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ABSTRACT 

A study  has  been made of the  accuracy of various  one-dimensional 

approximations f o r  ca l cu la t ing   t he   r ad ia t ive  f l u x  and  flux  divergence i n  t h e   t h i n  

radiating  shock  layer  surrounding a blwt ent ry  body. The one-dimensional 

approximations were the tangent slab 'and the f u l l  and half range d i f f e r e n t i a l  

methods. A numerical   calculation of the exact  three-dimensional  radiative 

transport  equations  provided a reference  against  which the one-dimensional 

models could be judged. A coupled  radiative-gasdynamic  analysis of the shock 

layer   f low  about   the  ent i re  body provided the thermodynamic f i e l d  used i n   t h e s e  

calculat ions.  The radiat ive  propert ies  model  employed vas a three-group 

treatment  of the continuum  emission/absorption  processes  of high temperature 

air. I n  terms of ca lcu la t ing  the to ta l   energy   los t   by   the   shock   layer ,  the 

one-dimensional  approximations to   the   rad ia t ive   f lux   d ivergence  are a c c u r a t e   t o  

within a fev percent .   In  terms of ca lcu la t ing  the surface flux, the one-dimen- 

sional  approximations  introduce the l a rges t   e r ro r s   nea r  the s tagnat ion  point  

where t h e   e r r o r s  are about 15%. The source  of these e r r o r s  i s  the slab-like 

geometric  representation  of the shock  layer   inherent   in  a l l  one-dimensional 

models. Final ly ,  it is  found that for   bo th  the rad ia t ive  flux and i t s  divergence, 

the  tangent slab approach  generally  provides the most accura te   resu l t s  vhen 

compared v i th   the   d i f fe ren t ia l   approximat ion  methods. 
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NOMENCLATURE 

A 

ao,  al 

a 

B 

b 

C 

L 

9, 

IVt 

Na 

N 

P 

R 

exponential  integral  emissivity  function 

parameters  in  number  density  equations 

parameter  in  shock  and  body  conic  section  equation,  dimensionless 

Planck  function,  V/cm sr 2 

parameter  in  shock  and  body  conic  section  equation,  dimensionless 

constant  in  the  boundary  conditions  for  the  differential  approximations, 
\r/cm2 

parameter  in  the  boundary  conditions  for  the  differential  approximations, 
\~/cm2 

emissivity  function,  dimensionless 

radiative  flux, 

total  enthalpy,  erg/gm 

static  enthalpy,  erg/gm 

radiative  intensity, ~ / c m  sr 

Boltzman  constant, 8.617 X lo-* eVpK 

2 

2 

coordinate  parallel to 0-constant  plane,  dimensionless 

parameter  defining  full- o r  half-range  differential  approximation, 
dimensionless 

total  particle  number  density, 

air  atom  concentration, cm 

coordinate  along  rotation  axis,  dimensionless 

pressure,  atm 

gas  constant,  erg/gm 
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Rn 

r 

S 

T 

X 

Y 

Z 

CY 
0 

'i 

'a 
c 

E 

9* 

R 

6O 

nose  radius, m 

radial  coordinate,  dimensionless 

distance  along  ray,  dimensionless 

temperature, "K 

freestream  velocity,  km/sec 

angular  averaged  intensity, ~/cm 

body  oriented  streamwise  coordinate,  dimensionless 

body  oriented  normal  coordinate,  dimensionless 

axial  coordinate,  dimensionless 

2 

Greek  Nomenclature 

parameter  in  differential  approximation  flux  equation,  dimensionless 

ionization  parameter,  dimensionless 

dissociation  parameter,  dimensionless 

wall  emissivity,  dimensionless 

exponential  integral,  dimensionless 

freestream  density,  gm/cm 

volumetric  absorption  coefficient, cm 

Planck  function  integral  for  differential  approximation  flux 
equations , W/cm2 
azimuthal  angular  coordinate  measured  about  rotation  axis,  radians 

elevation  angular  coordinate  measured  from  rotation  axis,  radians 

critical  value of elevation  angle,  radians 

solid  angle , steradians 
stagnation  point  shock  layer  thickness 

3 
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Superscr ipts  

denotes flux or i n t ens i ty   d i r ec t ed  toward  shock 

denotes flux or i n t ens i ty   d i r ec t ed  toward  body 

Subscripts 

denotes  tangent  point of conical  shock o r  body 

denotes   point   in   shock  layer  at which flux i s  evaluated 

denotes body condition 

denotes  shock  condition 

denotes maximum ray  length 

denotes flux component i n  x coordinate   direct ion 

denotes flux component i n  y coordinate   direct ion 

denotes flux component in z coordinate   direct ion 

denotes flux component i n  r coordinate   direct ion 
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1. INTRODUCTION 

The ana lys i s  of the  coupled  radiat ive  t ransport  which occurs   in   the  

shock layer  surrounding a vehicle   enter ing a planetary  atmosphere at extreme 

ve loc i t i e s  is  complicated by t-cro f ac to r s .  One of these   fac tors  is that the  

radiant  energy  transport  is determined  by an i n t e g r a l  of  the monochromatic 

intensi ty   over   the  spectrum;  an  integral   requir ing  t reatment   of  complex ab- 

sorption  processes.  Despite i t s  complexity, a number of   invest igators  

(Ref. 1-6) have successful ly   solved  the  spectral   in tegrat ion problem using a 

rea l i s t ic   f requency  dependence  of the spec t ra l   absorp t ion   coef f ic ien ts .  The 

second  complicating  factor i s  that the  radiant   energy  t ransport   a lso  requires  

a three-d imens iona l   in tegra t ion   of   the   to ta l   in tens i ty   over  a l l  d i rec t ions .  

Aside  from  being  complicated  numerically, this sol id   angle   integrat ion changes 

the  mathematical  character of the  basic  f low  equations.  Without radiat ion,  the 

gasdynamic equat ions   in  the t h i n  shock l aye r  l i m i t  ( a  limit which is va l id  

f o r  a wide va r i e ty  of  vehicle  configurations)  are  parabolic  (Ref. 7). This 

provides a tremendous s impl i f ica t ion  by permi t t ing   the   f low  f ie ld   to  be calculated 

using a forward  integration  procedure  start ing at the  vehicle   s tagnat ion  point .  

When coupled  radiation  transport  i s  included  in   the  analysis ,   the   equat ions 

become e l l i p t i c  and the t h i n  shock layer   s impl i f ica t ion  i s  lost .*   Pr imari ly  

because  of   the  desire   to   re ta in   the  s implici ty   of  a parabolic  system, a l l  
.it 

These coments  do not  apply  to  the  time  dependent method of Callis (Ref. 5 )  
for   vhich the equations are always  hyperbolic i n   t h e  time  marching  direction. 
However, the  time  dependent method i s  more sens i t ive   than  the s t eady   s t a t e  
methods to  the  computational  burden of a three-dimensional  solid  angle 
in tegra t ion  as the   en t i r e   f l ow  f i e ld  must  be solved numerous times. Hence 
the  time  dependent methods also  resortto  approximate  treatment  of  the  angular 
in tegra t ion .  

-1- 
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previous  studies  of  coupled  radiating  flow  over  blunt  bodies  which  consider 

detailed  spectral  transport  (and  most  of  those  which  consider  simplified 

grey gas models)  have  reduced  the  radiative  transport  to a one-dimensional 

level.  Mathematically  this  is  accomplished  by  retaining  only  the  normal  com- 

ponent  of  the  radiative flux (i.  e.,  normal  to  the  body or shock  depending  on 

the  coordinate  surface  being  used);  the  component  of  the  radiative  flux  in 

the  streamwise  direction  being  neglected,  e.  g.  Ref. 8. 

It is  the  purpose  of  this  study  to  establish  the  accuracy  of  this  one- 

dimensional  integration.  We  have  used  numerical  methods  to  perform  the  required 

three-dimensional  spatial  integration,  thus  obtaining  essentially  exact 

values  for  the  radiative  flux  and  its  divergence.  We  then  tested  three  one- 

dimensional  transport  models  against  these  three-dimensional  numerical  solutions. 

The  one-dimensional  models  were  the  tangent  slab  and  the  full-  and  half-range 

differential  approximations. 

This  study  evaluating  radiative  transport  approximations  is  oriented 

to  the  problem  of  entry  vehicle  radiative  heating.  Thus  we  have  employed 

the  following  ground  rules. A blunted  cone  configuration  typical  of  entry 

bodies was considered.  The  distribution  of  thermodynamic  variables  in  the 

shock  layer  about  the  body  were  taken  from a fully  coupled  solution  of  the 

flow  of a radiating  gas  about a blunt  body.  In  this  manner a realistic  flow 
* 

field  was  used  in  the  evaluation. In evaluating  the  radiative  transport  we 

used a simplified  three-group  model  for  continuum-only  air  radiation.  This 

model  has  been  employed  by  IMSC  in  other  coupled  flow  studies  and has been 

established  as a reasonably  accurate  treatment  for  continuum-only  transport. 

The  flow  field  solution  was  one  kindly  provided  by  Mr.  Lin  Callis  of NASA 
* 
Langley  Research  Center.  This  solution  employed a multi-group  grey  gas  absorption 
coefficient  model  (Ref. 5) thus  accounting  for  the  essential  radiative  character- 
istics  of  high  temperature  air. 

-2- 



Moreover, the  bands d isp lay  a des i rab le   var ia t ion   in   op t ica l   depth   ( for   the  

par t icu lar   f low  f ie ld   cons idered)   wi th   the  first group  being  opt ical ly   thin,  

the  second  group  having  intermediate  optical  depth  and  the  third  group  being 

op t i ca l ly   t h i ck .  

