
N A S O N T R A C IT

oc

CR-197

CASE FIL
COPY

A ^VSTEM OVERVIEW^'OF * * f * 8

THE AEROSPkCE SAFETY RESEARCH
AND DATA INSTITUTE
DATA MANAGEMENT PROGRAMS

Prepared by

NEOTERICS, INC.

Cleveland, Ohio

for Lewis Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MARCH 1972

1. Report No.

CR-1976
2. Government Accession No.

4. Title and Subtitle
A SYSTEM OVERVIEW OF THE AEROSPACE SAFETY
RESEARCH AND DATA INSTITUTE DATA MANAGEMENT
PROGRAMS

7. Author(s)

9. Performing Organization Name and Address

Neoterics, Incorporated
2800 Euclid Avenue
Cleveland, Ohio

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

3. Recipient's Catalog No.

5. Report Date

March 1972
6. Performing Organization Code

8. Performing Organization Report No.

NEO 2040-711
10. Work Unit No.

11. Contract or Grant No.

NAS 3-13341, NAS 3-14979
13. Type of Report and Period Covered

Contractor Report
14. Sponsoring Agency Code

15. Supplementary Notes

Project Manager, Charles M. Goldstein, Aerospace Safety Research and Data Institute, NASA
Lewis Research Center, Cleveland, Ohio

16. Abstract

NASIS, the NASA Aerospace Safety Information System, is an interactive, generalized data base
management system. The on-line retrieval aspects of NASIS provide for operating from a variety
of terminals (or in batch mode). NASIS retrieval enables the user to expand and display (review)
the terms of index (cross reference) files, select desired index terms, combine sets of docu-
ments corresponding to selected terms and display the resulting records. NASIS will allow the
user to print (record) this information on a high-speed printer if desired. NASIS also provides
the ability to store (save) the strategy (NASIS commands) of any given session the user has ex-
ecuted. NASIS has a searching and publication ability through generalized linear search and re-
port generating modules which may be performed interactively or in a batch mode. The user may
specify formats for the terminal from which he is operating. The system features an interactive
user's guide which explains the various commands available and how to use them as well as ex-
planations for all system messages. This "explain" capability maybe extended, without program
changes, to include descriptions of the various files in use. Coupled with the ability of NASIS to ,
run in an MTT (multi-terminal task) mode is its automatic accumulation of statistics on each
user of the system as well as each file. NASIS's ability to handle the storing of data was im-
plemented to complement its retrieval abilities. A wide variety of files are handled with variable
length fields and records which can be defined, created and maintained with no program modifica-
tions. File definition can be interactively achieved as well as iiTa batch mode. File loading can

17. Key Words (Suggested by Author(s))
Management information system;, Data storage and
retrieval; Information storage and retrieval; Com-
puter systems; Data base; File; Report generation;
Linear search; Real-time; Multi-terminal task;
MT/T; On-line; Range search

18. Distribution Statement

Unclassified - unlimited

19. Security Qassif. (of this report)

Unclassified
20. Security Classif. (of this

Unclassified
21. No. of Pages

63

22. Price*

$3.00

* For sale by the National Technical Information Service, Springfield, Virginia 22151

'also be done on an interactive basis. This flexibility is possible because NASIS is based on a
universal-record-format and a descriptor-driven file access. Whereas the maintenance is
typically handled in batch mode, a correct facility is provided to allow the interactive creation of
maintenance transactions. The original function of NASIS was the handling of scientific and tech-
nical information; many other uses for NASIS have been identified. For example, it has been used
for project control, data set control and programming systems control. The NASIS system was
designed for a virtual-memory, time-shared, paged environment. It is written primarily in
PL/I with input/output modules written in assembler. The current implementation is running
on an IBM 360/67 under the TSS operating system. The system was developed for the National
Aeronautics and Space Administration's Aerospace Safety Research and Data Institute (ASRDI),
Lewis Research Center by Neoterics, Inc.

11

INTRODUCTION

The data base management system herein described was developed to satisfy the need for a safety data base
for ASRDI. Prior to the development of the NASA Aerospace Safety Information System (NASIS), information
needs were satisfied by the RECON system which contained, among other items, safety items.

NASIS (the NASA Aerospace Information System) has been designed to service a variety of data manage-
ment tasks within a large-scale, time-shared, virtual-memory, paged environment.

All design and implementation was done with the purpose in mind of providing a generalized system capable
of handling many different files. Parameterized file creation and data retrieval were the cornerstones of the devel-
opment work. It was a primary objective that the retrieval system would be operational on an IBM 360/67 under
the Time Sharing System(TSS) and that the execution of the modules would be available in an interactive mode.
Since the system was designed generally, provision was made to allow for evolutionary enhancements. The follow-
ing overview defines the components of the NASIS system as it currently exists. It is likely that, while the basics
of the system will probably withstand much of the evolution, the other functions may change with future enhance-
ments.

In conjunction with this report will be later publications of two further reports of a limited distribution. The
first, entitled "The NASIS System User-Oriented Reference Manual" (NASA CR - 72881), provides the NASIS
user with the philosophy of operation and the details of utilization of the various NASIS commands and sub-
systems. The second report, entitled "The NASIS System Development Work Book" (NASA CR - 72882), not
only encompasses much of this report and the Reference Manual but also documents the design specifications and
data specifications of the NASIS system 'modules. Furthermore, the Work Book provides system testing, system
maintenance, data base administration, and system documentation procedures.

The NASIS system performs a sophisticated mformation management function which encompasses the realm
of information storage and retrieval. The NASIS system's structure is applicable to many other scientific and com-
mercial information systems; consider the following applications:

- Personnel Skills Inventory

Since data retrieval is accomplished via cross reference files (inverted indices) into common fields
throughout the data base records (typically, a performance evaluation field), a personnel data base could be
managed for job allocation, personnel advancement, etc.

- Medical Data Management

Staff, patients, and facility utilization and allocation may more easily and efficiently be performed by
hospital management through the assistance of the interactive information storage and retrieval structure of
the NASIS system.

- Bibliographic Retrieval

This type of information retrieval is a direct application of the NASIS system presented herein.

- Urban Information Systems

Since urban problems have become directly related among city governmental departments, the data
about a city's inhabitants (children, voters, welfare recipients) and its events (crimes, fires, ambulance emer-
gencies) is of great value to the decision-making authorities. An interactive data retrieval function, of this
type could be satisfied by the application of the NASIS system.

Other potential applications include the following:

- Inventory Control
- Payroll Accounting
- Budgetary Control and Analysis

111

TABLE OF CONTENTS

TOPIC B.I NASIS DESIGN OVERVIEW

I. System Overview 1
A. Design Objectives 1
B. Design Considerations 1
C. Executive Overview 2
D. Mainline Overview .'2

1. Design Objectives 2
2. Design Considerations 2
3. Overall Structure -2

a. Descriptor Editor 3
b. Load/Create 3
c. Maintain 3
d. Backup 3
e. Restore 3
f. Reorganize 3
g- Purge 3
h. Retrieve 3

4. Indicators 4
a. Retrieve 4
b. Maintain 4
c. Status 4
d. Enable 5

II. Data Base 5
A. Overview 5

1. Files 5
2. Record Format 6
3. Naming Conventions 7
4. Security 8

B. Field Descriptor Files 8
C. Linear Files 9
D. Inverted Index Files 9

TOPIC B.2 DATA BASE EXECUTIVE OVERVIEW

I. Objectives 17
A. Purpose 17
B. Data Base Security 17
C. Implementation 17

II. Approach • 17
A. Overview 17
B. Data Base PL/I Language 18-
C. Compilation-time Processor 19<
D. Execution-time Processor 19

1. Open 20
2. Close 20
3. Locate 20
4. Read 20

a. Read List 20
b. Read Key 20
c. Read Sequential and

Read Sequential Backward 21
5. Unlock 21
6. Get 21

a. Get Record 21
b. Get Set 21

c. Get Field 21
7. Put 21
8. Reput 21

a. Put Record 21
b. Put & Reput Field 21

9. # field 22
10. Free List 22
11. List 22

a. The "OR" Operation 22
'« b. The "AND" Operation 22

c. The "NOT" Operation 22
12. # list 22

k

TOPIC C.I UTILITIES OVERVIEW

I. Introduction 26
II. Module Overviews 26

A. Descriptor Editor 26
B. Backup 26
C. Restore 26
D. Reorganize 26
E. Purge 26

III. Summary 26

TOPIC D.I MAINTENANCE SYSTEMS SPECIFICATIONS OVERVIEW

I. Overview 27
II. Module Descriptions 27

A. Descriptor Editor 27
B. Merge 28
C. Load/Create 28
D. Correct 30
E. Maintenance Mainline 31

TOPIC E.I TERMINAL SUPPORT OVERVIEW

I. Terminal Support Definition 34
A. Purpose 34
B. Implementation 34

II. The Language Extension 34
III. The EXPLAIN Facility 35
IV. The Supervisory Programs 35
V. The CRT - Handling Programs 35

A. Screen Formatting 35
B. The CRT - I/O Programs 35

fOPIC F.I RETRIEVAL SYSTEM OVERVIEW

I. Overview 37
A. Director 37
B. Retrieval Command Descriptions 37

1. BEGIN 37
2. EXPAND 37
3. EXSEARCH 37
4. FINISH 38
5. FORMAT 38
6. KEEP 38
7. LIMIT 38
8. RETRIEVE 38

VI

9. PAGE 39
10. RECORD (PRINT) 39
11. REVIEW (DISPLAY) 39
12. RERUN 39
13. RESTART 39
14. SAVE 39
15. SEARCH 40
16. SELECT 40
17. STRATEGY 40

TOPIC F.2 REPORT GENERATOR OVERVIEW

I. Introduction 42
II. Requirements 42

A. User-definable Report Formats 42
B. Screen and Hard Copy Formats 42
C. Format Strategy Storage 42
D. Formatting Specifications 42
E. Interactive Format Specifications 43

III. Summary 43

TOPIC F.3 LINEAR SEARCH OVERVIEW

I. Objective 44
II. Approach 44

TOPIC G.I USAGE STATISTICS OVERVIEW

I. Introduction 46
II. Approach 46

TOPIC H.I MT/T MONITOR OVERVIEW

I. Objectives 50
A. Problem 50
B. Solution 50

II. Approach and Design 50
A. Internal Features 50
B. External Features 50
C. Specifications 50

GLOSSARY 52

VII

TOPIC B.I - NASIS DESIGN OVERVIEW

I. SYSTEM OVERVIEW

A. Design Objectives

To facilitate the definition of this project, certain design objectives were established. Not only did these
objectives serve as a means for defining the scope of the project, but they also provided a basis for the over-
all design of the system itself. The design objectives were:

1.. The design of the data base and the system should be modular so that it facilitates change and
expansion.

2. The data base should be capable of being accessed by a number of concurrent TSS users.

3. The data base should include the framework necessary for the creation and use of inverted ind-
ices.

4. Access to the data base should be controlled so that the integrity of the data base can be main-
tained.

5. Batch maintenance facilities should be provided for the data base in such a manner that mainte-
nance can be done concurrently with retrieval.

6. The maintenance facilities should provide for automatic verification and translation of the input
transactions, as well as a complete audit trail of the maintenance results.

7. Interactive retrieval capabilities should be provided which duplicate those currently available un-
der NASA's RECON (REmote CONsole) system and also the desired extensions mentioned in the
RFP (Request for Proposal, Aerospace Safety Research and Data Institute) system.

8. A standard facility should be provided for the definition of new files to the system and for the
inclusion of the new data files in the system data base.

9. The owner of a given set of files should have the ability to control read access to them, on a
field and/or file basis; he should have read/write access to them himself.

10. It should be possible to define both variable-length records and variable-length fields whenever
wide variations in data quantity are anticipated.

11. Concurrent file maintenance and retrieval should be premitted. Multiprogrammed, concurrent
maintenance on the same file should be precluded in this design.

• 12. The data base should be protected by file backup and recovery procedures that should be able to
insure the cessation of maintenance at a known point and the prevention of any further maintenance
during the time that the file is being dumped.

B. Design Restrictions

In designing a system, especially one as complex as this, there were special restrictions of which the de-
signers were aware. These restrictions differed from design objectives in that they were characteristics of the
system or its environment which limited the alternatives to many of the design questions. The restrictions, in
this case, were divided between operating system (TSS) restrictions and application restrictions.

The TSS restrictions were:

1. The system should run as a "user" under TSS.

2. The design should be built around the system standard and the concepts of TSS.

3. The TSS data-sharing facilities should be used as the basis for providing data file security.

The application restrictions were:

1. The programs involved should be written in PL/I, whenever possible.

2. The files should require each record to be uniquely identified and accessed by the identifier, so „
that the virtual indexed sequential access method (VISAM) is the most logical file organization
technique to use.

3. Constructing or expanding the dataplexes must be possible by converting and including files al-
ready in existence elsewhere.

C. Executive Overview

The primary component of any information storage and retrieval system must be the data base. For the
NASIS system, an integrated set of VISAM files (data sets) constitutes the data base. Reference data from a
particular source is stored in a number of associated linear files. The information in these files is indexed by
the contents of various control fields and the results maintained in a set of cross reference files (inverted
indices). Each data set in the data base has its fields described for format and content in a special descriptor
data set. The data in the descriptor data set is used by the system executive routine to access and process
the contents of a file.

