
N A S A  C O N T R A C T O R  

R E P O R T  

STUDY OF EFFECTS 
OF DESIGN DETAILS 
ON STRUCTURAL RESPONSE 
TO ACOUSTIC EXCITATION 

Prepared 
LOCKHEED-GEORGIA COMPANY 
Marietta, Ga. 

for Langley Research Center 

LOAN COPY: RETURN TO 
AFWL (DOOL) 

KIRTLAND AFB, N. M. 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. c. . MARCH 1972 



TECH LIBRARY KAFB, NM 

1. Report No. 3. Recipient's  Catalog  No. 2. Government Accession No. 
I W A  (3-1959 

4. Title and Subtitle 5. Report Date 

S"DY OF EFFECTS OF DESIGN  DETAILS ON STRUCTURAL IlESPONSE To 
ACOUSTIC  MCll!A!PION 6. Performing  Organization Code 

March 1972 

7. Author(s) 8.  Performing  Organization Report No. 

F. F. Rudder, Jr. 

8. Performing  Organization Name and  Address 
~~~~ 

Lockheed-Georgia Company 
Mezietta, Georgia 

2. Sponsoring  Agency Name and  Address 

Irational  Aeronautics & Space- Administration 
Vashington, DC 20546 

5.' Supplementary  Notes 

10.  Work Unit No. 

134-14-06-02 
11.  Cpntract or Grant No. 

NASl-9526 
13. Type of Report and  Period  Covered 

Contractor Report 
14. Sponsoring  Agency  Code 

6. Abstract 
The normal mode vibration  characteristics of  one-dimensional and two-dimensional panel  arrays 

were investigated  analytically and experimentally. The f i n i t e  element displacement method was used 
t o  formulate the  structural  models. The structural  models include a s t i f fness  and consistent mass 
matrix  for  thin-walled  open-section beams not  previously  reported, and a modification of a 
rectangular  plate bending element t o  include a fundamental inter ior  mode for   the element as  a 
g e n e r a z e d  coordinate.  Provision  for adding lumped masses t o  represent  accelerometers i s  also 
included. For the one-dimensional panel, the normal mode stress resultants are obtained  by 
integrating  the  equilibrium  equations  directly. For the two-dimensional panel  arrays,  the  solution 
for   the stress resu l tan ts   in   the  cover sheet was attempted by introducing stress functions dependent 
upon the displacement field of the  plate  element. This approach, although incomplete, i s  a natural  
extension of the one-dimensional analysis  for  plate  elements. The experimental progrm which was 
used to   ver i fy   the  analysis  i s  described and experimental results are compared with  the  analysis. 
[chis report  includes  the  theory used for  the  analysis,  description of the experiments and the 
principal  results of the experiments. Detailed data from the experiments and computer  progcem 
details   for  the  analysis axe given i n  a supplemental report NASA c~-u1988. 

17. Key Words  (Suggested by Author(s)) 18. Distribution Statement 

Acoustic  Fatigue Test Design 
Fini te  Element, Displacement Method Unclassified - Unlimited 
Structural Response, Substructure  Stress 
Aircraft  Skin-Stringer  Panel Dynamics . 

19. Security  aassif. (of this repbrtl 

$3.00 59 Unclassified Unclassified 

22 wee' 21. No. of Pages 20. Security Claaif. (of this page) 

For sale by the  National  Technical  Information Service, Springfield, Virginia 22151 





STUDY OF EFFECTS OF DESIGN DETA .ILS ON 

STRUCTURAL RESPONSE TO ACOUSTIC EXCITATION 

F. F. Rudder, Jr. 
Lockheed Georgia Research Laboratory 

SUMMARY 

The normal  mode vibration characteristics of one-dimensional and two-dimensional 
panel arrays were investigated analytically and  experimentally. The finite element dis- 
placement method  was  used to formulate the structural models. The structural models include 
a stiffness and consistent mass matrix for thin-walled open-section beams not previously 
reported, and a modification of a  rectangular  plate bending element  to  include  a funda- 
mental interior mode  for the element as a generalized  coordinate. Provision for adding 
lumped  masses to represent accelerometers is also  included. For the one-dimensional panel, 
the normal  mode  stress resultants are obtained by integrating the equilibrium equations 
directly. For the two-dimensional panel arrays, the solution for the stress resultants in the 
cover  sheet was attempted by introducing stress functions  dependent upon the displacement 
field of the  plate element. This approach,  although incomplete, is a natural extension of 
the one-dimensional analysis  for plate elements. The experimental program  used to 
verify the  ana lysis  is described and  experimental results are compared  with the analysis. 

INTRODUCTION 

Interest in structural response to acoustic  excitation  originated with acoustic fatigue 
failures of aircraft panel structure. The  ensuing  design effort to provide acoustic fatigue 
resistant structure focused on providing  design information. Using simple structures, such as 
unstiffened rectangular panels, a basic understanding of the parameters was achieved  (ref. 
1). The need to consider complex structure to provide the required design  information  was 
quickly recognized (ref. 2); however, the  cost of fabricating complex structural specimens 
for acoustic  fatigue tests precludes an  entirely empirical approach. 

From the  structural dynamics standpoint, the vibration analysis of stiffened panel 
structure has received much attention in the  literature. Broadly speaking, stiffened panel 
structure  can be classified as one-dimensional and as two-dimensional depending upon the 
structural idealization. 

The one-dimensional structures are simply a single row  of stiffened panels with all 
parameter variations taken along the length of the structure  (direction orthogonal to  the 
siffeners) . This type of structure has received much attention.  'Analytically,  the Rayleigh 
method (ref. 3), the transfer matrix method (refs. 4 and 5), and the  finite element 



method (ref. 6), have been  used to  calculate frequencies, mode shapes, and displacement 
response spectra  for such structure. The analogous problem of vibration of a multi-supported 
beam  has also been considered (refs. 7 and 8). Miles' work (ref. 9) has  formed a basis  for 
much  of the  above  theory. 

e 

The two-dimensional structures considered here are panels orthogonally stiffened by 
stringers and frames. For these structures, parameter variations for both the width and length 
of the structure must be considered. The nine-bay panel configuration is  usua I ly adopted for 
acoustic fatigue testing and is typical of such structure. Donaldson (ref. 10) considered the 
forced harmonic vibration of such structure using finite Fourier series. The stiffeners con- 
sidered by Donaldson were thin-wal led open-section beams as usua  Ily encountered in aircraft 
structure. 

As complete  as  the  literature on panel vibrations appears to be, very little experi- 
mentaldata  wereavailable to compare with analytical results, and  the various analytical 
approaches  to  the  stiffened panel problem have assumed for simplicity  that certain  details of 
the design can be ignored. Although acoustic fatigue is  by nature a random response  prob- 
lem, the  effects of design details on the norma I mode structural response are important since 
design details  can  alter  the response characteristics. Also, the  calculation of  modal stress 
distributions is a n  important consideration and design details are all important in this respect. 

The  purpose of the present investigation was to formulate analytical models to consider 
the important design details and yield normal  mode  stress distributions. Both one-dimensional 
and two-dimensional structures were considered. Primary  emphasis  was placed upon formula- 
tion of the stiffener details. The finite element method  was  used to formulate the structural 
models, standard eigenvalue routines (ref. 11) were used to compute frequencies  and mode 
shapes, and  element equilibrium equations were integrated directly to obtain stress resultant 
distributions. Simultaneous to  the  analytical program, a n  experimental program  was con- 
ducted to provide data on frequencies, mode shapes, damping, and stress distribution. The  
analytical and  the experimental results are compared. 

Much of the instrumentation and experimental work described in this report was done 
by L. V. Mazzarella. The computer programming necessary to adopt  the  analytical results 
described herein was conducted by C .  V. Pierce. The  bonded panels described in the 
experimental program were fabricated under the supervision of R .  J . Bradley of the Manu- 
facturing Research organization. The  author  gratefully  recognizes  their substantial contribu- 
tions to the program. 

