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ABSTRACT
. é,
E
This document describes the support software package i

which exists for the Advanced On-Board Processor (AOP) being

developed by the Flight Data Storage Branch, GSFC.
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SUPPORT SOFTWARE FOR THE ADVANCED ON-BOARD PROCESSOR

INTRODUC TION

The support software package described herein is a second generation
outgrowth of a previous package for the On-Board Processor described in docu-
ment X-562-68-388, 'Support Software for the Space Electronics Branch On-Board
Processor!’, Novembér 1968. The guiding force in the evolution of the package has
been the need to adapt to different operating requirements imposed by the Ad-
vanced On-Board Processor. Many improvements were also incorporated,

especially in the simulator area,

The Advanced On-Board Processor, AOP, is a general purpose stored
program digital computer with an 18-bit word. It has integral input-output and
interrupt systems especially designed for spacecraft application, The action of
the interrupt system is described under programming notes. A description of
the AOP is contained in document X-715-71-451, '"The Advanced On-Board |
Processor — AOP', October, 1971, This support software is intended to pro-
vide the AOP programmer with a convenient, thoroughly proven, tool for writing
and debuggihg AOP programé. ‘It is to be expected that the package will continue
to evolve into a still better syétem as niore experience is gained in its use with

the AOP.
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SUPPORT SOFTWARE SYSTEM

The support software system consists of an assembler, a relocatable loader,
a simulator, and a sipport software executive which interprets the system con-
trol cards. The system was written in Fortran as a step towards machine inde-

pendence so that AOP programs could be developed at different locations.

At present, the system has been run and checked out on an XDS 920 computer
at GSFC. A special interface unit between the XDS 920 computer and the AOP is
being designed. When connected, it will allow object programs to be loaded into
AOP memory and executed, It also pei'mits the transfer of data between AOP

memory and the XDS 920 I/0 devices.

The support software system is éqntained on one magnetic tape. The mini-
mum system requirement is a c;ard reader, a CPU with 16K memory, a line printer,
and four magnetic tape drives (one for the system and three scratch). The system
contains 21 links :due to core memory limitations., For this reason the system is
now undergoing modifications which will allow utilization of a random access

memory device,

The AOP Assembler accepts punched cards és input, assembles program
segments into relocatable biﬁary code anc'l data, and writes the program segments
on a magnetic tape. The binary Ssegments can then be selectively loaded onto a
cqmplete image of AOP memory and written on tape The memory image tape
can be used to either load ghe AOP memory dr to serve a_s’i'nput to the AOP
Simulator, a unit of the sul;port software gsystem.
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A call to a subprogram not found in any assembled program segment will
result in an automatic library search., The library currently does not contain

any programs., However, programs can be added as required.
Assembler

A program ta be assembled must be on punched cards and must be preceded
by an assemble control card. The format of the assemble control card with an

explanation of the various options is covered in the section on control cards.

To simplify the problem of training programmers in the use of the AOP
Assembler, the structure of program statements closely follows that »f other
widely used assemblers, such as SLEUTH II for the Univac 1108 or Meta-Symbol

for the XDS 920, with which they may already be acquainted.

Input Format

The zssembler accepts cards in free form, that is, blanks delimit fields.

Each card zontains up to four fields:

1. Label field. Must start in column 1 and begin with an alphabetic char-
acter. This field need not be present., This is indicated by a blank in

Column 1.
2. Operation field. Starts with first non-blank after label field.

3. Operand field. Starts with first non-blank after operation field, This

field is present only if the operation requires an operand field.




4, Comments field. Starts with first non-blank after lnst required field,
The assembler ignores the conten!s of this field and it is the only field

which may contain imbedded blanks.

The example below shows the input cards which would be generated to check .
whether a point lies on the locus of the unit circle. As in any fixed point arith-

metic involving fractions the programmer must do the scaling.

LOCUS LDA X Scaled 2 Minus 3
MUL X Scaled 2 Minus 3
DSH XM3 Shift to Scale 2 Minus 3 (XM3 = -3)
STA X2 .
LDA Y Scaled 2 Minus 4
MUL Y Scaled 2 Minus 4
DSH XM5 " Shift to Scale 2 Minus 3 (XM5 = -5)
ADD X2 v
BRM SQRT Get Square Root -
STA NORM Scaled 2 Minus 3
TAE (010) Test Equal to 1 (Scaled 2-3)
BRC  (COMP) .
Each line represents an input card, and the mnemonics are those recognized by :
the stanGi.»d assembler. A feature of the ?Sfééﬁ’lblér is its procedure capability &

)
g
5
£
&
7

which allows the user to déﬁ‘ne his own nmemonics; This is discussed further
in connection with the PROC directive. Literals can be entered in the operand

_field of an instruction by enclosing the desired expression in parenthesis.




Registers — Registers which can be affected by program execution are listed in

Table 1.
TABLE 1
Central Processor Unit Functional Registers
Length
Register Symbol (bits) Function

Accumulator | ACC 18 |Used for operand storage,

Extended EA 18 | Holds least significant half of a double length |

Accumulator operand in multiply/divide cperations,

Storage limit | SLR 18 |Coatrols where writing into memory is
permitted.

Index X 18 | Added to address to form effective address
if index bit in instruction word is set,

Page P 4 |Appended to 12 bit address field to form
16 bit address.

-| Carry C 1 |Stores a carry out of hit 17 of the parallel
adder,

Decision D 1 |Conditionally set when executing test in-
structions. Reset by the conditional
transfer instruction,

Overflow ov 1 |Stores the overflow condition.

Activation ASR 16 | Inhibits or allows cyéle steal operations on

status | specific channels.

Lockout LSR 16 | Inhibits or allows specific interrupts,

status g

Interrupt IOR 1 | Inhibits or allows all interrupts excert

override ” interrupt 0, :

g e e
: .



Instruction Set — The AOP has 55 instructions, 31 of which require a memory
access, The other 24 instructions have a minor operation code in the operand

field of the instruction word, The formats are as follows;

MEMORY ACCESS

!Bls By7 B1g Bis B14'BJ.3]-B12 By1 By By By By By B, B, By By B,
« — 1\___*__,\' . v : J
Operation In~- Operand address
dex

NON-MEMORY ACCESS

-

;"BIBBI‘? B16 B15B14(B13 - com e Bg B By By By 1

574737271
¢ 0 o 0 @

\, - A\ . I\ J

Not uset Operation

With 12 bits for the address, 4096 memory words are directly addressable.
A memory size as large as 65,536 words requires a 4-bit page register which
can be loaded and stored under prbgram control and which isﬁ appended as four
high-order bits to the 12-kii address field fo form a full 16-bit effective address.
If the index bit is set, the low order 16-bits of the index register are added to the
address to form an effective address and the execution tinie is increased by
2.0 cycles. The thirty-one instructions which require a memory access may be
indexed. Indexing is specified by appending a comma to kt;he‘ operatién mnemonic,
For example, "’IDA’,' will resuit in a load accumulator instruction with bit 13 set
S0 that the index register will be added to the address field é.t execution time to

~ form the effective address.



R

et

! Figure 1 gives a summary of the AOP instruction set by function. Appendix A
gives the detailed operations of each instruction. Execution times are given in

CPU cycles. At present, one CPU cycle is nominally one microsecond.

. Note that the test instructions which set the decisicn register do not reset
it to zero if the test fails. Thus a series of tests can be 'or'ed together. A
conditional branch at the end of this series will take place if any of the tests

succeeded,

Assembler Directives

Assembler directives are used to pass information to the assenibler con-
cerning a particular program to be assembled. The assembler directives are
loaded in with the source program as mnemonics in the operation field of the
card, These directives have effect only for the program with which they are
assembled and their effect begins when they are encountered during the assembly
process, For convenience, the assembler directives can be grouped into four

categories according to their usage or function in the program. These categories

are:

a. Control of storage allocation

. | RES — Reserve storage
RORG — Set relocatable origin
- AORG — Set absolute origin
LIT — Assign control counter to literals
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ORDERED BY FUNCTION
LOAD/STORE INSTRUCTIONS ’
Cycle
Op Code Mnemonic Time* Description -
20 LDA 4 Load accumulator
40 LDL 4 Load accumulator with effective address
12 LDI 6 Load accumulator indirect
52 LDE 4 Load extension
54 LDX 4 Load index f
60 STA 6 Store accumulator o
32 STH 8 Store accumulator indirect 5
10 STE 6 Store extension
74 STX 6 Store index :
000013 LDD 3 DSH left 1 bit then load decision regisiur into K
LSB of EA L
000012 LDP 3 Load page register from accumulator ' : .
ARITHMETIC INSTRUCTIONS
Cycle | :
Op Code Mnemonic Time* Description i
000004 NEG 6 Two’s complement accumulator l
000006 ADC 4 Add carry to accumulator f A
000010 CMP 6 One’s complement accumulator ;
000014 NORM 4** Normalize accumulator and extension
02 ADX 4 Add memory to index ' |
04 ADD 4 ' Add memory to accumulator ; :
24 SuB 4 - Subtract memory from accumulator k
44 MUL R 2 el Multiply accumulator by memory
64 DIy 58 - - Divide accumulator and extension by mamory
* Add 2 cycles for indexing. | o
At present, one CPU cycle is nominally one microsecond.
** Add one cycle for each place ‘shifted.
Yok k Avgfage J USSR

Figure 1, AOP Instruction Set *




L

BOOLEAN LOGIC INSTRUCTIONS

Cycle
Op Code Mnemonic Time* Description
30 N ETR 4 Logical AND accumulator with memory
50 MRG 4 Logical OR accumulator with memory
70 EOR 4 Exclusive OR accumulator with memory

1/0 INSTRUCTIONS

o Cycle
Cp Code Mnemonic Time* Description
16 OPT 6 Output
76 IPF 6 Input

. REGISTER MANIPULATION INSTRUCTIONS

; Cycle

Op Code Mnemonic Time* Description

14 : 'SHF 5** Arithmetic shift accumulator

36 | DSH 5** Arithmetic shift accumulator and extension
34 CYC B Cyc!ic shift accumulator

56 DCY - 5 Cyclic shift accumulator and extension
000025 ACX 8 Exchange accumulator and index

000026 AEA 8 Excliange accumulator and extension
006027 EAX 8 Excharige extension and index:

000022 FLP 3 Reverse accumulator

* Add 2 cycles for indexing.
- At present, one CPU cycle is nominally one microsecond..
** Add one cycle for each place 'shifted.