A s e r i e s  of  numerical  calculations were  performed fo r   t he   bas i c  

blunted cone  shock layer   configurat ion.  The resu l t s   o f   these   ca lcu la t ions  

show that  the  one-dimensional  approximations  to  the  radiative  f lux  divergence 

i s  accura t e   t o   v i th in  a fev   percent   in   de te rmining   the   to ta l   energy   los t   by  

the  shock  layer,   i .e. ,  as measured  by  the  integral   of  the  f lux  divergence 

from  shock t o  body. Locally, i n   r eg ions  where the  f lux  divergence i s  small 

the percentage  error  can  be  appreciable; however, these  regions have l i t t l e  

e f f e c t  on t h e   t o t a l  energy loss. This conclusion i s  of  fundamental  importance 

as it demonstrates that one-dimensional methods can  be  employed i n  the coupled 

radiat ing  f low  calculat ion  with  assurance that the   r e su l t i ng  thermodynamic 

f i e l d  i s  correct.   In  terms  of  calculating  the  surface  f lux,   the  one-dimensional 

approximations  introduce the la rges t   e r rors   near   the   s tagnat ion   po in t  where 

the   e r ro r s  are about l5$. The source  of  these  errors is  the  slab-like  geometric 

representa t ion   inherent   in  a l l  one-dimensional  models. On the   conica l   a f te r -  

bodies where the  shock  layer  geometry i s  much  more s lab- l ike ,  the e r ro r s   a r e  

reduced  below 10%. Final ly ,  it i s  found tha t  for   bo th   the   rad ia t ive   f lux  and 

i ts  divergence,  the  tangent slab approach  generally  provides  the most accurate 

r e s u l t s  when compared with the  differential   approximation methods. 

-3- 



2 -  THREE-DIMENSIONAL  CALCULATIONS 

2 .1  GEOMETRIC CONSIDERATIONS 

The body and  shock  shape  combination i s  shown in   i some t r i c  view i n  

Fig. 1. In  analyzing  the  various  geometric  constraints on the  angular   inte-  

gra t ion  problem we e l ec t ed   t o   s imp l i fy   t he   ana lys i s  by r e s t r i c t i n g   t h e  body 

and  shock  shapes to   those   descr ibable  as a general   conic  section. However, 

we al low  the  descr ibing  equat ions  to  be g iven   in  two segments  with  the two 

segments tangent at the  common point .   Let t ing r and  z  be the   r ad ia l  and 

a x i a l   v a r i a b l e s   i n  a cyl indrical   coordinate  system, then  the  general  conic 

section  equation i s  * 

r2 = 2a(z - 6 0 )  - b(z  - 6 0 )  2 

where a subscr ip t  on a, b, and bo d i f f e r e n t i a t e s  between the body (b )  and 

shock ( s ) .  Again, we allow  both body  and  shock  shape t o  be represented by 

two equations  of  the  type shotm  above with  the  tangent  point  denoted by 

subscr ip t  t . 
The f low  f i e ld   so lu t ion  which was provided  by Callis was t h a t   f o r  a 

45" hemispherically  blunted  conical body.  For  such a body, Eq. (1) is  an 

exact  erepresentation. The body  and our  approximation,  via Eq. (1) , t o   t h e  shock 

it supports   for   the  f l ight   condi t ions  analyzed  ( the  detai ls   of   the   f l ight  

condition and r e su l t i ng   f l ow  f i e ld  w i l l  be discussed  in  Subsection  2.4) i s  

shown i n  Fig.  2.  Table 1 lists the   coe f f i c i en t s  of Eq. (1) f o r  body and 

shock  along  with  the  actual  and  our  approximation  to  the r, z coordinates 
* 
All lengths   a re   sca led   to   the  body hemispherical  nose  radius and bo physical ly  
represents   the shock layer   thickness  a t  zero. 
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ROTATION AXIS 
N TSHOCK LAYER 

SURFACE 

PLANE, $I = CONSTANT 7 
Fig. 1. - General Configuration of Shock Layer 

and the 8,(p Coordinates for Ray Tracing 
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Fig. 2. Shock & Body Shapes 
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of  the body and  shock.* 

Table 1 - Body and Shock Shapes 
From Callis ' Calculation 

a = 1.0346; bs = .7000; cs = 1.034 % = 1.000; b = .9OOO; cb = 1.000 
S b 

6 = .0346; z = .2944; rt  = .4734 
0 
S tS S 

z - r Calli s Calc . r z - r Callis Calc . r 

- .0346 0 0 0 0 0 
-. 010 .306 .302 .Ob5 .296 297 

* 337 .824 .822 - 371 791 - 791 

1.108 1.610 1.619 1.149 1.569 1.569 

139 - 589 - 583 .175 - 565 .568 

.548 1.038 1.040 * 583 1.003 1.003 

2.145 2.694 2.691 2,209 2.629 2.629 

From Table 1 ve  observe that Eq. (1) f i t s  both  the  exact body  and  shock  con- 

f igura t ions   qu i te   ve l l ,  with the  maximum difference between exact and ana ly t i c  

approximation t o   t h e   r a d i a l   c o o r d i n a t e   f o r  the var ious  axial   coordinates  shotm 

being  less   than 1%. 

In  performing  the  angular  integration Ire first point  out that, except 

a long   t he   s t agna t ion   l i ne   ( r  = 0), the   rad ia t ion  f ie ld  has no plane  of symmetry. 

Hence, there  i s  no prefer red   o r ien ta t ion   for   the   coord ina te   sys tem  in  which Ire 

evaluate   the  radiat ion  f ie ld .   Since we a re   i n t e re s t ed   i n   ob ta in ing   f l uxes  

normal t o  and p a r a l l e l   t o   t h e   l o c a l  body tangent, it might seem advantageous t o  

use  such a body oriented  system. However, i n  a body oriented  coordinate system, 

it i s  q u i t e   d i f f i c u l t   t o   o b t a i n  the body-shock  shape  geometry f o r  a general  
* 

Apparently,  the body studied  by Callis i s  not   precisely a spherical  nose. 
Hence, ve  adjusted  the  coefficient b to   ob ta in   the   va lues  sho1.m i n  Table 1. 

-7- 



azimuthal  plane.  (Only when the   az imutha l   p lane   l i es   in  a meridional  plane 

does  the  geometry become simple. ) Hence, we have e l e c t e d   t o  perform  the angu la r  

integrations  using  the  coordinate  system  sketched  in  Fig.  1. That coordinate 

system i s  described by azimuthal  planes which rotate  about  an axis p a r a l l e l  

to  the  radial   coordinate.   Within  each  plane,   the  radiant  intensity i s  evaluated 

as a function  of  angle measured wi th   respec t   to   the   ro ta t ion   ax is .  Hence, 

i n   t h i s   coo rd ina te  system, we evaluate  the components o f   t he   ne t   f l ux   i n   t he  

r and z d i rec t ions .  

The geometry p ic ture  w i l l  be c l a r i f i e d  by re ference   to   F igs .  3, 4, 

and 5. In   Fig.  3 we display a v i e w  looking down along  the  rotat ion axis of 

Fig. 1, i .e. ,  a "top"  view. We can  see  that   the  various  azimuthal  planes 

st 

are  defined by the  condi t ion cp = constant . The plane  perpendicular  to  the 

axial   coordinate  z i s  d e f i n e d   t o  be cp = 0 Before  leaving  Fig. 3, note 

t h a t  L i s  the  dis tance from the   ro t a t ion  axis measured along a generator  of 

the cp plane. Now we consider  Fig. 4, which shows the view in   the   p lane  

cp = constant.  Note that f o r  a general  value  of cp , the  body  and shock shape 

are  not  axisymmetric.  Indeed,  for cp greater   than  the  asymptot ic  shock  and 

body  cone angles,   these  surfaces are not  closed.  In  the view offered by Fig. 4, 

we can  see  c lear ly   the  def ini t ion  of   the  e levat ion  angle  8 . Together,  the 

angles cp, 8 define a d i r e c t i o n   ( i . e .  , ray)  along which the   r ad ian t   i n t ens i ty  

i s  determined. The distance  along a given  ray is defined by the  var iable  s . 
Because of the nonsymmetry in   the   p lane  cp = constant , it i s  necessary   to  

eva lua te   the   rad ian t   in tens i ty  1(8 ,cp) over  the  range 0 5 8 2 2 n . O f  course, 

t h i s  means t h a t   t h e   t o t a l  4n steradiancy is  described by rotat ing  the  azimuthal  
* 

I n  Figs. 3, 4, and 5 ,  the  scale  of  the  shock  layer  thickness i s  g rea t ly  
magnified fo r  ease of in t e rp re t a t ion .  
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REFERENCE @ = 0 PLANE 

L COORDINATE PARALLEL TO 9 = CONSTANT 

AXIAL  COORDINATE z 

VIEW  GIVEN 
IN Fig. 5 

OUT OF FIGURE PLANE 

Fig. 3. - Top View Along the  cp Rotation Axis Showing 
Geometric Position of cp Constant  Planes 
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0 
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L = O  
(at z = z ) 
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L COORDINATE 

Fig. 4. - V i e w  in a cq Plane Showing  Geometric 
Position of 8 Constant Ray 



plane  over  the  range 0 S cp TI . A t  t h i s   p o i n t  we should  observe  from  Fig. 3 

tha t   t he re  i s  a b i l a t e r a l  symmetry about  the  z-axis so t h a t  it i s  only  necessary 

t o  perform  the  numerical  calculation  over  the  range 0 5 cp 5 n/2 and,  subsequently, 

double  the  resultant r, z f l u x  components. 

Returning to   t he   F ig .  4 and the 0 variable ,   there  are two l imi t ing  

values  of 8 designated as 8-  and 0 , which descr ibe   tha t   por t ion  of  0 

space  occupied  by  the body.  These l imi t ing   angles  are cp dependent.  For 

va1ue.s 8 I 0 S 0-  , a given  ray i s  bounded  by the  shock  surfaces  whereas, 

f o r  8 -  S 8 S 8+ , the  body i s  the  l imit ing  surface.  Hence, t he   i n t ens i ty  

undergoes a d iscont inui ty  a t  8-  and 8+ , and we have an t ic ipa ted   th i s   behavior  

in   es tab l i sh ing   the   angular   in tegra t ion  mesh. Analytical   equations were developed 

for   determining 0 -  and 0' as a funct ion of cp . 