The executive routine for the NASIS system controls the access to the data base by the processing pro-
grams. It provides to the processing program access to the information in a data set on a field basis, by field
name, or on a record basis, by key or sequential. It uses the descriptors to provide automatic verification
and conversion of the data as it is processed by the various programs. The executive provides a PL/1 source
level interface for the processing programs.

D. Mainline Overview

1. Design Objectives

The mainline routines control internal and external data manipulation. The objective was to pro-
vide a general, modular control function which is fast and may be easily altered or expanded, as ap-
propriate.

2. Considerations

Each mainline must run as a user under TSS, but must be available for sharing by numerous IDs.
Each mainline routine must be accessible only by those persons authorized to use the routines. This re-
striction is further qualified by whether or not access to the particular data is allowed in the mode
which the user requests.

3. Overall Structure

NASIS is a data management system with interactive capabilities. To most people, an interactive
system implies an on-line query type system of limited capabilities. NASIS, on the other hand, repre-
sents a powerful data management system enhanced by, but not limited to, interactive capabilities. The
inclusion of interactive capabilities as a design requirement has, of course, affected the entire system
design.

NASIS is monitored and supervised by a data base executive and a terminal handler. The former
module controls all access to the data base via various file and field security checks, performs all reads
and writes to the files, automatically updates cross references (inverted indices) during anchor file
maintenance, and uses the descriptors to validate and convert data on input to and output from the
files. The terminal support modules provide data transmission facilities between the NASIS system and
TSS and specialized support of graphic terminals which are not supported under TSS.

At present, eight mainline actions required to drive the system have been implemented. Most op-

erations require access to the descriptor files by the executive and perform the following actions:

a. Descriptor Editor

The Descriptor Editor provides a means of creating descriptor files. Descriptor files consist
of the field descriptors which describe the records of a set of files (dataplex). No attempt is made
to load any data into the file at this point.

b. Load/Create

The loading of a file is the accumulation and storage of data upon some physical device.
Loading can be accomplished by processing ADD transactions through the Maintenance Main-
line. Also, a special Load program is available to accept an externally-defined file as input, allow
a user-written routine to break down the fields, and use the data base descriptors to enter the
fields into a NASIS data set.

c. Maintain

Maintenance consists normally of adding, deleting or changing data which is incorrect on a
given file or set of files (dataplexes). In the NASIS system, this has been provided for on the
field level through the use of transactions. Records can be wholly deleted or created by key.
Fields can be wholly added, changed or deleted or partially changed based on specified contex-
tual character strings.

Once it is verified that no other maintenance is active on the same file, the file is accessed in
the update mode. Any inhibited maintenance runs are terminated and not queued.

d. Backup

Backup is a utility program which copies the prime file or files to other secondary devices to
preclude the inadvertant destruction of entire files. Backup requires that maintenance be inhib-
ited and that no maintenance be in progress. The data records may then be read sequentially
and copied to the backup medium. The descriptors are not required for record processing be-
cause the records are known to the system.

e. Restore

Restore is a utility program which supplements the Backup utility by providing a means of
copying data from some secondary device to a primary device to restore to usefulness any data
sets (files) which have been destroyed.

Opening the receiving file in the output mode locks out all access until the file is closed,
thereby precluding premature access to the file. The operation consists of copying the backup file
into the data base, unchanged from its original format.

f. Reorganize

Reorganization is a utility which changes the internal structure of a file whenever it is neces-
sary. Reorganization requires that maintenance be inhibited for the entire operation. It consists
of running Backup followed by Restore.

g. Purge

Purging a file requires that Backup be run if future access to the data is required. Both the
descriptors and the file can be erased to effect the Purge function.

h. Retrieve

The retrieval aspects of NASIS are completely on-line and interactive. The central facility in
retrieval is a parameterized command system which permits data selection based on either auto-

matically-maintained cross reference files (inverted indices) of certain fields or a linear search of
all or part of any file. Output is available to either an on-line terminal (including CRT devices)
or an off-line printer using a generalized report and format generator which is also part of the
command system.

The primary emphasis on the system, data retrieval, is handled by a specialized command,
subsystem. The command language can be categorized into three major classifications: search,
output manipulation, and transaction generation.

The commands EXPAND, SELECT, and LIMIT are available for use in searching the cross
reference files (inverted indices) for particular information (i.e., the "browsing" capability).
SEARCH and EXSEARCH are used to retrieve data from any field in the files whether indexed
or not. STRATEGY allows the user to review the current retrieval strategy he is executing (in ef-
fect, a synopsis) or to observe strategies which were previously defined and have been perma-
nently stored. To preclude having to redefine standard strategies, RERUN is available to allow
re-execution of stored strategies. Recovery capabilities in the event of computer or system mal-
function are enabled by the RESTART command.

Screen manipulation and output formatting, both screen and hard copy, are the functions of
the second category of commands. REVIEW (DISPLAY) causes data set displaying on a remote
terminal in either one of four fixed formats or a user-defined format. RECORD (PRINT) gener-
ates the appropriate output on the high-speed printer. User-defined formatting is available
through the FORMAT command for both the printer and the screen. PAGE is used to manipu-
late the screen output and KEEP and SAVE are specialized commands providing temporary stor-
age capabilities for selected data or CRT screen images.

The CORRECT command constitutes the third category of commands. Although it is tech-
nically part of the retrieval system, CORRECT is more logically associated with maintenance
since it provides the means for defining transactions used in updating the files. Interactively, the
user can enter changes to any field in an existing record on a contextual basis, add or delete an
element on an entire field, or delete the entire record.

Retrieval requires read access only to both the descriptors and the file.

A graphic representation of these functions is shown in Figure 1, "System Overview". Each of the
capabilities defined above is described seperately under the appropiate sections in the remainder of this
report.

4. Data Control

The mainline logic routines require occasional read access to several key indicators.'The setting
and testing of these indicators is performed by the executive in the case of the MAINTAIN and STA-
TUS indicators and by the mainline in the case of the RETRIEVE and ENABLE indicators. It is the
responsibility of the executive to insure that the value of an indicator accurately reflects the current sit-
uation. Otherwise, an inaccurate reading can be introduced by the asynchronous operation of two pro-
grams using the same physical file. These four indicators are:

a. Data Present (RETRIEVE)

This variable is used to indicate a null file. This condition exists when a descriptor has been
defined, but the data file has not been loaded.

b. Inhibit Write Operations (MAINTAIN)

This variable is used to indicate file loading. All other functions except retrieval are prohib-
ited.

c. Maintenance-in-Progress (STATUS)

This value indicates whether maintenance is currently in progress, thus precluding any other
operation except retrieval.

d. Descriptor Ready (ENABLE)

This variable is set on when the descriptor file is ready for use.

II. DATA BASE

A. Overview

1. Files

The NASIS system revolves around series of file sets which are called dataplexes. A dataplex is a
set of files normally consisting of an anchor file, and one or more inverted files (cross reference files).
Each file is composed of records and each record is composed of fields. There exists another file in
this file set which is the descriptor file. It describes the records of each of the files in a dataplex. The
descriptor is at the field level and therefore all access to any or all files of a dataplex can be at the
field level as well as the record level.

The entire data base for the NASIS system consists of several components:

a. Field Descriptor Files

b. Linear (Bibliographic) Files
i. Anchor

ii. Associated

c. Inverted Index Files (cross reference files)

d. Thesaurus File(s)

Most of the various data sets in the data base are organized as variable-length record VISAM
data sets; the descriptor file is a region data set. Although several mainline programs in the system
manipulate both input and output, a generalized executive program handles all I/O interfacing be-
tween the VISAM access method and the user mainlines.

To avoid having to define a pertinent file in each program using it, each file is described by a set
of field descriptors. These descriptors then serve as the source of all information required by the execu-
tive to perform I/O operations and validation on the file. Since every file has a set of descriptors de-
fining it, the descriptor files, themselves, are defined by a set of field descriptors. This latter set, the de-
scriptor descriptors, is defined within the confines of the executive, thus providing the executive with a
means of interpreting the descriptors and the various data sets.

In describing the data base and the interrelationships of the files, a set of reference names are
specified to identify the various levels of data within the data base. An ELEMENT is the lowest de-
fined unit of logical information. A FIELD, the next higher level, may or may not contain multiple
ELEMENTS. FIELDs are associated to form RECORDS. Each uniquely-defined TSS data set is com-
prised of multiple, keyed RECORDS. To this point, terminology has been limited to those terms defin-
ing intra-file components.

An independent source of information, when converted to the system, is represented by three
types of files: anchor, associated and cross reference (inverted index). The anchor and associated files
are both linear files, either of which may contain any field in the records. However, the information in
the two types of files is mutually exclusive except for the key. Whereas the records of the anchor file
and the associated file are physically seperate, they are logically one record (i.e., the associated record
is a logical extension to the anchor record). These two files are referenced as a FILEPLEX. Any num-
ber of inverted indices may be associated with one FILEPLEX.

The cross reference files (inverted indices) for one FILEPLEX, when taken together, will be called
an XPLEX. The FILEPLEX and the XPLEX, together, will be referred to as a DATAPLEX. See Fig-
ure 2, "Sample Data Base".

The Thesaurus Files are part of the entire data base, but are not part of any DATAPLEX. In-
stead, although there are no associated or inverted index files affiliated with thesauri, the Thesaurus
files, by default, are considered to be a separate DATAPLEX.

The remaining components of the data base, the Field Descriptors, are themselves files but are al-
ways referenced and used in conjunction with one of the other files. Thus, the term UNION has been
devised to associate a descriptor data set with the file it describes. For example, the NSIC anchor UN-
ION would imply the NSIC anchor file and its descriptor file. The term, UNION, however, will also
be extended to other levels of the data base. For example, the NSIC DATAPLEX UNION includes all
linear, inverted index, and descriptor files associated with the NSIC information source.

2. Record Format

To promote standardization and uniformity of the data base components, it was decided to define
a record format which would be used for every record in the data base. See Figure 3, "Universal Re-
cord Format". Several factors had to be considered in preparing and evaluating the alternatives. The
considerations included:

a. Although all records must be variable-length, certain fields would be fixed-length.

b. Any of the fields, either fixed- or variable-length, could be devoid of data; i.e., null fields.

c. A field could contain a certain number of elements but that number may not exceed a
maximum allowable number.

Typically, in fixed-length records, a field can be located by accessing its fixed high-order position.
However, since fields can be variable-length, fields must be accessed by either an identifier attached to
each field or a combination of relative field position and associated lengths. To reduce space overhead,
it was decided to split each record into a fixed portion and a variable portion. Thus, within the fixed
portion, fields could be accessed by the high-order position while the relative position and length at-
tributes could be used to find a variable-length field.

Thus, the first part of each record contains all fixed-length fields and. is, itself, split into three logi-
cal breaks. The first section of the base portion, as it is called, is a four-byte TSS-maintained field in-
dicating the length of the entire record (in binary). Following the record length field will be the key
(unique identifier) of the record. The third section contains all the remaining fixed-length fields. The
byte length of all fixed fields, including the four-byte record length, is called the base length of the re-
cord and is recorded in a header record of the appropriate descriptor file. Since null fixed-length fields
can exist, any such field is carried on the record as a field of all binary zeroes except for a 1 in the
highest-order bit.

The remainder of each record, following the base portion, consists of the variable-length fields. To
provide an easy ability to locate the proper field, each field could be preceded by a one-byte unique
identifier. However, such a designator would require much storage utilization because of the large size
of the files. A better solution to the location problem is to define a relative field number, relative to
the first variable-length field, within the field descriptor. Since each variable-length field must be pre-
ceded by a length indicator, any field can be accessed by using the field's relative number in conjunc-
tion with the appropriate field lengths.

The length indicator for each variable-length field is a two-byte designator immediately preceding
the field. The maximum field length is, therefore, 65,536 bytes. However, since TSS does not support
spanned records, the true maximum field length is 4096 bytes. While a null variable-length field con-
tains no data, the length indicator still exists and contains a length of 2 (the length of the indicator, it-
self).

Some fields within the variable portion may be composed of multiple, identically formatted sub-
fields, or elements. As an example, the author field of a record may contain three different authors.
These elements may be either fixed-length or variable-length. Recognizing proper elements, for mainte-
nance purposes, can be achieved by either identifying each element by a designator attached to the el-
ement; positioning the elements in static relative locations, providing a null designator for missing ele-
ments; or omitting any kind of indication and forcing maintenance to reference the proper element by
value.

Attaching a unique identifier as part of each element would be space consuming because of the
number of elemental fields (e.g., indices) and, thus, was eliminated. Because a maximum number of el-
ements must be specified for each field and because a great number of elements may be missing, or
null, providing null indicators also would become space consuming. Maintaining static relative posi-
tions of elements thus would not be required. Updating by value provides the most flexibility in data
management and also minimizes user requirements for altering elemental items.

By definition, elements can not exist within the base portion of the records since they would have
to be fixed-length and can be identified separately as fields, anyway. However, elements can be either
fixed-length (e.g., keys in the inverted indices) or variable-length. All elements of the latter type are
preceded by one-byte length indicators (maximum length of elements is 256 bytes). However, contrary
to the method of handling null fields, the length indicator is not retained for null variable-length ele-
ments. With null fixed-length elements, no space or reference is reserved. In both cases, any deletion of
intervening elements causes a left-justification within the field of the remaining elements. By definition,
an elemental field having all null elements is defined as a null field and contains solely the two-byte
field length indicator.

