESSOR

FLIGHT DATA STORAGE BRANCH
ELECTRONICS DIVISION

)

|

g ,"/'“"/’?/) (CODE)
IMY-CH JARD op

(NASA CR OR TMX OR AD NUMBER) (CATEGORY)

FACILITY

JANUARY 1972

GREENBELT, MARYLAND

T e

Av F R

SUPPORT SOFTWARE
FOR THE

ADVANCED ON-BOARD PROCESSOR*

Flight Data Storage Branch
Electronics Division

January 1972

! *Prepared by CSC under contract #NAsg»(n'zao.-

Greenbelt, Maryland

i
i
i

X-715-72-11

GODDARD SPACE FLIGHT CENTER |

-~

G Lo LR

. &
x
oLt
R .
B
" L . . ; . o -
IR SR R O G AP VTR SOt S JPCRT - ST SO e

PRICEDING PAGE BLANK NOT FTLMEHN

b e
A i i

»

3 SUPPORT SOFTWARE FOR THE
g ADVANCED ON-BOARD PROCESSOR
3 Flight Data, Storage Branch
Electronics Division ““
ABSTRACT
. é,
E
This document describes the support software package i

which exists for the Advanced On-Board Processor (AOP) being

developed by the Flight Data Storage Branch, GSFC.

iii

o

III.

Iv.

=

PRLUCEDING PAGE BLANE NOT FILMED
CONTENTS

Page
INTRODUCTION .+ .vsvvvse T veseas 1
SUPPORT SOFTWARE SYSTEM LI I IR T S R N N AT SN R T Y) £ 0 € 8 0 0 0 8 0 0 ¢ 90 2
A. Assembler........cvoiiviiviieinrinines Cheeer e 3
B. Relocatable Loader...... cessvinasne e 15
C. Contr()lcardS---i cccccc L I A R A I N 2R I R I T T I I I A] €08 v 00 0 s 16
D, Simulatorcoiiieiiiiiipmoissersnsnssnnsocossnsensans 25
E. Simulator Control Cards......coeovvreevvrrervrereanonssss 33
F. Pseudo Console....cvviuiriterrorerivostssnsonsnsosesosas 39
PROGRAMMING NOTES. . :v:vevvennnsannss PR 44
A, Input/Omtput. .« - v vvvvvvnneernrnanonaranns A 45
B, INnterruptsS......cooveeevrvenenesosusosiosesossosessnssssos 47
C. Program Linkagec.cveieeerenenrntnrororacnonnensas 49
D. Storage Limit Register............ccooiitiiinnsninenenns » 52
APPENDIX A — AOP INSTRUCTION SET.coveeviueneconss A-1
A. Detailed Description by Function [- C |
B. Brief Description Ordered by Operation Code A-22
C. Brief Description Ordered by Mnemonic........coe0vveve... A=23

APPENDIX B — AOP SUPPORT SOFTWARE DEMONSTRATION ‘
PROGRAM.oov0nvvennane P P B-1

oo

Figure

Table

ILLUSTRATIONS

Page
AOP Instruction Set...... veeriserans cevenes R T 8
Assembly of a Main Program, INPUT, and a Subroutine,
ADDER.......covvinunas Cieeser e I |
Core Image Diagram of Automatic Code and Data
Relocation sebencerresraerne teseeressedsitaresrisenas . 18
Loader Output for INPUT and ADDER............... Cereereen 19
AOP Memory Contention and Cycle Steal Operatioxis Seresescesn 28
Octal Dumpooveeenvnvssons eseines 30
Octal Trace.......covvevevirnenvensnssnnnesns 32
Interrupt Locationsceiveiniiiiiiniiiinaniiane, 48

TABLES

Page
Central Processor Unit.A Functional Registers......... P ‘o 5
I/OSystem............. e deresseca e P 46

vi

e

SUPPORT SOFTWARE FOR THE ADVANCED ON-BOARD PROCESSOR

INTRODUC TION

The support software package described herein is a second generation
outgrowth of a previous package for the On-Board Processor described in docu-
ment X-562-68-388, 'Support Software for the Space Electronics Branch On-Board
Processor!’, Novembér 1968. The guiding force in the evolution of the package has
been the need to adapt to different operating requirements imposed by the Ad-
vanced On-Board Processor. Many improvements were also incorporated,

especially in the simulator area,

The Advanced On-Board Processor, AOP, is a general purpose stored
program digital computer with an 18-bit word. It has integral input-output and
interrupt systems especially designed for spacecraft application, The action of
the interrupt system is described under programming notes. A description of
the AOP is contained in document X-715-71-451, '"The Advanced On-Board |
Processor — AOP', October, 1971, This support software is intended to pro-
vide the AOP programmer with a convenient, thoroughly proven, tool for writing
and debuggihg AOP programé. ‘It is to be expected that the package will continue
to evolve into a still better syétem as niore experience is gained in its use with

the AOP.

;

e B
7

#
23

S

\'55}1;&:‘1 gt

¥

PPN

e KRR e

SUPPORT SOFTWARE SYSTEM

The support software system consists of an assembler, a relocatable loader,
a simulator, and a sipport software executive which interprets the system con-
trol cards. The system was written in Fortran as a step towards machine inde-

pendence so that AOP programs could be developed at different locations.

At present, the system has been run and checked out on an XDS 920 computer
at GSFC. A special interface unit between the XDS 920 computer and the AOP is
being designed. When connected, it will allow object programs to be loaded into
AOP memory and executed, It also pei'mits the transfer of data between AOP

memory and the XDS 920 I/0 devices.

The support software system is éqntained on one magnetic tape. The mini-
mum system requirement is a c;ard reader, a CPU with 16K memory, a line printer,
and four magnetic tape drives (one for the system and three scratch). The system
contains 21 links :due to core memory limitations., For this reason the system is
now undergoing modifications which will allow utilization of a random access

memory device,

The AOP Assembler accepts punched cards és input, assembles program
segments into relocatable biﬁary code anc'l data, and writes the program segments
on a magnetic tape. The binary Ssegments can then be selectively loaded onto a
cqmplete image of AOP memory and written on tape The memory image tape
can be used to either load ghe AOP memory dr to serve a_s’i'nput to the AOP
Simulator, a unit of the sul;port software gsystem.

2

A call to a subprogram not found in any assembled program segment will
result in an automatic library search., The library currently does not contain

any programs., However, programs can be added as required.
Assembler

A program ta be assembled must be on punched cards and must be preceded
by an assemble control card. The format of the assemble control card with an

explanation of the various options is covered in the section on control cards.

To simplify the problem of training programmers in the use of the AOP
Assembler, the structure of program statements closely follows that »f other
widely used assemblers, such as SLEUTH II for the Univac 1108 or Meta-Symbol

for the XDS 920, with which they may already be acquainted.

Input Format

The zssembler accepts cards in free form, that is, blanks delimit fields.

Each card zontains up to four fields:

1. Label field. Must start in column 1 and begin with an alphabetic char-
acter. This field need not be present., This is indicated by a blank in

Column 1.
2. Operation field. Starts with first non-blank after label field.

3. Operand field. Starts with first non-blank after operation field, This

field is present only if the operation requires an operand field.

4, Comments field. Starts with first non-blank after lnst required field,
The assembler ignores the conten!s of this field and it is the only field

which may contain imbedded blanks.

The example below shows the input cards which would be generated to check .
whether a point lies on the locus of the unit circle. As in any fixed point arith-

metic involving fractions the programmer must do the scaling.

LOCUS LDA X Scaled 2 Minus 3
MUL X Scaled 2 Minus 3
DSH XM3 Shift to Scale 2 Minus 3 (XM3 = -3)
STA X2 .
LDA Y Scaled 2 Minus 4
MUL Y Scaled 2 Minus 4
DSH XM5 " Shift to Scale 2 Minus 3 (XM5 = -5)
ADD X2 v
BRM SQRT Get Square Root -
STA NORM Scaled 2 Minus 3
TAE (010) Test Equal to 1 (Scaled 2-3)
BRC (COMP) .
Each line represents an input card, and the mnemonics are those recognized by :
the stanGi.»d assembler. A feature of the ?Sfééﬁ’lblér is its procedure capability &

)
g
5
£
&
7

which allows the user to déﬁ‘ne his own nmemonics; This is discussed further
in connection with the PROC directive. Literals can be entered in the operand

_field of an instruction by enclosing the desired expression in parenthesis.

Registers — Registers which can be affected by program execution are listed in

Table 1.
TABLE 1
Central Processor Unit Functional Registers
Length
Register Symbol (bits) Function

Accumulator | ACC 18 |Used for operand storage,

Extended EA 18 | Holds least significant half of a double length |

Accumulator operand in multiply/divide cperations,

Storage limit | SLR 18 |Coatrols where writing into memory is
permitted.

Index X 18 | Added to address to form effective address
if index bit in instruction word is set,

Page P 4 |Appended to 12 bit address field to form
16 bit address.

-| Carry C 1 |Stores a carry out of hit 17 of the parallel
adder,

Decision D 1 |Conditionally set when executing test in-
structions. Reset by the conditional
transfer instruction,

Overflow ov 1 |Stores the overflow condition.

Activation ASR 16 | Inhibits or allows cyéle steal operations on

status | specific channels.

Lockout LSR 16 | Inhibits or allows specific interrupts,

status g

Interrupt IOR 1 | Inhibits or allows all interrupts excert

override ” interrupt 0, :

g e e
: .

Instruction Set — The AOP has 55 instructions, 31 of which require a memory
access, The other 24 instructions have a minor operation code in the operand

field of the instruction word, The formats are as follows;

MEMORY ACCESS

!Bls By7 B1g Bis B14'BJ.3]-B12 By1 By By By By By B, B, By By B,
« — 1___*__,\' . v : J
Operation In~- Operand address
dex

NON-MEMORY ACCESS

-

;"BIBBI‘? B16 B15B14(B13 - com e Bg B By By By 1

574737271
¢ 0 o 0 @

\, - A\ . I\ J

Not uset Operation

With 12 bits for the address, 4096 memory words are directly addressable.
A memory size as large as 65,536 words requires a 4-bit page register which
can be loaded and stored under prbgram control and which isﬁ appended as four
high-order bits to the 12-kii address field fo form a full 16-bit effective address.
If the index bit is set, the low order 16-bits of the index register are added to the
address to form an effective address and the execution tinie is increased by
2.0 cycles. The thirty-one instructions which require a memory access may be
indexed. Indexing is specified by appending a comma to kt;he‘ operatién mnemonic,
For example, "’IDA’,' will resuit in a load accumulator instruction with bit 13 set
S0 that the index register will be added to the address field é.t execution time to

~ form the effective address.

R

et

! Figure 1 gives a summary of the AOP instruction set by function. Appendix A
gives the detailed operations of each instruction. Execution times are given in

CPU cycles. At present, one CPU cycle is nominally one microsecond.

. Note that the test instructions which set the decisicn register do not reset
it to zero if the test fails. Thus a series of tests can be 'or'ed together. A
conditional branch at the end of this series will take place if any of the tests

succeeded,

Assembler Directives

Assembler directives are used to pass information to the assenibler con-
cerning a particular program to be assembled. The assembler directives are
loaded in with the source program as mnemonics in the operation field of the
card, These directives have effect only for the program with which they are
assembled and their effect begins when they are encountered during the assembly
process, For convenience, the assembler directives can be grouped into four

categories according to their usage or function in the program. These categories

are:

a. Control of storage allocation

. | RES — Reserve storage
RORG — Set relocatable origin
- AORG — Set absolute origin
LIT — Assign control counter to literals

-

ORDERED BY FUNCTION
LOAD/STORE INSTRUCTIONS ’
Cycle
Op Code Mnemonic Time* Description -
20 LDA 4 Load accumulator
40 LDL 4 Load accumulator with effective address
12 LDI 6 Load accumulator indirect
52 LDE 4 Load extension
54 LDX 4 Load index f
60 STA 6 Store accumulator o
32 STH 8 Store accumulator indirect 5
10 STE 6 Store extension
74 STX 6 Store index :
000013 LDD 3 DSH left 1 bit then load decision regisiur into K
LSB of EA L
000012 LDP 3 Load page register from accumulator ' : .
ARITHMETIC INSTRUCTIONS
Cycle | :
Op Code Mnemonic Time* Description i
000004 NEG 6 Two’s complement accumulator l
000006 ADC 4 Add carry to accumulator f A
000010 CMP 6 One’s complement accumulator ;
000014 NORM 4** Normalize accumulator and extension
02 ADX 4 Add memory to index ' |
04 ADD 4 ' Add memory to accumulator ; :
24 SuB 4 - Subtract memory from accumulator k
44 MUL R 2 el Multiply accumulator by memory
64 DIy 58 - - Divide accumulator and extension by mamory
* Add 2 cycles for indexing. | o
At present, one CPU cycle is nominally one microsecond.
** Add one cycle for each place ‘shifted.
Yok k Avgfage J USSR

Figure 1, AOP Instruction Set *

L

BOOLEAN LOGIC INSTRUCTIONS

Cycle
Op Code Mnemonic Time* Description
30 N ETR 4 Logical AND accumulator with memory
50 MRG 4 Logical OR accumulator with memory
70 EOR 4 Exclusive OR accumulator with memory

1/0 INSTRUCTIONS

o Cycle
Cp Code Mnemonic Time* Description
16 OPT 6 Output
76 IPF 6 Input

. REGISTER MANIPULATION INSTRUCTIONS

; Cycle

Op Code Mnemonic Time* Description

14 : 'SHF 5** Arithmetic shift accumulator

36 | DSH 5** Arithmetic shift accumulator and extension
34 CYC B Cyc!ic shift accumulator

56 DCY - 5 Cyclic shift accumulator and extension
000025 ACX 8 Exchange accumulator and index

000026 AEA 8 Excliange accumulator and extension
006027 EAX 8 Excharige extension and index:

000022 FLP 3 Reverse accumulator

* Add 2 cycles for indexing.
- At present, one CPU cycle is nominally one microsecond..
** Add one cycle for each place 'shifted.

Figure 1. AOP Instruction Set (Continued)

uu&_@gs‘o;’r:-«,iunb 4 i’

peser ey WG 'Wﬁ “

. Aw'. Y

CONTROL /BRANCH INSTRUCTIONS

Cycle

Op Code Mnemonic Time* Description

00000C HLT 3 Halt

000002 NOP 3 No operation

06 BRM 8 Branch and mark place

62 BRU 4 Branch unconditionally

42 BRC 4 Branch conditionally

72 TIN 22 Restore stctus registers from memory
000016 EXIT 36 Cause exit interrupt

TEST/SET INSTRUCTIONS
Cycle

Op Code Mnemonics Time* Description

000001 TOV 3 Test overflow register

000003 TAP 3 Test accumulator positive

000005 TOP 22 Test accumulator for odd parity
000007 ROV 3 Reset overflow register

000017 CPD 3 Complement decision register
000020 SIO 3. Set interrupt override

000021 TAZ 4 Test accumulator for zero

000023 RED 3 Reset decision register

000024 RIC 3 Reset interrupt override

000011 TiX 6 Test index for zero and increment
000015 TIE 6 Test extension for zero and incremeni-
22 TXLE 4 Test index less than or equal to memory
26 TAL 4 Test accumulator less than memory
46 TAE 4 Test accumulator equal to memory
66 4

TAG

Test accumulator greater than memory

* Add 2 cycles for indexing.
At present, one CPU cycle is nominally one microsecond.

Figure 1. AOP Instruction Set (Continued)

,10

el
<

gy S Aoty s s . g

.

P

B e e o

C.

- em

Data word generation

e — Enter value of expression in storage

Control of code generation

EQU ~— Equate label to operand field
PROC ~— Procedure definition
END ~— End of procedure or assembly

Control of assembly listing

UNLS - Don't list following cards
LIST - List following cards
PAGE - Start listing at top of new page

Control of Storage Allocation

Eabel RES expression

Expression is evaluated and that many storage locations reserved. Subse-
quent references to label reifer to the first storage location reserved. No
specific value can be expected in the reserved locations at execution time,

If expression is zero, no locations are reserved and label will refer to the

next location allocated in the assembly.

RORG expression 1, expression 2

The value of expression 2 is assigned to the location counter specified by the

value of eXpression 1. Storage locations allocdated under control of this

location counter will be considered relocatable,

11

T e b o g s

RGN e
: s
s
H .
5. . O
‘ . N
: v

-

AORG expression 1, expression 2

The value of expression 2 is assigned to the location counter specified by
the value of expression 1. Storage locations allocated under control of this

location counter will be considered absolute,

LIT expression

Literals generated during assembly will be assigned storage under control

of the location counter specified by expression

The AOP Assembler uses two location counters to allocate contiguous
blocks of relocatable storage. Odd numbers refer to the locatién counter
used for program areas and even numbers refer to the location counter
used for data areas. In a given assembly, both location éounters start at
zero. The appropriate counter is incremented by one when a memory loca~
tion is allocated to it. At the end of the assembly the largest value assigned
to a location counter is the size of the block allocated to it. The loader will
relocate each block relative to other blocks allocated under the same loca-
tion counter so that it winds up with two large relocatable blocks: one for
the odd, the other for the even location counter. With this in mind, the four

directives for control of storége allocation could be re-defined as simple

manipulation of the values of location counters during assembly.

12

‘‘‘‘‘‘

Data Word Generation

(label expression

The value of expression is inserted in storage under control of the current
location counter. Whenever the assembler detects a non-alphabetic char-
acter as the first character of the operation field, that card is treated as a
data word generation card. The value assembled into the location can be
referenced by label. The form 0 + name can be used to generate a relo-

catable address as a data word.

Control of Code Generation

r label BQU expreséion

Label is assigned the value of expression.

It is often desirable to write an assembly program in such a way that the
resultant program is parameterized. That is, the program will do its job
for any of a wide range of parameter values. The size of a buffer or a
particular I/O device number, as in Figure 2, might be a parameter. The
EQU dir¢ctive provides a means Whereby the ‘parameter value can be en-
tered at assembly time. A new program could be generated for a different

parameter value by simply changing one EQU card and re-assembling.

(abel PROC

Begins a procedure (macro) definition. References to label in the operation

13

field of an instruction will cause insertion of the procedure at that point in

the coding,

Programming time can be saved or operation mnemonics redefined through

use of the PROC directive, When the pragrammer writes

label A,B,C

for example, and has previously defined a procedure using the PROC control

card

(label PROC

followed by: LDA LABEL(0)

ADD LABEL(1)
STA LABEL(2)
END
the code generated by the assembler is as though
LDA A
ADD B
STA C

were written. Coding time is saved by putting commonly performed se-
quences of coding in PROC's as it is easier to change one PROC than several
similar coding sequence's; scattered throughout a program, If th‘e} program-
mer prefers the old assembler mnemonic IGZ (for ic poéi‘tive) rét’her than f N

\

the new standard instruction mnemonic, TAP (for test accumulator positive),

the proc

14

e iy s

HEEHE / PR SO 1t

ati |

RN

IGZ PROC
TAP
END

will allow him to use IGZ in the operation field rather than TAP,

(END

Terminates a procedure definition or a program.

Control of Assembly listing

(UNLS

Terminates the normal assembly listing until a LIST card is encountered.

(LIST

Continue the normal assembly listing.

PAGE

™

Continue the normal assembly listing at the top of the next page.

Relocatable Loader

The assembler produces relocatable code and data except when it encounters
a directive, such as AORG, which uniquely specifies where this code or data will
be located, This means that code or data addresses are relative to the beginning

code or data address assigned by the loader such that programs and data sets

will be automatically stacked in core without overlap and without unused storage

locations. The beginning bias for data and code is presently 210 and 4000 octal

15

.,M.W.,,A.W"51..,,..
R e S o AT

e e

S

e

respectively, where locations 0-207 are used for interrupt storage, and 4000
octal is the mid~point of a 4K memory module. As will be seen in the control

card description, these starting biases may be altered.

Figure 2 shows the assembly of a program for inputting data and a sub-
routine for adding up the valiies input. Figure 3 shows how the loader will
relocate these programs in core while Figure 4 shows the loader printout from
which Figure 3 was derived. Making all programs relocatable is a great ad-
vantage since changes in one program do not affect the others. The loader

resolves all undefined references at load time automatically,

Another feature of the loader is that a binary tape can be built containing
many assembled program segments, Any or all of the assemblies (maximum

of 25) can be selectively loaded in the order they appear on the tape,

Control Cards

All control cards must have a ; (11/8/6) punched in column one. The first
fields of the control statement may begin in any column after column one. Pre-
ceding blanks are dismgérded. Thereafter, one or more ‘blaxiks are used as
delimiters. No control statemént can be continued onto a second card, Anywhere
Mb_e_z_' appears, a decimal radix will be assumed unless OCTAL is specified;

i.e., 11is 11__, but OCTAL 11is 9_ ..