+ 

+ 

* 

In   o rde r   t o   eva lua te   t he   r ad ian t   i n t ens i ty   a long  a given ~ , 8  di rec t ion ,  

it is  necessary   to   re la te   the   loca t ion  'p,8 ,s along a r a y ,   f i r s t   t o   r , z  

coordinates,  and  subsequently, t o   t h e  body or iented  coordinate   in  which the  flow 

f i e l d  i s  ava i lab le .  From Figs.  3 and 4, it i s  apparent   that   the  z component 

along a ray i s  simply 

z(s,e,cp) = zo + s s in8 sincp (2 )  

However, we emphasize t h a t  while  the  rotation axis N is  al igned  with  the  radial  

ax i s  r , once the  point is away from the  N ax i s  (i. e . ,  s f 0) , the   project ion 

on the  N ax i s  i s  not   the  radial   coordinate  r(s,B,Cp). (The exception i s  when 

cp = 90" , fo r   t hen   t he  cp plane  coincides  with a meridional  plane.)  This 

condition i s  c la r i f ied   wi th   the   a id   o f   F ig .  5 which i s  the  view described 

in   F ig .  3, a view  taken  through  the  plane  normal to   the   z -ax is .   F ig .  5 shows 
* 
For convenience, a l l  detailed  mathematical  developments  are  collected i n  

Appendix A. 
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t ha t   t he   r ad ia l   coo rd ina te   des i r ed  is:  

2 r ( s,e,cp) = ( r  +s cos8) t- ( s  s ine  coacp) 2 2 
0 

The bounding  values  of  the  path  length s can be obtained  in  a m 

s t ra ightforward manner by observing  that a t  e i t h e r   t h e  shock or body surfaces,  

the  radial   coordinate   given by Eq. (3)  must equal   that   g iven  by Eq. (1) with, 

i n  Eq. (1) , the   axial   coordinate   given by Eq. ( 2 ) .  These three  equations combine 

t o   y i e l d  a quadra t ic   equa t ion   for  sm(O,cp) as d e t a i l e d   i n  Appendix A. There i s  

one condi t ion   for  which the  equat ions  for  s admit no solution.  Physically 

t h i s   r e f l e c t s   t h e   f a c t   t h a t   t h e  shock  and body a re   con ica l  beyond the i r   respec t ive  

tangent  points  and,  in  addition,  they  diverge.   That i s ,  the  asymptotic  shock 

angle i s  larger  than  the  asymptotic body angle. Then, f o r  any  value  of 

cp cp" where 

m 

cp* = tan (F) -1 1 
9 

s 

with c the  slope of the  shock i n   t h e  r , z  coordinate  system,  the  shock 

surface  does  not  close.  Hence , when cp > cp" there  i s  a range  of 0 values 

for which a given  ray w i l l  no t   in te rsec t   the  body or shock.  These a r e  0 

values  in  range 0*< 8 8 -  with 

S 

For 0 values which f a l l  i n   t h i s  range, s = . O f  course , the   pathlength 

integration  cannot be c a r r i e d   t o   i n f i n i t y  and we s e t  s = 10 as a limit f o r  

these  conditions.  

m 

m 

As  w e  march along a given  ray,  Eqs. ( 2 )  and (3)  provide  the  local r, z 

coordinates.  The shock layer   f low  f ie ld   var iab les  are spec i f ied   in   t e rms  of 

boundary layer   coordinates   f ixed on the  body w i t h  x being  the  distance  along 
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t h e  body surface  measured from the  s tagnat ion  point   and y the   d i s tance  normal 

t o   t h e  body. The r e l a t ions  between the  r, z,  and x, y coordinate  system 

is  shown in   F ig .  6. The key  variable i s  z the  value o f  the  axial coordinate 

from which a body normal w i l l  pass  through  the  r ,z  point  in  question. 

b ’  

However, s ince  we do not know the   d i rec t ion   of   the  body  normal u n t i l  we 

determine zb i t s e l f ,  the   p rocedure   requi res   an   i t e ra t ive   so lu t ion   for  zb.  Using the  

zb value  obtained from the  previous  pathlength  point ,   th is   i terat ive  evaluat ion 

proceeds  quite  rapidly. O f  course, when zb is  such t h a t  it i s  on the   conica l   por t ion  

of  the body t h i s   i t e r a t i v e  procedure i s  unnecessary.  Having  determined z 

the  x coordinate i s  obtained from 

b ’  

0 

with  dr/dz  calculated from Eq. (1). The  y coordinate may be wr i t t en  down 

d i r e c t l y  as, cf .   Fig.  6, 
(zb-z0-s  sine sincp) 

s in6 b Y =  

where is the   angle  between the  body  normal a t  z = z and  the r 

di rec t ion .  

b 

Equation (1) provides a good approximate  description  of  the body 

and  shock  shape. However, the  shock  thickness i s  obtained  by a subtract ion 

process  and downstream of  the  tangent  point, where the  shock  has a s l i g h t  

in f lec t ion ,   e r rors   o f   the   o rder   o f  10% i n  shock l aye r   t h i ckness   r e su l t .  

Such an  error  cannot  have much of  an  effect  on  the  geometric  character of 

t he   r ad ia t ion   f i e ld  ( i . e . ,  the   e r ror   does   no t   impact   c r i t i ca l ly  on the  primary 

objective  of  evaluating  the  one-dimensional  radiation  transport   model).  

Indeed,  there i s  no ”er ror”  i f  we view our   r e su l t s  as s p e c i f i c   t o   t h e   p a r t i c u l a r  

shock-body configurat ion  offered by Eq. (l), and  having  generality  in  the  broad 



k 
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Fig. 6. - View  in  a  Meridional  Plane  Showing  Geometric 
Relation  Between r , z  Coordinates  with 
x, y Body  Coordinates 



sense   t ha t   t hese   r e su l t s  are app l i cab le   t o   t he   cha rac t e r i s t i c  shock l aye r  

geometry. However, we do not  wish to   introduce  extrapolat ion  errors   in   applying 

the  available  shock  layer  f low  field  data.   Accordingly,  we use  the  shock 

l a y e r   d a t a   i n  a normalized  form  with  the  flow  field  data  given as a funct ion 

of  y/6(x) where 6(x) i s  the   l oca l  shock layer   thickness .  However, i n  

t ranslat ing  these  normalized  dis t r ibut ions back to   the   phys ica l   coord ina te ,  

we use 6 ( x )  from  our  approximate  shock  and  body  shape  relations, Eq. (l), 

ra ther   than  the shock layer  thickness  provided by Callis' solut ion.  The 

appropriate   value  for   6(x)  is tha t   eva lua ted  a t  the  x-coordinate  given  by 

Eq.  ( 6 ) .  As  shown i n  geometric  sketch  of  Fig. 6, we obtain  the r , z  coordinates 

of   the  intersect ion  of   the body normal  with 

which 

the  shock  (denoted as r z ) from 
s' s 

( 8 )  

This  completes  the  description  of  the methods  used t o  determine  the  required 

geometr ic   re la t ions  for   locat ing  points   a long a r ay   i n   an   a rb i t r a ry  0,cp 

di rec t ion .  

2 . 2  ANGULAR IN'IE GRATI ONS 

Referring back to   F ig .  1, we note   tha t   the   ne t   rad ia t ive  flux vector  

can be described most conveniently  by i ts  components i n   t h e  r , z  d i rec t ions .  

For t he   cy l ind r i ca l  r , z  coordinate '   system,  the  third  coordinate i s  the 

c i rcumferent ia l   d i rec t ion  Jr measured about  the symmetry ax i s  z . However, 

the  flow component i n   t h i s   d i r e c t i o n  F i s  zero.   In   general ,   the   f lux 

component i n   t he   d i r ec t ion   o f   t he   un i t  normal ii i s  (Ref. 9 )  
J I  

Fn 
r 

Fn = J ?I-; I(s)dl;2 

n=4n 
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where s spec i f i e s   t he   l oca l   d i r ec t ion  of the  ray  a long which the   i n t ens i ty  

is  given. To f ind   the   des i red  flux components consider  the  sketch below 

which  expands  the N,B,cp coordinate  system (shown i n   F i g .  1) i n  which we a r e  

eva lua t ing   the   in tens i ty .  

4 

I 
I 

-YO" "---z 
I /  

Fig. 7. - The N,8,cp Coordinate  System 

In   the  N J 8 , ( p  system,  the  increment of sol id   angle  i s  

dn = lsin9ldEIdcp (10) 

We note  the  absolute  value on the  s in9  term  in  Eq. (10) .  This  requirement 

stems from t he   de f in i t i on  of incrementa l   so l id   angle   ( ra t io  of incremental 

area to   the   square  of the   separat ion  dis tance)  which demands t h a t  dQ 

always  be  positive.  For  the  plane  parallel  problems  the  reader i s  probably 

familiar with,  the 8 variable  has  the  range 0 s 8 5 rr while cp i s  swept 

over 217 . However, r e c a l l  that  the  conditions  on our problem require   the 

opposite limits, i . e . ,  0 I 8 s 217 and 0 s cp s n . Since 8 > n; sin8 < 0, 

and  hence w e  must redef ine dQ as = - s in8  dB dn when n 8 s 2n. 
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From a computational  point it i s  s impler   to   use   the   def in i t ion  of Eq. (10). 

For the  flux component in   the   rad ia l   d i rec t ion   (keeping   in  mind t h a t  

N and r a r e   p a r a l l e l  so t h a t   t h e  unit vector  is  taken  along  the N a x i s ) ,  

we note   that  6 . s  = cos@ . This i s  the  usual   resul t   g iven for plane-para l le l  
". 

geometries i n  which the  angular  coordinates are measured  about the normal t o  

the  surface whose f l u x  component i s  t o  be determined. Hence, we can write 

For  the  f lux component i n   t h e   a x i a l   d i r e c t i o n  ( i . e . ,  where the   un i t  
". 

vector  is  i n   t h e  z d i rec t ion )  ?I.S = s ine   s inq  . This i s  the component of  the 

flux normally  not  calculated  in  plane-parallel   geometries  since it i s  iden t i ca l ly  

zero. However, in   our   case  we have 

n 2-n 
n n  

I n   o r d e r   t o  decompose the flux in to   the   des i red  components i n   t h e  

body oriented  system, we note from the  following  sketch: 

r 

F cos 6, 
Z 

/ -B 

' 
Fig. 8. - Transformation  of Flux Components 



I 

t h a t  
F = Fzcos 6 + Fr s i n  6 

X 0 0 (13)  