3. Naming Conventions

All fields are defined by alphanumeric names not exceeding eight characters in length. The names
must not begin with a number. Any field name requiring fewer than eight characters must be left-
justified with spaces on the right. Each field name must be unique within the dataplex to which the
field belongs.

File names will be treated as seven-character strings of alphanumerics. However, the last character
of each file name is internally assigned while the first six characters are user defined. The user's file
name also may not begin with a numeric. It must be left-justified and any remaining characters, up to
six total, must be filled with dollar signs ($). Effectively, the user name becomes the name of both the
anchor file and the dataplex containing that file. In addition, the six-character name is the base name
for all other linear files and the inverted index files. The Descriptor Editor is responsible for assigning
a one-character suffix for all files.

The assignment of the final character of the internal file name is according to the following algor-
ithm:

a. For an anchor file, the character is a space.

b. For all other linear files, the character is numeric and sequentially assigned starting at zero.

c. For all inverted index files, the character is alphabetic and sequentially assigned starting at
A.

d. In both the last two cases, should a file be purged, the character assigned to the seventh
position is not reassigned. Therefore, gaps can exist in the numbering sequence.

Descriptor file names are internally derived by qualification of the name of the file which the de-
scriptors define. By prefixing the character »#» to the anchor file name, a descriptor file can be prop-
erly identified (e.g., #STAR$$1).

In any program, any field in an anchor file can be referenced by the six-character user file name
and an eight-character field name. A field in any of the associated linear or index files can also be ob-

tained by stating the six-character file name and the proper field name. While there is no difference,
externally, in the referencing of the two types of fields, the executive handles the calls slightly differ-
ently, based on information contained about the fields in the descriptors. A program reference to a
particular descriptor file is accomplished by specifying the seven-character file name preceded by the
special character,' #'.

The actual data set names are qualified names. This helps to insure the integrity of the files. The
first segment of the qualified name is the file owner's identification. The second segment of the quali-
fied name is the six-character anchor file name. The last segment is the seven-character field name
with suffix. For example:

OWNER-ID.STAR$$.STAR$$1

4. Security

Each file in the system has an owner who may be either an individual or a group. The owner of
any file will have the ability to create or modify the file or its descriptors. However, the owner can
share the use of his file with any other individuals or groups. In this case, the sharers are permitted ac-
cess to the file on a read-only basis.

In addition to the file-level protection, a field protect feature is built into the descriptors and is
utilized by the executive. By attaching a list of security codes to each field in the descriptor file, an
owner can prohibit field access on arty field to anyone having sharing capabilities on that file. Of
course, if a user does not have shared access to a file, he thus has no access to the fields in that file.

The security precautions, as mentioned, are under the control of the system executive. Any access
to the data base through any of the system modules must pass through the executive and is subject to
a check of the security classification.

B. Field Descriptor Files

A field descriptor is a set of values which defines the attributes of a data field within a data set. For
each data set in the system, another data set, containing a set of field descriptors, exists to define all the
fields associated with the first data set. Each descriptor is a record within the file of descriptors. Although
the descriptor files are essentially VISAM-oriented, they are all, in reality, organized as one region data set
in which the dataplex name serves as the region name. The key to the records is the name specified in Table
1, "Descriptor File Record Format".

In the table, the first column is merely a reference number to each field. The second column is the de-
scriptor field name; column three indicates either the field's location, in bytes, or its relative loca'tion (varia-
ble fields). The next two columns represent the field mode and its recording type, respectively, and the last
column is a descriptive comment.

While each descriptor file contains detailed field information, certain file indicators and reference data
must be stored for each data set in the system. To provide a means for storing this file-oriented data, each
descriptor file has a header record, defined by a key of binary zeroes. The header record is 65 characters
long, corresponding to the base length of the descriptors, and is defined in Table 2, "Descriptor File Header
Format". The column contents are the same as for the previous table.

Although the header information is created and modified via the Descriptor Editor, the various indica-
tors are changed by the Executive on command from the mainline modules. Thus, the accessibility of any
data set varies dynamically depending on the action being executed on the file.

While the descriptors for the associated files and the inverted index files reference only the fields con-
tained in those files, the descriptors for the anchor file are more comprehensive. In addition to defining the
fields actually contained in the anchor file, the descriptor file also contains dummy field descriptors which
reference fields not present in the anchor file, but contained in the associated and index files. In a sense, the
anchor descriptor file serves as a dataplex descriptor file since every field contained in the dataplex is refer-
enced there, either by direct definition or by dummy descriptors. The key of a dummy descriptor in the an-
chor descriptor file is the same as the key of the actual descriptor, for the same field, in the associated file

descriptor data set.

Since descriptors exist to accurately define the various data sets in the system, a change in the structure
of any file necessitates a change in at least one field descriptor for that file. All maintenance of existing de-
scriptors and creation of new ones is handled by a separate routine called the Descriptor Editor.

Through the Descriptor Editor, the user may create or modify any descriptor files which he owns. The
user, however, need only access the anchor descriptor for any change to any of the dataplex files. The De-
scriptor Editor is responsible for taking the appropriate action on the anchor descriptors and extending any
necessary changes to the proper associated or inverted index descriptors (using the anchor dummy descrip-
tors as pointers).

C. Linear Files

Each source file which is to be loaded into a NASIS dataplex consists of records with uniquely defined
fields. The person responsible for the loading of the file first defines to the NASIS system how he would like
the resultant dataplex to be formatted. The actual loading process reads the source file and writes the data-
plex.

Primarily, the file loader first decides where he would like various fields of his file to reside. He has a
choice of either on an anchor file or on an associated file. In reality, the records of the associated file repre-
sent physical extensions to the anchor file records. There are two reasons for the placement of data on asso-
ciated files: one is to prevent the anchor file records from exceeding 4000 bytes in length; the other is to iso-
late on a separate file those fields which are rarely accessed.

The anchor file is considered the prime file through which all other files are referenced. The other files
are associated files. The entire set of these linear files is named the fileplex.

It should be mentioned again, for the sake of clarity, that all to the files of a dataplex are VISAM files,
and that all of the records of each of these files has a universal record format.

One of the benefits of having the ability to split a logical record into several physical records on differ-
ent physical files is that these files may exist on different devices, thus eliminating any constraints any one
device might impose upon data storage.

The file names of all associated and inverted index files for the same dataplex are cross-referenced in
the anchor descriptor file. It follows, therefore, that no inverted index, or associated file may exist unless the
corresponding anchor file exists.

The associated files, because of their potential size and the lessened need for extremely fast retrieval,
could reside on other high-volumn slow-speed devices. No field can be defined as belonging to both an an-
chor file and one of its associated files.

A thesaurus file is a special case of a linear file. It is not an inverted index and is an independent file.
For all practical purposes, a thesaurus file can be considered a one-file dataplex and is treated as one.

D. Inverted Index Files

Index files are created to facilitate searching entire anchor files for particular kinds of information. For
each dataplex, any number of inverted index files may exist, each one corresponding to a field in the file-
plex.

The index files are VISAM data sets. The key for each file is derived from the .field upon which the in-
dex is based; i.e., the key of the author index is the author name, itself. A record in any of the files consists
of the key field and at least one anchor record key where each anchor record key will identify one record in
the anchor file. Since any one record in an index can reference any number of anchor records, the lengths of
the index records are-variable.

The creation and maintenance of the inverted indices is completely under the control of the Executive.
No external maintenance transactions are allowed to affect the index files. To accomplish the internal main-

tenance, each field requiring an index has, in its descriptor, the name of the appropriate index file. The
name is prepared and inserted in the descriptor at the time of the creation of the descriptors for this data-
plex (via the Descriptor Editor).

All the inverted index files associated with one dataplex are called, collectively, the XPLEX. Since the
index files are totally subordinate to the anchor file in terms of creation, no index files can exist unless the
corresponding anchor file already is present. It follows, thus, that deleting an anchor file implies deleting the -
entire dataplex, which includes the XPLEX.

10

REF.
NO.

1

2

3

4

5

6

7

8

9

10

11

12

13

NAME

RECLEN

KEY

FLENAME

FLDNAME

INVFILE

ASSOCFIL

GENERCRT

VALIDRTN

REFORMAT

OTHER

FLDPOSIT

FLDLNGTH

MAXNOELT

OFFSET
BYTE(S)

0-3

4-18

4-10

11-18

19-26

27-34

35-42

43-50

51-58

59-63

64-65

66-67

68-69

MODE

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

TYPE

Binary

EBCDIC

EBCDIC

EBCDIC

EBCDIC

EBCDIC

EBCDIC

EBCDIC

EBCDIC

EBCDIC

Binary

Binary

Binary

COMMENTS

Length of entire descriptor in bytes, in-
cluding itself (TSS maintained)

Identifies for this descriptor. Contains
file and field names.

Seven-character file name for these de-
scriptors.

Name of the field within file.

Name of inverted file which indexes
this field; blank, if none (Name ob-
tained internally)

Name of associated linear file which
contains this field; blank, if none
(Name obtained internally).

Name of routine to be used for testing
type of input characters (numeric, al-
pha, etc.); blank if none.

Name of routine to be used for special
validation or conversion of input data;
blank if none. Uses argument in VALI-
DARG.

Name of routine to be used for any
necessary output reformation or conver-
sion (pack, unpack, etc.); blank if none.

Currently N/A-blank

Fixed fields (FLDMODE = 0) -Dis-
placement of high-order byte of field
from the start of the record Variable
fields(FLDMODE= 1) -Field number
relative to the start of the variable por-
tion of the record.

Fixed-Byte fields(FLDMODE = 0,
FLDUNITS = 0) -Field length in bytes.
Fixed-Bit fields(FLDMODE = 0,
FLDUNITS= 1) - Bit position (0-7) of
this switch within SWITCHES; Varia-
ble fields(FLDMODE= 1)- (N/A),0.

Maximum number of elements con-
tained within field (0, if field contains
no elements or is fixed).

Table 1. Descriptor File Record Format

11

REF.
NO.

14

15

16

17

18

19

20

21

22

23

24

25

NAME

ELTLNGTH

SWITCHES

FLDMODE

FLDUNITS

FLDALIGN

INVERTED

ASSOCIAT

ELTMODE

OTHERSW1

OTHERSW2

VALIDARG

SECURITY

OFFSET
BYTE(S)

70

71-72

71

71

71

71

72

72

72

72

Fid 1

Fid 2

MODE

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Var.

Var.

TYPE

Binary

Binary

Binary

Binary

Binary

Binary

Binary

Binary

Binary

Binary

EBCDIC

EBCDIC

COMMENTS

Fixed element (ELTMODE = 0) -Ele-
ment length, in bytes; Variable element
(ELTMODE = l)-Maximum element
length, in bytes.

Contains all bit switches in the descrip-
tor. (All switches are redefined individ-
ually below).

(Bit 0)-Format of field; 0= Fixed,
1= Variable.

(Bit 2)-Unit of length for field;
0 = Byte, l = Bit.

(Bit 4) Justification of data within
fields: Fixed fields (FLDMODE =0),
0=Left, 1= Right. Variable fields
(FLDMODE =1)-N/A,0.

(Bit 6)-Indicates presence of inverted
index file for this field: 0 = No File,
l=File.

(Bit 0)-Indicates whether this field is
contained in an associated file: 0=No
File, l = File.

(Bit 2)-Format of element within field:
0= Fixed, 1= Variable.

(Bit 4)- N/A, 0.

(Bit 6)- N/A, 0.

Argument to be used with YALIDRTN
(Test pattern, limit, etc.); blank if none.

Multi-element field containing codes
which identify the level of security atta-
ched to this field. Elements are eight
bytes long with a maximum of sixty-
four per field.

Table 1. Descriptor File Record Format
12

REF.
NO.

1

2

3

4

5

6

7

6

9

10

11

12

13

14

NAME

RECLEN

KEY

FLENAME

FLDNAME

RETRIEVE

MAINTAIN

STATUS

ENABLED

RECORDCT

BSELNGTH

FILETYPE

INDEXCNT

LINEARCT

REMAIN

OFFSET
BYTE(S)

0-3

4-18

4-10

11-18

19

19

19

19

20-21

22-23

24

25

26

27-69

MODE

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

TYPE

Binary

EBCDIC

EBCDIC

Binary

Binary

Binary

Binary

Binary

Binary

Binary

Binary

Binary

Binary

EBCDIC

COMMENTS

Length of header record, in bytes, in-
cluding itself(TSS maintained).

Identifier for this descriptor. Contains
file and field names.

Seven-character file name for this de-
scriptor.

Contains binary zeroes.

(Bit 0) - Defines whether the file can be
read; 0 - read allowed, 1 - read prohib-
ited.

(Bit 2) - Defines whether the file is be-
ing loaded. 0 - file not loading; all
functions allowed. 1 - file loading; only
retrieval permitted.

(Bit 4) - Indicates whether maintenance
is in progress. 0 - maintenance not in
progress; all functions allowed. 1 -
maintenance in progress; only retrieval
permitted.

(Bit 6) - Defines whether the descrip-
tors are complete; 0 - yes, 1 - no (can
not use them).

Contains the number of descriptors for
this file.