SYMBOLS 

A 

a 

b 

D 

2 

cross-sectiona I area of stiffener 

dimension of plate element in the  x-direction 

dimension of plate element in the y-direction 

bending rigidity of plate Eh /12(1 - v ) 3 2 



distance from the shear center  to  the  centroid in the  x,y, z direction 

displacement in the  x,  y, z direction 

Young's  modulus for the  material 

distance from the stringer attach point to  the centroid 

displacement polynomials for the  plate bending element - 
displacement polynomials defined by equation 7 

Shear modulus for the material 

plate thickness 

area moment  of inertia  defined by equation 5a 

lumped  mass parameters defined by equation 20b 

St. Venant's torsion constant  defined by equation 5c 

lumped spring constants defined by equation 20a 

stiffness matrix for plate element  defined by equation  26 

length of a beam element 

consistent mass matrix defined by equation 27 

consistent mass matrix defined by equation 29 

moment about  y  axis . 

bending moment defined by equation 18 

loads in the x  and z directions 

cross-section warping products defined by equation  5b 

distance from the shear center  to  the  attach point 

kinetic energy 

potentia I energy 

displacement of stiffener in x-direction 

total  displacement of stiffener in the  x-direction 

shear distribution defined by equation 17 
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Notation 

c.1 
c IT 

0 
r m  

total displacement of stiffener in the  axial direction 

displacement in the z direction 

total displacement of stiffener in the z direction 

coordinate  directions 

fundamenta I c lamped-c  lamped  beam  modes 

twisting deformation of a  stiffener 

strains defined by equation 2 

warping constant  for  stiffener 

radius of gyration for stiffener 

dimensionless coordinate y/b  

rotation about x,yf z axes 

twist coordinate  for  plate  element 

Poisson's ratio 

dimensionless coordinate x/a 

mass per unit volume 

mass per unit  area 

warping function for stiffener 

frequency in radians per second 

rectangular matrix 

transpose of a matrix 

row matrix 

column  matrix qr etc. 
ax 



THIN-WALLED OPEN-SECTION BEAM ELEMENT 

The theory of thin-walled open-section beams differs from elementary beam theory in 
that warping of the beam cross-section must be taken into account. The literature on thin- 
walled open-section beams is rather  extensive. The work  of Vlasov (ref. 12) and Oden (ref. 
13) provides an  extensive background for the basic theory. Emphasis for developing the 
theory was due to elastic  stability problems associated with this type of structure. Timoshenko 
and Gere (ref. 14) develop  the theory and  apply  it  to many practical problems. Vibration 
problems have been considered by Vlasov (ref. 12) , Gere (ref. 15) , Lin (ref. 16) , and 
Popelar (ref.  17). All  of the  above work  is co,lcemed with integration of the equilibrium 
equations  or  application of approximate methods. 

The use  of finite element methods for describing thin-walled open-section beams  is 
mther limited. Renton (ref. 18) and Barsoum and Gallagher (ref. 19) have  developed finite 
elements for investigating the  stability of thin-walled open-section beams. 

The development presented here yields a stiffness matrix identical to that  developed by 
Barsoum and Gallagher. The consistent mass matrix, ignoring rotary inertia terms,  is also 
developed.  Since  the element is to be used for the panel structures previously described, 
the  coordinates  have been constrained for the in-plane motion. In addition,  the  stiffener 
has  been  assumed to rotate  about a point on the cross-section shape called  the  "attach  point." 
The attach point is the reference point for satisfying equilibrium and displacement compati- 
bility between the stiffener and  the  plate elements. 

Consider the thin-walled open-section beam  shown in figure 1 with the beam oriented 
so that  the  (x,y,z)  axis system  is a  centroidal  axis system. The positive directions for dis- 
placement gnd rotation are indicated. 

The total displacements for a point on the beam cross-section are  (ref. 19) 

u(y) = u(y) + zB(y) 

w(y) = w(y) - xB(y) 
- 
- 
v(y) = - $ C 4 Y )  + 4 , )  + c p h  Z)B(Y)l 

where cp(x, z) is the warping function for the cross-section shape. The strains are given by 
the expressions 

The expression for  the  potential energy is 
L 

where E =Young's modulus  of elasticity 
G = shear modulus of elasticity 



Assuming that the cross-section properties are constant along the length of the beam, 
the potential energy  expression  becomes,  upon substituting equations (2) into (3), 

r L L L L 
"=;[El zz  [u2  dy+Elxx f w2 d y +  ET f B2 d y +  GJ f B2 dy 

fW f YY 
0 

. rYY  
0 0 

f Y  

L  L  L 1 
+2EIxZ f u  w dy + 2ER J u B dy + 2ER J w B dY J 

f Y Y  f Y Y  ez f Y Y  f Y Y  ex f Y Y  f Y Y  
0 0 0 

where the cross-section  constants are  defined as 

I zz =Jx2dA I xx = fZ2dA I x2 =JxzdA 

A A  A 

R ez = JxrpdA R ex =JzrpdA r = [rp2a 
A  A  A 

The section properties given  in equation (5) are the second  area moments and equation 
(5c) is  the St.  Venant torsion constant. The section properties given in equation (5b) arise 
due to the warping of the cross-section out  of the (x, z) plane and , as  such, are termed 
"warping constants."  Here and in the development that  follows the pole used for  computing 
the warping constants i s  taken as the shear center  for  the cross-section. If the warping  func- 
tion i s  referenced to a mean warping , the constants Rex and Re= vanish identically. 
However, for completeness  these  terms wi l l  be retained. 

Now  the displacement functions for h e  beam of length L are  taken as 

where w l  and w2 represent the amplitude of the warping  function at end 1 and  end 2 of the 
element, respectively. The displacement functions are 

f l (Y) = 2y /- - 3y /L + 1 

f3(y) = -2y /L + 3y /L 

3 3  2 2  

f2(y) = y3/L2 - 2y2/L + 1 

f4(y) = y /L - y2/L 

3 3  2 2  

3 2  
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The beam element with the  positive coordinate  directions is illustrated in figure 2. 

The  expression  for the  kinetic energy of the beam element is 

V 

where p is the mass density of the beam material 

(j 
a t  

Substituting equations ( I )  into equation (8), noting that y is a centroidal  axis,  inte- 
grating over the cross-section, and ignoring rotary inertia terms, the expression  for the 
kinetic energy is 

L 

0 
where A = the cross-section area 

m = pA, mass per unit length 

y2 = (Ixx -t i )/A, square of the radius of  gyration. 
ZZ 

The equations of motion  of the element are obtained by substituting the displacement 
functions (7) into the expressions for the  kinetic (9) and  potential  energy (4), perForming the 
indicated  operations, and applying Lagrange's equation. The inertia terms are the consistent 
mass matrix and the stiffness  terms are  the stiffness matrix for displacements a t  the  centroid 
and rotations about  the  shear center. 

To develop  the stiffness and mass matrices in terms of forces and displacements a t  a 
point on the cross-section other than the  centroid or, possibly, the shear center,  it is 
necessary to consider the relative locations of the shear center, centroid  and "attach" point 
for the stringer cross-section. The attach point is taken as a point on the cross-section pro- 
file l ine a t  which all forces and displacements are referenced. Figure 3 illustrates  the 
relative locations of the shear center,  attach point, and the  centroid. The positive direc- 
tions for the loading and displacements are also  indicated. For completeness, figure 4 
illustrates the cross-section geometry for stiffeners parallel to the  x-axis. 

Denoting the terms referenced to  the shear center by an  overbar, the forces at the 
attach point are related to the forces a t  the shear center  as 

P =P x x  
P = P  

- 
z z  

M =a  - S F  + S F  y y z x  x 2  

The displacements at the  shear center  are  related to the displacements a t  the  attach point as 

7 



- 
dx x z y  = d  - S  8 
- 
d = d  3 - S  8 z z x y  - 
e = e  

Y Y  

Equations (10) and (1 1) are used to transform the loading and displacements from the  shear 
center to the  attach point for the stiffness matrix. 

Since  the inertia  forces act   a t  the  centroid,  a similar transformation is necessary to 
transform the loading and displacements a t  the  centroid  to  the  attach  point. The forces a t  
the  attach point are related  to  the forces a t  the  centroid  as 

P = P *  z z  
M =M* -t (Cz - S z ) P i  - (C - S  )P* 

Y Y  x x z  

The displacements a t  the  centroid are related to the displacements a t  the  attach point as 

d c = d x +  (C - S )e  
Z Y  

d* = d - (Cx - S )e z z  X Y  (1 3) 

e* = e 
Y Y  

where * denotes  centroidal terms.  Equations (1 2) and (1 3) are used to  transform the loading 
and displacements from the centroid  to the  attach point for the mass matrix. 