Figure 1. AOP Instruction Set (Continued)
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CONTROL /BRANCH INSTRUCTIONS

Cycle

Op Code Mnemonic Time* Description

00000C HLT 3 Halt

000002 NOP 3 No operation

06 BRM 8 Branch and mark place

62 BRU 4 Branch unconditionally

42 BRC 4 Branch conditionally

72 TIN 22 Restore stctus registers from memory
000016 EXIT 36 Cause exit interrupt

TEST/SET INSTRUCTIONS
Cycle

Op Code Mnemonics Time* Description

000001 TOV 3 Test overflow register

000003 TAP 3 Test accumulator positive

000005 TOP 22 Test accumulator for odd parity
000007 ROV 3 Reset overflow register

000017 CPD 3 Complement decision register
000020 SIO 3. Set interrupt override

000021 TAZ 4 Test accumulator for zero

000023 RED 3 Reset decision register

000024 RIC 3 Reset interrupt override

000011 TiX 6 Test index for zero and increment
000015 TIE 6 Test extension for zero and incremeni-
22 TXLE 4 Test index less than or equal to memory
26 TAL 4 Test accumulator less than memory
46 TAE 4 Test accumulator equal to memory
66 4

TAG

Test accumulator greater than memory

* Add 2 cycles for indexing.
At present, one CPU cycle is nominally one microsecond.

Figure 1. AOP Instruction Set (Continued)
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Data word generation

e — Enter value of expression in storage

Control of code generation

EQU ~— Equate label to operand field
PROC ~— Procedure definition
END ~— End of procedure or assembly

Control of assembly listing

UNLS - Don't list following cards
LIST - List following cards
PAGE - Start listing at top of new page

Control of Storage Allocation

Eabel RES expression

Expression is evaluated and that many storage locations reserved. Subse-
quent references to label reifer to the first storage location reserved. No
specific value can be expected in the reserved locations at execution time,

If expression is zero, no locations are reserved and label will refer to the

next location allocated in the assembly.

RORG expression 1, expression 2

The value of expression 2 is assigned to the location counter specified by the

value of eXpression 1. Storage locations allocdated under control of this

location counter will be considered relocatable,

11
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AORG expression 1, expression 2

The value of expression 2 is assigned to the location counter specified by
the value of expression 1. Storage locations allocated under control of this

location counter will be considered absolute,

LIT expression

Literals generated during assembly will be assigned storage under control

of the location counter specified by expression

The AOP Assembler uses two location counters to allocate contiguous
blocks of relocatable storage. Odd numbers refer to the locatién counter
used for program areas and even numbers refer to the location counter
used for data areas. In a given assembly, both location éounters start at
zero. The appropriate counter is incremented by one when a memory loca~
tion is allocated to it. At the end of the assembly the largest value assigned
to a location counter is the size of the block allocated to it. The loader will
relocate each block relative to other blocks allocated under the same loca-
tion counter so that it winds up with two large relocatable blocks: one for
the odd, the other for the even location counter. With this in mind, the four

directives for control of storége allocation could be re-defined as simple

manipulation of the values of location counters during assembly.

12
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Data Word Generation

( label expression

The value of expression is inserted in storage under control of the current
location counter. Whenever the assembler detects a non-alphabetic char-
acter as the first character of the operation field, that card is treated as a
data word generation card. The value assembled into the location can be
referenced by label. The form 0 + name can be used to generate a relo-

catable address as a data word.

Control of Code Generation

r label BQU expreséion

Label is assigned the value of expression.

It is often desirable to write an assembly program in such a way that the
resultant program is parameterized. That is, the program will do its job
for any of a wide range of parameter values. The size of a buffer or a
particular I/O device number, as in Figure 2, might be a parameter. The
EQU dir¢ctive provides a means Whereby the ‘parameter value can be en-
tered at assembly time. A new program could be generated for a different

parameter value by simply changing one EQU card and re-assembling.

(abel PROC

Begins a procedure (macro) definition. References to label in the operation

13




field of an instruction will cause insertion of the procedure at that point in

the coding,

Programming time can be saved or operation mnemonics redefined through

use of the PROC directive, When the pragrammer writes

label A,B,C

for example, and has previously defined a procedure using the PROC control

card

( label PROC

followed by: LDA  LABEL(0)

ADD LABEL(1)
STA LABEL(2)
END
the code generated by the assembler is as though
LDA A
ADD B
STA C

were written. Coding time is saved by putting commonly performed se-
quences of coding in PROC's as it is easier to change one PROC than several
similar coding sequence's; scattered throughout a program, If th‘e} program-
mer prefers the old assembler mnemonic IGZ (for ic poéi‘tive) rét’her than f N

\

the new standard instruction mnemonic, TAP (for test accumulator positive),

the proc

14
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IGZ PROC
TAP
END

will allow him to use IGZ in the operation field rather than TAP,

( END

Terminates a procedure definition or a program.

Control of Assembly listing

( UNLS

Terminates the normal assembly listing until a LIST card is encountered.

( LIST

Continue the normal assembly listing.

PAGE

™

Continue the normal assembly listing at the top of the next page.

Relocatable Loader

The assembler produces relocatable code and data except when it encounters
a directive, such as AORG, which uniquely specifies where this code or data will
be located, This means that code or data addresses are relative to the beginning

code or data address assigned by the loader such that programs and data sets

will be automatically stacked in core without overlap and without unused storage

locations. The beginning bias for data and code is presently 210 and 4000 octal

15
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respectively, where locations 0-207 are used for interrupt storage, and 4000
octal is the mid~point of a 4K memory module. As will be seen in the control

card description, these starting biases may be altered.

Figure 2 shows the assembly of a program for inputting data and a sub-
routine for adding up the valiies input. Figure 3 shows how the loader will
relocate these programs in core while Figure 4 shows the loader printout from
which Figure 3 was derived. Making all programs relocatable is a great ad-
vantage since changes in one program do not affect the others. The loader

resolves all undefined references at load time automatically,

Another feature of the loader is that a binary tape can be built containing
many assembled program segments, Any or all of the assemblies (maximum

of 25) can be selectively loaded in the order they appear on the tape,

Control Cards

All control cards must have a ; (11/8/6) punched in column one. The first
fields of the control statement may begin in any column after column one. Pre-
ceding blanks are dismgérded. Thereafter, one or more ‘blaxiks are used as
delimiters. No control statemént can be continued onto a second card, Anywhere
Mb_e_z_' appears, a decimal radix will be assumed unless OCTAL is specified;

i.e., 11is 11__, but OCTAL 11is 9_ ..

10 10
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OCTAL LOCATION OCTAL LOCATION
LOADED ASSEMBLED
000000 INTERRUPT LOCATIONS
000
000210 DATA 0000OCO
(INPUT) |
00021 7 00000 7
000220 : 000000O
DATA
(ADUER)

000226 00000 6
000227 DATA 000000
(OTHER, PROGRAMS)

[ )

004000 000000
CODE
004010 (INPUT) 00001 0
004011 000000
CODE
004020 (ADDER) 000007
0040 21 ) 000000

CODE
(OTHER PROGRAMS):
{

@
[ )

Figure 3, Core Image Diagram of Automatic Code and Data Relocation

S,

Hoo

B TRt di )

o

AL Gt




IR

. ;- . b oo
N ] s , ¥
. ’
Coa : . L “; . »
. L] J;t & 2
. N .“’*'{ . . € ]
o v Y
""’ =, . - o
—— T f S . <y
T - RN 13 A
. A e i . 3 5
i . LAY 4 $. [ v
. . s : e + x
. N .
LY -~ 3
A . k& ¢ L
¥ TRA ,'3.; -
" oY Lk ]
A o N
% , i
. o - 5 t,
T ‘o KFRes L]
. Centy 4 .
. -, » e d e S
: * P oes o, N .
; ~om
2 £ ' ‘

PREAMBLE VALUES FOR INPUT
DATA LENGTH
CODE LENGTH
PRESET LOCATIONS
LITERALS
INDIRECT ADDRESSES
EXTERNAL DEFINITIONS
UNDEFINED SYMBALS
NOUNS

S te ) Gl O D

EXTERNAL TEFINITIONS
START
STeP

PREAMBLE VALUES FOR ADDER
DATA LENGTH
CODE LENGTH
PRESET LOCATIONS
LITERALS
INDIRECT ADDRESSES
EXTERNAIL DEFINITIONS
UNDEFINED SYMBOLS
NMOUNS

& NNl N

EXTERNAL NREFINITIONS
ADDER

CORE LIMITS ‘
CATA 000210-000405 s CODE 004000-004020

STARTING ADDRESS 0040600

CORE ALLOCAT]ION

INPUT
-~ DATA

. CedE
ADDER
DATA

C8DE

END OF ALLOCATION

000210~000217
004000-004G1i0

000400-000406
004011-004020

Figure 4. Loader Output for INPTIT and ADDER
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( ; DATE characters

This card causes the first 12 nonblank (blanks are delimiters) characters .
to be printed as a part of the heading printed by the major functions (as-

sembler, loader, etc.). For example, 7/4/8/,1400 could be used for date

and time on the listing for the current run. Note the use of a comma rather

than a blank as a separator for date and time,

/

; ASSEMBLE  name (NOLIST)

This card causes the support software executive to call in the assembler to
assemble a program deSignated by name and to inform it of the options de-
sired by the user. The output of the assembler is accumulated on the
assembly tape. Only the first twelve characters of name are retained, any
remairing charactérs are ignored, There must not be any blanks inter-

spersed in a program name. The NOLIST field is optional.

Options: NOLIST — This option directs the assembler to suppress its

" | printout. If this option is not present, then a complete listing of

the program being assembled will be given. o

( s MEMORY SIZE IS number BANK(S)

This card designates the memory size in bank units i;o be loaded, simulated,

or listed. The variable number must have a value from 1 to 16 (a bank is

4096 words). If this control card is missing, a memory size of 4096 words,

or 1 bank, is assumed.
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program name 1, program name 2, . . . , program name n

s LOAD $ | B |

" s LOAD program name

F; LOAD program name DATA AT number AND CODE AT number

The ; LOAD program name card causes the loader to load the entire

assembly tape into core and then writes the Advanced On-Board Processor
core image onto the absolute coire image tape. The loader will assume a

starting location of octal 210 for data.

The assumed starting location for code is one half the memory size. Thus
when an 8K memory is being loaded, a starting location of octal 10000 is
assumed for code, whereas octal 4000 is assumed when Ioading a 4K
memory. The relative origins assumed by the loader may be altered by

using the optional ; LOAD program name DATA AT number AND CODE AT

number card. Care must be exercised to prevent data words from over-
lapping a bank of 4096 words. For example, if a program is loaded with

data beginning at location 4000 and there are 100 words of data, then the

first 96 words must be accessed with a page register setting of zero, and
the remaining four words must be accessed with a page register setting of
one. This problem must be taken into consideration by the programmer

pr;ior to assembly.