10 10

16

P LARREL S L
. .
©

il
S Y

YAady ‘eunnoaqns e pue ‘LAJdNI ‘werSoxd urel € jo A[quiessy °g omSiy

YYNL40S ¥OSSIJ0nd QNVOB-=NO HOJ ¥3IAVE

, ‘ 1NaNl avel
*A399v14d SINLT 2 *9N141SIT 3¢ ON3
200000 900000 0
900000 SOC000 (1]
000000 »00000 0 n
100000 £000090 0
000000 200000 0 n
N3 °el
ANdNT NI NCTL2NMISN] UNe IHL AR oSN INY SANGR QAL ISIHL d01+0 p00B00 100300 O 21
b { S3y sy3q4av 000000 O 11
tos ‘o1
doo NYR 9000 0 29 £00000 1 ‘6
WL ¥I4INR LXIN WNS o *aav NQQ2 0000 1 SO ¥00000 1 ‘e
§¥300yv nyg .. 0000 0 29 %00000 1 *e
INvODt iR 5000 0 2¥ v00000 1V ‘9
ATpu3SSY SIKE NI A3INT143INN 3INY dELS NV 1¥VIS (d0iS) 3xa »000 0 22 £00000 ¥ °s
X3INT INJUANINT (28] Ydy 4801 £000 0 20 200000 ¥ ‘v
1NdNT INTIVA S¥T14 QVRD o *val 0000 T 12 00600 T i
H344N8 40 SSININY sNVIS 9L XINNT 135 (1uv1S) xgv doi 2000 0 »S 000000 T 2
(1)s °1
¥0SS3J08d TuveENG 3IHL ¥0J HNINAN3SSY) mu
N30QVY 18M3ISSY ¢
*1393v1d SANIT T *9NILSIT 40 ON3
100000 £00000 o
100000 900000 0
100000 S00000 0
000000 200000 0
N3 L
T s34 £00000 © 9t
NVHA+0 XHD 200000 200000 0 °si
SNCIIINTAIN NYNNFIYI NV dQLS ANV 1UVIS T <3 «d91s 100000 O *»l
1 <3y sf¥V)S 000000 O *£1
to)s *2i
17 000000 010000 ¥ 11
AJBRISSY STHL NI OINTIIANA ST 300V wagny (ThT:] 0000 G 90 <£00000 Y n. ‘o
(dooT) a8 Z0G0 0 Zy 300000 T *s
SSIANNTY JOIS ISNIVOY XIANT 1§3) (d01S)y 3I3IxL 9000 0 22 S00000 1t ‘e
¥30NI §NIUININI tr) b (11 S000 O 20 »00000 1 W4
M3344NS V SINY VIVE 31 JAOH 0 *vig 0000 T 19 £00000 1 °9
L10dNT 1200 viva SHY SNIVEINGDY TeXHD T+XW) Ya" £000 0 02 <00000 ¥ °s
HIAUNAN FTTAIG SNIVINGD XHD XM 4dY 4001 2000 0 9¢ 100000 1 ‘y
SSTHAAY JAY¥LS ANINIVINGD IVHILID QYO (LuvES) a9y »00C 0 »S 000000 T ‘e
(s 2
HILIUYNVL ¥V ST NVHI 2 no3 NYHI 200000 - ¢

40SSII0Wd QYVOBNG IHL ¥GJ ¥I1aWISSY -
1NdNT 378W3SSY ¢

-
OCTAL LOCATION OCTAL LOCATION
LOADED ASSEMBLED
000000 INTERRUPT LOCATIONS
000
000210 DATA 0000OCO
(INPUT) |
00021 7 00000 7
000220 : 000000O
DATA
(ADUER)

000226 00000 6
000227 DATA 000000
(OTHER, PROGRAMS)

[)

004000 000000
CODE
004010 (INPUT) 00001 0
004011 000000
CODE
004020 (ADDER) 000007
0040 21) 000000

CODE
(OTHER PROGRAMS):
{

@
[)

Figure 3, Core Image Diagram of Automatic Code and Data Relocation

S,

Hoo

B TRt di)

o

AL Gt

IR

. ;- . b oo
N] s , ¥
. ’
Coa : . L “; . »
. L] J;t & 2
. N .“’*'{ . . €]
o v Y
""’ =, . - o
—— T f S . <y
T - RN 13 A
. A e i . 3 5
i . LAY 4 $. [v
. . s : e + x
. N .
LY -~ 3
A . k& ¢ L
¥ TRA ,'3.; -
" oY Lk]
A o N
% , i
. o - 5 t,
T ‘o KFRes L]
. Centy 4 .
. -, » e d e S
: * P oes o, N .
; ~om
2 £ ' ‘

PREAMBLE VALUES FOR INPUT
DATA LENGTH
CODE LENGTH
PRESET LOCATIONS
LITERALS
INDIRECT ADDRESSES
EXTERNAL DEFINITIONS
UNDEFINED SYMBALS
NOUNS

S te) Gl O D

EXTERNAL TEFINITIONS
START
STeP

PREAMBLE VALUES FOR ADDER
DATA LENGTH
CODE LENGTH
PRESET LOCATIONS
LITERALS
INDIRECT ADDRESSES
EXTERNAIL DEFINITIONS
UNDEFINED SYMBOLS
NMOUNS

& NNl N

EXTERNAL NREFINITIONS
ADDER

CORE LIMITS ‘
CATA 000210-000405 s CODE 004000-004020

STARTING ADDRESS 0040600

CORE ALLOCAT]ION

INPUT
-~ DATA

. CedE
ADDER
DATA

C8DE

END OF ALLOCATION

000210~000217
004000-004G1i0

000400-000406
004011-004020

Figure 4. Loader Output for INPTIT and ADDER

19

L

PR R N PR ON L ede

.. Y e
RS- L
»

(; DATE characters

This card causes the first 12 nonblank (blanks are delimiters) characters .
to be printed as a part of the heading printed by the major functions (as-

sembler, loader, etc.). For example, 7/4/8/,1400 could be used for date

and time on the listing for the current run. Note the use of a comma rather

than a blank as a separator for date and time,

/

; ASSEMBLE name (NOLIST)

This card causes the support software executive to call in the assembler to
assemble a program deSignated by name and to inform it of the options de-
sired by the user. The output of the assembler is accumulated on the
assembly tape. Only the first twelve characters of name are retained, any
remairing charactérs are ignored, There must not be any blanks inter-

spersed in a program name. The NOLIST field is optional.

Options: NOLIST — This option directs the assembler to suppress its

" | printout. If this option is not present, then a complete listing of

the program being assembled will be given. o

(s MEMORY SIZE IS number BANK(S)

This card designates the memory size in bank units i;o be loaded, simulated,

or listed. The variable number must have a value from 1 to 16 (a bank is

4096 words). If this control card is missing, a memory size of 4096 words,

or 1 bank, is assumed.

20

Py S DDA A

Lgp—y

program name 1, program name 2, . . . , program name n

s LOAD $ | B |

" s LOAD program name

F; LOAD program name DATA AT number AND CODE AT number

The ; LOAD program name card causes the loader to load the entire

assembly tape into core and then writes the Advanced On-Board Processor
core image onto the absolute coire image tape. The loader will assume a

starting location of octal 210 for data.

The assumed starting location for code is one half the memory size. Thus
when an 8K memory is being loaded, a starting location of octal 10000 is
assumed for code, whereas octal 4000 is assumed when Ioading a 4K
memory. The relative origins assumed by the loader may be altered by

using the optional ; LOAD program name DATA AT number AND CODE AT

number card. Care must be exercised to prevent data words from over-
lapping a bank of 4096 words. For example, if a program is loaded with

data beginning at location 4000 and there are 100 words of data, then the

first 96 words must be accessed with a page register setting of zero, and
the remaining four words must be accessed with a page register setting of
one. This problem must be taken into consideration by the programmer

pr;ior to assembly.

21

The ; LOAD §$ indicates selective loading to the loader. The program names
listed on the following cards will be loaded from the assembly tape. There
must be a blank in column 1 of the program name cards but as many cards
as needed may be used. The number of specified programs is limited to 25.
The order in which the specified programs are loaded is the order in which
they appear on the assembly tape. The rélat-ive origins assumed by the
loader during selective loading may be altered by using the optional ; LOAD

$ DATA AT number AND CODE AT number card.

r ; WAIT number

This card will cause the OBP loader routine to pause. ThlS option is in-
cluded to allow the XDS 920 user to switch assembly tapes to be loaded.

The value of number should be the count of assembly tapes to be loaded.
The number of pauses will be one less than the value of number as there

will be no pause when the last assembly tape has been loaded.

; REWIND ABSCLUTE CORE IMAGE TAPE

; REWIND ASSEMBLY TAPE

Either of these cards causes the specified tape to be rewound. The as-

sembly tape should not be rewound between an assemble and a load functioi..

22

sl

rat e

" XY PR T e
DRSNS SR R LIPS)

%
RS

Fyerra g e

R 7 0

APEIPRNEN B o 5.5 5% bRl SN

PRI X I R SN

Sid 2 g S L R e A)

f ; PAUSE

This card will cause the support software executive to pause, This option
is included to allow the XDS 920 user to switch tapes, save tapes, or mount

tapes if necessary.

(; END OF FILE ON ASSEMBLY TAPE

This card causes an end-of-file record to be written on the assembly tape.
This is to be used if, and only if, the file of relocatable programs on the

tape is to be used at a later time.

r . SAVE PREVIOUS ASSEMBLIES

This card causes the support software executive to space down the assembly
tape until an end-of-file (EOF) record is read. The assembly tape is then

backspaced over the EOF record, thus positioning it for further assemblies.

(name name name

/ . DELETE $

" DELETE name FROM PREVIOUS ASSEMBLIES

This card causes the support software executive to search the assembly

tape and delete the assembly specified. All other assemblies are preserved.

The end-of-file record is removed, and the assembly tape positioned for

23

i o e e

T R .
& i .

further assemblies, If a routine is to be reassembled with an assembly
tape containing a previous assembly by the same name, the above card

must be used to remove the old routine before the new routine is assembled.

The alternate form DELETE $ causes the program names listed o the
following cards to be deleted from the assembly tape. These cards must
have a blank in column one, up to 25 program names can be specified.

The names need not be in any particular order. As many cards as desired

may be used,

; LIST

; LIST THE NOUN TABLE (ALPHABETICALLY NUMERICALLY) |

This card causes the support software executive to read in the absolute

core image tape prepared by the loader, It then will list the complete symbol
table of all the loaded programs. The order of the two options is irr*‘elevant
and either one or both may be omitted. If both are omitted, then numeric

and alphabetic lists will be given. Both lists may also be obtained with the

abbreviated control card ; LIST.

Options: ALPHABETICALLY — This option causes the alphabetically

ordered symbol table to be printed.

NUMERICALLY - This option yields a printed list of the symbols

used ordered on the relocated addresses assigned to the symbols.

24

i, TR

SE-: SRUI NS - WA

A A
§ VNS TN

RREL IR SEs 2 b Bt 9wy

T e e
PRESRT SR

VA
PRI

8 DR SRR S LT TTRERRE P PN AIOEF et S € T L 1

LR

(; LIST THE ABSOLUTE CORE IMAGE TAPE

This card causes a coriplete listing of the absolute core image. The core
image, allocation table, and symbol table is read from the absolute core
image tape produced by the loader. The allocation table is then used to
list data and code for each program segment. Data is listed in an octal
format. Code is listed as the octal bit pattern for each instruction, with
decoded mnemonics and labels as they were defined in the program. All

indirect instructions are flagged with the indirect address.

(. CHECK PRINT number

This card causes the support software executive to turn on debugging flags
within the AOP software package. This control option is provided as an

aid in maintaining the AOP package and is not normally used,

Simulator

The AOP Simulator reads the absolute core image tape, created by the

loader, into core and simulates the execution of that program. When a HALT

instruction is encountered, the simulator prints out statistics concerning simu-

lated running time and frequency of instruction usage. By means of various
control cards, the simulator may be made to give selective tracing and/or
dumping in octal. Control cards are also available for specifying periodic

interrupts, simulation of input-output from the I/0 unit, and such miscellaneous

25

St s s R
TR - Y
il e

it

QLA A A R A

oy GO

§ 2oy
LAES Zoa Byl

v
]
by

%

capabilities as halts treated as no-ops and restarting after a halt has been
executed. During execution the simulator may, for one of several reasons,

enter a routine called the pseudo console which allows the user to examine and

alter the contents of simulated registers or memory locations. .

Interrupt Simulation — At the completion of each simulated instruction, the
interrupt processor determines whether any of the 15 external interrupts ap-
peared during the simulation of the previous instruction, When an interrupt
appears, the appropriate bit is set in the ISR (Interrupt Status Register). If the
interrupt cannot be honored immediately, it is saved. If an interrupt is cur-
rently being saved and another of the same number appears, it is lost. Inter-
rupts‘ are not honored immediately if they are locked out by the LSR (lockout
status register) or the IOR (interrupt override register) or by a higher priority
pending interrupt. When an interrupt is honored, one instruction of the interrupt

routine is executed before any other interrupts can be honored.

Input-Output Simulation — Two kinds of I/0 are simulated, program controlled

and cycle steal. Program controlled I/O occurs when an OPT (or IPF) instruc-
tion is simulated, The content of storage at the effective addre'ss is used as an
I/0 unit specification and data is output from (or input ‘to) the effective address
plus one. The actual response of the simulator varies according to the charac-

teristics of the I/0 unit.

26

R P I -

R S
IS S AN

[t SN

- oy

AT AN

TR,

S Tk

Srean ok

= v et el e

i
b
]
#
!
N
ol
%
X
1
i
B
od
%

If the operation is illegal on the requested unit, the message:

* ERROR ILLEGAL IO REQUEST unit # address type of operation

is printed. Type of operation is 1 for cycle steal, 2 for IPF, 3 for OPT, If
an input operation cannot be completed due to lack of data, the message:

OUT OF DATA FOR DEVICE unit #

is printed. No error messages appear if the operation is successful.

Cycle steal I/0 occurs when a request is entered in the AOP's Request
Status Register, RSR. The simulator allows the user to control the timing of
the first request on a channel. Thereafter the device characteristics coded

into the simulator determine the rate at which requests are generated.

When a cycle steal operation is simulated the simulator prints:

CS 1/0 ON unit # TO address AT time .

The ILLEGAL I/O REQUEST and OUT OF DATA error messages will be printed

if appropriate to the cycle steal operation.

When a cycle steal I/O request enters the AOP's Request Status Register,
RSR, 1t contends equally with all other requests fqr memory access, The dia- , 3 4
graﬁ of Figure 5 shows the activity in depail.. As shown in Figure 5, not éil |
cycle steal I/O requests result in the tran.sfer of a data word to Q‘r from

memory.

Description of Dumps and Traces — A dump is a printout of the contents of

memory and generally comprises two parts: data and code. By means of the

27

PO Y

g

e - [7 e i e oy
| CPU REQUESTS | | CPU DECIDES WHAT |
MEMORY Access | | TO DO NEXT] .
b e I
sTART | : t RETURN
] .
' A GIVE THE
CYCLE STEAL
OPERATION JUST CPU ACCESS
COMP?L‘ETED a TO MEMORY °
YOI E STEAL NO
DECREMENT BLOCK P
REQUEST IN THE LENGTH BY | '
? (BL —1~BL)
YES :
SELECT THE
REQUEST WITH THE "
HIGHEST THE BLOCK™ NO :
CYCLE STEAL \ 1 LENGTH EQUAL L
PRIORITY TO ZERO _~ Y
3
7 IY.Es -
DELETE CAUSE BLOCK X
THE REQUEST LENGTH (BL) EQUAL o
FROM THE . TO ZERO INTERRUPT. e
; SET ASR BIT TO i
RSR PROHIBIT FURTHER
REQUESTS ON THIS
¥ | CHANNEL
e :
FETCH THE. |
BLOCK LENGTH STORE THE BLOCK
(BL) FROM LENGTH. FETCH THE
MEMORY ADDRESS FROM MEMORY.J
, INPUT OR OUTPUT TO o
OR FROM THIS ADDRESS. :
INCREMENT Lo
STORE THE ADORESS M
Is SET THE ASR BIT — RESS. A
THE BLOCK YES | TO PROHIBIT | v
LENGTH (BL) =0 FURTHER REQUESTS \ % ,
? ON THIS CHANNEL 5 Y

Figure 5. AOP Memory Contention and Cycle Steal Operations

several simulator control cards, the user can control the dump to suit his
needs, A dump is printed in octal. The entire memory may he dumped or just
a specific segment, A dump may be printed upon simulation of a HALT instruc-
tion or at any specific point in the program execution, Likewise a trace, the
printout of register contents during execution, has almost as many optional
forms as the dump and is also user controlled to suit specific needs. Examples
of dumps and traces with their various columns explained are contai. . in the

following paragraphs.

Octal Dump — An octal dump is a printout of memory within specified limits at

a particular time. There are two columns of initial octal addresses and 16
columns of octal code or data words (refer to Figure 6), Starting from the left,
column 1 and column 10 list the initial addresses of the following eight memory
locations. Each set of eight columns (columns 2 through 9 and columns 11
through 18) presents a printout of the contents of memory at that particular
location. The entire dump is broken into several parts, the first of which is
always a printout of fhe contents of the interrupt locations. The remainder of
the dump comprises a printout of the contents of memory at the locations occu-
pied by the various programs and subroutines located within the limits of the
‘dump. The name of the program or subroutine is given as a heading and is
followed by the initial and final addresses of the segment of meniory which it

occupies. Each program or subroutine is dumped in two parts: data (an okctal

29

.“,&,A.MTW,.W
PP

Lo

! .

.

R A e N 4 e

- -

oooooo

000000

gnnoto
aco0so

apo0oo

000080

Taor00

100000

-

fnooo0o

nooooo

agcono
PO»D29

n00000

noy02g

112000

112000

ogocce

aoalcn

aogfac
sDyC2e

oqacce

cOpC2y

100CC0

100Cce

S A

egoano

ogpang

fopano
209022

ooonno

p0p022

arzang

ayzaono

gocooo

gcoron

goonoe
£0pn20

aogngo

£0y020

000009

elutolafel-]

Qo0ago

cnoooo

000000
gooore

gaoooa

goootre

200000

200000

gcanng

angann

elodelglals]
20v0mc

ocoaen

20p0sc

goooang

goonono

dumq 12300 "9 9amSiy

Q00000 OoeNPGO

G00000 OTv000
000002 OcOQC
000000 010900
Q00009 orvyo00
000000 Ot0y00
Q00000 0v2000
000000 012000

ocgoog

0coaco

Q00390

009030

¢o0Goo

00r090

200380

Qataoo

000000

£Iny00

Qunoo9
L1202y

£ 10907

L12029

000000

0a0000

000000

Z10¥0C

900000
912022

£10»00

912022

000003

0o0ccac

SoeM e s v N
Dbt S-calhe & 28

0000QC 00CCO0 OUOOJG VLOGOC
N9L93¥ 230d NI
112300 100000 0i2600 7T10y00
NOI93N vivd NI

000000 000009 0OUCO0J0 AGOGCOHN
§12020 000019 £i2002 21209¢

020Y00-TT07CO [3062)
112000 120009 012600 T10y00
907000-007300 (vivdi
s1202C 000919 £12002 212097
G10»00-500v00 (30031
000020 000000 0UQGOQ AGOJUG
£12000-072000 (viva}
000300 00000 0LOOGO 90090

90p0c9 320y00

380D InInlvedy
0I0puC GOeu0D

3490 ONINIVR3Y

90y0c9 0COpO0

ryl20»s 200pCO

y330V

0TCYu0 GIpuoU

@3aanyv
»120rs 300v02
Lnanik
0003u0 gZ2uao

1nant

000040 Q02ulo

SNCILYI0T LJNMEINT

30

listing of the data words and their addresses) and code (an octal listing of the

code words and their addresses).

Octal Trace — An octal trace is the printout of register contents during execu-

tion. The following explains the various trace columns (refer to Figure 7).

Column

IC

INST

OPERAND

[EAD]

AC

EA

ICDO

[IC]

Explanation

This column lists the value contained in the Instruction Counter
for each simulated instruction. The words that appear in this
column but stand alone on a line are the labels used in BRU,
BRC, BRM, TIN and EXIT. instructions.

This column gives a 4-letter abbrev1at10n of the instruction just
simulated.

This lists the first twelve letters of the operand name used
with the instruction if the name is available.

This is a printout of the value contained in memory at the effec-
tive address after each simulated instruction,

This column shows the value contained in the accumulator after
each simulated instiruction.

This colunin shows the value contained in the extended accumu-
lator after each simulated instruction.

This lists the value contained in each of the following one-bit
registers: interrupt override, earry, demsmn, and overflow
after each simulated instruction.

This is a printout of the contents of memory at the address in-
dicated by the instruction counter prior to simulation of each
instruction, This column provides an octal listing of the instruc-
tions executed.

This lists the value of the page reglster adter each mmulated
instruction. :

31

P
to

LY

ﬁ@‘?mwg;s;,. v

R

L

uwnoeoo

ot arco
000000
oconoo
000000

anoeao
an0coo

acoroo
ooncoo
oooeno
aaocao
oeoeoo

000000
oroeno
gaoacno
aoanrco
onoeao

agoeoc
ooorao

000000
onecoo
aoocaa
anocoo

ogoeoo

geoaeo
onoecoo

esy

(o elalsli] |

cecon:
ceceot
cecoot
ccroor

ceceacy
corool

corgot
ceeqer
cceearn
qsicieing §
cceeet

ccroos
caront
coeoex
ccrooy
cceonr

cecocet
coranr

{ccoor
cgeeot
cceaet
cacaoy

ceeaeo

£aecodo
cacoaa

¥s1

nroooo

neo0co
argo000
onooco
aecoeo

angoao
an0000

anrgoco
nnoooo
angooo
aroooo
aroooo

0neoaoo
anoogo
nonoooo
nrgooa
0noson

npeooo
onoooo

angooo
angooo
0noooo
nnoooo

negoeo

aeoocon
nroooo

¥§7

e

nzt
olt
1
o0t

[2o} §
not

»6
n6
1)
28
o/

4
*q
ng
og
’c

.y
op
ng
LY
22

o1
ny

WL

..