The stiffness and mass matrices developed as described above were used to compute the 
frequencies  and mode shapes for coupled bending-torsion vibration of clamped-clamped 
beams. A parameter study was conducted and results compared with data given by Gere  (ref. 
15) for the  differential  equation  solution. The bending and torsion frequencies converged 
monotonica  Ily from above ve 
frequencies (for both the (x-y and (y-z) planes) and the first two  torsion frequencies were 
estimated to within 1% of the  differential  equation  solution. 

7 Using three elements, the first two bending 

Finally,  since the element is to be used with the in-plane coordinates'at  the  attach 
point constrained to be zero,  the  in-plane displacements dxl , dx2, e Z 1 ,  €122 are  set to 
zero. A composite stiffness and mass matrix for stiffeners  parallel to the  x and y  axes is 
given in reference 20, and was  used to formulate the siffener models for both the  one- 
dimensional and the two-dimensiona I structures described subsequently. 

8 



ONE-DIMENSIONAL PANEL ARRAYS 

The basic approach in this analysis was previously described by the author (ref. 21); 
however, the  stiffener warping effects were not taken into account. Emphasis  is placed upon 
the  application of finite element methods for obtaining  the normal  mode distribution of stress 
resultants in the  cover  sheet of a stiffened flat panel array. In particular,  the  stiffener 
eccentricity is  shown to have a  significant effect on the stress resultant  distribution. The 
integration techni ue used to obtain  the normal  mode shear  and bending moment distributions 
was  shown (ref. 21 9 to  yield results as  accurate  as  the frequency estimation. 

Consider the one-dimensional panel array  illustrated in figure 5.  Such a structure  can 
be considered to represent a segment of aircraft structure between two very stiff frames. The 
idealization of such a  structure to that of a spring-supported  beam  model  has  been thoroughly 
discussed by Mercer  (ref. 7) and Olson (ref. 22). Indeed, the problem under consideration 
is to determine the normal mode stress response of one-dimensional panel arrays for an  
assumed fundamental mode across the width of the  structure. As illustrated in figure 5, the 
analysis assumes either clamped or  elastically supported ends. The problem  then  becomes 
that of appropriate lumped  models to represent the  plate and stiffeners as a spring-mass 
system. 

With appropriate lumping, the equations of  motion are formulated and  the resulting 
linear  algebra  eigenvalue problem  is solved to obtain the  natural  frequencies and normal 
modes  of the system. The frequencies  and mode shapes so obtained are then used to calcu- 
late  the shear and bending moment distribution along  the length of the  structure as described 
below. 

The element of a beam with the inertia loading resulting from its motion  is illustrated 
in figure 6. From equilibrium considerations, one  can readily verify the following relations 
for shear and bending moment: 

Formally integrating equations (14), the expressions for the  shear  and bending moment 
distribution are 

4 

The finite element used to represent the lumped plate model  is  based  upon a cubic dis- 
placement field with the transverse displacement a t  a point 5 = x/L along the length of the 

9 



element given by 

where the functions fi(5) are given by equations (7). The  nomenclature used in equation (16) 
is defined by figure 7. 

Substituting w(5)  from equation (16) into the relationships for the shear and bending 
moment distribution, equations (15) become 

To use the results of equations (17) and (18), one must determine  the  value of the shear 
V(0) and the moment M(0) a t  the left-hand end of the  element, the  value of w, and the 
values of the element deformation (dl , 01, d2, 82). For a normal  mode  of vibration, say 
the rth  mode, the natural  frequency, wr, the  a propriate components of the mode shape 
(dl , 81, d2, 82)r and the stress resultants V(0p and M(0) are  available information once 
the  eigenvalue problem  is solved. Equations (17) and (18) are simply interpolation poly- 
nomials for the  shear  and bending moment distribution between the ends of a given element. 

The basic numerical procedure is to compute the natural  frequencies  and normal  mode 
shapes for the structure; be in a t  one end of the structure where the boundary conditions are 
prescribed and compute V(O7 and M(0); for the  first  element, use equations (15) and (16) to 
interpolate  the  shear and bending moment over the element (if so desired); and  continue on 
element-by-element over the  entire structure introducing any  geometric  or  force  conditions 
a t  the appropriate points to represent an  interior support. 

The procedure described above will now be  applied to obtain the normal  mode  stress 
resultant distribution in the  cover  sheet of a one-dimensional panel array  as  illustrated in 
figure 5. The stiffener and plate  data  are lumped  assuming a fundamental mode across the 
width of the structure. For this approximation, it is  assumed that  the  plate deforms in 
cylindrical bending (ref. 23), and the approximation is reasonable for panels with the  ratio 
of panel width to stiffener spacing greater than 2 (ref. 7). The stiffeners and panel are 
lumped along the  centerline (x-axis) of the structure (figure 5). 

The lumped stiffener model  is considered to be a point spring-mass  system described by 
the relationship for the ith support 

Vi = (K - w I*>d. + (KZe - w I*Ze)ei 2  2 
ZZ Z I  

Mi = (KZe - w 2 l:e)di + (Kee - w 2 

where the K's are the lumped spring constants and the I*% are  the lumped inertias. 

10 



For a thin-walled open-section stiffener, such as usually encountered in aircraft 
construction,  the spring and  inertia  constants  appearing in equation (19) are lumped as 

K = 192El /b3 zz xx 

KZe 

Kee 

= 192E(S I - S I -t R )/b3 

= 192(Er -I- GJb2/40 -t ES21 - 2ES S I 3- ES:lxx -t 2E(S R - S R z))/b3 

x x x   z x z  ex 

z zz x 2 x 2   x e x   z e  

13 = 35 mb 

- 13 lie - - 35 mbex e = C  - S  x x x  
13 2 2 2  = - mb(ez +- ex -t y ) = c  - s  '"e0 35 eZ z z 

The parameters appearing in equations (20a) and (20b) are defined by equations (5) and 
figure 3. As described for -the  stiffener  element, this lumped  model  assumes that  the  stiffener 
is restrained from  moving in the  plane of the panel a t  the  attach point. The stringer eccen- 
tricity i s  determined by the values of the coupling terms KZe and P e .  

An appropriate lumping of the  plate parameters consistent with equations (20) and the 
deformation described by equation (16) requires one to introduce the bending rigidity of the 
beam  (lumped plate) as 

El = E h3b 
24(1 - v2) 

and the mass per unit length of the beam  (lumped plate) as 

mp=2jjhb 1 

The above  analysis was  used  to compute the  natural  frequencies, normal  mode shapes, 
and bending  moment distribution for the panel designs described in the experimental section. 
Sample data  and comparison of theory with experiment for frequencies, mode shapes, and 
strain (bending moment) distribution in the  cover  sheet  are presented in a subsequent section. 

TWO-DIMENSIONAL PANEL ARRAYS 

Consider the two-dimensional panel array illustrated in figure 8. The nine-bay 
structure  illustrated is typical of stiffened panels used for acoustic fatigue  test specimens 
where the  center bay of the structure is the  test area  and  the surrounding  bays are designed 
to simulate surrounding aircraft  structure. The value of a specimen for an acoustic fatigue 
test is then dependent upon the proper design of the  edge bays in relation to the  center  bay. 

11 



The analysis described  here follows the same approach as described for the one- 
dimensional panel arrays. As illustrated in  figure 8, the outer edges of the specimen  have 
been  assumed to be clamped. As for the one-dimensional  panels,  displacements in the (x,y) 
plane are assumed to be zero. The finite element  displacement method i s  used to formulate 
the equations of motion for the structure. The structural idealization does not  follow the 
usual finite element  approach in  that no attempt i s  made to generate very large eigenvalue 
problems  (greater than 100 degrees of freedom). 

For  example,  assuming that one  uses a 16 degree-of-freedom rectangular plate element 
and the stiffener element previously described, for the most elementary  model of the nine- 
bay panel describing the fundamental mode of the center bay (4 plate elements in the center 
bay),  one  must solve a 36 degree-of-freedom eigenvalue  problem. The next idealization 
allowing the fvndamental mode of each  bay to be approximated  would be 4 plate elements 
per bay representing 100 degrees of freedom.  Even with this idealization, the inter-bay 
coupling i s  only  crudely approximated. Since the purpose of the analysis i s  to provide  a 
means of designing acoustic fatigue test speciments, a  very large eigenvalue problem routine 
would be a burden, especially i f  one  wished an extensive parameter  study. 