Length of the fixed portion of a record,
including the RECLEN field.

Classification of file
0 - Thesaurus
1 - Anchor
2 - Associated
3 - Inverted index

Identifier for the last assigned inverted
index file.

Identifier for the last assigned associ-
ated file.

N/A - blank.

Table 2. Descriptor File Header Format

13

LU
>
O

S
LU
I—
00

>-
00

Q;
Z3
O

t

t

1

*

1

J

)

1 :

•

<

t

•

<

«
<

i

\

Z.

C

Si

%

I

_

r t_i<
1 1^
5:
Lu
Qi

1 1

1

1

1
/•

1
I

1

1
i

|

£1

^1O
| î j

X
LU

1

1

1

1

1

DE
SC

RI
PT

O
R

ED
IT

OR

j i

\

1

1

1

.L

, 1
1

1

1

1

1

A
T

1
1

1

1

, 1

1

1
1
u_

~^>

\

A

\/

A

v
/ \

V

A

\j

^ \
LU C£

t? << oi
£<£
00 — I

0 \
LU CO
^— iij

S£
> Q
Z Z y

\
o:<r
Sg
— i LZ

/

s \
e ^
Q-

S
O
OO
LU IQ y

i

LU
00
<

<£

<
Q

I

14

00 _

CQ O

co

X
a
Ou

X
LU

a!

x

en

-»-<
oo
LU
O

00

CQ

OO

CQ

OO

cvi

LU
a;
o

LU
00 _

CQ O

CQ

X
LU

x

X

X

< o
oo oo
LU i . i

f- a

o
o

X 0

O
0

g xo
^ LU 00
E^ a LU
^= Z o

X O
. LU oo

—•.—• x o
CQ S LU OO
—j Qi O LU

oo |±! S S

o

15

FIGURE 3. U N I V E R S A L R E C O R D FORMAT

VARIABLE
PORTION

BASE (FIXED)

PORTION

' -v^

FIELD #6 LENGTH

FIELD #5 DATA

FIELD #5 LENGTH

FIELD #4 LENGTH

ELEMENT #2 DATA

ELEMENT #2 LENGTH

ELEMENT #1 DATA

ELEMENT #1 LENGTH

FIELD #3 LENGTH

FIELD #2 DATA

FIELD #2 LENGTH

FIELD #1 DATA

FIELD #1 LENGTH

FIXED FIELD #4

FIXED FIELD #3

FIXED FIELD #2

FIXED FIELD #1

RECORD LENGTH

A

}

\

> VARIABLE FIELD #6

> VARIABLE FIELD #5

VARIABLE FIELD #4 (NULL)

VARIABLE FIELD #3

VARIABLE FIELD #2

VARIABLE FIELD #1

16

TOPIC B.2 - DATA BASE EXECUTIVE OVERVIEW

I. OBJECTIVES

A. Purpose

The data base executive subsystem (DBPAC) provides high-level (physical) access to the data base as a
centralized service for mainline programs and, at the same time, guards the integrity of the data base for its
owner. The following paragraphs describe the objectives more fully, and Section II of this topic describes the
approach we propose to satisfy the objectives.

B. Data Base Security

DBPAC allows the owner of a data set complete access to his data set. It also protects the data set
from other users; however, in certain situations, the owner of a data set will desire the ability to share his
data set with other users. DBPAC allows data set sharing, on a read-only access basis, by owner assignment.
This security is set on both the file and field level.

To further enhance the prevention of accidental data set destruction, DBPAC, through the use of four
switches, recognizes and reacts to several situations. It precludes concurrent maintenance on an individual
file. It does not allow retrieval on a partially-created file. It does allow maintenance concurrent with re-
trieval, but it will disallow maintenance during reorganization and vice-versa.

Further protection on the file level is available for cross-reference files (inverted indices). DBPAC has
the ability to completely maintain the inverted index files for a given field. Then, by allowing read-only ac-
cess of the inverted indices, inadvertent file destruction is precluded.

On the field level, DBPAC aids in data base protection via specified validation and/or conversion rou-
tines and coded security classifications.

C. Implementation

This subsystem is used under the IBM TSS system as a user; i.e., it does not involve any alterations to
TSS. It is implemented in TSS PL/I except, as anticipated in the contract, for certain TSS functions not sup-
ported by PL/I which are accomplished using Assembler Language subroutines. The software is modular for
reduction of the implementation time, ease of debugging and maintenance, and "understandability".

It is convenient for the mainline programmers to use this subsystem. (Data base names, and subroutine
and macro calls are self-explanatory.)

II. APPROACH

A. Overview

We concluded that the objectives for a data base executive are best satisfied by a combination of:

1. an extension of the PL/I language, called DBPL/I, for data base access,

2. a compilation-time source program processor, DB, and

3. execution-time routines DBPAC, LIST, and # LIST.

In justification of this approach, we quote the TSS PL/I Reference Manual which says: "Since a simple
but powerful part of the PL/I language is available for compile-time activity, the generation of text can be-
come elaborate and transformations can be performed. Such transformations might then be considered to be
installation-defined extensions of the language." (IBM Form No. C28-2045, Chap. 1)

Mainline PL/I programs have ordinary PL/I input/output statements for non-data base I/O but have
DBPL/I statements for all data base I/O such as variable-length VISAM support, variable-length multi-
element field access, operations on lists of keys, etc. Such DBPL/I statements logically denote and cause or

17

influence the transfer of data between the data base and the mainline program. They are similar in meaning
and form to ordinary PL/I input/output statements so as to be easily learned and used by mainline PL/I
programmers. DBPL/I is independent of all other programs in the system and should not be affected by any
reprogramming which may be done later.

The DBPL/I statements are processed at compilation time. This processing is done by the preprocessor
stage of the TSS PL/I compiler. A preprocessor procedure (or macro) named DB controls this processing of
DBPL/I statements. The DB procedure itself is written using the preprocessor statements available in PL/I.
DB analyzes the DBPL/I statements and generates, in their place, ordinary PL/I statements for communica-
tion with DBPAC. It generates diagnostic messages if DBPL/I statements have errors or are used inconsis-
tently in a mainline program. If the mainline-DBPAC interface gets respecified, DB can be changed appro-
priately to generate suitable statements and the mainline programs recompiled without being reprogrammed.

During execution of mainline programs, all data base access is performed by DBPAC, the data base
executive. As explained above, mainline programs implicitly call DBPAC, as a subroutine, by their use of
DBPL/I statements. For dataplexes or files (including descriptor files), DBPAC can OPEN, CLOSE or
ERASE. It can locate a work area for a new record or read an existing record in various ways. It can vali-
date and store or replace field elements. It can extract field elements and transform them for output to the
mainline. For retrieval purposes, it can retain lists of keys (e.g., accession numbers) in main storage. A func-
tion subroutine, named LIST, can combine such lists in various ways. Another function subroutine, named
LIST, determines the number of elements in any list. DBPAC can read records according to a list and can
free lists when they are no longer needed in main storage. The two list functions and most of DBPAC are
written in PL/I. Certain interface routines are written in Assembler Language for TSS functions not sup-
ported from PL/I; viz., the DDEF command and variable-length VISAM access.

B. Data Base PL/I Language

DBPL/I statements have the same format and syntax as ordinary PL/I statements. They constitute a
language for a combination of indexed variable-length record access and multiple variable-length element
field access. They must be distinguished for the PL/1 preprocessor as follows:

DB ((statements in DBPL/I));

The DBPL/I language is fully specified in the Development Work Book (Section V, Topic B.2) for the
guidance of programmers writing mainline programs.

Nearly all statements have a file clause for the dataplex or file name. The file name may be dynami-
cally set by the TITLE option of the OPEN statement. OPEN and CLOSE statements are optional--they
need not be used in simple mainlines. The CLOSE statement may have an ERASE option (which can only
be executed by a file's owner). An ON ERRORFILE statement is used to establish the label of the user's er-
ror routine for a file. The error routine has access to the ONCODE (end of file, key not found, validation
failure, etc.), the file name, and the label of the statement following the one that raised the error.

New records are prepared using the LOCATE statement, followed by an appropriate number of PUT
statements. When another LOCATE or a READ is executed or the file CLOSEs, the record is implicitly
complete and is transmitted to the data base. A READ statement obtains a record from the data base and
establishes it as the current record for the file. GET statements are then used to move data to work areas.
Any REPUT or PUT statements implicitly cause the record to be rewritten when a READ or LOCATE is
executed or the file CLOSEs. READ has variations for reading sequentially forward or backward, for read-
ing by key, and for reading by the next key in a list.

PUT, GET, and REPUT statements implicitly refer to the current record of the file in their FILE
clause. PUT FIELD causes one or more field elements to be moved from the mainline, to be validated, to
be stored in the record (other fields are shifted to make room, if necessary) for eventual (re)writing and to
be cross-referenced in an inverted index file if one exists for the field. PUT RECORD may only be executed
by a file's owner and moves a whole record from the mainline (presumably, from a backup file) to the data
base output area. GET FIELD causes one or more field elements to be extracted, transformed for output
from the data base, and moved to the mainline's work area(s). GET RECORD causes the whole, untrans-
formed record to be moved to the mainline's work area (e.g., for backup). GET SET causes a list of key

18

fields to be moved from the record to dynamically-allocated main storage and a pointer to it to be set in the
mainline. REPUT FIELD causes the last-obtained (or only) element of a field to be replaced by a new
value from the mainline. REPUTing a null value from the mainline deletes a field element, left-justifying
any remaining elements to close the gap left by the deleted elements. If REPUT FIELD is used to delete the
key of the record, the whole record is implicitly deleted, element by element.

Lists of keys (e.g., accession numbers) are implicitly created on inverted index records to cross-reference
certain fields. By READing and GET SETting from an inverted index file, a list is brought into and re-
tained in main storage. The LIST function is provided to take two lists and form a new list which is the un-
ion or intersection of the two lists, or the first list excluding the second. The new list is retained in dynami-
cally-allocated main storage and its pointer returned to the mainline. The # LIST function determines the
number of keys in a list and returns the count to the mainline. A list may be used to control READing of
indexed records. The FREE LIST statement is used to de-allocate lists from main storage when they are no
longer needed. An ON LISTERROR statement may be used to establish the label of an error routine in the
mainline. The error routine may access the ONCODE (main storage exceeded, etc.).

C. Compilation-time Processor

The DB preprocessor procedure's objective is to generate PL/I statements, to accomplish what the
DBPL/I statements signify or to generate diagnostic comments for errors that can be detected at compila-
tion time.

Each DBPL/I statement is analyzed individually for correct syntax. If it is correct, PL/I assignment
statements and (usually) CALL DBPAC statements are generated in its place and a compilation-time indica-
tor set to note the way the file or dataplex is being used (input, update, etc.). If the individual DBPL/I
statement is incorrect, a diagnostic comment is generated and a compilation-time indicator set.

After all DBPL/I statements are preprocessed individually, the compilation-time indicators are exam-
ined for each file or dataplex referenced in the program. If the indicators for a given file or dataplex show
that it was referenced correctly and consistently throughout the program, then a CALL DBPAC is generated
to "automatically" close the file and a DECLARE statement for a Mainline File Control Block (MFCB) is
generated. (The assignment and CALL DBPAC statements generated from individual DBPL/1 statements
refer to fields in the MFCB. PL/I allows fields to be declared at the end of a program.) If the compilation-
time indicators for a file or dataplex show any incorrect or inconsistent usage, then a diagnostic comment is
generated, but no MFCB declaration. This will prevent the assignment and CALL DBPAC statements, pre-
viously generated for the file, from compiling, because they reference undefined qualified names.

Correct ON ERRORFILE and ON LISTERROR DBPL/I statements generate assignments into
MFCB's without CALLs to DBPAC. They cause the label of a mainline error routine to be posted for fu-
ture "asynchronous" reference by DBPAC when an execution-time error is detected. All other DBPL/I
statements generate an assignment of an "operation code" (and, for some statements, other fields) to the
MFCB, followed by a CALL DBPAC statement with the MFCB as the argument (and, for some statements,
an additional argument). GET, PUT, and REPUT FIELD statements are expanded, field by field, by DB so
that DBPAC handles only one field per call.

References to the LIST or # LIST functions are not preprocessed by the DB procedure, but the possi-
bility of their presence can be deduced by any use of a GET SET statement and this causes the generation
of a statement declaring them as external entry points, returning a pointer or fixed binary value.

D. Execution-time Processor

As has been explained in the preceding paragraphs, DBPAC accepts several different commands from
the calling programs and provides the necessary interface with the data base to supply the required data in-
terchange. The commands are the following:

1. OPEN
2. CLOSE
3. LOCATE
4. READ

19

5. UNLOCK
6. GET
7. PUT
8. REPUT
9. #FIELD

10. FREE LIST
11. LIST
12. #LIST

The folfowing paragraphs discuss (in general) the procedures that are followed with the execution of the
commands.

1. OPEN

The process of opening a file results in the establishment of an entry in the MFCB (Mainline File
Control Block) and an FCB (File Control Block). Reference can be made to Figure 1, "File Control
Block". These elements are more fully described in Section IV, Topic B.2 of the Development Work
Book (DWB).

After the MFCB has been posted, the FCB allocated, and the DBPAC switches and element
pointers initialized, the address of the proper descriptors is posted in the MFCB.