21




The ; LOAD §$ indicates selective loading to the loader. The program names
listed on the following cards will be loaded from the assembly tape. There
must be a blank in column 1 of the program name cards but as many cards
as needed may be used. The number of specified programs is limited to 25.
The order in which the specified programs are loaded is the order in which
they appear on the assembly tape. The rélat-ive origins assumed by the
loader during selective loading may be altered by using the optional ; LOAD

$ DATA AT number AND CODE AT number card.

r ; WAIT number

This card will cause the OBP loader routine to pause. ThlS option is in-
cluded to allow the XDS 920 user to switch assembly tapes to be loaded.

The value of number should be the count of assembly tapes to be loaded.
The number of pauses will be one less than the value of number as there

will be no pause when the last assembly tape has been loaded.

; REWIND ABSCLUTE CORE IMAGE TAPE

; REWIND ASSEMBLY TAPE

Either of these cards causes the specified tape to be rewound. The as-

sembly tape should not be rewound between an assemble and a load functioi..

22




sl

rat e

" XY PR T e
DRSNS SR R LIPS )

%
RS

Fyerra g e

R 7 0

APEIPRNEN B o 5.5 5% bRl SN

PRI X I R SN

Sid 2 g S L R e A )

f ; PAUSE

This card will cause the support software executive to pause, This option
is included to allow the XDS 920 user to switch tapes, save tapes, or mount

tapes if necessary.

(; END OF FILE ON ASSEMBLY TAPE

This card causes an end-of-file record to be written on the assembly tape.
This is to be used if, and only if, the file of relocatable programs on the

tape is to be used at a later time.

r . SAVE PREVIOUS ASSEMBLIES

This card causes the support software executive to space down the assembly
tape until an end-of-file (EOF) record is read. The assembly tape is then

backspaced over the EOF record, thus positioning it for further assemblies.

( name name name

/ . DELETE $

" DELETE name FROM PREVIOUS ASSEMBLIES

This card causes the support software executive to search the assembly

tape and delete the assembly specified. All other assemblies are preserved.

The end-of-file record is removed, and the assembly tape positioned for

23
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further assemblies, If a routine is to be reassembled with an assembly
tape containing a previous assembly by the same name, the above card

must be used to remove the old routine before the new routine is assembled.

The alternate form DELETE $ causes the program names listed o the
following cards to be deleted from the assembly tape. These cards must
have a blank in column one, up to 25 program names can be specified.

The names need not be in any particular order. As many cards as desired

may be used,

; LIST

; LIST THE NOUN TABLE (ALPHABETICALLY NUMERICALLY) |

This card causes the support software executive to read in the absolute

core image tape prepared by the loader, It then will list the complete symbol
table of all the loaded programs. The order of the two options is irr*‘elevant
and either one or both may be omitted. If both are omitted, then numeric

and alphabetic lists will be given. Both lists may also be obtained with the

abbreviated control card ; LIST.

Options: ALPHABETICALLY — This option causes the alphabetically

ordered symbol table to be printed.

NUMERICALLY - This option yields a printed list of the symbols

used ordered on the relocated addresses assigned to the symbols.
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( ; LIST THE ABSOLUTE CORE IMAGE TAPE

This card causes a coriplete listing of the absolute core image. The core
image, allocation table, and symbol table is read from the absolute core
image tape produced by the loader. The allocation table is then used to
list data and code for each program segment. Data is listed in an octal
format. Code is listed as the octal bit pattern for each instruction, with
decoded mnemonics and labels as they were defined in the program. All

indirect instructions are flagged with the indirect address.

( . CHECK PRINT number

This card causes the support software executive to turn on debugging flags
within the AOP software package. This control option is provided as an

aid in maintaining the AOP package and is not normally used,

Simulator

The AOP Simulator reads the absolute core image tape, created by the

loader, into core and simulates the execution of that program. When a HALT

instruction is encountered, the simulator prints out statistics concerning simu-

lated running time and frequency of instruction usage. By means of various
control cards, the simulator may be made to give selective tracing and/or
dumping in octal. Control cards are also available for specifying periodic

interrupts, simulation of input-output from the I/0 unit, and such miscellaneous
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capabilities as halts treated as no-ops and restarting after a halt has been
executed. During execution the simulator may, for one of several reasons,

enter a routine called the pseudo console which allows the user to examine and

alter the contents of simulated registers or memory locations. .

Interrupt Simulation — At the completion of each simulated instruction, the
interrupt processor determines whether any of the 15 external interrupts ap-
peared during the simulation of the previous instruction, When an interrupt
appears, the appropriate bit is set in the ISR (Interrupt Status Register). If the
interrupt cannot be honored immediately, it is saved. If an interrupt is cur-
rently being saved and another of the same number appears, it is lost. Inter-
rupts‘ are not honored immediately if they are locked out by the LSR (lockout
status register) or the IOR (interrupt override register) or by a higher priority
pending interrupt. When an interrupt is honored, one instruction of the interrupt

routine is executed before any other interrupts can be honored.

Input-Output Simulation — Two kinds of I/0 are simulated, program controlled

and cycle steal. Program controlled I/O occurs when an OPT (or IPF) instruc-
tion is simulated, The content of storage at the effective addre'ss is used as an
I/0 unit specification and data is output from (or input ‘to) the effective address
plus one. The actual response of the simulator varies according to the charac-

teristics of the I/0 unit.
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If the operation is illegal on the requested unit, the message:

* ERROR ILLEGAL IO REQUEST unit # address type of operation

is printed. Type of operation is 1 for cycle steal, 2 for IPF, 3 for OPT, If
an input operation cannot be completed due to lack of data, the message:

OUT OF DATA FOR DEVICE unit #

is printed. No error messages appear if the operation is successful.

Cycle steal I/0 occurs when a request is entered in the AOP's Request
Status Register, RSR. The simulator allows the user to control the timing of
the first request on a channel. Thereafter the device characteristics coded

into the simulator determine the rate at which requests are generated.

When a cycle steal operation is simulated the simulator prints:

CS 1/0 ON unit # TO address AT time .

The ILLEGAL I/O REQUEST and OUT OF DATA error messages will be printed

if appropriate to the cycle steal operation.

When a cycle steal I/O request enters the AOP's Request Status Register,
RSR, 1t contends equally with all other requests fqr memory access, The dia- , 3 4
graﬁ of Figure 5 shows the activity in depail.. As shown in Figure 5, not éil |
cycle steal I/O requests result in the tran.sfer of a data word to Q‘r from

memory.

Description of Dumps and Traces — A dump is a printout of the contents of

memory and generally comprises two parts: data and code. By means of the
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several simulator control cards, the user can control the dump to suit his
needs, A dump is printed in octal. The entire memory may he dumped or just
a specific segment, A dump may be printed upon simulation of a HALT instruc-
tion or at any specific point in the program execution, Likewise a trace, the
printout of register contents during execution, has almost as many optional
forms as the dump and is also user controlled to suit specific needs. Examples
of dumps and traces with their various columns explained are contai. . in the

following paragraphs.

Octal Dump — An octal dump is a printout of memory within specified limits at

a particular time. There are two columns of initial octal addresses and 16
columns of octal code or data words (refer to Figure 6), Starting from the left,
column 1 and column 10 list the initial addresses of the following eight memory
locations. Each set of eight columns (columns 2 through 9 and columns 11
through 18) presents a printout of the contents of memory at that particular
location. The entire dump is broken into several parts, the first of which is
always a printout of fhe contents of the interrupt locations. The remainder of
the dump comprises a printout of the contents of memory at the locations occu-
pied by the various programs and subroutines located within the limits of the
‘dump. The name of the program or subroutine is given as a heading and is
followed by the initial and final addresses of the segment of meniory which it

occupies. Each program or subroutine is dumped in two parts: data (an okctal
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listing of the data words and their addresses) and code (an octal listing of the

code words and their addresses).

Octal Trace — An octal trace is the printout of register contents during execu-

tion. The following explains the various trace columns (refer to Figure 7).

Column

IC

INST

OPERAND

[EAD]

AC

EA

ICDO

[IC]

Explanation

This column lists the value contained in the Instruction Counter
for each simulated instruction. The words that appear in this
column but stand alone on a line are the labels used in BRU,
BRC, BRM, TIN and EXIT. instructions.

This column gives a 4-letter abbrev1at10n of the instruction just
simulated.

This lists the first twelve letters of the operand name used
with the instruction if the name is available.

This is a printout of the value contained in memory at the effec-
tive address after each simulated instruction,

This column shows the value contained in the accumulator after
each simulated instiruction.

This colunin shows the value contained in the extended accumu-
lator after each simulated instruction.

This lists the value contained in each of the following one-bit
registers: interrupt override, earry, demsmn, and overflow
after each simulated instruction.

This is a printout of the contents of memory at the address in-
dicated by the instruction counter prior to simulation of each
instruction, This column provides an octal listing of the instruc-
tions executed.

This lists the value of the page reglster adter each mmulated
instruction. :
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Column

INDEX

EAD

SLR

TIME

LSR

ISR

ASR

Explanation

This column gives the value contained in the index register after
each simulated instruction, For each instruction, the value
listed here is a one if bit 13 of the instruction contains a one,
thus designating use of the index register to determine the effec-
tive address.

This gives an instruction-by-instruction listing of the contents
of the effective address register. The content of this register
specifies the memory address of the operand.

This column lists the contents of the storage limit register after
each simulated instruction.

This column presents the cumulative total time in CPU cycles
for the execution of instructions,

This is a listing of the octal interrupt number being processed
if any interrupts have occurred during the simulation,

This column shows the octal value of the lockout status register
at the end of execution of the current instruction. .

This column shows a pending interrupt request by setting the
appropriate bit to one. Interrupt 0 is the LSB of the octal value.
Interrupt 4 would be indicated if the ISR were 000620. An inter-
rupt is pending, for the purposes of this column, if the IOR is 1
and the interrupt is not number 0, if the corresponding LSR bit
is 1, or if execution of the one instruction allowed after an
interrupt occurs is taking place.

This column shows the contents of the activation status register,.

Simulator Control Cards

The format for the simulator control cards is the same as the format for

all control cards. Column one must contain a semicolon (an 11/8/6 punch) and

columns 2 through 80 contain the control information. One or more blankg are -

used as delimiters. No control function may continue onto a second card.
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The control cards for the simulator are grouped into the following six
categories: starting, tracing, dumping, interrupting, inputting and stopping

(and/or restarting).

To simulate a previously loaded program, the user must first supply a
simulate control card followed by any number of simulator control cards to
define the kind of simulation desired, followed by a start control card. No

non-simulator control cards may intervene,

s SIMULATE

; SSIMULATE name

This control card causes the simulator to be loaded into memory. The
simulator sets the instruction counter to the load location of name, If
name is omitted, then the instruction counter will be set to the normal,
initial load location for instructions., The simulator is then ready to inter-
pret any remaining simulator control cards. This card must be placed

between the LOAD control card and the START control card.