The structural idealization used in  this analysis uses one  element for each segment of 
structure. That is, one  beam element i s  used to represent  each  segment of a  stiffener of 
length a. or b. (see figure 8) and  one rectangular  plate  bending element i s  used to repre- 
sent a Gnel bby. The plate element i s  modified  to  include  a fundamental  clamped-clamped 
panel mode  as an  independent generalized  coordinate as described in  the next section. This 
structural idealization represents a 25 degree-of-freedom eigenvalue  problem. The bas is  for 
this approach is  that the most  responsive  modes for such a structure are modes in which the 
fundamental  bay mode  appears in  adjacent bays. In  addition, the assumption of a clamped- 
clamped beam  mode is  not so restrictive as it might appear,  since a structure with very stiff 
ribs would represent essentially nine clamped-clamped  panels with various  aspect ratios. 
The development of the plate element i s  described in the next section. The technique for 
including  a lumped mass  (such  as an accelerometer) in a  panel bay i s  also  described. 

RECTANGULAR PLATE BENDING ELEMENT 

The rectangular plate bending  element described below was developed  to allow the 
formulation of the stiffened plate structure without  having to solve extremely large numerical 
problems. The basic  approach is  to use the finite element to describe the edge  displacements 
of a structural bay  and to  include  a coupled interior mode  as  an independent generalized 
coordinate. 

The stiffness  and  consistent mass matrices developed here  are based upon the 16 degree- 
of-freedom rectangular plate bending element  described  by Bogner,  Fox, and  Schmidt (ref. 
24) and  Mason (ref. 25). The interior mode i s  taken  to be the product of the fundamental 
'clamped-clamped beam  modes (ref. 26). 

Consider the rectangular plate bending element illustrated in Figure 9. The displace- 
ment field for the element i s  taken as 

12 



where 

W = w(a/2,  b/2) 
0 

The potential  energy for a  rectangular  plate undergoing bending deformation is 
a b  

and  the  kinetic  energy for transverse motion  is 
a b  

0 0  

Substituting for the  displacement field, w(x,y), given by equation (23) into the 
expressions for the  potential  and  kinetic  energy, performing the indicated  operations  and 
applying Lagrange's equation,  the  equations of motion for the  plate element are developed. 
The array of coefficients for the inertia terms  is the consistent mass matrix and  the  array of 
coefficients for the stiffness terms  is the stiffness matrix. 

The plate stiffness matrix has the form 

ab I k  ci I 

where [Kii]  is the stiffness matrix based  upon the functions  LF~(x,Y)J 
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k = C2((b/aI2 0 3- (a/b)2+2Cf1(C31 - 2)2)  /C;l 

For the 16 degree-of-freedom element (4 coordinates a t  each  comer)  the displacement 
functions, Fi(x,y), are defined as 

LF 1(5 1q)J = Lfl(5)fl (q) 1 bfl (5)f,(q) 1 -af2(5)fl ( d  1 abf2(5)f2(rOJ 

where f = x/a r l = y / b  

fl(r) = 2r3 - 3r -t 1 2 f3(r) = -2r + 3r 

f2(r) = r3 - 2r + r 2 3 2  f4(r) = r - r 
3 2  

Tke stiffness matrix, [K..], is defined in detail by  Bogner, e t   a ] .  (ref. 24). The matrices 
[Kii]  and {Kc,] are dePihed in detail in reference  20. 

The consistent mass matrix for the  plate has the form 

where [Mii] is the consistent mass matrix based  upon the functions LFi(xry)J 

{F?] I =& f {F.]XY dA 
A 

I 

The consistgt mass matrix, [M..] is defined in detail by  Bogner, e t   a l .  (ref. 24). The 
matrices [M.] and EMci] are 'ldefined in detail in reference 20 . 
14 
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It can be shown that  the  edge displacements, slopes, and rotations given by equation 
(23) for the  plate  element and those given by equation (6) for the stiffener  element  fully 
conform  for a  stiffener  located  along the  edge of a plate element when the  stiffener warping 
coordinate is identified with the  plate twist coordinate. 

To include a lumped  mass, G, on the  plate element such as represented by an 
accelerometer, consider the  plate  element  illustrated in figure 9. Suppose now that  the 
mass, K, is located a t  the position (x,y) on the  plate. Then, the kinetic energy of the 
mass attached to the  plate is  simply 

" 

T = Tm w (x,y) 
1"2 " 

L. 

where the  displacement  function, w(x,y), is given by equation (23) . 
The consistent mass matrix then  has the form .. 

It can be noted that for (Z,y) = (a/2, b/2) then {Fi(Z,Y)] = [F] and CoX(a/2)Y(b/2) 1 so 

that M.. [O], Gi 2 [O], m = m. 
- 

' I  
Equation  (29)  is  used to incorporate lumped  masses  on the  plate  element. 

STRESS RESULTANT CALCULATION 

The  approach taken to calculate stress resultants in the  rectangular  plate bending 
element was basically  the same as  that described previously for the one-dimensional panels. 
That is, the eigenvalues  and the eigenvectors would be used to  calculate  the inertia loading 
over  the  plate  element,  the node forces would  be obtained from the  plate stiffness and mass 
matrix and the components of the  eigenvector,  and  the stress resultants would  be obtained 
from equilibrium considerations. 



Consider the  plate  element  illustrated in figure 10. The lateral loading, q, produces 
shear resultants (Qx and Qy) , bending moments  (Mx and My) , and twisting moments  (Mxy) . 

The equilibrium equations  relating  the  shear resultants and  the loading are  (ref. 23) 

and  the  relationship of bending and twisting moments to the  shear  forces is 

M + M  = Q  

Equations  (30) and (31) represent three  equations for the  five unknown stress resultants. The 
two additional  equations are developed by defining two  stress functions V1 and V2 (ref. 27). 

XYf Y Yf Y Y 

Fung (ref. 27) has derived the two governing equations for the stress functions for 
plates of variable thickness. For plates of constant thickness these equations are 

where the functions n1 and h2 satisfy the equation 

q = "1 ,xx + "2,yy  (33) 

The loading , q, is defined for a given mode as 

q = F h w  w(x,y) 
2 

(34) 

where w(x,y)  is defined by equation (23) for the  plate  element. 

Using equation (23) to  define  the  element deformation , the  author has  been unable to 
develop  functions which satisfy equations (32), although  there is no reason that  the task 
should be impossible. If such functions were defined, then the stress resultants would be 
given by the relations 
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EXPERIMENTAL  PROGRAM 

The objective of the experimental program  was to provide data for  comparison  with the 
analytical results described previously. Since  the  analytical program  was aimed a t  yielding 
normal  modes and normal  mode  stress distributions, the experimental program  was conducted 
to provide these data. Nine one-dimensional and three two-dimensional panel configura- 
tions were designed based upon preliminary analytical results to illustrate various effects of 
design details on frequencies, mode shapes and modal strain  distributions. The experimental 
program  is described in this section,  and experimental data are compared to analytical 
results in the following section. 

The details of the one-dimensional panel  configurations are given in figures 11 and 
12. Figure 11 illustrates the basic panel dimensions, location in the  test frame, and spacing 
of the mounting holes. The basic size of the  test  structure was 20.00 x 30.50 for panels 
without doublersand 20.00 x 30.75 for panels with doublers. All structures have a center- 
I ine of  symmetry a long the structural  length. The  stiffeners used were commercially avail- 
able aluminum extrusion with the cross section  shape  illustrated in figure 13. One specimen 
was fabricated with the stiffeners attached to the  plate by machine screws and one specimen, 
SPI-1,  was fabricated by bonding the stiffeners to  the  plate in order to evaluate  the method 
of stiffener  attachment. Using machine screws, the modal  response of the panel was so 
nonuniform compared to the bonded  specimen that all subsequent panel configurations  were 
of bonded construction. All data reported herein corresponds to a bonded stiffener construc- 
tion. During bonding, some  of the  stiffeners  experienced a very  slight permanent curvature 
or twist, possibly due to nonuniform temperature distribution during bonding or curing. The 
heavy aluminum test frame was adjustable so as not to prestress the specimens upon. installa- 
tion.  Only  the  outer mounting hole a t  each end of a  stiffener was predrilled before 
installation of the specimen, with all  other holes being located using the test frame as a drill 
1'9 
.. 