F = F cos bo - FZ s i n  6o 
Y r  (14) 

where 60 i s  the  angle   def ined by the  r ax i s  and the  body  normal  which 

passes  through  the ro,zo point   of   interest .  From Eq. (14) we see t h a t  F 

is  obtained  via  a subtraction  process.   Recall   from our e a r l i e r   d i s c u s s i o n  

on determination of the  ray  boundaries   ( i .e . ,  0 = 0 and 0 = e’) t ha t   r ays  

which a r e   n e a r l y   p a r a l l e l   t o   t h e  body are   not   terminated,   for   cer ta in  cp 

values ,   by  e i ther   the body or shock leading   to  s = 03 . Since  these  rays  are 

n e a r l y   p a r a l l e l   t o   t h e  body, it i s  clear tha t   t hey  do not  play  an  important 

ro le   in   de te rmining  F . However, due to   the  necessi ty   of   using a f i n i t e  

value  of s concern  arose  that   possible   errors   introduced  into Fr and 

FZ would not   cancel  when F was constructed  via  Eq. (14 ) .  To eliminate 

t h i s   p o s s i b i l i t y ,  F was obtained by an   a l t e rna te  method i n  which Eqs .  (11) 

and (12) were subs t i t u t ed   d i r ec t ly   i n to  Eq. (14) y ie ld ing   t he   r e su l t ,  

Y 

+ 

m 

Y 

m ’  

Y 

Y 

TT 2TT 

FY( roy zo) = S S Ira, zo (0,rp)sine I sin9 1 q(  eYcp)d0 drp (15) 
0 0  

with q(0,cp) =(cote - tan 6 sincp)cos S o  

We note   tha t  when 0 becomes p a r a l l e l   t o   t h e  body  q(0,cp) i s  iden t i ca l ly  

zero   ensur ing   tha t   any   e r rors   in  I(0,cp) at  t h i s  0 value w i l l  be cancelled 

0 (15a) 

by q(0,cp). 

The o ther   quant i ty  we a r e   i n t e r e s t e d - i n  i s  the  flux  divergence which 

i s  given  by 
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where p is  the  absorpt ion  coeff ic ient ,  and B the  Planck  function a t  the  

point  r of   i n t e re s t .  Using Eq.  (lo), we have 
0' zo 

rl 2i-r 

Before  leaving  the  section on angular   integrat ions,   the  mesh s e l e c t e d   f o r   t h e  

8 and cp variables  w i l l  be discussed. There was no reason to   suspec t   l a rge  

nonuniformit ies   in   the  intensi ty   ( integrated  over  8 ) as a function  of  the 

azimuthal  angle rp . Hence, a uniform cp mesh was selected.   In   es tabl ishing 

accuracy of the  numerical   integration scheme, calculat ions  with Acp = 5" 

and 10" were performed. On the   bas i s  of these   ca lcu la t ions  it w a s  determined 

t h a t  Acp = 10" was adequate  and t h i s  value was used i n   t h e   r e s u l t s  shown l a t e r .  

The var ia t ion  of   the e in tegra ted   in tens i ty  as a function  of cp was examined 

and  found t o  be qui te  smooth. From t h i s  a p o s t e r o r i   t e s t  we concluded t h a t  

our   or iginal   choice  of  a uniform cp mesh was cor rec t .  

In   e s t ab l i sh ing   t he  e mesh, it was clear  under most s i tua t ions ,   the  

in t ens i ty  I(e,cp) would be discontinuous a t  8 = 8- and 8 = e . To provide 
+ 

for   this   discont inuous  behavior ,   the  8 in tegra t ion  was performed i n  terms 

of  four  quadrants.   Referring  to  Fig.  4 we f ind   tha t   the   angles   def in ing   the  

four  quadrants  are as tabulated below: 

Quadrant 
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In   addi t ion  to   performing a separa te   in tegra t ion  i n  each  quadrant, we focus a 

l a rge r  number of r ays   i n   t he  8 regions  near 8- and 8+. This was accomplished 

by  using a geometric  series for A8 s t a r t i n g   w i t h  A8 = 1" at  8 = 8- or e 

and  increasing  according  to a spec i f ied  growth ra te .  For t he   r e su l t s  shown, 

we used a growth fac tor   o f  1.05 which typical ly   required  about  150 values  of 8 

t o  cover  the  range  from 0 t o  277 for   each  of   the 10 cp planes  considered. 

Hence, we ca lcu la ted   the   in tens i ty  for, roughly, a t o t a l   o f  1500 rays. The 

computation  time for   each  combined flux and flux  divergence  calculation 

w a s  about 1 minute  on IMSC's 1108 system. 

+ 

2 . 3  GASDYNAMIC, THERMODYNAMIC AND RADIATIVE TRANSPORT  PROPERTIES 

It was s t a t ed   i n   t he   i n t roduc t ion   t ha t  one  of the ground ru les  

under  which the  s tudy  of   three-dimensional   t ransport   effects  was t o  be car r ied  

out,  was t h a t  a r e a l i s t i c  coupled  radiating  f low  field  solution would be  used. 

IMSC was f o r t u n a t e   t o  have the  cooperation  of  the NASA Langley  Research  Center 

in  providing  such a solut ion.  Callis, using  his  time-dependent method (Ref. 5) ,  

calculated the flow  past a 45" spher ica l ly   b lunt  cone for  the  following  condi- 

t i ons  : 
Uw = 16 km/sec 

PW 
= 4.43 x 10-7 gm/cm 3 

ps = 1.00 a t m .  

Rn = 2.34 m 

As mentioned  previously,  the  resulting body  and  shockwave shapes  are  those 

given  by  Fig. 2 .  Shock layer   dis t r ibut ions  of   s ta t ic   enthalpy  and  pressure 

through  the  shock  layer  exhibited some osc i l l a t ions   appa ren t ly  due t o   t h e  

numerical methods  employed.  These numerical   osci l la t ions were r e l a t i v e l y  
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small (less than 5$) and we have simply  used smoothed enthalpy,  pressure 

prof i les   to   determine  the  temperature  and number dens i ty   va r i a t ions   i n   t he  

shock layer .  The smoothed pressure w a s  essent ia l ly   constant   across   the  shock 

layer and  hence the  pressure is taken as cons tan t   in   the  shock  normal  coordin- 

ate at the  value  immediately  behind  the  shock. The smoothed s t a t i c   en tha lpy  

p ro f i l e s  used in   ou r   ca l cu la t ion  are shown i n  Fig. 9 f o r  a number of  body 

locat ions.  

The thermodynamic  and rad ia t ive   t ranspor t  model  used was tha t   p re-  

viously  developed by Chou and  Blake  (Ref. 8). The temperature i s  obtained 

from the   s impl i f i ed   s t a t e   r e l a t ion  - 
T("K) = 28.4 h  0.488 

where  h is the   s t a t i c   en tha lpy   i n   e rg /@ and R is  the  gas  constant  for 

cold air, R = 2.86 X 10 erg/- O K .  The  number dens i t i e s   ( r equ i r ed   fo r   t he  

absorpt ion  coeff ic ients)  i s  obtained  from  the  approximate  dissociation- 

ion iza t ion  model  of Chou and  Blake ( R e f .  8), 

- 

6 

Na = ( l - B ) N t  

where Na is the  number of "air" atoms  and Nt t h e   t o t a l  number of pa r t i c l e s .  

From the  ideal   gas  l a w  

Nt = 6.32 x p/kT 

with p i n  atms and kT i n  eV un i t s .  The quant i ty  B i n  Eq. (19) takes 

on  one of two values  dependent on whether  the  flow is the   i on iza t ion   o r  

dissociation  regimes: 

i f  pi 2 .005 B = pi 

i f  Pi C .005 i3 = 
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where 

and a = 2.15 x lo4; a1 = 4.28 x 10 6 

I n  Eq.  (20),  p i s  i n  atm. and kT i n  eV un i t s .  

0 

A three  group  piecewise  grey  absorption  coefficient model which 

accounts  for  the continuum absorption  processes  in  high  temperature air ,  as 

developed  by Chou and  Blake, was employed i n  our ca lcu la t ions .  The f i r s t  

group  extends  over  the  frequency  range  from 0 hv I; 10.8 eV; a region 

of low absorption where a Planck mean absorp t ion   coef f ic ien t  i s  va l id   fo r   t he  

shock layer   th ickness  and pressure  considered. The  two high  frequency  groups 

model the weak frequency  dependence of the   cross   sect ions  resul t ing from 

photoionization  of low lying  and ground s t a t e s  of  nitrogen  and oxygen. 

Along with  frequency  averaged  absorption  coefficients,   the  transport   equation 

requires   an  integral   of   the   Planck  funct ion  over   each of  the  three  frequency 

groups. The p a r t i a l  P lanck   in tegra ls   a re   l i s ted  below together  with  the 

absorp t ion   coef f ic ien ts .  

Group 1: 0 s hv 10.8 eV 
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Group 2 :  10.8 eV 5 hv 5 12.0 e V  

- e  -12.O/kT 12.0 3 12.0 2 12 0 
+3(7& +6(*) + 61 

Group 3:  12.0 eV i hv < 

B = 5.04 x 10 -12.O/kT 12.0 3+3(JG)2 12 0 
3 [ ( T I  kT +6(-) + 61) (26) kT 

In Eqs .  (21) through (26),  kT is in eV, IJ. is  in ern-', the   par t ia l   P lanck  

i n t e g r a l   i n  W/cm sr, and the  constant a2 has the values 7.26 X cm e v  . 2 2  2 
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3. ONE -DIMENSIONAL  TRANSPORT 

3.1 SOLUTION FOR TRE INTENSITY 

Along a given  ray  defined by the cp,0 di rec t ions ,   the   in tens i ty  a t  

the  point ro,zo o f   i n t e r e s t  i s  given by+ 

where p and B are  the  frequency  averaged  properties  denoted by Eqs .  (21)-  

( 2 6 ) .  It should  be  clear,   then,  that  Eq.  (27)  i s  t o  be solved  separately 

for each of  the  three  f requency  groups.   In   arr iving a t  Eq.  ( q ) ,  we use 

boundary conditions which s ta te   tha t   the   inwardly   d i rec ted   in tens i ty  i s  

zero a t  the body and  shock  surfaces.   Rather  than  the  transport   equation  in 

the form given by  Eq. (27) ,  a superior  form for  numerical  computation i s  t o  

rewrite Eq. ( 2 7 )   i n  terms of an  emissivi ty   funct ion 

-JRn .J p.( s ' )ds ' 
S 

E ( s )  = 1 - e 0 

where we have  introduced  the  parameter J into  the  exponent ia l  argument 

s o  tha t   the   emiss iv i ty   func t ion  can l a t e r  be  used i n  a f lux   ca lcu la t ion .  