; START

; START AT number or label

ThiScOntrol card, or one of its optional forms, should appear as the last -
" control card. It causes the simulator to commence simulating at the loca-

tion specified by the SIMULATE card, The optional form, where number
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or label is specified, causes the simulation to commence at the location

specified,

[ ; TRACE OCTALLY

L4

This control card causes the simulator to print tracing information in the

octal mode for each relocatable instructicn simulated,

r; TRACE OCTALLY FROM label or number TO label or number (number TIMES)

This card causes the simulator to print octal tracing information for each

instruction simulated between the limits specified by label and/or number.

If number TIMES appears, trace information will no longer be printed after

the segment between the limits specified has beer encountered number

times,

(; TRACE OCTALLY PROGRAM name (number TIMES)

This card causes the simulator to print tracing information in the octal

mode where the limits of name are taken from the allocation table.

If number TIMES appears, trace information will no longer be printed after
the segment between the limits specified has been encountered number

times.

S T . o i,
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r ; DUMP OCTALLY AT label or number

This card causes an octal dump of the entire memory when the specified

location is accessed (either code or data).

; DUMP OCTALLY AT label or number FROM label or number TO label
or number

This card causes an octal dump of the segment of memory located within

the limits specified by the second and third label or number when the loca-

tion specified by the first label or number is accessed.

( ; DUMP OCTALLY AT label or number PROGRAM name

This control card causes an octal dump of the program specified by name,

where thé limits of name are taken from the allocation table, when the

location specified by label or number is accessed.

( * DUMP OCTALLY AT HALT

This control card causes an octal dump of the entire memory at the time

of simulation of a HALT 'statement.

or SECONDS STARTING AT number MICROSECONDS or MILLISECONDS
| or SECONDS

/s INTERRUPT number EVERY number MICROSECONDS or MILLISECONDS

This card causes the specified interrupt (legal interrupts are 0 through 15)
to occur at the spécified interval beginning at the specified start time. The
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user must specify the time units of the interval length and start time in

i microseconds, milliseconds or seconds,

; INTERRUPT number EVERY number MICROSECONDS or MILLISECONDS
or SECONDS

This control card causes the specified interrupt (legal interrupts are 0
through 15) to occur at the specified interval beginning at time zero. The
user must specify the time-units of the interval length as microseconds, !

milliseconds, or seconds. !

; MAXIMUM TIME IS number MICROSECONDS or MILLISECONDS or
SECONDS

This card will cause the simulation to cease at the specified simulation

time. If this card is omitted, then a value of 5 milliseconds is assumed,

( ;s MAXIMUM INSTRUCTIONS IS number

This control card causes the simulation to cease after the number of

T S SO T
e it

instructions has been executed. If this card is omitted, a value of 500 in-

g e e

structions is assumed.

Inputting Data

( 3 INITIATE CHANNEL number AT number MICROSECONDS dr
MILLISECONDS or SECONDS ' '

37 /

Byt I -G N
i S

a4




This control card causes a cycle steal I/O request at the indicated time
over the indicated channel. Channels are numbered from 0 to 15. Further

cycle steal I/0 will occur under the control of the simulator's I/0 device

routines. | .

data data data data data data $

; DATA FOR INPUT DEVICE number

This is the control card used for inputting data, Data may be input over
sixteen different input units numbered zero through fifteen. A total of
218 data words may be specified. Immediately following this card are the
cards of input data for the spécified input unit. ’As many cards as needed - Y
may be used and the format of these cards is free form with one or more

blanks used as delimiters, Column one must be blank., The last data word :

must be followed by a $.

During the simulation, when the specified unit is referenced in an input

B g s s o s A 2 e e s ot gt s oo

operation, the data words are input one word per request until the data

buffer is exhausted,

Stopping and/or Restarting — The normal means of ending a simulation is by

simulating a HALT, The pseudo console then gains contrcl and the simulation

i
i

can be terminated by typing STOP. Any remaining control‘%v;gards will then be

honored.
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( ; NO HALT

This control card causes all HALT instructions to be simulated as NOP

instructions,

( s RESTART AT HALT

This control card causes one HALT instruction to be simulated as a NOP
instruction, There must be a RESTART AT HALT card for each HALT

that is to be simulated as a NOP instruction,

( : STOP AT HALT

This control card allows the HALT statement to be simulated normally.

Its main puipese is to allow proper page skipping between multiple jobs.

Pseudo Console

Once simulation has begun, that is, once a START Control card has been
read, the user may gain control by setting breékpbint 2. The user can then
perform the following functions through the typewriter on the XDS 920. Only
the underlined portions in each paragraph title need be typed. Carriage return
is indicated by CR. Whenever the user types something the pse;xdo console

routine does not recognize, the message WHAT is printed.
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DISPLAY CR

By typing DISPLAY CR the user may then enter any of the following

register mnemonics followed by a CR. The pseudo console routine will type

the values of the requested register along with several associated registers.

Mnemonics are:

ACC
EA
X
SLR
IC

ov
ASR
LSK
ISR
IOR
EAD

ENTER CR

Accumulator

Extended Accumulator
Index register

Storage Limits Register
Instruction Counter

Page register

Carry register

Overflow register
Activation Status Régister
Lockout Status Register
Interrupt Status Register
Interrupt Override register
Effective Address Register (not a hardware register)

By typing ENTER CR the user may then type any of the register mnemonics

used for DISPLAY fdllowed hy a 9}} | Tile user then types in up to 6 octal digits

followed by a CR. The pseudo console routine will enter this value, right justi-

fied, into the designated register. For all registers, except the ASR, the user

enters the value he wants in the register. To enter a value in the ASR, however,
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the user supplies the address, not the value, of the word to be used to set the
ASR. This word can be set up using the STORE command and must be the same
bit configuration as would be used were the change to be made using the AOP's

OPT instruction.

DUMP CR

By typing DUMP CR the user will cause the pseudo console routine to type
out the address in the EAD register followed by the contents of memory at this
address. The EAD is incremented go that the next DUMP command will refer
to the next sequential memory location. To examine successive sequential
locations in memory the user must type DUMP CR for the first, but need only

type CR to obtain following locations,

STORE CR

By typing STORE CR the user may then type in up to 6 octal digits followed
by a CR. The pseudo console will entér ﬁiis value, right justified, into the
memory location whose address is in the EAD, The EAD is incremented and
the user may then enter another value which will be stored in the ‘lc;cé.tion fol-
lowing the last aﬁd so on. Typing a non-nctal digit causes the message WHAT

to be typed. The user may then enter another command,
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START CR

Ty typing START CR the user causes simulation to commence at the

address in the instruction counter.

STOP CR

——————

By typing STOP CR the user causes the simulation to terminate immedi-
ately. The support software system executive gains control immediately and

the next control card is read from the card reader,

ADDRESS STOP CR

By typing ADDRESS STOP CR the user insures that the pseudo console wiil
gain control whenever the instruction counter contains a value equal to the octal
number typed in following this command, Typing 777777 insures the simula,tor
will not stop since 177777 is the largest AOP address. This must be done if the

user has entered an address stop and now wishes to de-activate the feature,

Summary of Pseudo Console Commands

ADDRESS STOP CR
octal value CR
DISPLAY CR
one of: ACC, EA, X, SLR, IC, P, C, OV, D, ASR, LSR, IST, IOR, EAD

then Q_Ij
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ENTER CR
mnemonic CR

octal value CR

DUMP CR
STORE CR

octal value CR
START CR

STOP CR

Note (if the mnemonic ASR is entered, enter the
address of the word to be sent to the ASR rather
than the value).

Sample Pseudo Console Session

Lines in capitals are printed by the pseudo console routine,

PSEUDO CONSOLE

enter

ead

The user has set BP2, an address stop has been
satisfied, or an error has been detected by the
simulator. '

sets up the EAD for subsequent store

stores indexed LDL instruction at location 7276,

pseudo console expected a number

4
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'

ic

SLR 777000 IC 141110 P 00 C O OV O D O

ead
LSR 000000 ISR 000000 IOR 1 EAD 007277 ’
ﬁ enter

ic

7226

ead ‘

7276

dump f‘g

007276 - 02417303 The contents of simulated memory location 7276 )
are preceded by two octal digits containing dump &%
and trace codes. These may be ignored. )

007277 02627216 The user typed CR to get the nekt location.

start Simulation will now continue beginning at location %
7226, 5

PROGRAMMING NOTES .

The suppdrt software which has been developed for the AOP was aimed at !
allowing independent programming by AOP users at different locaticns. In

keeping with this philosophy, it is expected that an executive routine will be

provided by a central housekeeping group. This routine will provide an environ- -
ment within which worker programs ‘can function without being aware of details

of AOP hardware 1/0, interrupts, timing, or other workers. The items in this
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section may not, therefore, be of direct interest except to those involved in the

programming of the executive.

Input/Output

The AOP has two modes of input/output: program-controlled and cycle
steal. Both modes can be used on any channel. For program-controlled I/0,
either the contents of the effective address+1 is output to a device or the data
from a device is input there. For cycle steal operation, there are 16 cycle
steal channels in the input/output unit which control block transfers of data be~
tween input/output devices and memory. These data transfers are independent

of program execution and the external device supplies the I/O réquest pulses.

One device is connected to each cycle steal channel, Each cycle steal
channel requires two memory locations. These 32 locations are situated at the
top of the fixed core bank of memory. The first word of each pair contains a
bldck length, the second an address. When a cycle steal request arrives from
an external device, the block length is fetched, decremented and stored. Next,

the address is fetched and the data word is either stored into or fetched from

memory at that address. Then the address is incremented and stored. Cycle

steal operations can be inhibited if the corxesponding bit of the 16-bit Activation

Status Register, ASR, is a one. The ASR is set using program controlled output -

over channel 10, See Table 2 ‘fd_frf ther (®) svstem philosophy.
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TABLE 2

I/O System
IPF address » I/O device or channel number (0-15). .
OPT address One word data buffer

1/0 requesjt from device

[1] | 16-bit RSR
[ To] ] 16-bit ASR allows I/O request
Y Request taken if none of higher cycle steal priority are allowed,

cycle Location (7740 + channel # * 2)
steal

10 cycles Q _____| Block length

\\ Address . '

stores word from NN
I/0 device .

Should two or more cycle steal requests occur simultaneously, a hard-

wired cycle steal priority, which can be altered only in groups of 4 channels, is

used to select the first channel to be serviced. The cycle steél operation re-
quires a total of five memory accesses. A CPU memory access is allowed be-
tween each cycle steal operation to avoid locking out the CPU by a long queue

of cycle steal requests.