The specimen and test frame were mounted over a loudspeaker enclosure consisting of 
six loudspeakers, each driven by an individual  amplifier. A block diagram of the loud- 
speaker system  is illustrated in figure 14. For all measurements, the specimens were excited 
by  low level (100 dB) discrete  frequency sinusoidal acoustic excitation. Each specimen was 
tested in two configurations: elastically supported ends (5 bay configuration) and clamped 
outer bays a t  each end (3 bay configuration). Four speaker phase conditions were used for 
each panel configuration  and are illustrated  diagrammatically in figure 15. 

For each panel configuration and speaker phase condition, a frequency sweep was 
conducted with cork  particles sprinkled on the specimen. The Chladni  patterns observed 
were photographed for all modes. Since only the fundamental modes for the structural width 
were considered analytically, these modes are the only modes  used for comparison. Photo- 
graphs of the  Chladni  patterns of each panel configuration and the corresponding speaker 
condition are given in reference 20. 

For the predominant modes,  with a fundamental across-the-panel width, each specimen 
was  instrumented with two lightweight (3 gm .) accelerometers. One accelerometer was  used 
as a reference and the  other  accelerometer was stepped along the panel centerline in 1-inch 
intervals. At each interval,  the  amplitude  and phase of both accelerometers were deter- 
mined  from an  oscilloscope. These data were used to determine the mode shapes described in 
the  next section. The block diagram of the  accelerometer system  is illustrated in figure 16. 



Each  specimen  was  instrumented  with a minimum of fifteen strain gages. The block 
diagram of the strain gage installation is illustrated in figure 17. All  strain gages were 
mounted on the  stiffener  side of the structure with the strain gage  axis along  the  structure 
length. A typical strain gage location for a  structural bay is illustrated in figure 18. The 
dimensions are from the stringer  reference l ine  to the  centerline of the strain gage  grid. For 
each mode investigated, one strain gage was selected  as  a reference  and all other  gages were 
compared to the reference in amplitude  and phase. These data were used to determine  the 
modal strain distributions described in the  next  section. Damping  measurements were taken 
for selected strain gages a t  each mode investigated. 

For  both accelerometer and strain measurements, the low intensity  acoustic  excitation 
was  used to insure linear panel response to correspond to  the  linear  analytical results. Non- 
l inear  effects such as jump phenomena and beating  (ref. 28) were observed and noted a t  
excitation levels greater than the test  level, but  no attempt was  made to record data. Also, 
for measurements near  the stringers, coupled harmonic acceleration and strain signals were 
observed for the low-level excitation. Usually, this type of response  was of the form  of two 
sinusoidal waves of different amplitudes but closely spaced in frequency. Also, the  accelem- 
tion and strain signals compared between the  center of each bay were, a t  times, observed to 
be second harmonics of the  reference  value. 

Three two-dimensional panel specimens were tested in the manner described above. 
All specimens were of the nine-bay configuration  and of bonded construction. One speci- 
men was manufactured by machining the ribs from a 0.500-inch-thick 7075-T6 aluminum 
tooling plate. This  specimen  is illustrated in figure  19. The other two specimens were built 
up  using zee and  channel extruded stiffeners. These panels are illustrated in figures 20  and 
21. The center bay aspect  ratio was held constant  for both specimens. The ribs were 
connected by a n  angle  clip  attached by machine screws and bonded. The zee section 
stiffeners  and the channel section stiffeners are illustrated in figure 13. 

During  bonding of the  cover  plate  to  the machined specimen, noticeable "oil cans'' 
developed in bays 1, 2, and 9 as illustrated in figure '1 9. The  other two specimens warped 
during bonding so that the zee section  stiffeners were slightly  curved to the stiffener  side of 
the specimen. This curvature was severe enough to cause prestressing of the specimen when 
installed. To overcome this prestressed condition, both specimens were mounted on the  test 
frame using a base of plastic a luminum to form the contour on the skin side. When the base 
hardened the mounting holes were drilled  and  the specimen was attached to the frame. All 
outer  edges of the two-dimensional specimens were considered to be clamped,  and a t  the 
low-level excitation used,  no appreciable motion  was observed on the supported edges of the 
specimens. 

Frequency sweeps were conducted for each of the  speaker phase conditions  illustrated 
in figure 15, and Chladni  patterns photographed for  all modes. Even though every precaution 
was taken to mount the specimens without prestress, the four comer bays  for the  zee and 
channel specimens all had very  slight "oil cans'' present. Photographs of the predominant 
mode Chladni  patterns are presented in reference 20. 
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COMPARISON OF THEORY AND EXPERIMENT 

One-Dimensional Structures 

Ana lytica Ily, the response  modes of one-dimensional  structures shou Id fall  into  distinct 
frequency  intervals  or bands (ref. 9). Within each frequency interval the number of  distinct 
modes  observed should be equal, in number, to  the number of bays of the structure. By 
assuming a fundamental mode  across the  width  of the structure,  one can additionally  define 
the nature of the modes within  a band by  the mode  number  (number of 'half-sine' waves) of a 
given bay in the direction  of the length of the structure (i .e., direction between  supports). 
Then, for  a fundamental mode  across the width  of the structure the fundamental or lowest 
frequency band  should  consist of fundamental bay modes with  adjacent bays in phase or  out  of 
phase or  no  motion in  a  given  bay. The  second frequency band  wou Id consist of modes with 
iwo half-sine waves  between  supports for  a  given bay, etc. Whether or  not  adjacent bays 
are in phase or  out  of phase  depends  upon the nature of the stiffener. As assumed in the 
analysis and  confirmed  by the experimental results  obtained, the coupled  bending-torsion 
motion of the stiffener i s  important. The  modes compared  here are of the form of fundamental 
bay modes (lowest frequency band) since higher  order modes were only  lightly  excited. 
Chladni patterns for modes of this type for  both  five-bay and  three-bay configurations are 
presented in reference 20. 

Three  basic  observations can be made concerning the modes observed. First, modes 
consisting of fundamentals in outer bays and higher order modes in the center bay  were 
observed within the fundamental frequency band. This should  be expected since frequency 
bands characterized by mode  numbers higher than the fundamental in the direction  of the 
structural width  will overlap. This i s  essentially a  two-dimensional effect and was not  con- 
sidered analytically . Secondly, coupled  stiffener  bending-torsion modes were  observed. 
The effect  of  stiffener  coupling on experimental results w i l l  be described  subsequently. 
These modes were essentially stiffener resonance  and the lumped  model  used for the stiffener 
idealization i s  inadequate  to describe this effect.  Finally, the modes observed experimentally 
consisted mainly  of modes with  al l  responding  bays in phase.  The  basic discrepancy i s  in pre- 
dicting modes with adjacent bays out-of-phase and observing modes with  adjacent bays 
in phase. 

The effect of coupled stringer bending-torsion modes  on  measurements taken on the 
stringer and  on the adjacent bays i s  basically  to produce response (displacement  and strain) a t  
twice the excitation frequency. The  degree  of stiffener  coupling depends both on the excita- 
tion frequency  and sound  pressure level. At any mode excited, i t was possible to increase 
the sound  pressure level and  observe  response at  twice the frequency of the excitation due to 
the  more  pronounced coupled stiffener response. This i s  the reason that a l l   o f  the  data were 
taken at very  low (100 dB) sound  pressure levels since both  amplitude and phase are  required 
to define  a displacement or strain mode.  The coupled  stiffener  motion also  caused  problems 
in determining damping  using the decayed strain signal as photographed on an oscilloscope. 
To trigger the oscilloscope, the  excitation  level and the amplified strain signal had to be 
such that  neither the system noise (very low  level  excitation) nor the stringer motion  pro- 
duced  an irregular strain decay signal. Usually, for  a  given mode, only the strain gage in 
the center of a  panel bay with maximum  response  cou.ld be used to determine the damping. 
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To compare the  analytical  and experimental data, one must compare  frequency, mode 
shape, and strain response. The  frequency comparison here is  based upon the fundamental 
frequency observed  for the frequency band and the frequency ratio of the higher modes in the 
band and the fundamental. Specimens SPI-2-2D,  SPI-3-2, and SPI-3-2D were prestressed 
due to bonding  problems as mentioned previously and the comparison  is not so good. The  
frequency comparison  is given in Tables I and I I  classified by specimen and  the experimental 
configuration. 