The security of the data base has been provided on the file and field level. The owner of a data-
plex has complete freedom of its use; non-owners are limited by the following restrictions: the files of
the dataplex can be opened only as input, and the fields are available only by owner permission and
only as input.

DBPAC guarantees the prevention of maintenance within the dataplex when any file is undergo-
ing a reorganization or creation. Conversely, DBPAC sets the proper indicator to guarantee the pre-
vention of reorganization when any given file is undergoing maintenance.

The OPEN command is not required and can be implied by use of the LOCATE command or the
READ command (but not READ SEQUENTIAL BACKWARD).

2. CLOSE

The execution of the CLOSE command sets the close switch in the MFCB, writes or rewrites the
last record (as required), and closes the file. If the ERASE feature is employed, the file is erased.

The LOCATE, READ, and UNLOCK commands cause the previously worked-on record to be
released, written, put, or rewritten (as required). These three commands cause an actual transfer of
data either to or from a physical device. They, therefore, require Assembler Language subroutines to
handle the variable-length VISAM data sets.

3. LOCATE

The LOCATE command is used for adding records to a file by setting up a null record with the
proper key value.

4. READ

a. READ LIST

This command gets the (next) key from a list of keys and indicates to the calling program
when none are remaining. It uses this key to read the desired record.

b. READ KEY

Similar to the READ LIST command, READ KEY obtains the desired record from the call-
ing program and establishes it as the current record.

20

c. READ SEQUENTIAL and READ SEQUENTIAL BACKWARD

The next sequential record (either ascending or descending) is obtained using these com-
mands. The record is then established as the current record.

5. UNLOCK

A record is released for access by other programs when it has been determined that no updating
will be done to it.

6. GET

a. GET RECORD

This command gets a record and moves it to the specified area. The owner of the file is the
only one permitted use of this command. All records passed from DBPAC to calling programs
are variable-length records.

b. GET SET

Through this command, proper storage allocated to the list of anchor file keys and the key's
length is posted for control in list functions. It returns a pointer to the calling program to indi-
cate the address of the list.

c. GET FIELD

A field is retrieved from a record and placed in the area specified by the calling program. In
the case of fixed fields containing blanks, null fields are returned; in the case of variable-length
fields with multiple elements, null fields are returned when all of the elements have been re-
trieved. Fields are altered by use of the reformat routines specified in the descriptor.

7. PUT and

8. REPUT

a. PUT RECORD

This command obtains a record from the calling program's area and places it in the DBPAC
area from which it is written. This command can be used only by the owner of the file and never
during maintenance.

b. PUT and REPUT FIELD

The primary function of the PUT and REPUT operations is to put new information into a
given position of a record or to have new information replace existing information.

If the calling program sends a null field to replace an existing field (REPUT only), then the fol-
lowing can happen:

a. If the key is nulled, the record is deleted, the proper inverted index fields are deleted, and
the proper associated file fields are deleted.

b. If a fixed-length field is nulled, the null value is moved to it after the proper inverted index
fields have been deleted.

c. If a single-element variable-length field is nulled, its length indicator is set to a constant of
two after the proper inverted index fields have been deleted and after the proper record manipu-
lations have been performed.

21

d. If a multiple-element (variable- or fixed-length elements) variable-length field (variable
number of elements within the field) has one of its elements nulled, its length indicator is alge-
braically adjusted to represent the proper length after the proper inverted index fields have been
deleted and after the proper record manipulations have been performed.

The REPUT command (on a non-nulling field) deletes the old inverted index fields. The corn-
mands, PUT and REPUT, on both fixed- and variable-length fields, result in the proper record manip-
ulation which causes the new field to be put or an old field to be reput, effectively, and the new in-
verted index fields to be created.

Note: These commands are not allowed on inverted indices and REPUTs are not allowed on
descriptor files. The field which is being PUT or REPUT is subjected to the validation specified by the
descriptor validation routines.

9. # FIELD

This routine is used to determine the number of elements contained m a multiple-element, varia-
ble-length field. It can be used for either fixed-length or variable-length elements.

10. FREE LIST

A block of main storage, which had been previously allocated to a list, is freed using this com-
mand.

11. LIST

This command performs one of three functions as follows:

a. the 'OR' operation

This operation compares two lists of keys and composes a third list of keys which has, as
contents, all of the keys that appeared in each of the two lists. However, keys that appeared in
both lists appear only once in the third list.

b. the 'AND' operation

This operation compares two lists of keys and composes a third list of keys which has, as
contents, all of the keys that are common to the two lists being compared.

c. the 'NOT' operation

This operation compares two lists of keys and composes a third list of keys which has, as
contents, only those keys from the first list which were not present in the second.

Graphically, AND, OR and NOT look as in Figure 2, "Venn Diagrams".

12. #LIST

This command finds the number of anchor file keys (typically, accession numbers) which are in a
given list.

There are several different classes of exceptional conditions which might occur during the processing of
DBPAC. They are as follows:

a. Expected but infrequent errors, such as end of file and key not found.

b. File reference errors, such as referencing a file that does not exist or trying to OPEN a file for
maintenance which is accessible on a read-only basis.

22

c. Field reference errors, such as referencing a field which is not in existence or which is not availa-
ble to the user.

d. Command sequence errors in which attempts are made to PUT or REPUT a file which was
opened as input.

DBPAC references the MFCB (Mainline File Control Block) to determine if an ON ERROR statement
has been executed and an error routine label posted; if it has, DBPAC passes control to the mainline's error
routine. Otherwise, the files are CLOSEd and the job is ABENDed.

The errors which can occur and the associated DBPAC error codes can be found in Section HI, Topic
B.3 of the DWB.

. 23

CO

O
O

CO
OQ
O

oo
OQ

O
UJ

CO
O

CO
UJ
1C
o

Q S

Oo
CO

< Qz <
UJ 2=J >-
u_ co
I I
DO
O
0

00
Q

O
Q_

CO
LU

ll
CQ g
Q CO

CO

O

£

U_ Q

ofc
C£

CO
LU

01o

O
CO

LU

CO
CO
UJ

O
o

o;

o

CQ

O

O
CQ

OQ

O CO
CO
UJ
Qi
O
o

Q
CO
o

24

FIGURE 2. VENN DIAGRAMS

1 2

AND = 1 A N D 2

1 2

OR = 1 0 R 2

NOT - 2 NOT 1

25

TOPIC C.I - UTILITIES OVERVIEW

I. INTRODUCTION

The utilities subsystem of the NASIS system consists of five major modules:

A. Descriptor Editor
B. Backup
C. Restore
D. Reorganize
E. Purge

These modules, as a group, enable the NASIS user to perform file definition, file dumping, file restoration,
file reorganization and file deletion.

II. MODULE OVERVIEWS

A. Descriptor Editor

The Descriptor Editor performs the most important function; that is, the creation and maintenance of
the field descriptors. It is designed to be run in an interactive mode where the user is repetitively prompted
for the data to be used in defining the descriptors; each of his responses is checked for both syntactic and
logical correctness. The user may enter the parameters one at a time or in multiples, if he so desires. The
user may execute the program in the batch mode.

B. Backup

The Backup utility performs the function of file dumping. It allows the user to selectively produce an
exact copy of any or all of the files that comprise a dataplex. This copy will be produced on magnetic tape
in a logical record format.

C. Restore

The Restore utility performs the function of file restoration. It allows the user to use the logical record
dumps produced by the Backup utility to reconstruct any or all of the files that comprise a dataplex.

D. Reorganize

The Reorganize utility performs the function of file reorganization. It allows the user to perform a file
backup and restore on any or all of the files that comprise a dataplex. This process will restore the efficiency
of file access after extensive file maintenance has caused it to be degraded.

E. Purge

The Purge utility performs the function of file deletion. It allows the user to selectively erase any or all
of the files that comprise a dataplex.

III. SUMMARY

All of the utilities may be run either conversationally or non-conversationally. They are all parameterized so
that the user may simply and easily indicate the function that he wishes performed. With the exception of the De-
scriptor Editor, the utilities operate interactively only until the required parameters have been successfully entered.

26

TOPIC D.I - MAINTENANCE SYSTEMS SPECIFICATION OVERVIEW

I. OVERVIEW

This is an attempt to build a central maintenance package which performs the basic maintenance functions
and is modularly expandable in a pre-planned, orderly fashion to include all desired features. A major considera-
tion is providing controls to minimize the chance of individual transactions or entire transaction files escaping in-
clusion in any maintenance run.

The NASIS maintenance system is composed of the following modules:

A. The Descriptor Editor (RDBEDIT)
B. The Transaction Merge (RDBMERGE)
C. The Load/Create (RDBLOAD)
D. CORRECT (RDBCORR)
E. The Maintenance Mainline (RDBMNTN)

The interrelationships of these various modules are shown in Figure la, "Maintenance Subsystem Overview", and
Figure Ib, "I/O Block Diagram".

The NASIS system maintenance functions handle the creation of dataplexes and the maintenance (updating)
of these dataplexes.

Usually, the NASIS system expects to build dataplexes by subscribing for record dumps of the linear files of
other installations. This means that a new dataplex may be added by first creating the dataplex descriptor file us-
ing the Descriptor Editor (RDBEDIT) and, secondly, running the record dump tapes through the Load/Create
.program (RDBLOAD). _ _ "

The offspring dataplex is maintained and made current with its parent by receiving updated record images of
all new and/or changed records and processing these in the update mode through the Load/Create program
(RDBLOAD).

The offspring dataplex also is maintained by the transactions created by the CORRECT command. These
transactions are processed through the Maintenance Mainline program (RDBMNTN).

The CORRECT command is available to all NASIS users; therefore, there is a transaction dataplex
(TRNSCT) under each TSS ID "joined" to NASIS. In order to successfully run the Maintenance Mainline
(RDBMNTN) against these transactions, they must be merged together under the dataplex owner's ID. The merge
program (RDBMERGE) accomplishes the gathering of all transactions for a particular dataplex. Once .these trans-
actions exist under the dataplex owner's jurisdiction, he may use the NASIS COMMAND system to peruse them
and the CORRECT command to make changes to them.

The individual modules of the maintenance system are explained in the following paragraphs.

II. MODULE DESCRIPTIONS

A. Descriptor Editor

The Descriptor Editor is a utility program which performs perhaps the most important function of the
NASIS system; i.e., the creation and maintenance of the field descriptors. The Descriptior Editor can be ex-
ecuted only by a dataplex owner and may be run either conversationally or non-conversationally.

The editor is invoked by either the GREAT Command, for creating a new set of descriptors or for con-
tinuing the creation of an existing set of descriptors, or the UPDAT command, for modifying a set of de-
scriptors for an existing dataplex. The processing of the editor may be divided into three phases: input
processing, prompting, and output processing. It should be noted that the editor operates on the descriptor
entries in virtual memory; hence, if processing is interrupted before the descriptors are "filed", data will be
lost.

The input phase checks for the presence of a dataplex name, prompting if none was entered, and vali-

27

dates the name. It then attempts to read any old descriptors that may be present, indicating to the user each
time an entry is read. If associated files are indicated, their descriptors are also processed.

The prompting phase of the editor allows the user to interactively specify the data from which descrip-
tor entries are to be built. The actions available to the user at this point are the following:

1. list names of descriptors entered thus far,
2. display a formatted description of a particular field entry,
3. add a new field entry,
4. modify an existing field entry,
5. delete an existing field entry,
6. file descriptors and terminate.

The list, display, delete and file functions are trivial and self-explanatory. However, for the remaining
functions the user must enter a number of coded or numeric entries to describe the type of field being de-
fined. The user may enter as many of these parameters as he desires, along with the name of the fields. Any
parameters not entered will be prompted for one at a time. Each entry is checked for both syntactic and log-
ical corrections.

The output phase is invoked by the "file" command or by an optional response following an attention
interrupt. During this phase, the descriptors are sequenced such that the key field is processed first, followed
by all bit switches, followed by the fixed fields, followed by the variable fields. As each descriptor is written,
the action is indicated to the user. At the end, the. user is prompted for the status of the descriptors (com-
plete or incomplete); the program is then terminated.

B. The Merge Program (RDBMERGE)

As indicated in Figure Ib, the results of the CORRECT command are transaction records for a particu-
lar dataplex on the TRNSCT dataplexes scattered over several TSS ID's. Therefore, it would be possible to
have transactions for a given dataplex existing on the TRNSCT dataplex of every TSS ID joined to the NA-
SIS system.

When the system manager desires to perform maintenance upon an individual dataplex, he wishes to
recognize the existence of these pending changes and, after his perusal of them, to include them in the nor-
mal maintenance processing.

The merge program is designated to scan the spectrum of transaction dataplexes (TRNSCT) for transac-
tions pertaining to a given dataplex, remove the pertinent transactions from these miscellaneo.us TRNSCT
dataplexes and include them in the system manager's TRNSCT dataplexes.

In this sense, it is a destructive merge, because the transactions are deleted from the source TRNSCT
dataplexes when they are included in the master TRNSCT dataplex. However, this eliminates the necessity
of purging the TRNSCT dataplexes. Logically, there is no way in which transactions can be lost or not in-
cluded in any given maintenance run.