RN AP

ot e

argeno

naoonn
ogaeng
ooorng
onogap

ocoonn
ongonng

oaoonn
ogonnn
490000
gconnp
oconna

oooenn
ocoeng
anaoenn
aronna
anonnn

000000
oagonn

000000
(alalelodalo]
ocoeon
aconnn

oagoonn

oaGonn
o0o00nn

e

coo0on

00y 00D
c0p00ND
#0000
£0y000

909 0G0
112000

cQy 000
20y000
£0pv000
012000
20»000

0or000
£12000
912000
c12000
112000

£12000
212000

212000
at2000
c12000
c12000

£12000
212000
?12000

av3a

(o R] 0000 Q=000 -0 o000

-0 00

o000

9ovil, 18100 ‘L 2anSig

212000

212060
2t1eoco
212000
212100

112000
1120G0

132000
112000
112000
012000
012000

A kA Y)
212020
21200C
212000
112000

112000
112000

112G00
112000
1120CO
arz2n6o

oree2o

G12000
Qreood

X3ant

no

00
8]e}
00
g]e]

0o
Qo

co
419}
no
(8]]
00

Qo
QY
no
00
0o

00
no

oo
co
00
00

a0

Qo
oo

d

3009260

C3dp02s
sGv0D2Y
y0p022
£0v020

3Gp029
ogoosce

sGvD2y
pav022
£ovceo
oonote
20v0pS

Ca®090
L1eo2y
or¢ceze
c1e020
000019

gre260e
212094

L7020
9t1¢0n22
12020
gocote

£12002

21209l
LA XA} 2~

(a2t

00371

ocoor
oooT
oGOt
0001

oooTt
00aTt

00071

c1ov

goor
ooor
coor

goo1t
oeat
60Ot
Qoart
ooct

goor

0001

0001
crot
CGa1t
0001

00071

coor
ooort

Qad!

000000 CO3CCO 000000 174 010700
=) H3uayvy
000000 0000U3 0T0p00 ¥2Uav. N3 910r0u
000000 000000 [I0900 Ne89 28 SI10POU
0G0000 000000 112000 IxL piouvlu
00000C 00°CGG 130900 xdv £10¥Cv
deB?
00o0UNC 000000 £10900 4987 ny= Decvou
000000 000000 000000 agv /10v0u
NI
000900 GGCOQ0 £7T3p00 NUC9 Jdx Ggl0v0u
0G0000 00CG00 172000 3x1 pl0OP0u
000000 003000 100000 xdv £10vQu
G00CO0 00GOOO 0I0000 va! 21avau
000000 00QC09 012000 Xat 11090V
43406V
000000 00060G9 0T0ov00 Y300V Wd L00P0U
000000 002009 106900 du€l ¥4 900v0u
000000 000009 112000 XL G00P0u
000000 000009 130000 xdv pQOPOU
000000 C00OO09 000000 V15 £00v0V
112000 £00P00 L9V NGIIVIGIA 12313%d 30VHMLS T
0G0000 20C009 000009 XH3 v31 200904
000000 000009 2900600 XKD 4d! T10090u
dwf
000C0Z 003009 TOOPOO d&8 Jd® 900vCy
go00C00C 0079G09 112300 27x1 GqO00V0V
000000 GODC29 100000 Xdv p00¥Y0u
000000 02300C9 000C00D vi§ £03v0QU
CT120020 ¢€00PN0 1¥ NQIIVIGOIA 10310¥d 39Vx¥wiS
000000 000009 000009 XHO v¥@ 20078¢
c0000C 002000 200000 xH3 441 100POU
900000 000000 012000 X3t 00Qvou
v3 v tava) ANY N3G 1Syl - 2l

Bl

(B VR.EL
AT

)

A

e

ZEaed

A
i
i
fie
*. 4
e
G|
4
o

iy

¥

Column

INDEX

EAD

SLR

TIME

LSR

ISR

ASR

Explanation

This column gives the value contained in the index register after
each simulated instruction, For each instruction, the value
listed here is a one if bit 13 of the instruction contains a one,
thus designating use of the index register to determine the effec-
tive address.

This gives an instruction-by-instruction listing of the contents
of the effective address register. The content of this register
specifies the memory address of the operand.

This column lists the contents of the storage limit register after
each simulated instruction.

This column presents the cumulative total time in CPU cycles
for the execution of instructions,

This is a listing of the octal interrupt number being processed
if any interrupts have occurred during the simulation,

This column shows the octal value of the lockout status register
at the end of execution of the current instruction. .

This column shows a pending interrupt request by setting the
appropriate bit to one. Interrupt 0 is the LSB of the octal value.
Interrupt 4 would be indicated if the ISR were 000620. An inter-
rupt is pending, for the purposes of this column, if the IOR is 1
and the interrupt is not number 0, if the corresponding LSR bit
is 1, or if execution of the one instruction allowed after an
interrupt occurs is taking place.

This column shows the contents of the activation status register,.

Simulator Control Cards

The format for the simulator control cards is the same as the format for

all control cards. Column one must contain a semicolon (an 11/8/6 punch) and

columns 2 through 80 contain the control information. One or more blankg are -

used as delimiters. No control function may continue onto a second card.

33

RN

The control cards for the simulator are grouped into the following six
categories: starting, tracing, dumping, interrupting, inputting and stopping

(and/or restarting).

To simulate a previously loaded program, the user must first supply a
simulate control card followed by any number of simulator control cards to
define the kind of simulation desired, followed by a start control card. No

non-simulator control cards may intervene,

s SIMULATE

; SSIMULATE name

This control card causes the simulator to be loaded into memory. The
simulator sets the instruction counter to the load location of name, If
name is omitted, then the instruction counter will be set to the normal,
initial load location for instructions., The simulator is then ready to inter-
pret any remaining simulator control cards. This card must be placed

between the LOAD control card and the START control card.

; START

; START AT number or label

ThiScOntrol card, or one of its optional forms, should appear as the last -
" control card. It causes the simulator to commence simulating at the loca-

tion specified by the SIMULATE card, The optional form, where number

34 oo

4

C o e

or label is specified, causes the simulation to commence at the location

specified,

[; TRACE OCTALLY

L4

This control card causes the simulator to print tracing information in the

octal mode for each relocatable instructicn simulated,

r; TRACE OCTALLY FROM label or number TO label or number (number TIMES)

This card causes the simulator to print octal tracing information for each

instruction simulated between the limits specified by label and/or number.

If number TIMES appears, trace information will no longer be printed after

the segment between the limits specified has beer encountered number

times,

(; TRACE OCTALLY PROGRAM name (number TIMES)

This card causes the simulator to print tracing information in the octal

mode where the limits of name are taken from the allocation table.

If number TIMES appears, trace information will no longer be printed after
the segment between the limits specified has been encountered number

times.

S T . o i,
. L N . ot M

35

[
o Ak N
Lo
4 I
i |

i

r ; DUMP OCTALLY AT label or number

This card causes an octal dump of the entire memory when the specified

location is accessed (either code or data).

; DUMP OCTALLY AT label or number FROM label or number TO label
or number

This card causes an octal dump of the segment of memory located within

the limits specified by the second and third label or number when the loca-

tion specified by the first label or number is accessed.

(; DUMP OCTALLY AT label or number PROGRAM name

This control card causes an octal dump of the program specified by name,

where thé limits of name are taken from the allocation table, when the

location specified by label or number is accessed.

(* DUMP OCTALLY AT HALT

This control card causes an octal dump of the entire memory at the time

of simulation of a HALT 'statement.

or SECONDS STARTING AT number MICROSECONDS or MILLISECONDS
| or SECONDS

/s INTERRUPT number EVERY number MICROSECONDS or MILLISECONDS

This card causes the specified interrupt (legal interrupts are 0 through 15)
to occur at the spécified interval beginning at the specified start time. The

36

BT T TR e

user must specify the time units of the interval length and start time in

i microseconds, milliseconds or seconds,

; INTERRUPT number EVERY number MICROSECONDS or MILLISECONDS
or SECONDS

This control card causes the specified interrupt (legal interrupts are 0
through 15) to occur at the specified interval beginning at time zero. The
user must specify the time-units of the interval length as microseconds, !

milliseconds, or seconds. !

; MAXIMUM TIME IS number MICROSECONDS or MILLISECONDS or
SECONDS

This card will cause the simulation to cease at the specified simulation

time. If this card is omitted, then a value of 5 milliseconds is assumed,

(;s MAXIMUM INSTRUCTIONS IS number

This control card causes the simulation to cease after the number of

T S SO T
e it

instructions has been executed. If this card is omitted, a value of 500 in-

g e e

structions is assumed.

Inputting Data

(3 INITIATE CHANNEL number AT number MICROSECONDS dr
MILLISECONDS or SECONDS ' '

37 /

Byt I -G N
i S

a4

This control card causes a cycle steal I/O request at the indicated time
over the indicated channel. Channels are numbered from 0 to 15. Further

cycle steal I/0 will occur under the control of the simulator's I/0 device

routines. | .

data data data data data data $

; DATA FOR INPUT DEVICE number

This is the control card used for inputting data, Data may be input over
sixteen different input units numbered zero through fifteen. A total of
218 data words may be specified. Immediately following this card are the
cards of input data for the spécified input unit. ’As many cards as needed - Y
may be used and the format of these cards is free form with one or more

blanks used as delimiters, Column one must be blank., The last data word :

must be followed by a $.

During the simulation, when the specified unit is referenced in an input

B g s s o s A 2 e e s ot gt s oo

operation, the data words are input one word per request until the data

buffer is exhausted,

Stopping and/or Restarting — The normal means of ending a simulation is by

simulating a HALT, The pseudo console then gains contrcl and the simulation

i
i

can be terminated by typing STOP. Any remaining control‘%v;gards will then be

honored.

38

P

(; NO HALT

This control card causes all HALT instructions to be simulated as NOP

instructions,

(s RESTART AT HALT

This control card causes one HALT instruction to be simulated as a NOP
instruction, There must be a RESTART AT HALT card for each HALT

that is to be simulated as a NOP instruction,

(: STOP AT HALT

This control card allows the HALT statement to be simulated normally.

Its main puipese is to allow proper page skipping between multiple jobs.

Pseudo Console

Once simulation has begun, that is, once a START Control card has been
read, the user may gain control by setting breékpbint 2. The user can then
perform the following functions through the typewriter on the XDS 920. Only
the underlined portions in each paragraph title need be typed. Carriage return
is indicated by CR. Whenever the user types something the pse;xdo console

routine does not recognize, the message WHAT is printed.

39

DISPLAY CR

By typing DISPLAY CR the user may then enter any of the following

register mnemonics followed by a CR. The pseudo console routine will type

the values of the requested register along with several associated registers.

Mnemonics are:

ACC
EA
X
SLR
IC

ov
ASR
LSK
ISR
IOR
EAD

ENTER CR

Accumulator

Extended Accumulator
Index register

Storage Limits Register
Instruction Counter

Page register

Carry register

Overflow register
Activation Status Régister
Lockout Status Register
Interrupt Status Register
Interrupt Override register
Effective Address Register (not a hardware register)

By typing ENTER CR the user may then type any of the register mnemonics

used for DISPLAY fdllowed hy a 9}} | Tile user then types in up to 6 octal digits

followed by a CR. The pseudo console routine will enter this value, right justi-

fied, into the designated register. For all registers, except the ASR, the user

enters the value he wants in the register. To enter a value in the ASR, however,

40

4 L s Ao
N 11 N
»

PO TST—

5
%
.
A
i
1
;
“
§

K of

ooy T
gbﬁ L2t
e i

T g

the user supplies the address, not the value, of the word to be used to set the
ASR. This word can be set up using the STORE command and must be the same
bit configuration as would be used were the change to be made using the AOP's

OPT instruction.

DUMP CR

By typing DUMP CR the user will cause the pseudo console routine to type
out the address in the EAD register followed by the contents of memory at this
address. The EAD is incremented go that the next DUMP command will refer
to the next sequential memory location. To examine successive sequential
locations in memory the user must type DUMP CR for the first, but need only

type CR to obtain following locations,

STORE CR

By typing STORE CR the user may then type in up to 6 octal digits followed
by a CR. The pseudo console will entér ﬁiis value, right justified, into the
memory location whose address is in the EAD, The EAD is incremented and
the user may then enter another value which will be stored in the ‘lc;cé.tion fol-
lowing the last aﬁd so on. Typing a non-nctal digit causes the message WHAT

to be typed. The user may then enter another command,

41

«
i
o,
:
4

=l

START CR

Ty typing START CR the user causes simulation to commence at the

address in the instruction counter.

STOP CR

——————

By typing STOP CR the user causes the simulation to terminate immedi-
ately. The support software system executive gains control immediately and

the next control card is read from the card reader,

ADDRESS STOP CR

By typing ADDRESS STOP CR the user insures that the pseudo console wiil
gain control whenever the instruction counter contains a value equal to the octal
number typed in following this command, Typing 777777 insures the simula,tor
will not stop since 177777 is the largest AOP address. This must be done if the

user has entered an address stop and now wishes to de-activate the feature,

Summary of Pseudo Console Commands

ADDRESS STOP CR
octal value CR
DISPLAY CR
one of: ACC, EA, X, SLR, IC, P, C, OV, D, ASR, LSR, IST, IOR, EAD

then Q_Ij

42

ENTER CR
mnemonic CR

octal value CR

DUMP CR
STORE CR

octal value CR
START CR

STOP CR

Note (if the mnemonic ASR is entered, enter the
address of the word to be sent to the ASR rather
than the value).

Sample Pseudo Console Session

Lines in capitals are printed by the pseudo console routine,

PSEUDO CONSOLE

enter

ead

The user has set BP2, an address stop has been
satisfied, or an error has been detected by the
simulator. '

sets up the EAD for subsequent store

stores indexed LDL instruction at location 7276,

pseudo console expected a number

4

43

< e,

TR

ETURL N AN

i

e o e SN W

Pt Savs g

%
'

ic

SLR 777000 IC 141110 P 00 C O OV O D O

ead
LSR 000000 ISR 000000 IOR 1 EAD 007277 ’
ﬁ enter

ic

7226

ead ‘

7276

dump f‘g

007276 - 02417303 The contents of simulated memory location 7276)
are preceded by two octal digits containing dump &%
and trace codes. These may be ignored.)

007277 02627216 The user typed CR to get the nekt location.

start Simulation will now continue beginning at location %
7226, 5

PROGRAMMING NOTES .

The suppdrt software which has been developed for the AOP was aimed at !
allowing independent programming by AOP users at different locaticns. In

keeping with this philosophy, it is expected that an executive routine will be

provided by a central housekeeping group. This routine will provide an environ- -
ment within which worker programs ‘can function without being aware of details

of AOP hardware 1/0, interrupts, timing, or other workers. The items in this

44

LRy

section may not, therefore, be of direct interest except to those involved in the

programming of the executive.

Input/Output

The AOP has two modes of input/output: program-controlled and cycle
steal. Both modes can be used on any channel. For program-controlled I/0,
either the contents of the effective address+1 is output to a device or the data
from a device is input there. For cycle steal operation, there are 16 cycle
steal channels in the input/output unit which control block transfers of data be~
tween input/output devices and memory. These data transfers are independent

of program execution and the external device supplies the I/O réquest pulses.

One device is connected to each cycle steal channel, Each cycle steal
channel requires two memory locations. These 32 locations are situated at the
top of the fixed core bank of memory. The first word of each pair contains a
bldck length, the second an address. When a cycle steal request arrives from
an external device, the block length is fetched, decremented and stored. Next,

the address is fetched and the data word is either stored into or fetched from

memory at that address. Then the address is incremented and stored. Cycle

steal operations can be inhibited if the corxesponding bit of the 16-bit Activation

Status Register, ASR, is a one. The ASR is set using program controlled output -

over channel 10, See Table 2 ‘fd_frf ther (®) svstem philosophy.

45

A et e

TABLE 2

I/O System
IPF address » I/O device or channel number (0-15). .
OPT address One word data buffer

1/0 requesjt from device

[1] | 16-bit RSR
[To]] 16-bit ASR allows I/O request
Y Request taken if none of higher cycle steal priority are allowed,

cycle Location (7740 + channel # * 2)
steal

10 cycles Q _____| Block length

\\ Address . '

stores word from NN
I/0 device .

Should two or more cycle steal requests occur simultaneously, a hard-

wired cycle steal priority, which can be altered only in groups of 4 channels, is

used to select the first channel to be serviced. The cycle steél operation re-
quires a total of five memory accesses. A CPU memory access is allowed be-
tween each cycle steal operation to avoid locking out the CPU by a long queue

of cycle steal requests.

Cycle steal I/O rates as high as 105 words/second are possible, Generally, -
program control of I/O is restricted to 1) devices for which the data transfers

are program dependent or 2) very low dkata rate devices if interrupt of the pro- §

gram is necessary for synchronization. 1

46

Interrupts

There is a 16-bit register called the Interrupt Status Registar, ISR, in the
CPU which stores interrupt requests. As each request is serviced, the corre-
sponding bit in the register will be reset. There is another 16-~bit register in the
CPU, called the Lockout Status Register, LSR, where each bit indicates whether
or not an interrupt request at that level is to be locked out. A one-bit CPU
register called the Interrupt Override Register, IOR, serves to lockout all in-
terrupts, except interrupt 0, when it is set to 1. An interrupt signal sent to the
CPU causes an interrupt when the ISR bit is set, the corresponding bit of the

LSR is zero and the IOR is zero.

Should two allowable interrupts occur simultaneously, there is a hardwired
16 level priority circuit in the I/O unit (interrupt 0 is of highest priority) to
determine which interrupt request is to be serviced first. The LSR is loaded
from fixed memory lom&.timm during the execution of an interrupt or when the
CPU executes an EXIT m @ TIN instruction. The TIN instruction is normally

~ executed at the termination of an interrupt routine,

The interrupt service priority is controlled by the contents of the LSR so
that the determination of which interrupts are to be allowed can be dyhamically
changed. The one exception is that interrupt 0 has top priority and cannot be

locked out. This interrupt will be used to initiate program execution.

47

P

el -F(Wn;] e PRI PR

© e

When an interrupt is received by the CPU, the instruction being executed
will be completed and then an autoinatic sequence is entered in which the
address of the next instruction to be executed, the contents of the storage limit
register, the miscellaneous registers (P, D, OV, and C), and the current status
of the LSR are stored in a bank of four memory locations (NO to N3). Then the
same registers will be loaded from the four memory locations N4 to N7.

Figure 8 shows the location of the register values in the 8 word interrupt area,
It is the system programmer's responsibility to define and load locations N4 to
N7 (where N is the interrupt number) with the desired LSR value, miscellaneous

register settings, storage limit setting and starting address of interrupt

routine N.
Word Bit 18 17 16 15 14 13 12 11 109 8 7 6 5 4 3 2 1
0 OLD LSR VALUE

I A
i PAGE p [Nov | 2

. ——
2 OLD LSR
3 OLD INSTRUCTION COUNTER
4 NEW LSR VALUE
———,

5 NEW PAGE D ov | c
6 NEW LSR
7 NEW INSTRUCTION COUNTER

Figure 8. Interrupt Locations

Pl

48

LN

At the conclusion of interrupt routine N there must be a TIN instruction
which will result in returning control to the interrupted program and restoring
the LSR, storage limit and miscellaneous registers, Of course, any addressable
register which may be altered during the interrupt routine should be saved upon

entering and restored upon leaving the interrupt routine.

Program Linkage

Within a single assembly, control is normally transferred by a BRU
(LABEL) or BRC (LABEL) statement, When the name LABEL is defined to the
assembler, the literal location (LABEL) will be filled with the correct relocatablé
address, At load time this relocatable address will be made absolute. Upon
execution, the BRU or BRC instruction will cause the absolute address in this

literal location to replace the contents of the program counter,

When transferring control between separately assembled programs the
BRM LLABEL statement is used in the calling program and LABEL must be
externally defined in the calle_d_program's data area. Two contiguous locations
must be allocated in the called program's data area in order to accomplish the
transfer, The first must be given the external label and the second must contain
the address of the called program's entry point. (See the INrPUT and ADDER

program assemblies given in Figure 2 for an example.)