Cycle steal I/O rates as high as 105 words/second are possible, Generally, -
program control of I/O is restricted to 1) devices for which the data transfers

are program dependent or 2) very low dkata rate devices if interrupt of the pro- §

gram is necessary for synchronization. 1
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Interrupts

There is a 16-bit register called the Interrupt Status Registar, ISR, in the
CPU which stores interrupt requests. As each request is serviced, the corre-
sponding bit in the register will be reset. There is another 16-~bit register in the
CPU, called the Lockout Status Register, LSR, where each bit indicates whether
or not an interrupt request at that level is to be locked out. A one-bit CPU
register called the Interrupt Override Register, IOR, serves to lockout all in-
terrupts, except interrupt 0, when it is set to 1. An interrupt signal sent to the
CPU causes an interrupt when the ISR bit is set, the corresponding bit of the

LSR is zero and the IOR is zero.

Should two allowable interrupts occur simultaneously, there is a hardwired
16 level priority circuit in the I/O unit (interrupt 0 is of highest priority) to
determine which interrupt request is to be serviced first. The LSR is loaded
from fixed memory lom&.timm during the execution of an interrupt or when the
CPU executes an EXIT m @ TIN instruction. The TIN instruction is normally

~ executed at the termination of an interrupt routine,

The interrupt service priority is controlled by the contents of the LSR so
that the determination of which interrupts are to be allowed can be dyhamically
changed. The one exception is that interrupt 0 has top priority and cannot be

locked out. This interrupt will be used to initiate program execution.
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When an interrupt is received by the CPU, the instruction being executed
will be completed and then an autoinatic sequence is entered in which the
address of the next instruction to be executed, the contents of the storage limit
register, the miscellaneous registers (P, D, OV, and C), and the current status
of the LSR are stored in a bank of four memory locations (NO to N3). Then the
same registers will be loaded from the four memory locations N4 to N7.

Figure 8 shows the location of the register values in the 8 word interrupt area,
It is the system programmer's responsibility to define and load locations N4 to
N7 (where N is the interrupt number) with the desired LSR value, miscellaneous

register settings, storage limit setting and starting address of interrupt

routine N.
Word Bit 18 17 16 15 14 13 12 11 109 8 7 6 5 4 3 2 1
0 OLD LSR VALUE

I A
i PAGE p [Nov | 2

. ——
2 OLD LSR
3 OLD INSTRUCTION COUNTER
4 NEW LSR VALUE
———,

5 NEW PAGE D ov | c
6 NEW LSR
7 NEW INSTRUCTION COUNTER

Figure 8. Interrupt Locations

Pl
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At the conclusion of interrupt routine N there must be a TIN instruction
which will result in returning control to the interrupted program and restoring
the LSR, storage limit and miscellaneous registers, Of course, any addressable
register which may be altered during the interrupt routine should be saved upon

entering and restored upon leaving the interrupt routine.

Program Linkage

Within a single assembly, control is normally transferred by a BRU
(LABEL) or BRC (LABEL) statement, When the name LABEL is defined to the
assembler, the literal location (LABEL) will be filled with the correct relocatablé
address, At load time this relocatable address will be made absolute. Upon
execution, the BRU or BRC instruction will cause the absolute address in this

literal location to replace the contents of the program counter,

When transferring control between separately assembled programs the
BRM LLABEL statement is used in the calling program and LABEL must be
externally defined in the calle_d_program's data area. Two contiguous locations
must be allocated in the called program's data area in order to accomplish the
transfer, The first must be given the external label and the second must contain
the address of the called program's entry point. (See the INrPUT and ADDER

program assemblies given in Figure 2 for an example.)

When the set of programs is loaded, the undefined reference to the label in

the BRM instruction is resolved.to refer to the external definition in the called
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program's data area. Upoa erecution, the current value of the program counter
will be saved in the location called LABEL and the next location after this will

be used to supply a new value for the program counter,

Since the programmer may be unaware of the exact location the relocatable
code will occupy at execution time, the simple linkage discussed above must be
modified to take account of the possibility that the called program's data area
may not occupy the same bank as the calling program's data. Thus the page
register must be manipulated to allow formation of the correct address. An

example of how this can be achieved appears below:

Calling Program (which is itself a called program)

$ (1)
START STE SAVEP Save calling programs page register
® i passed in EA
°
(3
°
. | H
LDE CALLER Load this program's page register
LDA CALLED Load called program's page register
LDP Load page registef with proper
setting for use by called program
BRM SUB2 Branch to called program
LDP Restore page register with proper
° setting for use by this program.
° ,
°
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| $ (0)
SUB1* RES 1
N 0+ START
SAVEP RES 1
: . CALLER 0+ SUB 1 The loader will insert the absolute
- address of the beginning of this
. program's data area here.
. CALLED 0+ SUB 2 The loader will insert the absolute
o address of the beginning of the
é‘ called program's data area here.
BND
i
2
; Called Program (which calls no other program)
$ (1
i
tx START STE SAVEP Save calling program's page
B ] register setting
®
°
°
LDA SAVEP Restore called program's page
register setting
BRU SUB2 Return to caller,
$ (0)
SUB2* RES 1 Execution of a BRM SUB2 in
. calling program places the return
address here. '
| |
’Lt 0+ START ' The next address placed in the
E’ program counter will be the starting
i address of this program's code -
Y region,
; ; SAVEP  RES 1
END
51
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Note how the calling program uses the form 0+LABEL to request the loader to
supply the absolute address and therefore, the page register setting of both its
own and the called program's data area. These settings are passed in the ex-
tended accumulator and accumulator respectively. This leaves the index register
free for passing the address of an argument list. Also note that it is the calling
program's responsibility to actually set the page register immediately before

and after the branch to the called program.

It is the called program's responsibility to make sure the accumulator
contains the correct address to allow the calling program's LDP to work
properly, Of course, none of this is necessary if absolute code is written.
However, the ease of program construction inherent in relocatable code is so
great that these conventions for use of the accumulator, extended accumulator,

and index register should be practically regarded as standard, where necessary.

Storage Limit Register

The AOP has an 18-bit storage limit register which is used to specify
blocks of memory intc which writing is permitted. Those instructions which
require writing into memory, and therefore use the storage limit register, are
STA, BRM, STE, STX, and STI. The register is broken into two 9-bit fields A
and B where A = (B1-B9) and B = (B10-B18), Bi = the ith bit of the storage
limit register numbered from the right. A and B represent upper and lower

limits on the 9 high-order bits of a 16-bit effective address between which
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writing will be permitted, Stated symbolically, if C = (B8-B16) of the effective
operand address for one of the five instructions listed abuve and A and B are as
specified above, then if B < C < A, the write will be permitted, otherwise, write
will not be permitted, Note that if A = B then one 128 word block is enabled

whereas if A = 777 8 and B = 0 then all of memory is enabled.
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APPENDIX A

AOP INSTRUCTION SET

In the following description of the AOP instructions the assembly language
mnemonics recognized by the AOP Assembler are shown., Execution timeg are

given in CPU cycles. One CPU cycle is nominally 1 microsecond.

Load/Store instructions

| )
(=]

LDA address

The contants of storage at the effective address are placed in the

accumulator,
Registers altered: Accumulator

Timing: 4 cycles . b

LDL |4 0| address

The effective address is placed in the accumulator.
Registers altered: Accumulator

Timing: 4 cycles

- LDI . |1 2 address

The 16 LSB's of memory at the effective address are treated as a new

effective address, If bit 18 of the mémory word is a one, the contents |

O S .
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of the index register are added to t'." new effective address, Otherwise
it remains unchanged. The contents of memory at the new effective
address are placed in the accumulator.

Registers alterad: Accumulator,

Timing: ¢ cycles

LDE 5 2 ! address

The contents of storage at the effective address are placed in the
extended accumulator.

Registers altered: Extended accumulator

Timing: 4 cycles

ILDX | 5 4 |address

The contents of storage at the effective address are placed in the index
register,
Registers altered: Index register

Timing: 4 cycles

STA 6 0 |address

The contents of the accumulator are stored at the effective address
unless that address is protected by the storage limit registers, If
storage is proiected, no write intc memory occurs and interrupt 15 is

generated,




, Registers altered: None.
" Timing: 6 cycles
j
STI 3 2 ‘address
’ The 16 LSB's of memory at the effective address are treated as a new
p effective address. If bit 18 of the memory word is a one, the contents I
g‘ of the index register are added to the new effective address, Otherwise
,;: it remains unchanged. The contents of the accumulator are stored in
P _ !
. _’ |
: memory at the new effective address unless that location is protected
X:
g by the storage limit register, If storage is protected, no write into
:;1 i
E memory occurs and interrupt 15 is generated.
* Registers altered: None,
, Timing: 8 cycles . b
h STE 1 0 |address
i |
; The contents of the extended accumulator are stored at the effective
i - o
* address unless that address is protected by the storage limit registers,
i If storage is protected, no write into memory occurs and interrupt 15
is generated. | .
Registers altered: None.
Timing: 6 cycles _
A-3
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STX

LDD ACCG_/\ EA D 0 0|0 01 3
| C S =y

7 4 |address

The contents of the index register are stored at the effective address
unless that address is protected by the storage limit registers, If
storage is protected, no write into memory occurs and interrupt 15 is
generated,

Registers altered: None.

Timing: 6 cycles

The contents of the accumulator and extended accumulator are shifted
left one position. The sign of the extended accumulator is not shifted
and the vacated, low~order position of the extended accumulator is
filled with the contents of the decision register. The overflow register

is not altered.

Registers altered: Accumulator

LDP , | | 0 olo o1 2

Extended accumulator

Timing: 3 cycles

The contents of bits 13 through 16 of the accumulator are placed in the
pé.ge register,
Registers altered: Page register

Timing: 3 cycles
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Arithmetic instructions

NEG

The contents of the accumulator are replaced by its two's complement.
Negating all zeros yields a result of zero and sets the carry register
to one, Negating the number that has zeros in all bit positions except
the sign yields the same number as a result and sets both the carry
register and the overflow register to one. Other than these two special
cases, the carry register is reset to zero.

Registers altered: Accumulator
Carry register
Overflow register (conditxonally)

Timing: 6 cycles

The content of the carry register is added to the contents of the accu-
mulator and the sum is retained in the accumulator. If a carry occurs
at the input of the 18th bit of the two's comblément adder, then the
carry register is set to one. Otherwisé, the carry register is reset to

zero. Overflow can occur and will cause the 18th bit of the sum to re-

main in the sign position and the overflow register to be set to one.

Registers altered: Accumulator
Carry register
Overflow register (conditionally)

Lo

Timing: 4 cyclqs




CMP 0 0/0 01 O

The contents of the accumulator are replaced by the one's complement,
The 18 bits of the results are computed independentiy with a one occur-
ring in a bit position of the result only if the accumulator contained a
zero in that position.