For the  moment we can  consider A = 1 . Then, using Eq.  (28) ,   the   in tens i ty  

equation becomes 

* 
In   ca lcu la t ing   the   op t ica l   depth ,   the   l ength   sca le  Rn must be reintroduced 
in to   the   pa th length   in tegra l .  
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I 

Equation (29) is  solved  by  constructing a set   of   pathlength  values  

as the  calculation  proceeds  along a given 0,cp di rec t ion .  The geometric 

re la t ions   descr ibed   in  AppendixA spec i fy   the  As mesh, t he  bounding  value 

and  the  re la t ions needed t o  first determine  h( s ) , p (  s )  and  subse- S m 

quently  the thermodynamic  and rad ia t ive   p roper t ies .  

3- 2 SLAB APPROXIMATION  FOR THE FLUX 

The concept of a tangent  slab  has been  used  widely i n   c a l c u l a t i n g  

the   rad ia t ive  flux from blunt body shock  layers. I n  t h i s  model the  shock 

l aye r  geometry i s  replaced by a p lane   para l le l  geometry ( i . e .  a s lab  of  

i n f i n i t e   e x t e n t )   i n  which the  thermodynamic properties  vary on,ly i n  one 

d i r ec t ion  and  the  variation is  t aken   t o  be tha t   occur r ing   a long   the   loca l  body 

normal.  For a p lane   para l le l  geometry, the  angular  integration  of  the  inten- 

s i ty   necessary  to   obtain  the  normal  component of the  f lux  (of  course,   the 

tangent ia l  component w i l l  be zero  for  such a geometry)  can  be  performed 

exact ly .  We obtain  the  wel l  known r e s u l t ,   f o r   t h e   f l u x  a t  the body surface,  

Y = 0, 
6 

Fp(Y'O)' 2 g  PCT(Y),P(Y)lBCT(Y)I.E*CRnfCL(Y')dY'l dY ( 3 0 )  
0 0 

where E2 i s  the  exponent ia l   in tegral   funct ion.   In   arr iving a t  Eq. ( 3 0 )  we 

again  use  the  condition of  zero  inward  intensity a t  the shock  and  body. I n  

Eq. ( 3 O ) ,  the   in tegra t ion   pa th  is along  the body normal. Again we introduce 

an  emissivi ty   funct ion,  
Y 

Ep(Y) = 1 - 2E3CRn J P(Y')dY'I 
0 

and  the flu becomes, 
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Final ly ,  we no te   tha t   the  E3 i n t e g r a l  can  be  approximated  by  an  exponential, 

E ( t )  = 8 e - A t  
3 

I n  which case  (dropping  the  subscript  P ) 

E(6) 

F(y=O) = ($i7 J B(Y)dF(Y) 
2 

0 

(33) 

(34) 

where E(y)  i s  the  emissivi ty   funct ion  def ined  in   terms of the  exponent ia l  

function  given by  Eq. (28). Equations  (32)  and (34) are two approximations 

for   determining  the  radiat ive flux within a one-dimensional  approximation. 

These equations f o r  the  surface  f lux  can  readi ly  be extended t o   t h e   f l u x  a t  

some a rb i t r a ry   po in t  y along  the body normal. I f  we denote by a superscr ipt  

+ the  flux directed  toward  the  shock,  and by a superscr ipt  - the   f lux  

directed  toward  the body, we have 

where 

and 
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We mention i n  advance t h a t  Eqs. (37a) and (37b) w i l l  reappear 

in   the  next   subsect ion  covering  the  different ia l   approximation where pa r t i cu la r  

values  of R w i l l  be assigned. 

&fore  leaving  the  slab  approximation, we wr i te  down the  one-dimen- 

s iona l   p lane   s lab   re la t ions   for   the   f lux   d ivergence ,  

V*Fp = ~ T T P ( Y ) ~ ~ + ( Y ) +  I-(Y)- ~ B ( Y ) ]  

where 

Y ' )  

and where we have  introduced a new emissivi ty  
77 

involving  another  exponential   integral   function. 

ponential  approximation 

a - a t  
E 2 ( t )  = - - = - e d t  2 

(39) 

(41)  

If we again make the  ex- 

then we can  express  the  f lux  divergence  directly  in  terms of  F+  and F- 

as given  by Eq. (37). We have 

V.F(Y) = P(Y) CJCF+(Y) + F-(Y)l - 4 d Y ) I  (43) 

3.3 DIFFERENTIAL APPROXIMATION 

3.3.1 Full-Range  Formulation 

As  given  by  Vincenti  and Kruger, the  equat ions  for   the  ful l - range 

d i f f e r e n t i a l  approximation are 
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V-F = - p(U-4nB) 
VU = -3pF 

(44) 

(45) 

where U is  the  integrated  intensity 

U = J I d n  
n=4n 

Equation (44) is  the  exact  statement  of  the  radiant  energy  conservation  law. 

Equation (45) follows  from  the  Milne-Eddington  approximation,  relating  the 

second  angular  moment of the  intensity  to  the  zeroth  moment.  The  important 

point  to  note  is  that  the  Milne-Eddington  approximation  becomes  exact  if  the 

intensity  is  isotropic  over  half-space  (Ref. 11); this  half-space  being  defined  in 

terms  of  an  arbitrarily  oriented  planar  surface. If this  condition  of  half- 

space  isotropy  holds,  then  the  net  radiative  flux  will  be  perpendicular  to  the 

defining  surface.  From  these  statements  we  can  gain  some  insight  into  the  general 

applicability  of  the  differential  approximation.  It is well  known  that  the 

differential  approximation is accurate  in  planar  geometries.  For  a  planar 

problem  the  radiation  field  is  nearly  isotropic  in  half-space.  Then  we  can 

expect  for  a  three-dimensional  system  that  the  differential  approximation  will 

be  valid  if  the  problem  has  a  local  one-dimensional  character  with  respect  to 

any  planar  surface,  not  necessarily  a  coordinate  surface. 

As noted  in  the  introduction,  the  equations  representing  the  general 

differential  approximation  are  simplified  to a one-dimensional  form  when  coupled 

with  the  flow  equations.  This  is  accomplished  by  the  substitution, 

au vu = - 
aY 
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so t h a t  Eqs. (44) and (45) become 

- -  aF 
aY - -b( U - ~ T T B )  

- = -3pF au 
a Y  

To derive  boundary  conditions, it i s  f i r s t  necessary   to  decompose 

the  net  flux i n t o  

F = F  - F- 
+ 

(49) 

where F+ i s  the  one-sided flux moving into  the  gas  and F- i s  the  one-sided 

flux moving in to   t he  w a l l  a t  the  boundary y = 0 . I f   t h e  w a l l  has  an  emissivity 

E then a t  y = 0 . 
+ 

F = E ~ B (  Tw) + ( ~ - E ) F -  

We can s imi l a r ly  decompose the   in tegra ted   in tens i ty ,  

u = u   + u -  + 
( 5 1 )  

Assuming the w a l l  t o  be d i f fuse ,   t he   i n t eg ra t ed   i n t ens i ty   en t e r ing   t he   gas  

i s  d i f fuse  so t h a t  

U = 2F + + 

In  order  to  close  the  system, it i s  necessary  that  we specify 

additional  information a t  the boundary re la t ing   the   ha l f - range   in tegra ted  

intensi ty   with  the  half-range  f lux.  The f a c t   t h a t   t h e  boundary conditions 

require  an  additional  approximation beyond that   required  e lsewhere  for   the 

different ia l   approximation  involving  the  zeroth and f i r s t  moments is  of ten  

overlooked.  Consistent  with  the  assumption  of  half-range  isotropy  used  within 

the  gaseous medium t o   r e l a t e   t h e  second  and  zeroth moments, we assume 

U- = 2F- 

Combiding Eqs. (49)-( 53)', we a r r i v e  at 

(53) 
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u + -  2(2-c)  F = hrB(Tw) 
E (54)  

and f o r  a cold,  black w a l l  ( T  = 0, E = 1) we have 
W 

a t  y = O  U + 2 F = O  (55)  
Similar  arguments a t  the  shock  boundary  (which i s  a l s o   e f f e c t i v e l y  a cold 

black wall) l e a d   t o  

a t  y = 6  U - 2 F = O  (56)  

Equations (47) and (48)  s u b j e c t   t o   t h e   s p l i t  boundary  conditions  given by 

Eqs. (55)  and (56)  form  the  ful l   range  different ia l   approximation.  

3.3.2 Half -Range Formulation 

As an   a l t e rna t ive   t o   Eqs .  (44)  and (45) ,  one can  consider   the  dif-  

ferential   approximation  applied  to  the  one-sided fluxes and i n t e n s i t i e s  as 

defined by an  arbi t rary  plane  surface (Ref. 11). For a one-dimensional 

approximation,  the  rational  choice f o r  t h i s  “symmetry” plane i s  one tangent 

t o   t h e  body a t  the   loca l   po in t   o f   in te res t .   This  i s  the  components F+,F- 

and U+,U- defined  by Eqs .  (49) and (51). The half-range  equations are 

m+J - + - +,- 
“ 

dY 
- *p(l-rB-i ’ F ) 

where 

(57)  

21-r 

The defining  equation for I,+’- i s  evaluated  for  each  half-space  range. If 

we make the   fur ther   assumpt ion   tha t   the   in tens i ty  i s  i so t rop ic   i n   each   ha l f -  

space,  then 
- = a  = J = 2  + 
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Combining the  two forms  of Eq. (57) with Eq. (49) we a r r ive  a t  

In  terms of the  half-range  formulation, we can write down d i r e c t l y   t h e  boundary 

conditions. A t  t he  body surface we have 

+ gvB(Tw) + ( l -e )F-  F =  

and f o r  a cold black wall (Tw = 0, e = l), we have 

a t  y = o  F + = O  

and s imi la r ly ,  a t  the  shock, we have 

a t y = 6  F - = O  

3.3.3 Solu t ion   to   the   Di f fe ren t ia l  Approximation 

With a l i t t l e  manipulation,  Eqs. (47) and (48) can  be  combined in to  

a form i d e n t i c a l   t o  Eq. (60).  Then, defining  an  optical   depth,* 

7 = pay' 3' (63) 
0 

we can  wri te   the  general   equat ion  for   the  different ia l   approximation as 

d2F 2 dB 
d7 j , F - & n - = O  " 

dT 

where j ,  = & f o r   t h e   f u l l  range  formulation  and j ,  = 2 for   the  half-range 

formulation.  Using  the  standard method of   var ia t ion of parameters,  the  solution 

t o  Eq.  (64) is  

* 
For our three-group a i r  rad ia t ion  model, the  different ia l   approximation i s  
t o  be solved  for   three  separate   grey flux contr ibut ions.  