When the set of programs is loaded, the undefined reference to the label in

the BRM instruction is resolved.to refer to the external definition in the called

49

s

program's data area. Upoa erecution, the current value of the program counter
will be saved in the location called LABEL and the next location after this will

be used to supply a new value for the program counter,

Since the programmer may be unaware of the exact location the relocatable
code will occupy at execution time, the simple linkage discussed above must be
modified to take account of the possibility that the called program's data area
may not occupy the same bank as the calling program's data. Thus the page
register must be manipulated to allow formation of the correct address. An

example of how this can be achieved appears below:

Calling Program (which is itself a called program)

$ (1)
START STE SAVEP Save calling programs page register
® i passed in EA
°
(3
°
. | H
LDE CALLER Load this program's page register
LDA CALLED Load called program's page register
LDP Load page registef with proper
setting for use by called program
BRM SUB2 Branch to called program
LDP Restore page register with proper
° setting for use by this program.
° ,
°

50

f
¥
| $ (0)
SUB1* RES 1
N 0+ START
SAVEP RES 1
: . CALLER 0+ SUB 1 The loader will insert the absolute
- address of the beginning of this
. program's data area here.
. CALLED 0+ SUB 2 The loader will insert the absolute
o address of the beginning of the
é‘ called program's data area here.
BND
i
2
; Called Program (which calls no other program)
$ (1
i
tx START STE SAVEP Save calling program's page
B] register setting
®
°
°
LDA SAVEP Restore called program's page
register setting
BRU SUB2 Return to caller,
$ (0)
SUB2* RES 1 Execution of a BRM SUB2 in
. calling program places the return
address here. '
| |
’Lt 0+ START ' The next address placed in the
E’ program counter will be the starting
i address of this program's code -
Y region,
; ; SAVEP RES 1
END
51

e e+ e BSOS
s

Note how the calling program uses the form 0+LABEL to request the loader to
supply the absolute address and therefore, the page register setting of both its
own and the called program's data area. These settings are passed in the ex-
tended accumulator and accumulator respectively. This leaves the index register
free for passing the address of an argument list. Also note that it is the calling
program's responsibility to actually set the page register immediately before

and after the branch to the called program.

It is the called program's responsibility to make sure the accumulator
contains the correct address to allow the calling program's LDP to work
properly, Of course, none of this is necessary if absolute code is written.
However, the ease of program construction inherent in relocatable code is so
great that these conventions for use of the accumulator, extended accumulator,

and index register should be practically regarded as standard, where necessary.

Storage Limit Register

The AOP has an 18-bit storage limit register which is used to specify
blocks of memory intc which writing is permitted. Those instructions which
require writing into memory, and therefore use the storage limit register, are
STA, BRM, STE, STX, and STI. The register is broken into two 9-bit fields A
and B where A = (B1-B9) and B = (B10-B18), Bi = the ith bit of the storage
limit register numbered from the right. A and B represent upper and lower

limits on the 9 high-order bits of a 16-bit effective address between which

52

writing will be permitted, Stated symbolically, if C = (B8-B16) of the effective
operand address for one of the five instructions listed abuve and A and B are as
specified above, then if B < C < A, the write will be permitted, otherwise, write
will not be permitted, Note that if A = B then one 128 word block is enabled

whereas if A = 777 8 and B = 0 then all of memory is enabled.

93

o e o b S
e e R B
B
-

e RIS
B}

APPENDIX A

AOP INSTRUCTION SET

In the following description of the AOP instructions the assembly language
mnemonics recognized by the AOP Assembler are shown., Execution timeg are

given in CPU cycles. One CPU cycle is nominally 1 microsecond.

Load/Store instructions

|)
(=]

LDA address

The contants of storage at the effective address are placed in the

accumulator,
Registers altered: Accumulator

Timing: 4 cycles . b

LDL |4 0| address

The effective address is placed in the accumulator.
Registers altered: Accumulator

Timing: 4 cycles

- LDI . |1 2 address

The 16 LSB's of memory at the effective address are treated as a new

effective address, If bit 18 of the mémory word is a one, the contents |

O S .
LT

.

of the index register are added to t'." new effective address, Otherwise
it remains unchanged. The contents of memory at the new effective
address are placed in the accumulator.

Registers alterad: Accumulator,

Timing: ¢ cycles

LDE 5 2 ! address

The contents of storage at the effective address are placed in the
extended accumulator.

Registers altered: Extended accumulator

Timing: 4 cycles

ILDX | 5 4 |address

The contents of storage at the effective address are placed in the index
register,
Registers altered: Index register

Timing: 4 cycles

STA 6 0 |address

The contents of the accumulator are stored at the effective address
unless that address is protected by the storage limit registers, If
storage is proiected, no write intc memory occurs and interrupt 15 is

generated,

, Registers altered: None.
" Timing: 6 cycles
j
STI 3 2 ‘address
’ The 16 LSB's of memory at the effective address are treated as a new
p effective address. If bit 18 of the memory word is a one, the contents I
g‘ of the index register are added to the new effective address, Otherwise
,;: it remains unchanged. The contents of the accumulator are stored in
P _ !
. _’ |
: memory at the new effective address unless that location is protected
X:
g by the storage limit register, If storage is protected, no write into
:;1 i
E memory occurs and interrupt 15 is generated.
* Registers altered: None,
, Timing: 8 cycles . b
h STE 1 0 |address
i |
; The contents of the extended accumulator are stored at the effective
i - o
* address unless that address is protected by the storage limit registers,
i If storage is protected, no write into memory occurs and interrupt 15
is generated. | .
Registers altered: None.
Timing: 6 cycles _
A-3
o |
MO

" - #®
A4,
t""_.
!

R
¥
¥
Q~:‘
U

s

'
St
Y ¥
o

«

STX

LDD ACCG_/\ EA D 0 0|0 01 3
| C S =y

7 4 |address

The contents of the index register are stored at the effective address
unless that address is protected by the storage limit registers, If
storage is protected, no write into memory occurs and interrupt 15 is
generated,

Registers altered: None.

Timing: 6 cycles

The contents of the accumulator and extended accumulator are shifted
left one position. The sign of the extended accumulator is not shifted
and the vacated, low~order position of the extended accumulator is
filled with the contents of the decision register. The overflow register

is not altered.

Registers altered: Accumulator

LDP , | | 0 olo o1 2

Extended accumulator

Timing: 3 cycles

The contents of bits 13 through 16 of the accumulator are placed in the
pé.ge register,
Registers altered: Page register

Timing: 3 cycles

. s

L
Sa
AR RN ¥

s R T
R X

¥

Arithmetic instructions

NEG

The contents of the accumulator are replaced by its two's complement.
Negating all zeros yields a result of zero and sets the carry register
to one, Negating the number that has zeros in all bit positions except
the sign yields the same number as a result and sets both the carry
register and the overflow register to one. Other than these two special
cases, the carry register is reset to zero.

Registers altered: Accumulator
Carry register
Overflow register (conditxonally)

Timing: 6 cycles

The content of the carry register is added to the contents of the accu-
mulator and the sum is retained in the accumulator. If a carry occurs
at the input of the 18th bit of the two's comblément adder, then the
carry register is set to one. Otherwisé, the carry register is reset to

zero. Overflow can occur and will cause the 18th bit of the sum to re-

main in the sign position and the overflow register to be set to one.

Registers altered: Accumulator
Carry register
Overflow register (conditionally)

Lo

Timing: 4 cyclqs

CMP 0 0/0 01 O

The contents of the accumulator are replaced by the one's complement,
The 18 bits of the results are computed independentiy with a one occur-
ring in a bit position of the result only if the accumulator contained a
zero in that position.

Registers altered: Accumulator

Timing: 6 cycles

NORM 18 17 ACC ~ EA 0 0/0 0|1 4
[0 [0001 . .. [ST" le—20

The contents of the accumulator and extended accumulator are shifted
left until the 17th and 18th bits of the accumulator are different. The
sign bit of the extended accumulator is not shifted. Bits leaving the
17th bit of the extended accumulator enter the low-order position of

the accumulatbr. Zeros fill the positions vacated on the right. A count
of lthe, number of positions shifted is refained as a 6-bit positive number
in the index register. If the contents of the accumulator and bit posi-
tions 1 through 17 of the extended accumulator are zero, then the index
register is set to zero.

Registers altered: Accumulator .
Extended accumulator-

Index register

Timing: 4 cycles + 1 cycle per position shifted.

ey,
.

L {&’i“‘ﬁ“:.f~“§?z“i‘kmm,l. .

ADX 0 2 |address

The contents of storage at the effective address are added to the con-
tents of the index register. The 18-bit result of the two's complement
addition is retained in the index register.

Registers altered: Index register

Timing: 4 cycles

ADD | 0 4 |address

The contents of storage at the effective address are added to the con-
tents of the accumulator and the sum is retained in the accumulator,

If a carry occurs at the input of the 18th stage of the two's complement
adder, then the carry register is set to one., Otherwise, the carry
register is reset to zero. Overflow can occur when two numbers of
the same sign are added. Overflow causes the 18th bit of thé sﬁm to
remain in the sign position and the overflow register to be set to one.
Register altered: Accumulator

Carry register :
Overflow register (conditionally)

Timing: 4 cycles |

SUB : ; 2 4 |address

The contents of storage at the effective éﬂc’lre:ss are subtracted from
the contents of the accumulator and the result retained in the accumu-

lator, Subtraction is performed by adding the one's complement of the

A-17

#5 H s
* . .
.

contents of storage to the accumulator with a carry forced into the low

order stage of tlie adder. If a carry occurs out of the 17th position,

the carry regiscer is set to 6ne. Otherwise it is reset to zero. Over-

flow can occur when two numbers of unlike sign are subtracted, Over-

flow causes the ove.Zlow register to be set to one and the 18th bit of

the difference is retained in the sign position.
Registers altered: Accumulator

Carry register

Overflow register (conditionally)

Timing: 4 cycles

MUL

DIV

The contents of storage at the effective address are multiplied by the

4.

s

address

contents of the accumulator. The high-order 17 bits and sign of the

product are retained in the accumulator. The low-order 17 bits and

sign of the product are retained in the extended accumulator.

Registers altered: Accumulator
Extended accumulator

Tin_iing: Average 32 cycles

The accumulator and extended accumulator form the dividend that is
divided by the contents of storage at the effective address. The signed

remainder is retained in the accumulator and the signed quotient is

A-8

6

address

"

retained in the extended accumulator, The divisor and dividend must
be positive and the dividend must be less than or equal to the divisor.
Otherwise the results are unpredictable. The quotient and remainder
are positive and the remainder has a magnitude less thaa the divisor.

Registers altered: Accumulator
Extended accumulator

Timing: 58 cycles

Beolean Lo‘gic instructions

ETR 3 0 |address

The contents of storage at the effective address are logically ANDed with

the contents of the accumulator. The result is retained in the accumu-
lator. The 18 bits of the result are c6‘.mputed independently with a one
occurring in a bit position of the result only if the accumulator and
storage both contain_edi a one in that bit position.

Registers altered: Ascumulator

Timing: 4 cycles

L pA

MRG | . [5 0 [address|

The contents of storage at the effective address are logically ORed with
the contents of the accumulator. The result is retained in the accumu-
lator, The 18 bits of the result are computed independently with a one

occurring in a bit position of the result if either the accumulator or |

storage contained a cne in that bit position,

A-9

Registers altered: Accumulator

Timing: 4 cycles

EOR 17 O |address

The contents of storage at the effective address are exclusive ORed
with the contents of the accumulator, The »2sult is retained in the
accumulator. The 18 bits of the result are computed independently
with a one 6ccurring in a bit position of the result if either the accu-

mulator or storage, but not both, contain a one in that bit position.

Registers altered: Accumulator ‘

Timing: 4 cycles
J/O instructions
OPT , 1 6 |address

. A

The conter:s of storage at the effective address plus one are sent over

the channel (0-15) designated by the contents of storage at the effective

address,
Registers iltered: Nohe

'1‘1m1hg: 6 cycles

IPF | 7 6 |address

’1%he contents of storage at the effective address plus one are replaced
, b&'a data word input over the channel (0-15) designated by the contents

of storage at the effective address.

A-10

B AL P
'y

AL

ahnld

e
RSP SR SN

SN T

M LA R SR DG IR W R T L G

Register

Registers altered: none

Timing: 6 cycles

manipulation instructions

SHF

DSH

G ACC 0 1 4 |address
[S]—

The low-order 6 bits of the contents of storage at the effective address
are used as a two's complement shift count, If the count is negative,

then the accumulator is shifted right the number of positions specifi-:d

by the count, with the contents of the accumulator sign replacing vacated

positions on the left, If the count is pos‘tive, then the accumulator is
shifted left the number of positions specified by the count with zeros
filling vacated positions on the right. The overflow register is set to
one if the sign bit of the accumulator is changed during the shift.

Registers altered: Accumulator
Overflow register (conditionally)

Timing: 5 cycles + 1 cycle per position shifted

P ACC ,/’“E‘ EA o 3 6 address
NST——> <«JJ--"[S]y je—0

The low-order 6 bits of the contents of storage at the effective address
are used as a two's compliement shift éount. The'accumulator and the
extended accumulator are shifted together. The extended accumulator

is shown to the right of the accumulator and its sign bit is not shifted.

A-11

y

g
<

¥

.

A g

CcycC

If the count is negative, then the accumulators are shifted right the
number of positicns specified by the count with the contents of the accu~
mulator sign replacing vacated positions on the left, If the count is
positive, then the accumulators are shifted left the number of positions
specified by the count with zeros filling vacated positions on the right,
The overflow register is set to one if the sign bit of the accumulator
is changed duvring the shift.
Registers altered: Accumulator

Extended accumulator

Qverflow register (conditionally)

Timing: 5 cycles + 1 cycle per position shifted

— — T P i,

_ ~.
C p} ’

ACC » 3 4 addregxsj

The low-order 6 bits of the contents of storage at the effective address
are used as a two's complement shift count, If the count is negative,
then the contents of the accumulator are shifted cyclically right the
number of positions specified by the count, with bits leaving the low-
orcier position entering the sign position. I the couni ié positive. then
the contents of the accumulator are shifted left the number of positions
specified by the count with bits leaving the sign position entering the
low-order position.

Registers altered: Accumulator

Timing: 5 cycles + 1 cycle per position shifted

A-12

\\
!
|
i
[
1
]
!
!
i
i
!
I
1
!
l
3
]
i
|
]

’/

DCY \ ACC EA h 5 6 |addvess

The low-order 6 bits of the contents of storage at the effective address
are used as a two's compiement shift count. I the count is negative,
then the contents of the accumulator and extended accumulator are
shifted cyclically right the number of positions specified by the count
with bits leaving the low-order position of the extended accumulator ;
entering the sign of the aceumulator and bits leaving the low-order
position of the accumulator entering the sign of the extended accumula-
tor, If the count is positive, then the direction of the above process is
reversed.

Registers altered: Accumulator -
Extended accumulator ‘ I

Timing: 5 cycles + 1 cycle per position shifted :

o

ACX | 0 0|0 0|2 5

The contents of the accumulator and index registers are interchanged.

Registers altered: Accumulator
Index register

Timing: 8 cycles

AEA | 0 0/0 0]2 6

The contents of the accumulator and ext:nded accumulator are inter-

. “changed.

A-13

Registers altered: Accumulator
Extended accumulator

Timing: 8 cycles

EAX 0 0j0 02 7

The contents of the extended accumulator and index register are
interchanged.

Registers altered: Extended accumulator
Index register

Timing: 8 cycles
FLP / > ACC 0 0/0 0|2 2
Ce

The contents of the accumulator are reversed. The (19-’n)th and n

th

bits are exchanged forn =1, 2,... 9.
Registers altered: Accumulator

Timing: 3 cycles

Control/branch instructions

HLT |0 o]0 oo o

The processor stops indefinitely. An interrupt signal must be supplied
from an external source to start the processor,
Registers altered: None

Timing: 3‘cyc1es" before an interrupt will be honored.

A"'14 k ‘. /

i e T I T e R
: e T e e oo A F

Rgpe

NOP 0 0{0 00 2

No operation is performed other than the automatic incrementing of
the instruction counter.
Registers altered: None

Timing: 3 cycles

BRM 0 6 | address

The contents of the instruction counter plus one are stored at the
effective address unless that address is protected by the storage limit
register, If storage is protected, no write into memory occurs and
interrupt 15 is generated. The contents of one location greater than
the effective address is placed in the instruction counter and execution
proceeds from the new address specified by the instruction counter.
- Registers altered: None,

Timing: 8 cycles

BRU | 6 2| address

The contents of « 'rage at the effective address are placed in the
instruction counter and execution proceeds from the new address
spécified by the instruction counter.

Registers altered: None

Timing: 4 cycles

7 i
. 4 L
- : ; - A 2
A-15 1 7
I it
it i
i i

g g s

e
ey -
;mn* i S » ¥ « .

i

“V"“‘}t’ % [CIgS

“‘\ﬁ;“ ::?'::“.“)

—t

BRC

TIN

oL T S

4 2 | address

If the contents of the decision register are zero, then the next sequen-

tial instruction is executed. If the contents of the decision register

are one, then the contents of storage at the effective address are placed .

in the instruction counter and execution proceeds from the new address
specified by the instruction counter. The decision register is reset to
zero,

Registers altered: Decision register (always reset to zero)

Timing: 4 cycles

7 2| address

The contents of sterage at the effective address is used as the starting
address of a 4-word save area. This instruction restores the registers
that were saved in these locations (i.e., by the occurrence of an inter-
rupt). Upon completion, execution proceeds normally at the new value
in the instruction counter.
Registers altered: Lockout statué register

Storage limit register

Page register

Overflow register

Carry register

Decision register

Timing: 22 cycles

A-16

o T g i i an e g

e

SR < g o
N L) .

I T
T : :
. 4 N

B e Tl o O T i 1 B A e ST S

et R, M W e B TR IR P 22 e AL SRl BTN Al e SR MR Ak TER, e b - Wi Wb o T Ted

EXIT 0 00 0|1 6

This instruction initiates interrupt number 16 which uses locations
octal 200 through 207, The status of registers is saved in 200-203 and
these registers are loaded from locations 204-207. Upon completion,
execution proceeds normally at the new value in the instruction counter,
Registers altered: Lockout status register

Storage limit register

Page register

Overflow register

Carry register

Decision register

Timing: 36 cycles

Test/set instructions

TOV | o oo ojo 1

If the contents of the overﬂow register are one, then the contents of
the decision register is set to one. Otherwise, it is unchanged. The
overflow register is reset to zero.

Registers altered: Decision register (conditionally)
Overflow register

Timing: 3 cycles

TAP | | 0 ofo o|o 3

If the sign position, bit 18, of the accumulator contains a zero, then the
contents of the decision registér are set to one, Otherwise, it is un-

changed.

A-17

s N
: :
B i

oy

Registers altered: Decision register (conditionally)

Timing: 3 cycles

TOP 0 0|0 0|0 5
If the number of ones in the 18-bit accumulator is odd, then the contents -
of the decision register is set to one. Otherwise, it is unchanged.
Registers altered: Decision register (conditionally)
Timing: 22 cycles
ROV 0 0j0 00 7|
The contents of the cverflow register are set to zero,
Registers altered: Overflow register
Timing: 3 cycles
CPD 0 0|0 0|1 7
The contents of the decision register are complemented.
Registers altered: Decision register
Timing: 3 cycles
SIO i | 0 0/0 0]2 o
The contents of the interrupt override register are set to one, -
Registers altered: Interrupt override register

' ~ Timing: 3 cycles

A-18

]
|
?
;.
i
i
[:
>

*
P4
i
L
;
¥
i
}
i
¥
i
i
¥

g

s
L I
:’_
R
: .
g; 5

T\’f‘!’&"j’rffilfﬁff T
i !
i

TAZ 0 0j]0 02 1

If the contents of the accumulator is equal to zero, then the contents of
the decision register are set to one. Otherwise, it is unchanged,
Registers altered: Decision register (conditionally)

Timing: 4 cycles

RED 0 0|0 0|2 3

The contents of the decision register are reset to zero.
Registers altered: Decision register

Timing: 3 cycles

RIO 0 0/0 012 4

The contents of the interrupt override register are reset to zero,
Registers altered: Interrupt override register

Timing: 3 cycles

TIX 0 0j0 O]1 1

The contents of the decision register is reset to zero. Then the con-
tents of f;*z,xe index register are tested for zero. If it is non-zero, the
contenté ;of the decision register are set to one and the contents of the
index register are incremented by one. If the contents of the index

register are zero, the decision and index registers remain unchanged.

A-19

et b g g s

B oyt UE L FNSTP I ot TR
- -

PO T
i : .
it

oo

% L . . .

Registers altered: Decision register
Index register (conditionally)

Timing: 6 cycles

TIE 0 0/]0 0|1 5

The ¢ontents of the decision register are reset to zero. Then the con-

tents of the extended accumulator are tested for zero. I it is non-zero,

the contents of the decision register are set to one and the contents of L
the extended accumulator is incremented by one. If the contents of the

extended accumulator are zero, the decision register and extended

accumulator remain unchanged,

Registers altered: Decision register !
Extended accumulator (conditionally) §

Timing: 6 cycles

TXLE 2 2 address]

If the contents of the index register are less than or equal to the con-
tents of storage at the effective address, then the contents of the deci- j
sion register are set to one. Otherwise, it is unchanged. j
Registers altered: Decision register (conditionally) 5‘* .

Timing: 4 cycles | ‘ -

TAL 2 6 |address

If the contents of the accumulator are less than the contents of storage

A-20

at the effective address, then the content of the decision register is

set to one. Otherwise, it is unchanged.

Registers altered: Decision register (conditional.)