Once the transactions have been merged into the master TRNSCT dataplex, it is the system manager's
responsibility to peruse the transactions and decide whether they should be included into the maintenance
processing. This step is necessary and important to preclude inadvertant information destruction. Very sim-
ply then, the merge program brings together all pending transactions into one TRNSCT dataplex for perusal
and inclusion into the normal maintenance processing.

C. Load/Create (RDBLOAD)

The purpose of RDBLOAD is to provide a general program for creating dataplexes. As with any gen-
eral program, the primary obstacle is to resolve the differences particular to each individual implementation.
In creating a dataplex, these differences are the nature and format of the input, the name of each field of
the output, and the location of the input data element used to create it. In RDBLOAD, the different inputs
are handled by creating from them a VISAM data set of variable record length having the same key as the
anchor file being created. RDBLOAD recognizes this VISAM data set as a "general input". Since the data
base executive uses the descriptor data set to describe the format and nature of each dataplex, the only con-

28

cerns are, as above, the names of the fields in the anchor data set and the location of the data used to create
it. These are different for each particular dataplex, but RDBLOAD resolves this difference by providing the
user with an exit in which he, in addition to doing any desired editing, places the input area's address in a
pointer array which RDBLOAD uses to create the anchor data set. The fundamental tasks of the user are
then to transfer his input to a VISAM data set and code an exit in which he performs any desired data ma-
nipulation and a series of equates.

In addition to the primary function of creating the dataplex, the following capabilities are desirable:

1. to test with small volumes of input data;
2. to segment a load by interrupting it and restarting at a specific point;
3. to handle errors in a logical and comprehensive manner;
4. to accumulate, interrogate and dispense statistics;
5. to terminate a create run;
6. to produce an exception-oriented audit trail.

There are several modules to the program: the initial module, the analysis module, the exit/DBPUT
module, the exceptional-condition handling module, and the restart handling module. These modules are un-
der control of a mainline module. The program is capable of execution in either a background or an interac-
tive mode; it determines this itself and makes appropriate modifications. The user has the ability to switch
from interactive to batch.

The mainline program determines if the program is running in background or interactively, making ap-
propriate adjustments. These include the enabling of appropriate conditions, the disposition of error mes-
sages, and the input form of the parameters. Next, it accepts and analyzes those parameters which determine
the constraints under which the job runs. These constraints include whether the job is a test or an actual
create; threshold values on the number of errors which are tolerated; and the name of the particular data-
plex. Having accepted those parameters, all the data sets are opened.

The program reads the descriptor file (for the dataplex). At this point, several possible errors are exam-
ined: the possibility that the descriptors could be incomplete; that the user could be attempting to create an
anchor file which already exists; and that the user is attempting to restart a load on a non-existent dataplex.
If any of these conditions exist, a descriptive error message is logged and the run aborted. When the user
decides the load is as desired, he continues that load by restarting from the last record loaded during the fi-
nal test. Restart from an interrupted create is implemented by RDBLOAD as follows. A search is done to
discern the highest key written on the anchor data set; the corresponding record on the input data set is lo-
cated, thus placing the program logic at precisely the point required to continue from the point of interrup-
tion. When the run is not a restart, the arrays for test-monitoring the timings and the testing error actions
are initialized and enabled. In either event, the subsequent step is to allocate the pointer arrays fpr the input
data elements and output data names. That having been done, a call is made to the user-coded exit. The
parameters passed to this exit are the input record area; the pointer array to the output data names, the
pointer array to the input data elements, and a bypass switch, which if turned on, indicates the user wishes
to bypass the record. In the exit, the user may do any desired editing of the input; it is his only opportunity.
On return from this exit, RDBLOAD writes out the output dataplex. The program then posts appropriate
timing and statistical accumulators and processes the next input record, continuing until it reaches a normal
end of job or the occurrence of an interruption or an exceptional condition.

Exceptional conditions are handled by a separate module which traps and analyzes each as it occurs. If
the condition is a disasterous error, the run is terminated and the user is so advised. If it is a less serious er-
ror, the user is advised and the appropriate error accumulators are updated. If it is an actual load, the accu-
mulators are compared to the threshold values; if they are exceeded, the run is terminated. When an "atten-
tion" occurs (interactive mode), the action taken depends on whether the run is a test or a load. If it is a
load, the user is given the number of records processed, the number bypassed, and the number of errors. If
it is a test, the run is terminated.

During a test, the status of each transaction is logged interactively and, hence, the user may terminate if
he observes too many errors. An "attention" after displaying the above statistics gives the user three options:
to continue interactivly (the default), to terminate, or to enter background mode. Timings for each record-
create are taken. During testing, they are used to determine the mean and standard deviation. During actual

29

load, they are compared to those results. (The purpose of this approach is to prevent the user from running
for long periods of time with unproductive results.) When the load time exceeds the mean by a given multi-
ple of the standard deviation, the user interactivly is given the option to terminate or continue. If it is a
batch run, the job is terminated. All runs which are terminated can be continued, without disruption, by a
subsequent restart.

The last consideration is an orderly end of job handling capability. All terminations enter one routine
which logs out the statistics of the run. For tests, this consists of the mean and standard deviation of the
time (in seconds) to create each record; for actual runs, it includes the number of input records read, the
number bypassed, the number of errors, and the number of records loaded.

D. CORRECT (RDBCORR)

During normal terminal sessions with the NASIS command system, the user is reviewing many details
of the information stored on a dataplex. The CORRECT command provides the user with the ability to ini-
tiate changes on any incorrect data be may peruse.

The corrections made in this manner during any terminal session result in transactions which are ear-
marked for updating the particular dataplex being perused.

The CORRECT command format is as follows:

CORRECT KEYVALUE = record-key, FIELDID = field-name, VERIFY =<"YES"/NO>

The CORRECT command provides the NASIS user with an inter-active facility for specifying addi-
tions, deletions and changes to the data on an existing dataplex. This facility can be used at any time during
a normal terminal session, such that any data errors encountered by the user can be CORRECTed immedi-
ately. The "record-key" identifies the identifying field of the record to be modified (usually the accession
number). The "field-name" represents the field for which data is to be entered. Absence of this parameter
causes a display of the names of all the fields associated with this dataplex. The third parameter is used to
indicate whether a user at a typewriter terminal wants a verification display each time he enters a correction,
or only upon explicit command. The output from CORRECT is a file of maintenance transactions, one for
each sub-command representing a file maintenance action.

There are several sub-commands available within CORRECT. Three of these sub-commands are for
program control purposes. They are the following:

FIELDS which causes a list of the names of all of the fields of the dataplex to be dis-
played.

VERIFY which allows the user to change his initial setting of the verification display par-
ameter,

END which returns the user to normal command mode.

The following sub-commands represent different maintenance actions:

INSERT key causes a new record to be added to the dataplex, where "key" is the identifying
field (accession number) of the record.

ADD data causes "data" to be added to a null field or element.

REPLACE data causes existing data strings within the limits specified to be replace new data
specified.

DELETE data causes an element, a range of elements, a field or the entire record to removed
from the dataplex.

CANCEL causes all corrections entered since the last insert or CORRECT to be ignored.

30

CORRECT allows the user to skip from field to field or record to record without returning
to NASIS command mode.

The remaining sub-command is DISPLAY, which is used to present the data contents of the field to the
user in a paging mode, where he can scan forward, backward to a particular element or to a particular line.
The data displayed will be the data as CORRECTED unless he has made no modifications or entered a
CANCEL.

E. Maintenance Mainline (RDBMNTN)

The maintenance mainline program is an independent module which carries out any actual changes
necessary to correct, update, or expand the files comprising a dataplex. The specific changes, which can be
additions, deletions or replacements, are accepted by maintenance in the form of transactions. The transac-
tions are kept on a dataplex named "TRNSCT" and are created and maintained by the CORRECT com-
mand.

The transaction can be applied to the dataplex on a record, field, or element basis. Maintenance prod-
uces a file (audit) showing the activity in each dataplex as well as an error report (message) indicating those
transactions which could not be applied. Those transactions which are successfully applied to the dataplex
are deleted from the transaction file (TRNSCT). Therefore, after the successful completion of a maintenance
run, the only transactions remaining on the "TRNSCT" dataplex are those which need correcting. The
maintenance mainline acquires the necessary statistics while executing and causes the "STATIC" dataplex
(statistics) to be updated (via a call to RDBUPDST).

The maintenance mainline runs only in batch mode. The restart capabilities of the maintenance main-
line are inherent due to the deletion of transactions as they are applied and the statistics update after the
successful processing of each transaction record.

The maintenance mainline then has external interfaces with modules of the usage statistics. The data set
which controls execution of the maintenance mainline also calls RDBPRNTM to cause the maintenance sta-
tistics to be printed.

There are several different types of transactions which are acceptable by the maintenance mainline.
They are as follows:

a. ADDR is the add-record transaction which indicates that a new record is to be added.

b. ADDE is the add-element transaction which adds fields to the record or elements to a field.

c. DELF is the delete-field transaction which causes fields to be deleted from a record.

d. DELR is the delete-record transaction which causes records to be deleted from a dataplex.

e. CNGE is the change-element transaction which either replaces a given element with another or
deletes it.

f. FLDC is the field-context transaction which permits changes to portions of large fields without
the necessity of indicating the entire fields content.

31

FIGURE la. MAINTENANCE SUBSYSTEM OVERVIEW

SYSTEM MANAGER TSS-ID2 TSS-ID3

SYSTEMS
MANAGERS
DATAPLEXS

SYSTEM
MANAGERS

TRNSCT

32

FIGURE Ib.
I/O BLOCK DIAGRAM

TERMINAL

DESCRIPTOR
EDITOR
(RDBEDIT)

<

DATAPLEX
DESCRIPTORS!

33

TOPIC E.I - TERMINAL SUPPORT OVERVIEW

I. TERMINAL SUPPORT DEFINITION

A. Purpose

Terminal Support was designed and implemented to provide a coherent means of communicating with a
(TSS/360) user terminal from within the PL/I language. A further design objective was to provide a means
of communicating with a given CRT terminal (the Computer Communications, Inc. 'CC-30') in the same
higher-level language. The last objective was that these two sub-languages be the same.

B. Implementation

The objectives mentioned above were implemented by the creation of four 'facilities' to handle the re-
quisite demands. These are as follows:

1. A PL/I Language Extension (called TSPL/P) for writing the source statements necessary to
cause I/O to happen at the terminal.

2. A set of programs to serve as a supervisor for the terminal handling programs. (These programs
are entitled RTSPRETS and RTSSUP.)

3. A set of programs to format screen images for the CRT and perform the physical I/O to that de-
vice.

4. A program to handle the retrieval of explanatory messages for the edification of any user who
wishes it.

II. THE LANGUAGE EXTENSION

The PL/I Language Extension designed to serve as the programmer's means of communication with the Ter-
minal Support control programs is entitled TSPL/I' and looks to the programmer very much like a normal set of
PL/I I/O statements. The facilities provided in the Language Extention (also called the Pre-Processor) are GET,
PUT, PROMPT, CONTROL and CLOSE. Also provided are facilities for handling ATTENTION interrupts from
the terminal and facilities for handling hardware or software errors from the terminal.

The GET, PUT and CLOSE facilities are much like those used for normal data management and need not be
discussed here. The PROMPT facility, however, is unique to the TSS/360 Operating System and hence, a descrip-
tion of it is in order.

TSS/360 supports a file of pre-stored messages for use by the system in its communication with users. (This
file is henceforth to be referred to as the 'Message File'.) This concept has several obvious advantages. Each user
has the ability to create his own message file, thus tailoring the messages to suit himself. Also, programs contain-
ing references to these messages need not have the entire message texts in core; all that is necessary to get to
these messages is an 'index' to the message. (These indices are what are called 'Message-Ids' and are in reality
keys to an indexed data set which is the Message File.)

The PROMPT facility in Terminal Support is designed to make use of the Message File from within PL/I
programs. It behaves more or less like the prompting facilities in TSS/360 with a few restrictions and a few addi-
tions.

The CONTROL facility is used for setting-up conditions for Terminal Support such as screen size, line
length, and output mode.

The TSPL/I Language Extension User's Guide (Section V, Topic E.2 of the DWB) provides the guidelines for
writing TSPL/I statements for use in PL/I programs.

34

III. THE EXPLAIN FACILITY

This is a facility peculiar to TSS/360 and is closely related to the PROMPT facility discussed above. The EX-
PLAIN facility allows the retrieval of expanded, explanatory messages dealing with the same subjects as the nor-
mal PROMPT messages.

This facility is located within the control-program stucture.

IV. THE SUPERVISORY PROGRAMS

There are two programs in Terminal Support which serve as 'monitors' for the rest of the system. One,
RTSPRETS or Pre-Terminal Support merely changes the linkage convention from OS/360 (the PL/I Compiler) to
TSS/360. The other program, RTSSUP or the Terminal Support Supervisor, is the main control program for all of
Terminal Support.

Basically, RTSSUP is responsible for all linkage between the application programs and the Terminal Support
programs, all interrupt/ error handling, all PROMPT message retrievals, all calls on the programs which handle
CRT formatting and I/O and all other terminal I/O. If a CRT is not being used in the application, RTSSUP is
responsible for everything but the handling of EXPLAIN message requests.

V. THE CRT-HANDLING PROGRAMS

A. Screen Formatting

Within Terminal Support, all the screen images to be sent to the CRT are composed in their entirety in
core before they are transmitted to or from the screen. The two programs that perform this function are
RTSREAD and RTSWRIT, Terminal Support Read and Write.