Registers altered: Accumulator

Timing: 6 cycles

NORM 18 17 ACC ~ EA 0 0/0 0|1 4
[0 [0001 . .. [ST" le—20

The contents of the accumulator and extended accumulator are shifted
left until the 17th and 18th bits of the accumulator are different. The
sign bit of the extended accumulator is not shifted. Bits leaving the
17th bit of the extended accumulator enter the low-order position of

the accumulatbr. Zeros fill the positions vacated on the right. A count
of lthe, number of positions shifted is refained as a 6-bit positive number
in the index register. If the contents of the accumulator and bit posi-
tions 1 through 17 of the extended accumulator are zero, then the index
register is set to zero.

Registers altered: Accumulator .
Extended accumulator-

Index register

Timing: 4 cycles + 1 cycle per position shifted.

ey,
.

L {&’i“‘ﬁ“:.f~“§?z“i‘kmm,l. .



ADX 0 2 |address

The contents of storage at the effective address are added to the con-
tents of the index register. The 18-bit result of the two's complement
addition is retained in the index register.

Registers altered: Index register

Timing: 4 cycles

ADD | 0 4 |address

The contents of storage at the effective address are added to the con-
tents of the accumulator and the sum is retained in the accumulator,

If a carry occurs at the input of the 18th stage of the two's complement
adder, then the carry register is set to one., Otherwise, the carry
register is reset to zero. Overflow can occur when two numbers of
the same sign are added. Overflow causes the 18th bit of thé sﬁm to
remain in the sign position and the overflow register to be set to one.
Register altered: Accumulator

Carry register :
Overflow register (conditionally)

Timing: 4 cycles |

SUB : ; 2 4 |address

The contents of storage at the effective éﬂc’lre:ss are subtracted from
the contents of the accumulator and the result retained in the accumu-

lator, Subtraction is performed by adding the one's complement of the

A-17
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contents of storage to the accumulator with a carry forced into the low

order stage of tlie adder. If a carry occurs out of the 17th position,

the carry regiscer is set to 6ne. Otherwise it is reset to zero. Over-

flow can occur when two numbers of unlike sign are subtracted, Over-

flow causes the ove.Zlow register to be set to one and the 18th bit of

the difference is retained in the sign position.
Registers altered: Accumulator

Carry register

Overflow register (conditionally)

Timing: 4 cycles

MUL

DIV

The contents of storage at the effective address are multiplied by the

4.

s

address

contents of the accumulator. The high-order 17 bits and sign of the

product are retained in the accumulator. The low-order 17 bits and

sign of the product are retained in the extended accumulator.

Registers altered: Accumulator
Extended accumulator

Tin_iing: Average 32 cycles

The accumulator and extended accumulator form the dividend that is
divided by the contents of storage at the effective address. The signed

remainder is retained in the accumulator and the signed quotient is

A-8
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retained in the extended accumulator, The divisor and dividend must
be positive and the dividend must be less than or equal to the divisor.
Otherwise the results are unpredictable. The quotient and remainder
are positive and the remainder has a magnitude less thaa the divisor.

Registers altered: Accumulator
Extended accumulator

Timing: 58 cycles

Beolean Lo‘gic instructions

ETR 3 0 |address

The contents of storage at the effective address are logically ANDed with

the contents of the accumulator. The result is retained in the accumu-
lator. The 18 bits of the result are c6‘.mputed independently with a one
occurring in a bit position of the result only if the accumulator and
storage both contain_edi a one in that bit position.

Registers altered: Ascumulator

Timing: 4 cycles

L pA

MRG | .  [5 0 [address|

The contents of storage at the effective address are logically ORed with
the contents of the accumulator. The result is retained in the accumu-
lator, The 18 bits of the result are computed independently with a one

occurring in a bit position of the result if either the accumulator or |

storage contained a cne in that bit position,

A-9



Registers altered: Accumulator

Timing: 4 cycles

EOR 17 O |address

The contents of storage at the effective address are exclusive ORed
with the contents of the accumulator, The »2sult is retained in the
accumulator. The 18 bits of the result are computed independently
with a one 6ccurring in a bit position of the result if either the accu-

mulator or storage, but not both, contain a one in that bit position.

Registers altered: Accumulator ‘

Timing: 4 cycles
J/O instructions
OPT , 1 6 |address

. A

The conter:s of storage at the effective address plus one are sent over

the channel (0-15) designated by the contents of storage at the effective

address,
Registers iltered: Nohe

'1‘1m1hg: 6 cycles

IPF | 7 6 |address

’1%he contents of storage at the effective address plus one are replaced
, b&'a data word input over the channel (0-15) designated by the contents

of storage at the effective address.
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Registers altered: none

Timing: 6 cycles

manipulation instructions

SHF

DSH

G ACC 0 1 4 |address
[S]—

The low-order 6 bits of the contents of storage at the effective address
are used as a two's complement shift count, If the count is negative,

then the accumulator is shifted right the number of positions specifi-:d

by the count, with the contents of the accumulator sign replacing vacated

positions on the left, If the count is pos‘tive, then the accumulator is
shifted left the number of positions specified by the count with zeros
filling vacated positions on the right. The overflow register is set to
one if the sign bit of the accumulator is changed during the shift.

Registers altered: Accumulator
Overflow register (conditionally)

Timing: 5 cycles + 1 cycle per position shifted

P ACC ,/’“E‘ EA o 3 6 address
NST——> <«JJ--"[S]y je—0

The low-order 6 bits of the contents of storage at the effective address
are used as a two's compliement shift éount. The'accumulator and the
extended accumulator are shifted together. The extended accumulator

is shown to the right of the accumulator and its sign bit is not shifted.
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If the count is negative, then the accumulators are shifted right the
number of positicns specified by the count with the contents of the accu~
mulator sign replacing vacated positions on the left, If the count is
positive, then the accumulators are shifted left the number of positions
specified by the count with zeros filling vacated positions on the right,
The overflow register is set to one if the sign bit of the accumulator
is changed duvring the shift.
Registers altered: Accumulator

Extended accumulator

Qverflow register (conditionally)

Timing: 5 cycles + 1 cycle per position shifted

— — T P i,

_ ~.
C p} ’

ACC » 3 4 addregxsj

The low-order 6 bits of the contents of storage at the effective address
are used as a two's complement shift count, If the count is negative,
then the contents of the accumulator are shifted cyclically right the
number of positions specified by the count, with bits leaving the low-
orcier position entering the sign position. I the couni ié positive. then
the contents of the accumulator are shifted left the number of positions
specified by the count with bits leaving the sign position entering the
low-order position.

Registers altered: Accumulator

Timing: 5 cycles + 1 cycle per position shifted
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DCY \ ACC EA h 5 6 |addvess

The low-order 6 bits of the contents of storage at the effective address
are used as a two's compiement shift count. I the count is negative,
then the contents of the accumulator and extended accumulator are
shifted cyclically right the number of positions specified by the count
with bits leaving the low-order position of the extended accumulator ;
entering the sign of the aceumulator and bits leaving the low-order
position of the accumulator entering the sign of the extended accumula-
tor, If the count is positive, then the direction of the above process is
reversed.

Registers altered: Accumulator -
Extended accumulator ‘ I

Timing: 5 cycles + 1 cycle per position shifted :

o

ACX | 0 0|0 0|2 5

The contents of the accumulator and index registers are interchanged.

Registers altered: Accumulator
Index register

Timing: 8 cycles

AEA | 0 0/0 0]2 6

The contents of the accumulator and ext:nded accumulator are inter-

. “changed.
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Registers altered: Accumulator
Extended accumulator

Timing: 8 cycles

EAX 0 0j0 02 7

The contents of the extended accumulator and index register are
interchanged.

Registers altered: Extended accumulator
Index register

Timing: 8 cycles
FLP / > ACC 0 0/0 0|2 2
Ce

The contents of the accumulator are reversed. The (19-’n)th and n

th

bits are exchanged forn =1, 2,... 9.
Registers altered: Accumulator

Timing: 3 cycles

Control/branch instructions

HLT |0 o]0 oo o

The processor stops indefinitely. An interrupt signal must be supplied
from an external source to start the processor,
Registers altered: None

Timing: 3‘cyc1es" before an interrupt will be honored.
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NOP 0 0{0 00 2

No operation is performed other than the automatic incrementing of
the instruction counter.
Registers altered: None

Timing: 3 cycles

BRM 0 6 | address

The contents of the instruction counter plus one are stored at the
effective address unless that address is protected by the storage limit
register, If storage is protected, no write into memory occurs and
interrupt 15 is generated. The contents of one location greater than
the effective address is placed in the instruction counter and execution
proceeds from the new address specified by the instruction counter.
- Registers altered: None,

Timing: 8 cycles

BRU | 6 2| address

The contents of « 'rage at the effective address are placed in the
instruction counter and execution proceeds from the new address
spécified by the instruction counter.

Registers altered: None

Timing: 4 cycles
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BRC

TIN

oL T S

4 2 | address

If the contents of the decision register are zero, then the next sequen-

tial instruction is executed. If the contents of the decision register

are one, then the contents of storage at the effective address are placed .

in the instruction counter and execution proceeds from the new address
specified by the instruction counter. The decision register is reset to
zero,

Registers altered: Decision register (always reset to zero)

Timing: 4 cycles

7 2| address

The contents of sterage at the effective address is used as the starting
address of a 4-word save area. This instruction restores the registers
that were saved in these locations (i.e., by the occurrence of an inter-
rupt). Upon completion, execution proceeds normally at the new value
in the instruction counter.
Registers altered: Lockout statué register

Storage limit register

Page register

Overflow register

Carry register

Decision register

Timing: 22 cycles
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EXIT 0 00 0|1 6

This instruction initiates interrupt number 16 which uses locations
octal 200 through 207, The status of registers is saved in 200-203 and
these registers are loaded from locations 204-207. Upon completion,
execution proceeds normally at the new value in the instruction counter,
Registers altered: Lockout status register

Storage limit register

Page register

Overflow register

Carry register

Decision register

Timing: 36 cycles

Test/set instructions

TOV | o oo ojo 1

If the contents of the overﬂow register are one, then the contents of
the decision register is set to one. Otherwise, it is unchanged. The
overflow register is reset to zero.

Registers altered: Decision register (conditionally)
Overflow register

Timing: 3 cycles

TAP | | 0 ofo o|o 3

If the sign position, bit 18, of the accumulator contains a zero, then the
contents of the decision registér are set to one, Otherwise, it is un-

changed.