Timing: 4 cycles

4 6 addressi

TAE

If the contents of the accumulator are equal to the contents of storage

at the effective address then the contents of the decision register are

set to one. Otherwise it is unchanged,

Registers altered: Decision register (conditionally)

Timing: 4 cycles

6 6 |address

TAG

If the contents of the accumulator are greater than the contents of

storage at the effective address, the contents of the decision register

are set to one. Otherwise, it is unchanged.

Registers altered: Decision regiiter (conditionally)

Timing: 4 cycles

A-21

e o st ooy 2

It Y e I S
Sk e L

SRR vl

AR R T e R

N
2
e

b ad

AOP INSTRUCTION SET
Ordered by Operation Code

Op Code Mnemoni¢ Cycic Time* Description

000000 HLT 3 Halt

000001 TOV 3 Test overflow register

000002 NOP 3 No operation

000003 TAP 3 Test accumulator positive

040004 NEG 6 Two's complement accumulator .
000005 TOP 22 Test accumulator for odd parity

000006 ADC 4 Add carry to accumulator

000007 ROV 3 Reset overflow register

000010 CMP 8 One's complement accumulator

000011 TIX 6 Test index for zero and increment

000012 LDP 3 Load page register from accumulator

00013 LDD 3 DSH left 1 bit then load decision register into LSB of EA

000014 NORM 4*% Normalize accumulator and extension

000015 TIE 6 Test extension for zero and increment

000016 EXIT 36 Cause exit interrupt

000017 CPD 3 Complement decision register

000020 SIO 3 Set interrupt override

000021 TAZ 4 Test accumulator for zero

000022 FLP 3 Reverse accusaulator

000023 RED 3 Reset decision register

000024 RIO 3 Reset interrupt override

000025 ACX 8 Exchange accumulator and index

000026 AEA 8 Exchange accuimulator and extension

000027 EAX 8 Exchange extension and index

02 ADX 4 Add memory to index

04 ADD 4 Add memory tc accumulator

06 BRM 8 Branch and mark place ;

10 STE 6 Stor extension

12 LDI 6 Load accumulator indirect

14 SHF 5%* Arithmetic shift accumulator &

16 CPT 6 Output b
20 LDA 4 Load accumulator 1
22 TXLE 4 Test index less than or equal to memory)]
24 SUB 4 Subtract memory from accumulator

26 TAL 4 Test accumulator less than memory

30 ETR 4 Logical AND accumulator with memory

32 STI 8 Store accumulator indirect

34 cYc Hrs* Cyclic shift accumulator

36 DSH G*x Arithmetic shift accumulator and extension

40 LDL 4 Load accumulator with effective address

42 BRC 4 Branch conditionally

44 MUL 32%% Multiply accumulator by memory

46 TAE 4 Test accumulator equal to memory

50 MRG 4 Logical OR accumulator with memory

52 LDE 4 Load extension

54 LDX 4 " Ziad index

56 Dey Gk Cyclic shift accumulator and extension

60 STA 6 Store accumulator

62 BRU 4 Branch unconditionally

64 DIV 58 Divide accumulator and extension by memory =

66 TAG 4 Test accumulator greater than memory

70 EOR 4 Exclusive OR accumulator with memory

72 TIN 22 Restore status registers from memory

4 STX 6 Store index .

76 IPF 6 Input

*Add 2 cycles for indexing. One CPU cycle is nommally one microsecond.
**Add 1 cycle for each place shifted.
r*Average

A-22

Mnemonic

ACX
ADC
ADD
ADX
AEA
BRC
BRM
BRU
CMP
CPD
cYC
DCY
DIV
DSH
EAX
EOR
ETR
EXIT
FLP
HLT
IPF
LDA
LDD
LDE
LDI
LDL
LDP

Op Code
000025
000026
04
02
000026
42
06
62
000010
000017
34
56
64
36
000027
70
30
000016
000022
060000
76
20
000013
52
12
40
000012
54
50
44
000004
000002
000014
16
000023
000024
000067
14
000020
60

26
000003
000021
000015
72
000011
000005
000001
22

Alphabetically Ordered by Mnemonics

Cycle T

ime*

O D b 0O e OO B b b O

(24
o grn
* - *
* * *

&
(SR N AR R F AR N R ANANC N .

(2
*
*
*

N

»n 5
M GO DD O B €D b b B DO DD T LD D

*
»

*
*

Description

Exchange accumulator and index
Add carry to accumulator

Add memory to accumulator

Add memory to index

Exchange accumulator and extension
Branch conditionally

Branch and mark place

Branch unconditionally

One's complement accumulator
Complement decision register
Cyclic shift accumulator

Cyclic shift accumulator and extension

Divide accumulator and extension by memory
Arithmetic shift accumulator and extension

Exchange extension and index
Exclusive OR accumulator with memary
Logical AND accumulator with memory
Cause Exit interrupt

Reverse dccumulator

Halt

Input

Load accumulator

DSH left 1 bit then load decision register into LSB of EA

Load extension

Load accumulator indirect

Load accumulator with effective address
Load page register from accumulator
Load index

Logical OR accumulator with memory
Multiply accumulator by memory
Two's complement accumulitor

No operation

Normalize accumulator and extension
Output

Reset decision register

Reset interrupt override

Reset overflow register

Arithmetic shift accumulator

Set interrupt override

Store accumulator

Store extension

Store accumulator indirect

Store index

Subtract memory from accumulator
Test accumulator equal to memory
Test accumulator greater than memory
Test accumulator less than memory
Test accumulator positive

Test accumulator for zero

Test extension for zero and increment
Load status registers from memory
Test index for zero and increment
Test accumulator for odd parity

Test overflow register

Test index less than or equal to memory

*Add 2 cycles for indexing. One CPU cycle is nominally one microsecond.
**Add 1 cycle for each place shifted.

*¥*Average

A-23

e "

_— .
.

N T A T T T

e

;i

" v
Y RERS

e

s S A RN - A
8- bt i B o) Pt 30 i“

s Fpawy L E L
e DT a3

e

At el Bl RMBAT L R L T L

PR AW oo - S Y

APPENDIX B

AOP SUPPORT SOFTWARE DEMONSTRATION PROGRAM

The AOP Simulator is a complete simulation of all AQOP features designed

to permit rapid debugging in a complex environment. Extensive timing features

are provided, To more fully explain the capabilities of the simulator, a

special program was written to demuustrate some of these features. This pro-

gram has the following characteristics:

@)

@)

@)

A 300 cycle clock interrupt begins at 100 cycles. A clock interrupt
routine is set up to stop the program after 9 interrupts. Usixig the
pseudo-console, the clock count can be reset and the run continued

for an arbitrary number of clock interrupts.

At 150 cycles the first channel 1 cycle steal I/O operation is performed,
I/0 requests will continue on this channel at the rate of one each 150
cycles. A block length of 3 words and a buffer cf the same length are

maintained.

The first block length = 0 interrupt occurs at 450 cycles. The interrupt
service routine re-establishes the block lehgth and buffer address
words. It then calls a worker whose only function is to sum fhe words

input to the buffer.

LR

The remainder of this appendix refers to the listing in this appendix.

On the first page of the listing, the executive routine containing the clock
and cycle steal interrupt handling rcutines is assembled using the ; ASSEMBLE
DEMO control card. First the interrupi locations for interrupts 1, 2, 15 and 16
are set up and then the cycle steal I/O control words for channel 1. Next comes

the code for the clock interrupt handler followed by the Block Length (BL) = 0

- .-
e . - .

interrupt handler, the ba ckground loop, and the storage protect interrupt handler.

sy

Lo s v

The channel 1 ASR control words, clock, and channel 1 buffer are set up in the

program's relocatable data area.

e R R U NN ST R o)
P L Sy B et

The second page of the listing shows the assembly of a worker routine and
its subroutine. The subroutine calling sequence conventions have been followed.

In addition, an argument list address is passed in the index register.

Page 3 and 4 of the listing show the results of loading these three programs
while a complete simulator run follows. Note that the pseudo-console was used
to set the IOR to 0 anl later, when the storage protect violation occurred, to
reset the storage limit register and continue the run. A close examination of

this example will reveal several AOP characteristics.

Refer to the sample output (page 9 of the listing) showing the simulation of
a portion of the demonstration program. Line 1 shows a background job which
consists of one instruction branching unconditionally to itself. The address of

the instruction is in the IC column, the branch address in the [EAD] column.

#

At line 11 a clock interrupt has occurred (the I column contains the octal number
of the interrupt currently being serviced). Before the clock routine can complete
there is a cycle steal I/O request on channel 1 at 450 cycles simulated time, as
indicated at line 13. Note the BRC instruction following line 3, This instruction
normally completes in 4 cycles but subtracting completion times in the TIME
column shows that 448-462 = 14 cycles were required because of cycle steal

1/0 interference. Also note in the ISR column of this line that a block length = 0
interrupt was generated by the cycle steal operation (ISR = 000002) and that
further activity on this channel is suppressed (ASR = 000002), Since all interrupts
are locked out (LSR = 177777) when the clock interrupt occurs, the block length

= 0 interrupt is not honored until the clock interrupt routine terminates at line 17.
The TIN instruction restores the AOP status prior to the clock interrupt. The
block length = 0 interrupt routine gains control immediately at line 18. This
routine takes action to enable further cycle steal I/O and transfers at line 23 to a

worker routine which will attempt to add up the numbers (1, 2 and 3) input over

buffer, a cycle steal operation occurs (line 26) and replaces the contents of
the first word of the buffer with a 4. Thus the vaiue fetched by line 27 (see
[EAD] column) is a 4 and this is placed in the accumulator instead of the desired
1. Such timing errors are made readily apparent to the programmer. As the
program continﬁes, an attempt is made to store the res.ultant sum at line 38,

However, the storage limit register was not set up to allow the worker access

B-3

G L TET R
k3 B I R

—

to this location (SLR = 002040) so a storage protect interrupt (ISR = 100000) is

generated causing the program to halt at line 39.

As the example shows, completeness of simulation and easy debugging are
prime features of the simulator. Flexible facilities for dumping and tracing .
the progress of the simulation ars provided. The example used here resulted
from a complete octal trace. A4 pseudo-cpnsole facility is available which allows
the user to fix up errors in his simulated iorogram as they are detected, without
the necessity of reloading or reassembling, just avsthough he were debugging at .
an AOP tconsole. The error which caused the termination in the example was |
handled in this way and the simulation successfully continued. Any size AOP

memory can be simulated.

ik o Hnin

s TN

%)

F ot S

3 ASSEMBLE DEMO

ASSEMBLER FOR THE ONBOARD PROGESSOR

l.
2.
Je

13.

17.

22,

25,
26,
27.
28,
29.
30.
31.
J2.
33.
34,
35.
36,
37.
38.
39,
40,
4],

- END OF LISTING, 1 LINES FLAGGED.

O o o T e e e e S S Sy o0 OO0 O OO O oo

000016
000017

000024

000026
000027

0V0177

000205
000207

007742
007743

000000
000001
000002
000003
000004
000005
000006
Q00007

000010

Qoo011
0ooo012
000013
000014
Q0001s
000016
Q00017

000000
000001
000002
000003

54
42

74
72
20
6Q
20
60
16

72
62

72

037037
000006

177777

001001
000000

000016

002040
000000

000003
000003

0 0000
000011
0 0014
000000
0000
0006
0007
7742
0010
7743

0000GOO

000016
0 0011

o001

0 0013

000000
0 0012

777767
000002
000002

000006
000007
000010
000011
€00012
000013
000014

B-5

000020

000003
000003
000010
000170
000015
000004

$(0)

AORG 0,14
037037
0+CHPGH

AORG 0,20
0177777

ARG 0,22
001001
0+CLOBCK

AGRG 0,0177
C+SPROTECT
AORG 0,0206
02040
O+WORKER
ABRG 0,07742
CHiBL 3
CH1ADR O0+BUF
RORG 0.0
$(1)
CLOCK LDX CLK
TIX

BRC (GOCN)
HL?
GOON STX CLK
TIN (16)
CHPGM LDA (3)
STA CHiBL
LDA (BUF)
STA CH1A3JR
OPT CH1ASR
EXIT

TIN (8)
TIGHT BRU TIGHT
SPROTECT HLT

*IN (0170Q)
$(0)
CLK =9
CHIASR 2

2

BUF* RES 3

END

TR

athaL el

s M e e L L

s Y

s et af

PP A Tt

e R IR Y AR R e

_SHINRE SRR N S B It

R

B ASSEMBLE WORKER

ASSEMBLER FOR THE ONBOARD PROCESSOR

i.
2. U

15,
16,
17,
18,
19,
20. v
2.
22,
23.

o Pun But fue Do Puo Pt Puo P Pue ue P Bub Puo Bue 00000

COOo0Oo0o

000000
000001
000002
000003
000004

Q00000

000001
000002
000003
000004
000005
00GQ0s
000007
goootlo
00001ty
Q00012
000013
000014
000015
0ooo016

END OF LISTING,

3 ASSEMBLF WORKERS

38
54
24
08
42
60
5e
54
20
06

72

3

000000
000002

000000
000000

0 0005
0 000D
1 0000
000011
1 0000
000015
0 0010
0 0002
C 0004
0 0006
0 0003
000012
0 0000
0co012
0 0007

000005 777777
000006 000001
000007 000200
000010 000003

LINES FLAGGED.

ASSEMBLER FOR THE ONBOARD PROCESSOR

i.

00000

Put oo Pub Pub fun fus Pun

000000

000001
000002
000003
000004

000000
000001
000002
000003
000004
00000s
0000086

END OF LISTING.

I

000000

10
2%
60
12
60
20

682

e

0002
0000
0003
0063
004
00Q2
0000

00000~ 0O

LINES FLAGGED.

$(0)
8 O+BUF

ARGLST 0+5UM -
SUM RES

SUB O+WORKERS
CALLER 0+8B

$(1) | -
WORKER+* LDE (=1)
LDX B

LDAs O
LOOP TIX

ADD, O

TIE

BRC (L.OQP)

STA SUM

LDE CALLER

LDX (ARGLST)
LDA suB

LDP

BRM VWORKERS
LDP

TIN (0200)

END

$(C)

WORKERS* RES 1 g
0+START L
SAVEP RES 1

ARG RES 1

SUMW RES 1

$(1)

START STE, SAVEP

LDAs, O

STA ARG N

LDl ARG | -
STA SUMW ,
LDA SAVEP :
BRU WORKERS
END

T T

R .

B 5.3 A il

i I .

el

s

2 LOAD DEMO
LOADER FOR ON-BOARD PROCESSOR

PREAMBLE VALUES FGR DEMO
DATA LENGTH
CODE LENGTH
PRESET LOCATIONS
LITERALS
INDIRECT ADDRESSES
EXTERNAL DEFINITIONS
UNDEFINED SYMBOLS
NOUNS

EXTERNAL DEFINITIONS
BUF

PREAMBLE VALUES FBR WORKER
DATA LENGTH
CODE LENGTH
PRESET LOBCATIONS
LITERALS
INDIRECT ADDRESSES
EXTERNAL DEFINITIONS
UNDEFINED SYMBOLS
NOUNS

EXTERNAL NEFINITIONS
WORKER

PREAMBLE VALUES FOR WORKERS
DATA LENGTH
CODE LENGTH
PRESET LOCATIONS
LITERALS
INDIRECT ADDRESSES
EXTERNAL DEFINITIONS
UNDEF INED SYMBOLS
NBUNS

EXTERNAL DEFINITIONS
WORKERS

SOFTUARE

NO= OO NWm

g

CoRE LIMITS

. i rATA 000210-000601 / CODE 004000-004045
‘] STARTING ADDRESS 004000

o MINIMUM ABSCLUTE ADDRESS 000016

Y MAXIMUM ABSOLUTE ADDRESS 007742

v CORE ALLOCATION

NEMO
DATA 000210-000224 -
CoDE 004000-004017

VORKER
DATA 000400-000410
CODE 004020~004036

VORKERS -
DATA 000600~000601
CODE 004037-004045

END OF ALLOCATION

5 SIMULATE DEMO
TRACE OCTALLY

3 DUMP OCTALLY AT HALT
3 INTERRUPT 2 EVERY 300 MICROSECONDS STARTING AT 100 MICROSECONDS

ve

MAXIMUM TIME IS @ MILLISECONDS

INITIATF CHANNEL 1 AT 150 MICROSECONDS :
DATA FOR INPUT DEVICE 1}

1 23456789 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 e
30 31 32 33 34 35 36 37 38 39 40 § .
3 START AT TIGHY

ON-BOARD PROCESSOR SIMULATAR

O S

TS

000000
00ocoo
000000
0cooo0
000009
000000
000000
000000
oooooo0
ooocoo
000coo
goocoo
gooooo
000000
00C000
000000
000000
000000
000000
000000
0000600
ocoess
000000
000000

goooo0

sV

caoo00
cocooo
coooco
ccono0
££9000
cooooo
cgocooo
cacooo
cooooo
cooooo

€ocoo00

cooooo
coooco
cocoao
coaogo
coooaa
cccooo
200000
cooooo
coco00
€00000
cooooo
cooooo
coaooo
csoce60

¥s1

000006
000000
aoog0co
oooooo
000000
000000
000900
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
g0o0000
000000
ooo000
(shlelola]u]
000000
000000
000000

s

no1

Q6

g
L4}
ng

L7 4

29
»9
fig

oS

Ll 4
L4 4
ny

ag

Qe
144
0z

o1

INIL

060000

000000

0000n0
0000n0
000000
0000N0
000000
000000
000000
0000n0
000000
000000
000000
000000
0000n0
000000
000000
000000

0000n0

g0oono

oggooano
000000
000000
gooono

000000

¥is

£22000
f£22000

£22000

£22000
£22000
£e2000
fzzooo
gezo00
£22000
£22000
p2zo00
£22000
£22000
£22000
£22000
f£22000
£22000
£22000
£22000
£22000
f£22000
£22000
£22000
£22000

£22000

ava

0O 0O o o o

0
0
0
0
0
0
0
0
o
0
o
0
0
e
0
c
0
0
0
0

L

000000
ovoo00
000000
000000
000000
000000
000000

000000

000006
000000
000000
000000
Q00000
000000
000000
000000
000000
000000
000000
000000
0ooaoo
000000
000000
000600

000000

X3aN1

0Q

00

oo

00
00
00
00
00
00
00
00

L1}

oG

00
00
00
00
00
00
00
00
00
00
oc

00

d

£2¢029
£ee0e9
£22029
£22029
£2¢029
£ec029
£2Z2029

£22029

£22029
£22029
£22029
£22029
£22029
g22029
£22029
£e2eneze
£22029
g22029
£22029
£22029
g2ecoe9
£22029
g22029
c22029

£22029

1311

J000
0000
0000
0000
0000
0000
0000
0000
0000
0000
00co
0000
0000
0000
0000
0000
0000
0000
0060
0000
0000
¢ooo
0000
0000
0001

8a3dl1

000000
000000
000000
000000
000000
000000
600000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

v3

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
060000
000000
000000
000000
000000
oooQoo
goooo¢

000000

000000

000000
000000
000000

Jy

S10000

sT0900

ST0900:

sTo»00

ST0900 .

STor00
STO»00
STo»00
STOov00
S10y00
610900
ST0#00
Ss10¢00
STOy00
S10900
SI0v00
S10900
ST109%00
s10900
S10900
sio»00
s10900
SI10900
STO0»00

ST0y00

(avsl

1R911
1K911
1HOI}
iH9I11
1H911

1HIIL

1R9TL
ARSI}
1HOIL
1HOIL

IHSIL,

1A911
1R911
1H9I1
IH91L
1HOIL
dR911
1RO1}
1H9I11
18911
1HIO1Y
1R914
1H911
1HO11
1K91L

aNvYy3de

nye
nyd
nye
n¥e
nye
rye
nye
nus
nue
nyy
nye
nya
nye
nye
nys
nye
nyd
nus
nyy
nyy
nye
nye
nye
nyy

mia

1SNI

s s g

1H911L
STOY00

1HI11
SI0r00

1HO1L
ST0Y00

dHIIL.

S1oY00
1H91L
510700
1H911
S10700
1H91L
s10v00
1H9114
sT0v00
LH9IL
sT0Y00
LH91L
s10700
. AW9IL
510900
1H91L
s10v00

dH9IL.