-33- 



. . -. . . . . . .. . . ._ 

where 

I n   o r d e r   t o   a p p l y   t h e  boundary conditions,  we so lve   fo r   t he   i n t eg ra t ed  

in t ens i ty  from Eq. (47) ( in   op t i ca l   coo rd ina te s )  and  obtain 

1 = e - cle + Y ~ ( T )  - y2(T)] 
-RT RT 

0 

where T = T(y=6),   the  optical   depth of t he   en t i r e   l aye r  and 
S 

CY = (2-.&)/(2+R) 
0 (71) 

A t  t h i s   p o i n t  it i s  convenient t o   r e l a t e   t h e   i n t e g r a l s  Y1 and 

Y2 to  the  one-sided  f luxes F+ and F-. Comparing Eqs .  (37a) and (37b) 

with  Eqs. (66) and (67) we f ind ,  

Y1(T) = F + ( T )  

Then combining the  equat ions  for   with Eqs .  (72) and (73) i n to  Eq.  (65) 

we a r r ive  at 

* 
Recall   that   these  boundary  conditions were derived  using  half-range  f luxes,  

hence,   they  apply  for   e i ther   the  ful l - range or half-range  formulations.  In 
o the r  words,  Eqs. (55) and (56) a re   equ iva len t   t o  Eqs. (61) and (62). 
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and where 

r = ( Y  2  .-2a'r, 
0 (75) 

Although Eq. (74) seems somewhat complicated,  the  flux  has  been  written  out 

i n   t h i s  manner to   avo id   t ak ing   d i f f e rences   i n   t he   exponen t i a l ly   l a rge   i n t eg ra l s  

Y1(7) and Y,(T) . Note t h a t  for the  half-range  formulation, R = 2, cy = 0, 

and we obtain  the  net   f lux as simply  the  difference  of  the  posit ive and  negative 

components.  Even f o r   t h e   f u l l  range  formulation cyo = .O72, and  hence,  the 

flux d i f f e r s   o n l y   s l i g h t l y  from  the  value  given by t h e   f i r s t  term i n  Eq. (74).  

Of course ,   in ' the   fu l l - range   formula t ion ,   F+(T)   and   F- (T)   d i f fe r   f rom  these  

same quantit ies  evaluated  under  the  half-range  formulation  since  the  exponential  

arguments d i f f e r   i n   t h e s e  two approaches. 

0 

Final ly ,  we can d i f f e r e n t i a t e  Eq. (74) and a r r i v e  a t  the   f lux   d iver -  

gence expression 
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4. COMPARISON OF THREE-DIMENSION& AND ONE-DIMENSIONAL TRANSPORT 

4 . 1  ADEQUACY OF ANGULAR RESOLUTION 

In   order   to   use  the  three-dimensional   calculat ion of the  flux and 

flux  divergence as a s tandard  against  which the  val idi ty   of   the   var ious one- 

dimensional model w i l l  be  judged, it was f i r s t   n e c e s s a r y   t o   e s t a b l i s h   t h e  

accuracy  of  the  numerical methods  used in   t he   angu la r   i n t eg ra t ion .  The 

accuracy  of  the  angular  integration  can be establ ished  only by  comparison  with 

an  exact ,   i .e .   analyt ic ,   solut ion.  The number of  such  exact  solutions are 

l imi t ed ,   t o   t he   au tho r ' s  knowledge, t o  t ranspor t  between concentr ic   spherical  

body-shock configurations  with a spher ica l ly  symmetric va r i a t ion   i n   t he  thermo- 

dynamic properties  (Ref.  12). This limits the  comparisons to   t he   s t agna t ion  

region. We considered,  then,  the  following  problem  for  the  accuracy  check. 

The shock  shape  given  by Eq.  (1) was ad jus t ed   t o  be spherical   wi th  a shock 

layer  thickness  taken  one-tenth  the  nominal  value, i . e .  3.46 X The 

reason for   us ing  a very  thin  shock  thickness was tha t   t he   r e su l t i ng   exac t  

so lu t ion  was very  closely  approximated by the  tangent   s lab  resul t .   Correct ions 

t o   t h e   s l a b   r e s u l t   t o   y i e l d   t h e   e x a c t  flux values  could be appl ied   in   an  

approximate manner. Also f o r   t h e  comparison  case, we s e t   t h e  shock l aye r  

temperature  and  pressure  constant at the  s tagnat ion  point  shock  values  for 

the nominal u, = 16 km/sec, p, = 4.10 X gm/cm2 f l igh t   cond i t ion .  The 

specif ic   values  were T = 16,000 OK; p = 1.00 a t m .  Final ly ,   the   spherical  

nose radius R, was increased by a f a c t o r  of 10 from the  nominal  2.34 m 

value t o   r e t a i n   t h e  same physical  value  of  the  shock  layer  thickness 6 . 
For a spherical ly   concentr ic  body-shock  geometry  with  constant  thermodynamic 
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properties  throughout  the  shock  layer,  the  surface  flux a t  the  s tagnat ion 

point i s  (Ref. 13) 

Equation (77) app l i e s   t o   each   spec t r a l  group  with  the  optical   depth T 

def ined   fo r   t ha t  group. 

For the  two high  frequency  spectral  groups, T > 1 and Eq. (77) , 
f o r  6/Rn << 1 becomes 

F 
" 

TB - [1 - 2 € + T I 1  - 2(6/Rn)E3b) (78) 

where the  f i rs t  te rm  in   b racke ts   in  Eq. (78) w i l l  be recognized as the  tangent  

s l ab   r e su l t .  The f i r s t  frequency  group i s  op t i ca l ly   t h in ,  T << 1, f o r  which 

Eq. (77) becomes 

F - = 27g( 6/Rn) 
-KB 

where 

g(6/Rn) = -m 3 6 1 Rn { ( l+6 /Rn)3 -  1 - [(l+6/Rn)2-1]3/2] 

and f o r  6/R, << 1 

g( 6/Rn) = 1 - 8 d v  

I n  Eq. (79) , the   coef f ic ien t  27 i s  the   r e su l t  f o r  the  tangent   s lab so t h a t  

g(6/Rn) represents   the   cor rec t ion   to   the   t angent   s lab   resu l t  due to   the   concent r ic  

sphere  geometry. For 01, Eq. (78) shows that   the   tangent   s lab is  very  accurate  
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f o r  the  6/Rn  value  of .00346 considered.  However, for the  optically  thin 

first  spectral  group,  the  correction  factor  is  not  insignificant  even  for  the 

small 6/Rn  value  selected.  Applying  the  optically  thin  correction  to  the 

first  spectral  group,  we  determined  the  exact  surface  flux  from  the  tangent 

slab  values.  Then  we  performed  the  three-dimensional  numerical  calculation 

using  the  same  constant  property,  concentric  sphere  geometry  and  found: 

= 44.8 kW/cm ; Fnmerical 2 
= 45.4  kW/cm 2 Fexact 

Hence,  the  numerical  three-dimensional  result  agrees  with  the  exact  value  to 

within  roughly 1%. This  level  of  accuracy  is  certainly  adequate for assessing 

the  validity  of  the  one-dimensional  transport  methods.  The  numerical  (three- 

dimensional  integration)  calculation  used  in  the  above  comparison  used Acp = 5" 

and  a  growth  rate  factor  in  the 0 grid  of  1.025.  Comparing  that  result 

against  the  standard  grid  of Acp = 10" and  growth  factor  1.05  for  the 0 

mesh,  showed  only  a 1% difference  with  the  coarser  grid  being  closer  (fortui- 

tously)  to  the  exact  result  given  above.  Hence,  this  somewhat  coarser  grid 

was  used  in  the  "production" runs discussed  below. 

4.2  COMPARISON  CALCULATIONS 

A comparison  between  the  three-dimensional  numerical  calculation 

of  the  net  radiative  flux  and  the  three  one-dimensional  approximate  models 

for  the  shock-body  shape  of  Fig. 2 is  shown  in  Figs. 10, 11 and 12. In  each 

of  these  comparisons,  the  one-dimensional  fluxes  were  evaluated  at  numerous 

points  out  to  an  axial  coordinate  of z = 1.0 and  the  results  are  plotted  as 

continuous  curves  in  Figs. 10, 11 and  12.  The  three-dimensional  results  were 

evaluated  at  six  axial  points.  These  are  listed  below  along  with  the 
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corresponding  surface  coordinate  values. 
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Figures 10, 11 and  12 show, respectively,   the  f lux  comparison as a function of 

body loca t ion  a t  three  shock  layer  posit ions:   the  surface y = 0; the  shock 

layer  midpoint y = 6(x)/2;  and  the  shock y = 6(x)*. 

Considering f i r s t  Fig. 10, the  surface  flux  comparison, we note two 

major  facts.  One, the  error  in  the  various  one-dimensional  approximations i s  

e s s e n t i a l l y  a maximum at  the  stagnation  point  and i s  nearly  constant  (on  the 

order  of 15%) over   the  spherical   por t ion of the body.  Second, the  tangent  slab 

method i s  consistently  the  best  of  the  one-dimensional  approximations  although 

the  half-range  differential   approximation i s  qui te   c lose   to   the   t angent   s lab  

method. The l e v e l   o f   e r r o r  a t  the  s tagnat ion  point  was an  unexpected  result. 