A-17
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Registers altered: Decision register (conditionally)

Timing: 3 cycles

TOP 0 0|0 0|0 5
If the number of ones in the 18-bit accumulator is odd, then the contents -
of the decision register is set to one. Otherwise, it is unchanged.
Registers altered: Decision register (conditionally)
Timing: 22 cycles
ROV 0 0j0 00 7|
The contents of the cverflow register are set to zero,
Registers altered: Overflow register
Timing: 3 cycles
CPD 0 0|0 0|1 7
The contents of the decision register are complemented.
Registers altered: Decision register
Timing: 3 cycles
SIO i | 0 0/0 0]2 o
The contents of the interrupt override register are set to one, -
Registers altered: Interrupt override register

' ~ Timing: 3 cycles
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TAZ 0 0j]0 02 1

If the contents of the accumulator is equal to zero, then the contents of
the decision register are set to one. Otherwise, it is unchanged,
Registers altered: Decision register (conditionally)

Timing: 4 cycles

RED 0 0|0 0|2 3

The contents of the decision register are reset to zero.
Registers altered: Decision register

Timing: 3 cycles

RIO 0 0/0 012 4

The contents of the interrupt override register are reset to zero,
Registers altered: Interrupt override register

Timing: 3 cycles

TIX 0 0j0 O]1 1

The contents of the decision register is reset to zero. Then the con-
tents of f;*z,xe index register are tested for zero. If it is non-zero, the
contenté ;of the decision register are set to one and the contents of the
index register are incremented by one. If the contents of the index

register are zero, the decision and index registers remain unchanged.
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Registers altered: Decision register
Index register (conditionally)

Timing: 6 cycles

TIE 0 0/]0 0|1 5

The ¢ontents of the decision register are reset to zero. Then the con-

tents of the extended accumulator are tested for zero. I it is non-zero,

the contents of the decision register are set to one and the contents of L
the extended accumulator is incremented by one. If the contents of the

extended accumulator are zero, the decision register and extended

accumulator remain unchanged,

Registers altered: Decision register !
Extended accumulator (conditionally) §

Timing: 6 cycles

TXLE 2 2 address]

If the contents of the index register are less than or equal to the con-
tents of storage at the effective address, then the contents of the deci- j
sion register are set to one. Otherwise, it is unchanged. j
Registers altered: Decision register (conditionally) 5‘* .

Timing: 4 cycles | ‘ -

TAL 2 6 |address

If the contents of the accumulator are less than the contents of storage

A-20




at the effective address, then the content of the decision register is

set to one. Otherwise, it is unchanged.

Registers altered: Decision register (conditional.)

Timing: 4 cycles

4 6 addressi

TAE

If the contents of the accumulator are equal to the contents of storage

at the effective address then the contents of the decision register are

set to one. Otherwise it is unchanged,

Registers altered: Decision register (conditionally)

Timing: 4 cycles

6 6 |address

TAG

If the contents of the accumulator are greater than the contents of

storage at the effective address, the contents of the decision register

are set to one. Otherwise, it is unchanged.

Registers altered: Decision regiiter (conditionally)

Timing: 4 cycles
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AOP INSTRUCTION SET
Ordered by Operation Code

Op Code Mnemoni¢ Cycic Time* Description

000000 HLT 3 Halt

000001 TOV 3 Test overflow register

000002 NOP 3 No operation

000003 TAP 3 Test accumulator positive

040004 NEG 6 Two's complement accumulator .
000005 TOP 22 Test accumulator for odd parity

000006 ADC 4 Add carry to accumulator

000007 ROV 3 Reset overflow register

000010 CMP 8 One's complement accumulator

000011 TIX 6 Test index for zero and increment

000012 LDP 3 Load page register from accumulator

00013 LDD 3 DSH left 1 bit then load decision register into LSB of EA

000014 NORM 4*% Normalize accumulator and extension

000015 TIE 6 Test extension for zero and increment

000016 EXIT 36 Cause exit interrupt

000017 CPD 3 Complement decision register

000020 SIO 3 Set interrupt override

000021 TAZ 4 Test accumulator for zero

000022 FLP 3 Reverse accusaulator

000023 RED 3 Reset decision register

000024 RIO 3 Reset interrupt override

000025 ACX 8 Exchange accumulator and index

000026 AEA 8 Exchange accuimulator and extension

000027 EAX 8 Exchange extension and index

02 ADX 4 Add memory to index

04 ADD 4 Add memory tc accumulator

06 BRM 8 Branch and mark place ;

10 STE 6 Stor extension

12 LDI 6 Load accumulator indirect

14 SHF 5%* Arithmetic shift accumulator &

16 CPT 6 Output b
20 LDA 4 Load accumulator 1
22 TXLE 4 Test index less than or equal to memory )]
24 SUB 4 Subtract memory from accumulator

26 TAL 4 Test accumulator less than memory

30 ETR 4 Logical AND accumulator with memory

32 STI 8 Store accumulator indirect

34 cYc Hrs* Cyclic shift accumulator

36 DSH G*x Arithmetic shift accumulator and extension

40 LDL 4 Load accumulator with effective address

42 BRC 4 Branch conditionally

44 MUL 32%% Multiply accumulator by memory

46 TAE 4 Test accumulator equal to memory

50 MRG 4 Logical OR accumulator with memory

52 LDE 4 Load extension

54 LDX 4 " Ziad index

56 Dey Gk Cyclic shift accumulator and extension

60 STA 6 Store accumulator

62 BRU 4 Branch unconditionally

64 DIV 58 Divide accumulator and extension by memory =

66 TAG 4 Test accumulator greater than memory

70 EOR 4 Exclusive OR accumulator with memory

72 TIN 22 Restore status registers from memory

4 STX 6 Store index .

76 IPF 6 Input

*Add 2 cycles for indexing. One CPU cycle is nommally one microsecond.
**Add 1 cycle for each place shifted.
r*Average
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Mnemonic

ACX
ADC
ADD
ADX
AEA
BRC
BRM
BRU
CMP
CPD
cYC
DCY
DIV
DSH
EAX
EOR
ETR
EXIT
FLP
HLT
IPF
LDA
LDD
LDE
LDI
LDL
LDP

Op Code
000025
000026
04
02
000026
42
06
62
000010
000017
34
56
64
36
000027
70
30
000016
000022
060000
76
20
000013
52
12
40
000012
54
50
44
000004
000002
000014
16
000023
000024
000067
14
000020
60

26
000003
000021
000015
72
000011
000005
000001
22

Alphabetically Ordered by Mnemonics

Cycle T

ime*

O D b 0O e OO B b b O

(24
o grn
* - *
* * *

&
(SR N AR R F AR N R ANANC N .

(2
*
*
*

N

»n 5
M GO DD O B €D b b B DO DD T LD D

*
»

*
*

Description

Exchange accumulator and index
Add carry to accumulator

Add memory to accumulator

Add memory to index

Exchange accumulator and extension
Branch conditionally

Branch and mark place

Branch unconditionally

One's complement accumulator
Complement decision register
Cyclic shift accumulator

Cyclic shift accumulator and extension

Divide accumulator and extension by memory
Arithmetic shift accumulator and extension

Exchange extension and index
Exclusive OR accumulator with memary
Logical AND accumulator with memory
Cause Exit interrupt

Reverse dccumulator

Halt

Input

Load accumulator

DSH left 1 bit then load decision register into LSB of EA

Load extension

Load accumulator indirect

Load accumulator with effective address
Load page register from accumulator
Load index

Logical OR accumulator with memory
Multiply accumulator by memory
Two's complement accumulitor

No operation

Normalize accumulator and extension
Output

Reset decision register

Reset interrupt override

Reset overflow register

Arithmetic shift accumulator

Set interrupt override

Store accumulator

Store extension

Store accumulator indirect

Store index

Subtract memory from accumulator
Test accumulator equal to memory
Test accumulator greater than memory
Test accumulator less than memory
Test accumulator positive

Test accumulator for zero

Test extension for zero and increment
Load status registers from memory
Test index for zero and increment
Test accumulator for odd parity

Test overflow register

Test index less than or equal to memory

*Add 2 cycles for indexing. One CPU cycle is nominally one microsecond.
**Add 1 cycle for each place shifted.

*¥*Average
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APPENDIX B

AOP SUPPORT SOFTWARE DEMONSTRATION PROGRAM

The AOP Simulator is a complete simulation of all AQOP features designed

to permit rapid debugging in a complex environment. Extensive timing features

are provided, To more fully explain the capabilities of the simulator, a

special program was written to demuustrate some of these features. This pro-

gram has the following characteristics:

@)

@)

@)

A 300 cycle clock interrupt begins at 100 cycles. A clock interrupt
routine is set up to stop the program after 9 interrupts. Usixig the
pseudo-console, the clock count can be reset and the run continued

for an arbitrary number of clock interrupts.

At 150 cycles the first channel 1 cycle steal I/O operation is performed,
I/0 requests will continue on this channel at the rate of one each 150
cycles. A block length of 3 words and a buffer cf the same length are

maintained.

The first block length = 0 interrupt occurs at 450 cycles. The interrupt
service routine re-establishes the block lehgth and buffer address
words. It then calls a worker whose only function is to sum fhe words

input to the buffer.




LR

The remainder of this appendix refers to the listing in this appendix.

On the first page of the listing, the executive routine containing the clock
and cycle steal interrupt handling rcutines is assembled using the ; ASSEMBLE
DEMO control card. First the interrupi locations for interrupts 1, 2, 15 and 16
are set up and then the cycle steal I/O control words for channel 1. Next comes

the code for the clock interrupt handler followed by the Block Length (BL) = 0

- .-
e . - .

interrupt handler, the ba ckground loop, and the storage protect interrupt handler.

sy

Lo s v

The channel 1 ASR control words, clock, and channel 1 buffer are set up in the

program's relocatable data area.

e R R U NN ST R o )
P L Sy B et

The second page of the listing shows the assembly of a worker routine and
its subroutine. The subroutine calling sequence conventions have been followed.

In addition, an argument list address is passed in the index register.

Page 3 and 4 of the listing show the results of loading these three programs
while a complete simulator run follows. Note that the pseudo-console was used
to set the IOR to 0 anl later, when the storage protect violation occurred, to
reset the storage limit register and continue the run. A close examination of

this example will reveal several AOP characteristics.

Refer to the sample output (page 9 of the listing) showing the simulation of
a portion of the demonstration program. Line 1 shows a background job which
consists of one instruction branching unconditionally to itself. The address of

the instruction is in the IC column, the branch address in the [EAD] column.