STor00
191 L
ST10?00
1KH91L
sStoroo
1H911
Gior00
1H914
10700
1KHOIL
<sToroo
iHaIL
G10700
1H91L
ST10200
1H911
sToroo
AHI1L
ST10P00
LH911
Sioro0
1H911
sioroo
dHI1L
cl10r00

fe] |

B-9

."‘

v 8

aaocon
0aocoo
000000
0goooo
000000
000000
googoo
aoacoe
gpecoo
Q00000
agocuo
200c00
agocao
paoeao
goceon
anocao
oQocoo
ooacoa
gaocoo
goocoo
000coo
goocoo

0gooao
ag0e00

000co0
aconoo
oaocoo

usy

-ccaoo
cceogao
cccoco
scooao
:gooao
"cGoao
=gegoco
tgcgao
ceeooo
«~ococo
£e26a0
£oeeoco
ccecoee
toeeeo
Toeeeo
ccooac
cceoeoo
£oeooo
£coogo
cacooo
caraco
sccooo

~gcoeo
€ococo

cocooo
ceeeco
cceooo

¥sS1

ano0oo

aro000

anogoao
000000
000000
400000
0000C0o
6qooao
000000
200000
400000
000000
200020
00000
accooo
0oo000
anoooo
anocon
cooogo
000000
000000
gooeoceo

0ooo000
LLLLLn

LLLLLn
LLLLLY
LLLLLY

¥s1

e

20
t4s

r44)

20

LA

Y4 A aocpoo
- L2 000000
Q92 aoaonn
*92 0000no
nge oooong
age gooong
rd 14 agoong
2re gooena
bd £ oaoang
nye 000000
age 0000no
22 gooano
Qg2 £a0000
wec ooonop
nZe aagong
ate aooang
212 oooono
R02 ogoang
*02 0000ng
a0z 0o0ono
Qo611 0600000
267 0000n0
gt [slelslolels]
a9T 100700
agy 100100
opT 100100
1131 100100
3WIL ¥1s

- =
wy

e cp et
P

B N R A M A

£22000
£22000
£22000
£22000
£22000
£22000
£22000
£22000
£22000
£22000
£22000
£22000
£22000
£22000
£22000
sez000
£22000
£22000
£22000
£22000
£22000
£22000

91c000
0t120C0

$<2000
000000
012000

av3

L
P a4

[y

[0 e e }

02444 00 £2¢029 0000 000000
0z£24L 00 g22029 0000 000000
~LLL£2L4 00 €£22029 0000 000000
0ZL44¢ 00 £220¢9 0000 - 0000OOC
0zLce2¢ 00 £22029 0000 000000
Oz4Lzf 00 £22029 0000 000000
0zL24¢ 00 £22029 0000 000000
0sz£444 Q0 £22029 0000 000000
044444 00 £22029 000C 000000
042424 00 g£22029 0000 000000
0ZZL24 00 £22029 0000 000C00
0LLL44 00 £22029 0000 006000
0sL44L 00 £22029 0000 000000
0/2244 00 £22029 0000 000000
024444 00 £22029 0000 00000G
0zs444 09 £22029 0000 000000
0/2¢4¢ 00 g22029 00UC 000000
0/£4447 D0 £22029 000C 000000
0z££4L4 00 £22029 000C 000000
Qzr£44 00 £22029 0000 000000
0zs44f 00 £22029 0000 000000
0s444¢ 00 g£28029 00006 GOQOO0O
0z¢4£42 00 9TE022 000C 000000
0/Z44Z 00 O120vZ 0000 000000
0sz£LL4L 00 2802y 3000 000000
Q/zL¢4¢ 00 110000 9100 000000
29¢24¢L 00 QY20Ops 3000 000000
X3ANT d [311 eadl1 Y3

e B T e e e e e

000C00 gTOPOO
000000 GgTOPOO
00C3TGU SsTap00
000000 sTOYOO
000000 sTO»00
000000 gT0900
000000 STOPOO
000000 sT0v00
000000 gYOYO0O
000000 sTopoo
000000 510900
000000 510900
000000 sTO»00
000000 gT0PCO
000000 gTodvOo0
000000 GgT0r00
000060 GT09P00
000000 gT0o»00
000000 STOv00
000000 GTOP00
000000 GgTOP00
000000 gT10900
000000 GZ0000
000000 0/2244
est
000000 »00y00
0000086 000000
000000 292744
av (aval

1H9IL
IHO1L
1H911
1431y
LHoIL
1HOI)L
1HOIL
1HO11
1HOIL
iH9IL
1HOIL
1HOIL
1HOIL
1HO1Y
1HOIL
1HOIL
1HOI1L
1HIIL
14911
1HOTIL
1HO1§
1431y

X122

NGO9

nyy
nyy
(33-1-]
Ny
ny
nyy
nys
nyy
nyy
nys
nys

nye

nyy

nys
nyu
nyy
nay
nie
nye
nyy
nye
nyw

NIL
XL1s

iy 1200000 Q1L T

eL-L]
X1

§10v00
1HSIL
$10v00
1H91L
ST0¥00
1HIIL
STOY00
LH9IL
S10v00
1H91L
s10v00
1H91L
STOv00
1H9TL
S10v00

1HIIL

S10v00
1H91L
ST0r00
1H91L
STovog’
LH9IL
S10r00
LHIIL
cTor0o
LH9TL
STOY00
LHOIL
510700
LHOTL
ST0P00
1H91L

ST0v00

14911
SIOv00
1HOIL
S10700
iHO1IL
STQPOU
iH914
s1ovou

1HOIL

S10r00
S00v00
roovoe
NG 91 S92
NQQI
200r00
100r00

A3 Xar ooovao

anvy340

ISNI

al

B-10

. 2HI1L
oauoooooocooaooooc Non oooo:o.nuuoooDouNNuuoo.nNNoNooooooocoooooaooonuo'oa hzwnhbzmmqovoo

000000 COCOCO 000000 L 0000N0 £22000 0 0zLL42 00 g£22029 €000 000000 000000 SICYPOO 1H91L nye muo“MM—h
000000 CUC000 000000 vy 0000N0 £22000 O 0£Z/4L 00 £22029 0000 000000 00200C ST0900 1HIOIL n¥8 m—owuwuh
000000 C00000 000000 nge 0000NQ £22000 O 0/Z/Z/4f 00 £22029 0000 000000 000000 ST0P0O0 1HIIL nuys m-owuw—h
000000 C00000 000000 ege 0000NQ £22000 0 0z//2¢ 00 £22029 0000 000000 000000 STO®00 1HIIL :xm‘muowuwnh
Q00000 C00000 000000 29¢ 0030n0 £22000 0 0444 00 g£22026 0000 000000 000000 STOP00 hana :xm;muownwnh
000000 COCO0O Q000CO ose 000000 £22000 0 0¢/44¢ 00 £22029 0000 GOOOCCO 000000 SIOPOC LA911 nyd W~O“Mw—h
Qoococ CoCOC0O 000000 1419 0000N0 £22000 0 0//L44(L 09 €£22029 0000 0NOOOO 000000 STOP00 1H211 nys m—cwuwuh
gooco0 £0QO00 000000 nGe 0000N0 £22000 0 0Z//4Z 00 £22029 (0000 000000 000000 STOPOO LHIIL nye m~owww~h
000000 CCOONC 0000GO ore 000000 £22000 0 0Z£L4¢ 00 £22029 G000 000200 ANNNNG gTOP00 . IHO1L nue muowuwnh
005000 COCO0C 000000 Zre 0000NQ £22000 0 044444 00 2223y 0000 000000 QCO0CO GTOP00 1HI1L n¥E m—o"“wuw
000000 CQCCOO 000000 egce 000000 £22000 O 0fL4¢44 00 £22029 0000 000CGG ©20000 ST0900 " 1H911 nus muowuw—h
ooccoo C00000 000000 oLe 000000 ¢22000 O 0zZ/44 O0 £22029 0000 000000 Q00090 G000 1HII1 nye m—owuwjb -
ooooco0 Cco000 0000CO ngp 0000N0 £22000 0 044/44L 00 £22029 0000 000000 000000 STOP00 LHIIL Ny m-ow“W“h &
goocoo €aoe0C ooooco eze 000000 £22000 0O 0gZs4¢ 00 £22029 0000 000000 000000 gT0»0Q LA9I1 nys maomnwww
000000 C000C0 000000 22¢ 000000 ©22000 0 0/fL4L 00 £22029 0000 000000 000000 STOYO0 1H91L1 nus8 mﬂowMW~k
000000 200000 000000 erg 000000 £22000 0 0/££Z¢ 00 £22029 0000 000000 000000 STO¥OO 1HOIL nN¥a mqowuwnh
000000 <000CC 000000 olIe 000000 £22000 O 0fZ¢44 00 £22029 0000 ©00000 000000 STOYOO LHIIL nye muowuwuh
oog iV $#120G000 01 T N@ O8I S2
= - 1HIIL
000000 COOCO0 0000CO o0y 000000 ¢22000 0 0Z/L4Z 00 £22029 0000 000000 000000 ST0#00 1HOIL n¥s STOY00
goocoo CoO00C0 000000 52 000000 £22000 0 0fZf4L 00 £22029 0000 000000 000000 STO#00 AHOL nis m~o“uw~h
000000 CQO000 000000 Z62 000000 £22000 0 0gZ¢4¢ 00 £22029 0000 000000 000000 sT0»00 1H9I1 nyd mao"uwuh
000000 CCO0CO 000000 eg2 000CNQ $22000 0 0ZZ/£L 00 £22029 000G 000000 0C0CO0 ST0PO00 - 1HOI1 ' nus muomuwmh
000000 CO0000 000000 92 000000 £22000 O 0///44¢ 00 g22029 0000 GO00000 ooouoo 310900 | 1HII1 ni8 muovuw~b
000000 CCOCO00 000000 nge 000000 £22000 0 0Z//4¢ 00 £22029 0000 000000 000000 ST0900 1H91L nys m—ommm“H

usv y¥si us7 I WL ¥1s ava X X3GNI d tan @21 v3) J 1avzi aNVY3d0 ISNL 2l

000000 CCCO00 00008G £T SOZ 000000 000060 @ ST2000 OC 300000 0030 000000 TT000G 000UO0 17H 910700
000000 CO0COT 0Q000G 10 999 090200 20#000 O ST2000 00 207009 003C 000000 110000 000000 HNS ViS £20700
, 20v000 £20900 LV NOIIYIQIA 103104d 39YNOLS
gooeea €OCOQ0 000000 10 99 ov0200 OTY00O O ST2000 00 3ITrOZy ©OGC 0000Q0 TTO0CO £Z0¥00 4001 3¥8 920700
GOGOCS COCG00 0PO00O 10 959 0r0200 000000 O ST2000 0C 3TO000 0003 000000 TY0O00 0O000Q 311 $20¥00
000CGO CCCOCO 000000 10 0S9 0»0200 STZ000 T ST2000 00 JD00SO OTOC 000000 TTOO00 £00000 aav »2ovoo
000C00 COCQOO 000000 TO P99 00200 000000 O §T2GOO 00 170000 GTOC 0QGO0CO0 $00000 0000GO XiL £20v00
40917
000600 £OC0O0 000000 10 869 00200 OTY000 O 12000 00 JTyG2y 0000 Q00000 900000 £ZOYOO 4087 M8 92000
00OC00 €CCOO0 000608 10 +¢9 0y0200 000000 O »T2000 00 370000 OTO0 0QQ000 900000 000000 , 31l 20700
000000 CCCOCQ 000000 T0 829 0%J200 »12000 T »12000 00 J000S0 OT00 £Zz£ZZ 90000D 200000 aay »zoroo
000000 CCCOCO 060000 10 229 090200 000000 0 »T2000 OC ITO000 OI0C //ZZ:f 00000 000000 XIL £20r00
000000 CCOCOC 000000 TO 9T9 0y0200 £TZ000 I £T2000 00 000O0TZ 0080 £/Z/f: ¥0DOOO »0O0O0 vQ1 220v00
009 iv £1200000 L T N@ 81 $3
000006 CCGEO0 000000 10 009 0r0200 00y0OO0 O £12000 00 OUYOYS 000G £2£ZZL £12000 £12000 8 Xa1 1Z0r00 o
000000 CCCOGO 020000 10 965 090200 SOP000 O T2//4L 00 SOPOZS 0000 ££2/£L £V2000 ZLLL4L aVi¥0 307 020700 i
000C00 £0C000 000000 TO 89S 00200 000000 O T£Z££ 09 3T0000 9000 000000 £T200C Q00000 L1X3 £10700 M
000000 CCCOCG ONOO0C 10 2SS 280200 TT2000 O T£Z££2 00 TT208T 000G 000300 £T2000 200000 ¥SYTHJ 1du 2T0Y00
200000 COCOOO 000000 10 99S £80£80 £9££00 O 32/44¢ OG £9££09 0000 000000 £12000 £12600 ¥QVIRD YLS TTOr00
200000 €OOCCO 30000G 10 Oyg ££0700 022000 O T¢£Z££Z 00 022002 0000 (00000 £12000 £¥12000 Va7 0T0ra0
200000 COCOO0 000000 I0 9€€ ££0460 2v££00 O TZZZ£Z 00 29,09 0000 (000000 £00000 £00000 19142 v1S £00700
200000 €0C0O00 000000 10 Ofc ££0£°0 £T2000 O T£Z££L DO £12002 0000 000000 £00000 £00G0O va1 900730
200000 2CC000 0000CO 20 06y 000000 972000 O 1244 OC 9T2GZZ 0000 000000 000000 0ZOOQO NIL S00Y00
200000 260000 £/££L1 20 §9Y T00¥N0 072000 O T/ZZ£L 00 0TZ0OPZ 0000 000000 000000 T2/ZZL . %12 Xis yOUT0
NGO9
200000 200060 ££££4Y 20 29y 1001N0 #22000 O I£ZZ££ 00 #2202» 3000 000000 000000 ¥OOP0O NOGS 0¥8 200Y00
oSy L¥ S1200000 01 T N@ OI S92
000000 CCCOCC ££ZZL1 20 gwy 100100 000000 O TZZZ££ 0G TTOO00 0OTC0 000000 000000 000000 XIL 100700
000000 TOCO00 £/ZLL1 20 2wy 100100 012000 O 0££/ZZ CO OTZO0PS 000C 000000 000000 0Z/ZZ %12 xa7 oooroo
HOIL
000000 CO00GG 000GGO 20y 000000 £22000 O 0zZ/L4 00 £22029 0000 000000 000000 STOPOO 1HolL n¥8 510100
HITL
000C00 COCOO0 000000 968 000600 £22000 O 0Zz£Z£ 00 £22029 00006 000000 000000 STOYOQ 1H9IL N¥A GTOPOQ
H9I1L
000C00 COO0O0 000000 wep 0C0000 £22000 O 0£//¢¢ 00 £22029 0000 00GI00 000000 STOPOO 1H9I1 n¥e STOY0Q
1H91L
00000 COCOO0 ONGOO0 06F 000000 £22008 0 0££££L 00 £22029 0COG 000000 300000 STOPOO 1H91L 38 STOY0O
AHITL
000000 CCCOOC 000000 998 000000 £22000 O 0/£LL£ 00 £22029 000G 000000 00000G STOPOO 1H9IL n¥8 §I0Y00
¥SY &SI ¥81 I 3L ¥l1s Gva X X3ONI 4 1211 @a@dl v3 o% (av3) aNvy¥3de ism! 9l

S

BT

-

009000
goaclo

600000

000000
209007

Guno00

205001

gaoooo

aze0esL

000020
£00000

go0000
Q10200
ano0uo
9G0rU0

n00000
nooooo

000000

00000
Z0p02¢

10000

209022

000000

noooQo

noooo0
0Z0000

neoooo
nO00ao
ngoooe
££0/££0

oooccc
qoocce

0oacos

gogcco
zrocee

000CEE

zrocac

o0gcCce

g2elze

gaolce
£aocoe

£00CCC
ogacge
goocea
goocgcce

RN

eocaco
aooans

gooora

gogono
00900

co0o0s

805060

acogono

y2202L

gaogeo
200000

200000
0004500
goeoaoe
000000

000000
000000

000000

Q00000
210000

cao000

210000

000060

910000

0Qoooo
00000

#00000
0s0»00
ao0000
ST10900

400000
000000

000000

050000
£arooe

000000

£0»002

000000

1120581

000600
200000

200000
Op0200
000000
000000

goonna
[e]s{a]elels}

0aognn

[slslslet]o]
Q0p0eg

ogagne

90p0eg

000000

£PLL09

000000
200000

200000
goonao
ocaano
gaoono

000000
000c0C

000000

000000
»0p02S

000000

p0902s

£20900

02zo0e

000000
TLLLLL

YeLLLL
000000
000000
000000

0S££00
0S0»00

018000

050900
20900

are0e0

0c0»00

019000

1099

Og2000
orz20c0

012000
0/1000
020000
0310000

000600
000000

£00000

000000
20p009

1000000

20r009

0020090

&yZsL09

(00000
(20900

020900
(slaje]ele]e]
00000
gooooo0

N R
P g

PRRLE. DN Y

000000 000000
000000 009029

e,

0C0000 00G000

000000 009029
01»02y SY0000

000000 000000

0T1v02y S¥0000

109000 L2244¢

212002 91208¢

000000 000000
0y0200 000000

0p0200° 000000
000000 000000
100100 00GCO0
060000 000000

#

00000C »12000 200000 000000
209002 ¥09009 £090Z1 £09009

NOI93d 300D NI
000000 000000 000000 ££0900
NQ[93¥ viva NI

209002 y090G9 £U9021 £09009
000050 T10000 000012 Q0YOPS

“ . S¥0P00-¢£0700 (30831
000000 000000 CUQOGO Z£OYOO
109000-009000 ([vivd}
000050 110000 0000TZ OCYOYS
9£0900-020700 13099}
009000 009000 0G0000 20¥0GO
01r000-00v000 {viVO}
01202 000000 »2Z0Zy 110000
£10900-000700 (30031

»00y00 gTO900 OZI000 010000
000000 »TOPO0 ££0ZE0 000000

¥22000-012000 (vivad}

000000 »I0P00 £L£0Z£0 000GOO
000000 . 000000 000000 000000
L4641 S10900 000000 Q00QO0
000000 000090 00000Q 00CGO00

000000 QFLL00
0000Y2 OFrir00

2403 ONINIYWIY

000000 009000
3400 ININIVHIY

0200712 0v0p00
GCGp02S 0COP00

su3xnygn

000000 009000
syIdyeh

S0p02S 020900
CENPT L

£12000 009000
¥3xndon

0120yS 000900
awad

£12000 022000
000000 002000

ou3ad
000000. 002000
000000 Q91000
000000 020320

0000U0 0005EA

SNGILVI01 1dNyY¥3LNI

B-13

RUNNING TIME = «001 SECS
INSTRUCTIGONS EXECUTED m 105

INST COUNT INST COUNT INST COUNT -
ADX 0 ADD 2 BRM 0

STE 0 LDI 0 SHF 0

oOPT i LDA 3 TXLE 0

SUB 0 TAL 0 ETR 0

sT1 0 cye 0 DSH 0

LDL 6 BRC 4 MUL 0

TAE 0 MRG c LDE 1

LDX 3 DCY 0 STA 3

BRU 76 DIV 0 TAG 0

EGR 0 TIN 2 STX 2

IPF 0 HLT 1 ToV 0

NOP C TAP 0 NEG 0

TOP 0 ADC 0 ROV 0

cHP 0 TIX 4 LDP 0

LDD 0 NORM 0 TIE 2 :
EXIT 1 CPD 0 s10 0

TAZ 0 FLP 0 RED 0

RI® 0 ACX 0 AEA 0

EAX 0

B-14

© g

G00g00
0G6c000
ooocoo

000000
000000
030000
0GoQoo
000000
0000080
000000
goocoo

(s [ols]s}e]o]
000000
000000

ooocoo
gooecoo
g00c00
200000
200000
200000
200000
200000

ococco
000000

000C0G
ogocoo
000000
000000
000000
00ogco0
000000

000000
oqocoo
0cocod
coo000
ooocoo
200000
gogceoo
gooooo

cco000
000000
000000

ysy

cogoao
cocooo
cocouo

cococo
ccecooo
cocooo
£0co00
<00000
coocou
cacoce
ooo00

cocoQo
coegto
£gooo0

cgcocea
cgeogo
cgoosco
cocoog
cgooco
cooco0
‘cgeoaoo
‘200000

£oooco
+£C0000

*Cgo0000
cococo
CGcooo
cocooo
coaoooo

-€C0000
<gooao

€0g000
conoo0o
coooco
€GCoeo
cooo0o
€00000
cacoco
c00000

ccecoco
‘cagoeo
cacooo

¥s1

000000
000000
oocoao

000000
000000
Q00000
anaoco
gao0g0o
0000a0
000000
LLLLLn

LLLLL
LLLLLn
Ll

000000
000000
080000
00n00co
000000
gcocoo
[aledels]o}
000000

0go0000
000000

000000
ono0co
goooco
000000
000030
0GG000
800300

000000
000000
000000
oqoogo
000000
000000
009000
Lol

LLLees
oL
2Ll

¥S7

10
10
10

20

20
20

911
ozt
o1l

9ST1T
’SIT
sr1t
ert
9Tty
oers:
T4
*0T11

2601
r601
88C1

8£01t
ggot
¥66
866
[4:1.1
86
2L6
2e6

006
| 74

SZ0
(4]
£39
98
$68
6re
£re

L£9
62¢
928
eze
ere
rig
267/
0L

1 4° V4

IS¢
s/

AW

20000
200090
2000+0

20000
20000
200090
20000
20000
20000
2cooor0
1001NQ0

100¥00
100100
100TN0

200090
2000»0

f8£400
L£CLe0

£804£¢0
££0/¢0
80456
000000

280420
200090

2000+0
200090
2000#0
2000»0
2000¢0
20000
2000»0

20000
200090
2000»0
2000v0
2000»0
2000v0
0000no
100100

I0010N0
100100
1001N0

¥1s

000000
c12000
000000

O=~0

0T»000
000000
» 12000
000000
£12000
009000
912000
0712000

¥22000
000000
otrzooo

s0y000
0000006
112000
£¥££00
022000
TrL400
472000
122000

£0%000
00000C

o COO0OOOO0OOO o0 oO0 O0O0=0O=-wO0

009000
209000
»09000
£09000
£09000
10y000
209000

0900C
00000C
¢£0»000
90y000
»0y000
222000
912000
012000

22000

000000
012000

(o N o] o COoO0OO0OQODO OwOOO0OOO0

»

av3

S T T

T RN

S12000
S12000
§12000

»12000
r12000
r12000
r120G0
£12000
£12000
£LL2LL
£L2LL4L

£LLLLL
£LLLLL
cLLLLL

102000
109G00

109000 °

105000"
1090G0
109000
T0Y000
109000

10yC00
109000

10v000
109000
10¥C00
109009
109000
109000
[{o] JolulV)