This   e r ror  is  due to   t he   f ac t   t ha t   t he   spec t r a l   compos i t ion   o f   t he   f l ux  

reaching  the  surface is  dominated by t h e   o p t i c a l l y   t h i n  f i r s t  group.  For t h i s  

op t i ca l ly   t h in   cond i t ion ,   t he   e r ro r  due t o   t h e   s p h e r i c a l   s h e l l  geometry as 

opposed t o   t h e   p l a n e   p a r a l l e l  geometry  implicit i n  a l l  the  one-dimensional 

methods i s  roughly  given by Eq. (81). For 6/Rn = 0.0346, Eq. (81) yie lds  

* 
The ne t   f l ux  a t  the  surface  and  midpoint  location i s  negative,  i . e .  i n   t h e  
negative y d i rec t ion .  
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an  es t imated  error  of l7$, the   error   observed between the  three-dimensional 

and  one-dimensional  stagnation  point  calculation.  Considering  the flux com- 

parison  near  the  tangency  point ( z  = 0.30; x = .80) we s ee   t ha t   t he   e r ro r  

remains  c lose  to   that  produced  by  the  "geometric  effect".  Apparently  the 

effect   of  streamwise  temperature  variations  cancel.   Finally,  as we proceed 

onto  the  conical  portion  of  the body ( z  = 1.0; x = 1.8) the geometry becomes 

more one-dimensional  (cf.  Fig. 2)  and, as expected,  the  error  decreases.  

0 

0 

In  Fig.  11 we compare the   f l ux  a t  the  shock layer  midpoint. Near 

the   s tagnat ion   po in t ,   no te   tha t   the   f lux  i s  dominated by the  negative component 

and the   e r ro r   l eve l  i s  c lose   t o   t ha t   fo r   t he   su r f ace   f l ux .  However,  on the 

conical   por t ion  of   the body, s ince   the   en tha lpy   prof i le  becomes f l a t   ( c f .   F i g .  9 

f o r  x = 2 ) ,  the   pos i t ive  and  negative  flux components almost  cancel. I t  is  not 

surpr i s ing   tha t ,  for t h i s  small f lux  value,  t h e  percentage  error w i l l  increase.  

The f l u x  emergent  through  the  shock is  shown i n   F i g .  12. The e r r o r   i n   t h e  one- 

dimensional models i s  subs tan t ia l ly   reduced .   Clear ly   th i s   re f lec ts   the   fac t  

tha t   the   emiss ion   cont r ibu t ing   to   the   f lux   o r ig ina tes  from t he   r e l a t ive ly  

thin,  high  temperature  layer  near  the  shock  front. Hence, the  emission  region 

is  e f f ec t ive ly  much thinner  than  the  gasdynamical shock layer  thickness.  

It i s  the  flux  divergence  term which couples  the  energy loss or gain 

into  the  f low  equat ions.  Hence, it i s  of par t icu lar   in te res t   to   de te rmine  how 

well  the  one-dimensional models  approximate  the  exact  flux  divergence  result. 

Such a comparison i s  shown in   F igs .  13, 14 and 15 for   the   s tagnat ion   po in t  

(x = 0) ,  the  tangency  point (x = .80) , and a point  on  the  conical body (x = 1.8).  

The one-dimensional  models were evaluated a t  numerous points  across  the  shock 

layer  a t  the   th ree   se lec ted  body locations,   and  these  results  provide  the 
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continuous  curves shown i n   F i g s .  13, 14 and 15. The three-dimensional  calcula- 

t i o n  w a s  performed a t  y/6 = 0, 0.25, 0.50, 0.75 and 1.00 at the   th ree   se lec ted  ' 

body locat ions.   Since  the flux divergence  decays  quite  rapidly away from the  

shock a t  the  s tagnat ion  point ,  x = 0, an addi t ional   three-dimensional   calcula-  

t i o n  w a s  performed at y/6 = 0.9. The one-dimensional  models  provide a good 

approximation to  the  f lux  divergence  throughout  the  shock  layer  with  the 

tangent   s lab  method giving  consis tent ly   the  best   overal l   resul t .  The e s s e n t i a l  

reason   for   the   e f fec t iveness  o f  the  one-dimensional methods in   ca l cu la t ing   t he  

flux  divergence is  that   near   the  shock  f ront ,  where large  energy loss  occurs, 

the  flux  divergence i s  dominated by t h e   o p t i c a l l y   t h i n   t e r m   i n  Eq. (16).  

Since  the  total   f lux  emit ted from the shock layer  can be obtained  from a s p a t i a l  

integral  of  the  flux  divergence,  the  accuracy  of  the  one-dimensional methods 

displayed  by  Figs. 13,14,15 may appear, a t  f i r s t  thought, t o  be inconsis tent  

wi th   the   re la t ive   inaccuracy   in   the   sur face   f lux .   Reca l l ,  however, t h a t   t h e  

flux out  the  shock  front,  which  dominates the   to ta l   energy  loss, was accura te ly  

predicted by the  one-dimensional  methods.  Moreover, in   regions  near   the  surface 

where the  flux  divergence i s  qui te  small, t h e   r e l a t i v e   e r r o r s   i n   t h e  flux 

divergence  calculated  by  the  one-dimensional method may be large,   al though, 

on an   absolu te   sca le ,   these   e r rors  are unimportant. 

The fact   that   the   one-dimensional  methods are adequate  in  predicting 

the  radiative  energy loss o r  gain i s  par t icular ly   important .   This   resul t   a l lows 

the  one-dimensional methods t o  be  employed in  the  coupled  radiating  shock  layer 

f low  f ie ld   ca lcu la t ion   wi th   assurance   tha t   the   resu l t ing  thermodynamic s t ruc tu re  

i s  accurate.  Then, should a more accurate   evaluat ion of the surface  f lux  be 

desired,  one has  recourse t o  performing  the  detailed  three-dimensional  calculations 

- 47- 



as desc r ibed   i n   t h i s   r epor t .  

The r e s u l t s  shown t o   t h i s   p o i n t  have  used  the  shock  layer-body 

geometry shown in   F ig .  2. This  geometry i s  ce r t a in ly  a t h i n   l a y e r  one ( 6/Rn = .0346 

at the  s tagnat ion  point)   and hence the   ques t ion   a r i s e s  as t o  what i nc rease   i n  

e r r o r  would r e s u l t   f o r  a th i cke r  shock layer   configurat ion.  To answer t h i s  

question, we performed a calculation  with  the  thickness  of  the  shock  layer 

everywhere  increased  by a fac tor   o f  two. Hence, a t  the  s tagnat ion  point ,  

6/Rn = .0692,  which  corresponds  quite  closely  to  the  normalized  shock  layer 

thickness  for a J u p i t e r   e n t r y  probe where the   dens i ty   r a t io   ac ross   t he  shock 

i s  roughly 10. The thermodynamic proper t ies   o f   the   shock   layer   used   in   th i s  

" thick"  layer   calculat ion were calculated from the  normalized  profiles  given 

i n  Fig. 9. Hence, in  physical   coordinates,   the  temperature  profile  has been 

s t re tched .   Resul t s   for   the   sur face  flux i n   t he   t h i ck   l aye r  problem are  shown 

in  Fig.  16. As expec ted ,   the   e r ror   in   the   sur face   f lux   has   increased .  A t  

the   s tagnat ion  point  it has  increased from 16% f o r  6/Rn = .0346 t o  25% f o r  

6/Rn = .0692.  Note,  however, t h a t   t h i s   s u b s t a n t i a l   e r r o r   f o r   t h e   t h i c k  shock 

layer  case i s  s t rongly  associated  with  the small op t i ca l   dep th   i n   t he   spec t r a l  

region which dominates  the  surface  f lux.  We performed  an  additional  calculation 

using 6/Rn = .0692 i n  which the  pressure  (and  only  that  parameter) was in-  

creased by a fac tor   o f  10. The opt ical   depth  increased  and  the  error   in   the 

tangent  slab  approximation  dropped  to 14%. 
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5. CONCLUSIONS 

Using a shock layer   f low  f ie ld   solut ion  and a rad ia t ive   p roper t ies  

model  which capture   the  essent ia l   physical   character is t ics   of   high  temperature  

radiating  flow, we have quantitatively  assessed  the  validity  of  one-dimensional 

methods in   eva lua t ing   the   rad ia t ion   f ie ld .  We f ind  that   the   f lux  divergence . 
term which couples   the  radiat ion  f ie ld   to   the  energy  equat ion i s  well  approx- 

imated  by  the  one-dimensional  models,  particularly  the  tangent  slab  approxi- 

mation. Then, insofar  as determining  the  f low  f ie ld   propert ies   in  a coupled, 

radiating  f low  field  analysis,   the  one-dimensional  radiative  transport  model 

provides   accurate   resul ts .  I n  ca lcu la t ing   the   sur face   rad ia t ive   f lux  from a 

given  flow  field  solution,  the  one-dimensional models introduce  errors  on the 

order  of 15% in   the  hemispherical   por t ion  of   the body.  These e r ro r s  are a 

d i r e c t  consequence  of the   fac t   tha t   the   sur face   f lux  i s  dominated  by  the  contri- 

but ions  in   the  opt ical ly   thin  spectral   regions.   For   such  opt ical ly   thin con- 

d i t ions ,   the   e r rors  i n  t he   su r f ace   f l ux   r e f l ec t   t he   dev ia t ion  of  the  hemispheri- 

cal-cap geometry  from the   p lane-para l le l  geometry. 
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Appendix A 

MAT€EA"AICAL DEVELOPMENTS 

I n   t h i s  appendix we summarize the major equations employed in   t he   t h ree -  

dimensional  transport  code. !!?he f i rs t  re la t ions   to   cons ider   a re   the   angles  

B-(cp) and 9 (cp) defining  the  angular  region, 6 -  < 9 < 6 , where rays + + 

i n t e r sec t   t he  body as del ineated  in   the  sketch below ( t h i s  i s  i d e n t i c a l   t o  

t he  view shown i n  Fig. 4 as d iscussed   in   the  main t e x t ) :  

L = 0 9 -PLANE COORDINATE L 

Fig. A - 1  - Geometric In t e rp re t a t ion  of the Angles 8-  and 6 + 

The equation f o r  the body surface N(L) i n  an a r b i t r a r y  cp-plane is* 

I!? = 2a(zo+ L sincp) - b( zo+ L - L cos cp 
2 2  

( A - 1 )  

* 
For  simplicity we write a and b instead of a and bb since we a r e  
only considering t he  body. 

b 
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Also geometrically we have at the   t an   en t   po in t  7 
- = cot e dN 
dL 