To compare mode shapes and strain measurements, the main emphasis  was to consider 
the complete  structure and compare all data for the mode. Here, the interpretation of the 
strain data was aided by the  analytical results. The comparison of displacement  and strain 
data is presented in figures 22 through 38. The damping ratio is given for the strain gage(s) 
indicated for each mode. Detail  experimental data  are given in reference 20. 

The computed values are given by the  dotted l ine  and the experimental values are 
given by the crosses. The frequencies are  also given with the experimental  value enclosed 
in parentheses. If data  are not presented, it was not possible to give a comparison because 
of the reasons listed above. 

The analytical values are based  upon a finite element idealization of three elements 
per bay of structure. This idealization was sufficient to insure that all modes in the funda- 
mental frequency band  had converged to their final value. The location of the 'attach' 
point on the stiffener cross-section  was taken to be the location of the stiffener web 
(Sx = 0.0 in equations 20a and 20b) since the stiffener was  bonded to the skin. The  mass  of 
the skin and,  where  appropriate, the doubler  were lumped  with the stiffener data. 

Two-Dimensional Structures 

The nine-bay panel configurations are compared with the  analytical results in a 
manner similar to that described above. The basic  assumption in the analysis was that  the 
predominant modes consisted basically of fundamental modes in adjacent bays. This  assump- 
tion was  proven experimentally in that  the predominant  modes consisted of fundamentals in 
adjacent bays. The data for the machined  specimen were the most consistent. T h e  data  for 
the zee and  channel stiffened specimens were more difficult  to understand due to the coupled 
stiffener motion as described for the one-dimensional specimens. Also, it was extremely 
difficult  to  obtain damping data for these two specimens. 

Comparison of frequency and mode shapes is given in figures 39 through 42. Figure 39 
is a detailed comparison of the fundamental mode for the machined specimen. Figures 40, 
41, and 42 represent the basic phase relationships between  bays relative  to  the  center bay by 
giving a plus  sign (+) for the in-phase condition  and a minus  sign (-) for the out-of-phase 
condition. Strain data are presented in Figures 43, 44, and 45. 
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CONCLUSIONS AND  RECOMMENDATIONS 

The  purpose of this investigation was develop  a  structural  idealization of one-  and 
two-dimensional stiffened panels and to investigate the  effects of design details by estimating 
the normal  mode  stress  response of such structure. The basic approach was to compute 
frequencies  and mode shapes, consider the equilibrium of inertia  and  elastic forces, and to 
integrate  the equilibrium equations. For the one-dimensional beam model, the equilibrium 
equations  can be integrated directly. For the two-dimensional plate structure, the  applica- 
tion of stress functions for defining stress resultants in terms of element displacements was 
attempted. 

The stiffener  element, as presented here, has not been previously reported. When 
used as a lumped  spring constant for the one-dimensional analysis, the stiffener gives a  close 
approximation to  the fundamental mode of a panel array. As indicated by the experimental 
results, the higher modes in the'fundamental  frequency band  (with all bays in-phase) are also 
estimated, but with  less accuracy. Considering the simplicity of the one-dimensional 
ana lysis, the comparison between theory and experiment can be considered good. 

The rectangular  plate bending element described was utilized to prevent the  size of the 
eigenvalue problem from becoming too large. The  convergence of the element, of course, 
cannot  be  illustrated; however, the frequency comparison  is certainly reasonable considering 
the complex nature of the problem. Again, the frequency comparison can be considered as 
good. 

The approach described to calculate stress resultants in the  cover  sheet,  although 
unsuccessful at the completion of the project, seems to be the proper extension of the one- 
dimensional analysis. The big discrepancy between thin-plate theory and conforming 
rectangular  plate bending elements  concerns the introduction of concentrated  shear  forces a t  
the  comers of the plate  element. Thin-plate theory requires comer reactions  equal  to  twice 
the twisting  moment a t  the  comer, whereas the  plate element  independently considers con- 
centra ted forces and twisting moments . 

The  model  of the substructure (stiffeners) for the nine-bay panel is certainly  capable of 
describing the  predominant,stiffener modes (coupled with the  cover  sheet). The stiffener 
displacements and  the  plate displacements fully conform along the  edge of a plate  element. 
The  inclusion of warping for the stiffener  idealization is important even though the bimoments 
are self-equilibrating . Coupled warping between stiffeners is not considered; however, a 
prescribed warping constraint  can be considered analytically. 

The experimental program for the one-dimensional panels pointed out  the increased 
bending-torsion coupling effect for stiffeners with increased sound  pressure level. Even 
though the response  is linear, the coupled motion deviates from that  predicted in the present 
modal analysis. This effect was also observed in the nine-bay specimens, especially in the' 
acceleration response of the  comer bays. This  response a t  twice  the  exciting  frequency might 
be interpreted  as  a  nonlinearity; however, a t  the test  levels used in this program, the 
response of the  center bay was certainly l inear .  

The approach described for computing stress resultants in plate elements should be 
investigated more thoroughly. Since  the conforming plate elements yield nodal forces  only, 
some estimate of an  equivalent distribution of  edge  forces is required if one is to compute 
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stress resultants on the interior of the  element. The only other  alternative is to solve large 
eigenva Iue problems. 

To consider  the coupled bending-torsion  motion and the increased coupling with 
increased sound pressure level,  one must resort to a response calculation. The  use of the 
present structural model for a response calculation would be very rewarding and  relatively 
economica I .  
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TABLE I 

FREQUENCY COMPARISON, ONE-DIMENSIONAL PANELS 
FIVE-BAY CONFIGURATION 

Specimen $1 Hz - f2/f 1 - f3/f 1 - f4/f1 - f d f l  Notes 

SPI-1-1 82 1.12 1.29 1.41 1.54 A 
92 1.08 1.14 1 .-29 1.33 B 

SPI-2-1 88 1.05  1.17  1.28  1.36 A 
95 1.04  1.14  1.24  1.30 B 

SPI-2-1D 80 1 .ll 1 .25  1.39  1.40 A 
88 1.03  1.16  1.27  1.38 B 

SP 1-2-2 57 1.07  1.19  1.65 2.35 A 
70 1.58  1.62  1.93  1.94 B 

SP I -2-2D 55 1.07  1.24 - 1.75 A, c 
68 1.51 1.57 1.81 1.82 B 

SPI-3-1 80 1.10 1.16  1.34  1.46 A 
94 1.05  1.28  1.29  1.37 B 

SPI-3-ID  100 1.05  1.09  1.15  1.27 A 
87  1.05  1.28  1.30  1.45 B 

SP 1-3-2 54  1.15 - - - A, c 
74 1.36  1.43  2.08  2.08 B 

SP I -3-2D  63 1.22  1.48 1.57 1.70 A, c 
75 1.27  1.36 1.81 1.81 B 

Notes: A .  Experimenta I value 

B. Calculated value 

C . Specimen prestressed by oi 1 can 



TABLE I 1  

FREQUENCY  COMPARISON  ONE-DIMENSIONAL PANELS 
THREE-BAY CONFIGURATION 

SDecimen f2/f 1 3If 1 f4/f 1 Notes 

SPI-1-1 108 1.06 1.18 - A 
101 1.50 1.51 - B 

SPI-2-1  91 1.20  1.39 A 
109 1.23 1 -38 - B 

SPI-2-ID  80 1.10  1.25 1.39/1.40 A, D 
88 1.03  1.27 1.38/1.38 B 

SP I -2-2 51 1.20 1.31 - A 
72 1.33 1.51 - B 

SP I -2-2D 64 1.59 1.75 - A f C  
68  1.88  2.18 - B 

SPI-3-1 90 1.08  1.12  1.30 A 
100 1.51 1.51 - B 

SPI-3-ID 106 1.15 1.27 - A 
94 1.46 1.47 B 

SPI-3-2 62  1.10 1.63 - A,  c 
66  2.28  2.29 - B 

SP I -3-2D 65 1.09 - - A, c 
65 2.23  2.26 - B 

Notes: A.  Experimental value 
B .  Calculated value 
C. Specimen  prestressed in bonding 
D . Repeated root 
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AX IS 

FIGURE 2.  

FIGURE 1 . THIN-WALLED OPEN-SECTION BEAM. 

Y 

THIN-WALLED OPEN-SECTION BEAM COORDINATE NOMENCLATURE 



FIGURE 3 . CROSS-SECTION  GEOMETRY FOR RIBS PARALLEL TO Y-AXIS. 