109000
109000
109000
109000
eLLLLL

QLLLLL

eLLLLL
eLLLLL

eLLLLL

eLLLLL
Y2444

X3aNI

W T v

00
00
00

00
0o
00
09
00
00
00
00

00
]s}
0g
00
00
60
00
00
00
02
00

00
00

0o
(a]0]
00
e]0]
0o
0o
00

0Q
0G
00
o]¢)
00
Go
00
00

oo
(d]1)
00

d

S10000
000050
110000

otroly
s10000
000050
110000
Qoo00t12
CovOrsS
91202«
ot120v<L

r2cozy

110000

ot20%S

sOr02S
910000
112091
£v2L£09
Q2eo02
crLL09
412002
r2eoes

£0p02¢

‘210000

0Gg029

209002

#09009
£0g027
£09G609
gogore
209007

003090
219000
£0y002
90y0PS
#0902S
c2202¢L
912024
oteors

y2coer
110000
oteors

1311

0ooan
0100
0100

0000
0100
0100
0100
0000
0000
0G0
0000

0000
o100
0000

' 0000

0000
ooac
0000
0000
0000
0000
0000

gooa
0000

0000
0000
06000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000

0000
0100
0000

0021

-000000

000000
000000

000000
009000
LLLLLe
LLLLLL
224888
LLeLLLeL
LLLiee
LLLLeeL

LreLit
LLLLLL
LLLLeLL

LLLLLl
00»000
00¢Q00
00000
00¥000
00r000
0o0r000
0Cr000

00pQ00
Gor000

0or000
007000
00v000
00¥000
00¥000
a0r200
00¥000

00¢000
Q0»000
G0v000
00¥000
00y000
000000
000000
000000

000000
000000
000000

v3

AT E BT I T St T TR e e e T W e

220000 000000 . 3LL
220000 900000 W aav
»1000G 000000 XL
#10000 £20900 4007 oue
#10000 000000 3L
#10000 <00000 auv
200000 000000 , XIL
200000 200000 ; vay
£12000 £72000 g8 xa1
£12000 020000 , NIL
£12000 24442 ; %12 x1s
£12000 00900 NQO9 JuE
£12000 000000 Xil
£T12000 2242442 N1y xun

osoT iy £7200000 01 7T

£12000 222442 ¥37Y3 307
£12000 0nOCOO LI%3
£12000 200000 HSWIHD 1de
£72000 ¢12000 . NOVIHD vis
£12000 £12000 wan
£00006 £00000 o TGTHDY vis
£00000 £00000 L van
009000 0T0000 NIt
606 - iv S1200000 01 T
00#000 002000 NIL
00000 000000 . ddv
00¥000 G£GP00 SHINMOA nNyE
00¥000 00v0D09 d3AYS v@"
000000 000000 ARNS y1S
000000 20y000 2y 107
209000 20p00C L. 9¥Y WiS
20v000 20y000 va-
009006 GO0y000 d3Avs 3l$
009000 G£O¥00 SHINYON WyB
009000 000000 da1
009000 009000 - ghg _van
110000 309000 , xa1
110000 00»000 Y4377I¥Vy 3G
110000 041000 ' NEL
110000 020000 : N1L
110000 224244 A3 xX1s
110000 »00¥00 , He09 Jue
0ss iV 91200000 01 T
110000 000000 XL
110000 12224 ¥I19 - Xa9

sl } tav3al aNY¥3d0 1SN1

S20r00
2000
£20r00
4007
$20v00
gcorae
y20700

‘£20700

22000
120700
500700
»00700
NG9
200v00
Yocr00
000700
NG @1 §2
02ov00
£10v700
210900
110700
01000
400700
900700

‘10700

Ng 01 s3
9c0Y00
GLovoo
syaNyon
Sr0O¥00
y#0r00
£y0¥00
2y0r00
Ty0?00
oyGr00
££0700
sy3xuon
y£0Y00
££0200
2e0r00
T£0v00
0£0r00
410700
So0v00
»00?00
NQQY
200700
NG 81 8D
100?00
000¥00

a1

B-15

e

000co0
000go00
000060
000c0o
0oo0coo
000000
000000
000000

gaogoo
aooeoo
000000
goocoo
ocooco

ogocoo
0oo0oQo
goocoo
0oocoo
200000
200000
200000
200000
200000
200000

200000

agocoo0
ogocoo
goocao
000000
000000

000000
ogocoo
000000
goocoo
elolslolofo]
000000
000ocoo

goocoo

000000
000000
ooocoo
goocao
goocoo
0aoaeco

usy

cceoao
caoooo
cocaao
coogao
cogoao
ceeoeo
ccooeo
cocooo

cocoao
£ocaco
-geoeo
£goeooo
£00000

cococo
cagooo
cocooo
caooeoo
coooco
cagcao
ceecoeo
cocouo
200000
200000

200000

cogooo
ccoooo
cocooo
ccoooo
€Goooo

cococo
coecooo
ccocao
caoeooo
cooooo
ccooo0
cogoceo

€geo000

ccooao
ccocoo
ccooco
coaoao
ceaoeo
cocooo

¥S1

v

000000
000000
onoooo
000000
000000
000000
000000
000000

gooo0o0
000000
000200
000000
000000

000000
oaooco
000000
000000
000000
000000
0nocoo
000000
000000
LLLLer

LLLLln

LLLLdn
LeLeLn
000000
000000
000000

000000
000000
gnoogo
000000
000000
000000
000000

000000

ooaooo

000000
onoo0co
000000
oeo0co
000000

¥S7

10 6487
10 s4s1
T0 ¥4ST
10 2961
10 1961
16 £g67
10 ksct
T0 Sysv

10 6£ST
10 sest
10 6261
10 g2st
10 4161

T0 ¥0ST
10 L6¥1
T0 687
10 £S»T
10 Zywd
10 Tvrl
106 Lol
10 Ieol
20 yeetd
20 69¢T

20 gofT

20 6rel
20 £921
10 gogs
10 §s21
10 6set

10 9621
10 ecet
10 gr21
10 2v2y
10 9f2T
10 Oger
10 p2z1

10 gi21

10 ¥021
10 86771
10 #6711
10 0611
10 9811
10 Oe1lT

1 1L

2000%0
c0a0oy0
2000v0
2000pk0
2000b0
200040
2000%0
2000r0

2000¥0
ZCo0p0
2000%0
2000%0
200090

2000%0
2o00b0
200050
££0££0
££0/£0
££0££0
2804£0
££0/£0
000000
Ic0T00

100100

100100
7100100
000000
280480
2000b0

22000
2ccaovyo
2000%0
200040
2000%0
200090
caoayo

200090

Z000b0
2000%0
200060
2000%0
200090
200040

¥1s

R IR e

2rL400

‘000000

o e By ik R

£0p000
909000
»0p000
209000
019000
000050
cT2000
000000

O- 000000

0T¥000
000000
»12000
000000
£12000

- OO0

009000
S0v000
000000
112000
£¥£.00
022000

£12000
912000
012000

O0CO0O0OOOO0OOO

o

»22000

000000
01edo0
122000
£0y000
000000

CO0O00O0

009000
209000
09000
£09000
£09000
10»000
209000

O=~MO00O0OO0O0O

‘009000 O

£09000
909000
»09000
209000
019000

QO0O0OO00O

av3

b

R e

109000
10¥000
€12000
S12000
§12000
412000
§12000
ST12000

»12000
»12000
#12000
y12000
£12000

£12000
veLLLL
YiLLLL
vLLLLL
YLLLLL
YLLLLL
vLLLLL
vLLLLL
vLLLLL
vLLLLL

veLLLLL

vLLLLL
LLLLLL
109000
10v000
10v000

109000
109000
T0»000
i0»000
109000
109300
109000

109000

109000
109000
109000
S12000
S12000
S12000

X30NI

00
00
00
00
00

00

d

£0v002
a0vors
rOroe2s
20v009%
arpo2y
-GT0000
000050
110000

GTro2y
S10000
0000S0
110000
oooote

i) 2o} 2+
Soro2s
970000
112091
£»LL09
022002
erLL09
Z72002
9r202YL
oreovs

racoey

1¥0000
areors
12202¢
£0y02¢
210000

009029
<G9002
#09009
‘£0902T
£09009
0000T2
209001

009090

.210000

£0v002

‘90v0rS

v0pr02s
20v009
arvoZy

a1l

0000
0000
0000
0000
0000
0000
0100
0100

0000
0100
0100
0100
0000

0000
0000
0000
0000
0000
Q000
000C
000¢
000¢C
Qooc

0000

0100
0000
0000
0000
ogoc

0000
0000
0000
0000

‘0000

0000
00900

elele]y
0000

0000
0000

000f

800u

eadl

Goy0o00
00%000
0Gy000
000000
000000
000000
000000
000000

000000
000000
LeLLeLe
LLLLLL
LLLLLe

LLLLLs
LLLLLeL
coro00
Q0»000
Q0r000
00r000
gorCo0
00»Q00
00v000
Q0y000

00v000

00¢000
00»000
00v000
00r000
00v000

00»G00
Q0r000
00r000
00»000
o0r000
00y000
00009

00r000

00¥00Q
00y000
w000
;07000
300000
000000

¥3

009000
££0000
££0000
££0000
££0002
££0000
££0000
220000

220000
2c0000
220000
270000
210000

009000
T0v000
00$000
££0000
£20900
000000
170000
000000

£20900
000000
070000
000000
2710000

1067

£12000
£12000
£12000
£12000
£12000
£12000
£000600
£00000
0ov000

00v000

00+000

£12000
LLLLLL
000000
200000
£¥2000
£¥2000
£00000
£00000
020000
vLLLLL

»00900

15-34 1

00¢000
00%000
009000
00»000
00»000

009000
007000
226000
220000
209000
209000
009000

009000

000000
eLL2LL
010000
oezooo0
000000

S£0v00
00y000
220000
20y000
20v000
20v000
00»000

S£0v00

oozt

005000
009000
220000
220000
220000
220000

ay

000000
009000
10#000
00v000
220000
£20900

taval

gans vav.
Xan
¥31Ivy Aam
HNS vis:
40071 J¥8
3iL
aay
XL
4001 Ju8
, 311
aqy
XLL
va?
iy €£1200000 Q1 1
8 Xa1
¥37I¥3 AN
1yX3a
YSVIH] Ldo
YAYIHD vis
van
I8THY V1S
val
NIL
%12 x1§
: NG89 Ju8
lv 61200000 @1 1
XiL
A1 xan
NIL
NIL
dd7
SHINGON NYE
d3AVS van
" 'AWNS V1S
Ny - 10"
24y V1S
van
d3AVS 31Ss
SHIANYON Wu8
iv »1200000 01 T
403
ans vad
X3
ATV 30
HNS V1S
4987 Jus
anNvY¥340 1ISNI

2£0P0C
TE£0P00.
o£oP0Q
420700
92000
s20r00
y20r00
£eoroo
4007
9ZoYeo
S2oros
#20700
£2oro0
2ecoro0
NO Q01 S2
120700
o2or0C

‘£10700C

2toroo
110700
010700
20000
900700
c00v00

'y00¥00

NOQO

200700

NG 01 S3
100700
oogro0
»10v00
9£0Y00
SE£0Y00
sy3nyon
Svo¥00
yy0¥00
£ror00

2vy0Y00

1rOr00
ovoroo
££0700
syIxyon
#£0V00
NG .01 S2

"££0700

z2eor00
120700
ogcovo0
420700
920v00

a2l

B-16

.

E]

»

000000
000000
Qoo000
200000
200000
200000
200000

200000

ooocoe
000000
000000
000000
goocoo
000000
000000
000000
aoocoo
goocgao
000000
000000
aoocoo
ooocoo
000000
goenoc
0000c0
ooocoo
000000
000000
gooooo
goocoo
goocoo
goocoo

000000
000000

usv

coocoon
ccecooo
cogoao
cacooo
cccooo
cgocooeo
-goooo

200000

*C0C000
+€00000
cacooo
€oo000
caoono
ccoooo
cceooo
1CC0o000
'€ccoeo
'€cC0000
ccocao
cooooo
cocooo
‘00000
€GoGo0
+CCC000
cgecoo
-cgoooa
‘€00000
coecoco
ccecoeo
‘coooao
‘cogooeo
'€00000
£coo0o
coooco

¥S1

coooco
000000
000000
000000
orgooo
gsooco
0n0000

onoooo

000000
Q00000
oroooc
ac0000
0000G0
000000
000000
000000
o0o0oao
g0oogo
oacooo
Q0Qosoo
aeoooo0
000000
000000
000000
0Qooao
Qc0000
LLeeLsLn
LLLLLn
LLLLLy
LLLLL
oacooo
oogono
0000090
Goooco

¥s1

10 6161
10 167
10 s/e1
10 6987
10 £9¢1
10 65817
10 g£SeT

£T1e7

66/1
S64%
| 174
2921
szt
6LL1
szt
T2
J1-74 §
10 £9£1
10 posY
10 6741
10 9121
10 2121
10 g0zt
10 2021
10 9691
20 06971
20 §991
20 2Z991
20 g»9ol
20 2v91
10 2091
10 966t
10 06GT
10 2est

I 3wIL

2000»0Q
2900+0
28040
802790
280450
££0/£°0

L£0450

ogoono

ocoono
0000n0
000000
000000
200000
000000
000000
000000

onoongo
0000n0
££0£¢0
20000

2000»0
2000%0
2000»0
200090
2000+0
20000
100100

100100

100100
100100
2000v0
Z000¥0

2000¢%0
200090

- 1

S0y000
000000
112000
£9/2£00
022000
2v/LL00
432000

£22000

£22000
£22000
£22000
£22000
£22000
£22000
£22000
£22000
£22000
122000
£0y000
000000
009000
209000
»09000
£09000
£09000
912000
012000
¥22000
000000
012000
104000
209000
009000
000000

av3

[=] [=N o Mool

0000

[l =} O~0O0O (=} OC00000O0

»

sLLLLL
SLLLvL

SLLLLL

SLLLLL
SLLLLL
SLLLLL
SLLLLL

SLLLLL

szeeet
seLeeL
seeeLe
szLeLe
seLeee
szLeee
sseeLt
seLeLe
seLeet
7.
seLeLL
Y977
SzLeLt
SLLLlL
SLLLit
seLLLL
SLLLLL
SLLLlL
sLLLLL
seLLLL
sLLLLL

vLLLLL

109G00
10v000

109000
109000

X3aNT

00
00
00
00
00
a0

00

d

sOp02S
910000
11209t
£v£209
022002
2vLL09
412002

£22029

£22029
£22029
£22029
£22029
g£2z029
£22029
£22029
£22029
£22029
12202,
£L0v02¢,
210000
009029
209002

#09009
£0g9021

£09009

9t1202¢

‘orZors

rzzozy

110000
greors
0000712

2090071

009090
270000

o1}

0000
0000
0000
0000
0000
0000
0000

0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0coo
0000
0000
0080

ooon
0000

0000

0000
0000
0000

0000
‘0100
0000
‘0000
‘0000
0000
-00Q0

Qa1

LLLLLes
00v000
00v000

009000

oov000
00v000
00v000

00v000

oov0o00

Q0»000

coy000
00000
00000
00y000
00p000
ooy000
0o¢¥000

00000
00r000

00r000

oov000
00$000
00v000
00»000
00v000
00¥000
00¥000

Qo¥000
0or000
(1 Is] Jels]o]
00000
00r000
0or000
00»000

‘3

061 i1y £1200000 oL T
£12000 L2448 ¥31Iva 307
£12000 000000 11X3
£12000 200000 MSYIHD 1d®
£12000 £12000 HOVIHD V1S
£12000 £12000 vaa
£00000 £0000C 18THD V1S
£00000 £00000 va1
00¥000 ST0P00 1H91L nuE

1091 ilv ST200000 01 T
00r000 STOPO0 LH9IL nu8
007000 STOY0O LH9TL nys8
007000 STOPOO 1H9IL nuE
009000 ST0POO 1H911 nus8
00¥000 S10Yy00 LH9IL nue
009000 10900 LH9TL nud
00¥000 ST0#00 LH9TL na8
00#000 STOPOO LH9I1 ny8
009000 STO¥00 1H9IL nue
00v000 030000 NIL
007000 002000 NIL
007000 000000 47
0OPGOO S£O0Y00 SY3INYGN Nue
00v000 00y000 daavs van
££0000 ££0000 NWNS VIS
££0000 Z0y000 ¥y 141
207000 Z0y00O 94y vis
207000 020000 NI
209000 SLs244 N2 X1S
207000 »00Y»00 NGGY JuE

0597 iv y1200080 01 T
Z0v000 000000 XIL
207000 ¥2.27¢ N1 xan
207000 Z0y000 van
009000 009000 d3AVS 3LS
009000 S£O¥00 Sy3INNON WHE
009000 000000 o 401

av [ava) - aNv¥34e ISNI

NQ 01 S2

ocoroo

£10v00
2loroo
110%00
or10%00
200%00
300v00
4HO1IL
STOP00
NG 01 §2
1HOIL

sT0r00

1M1
S10700
L4911
S10700
1H9IL
S10v00
1H91d
S10v00
1HOIL
S10700
1H9T14
S10¥00
 1W9TL
S10700
1911
STOr00
»10Y00
9£0¥00
SCOY00
Sy3INYON
S¥O?00

‘#y0r00

£yOroo
2p0oroo
1#0?00
S00Y00
y00?00
NGOI
200r00
NO 81 82
100700
oooroo
0p0¥00
2£0700
syanyen
#£0000
££0?00

2l

B-17

ety

s B it o

200000

0oocoo
coo000
gooceoo

onogac
0oocao
ooocoo

000000
000000
goocgoo
oooceoo

000000
000000
000000
000000
000000

goocoo
000000

000000
ooocoo
000000
000000
000000
ogoeoo
000000
000000
000000
eleltlalalo]

000000
000000
000000
000600
000000
000000
000000
ooodoo

oocoaoo

000000
ogaoao

¥sv

¢acaooe

cgcoeg
cccoceo
caccoo

cccoco
cacoco
cacoco

ccecoao
coooaqo
ccoooo
cocooo

cgcoco
cccooo
£cegooo
£acogoo
.gcooo

cceooo
cceooo

£00000
<coaao
~00000
tcooeo
reoooo
focooo
cocooo
coaocao
£00000
ccogoo

cccooo
coooco
cceoco
cgecoaa

‘ceeooo

ccooco
ccoo0o
ccecoco

cacoao

ccoooo
ccoo0o

ds1

ELLELY

LLLLLy
LLLLLT
LLLLLy

ocodao
onoQao
000000

000000
000000
onoooo
000000

000000
gQo000
0c0000
000000
000000

onooco
000000

000000
ongooo
000000
slelalelo]a]
000000
or0000
oeo000
000000
0noooo
ocoooo

ae0000
on00a0
ocoo0go0
000000
000000
onoooo
onrooao
LLLLLn

LLLLLt

Ll
LLeLLy

487

20

c0

20

10
10
10

10
10
10

10

20
20
20

99ze

0gz2e
9vze
ovee

ogeze
9612
2612

get2
pe12
2912
ortz

812
££12
6212
g212
Lite

tore
s602

6802
j2-1e 14
gs02
rL02
002
9902
0902
9co0e
gco2

. pr02

groe
yeoe
gzo2
geoe
9toe
oroe
p002
1 4-1.3

8461

b267
8967

AHTL

100110

T00¥N0
100100
1001NQ

oooqno
000000
000000

000000
0000N0
£4£0¢£¢0
2000r0

2000v0
2000v0
2000%0
2000+0
2000v*0

20000
2000v0

2000»0
2000%0
20000
200Qr0
200090
2000%0
2000%0
2000%0
2000»0
2000%0

2000v0
20000
2000#0
2000*0
20000
2000»0

200090

100100
1001Nn0

100100
1001Nn0

s

otT2000

»22000
000000
otzaooo

£22000
£22000
£22000

£22000
122000
£G¢000
000000

009000
209000
#09000
£09000
£09000

109000
209000

009000
000000
¢£0»000
90v000
»0v»000
20y000
oTy000
000000
s12000
000000

019000
000000
»12000
000000
£12060
00y000
912000
012000

$22000

000000
012000

Gv3

O 00000000 Q - 0O00O0O0O OO0

[N =N O00=-O~00

>

LLLLdL

LL2LLL
LLLLLL
9LLLLL

109009
10v000
109000

10v0G0O
T0v000
109000
109000

T0v000
109000
109000
109000
107000

10v000
109000

109000
J0y000
T0y000
109000
S12000
612000
S12000

G12000

st12000
S12000

»12000
y12000

»12000

p12000
£12000
£12000
9LLLLL
9LLLLL

9LLLLL

QLLLLL
SLLLL¢L

X3CGNT

o
(=]