These two routines perform, in addition to screen formatting, any text analysis and error reporting (too
much text for a screen, too much input for a target string, and so on) necessary.

B. The CRT I/O Programs

There are four programs in Terminal Support which are responsible for all I/O done to a CRT. These
are RTSMAIN, RTSOPEN, RTSCLOS, and RTSIORQ. The first three of these, Mainline, Open and Close,
are responsible for controlling the flow of functions to the terminal, preparing it for I/O and disconnecting
it from the application task.

The other program, RTSIORQ or IOREQ Interface, is the program which does all the reading and writ-
ing of the CRT, handles error detection and correction (if possible) at the CRT station, also performs data
translation to and from the device (EBCDIC-ASCII) and handles the 'OUT' command. This command is
used when the user wants a 'hard-copy' of any screen image. RTSIORQ makes use of the CCI printer and
issues the I/O commands necessary to 'dump' the screen image to this printer.

35

FIGURE I.

T E R M I N A L S U P P O R T / R E T R I E V A L S Y S T E M / 3 6 0 - 6 7 / C C - 3 0 I N T E R F A C E O V E R V I E W

CC-30

AT& T
201-B
COMPATIBLE
DATA SET

A T & T
201-B
COMPATIBLE
DATA SET

HARDWARE

T
ITS PL/11
•i.

PRE-TERMINAL
SUPPORT

TERMINAL
SUPPORT
SUPERVISOR

TSS
EXPLAIN

II

I

SOFTWARE OPERATING \
SYSTEM \

RETRIEVAL
SYSTEM

36

TOPIC F.I - RETRIEVAL SUBSYSTEM OVERVIEW

I. OVERVIEW

The entire retrieval subsystem has three components: DIRECTOR, commands, and support routines. The DI-
RECTOR acts as a controller, funnelling all references of the commands to the proper routine. Data selection and
retrieval is accomplished via the commands. Providing utility functions for the commands and the DIRECTOR is
a set of support routines which perform initialization, strategy library manipulation, and error diagnostic display.
Refer to Figure 1, "Retrieval Subsystem Overview".

A. DIRECTOR

The DIRECTOR controls the retrieval section of the system. It prompts the user for the next retrieval
command to be executed and then invokes that command by using the OBEY facility of the IBM 360/67
Time Sharing System (TSS).

Terminal communication consists solely of a prompt of the word ENTER and the entry by the user of
the next command to be executed.

B. Retrieval Command Descriptions

The command structure of the retrieval portion of the system consists of seventeen commands which
permit initialization of the retrieval system, selection and outputting of records, and preparation of transac-
tions for future maintenance. Each of the commands is described below with all of the parameters indicated
and described.

1. BEGIN strategy-name, print99, print98, username,
useraddress, dataplex, lisrid, security-code

This command is called if the user wants to terminate the current strategy and start anew. The
current strategy is saved under the name specified by the "strategy-name". Sets 98 and 99 may or may
not be printed, depending on the parameters "print98" and "print99", respectively. The parameters
"username", "useraddress", and "dataplex" are used for the entry parameters for starting a new strat-
egy session. If these parameters are defaulted, they remain the same as those in the current session.

2. EXPAND term, inverted-index

This command causes the display of those terms which alphabetically surround the "term" from
the cross reference file specified in "inverted-index". The number of terms displayed depends on the
number of lines on the terminal screen. To display the next following screen of terms, the user must
enter the PAGE command. Looking backward through the index can be achieved by PAGEing back-
ward ("B" parameter).

3. EXSEARCH backsrch = (Y or N), strategy-name

To execute his linear search strategy, the user calls EXSEARCH. All conditionals since the last
preceding call to EXSEARCH are performed with the end result being a set of accession numbers in
the same manner as the SELECT command. The user can have his search executing conversationally
or in background, depending on the value of the "backsrch" parameter. "Strategy-name" indicates the
name under which the search strategy should be stored. If the background option is chosen, a prompt
is issued for a "strategy-name" if it is not supplied. Also, since a backgrounded execution does not re-
turn to the terminal, appropriate PRINT commands, referencing pseudo-sets, must be defined prior to
the EXSEARCH command in order to prevent the loss of the results.

During a conversational execution, progress can be determined by using the Attention interrupt
feature of the system (TSS). The search status is displayed (records processed, records remaining) for
the user's information. Any one of three sub-commands can be entered following the display:

GO which resumes execution

37

BACKSRCH strategy-name, which forces the execution into the background and stores the
strategy under "strategy-name". Prompts are issued if no previous RECORD
commands were defined.

CANSRCH which cancels the current search and returns to the point just prior to last EX-
SEARCH command.

4. FINISH strategy-name, print99, print98

The FINISH command prompts the user as to the disposition of set-numbers 98 and 99. If
"print98" and "print99" are not entered with the command. The user may have them printed on the
high-speed printer, after which the sets are erased. If the user does not want them printed, they are
erased immediately. The user can specify that he would like his strategy stored under the "strategy-
name".

5. FORMAT format, fields

With this command, the user can define his own output formats for his retrieved output, "format"
indicates whether the output is a sequential format (one field vertical under another with the field
names preceding the data for each new field) or columnar format (typical data processing report with
fields spread horizontally across a page or screen. Also, a unique number is given as part of "format"
to provide a reference for this new output format (for use with DISPLAY or PRINT). The "fields"
parameter provides the names of the fields to be output under this "format". As part of the "fields"
parameter, the user can identify the starting output column position for each field and can indicate
whether he wants a tally, an arithmetic sum, and/or a statistical mean derived for each field.

Two sub-commands which are provided to the user once he has called FORMAT are TITLE and
HEADER. The former sub-command allows definition of report (output) titles; the latter, definition of
special row or column headings. Further discussion concerning the FORMAT command can be found
in the Report Generator Overview, Section II, Topic F.2 of the DWB.

6. KEEP set-numbers, format, items

KEEP allows the user to accumulate the desired "items" in a special set, set-number 99. The
source set and the expected format are specified by "set-number" and "format", respectively. The com-
mand is essentially the same as DISPLAY and PRINT except that the output is placed in set-number
99. After accumulating items in set-number 99, the user can, at any time, output its contents using ei-
ther the DISPLAY or PRINT command.

7. LIMIT set-number, yearl, year2,
keyl, key2

The LIMIT command is used to place bounds on the records which belong to a set of anchor
keys defined by one of the set numbers. "Set-number" identifies the set to which LIMIT is applied. If
"set-number" is not specified, then all the subsequently-generated sets are affected. The user may re-
strict the entries in a set by specifying the "yearl" or a range of years ("yearl", "year2") in which the
documents were published. Restrictions may also be placed on a set of records by specifying a range
of keys between which the anchor key must fall. Either or both of the restrictions may be applied.

8. RETRIEVE username, useraddress, dataplex
nasisid, security-code

The RETRIEVE command is used to initiate the retrieval part of the system. This command per-
forms all initialization necessary for the user to use the other retrieval commands. Once RETRIEVE is
executed, the user is able to use only the retrieval commands; that is, if the user should enter a utility
command, for example, he is issued a diagnostic message, and no action takes place. The parameters
"username" and "useraddress" comprise the user's mailing address or location for printed output deliv-
ery. The parameter "dataplex" is the name of the file set the user wishes to access.

38

9. PAGE direction, mode

PAGE is used to change the current screen image to another page within the same display. If "di-
rection" contains a 'B', the last preceding page is displayed. To page forward to the next page, no par-
ameters are needed.

The "mode" parameter is used when displaying multiple anchor records and a record contains
more than one screen image. The normal mode (no parameter) is to get the next page of the record
until the record is completely displayed. If the user wishes to skip viewing the rest of the current re-
cord and start viewing the next record in the set, he enters the 'SKIP' mode with the PAGE command.

The set of records associated with set-number 99, set up by the KEEP command, actually may
consist of several disjoint sets of records. When viewing set-number 99, the user can skip from one re-
cord to another, using the 'SKIP' mode. It is also possible to jump from one set of records to the first
record in the next set by specifying the 'JUMP' mode. For either 'SKIP' or 'JUMP', the 'B' direction
indicates backward paging satisfying the particular "mode".

10. RECORD (PRINT) set-number, format, item
(or, alternately) RECORD (PRINT) anchor-key

The following description applies to both the DISPLAY (or REVIEW) and PRINT (or RE-
CORD) commands. The difference is that all output for the DISPLAY command appears at the user's
terminal or the user's SYSOUT listing if the task is non-conversational, while the output for the
PRINT command appears as a separate listing on the high-speed printer.

The records corresponding to the parameter "set-number" are displayed according 19 the "format"
specified as a parameter. The fixed formats provided by the system allow output of (1) just the anchor
keys of the records, (2) the entire record, field by field, and (3) the abstract and anchor key only. Also,
a user-definable formatting capability is provided by the "FORMAT" command and can be referenced
by DISPLAY and PRINT. For DISPLAY, the user may specify which item is to be displayed first. In
PRINT, the user may specify a single number or a range of numbers indicating which items in the set
should be printed. If "items" is not specified, the entire set of items is printed (PRINT) or the first
item is displayed (DISPLAY). The user has the ability to DISPLAY or PRINT a single record when
the anchor key is known.

11. REVIEW (DISPLAY) set-number, format, item
(or, alternately) REVIEW (DISPLAY) anchor-key

12. RERUN strategy-name

This command is used to execute a previously-stored search strategy. The command-strings are re-
trieved from "strategy-name" and executed individually until the search strategy is exhausted; the user
can then continue his strategy.

13. RESTART

The user can use the RESTART command to restore the retrieval system to the point in his strat-
egy that was being executed either when the system abended or when he was forced off the system.
The command-strings comprising the current strategy are saved. Each command string is retrieved and
re-executed individually until the saved current strategy is exhausted; the user can then continue his
strategy.

14. SAVE

The SAVE command is used to save the current screen image appearing in the output area of the
display terminal screen. This information is stored in another special set, set-number 98. The user can,
at any time, output the contents of set-number 98 using either DISPLAY or PRINT. The SAVE com-
mand can be called without interrupting the paging for either DISPLAY, PRINT, or STRATEGY.

39

15. SEARCH set-number

SEARCH is available for the user who wants to define a linear search strategy, one which ac-
cesses non-indexed fields. After executing SELECT as many times as necessary to establish the most
restrictive set which can be obtained using indexed fields, the user may wish to further delimit the set
using non-indexed fields. "Set-number" identifies the set which will be further delimited.

The SEARCH command then prompts the user for the conditional criteria upon which further
delimiting should be based. For each condition, the user specifies the following:

IF field-name op-code vail, va!2

where "field-name" indicates the field to be tested, "op-code" defines the relationship (arithmetic,
range, or character string context), "vail" is the expected numeric or character string value or lower
limit of a range, and "va!2" is the upper limit of a range. Any number of conditionals can be defined
for the same set-number. The SEARCH command is needed for definition only and does not execute
the search or create sets; thus, until the search definition is executed via the EXSEARCH command,
the expected results are referenced as pseudo-sets.

16. SELECT expression, inverted-index

The SELECT command outputs the "expression" and the number of anchor keys from the "in-
verted-index" which satisfy the "expression". A set number is assigned to the list of anchor keys, and
the "expression" is entered into the next available line in the current search strategy. The "expression"
is a string of characters consisting of any combination, either simple or complex, of the following ele-
ments: terms, E-numbers (EXPAND references), and/or set numbers. If there is more than one ele-
ment in the expression, they must be separated by one of the following binary Boolean operators: " + "
(OR), "*" (AND) or "-" (NOT). Any terms specified in the "expression" are resolved from the "in-
verted-index". Note that the NOT operator can also be used as a unary Boolean operator.

The "expression" can also take the following form:

Xm-Xn/operator

where the X's represent sets of either set numbers or E-numbers, but not mixed: m must be less than
n, and the operator must be either a " + " or a "*". This format is equivalent to specifying the follow-
ing:

Xm operator X(m+1) operator...X(n-l) operator Xn

NOTE: The SELECT command combines the functions of the RECON commands SELECT and
COMBINE. The SELECT search option is described in the Linear Search Overview, Section II, Topic
F.3 and in detail in the Linear Search User's Guide, Section V, Topic F.3 of the DWB.

17. STRATEGY strategy-name

Execution of this command causes the search strategy specified in "strategy-name" to be displayed
at the user's terminal. If no "strategy-name" is entered, the search strategy currently being executed is
accessed; all set-numbers defined in the strategy, their associated item counts, and the SELECT ex-
pression from which they were derived are displayed.

40

FIGURE I. R E T R I E V A L S U B S Y S T E M O V E R V I E W

RETRIEVAL
SUPPORT
ROUTINES

41

TOPIC F.2 - REPORT GENERATOR OVERVIEW

I. INTRODUCTION

The NASIS system provides the capability for the management of voluminous, detailed information. Coinci-
dent with this capability are the pressing requirements of a NASIS user to be able to generate an unlimited co-
nfiguration of information items within a printable report subject to a user-defined format; this requirement is
termed a report generator.

The DISPLAY (screen output) and the PRINT (hard-copy output) commands provide a means of formatting
a set of information items for output. By modifying these commands to format according to a user-defined format
specification, the "outputting mechanism" for a report generator could be achieved within the existing system
structure. Hence, a means of format definition, such as a FORMAT command, is a basic system enhancement ca-
pable a meeting the unresolvable report generating requirements within the current command structure.