#




At line 11 a clock interrupt has occurred (the I column contains the octal number
of the interrupt currently being serviced). Before the clock routine can complete
there is a cycle steal I/O request on channel 1 at 450 cycles simulated time, as
indicated at line 13. Note the BRC instruction following line 3, This instruction
normally completes in 4 cycles but subtracting completion times in the TIME
column shows that 448-462 = 14 cycles were required because of cycle steal

1/0 interference. Also note in the ISR column of this line that a block length = 0
interrupt was generated by the cycle steal operation (ISR = 000002) and that
further activity on this channel is suppressed (ASR = 000002), Since all interrupts
are locked out (LSR = 177777) when the clock interrupt occurs, the block length

= 0 interrupt is not honored until the clock interrupt routine terminates at line 17.
The TIN instruction restores the AOP status prior to the clock interrupt. The
block length = 0 interrupt routine gains control immediately at line 18. This
routine takes action to enable further cycle steal I/O and transfers at line 23 to a

worker routine which will attempt to add up the numbers (1, 2 and 3) input over

buffer, a cycle steal operation occurs (line 26) and replaces the contents of
the first word of the buffer with a 4. Thus the vaiue fetched by line 27 (see
[EAD] column) is a 4 and this is placed in the accumulator instead of the desired
1. Such timing errors are made readily apparent to the programmer. As the
program continﬁes, an attempt is made to store the res.ultant sum at line 38,

However, the storage limit register was not set up to allow the worker access

B-3
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to this location (SLR = 002040) so a storage protect interrupt (ISR = 100000) is

generated causing the program to halt at line 39.

As the example shows, completeness of simulation and easy debugging are
prime features of the simulator. Flexible facilities for dumping and tracing .
the progress of the simulation ars provided. The example used here resulted
from a complete octal trace. A4 pseudo-cpnsole facility is available which allows
the user to fix up errors in his simulated iorogram as they are detected, without
the necessity of reloading or reassembling, just avsthough he were debugging at .
an AOP tconsole. The error which caused the termination in the example was |
handled in this way and the simulation successfully continued. Any size AOP

memory can be simulated.
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3 ASSEMBLE DEMO

ASSEMBLER FOR THE ONBOARD PROGESSOR

l.
2.
Je

13.

17.

22,

25,
26,
27.
28,
29.
30.
31.
J2.
33.
34,
35.
36,
37.
38.
39,
40,
4],

- END OF LISTING, 1 LINES FLAGGED.

O o o T e e e e S S Sy o0 OO0 O OO O oo

000016
000017

000024

000026
000027

0V0177

000205
000207

007742
007743

000000
000001
000002
000003
000004
000005
000006
Q00007

000010

Qoo011
0ooo012
000013
000014
Q0001s
000016
Q00017

000000
000001
000002
000003

54
42

74
72
20
6Q
20
60
16

72
62

72

037037
000006

177777

001001
000000

000016

002040
000000

000003
000003

0 0000
000011
0 0014
000000
0000
0006
0007
7742
0010
7743

0000GOO

000016
0 0011

o001

0 0013

000000
0 0012

777767
000002
000002

000006
000007
000010
000011
€00012
000013
000014

B-5

000020

000003
000003
000010
000170
000015
000004

$(0)

AORG 0,14
037037
0+CHPGH

AORG 0,20
0177777

ARG 0,22
001001
0+CLOBCK

AGRG 0,0177
C+SPROTECT
AORG 0,0206
02040
O+WORKER
ABRG 0,07742
CHiBL 3
CH1ADR O0+BUF
RORG 0.0
$(1)
CLOCK LDX CLK
TIX

BRC (GOCN)
HL?
GOON STX CLK
TIN (16)
CHPGM LDA (3)
STA CHiBL
LDA (BUF)
STA CH1A3JR
OPT CH1ASR
EXIT

TIN (8)
TIGHT BRU TIGHT
SPROTECT HLT

*IN (0170Q)
$(0)
CLK =9
CHIASR 2

2

BUF* RES 3

END

TR
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B ASSEMBLE WORKER

ASSEMBLER FOR THE ONBOARD PROCESSOR

i.
2. U

15,
16,
17,
18,
19,
20. v
2.
22,
23.

o Pun But fue Do Puo Pt Puo P Pue ue P Bub Puo Bue 00000

COOo0Oo0o

000000
000001
000002
000003
000004

Q00000

000001
000002
000003
000004
000005
00GQ0s
000007
goootlo
00001ty
Q00012
000013
000014
000015
0ooo016

END OF LISTING,

3 ASSEMBLF WORKERS

38
54
24
08
42
60
5e
54
20
06

72

3

000000
000002

000000
000000

0 0005
0 000D
1 0000
000011
1 0000
000015
0 0010
0 0002
C 0004
0 0006
0 0003
000012
0 0000
0co012
0 0007

000005 777777
000006 000001
000007 000200
000010 000003

LINES FLAGGED.

ASSEMBLER FOR THE ONBOARD PROCESSOR

i.

00000

Put oo Pub Pub fun fus Pun

000000

000001
000002
000003
000004

000000
000001
000002
000003
000004
00000s
0000086

END OF LISTING.

I

000000

10
2%
60
12
60
20

682

e

0002
0000
0003
0063
004
00Q2
0000

00000~ 0O

LINES FLAGGED.

$(0)
8 O+BUF

ARGLST 0+5UM -
SUM RES

SUB O+WORKERS
CALLER 0+8B

$(1) | -
WORKER+* LDE (=1)
LDX B

LDAs O
LOOP TIX

ADD, O

TIE

BRC (L.OQP)

STA SUM

LDE CALLER

LDX (ARGLST)
LDA suB

LDP

BRM VWORKERS
LDP

TIN (0200)

END

$(C)

WORKERS* RES 1 g
0+START L
SAVEP RES 1

ARG RES 1

SUMW RES 1

$(1)

START STE, SAVEP

LDAs, O

STA ARG N

LDl ARG | -
STA SUMW ,
LDA SAVEP :
BRU WORKERS
END

T T
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2 LOAD DEMO
LOADER FOR ON-BOARD PROCESSOR

PREAMBLE VALUES FGR DEMO
DATA LENGTH
CODE LENGTH
PRESET LOCATIONS
LITERALS
INDIRECT ADDRESSES
EXTERNAL DEFINITIONS
UNDEFINED SYMBOLS
NOUNS

EXTERNAL DEFINITIONS
BUF

PREAMBLE VALUES FBR WORKER
DATA LENGTH
CODE LENGTH
PRESET LOBCATIONS
LITERALS
INDIRECT ADDRESSES
EXTERNAL DEFINITIONS
UNDEFINED SYMBOLS
NOUNS

EXTERNAL NEFINITIONS
WORKER

PREAMBLE VALUES FOR WORKERS
DATA LENGTH
CODE LENGTH
PRESET LOCATIONS
LITERALS
INDIRECT ADDRESSES
EXTERNAL DEFINITIONS
UNDEF INED SYMBOLS
NBUNS

EXTERNAL DEFINITIONS
WORKERS

SOFTUARE

NO= OO NWm
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CoRE LIMITS

. i rATA 000210-000601 / CODE 004000-004045
‘] STARTING ADDRESS 004000

o MINIMUM ABSCLUTE ADDRESS 000016

Y MAXIMUM ABSOLUTE ADDRESS 007742

v CORE ALLOCATION

NEMO
DATA 000210-000224 -
CoDE 004000-004017

VORKER
DATA 000400-000410
CODE 004020~004036

VORKERS -
DATA 000600~000601
CODE 004037-004045

END OF ALLOCATION

5 SIMULATE DEMO
TRACE OCTALLY

3 DUMP OCTALLY AT HALT
3 INTERRUPT 2 EVERY 300 MICROSECONDS STARTING AT 100 MICROSECONDS

ve

MAXIMUM TIME IS @ MILLISECONDS

INITIATF CHANNEL 1 AT 150 MICROSECONDS :
DATA FOR INPUT DEVICE 1}

1 23456789 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 e
30 31 32 33 34 35 36 37 38 39 40 § .
3 START AT TIGHY

ON-BOARD PROCESSOR SIMULATAR

O S
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000000
00ocoo
000000
0cooo0
000009
000000
000000
000000
oooooo0
ooocoo
000coo
goocoo
gooooo
000000
00C000
000000
000000
000000
000000
000000
0000600
ocoess
000000
000000

goooo0

sV

caoo00
cocooo
coooco
ccono0
££9000
cooooo
cgocooo
cacooo
cooooo
cooooo

€ocoo00

cooooo
coooco
cocoao
coaogo
coooaa
cccooo
200000
cooooo
coco00
€00000
cooooo
cooooo
coaooo
csoce60

¥s1

000006
000000
aoog0co
oooooo
000000
000000
000900
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
g0o0000
000000
ooo000
(shlelola]u]
000000
000000
000000

s

no1

Q6

g
L4}
ng

L7 4

29
»9
fig

oS

Ll 4
L4 4
ny

ag

Qe
144
0z

o1

INIL

060000

000000

0000n0
0000n0
000000
0000N0
000000
000000
000000
0000n0
000000
000000
000000
000000
0000n0
000000
000000
000000

0000n0

g0oono

oggooano
000000
000000
gooono

000000

¥is

£22000
f£22000

£22000

£22000
£22000
£e2000
fzzooo
gezo00
£22000
£22000
p2zo00
£22000
£22000
£22000
£22000
f£22000
£22000
£22000
£22000
£22000
f£22000
£22000
£22000
£22000

£22000

ava

0O 0O o o o

0
0
0
0
0
0
0
0
o
0
o
0
0
e
0
c
0
0
0
0

L

000000
ovoo00
000000
000000
000000
000000
000000

000000

000006
000000
000000
000000
Q00000
000000
000000
000000
000000
000000
000000
000000
0ooaoo
000000
000000
000600

000000

X3aN1

0Q

00

oo

00
00
00
00
00
00
00
00

L1}

oG

00
00
00
00
00
00
00
00
00
00
oc

00

d

£2¢029
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RUNNING TIME = «001 SECS
INSTRUCTIGONS EXECUTED m 105

INST COUNT INST COUNT INST COUNT -
ADX 0 ADD 2 BRM 0

STE 0 LDI 0 SHF 0

oOPT i LDA 3 TXLE 0

SUB 0 TAL 0 ETR 0

sT1 0 cye 0 DSH 0

LDL 6 BRC 4 MUL 0

TAE 0 MRG c LDE 1

LDX 3 DCY 0 STA 3

BRU 76 DIV 0 TAG 0

EGR 0 TIN 2 STX 2

IPF 0 HLT 1 ToV 0

NOP C TAP 0 NEG 0

TOP 0 ADC 0 ROV 0

cHP 0 TIX 4 LDP 0

LDD 0 NORM 0 TIE 2 :
EXIT 1 CPD 0 s10 0

TAZ 0 FLP 0 RED 0

RI® 0 ACX 0 AEA 0

EAX 0
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TAZ
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3 PAUSE

SECS

324
INST CAUNT
ADD 10
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BRC 20
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