00
00
00
0o
00

00

0o
00
0o

d

3 (RN

0rc0rY

v2co2y
110000
otT2ovs

£22029

£22029

£22029
Teeoesl
L0v02¢
210000

009029
209002
#09009
£09027T
£09009

ocoote
209007

009090
210000
£0v002
90¥%0PS
y0r02S
20y009
[sa8-4s 44
S10000
0000s0
110000

ot1p02Y
SsT0000

. 000050

110000

- 00Qote

00pyOvs
91202«
orzovs

y22029

110000
0120vS

a1l

0000

0000
o100
0000
00600
0000

0000

‘0000

0000
0000
0000

0000
gooc
0000
0000
0000

0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0100
0100

0000
0160
o1C0
0100
0000
0000
0000
0000

0000
0100
0000

00y000

00r000
G0p000
00v000

00p000
00»000
00v000

00v000
00¥000
00vyCa0
o0#000

coy000
coy0oo0
00v000
00y000
00v000

00¢000
00v000

00v000
00v000
00v000

00¢#000-

o0ovy000
000000
000000
000000
000000
000000

000000
000000
LLLLeL
fLLLeLL
LLLLLL
L2LLLL
LLLLLeL
LLLLLL

LeLLeL

LLLLLL
LLLLLe

v3

00%0600

LLLLeLd

osze

00r000

00+S3U

00v000
00000
00r000
00v000

00v000
209000
(oJe} J3 13
00»000

007000
00$000
»#0000
$#0000
20r000

y00v00
000000
9LLLLL

GT10900
S10v00
GT10p00

STo900
010000
002600
000000

S£0%»00
00+000
#0000
20ve00
¢0v000

1012

20v000
009000

009000
009000
009000
y#0000
y»0000
¥9»0000
#»C000
»»0000
y»0000
0£0000

020000

0g0000
0206000
sT10000
10000
£12000
£12000
¢£12000

£12000

£72000
£12000

ayv

23v000
00000

S£0v00
000000
009000
109000
00y000
v»0000
£20v00
000000
210000
000000

£20¥00
000000
£10000
000000
s10000
£12000
020000
QLLLLL

200900

c20000
SLLlLL

[aval

X33 XLS
iy GT200000 oL T
NGgO9 JuB
XIL
N3 xa@a
1H9I1 nu8g
1H911 nue
4H9IL nu8
1H9IL nua
) NIL
NIL
417
SHINYSN nud
d3AVS Va1
HWNS vis
N4y 10
. 9¥y v1$
iv $1200000 Q41 1T
; val
d3AVYS 31§
SHINYON WYE
da7
ans va?
xa?
4371Iva 3
NS vis
4801 Jue
3L
nav
XL
4807 Jye
3L
aav
XI1L
val
g8 xa"
NIL
373 x1s
NQO9 Jue
XIL
¥ Xan
aNvy3de 18N1

pO0P00
NG O8I S2
NGO09
Z00v00
100700
000700
1H91L
S10v00
1H911L
S10700
1H9IL
storoo
1H91L
sToroo
v10¥00
9¢0P00
S£0Y00
syanyon
S¥0P00
y#0¥00
£v0¥00
2r0oroo
170?00
NO O SO
00?00
££0¥00
su3NYON
»£0v00
££0%00
2£0900
1£0%00
0£0r00
£20v00
920v00
§20r00
»20700
£20v00
4001
920700
520700
v20r00
£20700
220r00
120700
S00r00
p00»00
NOO9
200900
100700
000v00

B-18

al

e S

o

ooocoo
000000

Qooao0
000000
c0o000
ooocoo0

ooQooo
000000
ooocoo
ooocao
000000
0ooeo0

000000

000000
000000
ooocco
000000
000000

0ooco0
000000
ooogooe
ooocoo
000000
coocoo
000000
000000
000000
000000

00cco0
000000
cgocoo
000300
oooo0oo0

000C00
goocoo
000c00
oooeoo
F{a]elele]o]
200000
200000
200000
200000

¥sy

cceooo
cocoao

200000
cocoao
cocooo
£o0000

cgogooo
‘00000
caooao
cgooaqo
coooo0
£ceooQ

iccaooo0

cooeoo
:€000aGo
£00000
-gcooo
.gooao

rocooo
£gcooo
~Cc0000
cccogoo
cccoeo
'cocoao
‘€g0000
coooao
cceoao
ccooo0

ofafslelsle)
caooo0
ccecooo
cocooo
cgcoooeo

€60000
cocooco
tocoao
(00000
ccecoco
cgeooo
ccoooo
ccooco
200000

us1

060000
000000

000000
0000ag0
000000
000000

000000
000000
000000
000000
caoooo
LLLLL

L

LLLLLs
LLeLsn
000000
000000
000000

0f0000
(e[ale]els]o]
000000
ano00o0
o00000
000000
ongogo
ongoso
000000
c00o0060

000000
geooas
000000
aaoooo
000000

000000
0a000a
060000
elefelefe]o}
000600
000000
ongooo
ocoooe
000000

s

A

0/92
9992

2992
8692
sr9e
rT92

(2414
£092
£092
£6S52
11314
69s¢2

£962

évGe
I 14
£062
L6v2
i6v2

sere
LLve
rvive
D42
o9r2
r4-1 74
13 14
(3 24
9rve
Ovpe

reve
ngye
op2
give
212

86ge
réee
98¢e
osge
pree
geee
reee
gege

. 9822

WL}

ooo0ono
00000

000000
ogoeno
££0/¢0
2000v0

2000v0
2000¢0
2000#0
2000v0
2000%5
100100

100TNO

106100
100100
2000*0
2000#0
2000v0

2oooro
200090
2000v0
2000»0
2000v0
2000»0
2000+0
2000*0
2000v»0
2000+0

20000
200090
2000»0
2000»0
20000

2000#0
200090
20000
££0/¢0
££0£€0
28040
££0/¢0
£80/¢90
00o0no

¥1s

£22000
£22000

£22000
122000
£0»000
000000

009000
209000
v09000
£05000
9t2000
012000

#22000

000000
012000
£09000
109000
209089%

009000
000000
£0v000
90#000
»0p000
20v000
0Ty000
000000
G12000
ocoooo

07000
000000
»12000
000000
£12000

009000
G0»000
006000
112060
£v2400
022000
2v.2.00
£12000
912000

tav3

Q

(=]

O=000 o 000QCO00O 0000

- OO0 O=00000000

QOOO0OOOOOLOO

000000 00
000000 00

000000 €O
000000 09
000000 0O
000000 00

000000 GO
200000 00
000000 00
000000 00
000000 00
000000 00

000000 ©Q

000000 00
LLLLLL 00
109000 00
109000 00
10y060 00

10?000 OO
1090006 00

10¥000 00

109000 00
612000 00
S120060 00
S12000 00
S12000 00
612000 00
12000 0O

»12000 00
»12000 00
v120G0 00
»12000 00
£72000 0O

£120002 00
LLLLLe 00
L4048l 00
LLLL4L 0OC
LLLLLe 00
LLLLLe 00
LLLLie 00
LLLLLe 00
LLLLLL 00

X3CNI d

£2e0es
£22029

£22029
T2c0cL
L0102,
2taooo

009029
209002
»06009
gogoeT
9tzoeys
oveovs

raezozy
170000

0T20¥S

£09009
oooor2
209001

009090
210000
£0vrone
S0p0PS
y0p02S
2Qv009
orvocy
S10000
000pso
170000

0Ty02y
ST10000
0000s0
110000
ocgore

00vovs
sov02s
970000
112097
£vLL09
0zcaoe
2vLL09
12002
9t20G2L

tarl

0000
0000

0600
G000
0000
0000

0000
0000
0000
0000
0020
0000

0000

o100
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000

0000

o100
0t00

0000
0100
0100
0100
006G

0000
0000
0c00
0000
0600
0000
goco
0630
0000

eaol

00000
00000

oov000
00¥000
00rQ00
00%000

00r0N0
00v000
00¥co0
Gor000
00v000
00¢¥000

00v000

004000
00v0Go
00000
00v0090
00»000

0or000
00000
00v000
00p000
00v000
000000
000009
000000
000000
000000

000000
000000
LLLLLL
LLLeLLeL
LLLLee

LLLLLL
LLLLLL
00y000
00v000
00%000
Q0000
00r000
00v000
00000

v3

00v000
00v000

00v000
00»000
00¥000
007000

002000
00%000
650000
650000
20v000
20000

20$000

610900
sT0900

S10900
010000
002000
005000

GE£0¥00
00000
§50000
20v000
020000
000000

00900

1662

204000
20v000
20v000
20v000
009000

009000
009000
009000
650000
6s0000
6Gs0000
660000
650000
650000
9£0G00

9¢0000
9£0000
9£0000
020000
020000

000000
LeLLeL
20r000
20y000
00¢0090

SE£0P00
000000
009000
10000
00$000
660000
£20v00
000000
£10000
000000

£20y00
000000
910000
000000
020000

(4]e] X4

£12000
£12000
£12000
£12000
£12000
£12000
¢00000
£00000
gov000

Jy

£12000
LLLLLL
000000
200000
£12000
£12000
£00000
£00000
020000

(av3l

LH911 n¥®
lH2il1 nys
1H911 ny8
NIL
NIL
407
sS¥INYON nye8
© d3AVS ¥QA
RHNS - V1S
¥y 101
NIL
X1 x1s
NQQ9: X8
lv $1200000 @1 T
XL
¥12 xa1
¥y V1S
va1i
d3AVS. 3LS
SHINYON Wyl
441
ans van
xan
¥3Nvo 341
HNS viS
4007 Ju8
31L
aav
XIL
d007 u8
AL
aav
X1
val
iv ©1200000 01 ¥
8 xav
¥377vo 307
11x3
YSYTIHI 1d@
HOVIH]) V1S
val
18THD VLS
‘ van
NIL-
aNY¥3dO 18Snl1

510700
1HSIL
siov00
LH91L
S10v00
»10700
9£0700
S£0v00
sy3Nyon
SrOP00
»p0O¥00
£rOY00
2r0or00
S00v00
#0000
NGO
200r00
Ne 9 §2'
100700

00000

TrOov0o
oyQor00
ZE0P00
SyINyeN
y£0Y00
££0Y00
2Lor00
T£0v00
ogoroo
420700
9c0or00
6caovoo
r2or0o0
£20ov00
d0o1
920v00
g2or00
p2c0r00
£20r00
220r00

NG 01 SO

12oro00
02oroo0
£T0v00
2tlov00
110700
otoroo
£00Y00
90000
S00r00

ol

B-19

sgocee

oaocoo
000c00
goocoo
oaoroo
000000
000000
200e00
200000
200c00
200000

200000

o0oeo0
000000
gooooo
googoo
000c00
ggoacoo

ooooQo

usYv

fcecoco
£ccooo
cccoco
ccecono

cceooo
cceooo
'€aecooo
cgoooceo

tgeono

cocoao
cocooo

200000

ccoooo
cocoao
cococo
cececoco
£ceoeo
cacoeo

£geooo

us1I

LeeLLt
LrLeeLn
LreLen
LLLeLen
anooao
onaooo
anoooo
orooo0
orgooo
0orooao
onoooo

oQooo0

0n0000
0roooo0
0rooao
000000
angoco
ongooo

orgooo

ST

| 2°1-T4
882
| 7L T
8992
8192
orgez
vsz2
89,2
29,2
8622
t1-9%4

21/2

8692
r692
0692
oR92
2e92
8492
vr92

AL

100100
100100
100100
100100

200000
2000»0
2804€0
2£804¢0
280/¢0
2£0/¢0
£80/¢c0

000000

0000080
cgoono

0Q00nQo

felalelelnls]

anoano
oqoano

000000

¥ls

000000
»22000
000000
012000
S0»000
000000
112000
£v2L00
022000
2v£L00
£12000

£22000

£22000
£22000
£22000
£22000
£22000
£22000

£22000

av3a

ooo0o

000OOOD

000000
000000
000000
000000

£3G00
000000
000000
000000
000000
000000
000000

000000

000000
000000
caoouo
000000
[s]slo]als}e}
co0o000

goooo0o

X3an1

Do

30
00
no

0o
0o
00
00
oo
[¢]0]

Y]

d

000090

veeoey

110000
arzovs
S0v02S
910000
112097
£¥££09
gzeoge
ev/L09
412002

£22029

£22029
£22029
£22029
£22029
£22¢029
£2¢029

£22029

1311

0000
0000
0000
0000
Q000
0000
0000
0030
0000
6000
0000

Qooo

0000
0000
aoao
G000
0000
0000

0000

eaa1

LLLLLe
LLLLeLe
LLLLeLe
LLLLeLe

LLLLLL
00000
00v000
00v000
ooy000
00v000
00y000

00000

00y000
00y000
oorooo
00y000
00r000
009000

00r000

v3

R

£12000
£12000
£12000
£12000

000000
v00»00
000000
000000

(11374

£12000
£12000
£12000
£12000
£12000
£00000
£00000

00»000

LLLLLeL
000000
200000
£72000
£72000
£00000
£00000

GST10900

802

00»000
00ov000
00v000
00vr000
00$000
00or000

009000

av

GT0vGO
gtov0o0
SsTo®00
ST0p00
ST0»00
S10»00

G10900

faval

1M
NgUg JuAa

XiL
A1y xa?l

lv £1200000 o1 I
¥371v0 301
11xa

USVIHI 1de
NAYTIHY VLS
van
18THY VLS
van
1H91L nu@

lvy §T200000 of T
1H91L - n¥8
LHSI1 - nye
LH9TL ny8
1H91L n¥e
14911 nu8
1H9I1 nue
1H911 nu8
anvYy3de 1SNI

£00700
200700
T00P00
000700
NQ Q] SJ
ocovoo
£10v00
210v00
110v00
010va0
200700
900?00
1H91L
S10v00

Ng Q1 SJ.

1HS11
sT0v00
LH9IL
610700
iH91L
510700
1491t
10700
1H91L
S10¥00
LH9T1L
sTovoo0 -
LHOIL
stovoo
L1H911

al

B-20

000000
000000

000000

000000
209001

000000
209001
,)w 000000
. a220ey

. 000000
£00000

N £00000
e T . 910000

R 000000

Wy 900900

005000
006000

nooooo

100000
£0v02/

aotooo

L0902/

000000

000000

aooo00
nezoooo

020000
nanooo
0ooogo
280420

oGocce
ooococ

agocCae

ogocac
2rocece

ogoocco

Zz1ocoe

gogcaoce

fzaczs

ooocce
220Cog

zzoc6e
000co0
ooococ
0Qocco

gofooo
acgoao

cooono

aooono
00900

ogoooo

009060

000000

y2zo2¢

aoogno
T20000

120000
gooono
gagaeo
000000

000000
000000

000aoo

000000
210000

gooooQ

210000

[sfalsls]ale]

910000

gooooo
£20000

£20000
0000
gooooo
ST0r00

(8 {s]elufal]
C0o0000

000000

000005
£0y002

0g0co0

£0v002

000000

112091

000000
200000

200000
ZN0090
000000
000000

oaoong
0058aGno

oogono

GoGGao
90y0eg

oooong

90y0vg

gooono

£rLL09

oogong
200000

200000
000800
ggoong
0000no

onsooo
000000

000030

000000
»0vy02¢

000000

[483 2174

£20v00

02260e

0000060
000000

000000
000000
000000
000000

062400
0s0»00

019000

0s0p00
0g0p0O0

019000

0g0v00

019000

010900

ggz2000
612000

012000
041000
0¢0000
0t1o000

e . e T Abiveas

000000
000000

300000

000000
¢0¢y009

000000

<0rG0g

002000

<rLL09

000000
020rco

02Z0v00
000000
Qnovyoo
000000

000000
000000

000000

000000
O1v02y

000000

o1r02y

109000

12002

000000
2000y0

200090
000000
100100
000000

000000
009029

000060

009029
S10000

000000

§10000

LLiLed

91202«

000000
000000

000000
00co00
00co00
000000

A . e e v

000000 »T2000 2V0000 00OGO0
209002 09009 £0902T £09009

NQI93¥ 30082 Kl
6€5000C 2uyug0 00y000 ££0p00

N8L93¥ vivd NL
209002 p09003 £U902ZT £09009
000050 110000 000012 00pGpS

SY0»00~-Z£0V00 (23009)
SS0000 ZOp0OO OLYGO0 ££0p00
109000~009000 [vivd}
0000S0 TT1CO00 000012 00vAOYS
9£0v00-020700 (30621}
00000 009000 S50000 2G¥G00
0T¥0430-00v0G0 [vLiva)
0120%, 000000 ¥¢202p 110000
£10900-000700 (30831

00900 gTOP00 041000 0T0000
000000 »10P00 ££0/£0 000600

?22000-012000 {vylvQ)

000000 »1O¥00 ££0/£0 000000
020000 000000 0UQGOO 000GOO
£LL4L4L1F 120900 200090 Q0OGOO
000000 000000 0U00O0O0 0O0GOQ

000000 OrzL00
00c0te Qrovoo

3400 anzwi:um

SEO0F00 005000

389D ININIVHIY

0000T2 0r0p0O
S0y025 020400

su3Inyon

S£0y00 009000
Sy¥3INYON

s0p025 02000
43sndan

£12600 009000
REMETL

01z20ps 0OO0p0OO
ou3ag

£12000 - p2zooo
000000 002000

oW3d
000000 oO0zooo
000000 © G91000
000000 g2eogOoo
000000 000000

SNOILYDJQ L1dNN¥3LNI

B-21

RUNNING TIME =

«003

INSTRUCTIONS EXECUTED =

INST COUNT

ADX
STE
0PT
sus
ST1
LDL
TAE
LDX
BRU 1
EOR
IPF
NOP
TOP
CMP
LDD
EXIT
TAZ
RIO
EAX

onN
0000000 0COOCOCOCGOUO

3 PAUSE

SECS

324
INST CAUNT
ADD 10
LI 5
LUA 32
TAL 0
cYe 0
BRC 20
MRG e
DCY 0
DIV 0
TIN 20
HLT 2
TAP 0
ADC 0
TIX 20
NORM 0
CPD 0
FLP 0
ACX 0

B--22

ETR

INST COUNT

BRM
SHF
TXLE

DSH
MUL
LDE
STA
TAG
STX
TOoV
NEG
ROV
LDP
TIE

SI6
RED
AEA

N)
OOOOOOOOOO\I”OOOOOUI

[N]

P e b v e
PR L e g

3
I
H
i
j
§

	GeneralDisclaimer.pdf
	0024A02.pdf
	0024A03.pdf
	0024A04.pdf
	0024A05.pdf
	0024A06.pdf
	0024A07.pdf
	0024A08.pdf
	0024A09.pdf
	0024A10.pdf
	0024A11.pdf
	0024A12.pdf
	0024B01.pdf
	0024B02.pdf
	0024B03.pdf
	0024B04.pdf
	0024B05.pdf
	0024B06.pdf
	0024B07.pdf
	0024B08.pdf
	0024B09.pdf
	0024B10.pdf
	0024B11.pdf
	0024B12.pdf
	0024C01.pdf
	0024C02.pdf
	0024C03.pdf
	0024C04.pdf
	0024C05.pdf
	0024C06.pdf
	0024C07.pdf
	0024C08.pdf
	0024C09.pdf
	0024C10.pdf
	0024C11.pdf
	0024C12.pdf
	0024D01.pdf
	0024D02.pdf
	0024D03.pdf
	0024D04.pdf
	0024D05.pdf
	0024D06.pdf
	0024D07.pdf
	0024D08.pdf
	0024D09.pdf
	0024D10.pdf
	0024D11.pdf
	0024D12.pdf
	0024E01.pdf
	0024E02.pdf
	0024E03.pdf
	0024E04.pdf
	0024E05.pdf
	0024E06.pdf
	0024E07.pdf
	0024E08.pdf
	0024E09.pdf
	0024E10.pdf
	0024E11.pdf
	0024E12.pdf
	0025A02.pdf
	0025A03.pdf
	0025A04.pdf
	0025A05.pdf
	0025A06.pdf
	0025A07.pdf
	0025A08.pdf
	0025A09.pdf
	0025A10.pdf
	0025A11.pdf
	0025A12.pdf
	0025B01.pdf
	0025B02.pdf
	0025B03.pdf
	0025B04.pdf
	0025B05.pdf
	0025B06.pdf
	0025B07.pdf
	0025B08.pdf
	0025B09.pdf
	0025B10.pdf
	0025B11.pdf
	0025B12.pdf
	0025C01.pdf
	0025C02.pdf
	0025C03.pdf
	0025C04.pdf
	0025C05.pdf
	0025C06.pdf
	0025C07.pdf
	0025C08.pdf
	0025C09.pdf
	0025C10.pdf
	0025C11.pdf
	0025C12.pdf
	0025D01.pdf
	0025D02.pdf
	0025D03.pdf
	0025D04.pdf
	0025D05.pdf
	0025D06.pdf
	0025D07.pdf
	0025D08.pdf
	0025D09.pdf