S 
Y 

Y 
CENTROID 

SECTION PROFILE LINE 

SHEAR C E N T E R x t \ M x  
- 
Y " -I-- P 

- 

ATTACH POINT7 z 
S Y 

CROSS 

Z m 
FIGURE 4 .  CROSS-SECTION  GEOMETRY FOR RIBS PARALLEL TO X-AXIS. 
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CLAMPED,  ELASTICALLY SUPPORTED, 
OR FREE  EDGES ON EITHER END 

LCLAMPED EDGE ON 
EITHER  SIDE 

t 
z 

FIGURE 5 .  ONE-DIMENSIONAL PANEL ARRAY 

$,+,, 
+ dV 

FIGURE 6. BEAM SEGMENT AND SIGN CONVENTION 



(El) = C O N S T A N T 1  

FIGURE 7 BEAM  ELEMENT AND COORDINATE NOMENCLATURE 

COVER SHEET 

LCiAMPED EDGES ALL SIDES 

FIGURE 8. NINE BAY TWO-DIMENSIONAL STRUCTURE 
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TWIST COORDINATES, eXyi, ARE NOT  SHOWN 

FIGURE 9. RECTANGULAR PLATE BENDING ELEMENT. 
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dx 

M 

M XY "f 
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Y 

FIGURE 10. 
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RECTANGULAR PLATE STRESS RESULTANTS 



i e 

TVP I CA L 

(1 0 PLCS) 

HOLE 
PATTERN 

(z 
0.032 X 27.00 X (30.00 + 2 Le) 7075-T6ALUMlNUM 
ALL DIMENSIONS IN INCHES 

-2.50 TYP 
-1.50 TYP 
c.50 TYP 

1 .oo TYP 

FIGURE 11. ONE-DIMENSIONAL SPECIMENS - BASIC DIMENSIONS 
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SPI-1 4 
0 -032 

SP I -2-x 4 
0.032 

'L r -L + -r 

SP I -3-x 0.032 

FIRST DASH NUMBER  DENOTES STIFFENER ORIENTATION 
SECOND DASH NUMBER DENOTES STIFFENER SPACING 

1 DENOTES UNIFORM SPACING 
2 DENOTES NONUNIFORM SPACING 

THE SUFFIX D DENOTES A DOUBLER WITH DIMENSION 
0.032 X 0.75 X 27.00 7075-T6ALUMlNUM 

ALL  DIMENSIONS IN INCHES 

PAN EL L1 L2  L3 L e 

SPI-1 6.00 6.00 6.00 0.25 

SPI-2-1  (-1D) 6.00 6.00 6.00 0.25  (.375) 
SPI-2-2  (-2D) 5.00 6.00 8.00 0.25 (.375) 
SPI-3-1  (-1D) 6.00 6.00 6.00 0.25 (.375) 
SPI-3-2  (-2D) 5.00 6.00 8.00 0.25 (-375) 

FIGURE  12. 0N.E-DIMENSIONAL SPECIMENS - STIFFENER DETAILS 
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1 .oo F 4 0 7  0.040 

I. 1 

7075-T6 
ALUMINUM 
EXTRUSTION . 

7075-T6 
ALUMINUM 
EXTRUSION 

FIGURE 13. STIFFENER CROSS-SECTION SHAPES 
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FREQUENCY 
COUNTER 

I OSCILLATOR 

L """"""" -I 

LOUDSPEAKER  ENCLOSURE 
I 

SWITCH 
(PHASE) 

FIGURE 14. BLOCK DIAGRAM FOR ACOUSTIC EXCITATION 

I 

"""" J 

CONDITION A CONDITION B 

I- ----- --- r----------- 

I I 

CONDITION C CONDITION D 

FIGURE 15. LOUDSPEAKER  PHASE CONDITION 
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CHARGE 
AMPLIFIER 

ACCELEROMETERS -@ 
SCOPE CHARGE 

AMPLIFIER 
- 

FIGURE 16. BLOCK DIAGRAM FOR MODE STUDY 

. FIGURE 17. BLOCK DIAGRAM FOR STRAIN MEASUREMENTS 

I-.-( 
b 0 . 5  

0.250 $ STRINGER FLANGE (REF) 

FIGURE 18. TYPICAL STRAIN GAGE INSTALLATION 
ONE-DIMENSIONAL STRUCTURES 

rDIFFERENTIAL 

U U L SCOPE 



36.00 1 
24.00 

1 

\ 

0.50 x 26.00 x 36.00 HOLE PATTERN TYPICAL 1 .oo 
7075-T6 PLATE 1 AROUND 

ENTIRE EDGE 

+ + t + f t S '  
+ + + + + + + .  

+ +  
+ +  
t +  

+ +  +t, 

3.00 

f 
W C H  IN ED 
'ROM PAREN' 
dAT€RIAL 

A7 - 

A i 
I 

~ 

A 

-10.00 f - 16,. 0 0 4  
I 26.00- 

0.032 X 26.00 X 36.00  7075-6 SKIN 
BONDED TO OPPOSITE (SMOOTH) SIDE 

FIGURE 19. MACHINED & BONDED NINE-BAY SPECIMEN 

3% 

Lt 
5 2 . 0 0  

7 

L # l o  
CLEARANCE 
DRILL 

0.200-q"  

k 6 -B 

o*200T 
A -A 



-3 CLIP 1 
(4 PLCS) 

FIXTURE (REF).;, 
3.3 

-2 SKIN _f 

8.50 

FIGURE 20. BONDED NINE-BAY PANEL,  SPECIMEN SPII-1 
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If -1 FRAME 
I 

I 
2- 

t 
10  .'167 

4 27 
6.667 I 
10.167 

I m A7 1 

FIGURE 21. BONDED  NINE-BAY  PANEL,  SPECIMEN  SPII-2 
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f = calculated (Exper) 

f = 92  (82), Hz 

- 1  + , experimental  point 
/ . e  ' $ 0   0 .  

0 * +  +' . 
calculated  point . 0 

+ **..-... 
9 .  1 -  . 0 + -t*" - * * *  + * -  +-r 0 .  

*t mode shape '* 
' O * . . . * t  * *  . e . . *  0 .  

+1 

,c = 0.01 1 
+ +  * e . * * ,  + + 

-". 
+ + *.*. . + +  

0 -  
. .. 0 .  e 

0 .  + 0 -  + .e 
0 .  bending  moment . *. 

* * . b e  * + * *  ' 
+1 + 0 + * *  

e .  

-1 
f = 121  (119), Hz 

[ * ~ * , 0 4 e e ~ ~ ~ * . +  . e * . *  *t e * .  . * $ *  .t** 

mode  shape +1 * * * *  + *+* * *  

+ ,c = 0.013 
, * *  '+* . . ' + *  . * * * D  *+*  . *  

+' *+ 
4- +. +8 .. ' 0 .  

4: + .. + 
+. 

* *  . 
bending  moment 

-'I ' a + .  . *+. . f = 117 (126), Hz 

r +  
. 

I * . . .  + + +*. +- " - 
mode shape 

4- + "+ +- + *  * *  *+* . '+. .. 
+1 * * + * * *  

FIGURE  22.  COMPARISON OF THEORY AND EXPERIMENT, SPI-1-1 , 
FIVE  BAY CONFIGURATION 
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f = ca Icu la  ted (Exper) 

+1 + +  .*  0 . .  

* O  + *  

-1 bending  moment + C = 0.03 5 = 0.016 

.I 

-1  

+1 

-1 1 bending  moment + 
5 = 0.02 

FIGURE 23. COMPARISON OF THEORY AND EXPERIMENT, SPI-1-1, 
THREE BAY CONFIGURATION 
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f = calculated (Exper) 

f = 95 (88), Hz 

a a a a 

a f = 99 (103), HZ $'+. 
+ + +'+ + + $ a +  

a 

a *+-rfrtT+r+ 
a +  +*+ 

a mode  shape ' * * + a t  a +  +.t a 4  
+ a  

* & a  
a m  a 

i + + + + + + - + a a  +* ' * + a  ta +*a  ~ a+ mode  shape + 

FIGURE 24. COMPARISON OF THEORY AND EXPERIMENT,  SPI-2-1, 
FIVE BAY CONFlGURATlON 
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f = ca Icu lated (Exper) 

+'I 5 = 0.015 .* . O  . 