Combining Eqs.  (A-2)  and(A-3) to   e l imina te  N , we can  obtain a r e l a t i o n  

between co t  8 and  the  distance L a t  the  tangent   point .   Let t ing 

P = cot  e ( A - 4 )  
t h i s   r e l a t i o n  is  

( a -bz   ) s in  cp-r P 
- 0 0 
L =  

(P2+ b s i n  cp+cos cp) 2 2 (A-5) 

We can a l s o  combine E q s .  ( A - 1 )  and ( A - 3 )  to   obtain  another   expression between 

L and P , 
(P2+b s i n  cp+cos cp)L2 - 2 ( a  sincp-bz sincp-r  P)L + ( r  ‘-2az  +bz ) = 0 2 2  2 

0 0 0 0 0  ( A - 6 )  

We f i n d   t h a t  Eqs .  ( A - 5 )  and (A-6)  agree, which they must at the  tangent  point, 

only when 

where 

I 

2 2 2   2 2  
- 
2 

r K * [ ( ro -rb )KO - (ro  -rb )rcKll 
- 0 0  k J =  2 

I - 

r = (2az  -bz 2, b 0 0  

2 

K = (a-bz )sincp 
0 0 

K = b s i n  cp + cos cp 2 2 
1 

( A - 7 )  

But the  above der iva t ion  assumed t h a t  Eq. ( A - 1 )  descr ibes   the body contour 

i n   t h e  cp-constant  plane. However, when the  tangent   length L i s  such t h a t  

the  tangent  point i s  on the  conical   af terbody,   i .e .  , zo+L sincp > z , 
then Eq.  ( A - 1 )  i s  replaced by 

tb 

8 = (L sinrp + r + z0l2- L cos cp 
tb 

2 2  (A-11)  

The derivation  proceeds as before  and we a r r i v e  at an   equat ion   ident ica l   to  

Eq. (A-7) except   tha t   the   coef f ic ien ts   a re  
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r = r  + c z  b tb b o  

o b b  

1 

K = c r sincp 

K = cos cp - cb s i n  cp 2 2 

F ina l ly ,   ident i fy ing  P+ as the  value  given  by Eq. (A-7)  us ing  the  posi t ive 

sign  and P- as the  value  given  using  the  negative  sign, we have 

The equation  defining  the  l imiting  value s a t  which the .   r ay   i n t e r sec t s  

the shock o r  body w i l l  be der ived  next .   Referr ing  to   Fig.  5 i n   t h e  main t ex t ,  

no te   tha t  a t  any  value  of s , 

m 

But  when s = s we must a l s o  have m 

r 2 ( s  m ) = 2a(z-b0)-b(z-6 0 ) 2 

where 

z = z +s sin0 sincp 

These equations may readi ly  be  combined t o   y i e l d  

o m  

1 
-Qlk[Q1 2 -$Q31z 

s =  m &3 
where 

Ql = r cos8 + sin0 sincp[b(z-6  )-a] 

% = ro2- 2a(  zo-b0) - b(zo-bo) 2 

2 
Q3 = cos 8 + s i n   0 ( b   s i n  0+cos cp) 2 2 2 

0 0 

(A-20) 

(A-21) 

(A-22) 

(A-23) 

and i n  Eqs .  (A-2l)-(A-23)  the  values f o r  a,b, bo appropr i a t e   t o   e i t he r   t he  

shock o r  body  shape must  be applied,  depending on the  range  of  the 0 

variable.  Examination of Eq. (A-20) shows tha t   the   p lus   s ign  is  t o  be used 

f o r   t h e  shock in t e r sec t ion  and the  minus s ign   fo r   t he  body in te rsec t ion .  
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We again   no te   tha t  i f  the  intersection  occurs  on  the  conical  portion  of  the  shock 

or body, i . e . ,  z(s,)  zt , then Eq. (A-20) s t i l l  holds,   but  the  variables 

Q1 , % and Q become 3 

Q~ = r cose - s ine   s iny   c ( r  +cz ) 
0 t o  (A-24) 

Q2 = ro - (rt+czo) 2 

Q = cos 8 + s in   e ( cos  cp-c s m  cp) 2 2 2 2 . 2  
3 ( A-26) 

and in  these  equations  the  parameters c and r take  the  values  appropriate 

t o   t h e  shock o r  body. F ina l ly ,note   tha t  from Eq. (A-26) we observe  that  for 

cp > t a n - l ( l / c )  , Q3 can become zero  and w i l l  do so when 8 = e* where 

t 

e* = c o t   ( c   s i n  cp - cos cp)s -1 2 2 2 1  
( A-27 

This   expression  def ines   the  cr i t ical   range e* 8 < 8 -  wherein no in t e r sec t ion  

with  the  shock or body w i l l  occur. 

The equat ions  re la t ing  the  shock  layer   posi t ion (s,@,rp) t o   t h e  body- 

or iented x,y coordinates w i l l  be discussed  next.  The cy l ind r i ca l   r , z  

coordinates  are 

As discussed  in   the main t ex t   ( c f .   F ig .  6), the  key  variable i s  the  coodinates 

of  the body point rbJ zb from  which a l o c a l  normal  passes  through r , z  . 
From the geometry shown in   F ig .  6 w e  have 

z - z  b tan  6b = - 
b r - r  

But 

6 = t a n  -1 d r  
b (dzI z = Zb ) 

so t h a t  a - bz 
t an  bb = 

b 
r b 
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where r = (2azb - bz *)Q 

Equations  (A-30)-(A-31)  form a set of   t ranscendenta l   re la t ions  between 

6b, zb and rb which are evaluated as follows. An i n i t i a l  estimate f o r  

z is  obtained,  the  value a t  the  previous  point  along  the  ray  being  the  best  

estimate  and  the  value  of z being  used when the   ca lcu la t ion  along the   ray  

i s  i n i t i a t e d .  From Eqs. (A-31) and (A-32) ,  6b i s  determined which then  allows 

Eq.  (A-30) t o  be so lved   for  zb '+'. Of course,  this  procedure is  repeated 

u n t i l  convergence i s  achieved. 

b  b (A-32) 

b 

0 

The f inal   mathematical   point   to  be discussed is  the  technique  for   deter-  

mining the As se lec t ion   a long   the   ray .   Reca l l   tha t   the   f low f i e ld  var ia t ion  

is  pr imar i ly   in   the   y -d i rec t ion   a long   the   loca l  body normal. Clearly,  we wish 

to   s e l ec t   an   appropr i a t e  Ay increment  and  determine As accordingly. For 
azimuthal  angles cp = 90" and 0, the  connection  between As and Ay i s  qui te  

easy   to   der ive .  For a r b i t r a r y  cp , the   re la t ion  between As and Ay i s  an 

interesting  geometric problem. The key t o   t h i s  problem i s  t o  view the  pro- 

j ec t ion   o f   t he   a rb i t r a ry  0,cp ray on the  meridional  plane, cp = 90". 

This is  sketched  below. 

RADIAL COORDINATE r /SHOCK 

AXCAL COORDINATE z 

Fig. A-2 - Geometry f o r  As Mesh Select ion 
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.... .. . . . . ._ , - , 

The change i n  T(s) can  be  constructed  in  two s t e p s .   F i r s t  we have 

A r  = Ay/cos 6 1 (A-33) 
which takes  us  t o   t h e   p o i n t  on the  meridional  plane a t  f ixed  z where y 

has  increased  the  desired Ay increment. Next we  move i n  a d i r ec t ion   pa ra l l e l  

t o   t h e  body by  an amount 

Az = As sin0 sincp (A-34) 

and, s ince we are moving pa ra l l e l ,   t he  Ay increment  remains  fixed. However, 

as shown in   F ig .  A-2, the   rad ia l   coord ina te  changes  by  an amount 

A r  = Az t a n  6 2 (A-35) 

Hence , we f i n d   t h a t  

But r(s+As) can a l s o  be r e l a t ed   d i r ec t ly   t o   t he   pa th l eng th   pos i t i on  s+As 

(cf .   Fig.  5 and Eq. (3 )  of  the main t e x t )  as 

[r( s+As)] = I.,+( s+As)cos0] + [ (s+As)sin0 coscp] 
2 2 2 

(A-37) 

Equations (A-36) and (A-37) a re   su f f i c i en t   t o   un ique ly   spec i fy  As i n  terms of 

Ay . We a r r i v e  a t  

- (  r -r cose-se ) 2 [ ( r  a-rlcos8) + B ( r l - sa)  - ,E ro 
2 2 2  2 2 2,* 

1 2  AS = 2 
2 2 2  (A-38) ( a  -cos 0-8 ) 

where r1 = r ( s )  + Ay/cos 6 

ct = sin0 simp t a n  6 

$ = s in0  coscp 

The se lec t ion  of  which sign  should be used i n   f r o n t  of  the   rad ica l   tu rns   ou t  

t o  depend on whether Ay should be decreasing o r  increasing, i . e . ,  whether 
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8 i s  such   t ha t   t he   r ay  is approaching  the body or passing away from  the body. 

O f  course, i f  8-  < 8 < €I+ then   the   ray  i s  always  approaching  the body. 

However, some rays which in te rsec t   the   shock  w i l l  first pass c lose   t o   t he  body 

and  then go on t o   t h e  shock. It t u r n s   o u t   t h a t   j u s t  a t  the   po in t  of minimum 

approach t o   t h e  body, t h e   r a d i c a l   i n  Eq. (A-38) passes  through  zero  and a t  t h a t  

po in t   t he   s ign   i n  Eq. (A-38) switches  from  negative t o   p o s i t i v e .  Also, t h e  

denominator i n  Eq. (A-38) can  pass  through  zero when cp + 6 2 90". The value 

of 8 at  which the  denominator becomes zero  corresponds  to a condition where 

8 i s  such   tha t   the   ray  i s  p a r a l l e l   t o   t h e   l o c a l  body slope. O f  course, when 

the   ray  i s  parallel, t h e  As value  required  for  a f i n i t e  Ay change becomes 

inf in i te .   This  problem i s  e a s i l y  surmounted  by l imi t ing  As t o  a max imum 

Asm . Indeed, we have derived  the As increment  solely on the  basis of   the 

Ay increment ,   ref lect ing  the  large  var ia t ion  in   propert ies  normal t o   t h e  body. 

However, streamwise va r i a t ions   a l so   ex i s t   and  we account  for  these by  always 

l imi t ing   t he  As value  from Eq. (A-38) by an a p r i o r i  bound Asm . 
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