0 *+. . . .* .+:a . .* + * *  

t, :* . **" . ?:+ +O 
Y 

bending moment '+. . .* 
-1 

I 
+*+.+.+*+*+. mode  shape +. *+.+*+ +. +'$. .+*+*4*+*+*+*+ c * p  *t*+ 0 0 .  + * *  ;* 5'9 .+ 

+1 

FIGURE  25.COMPARlSON OF THEORY AND EXPERIMENT,  SPI-2-1D, 
FIVE  BAY CONFIGURATION 



f = ca lculated (Exper) 

-7 f = 109  (91), Hz 
+ 

-1  I 

+1 F- 
5 = 0.015 

:;**. 5 = 0.03 . o 

bending  moment 

FIGURE 26. COMPARISON OF THEORY AND EXPERIMENT,  SPI-2-1, 
THREE  BAY CONFIGURATION 

f = 102 (94), Hz 

-l I +'+'+. 
+. 

FIGURE 27. COMPARISON OF THEORY AND EXPERIMENT,  SPI-2-1D, 
THREE  BAY CONFIGURATION 



f = ca Icu lated (Exper) 

4 

r r J- r 
'oil can' in center bay 

-I **+*t  *+  

I 
f = 70 (53 ,  Hz 

"+"+-.-+v-+v*- + 
** '4. mode shape ,, 

+ *+* + o+* 
+ *  

+l 

+1 I 

-1' 

-11  

+ 4 "  + f = (61), Hz + + + + + +  
+ + +  + + mode shape + + 

I + +  
+-* 

+1 I + + 
+ + +  

+ I  
" 

+ + 4- + + +. ,+ 1 

+ + +  strain + *  + +' 
- 1' +C = 0.015 

+ +  + 

f'" 
+ + f = (68), Hz + + +  

+ + + + 
+ mode shape + 

+ +-+ + + + 9 

+ 
+ l  + + +  + 

-1' + 

FIGURE 28. COMPARISON OF THEORY AND EXPERIMENT, SPI-2-2, 
FIVE  BAY CONFIGURATION 
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f = calculated (Exper) 

r 
'oil can' in center bay 

+ t.+ 
f = 71  (51), Hz 

+&-et *-** *+ *+*+e*.+ *% 
mode shape .+a y +  

+1 .+. + 4* + 

-'I 
5 = 0.027 .+*  . 

W 
+* 

W -0. 

* + e *  . .+* bending  moment. +* *+' 

+1 + +t 

-11 

I + + + + . +  
f =  (61), Hz + + +  + 

+ 4- . .  + + +  
+1 I 

+ 

+ mode shape + 
4. + + +  

+ 

+ 5 = 0.015 
i 

I 

+I + 
I 

strain ' +  
+ *. + 

+1 

& 

t + +  
f = (63,  Hz 

+ + +  + + + 

i -  + +A 
+ mode shape + 

+ + +  +1 
+ + 

-]I + 
+ + + 

I 
+ 

'+ strain 
I 
1 + 

+1 + + 

FIGURE 29. COMPARISON OF THEORY AND EXPERIMENT, SPI-2-2, 
THREE  BAY CONFIGURATION 



f = calculated (Exper) 

-1, 

-'I 
--• .. . e . .  

- e  
. 4-+-+-+ 
+ +  + . . . bending moment . . - *  

+1 + + * +  
FIGURE 30. COMPARISON OF THEORY AND EXPERIMENT,  SPI-2-2D, 

FIVE  BAY CONFIGURATION 

-' I f = 70 (64), Hz 
+ . 4 e + * + - +  I -+ + +-.*:+:+:+,r++ 

I z' *+. mode  shape . +. 

. -+** bending moment +- +. .- e+. 

e- .$ - .  
'+ . . +  

-1 I - . a  
- .  

FIGURE 31. COMPARl$ON OF THEORY AND EXPERIMENT,  SPI-2-2D, 
THREE  BAY CONFIGURATION 



f = ca Icu lated (Exper) 

7 1 A- 

+1 I . . . 

" 1 f = 120  (103,  Hz 

bending momen't 

FIGURE 32.  COMPARISON OF THEORY AND EXPERIMENT, SPI-3-1, 
FIVE  BAY CONFIGURATION 
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... . 

f = ca Icu lated (Exper) 

1, r -L r 

FIGURE 33.COMPARISON OF THEORY AND EXPERIMENT, SPI-3-1, 
FIVE  BAY CONFIGURATION 

' ., . 

-1 I 
f = 100 (101), Hz 

* *  *+* 

+1' 

+1 !+ 
I * -  

*+*  5 = 0.02 

+ .* * +  
5 :,. * . * * * * *  

-1 bending moment 
+ 

FIGURE 34.COMPARISON OF THEORY AND EXPERIMENT, SPI-3-1, 
THREE BAY CONFIGURATION 
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f = ca Iculated (Exper) 

'oil can' in center bay 

-l I 
I 

*+ . + 5 = 0.018 .+. bending  moment +*+. -+.-*-+-. - . .+ $ 0  +* 

* + *  
+.+ 

+1 
FIGURE  35.COMPARISON OF THEORY AND EXPERIMENT,  SPI-3-2, 

FIVE  BAY CONFIGURATION 

r 1 
'oiI,can' in center bay 

-l1 f = 66 (681, Hz 

-1  I . 0 

+ 5  = 0.016 

FIGURE  36.COMPARlSON OF THEORY AND EXPERIMENT,  SPI-3-2, 
THREE  BAY CONFIGURATION 
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f = ca Icu lated (Exper) 

+1 I 

+lI + 

+ .5 *+. .) *e 

-1 ' +'i = 0.016 

I 

+ 
- 0  . * * * * * *  *-cc, + + +  

FIGURE  37,COMPARISON OF THEORY AND EXPERIMENT,  SPI-3-2D, 
FIVE  BAY CONFIGURATION 

f = 65 (71), Hz 

' +. 
+1 I + 

- 1  I 0.015 
FIGURE  38. COMPARISON OF THEORY AND EXPERIMENT,  SPI-3-2.D, 

THREE  BAY CONFIGURATION 
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RIB 

(z- 

RIB 

PANEL 
'AMPLITUDE 

RIB 
AMPLITUDE 

FIGURE 39- MACHINED  NINE-BAY PANEL MEASURED FUNDAMENTAL MODE: 
f = 8 8 ,  Hz 



f = ca lculated (Exper) 

f = 88/98 f = 94/12 

I 

-+ 
I 

I 

f = 123/125 f = 148/135 

f = 170/- f = 175/159 

f = 188/197 f = 270/- 

FIGURE  40.  FREQUENCY AND MODE SHAPE COMPARISON:  MACHINED 
NINE-BAY  PANEL 
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f = ca  Icu  lated/Exper 

f = 74/82 f = 82/87 

FIGURE  41.  FREQUENCY AND MODE SHAPE COMPARISON: 
BONDED NINE-BAY PANEL,  SPECIMEN  SPII-1 
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f = 90/89 

f = 101/114 

f = 112/133 

f = ca  Icu  la ted/Exper 

f = 97/112 

f = 107/115 

f = 134/ 

f = 144/161 f = 168/211 

FIGURE 42. FREQUENCY AND MODE SHAPE COMPARISON:  BONDED 
NINE-BAY PANEL,  SPECIMEN SPll-2 
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m rn 
+ + .. + 

+ 
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+ - + 

+1- 
f = 88, Hz 

FIGURE 43. MEASURED STRAIN  DISTRIBUTION: MACHINED  NINE-BAY PANEL 



- '  7 + 
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r f 

4- + 

+1 1 
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FIGURE 4-4. MEASUR;; STRAIN DISTRIBUTION: BONDED NINE-BAY 
PANEL,  SPECIMEN SPII- 1 
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+1 -t + + 
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4- + 
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+ + " I  F+- +.r J+ - +j 
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+ l  

FIGURE 45. MEASURED  STRAIN DISTRIBUTION:  BONDED  NINE-BAY 
PANEL,  SPECIMEN SPII-2 
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