This overview presents and defines the user requirements for a report generation capability of the NASIS sys-
tem. (The implementation thereof may be accomplished as a command system extension and/or a query language
addition.)

II. REQUIREMENTS

A. User-Definable Report Formats

A command-level means of format specification, hereafter called the FORMAT command, allows the
NASIS user to stipulate report formats. In general there are two types of formats: columnar and sequential.

A columnar format can be thought of as tabulated data base information where like fields are listed in
the same position on a report page, top-to-bottom, and related fields make up a report, line left-to-right.
This type of format provides title and column heading capabilities.

A sequential format is a data-base record print-out (one record per page) with the fields therein listed in
a sequential manner, top-to-bottom.

With respect to all formats, the user may reference formats by way of some format identifier. This refer-
ence may be used with all commands involving formatted data.

B. Screen and Hard-Copy Formats

Due to the various types of and differences between output media, an important requirement is to spec-
ify various formats defined for use with a screen (displayable) formatted report and with a printer (hard-
copied) formatted report. This requirement provides the user with a dual usage. Besides the output media
correlation, the screen format may be utilized to verify interactively the quality of data values destined for
eventual printing.

C. Format Strategy Storage

After specifying a detailed or often-used format, the user may need to include the format in his current
strategy for future invocation. This requirement is consistent with the current strategy philosophy.

D. Formatting Specifications

In order to facilitate a full data formatting capability to encompass the spectrum of a user's reporting
requirements, the following items are at the user's call for inclusion in a reporting format:

1. dataplex field names
2. report column positions
3. field-name column headings •
4. report title(s)
5. report pagination

42

6. arithmetic sum for any field name
7. numeric tally for any field name
8. total of reported items, and
9. the statistical mean (average) per field name.

Nevertheless, the above items have standard defaults upon their exclusion from a report format specification.

E. Inter-Active Format Specification

Although formats are definable in a batch (non-conversational) mode, the interactive facilities of the
conversational mode provide the user with a dynamic format specification capability. The user (conversa-
tionally) is able to specify (or respecify) formatting keywords and review the effects via a format sample.
Even at a later time, the format may be revised in any manner for subsequent review and use.

III. SUMMARY

The FORMAT command provides the user with a means of specifying data items, their page positions, their
column heading(s), and their statistical relations along with the overall report title(s) in a very flexible manner. Si-
multaneously, the format lay-out is reviewable at will during its definition. Many formats are definable and referr-
able for a variety of uses with other commands. Used with the DISPLAY and PRINT commands, formats may
produce a multitude of specialized reports for the same set (or sets) of information. The combined use of the
FORMAT command and the format references with other commands provides an unlimited user-definable report
generator.

43

TOPIC F.3 - LINEAR SEARCH OVERVIEW

I. OBJECTIVES

A linear search capability for the NASIS system provides a limited field-oriented non-indexed search facility
(LS) as an extension of the NASIS command system. Index files have been defined to provide a more efficient
method of accessing large dataplexes. A comprehensive set of capabilities has been incorporated into approxi-
mately a dozen simple commands. With these capabilities, it is possible to extract information from any field in
the dataplex, providing it has been indexed. Because of the limitations on the amount of direct access storage
space, it is not practical to index all fields.

With this in mind, it is evident that for efficiency purposes we have a restraint which takes away some of the
flexibility of data retrieval. One way of removing this restraint is to utilize a linear search facility that does not de-
pend on the index files.

LS offers many advantages to the user of the NASIS system. LS allows combinations of individual field
search criteria to provide multi-field searches. At the user's discretion, searches are "background-able". Searches
are executed on any one existing set of keys or the entire dataplex (file-sets) for each search. Since each search
criteria produces a unique set, consecutive searches combined using the SELECT command produce any desirable
set of keys. With linear search, it is possible to reduce the number of indices, thus reducing the direct access space
requirements of the system, and still provide a complete searching capability for the user.

II. APPROACH

A linear search on a dataplex can be considered as a logical combination of one or more sub-searches which
can be defined by a SELECT command search option. The immediate result of a sub-search is a "pseudo-set", or
S-number, representing a linear search strategy. Subsequent sub-searches generate additional, unique pseudo-sets.
Defined S-numbers, along with the set numbers, may be combined in a SELECT Boolean expression which gener-
ates another pseudo-set.

A pseudo-set is unlike a set in that the list of keys it represents is not formed until some later logical point in
the user's strategy where he enters an EXSEARCH command. The EXSEARCH command causes the sub-
searches to be executed, thus transforming a pseudo-set to a set representing an actual list of keys.

The philosophy incorporated in LS defines a linear search strategy in a unique way. The user generates sets
sequentially by combinations of EXPAND and SELECT commands utilizing inverted indices. When he has
reached a point where further searching qualifications can not be accomplished via inverted indices, then the LS
facility is applied to his one resultant set. The set 0 convention provides the user with the ability to use the LS fa-
cility in a situation where no inverted indices can be applied to achieve the desired searching strategy. The above
search philosophy thus defines an important LS restriction - the SELECT search command may be applied to
only one set for any one LS utilization. That is, only after an EXSEARCH command has been issued can the user
apply LS to a different set. Since a set will be generated for each pseudo-set upon termination of the EXSEARCH
command, S-numbers will begin again at SI for subsequent searchers. Note that a pseudo-set may be redefined by
the 'SELECT # setnum...' option; the absence of the IF-clause nullifies the pseudo-set.

Use of the EXSEARCH command informs the NASIS system that the user has specified all of his search re-
quests on a set and is now ready to have them executed. If the user requests the background option, he has al-
ready entered a PRINT command (involving an S-number) beforehand to obtain the information generated by the
LS facility; the user will be prompted for PRINT commands if they do not exist beforehand. The result of the
EXSEARCH command is one or more set numbers and their associated lists of accession numbers which the user
may reference just as any other set number. Requested PRINTs on S-numbers are performed on corresponding
set numbers. During a conversational EXSEARCH processing, the user may wish to see the progress of the search
at any time. When an attention interrupt occurs, the EXSEARCH command returns to the user with its current
records to be processed. To continue any further in the execution of the linear search, the user then enters one of
the following commands:

GO which resumes the search at the point of execution,

BACKSRCH which backgrounds the balance of the search, or

44

CANSRCH which cancels the search in progress, returning the user to the point of his strat-
egy immediately before the last EXSEARCH command.

Should the user desire to background the execution of his search while it is conversationally in progress, he
may do so with an attention interrupt, followed by a BACKSRCH command when prompted. This sequence
causes the balance of the EXSEARCH processing to be completed in a non-conversational mode. If the user has
not specified any PRINT commands previously, he is prompted for them.

This command can only be issued conversationally and only after an EXSEARCH command; otherwise, a
diagnostic will be issued.

Should the user desire to terminate the execution of a search while it is conversationally in progress, he may
do so via an attention interrupt and, when prompted, the entry of the CANSRCH command. This terminates all
of the search requests currently in progress for this task; the NASIS system prompts the user for his next com-
mand.

45

TOPIC G.I - USAGE STATISTICS OVERVIEW

I. INTRODUCTION

The statistical capability which was decided on for the NASIS system serves multiple purposes. From the
maintenance point of view, it gives controls with which that function can be manipulated. The following items are
some of the advantages of having maintenance controls:

A. provides the ability to audit the existing dataplexes for correctness,

B. indicates the growth or shrinking of dataplexes for possible device allocations,

C. provides good historical data, and

D. indicates the frequency of change of the various dataplexes in the NASIS system.

The retrieval statistics can be used to show how the usage of the NASIS system is spread over the various da-
taplexes available, how much (time) each NASIS-user uses the NASIS system and with which dataplexes he is
concerned, how to account for all of the computer time which is spent while running the NASIS system, how each
user uses the NASIS system in the spread of commands he uses, and how many strategies the user has stored (in-
cluding their names).

The information available from retrieval statistics can help the system manager determine whether individual
people need help in the use of the NASIS system as well as determine how long each individual is running the
NASIS system. Since the total computer time per individual NASIS-user is available, it would also be possible to
set up an accounting system to allocate the computer time used per each NASIS-user.

Figure 1 depicts the Usage Statistics subsystem.

II. APPROACH

This implementation of the statistics function consists of determining the number of transactions which add,
delete, and update anchor records, and determining the number of transactions which imply adds, deletes, and up-
dates to the inverted indices. This provides for record control of the anchor file but does not provide for record
control of the inverted indices. These statistics give a good indication of the frequency of change of the dataplex
files.

This implementation also consists of user statistics. User statistics provide information regarding the volume,
time, and complexity of the user's interaction with the command system and, furthermore, with the inverted files
of the dataplex. They are composed primarily of data indicating the number of times a user of the system invokes
individual commands on a per file basis, the amount of time a user of the system consumes in both CPU time
and connect time, an indication of the length and complexity of the user's strategies, the number of strategies
stored, and the total number of terminal sessions.

Within this overview, several different labels may be applied to the same concept. The following list should
clarify most of the discrepancies.

Systems Manager Owner-ID: This is a TSS-ID and refers to the owner(s) of the working dataplexes (NSIC, IDEP,
COM AT, etc.); to clarify this further, this person is the only one capable of performing creation or mainte-
nance.

TSS-ID: USER-ID: In this overview, this refers only to those TSS-IDs (SAFETY**,SAISRl**,etc.) which have
been joined to the NASIS system.

NASIS-ID: This is the command system identification given to a user of the command system; its primary use is
in the accumulation of statistics.

Security-code: This is a code which is used to allow only certain individuals access to important and restricted
fields of a dataplex.

46

The following paragraphs discuss those requirements which are associated with the implemented statistical ca-
pability. These requirements can be classified as those necessary to accumulate and maintain retrieval and mainte-
nance statistics and those necessary to allow retrieval of the statistics.

Maintenance Statistics consist of data accumulated on a per-maintenance-run basis and include the following:

A. The number of transactions per fileplex (anchor and all associated fields), classified as transactions
representing new records, updates, or deletions.

B. The number of transactions per the XPLEX (all inverted files of a dataplex), classified as transactions
representing new records, updates or deletions.

Inverted files consist of keys which represent non-null dataplex anchor fields; therefore, transactions which affect
the fileplex may also affect the XPLEX.

Retrieval statistics consist of the connect time, the CPU time, the total strategy length, the number of strate-
gies currently stored (limited to 3), the data set names of the stored strategies, the total number of terminal ses-
sions and the date of the first and last terminal sessions; all kept by the NASIS-ID of the command system user.
Furthermore, the retrieval statistics include the number of EXPANDS, SELECTS, SEARCHs, and CORRECTS
per session for the last twelve sessions and accumulated prior to that, and the date of the last thirteen sessions; all
kept by NASIS-ID/OWNER-ID/dataplex-file.

The retrieval of statistics consists of two reports. The first report contains the following information by NA-
SIS-ID:

A. The activity of the XPLEX (inverted indices); i.e., the average number of SELECTS and EXPANDS
per session.

B. The average length of a strategy per session.

C. The total connect time and the total CPU time.

D. The number of strategies currently stored, a list of these strategies (names), and when they were last
used.

E. The average number of times the CORRECT command was invoked per session.

F. The total number of terminal sessions.

The second report contains the following information by dataplex:

A. The total number of transactions per maintenance run.

B. Total records currently in the dataplex anchor file.

C. The average percentage of the file affected by the maintenance runs.

D. The frequency of maintenance runs (date).

E. Statistics per maintenance run of add, delete and update transactions.

The first report is provided by the RDBPRNTR module and the second report is provided by the
RDBPRNTM module.

The statistics accumulated are all kept on a dataplex. Each TSS-ID joined to the NASIS system has its own
statistics dataplex, and it can be shared with other TSS-IDs just as any other dataplex. The dataplex name is
STATIC.

All joined TSS-IDs of the NASIS system must know all the other joined TSS-IDs. This is true only of the
system managers (i.e., those who own their own dataplexes) in order for them to perform maintenance on their

47

dataplexes; therefore, a data set is created under a single TSS-ID (SAFETY**). This data set contains the names
of all joined TSS-IDs. This data set will be shared read/write access with all other joined TSS-IDs with the name
NASIS.JOINIDS.

In order to keep statistics per each NASIS-ID of the command system, it is necessary for each user (person
or group) to have his own NASIS-ID. This individually-assigned NASIS-ID is not a TSS-ID but, instead, is a
password. For example, an individual could be executing the command system under the TSS-ID of SAFETY**,
yet his NASIS-ID could be PRITCHRD.

This concept requires a program to allow the system manager to assign NASlS-IDs and the various data-
plexes allowed to each of these NASIS-IDs; this program is called RDBJOIN. These items are all posted to the
data set NASIS.NASISIDS.

All of the maintenance statistics are automatically updated with the Load/Create program (RDBLOAD) and
the Maintenance Mainline program (RDBMNTN). If the dataplex owner wishes to modify certain data pertaining
to the maintenance statistics, he may use the CORRECT command.

RDBACCUM is used to accumulate the maintenance statistics on those dataplexs which have already been
loaded or are loaded outside of the NASIS system.

Hand-in-hand with placing the statistics information on a dataplex goes the creation of all transactions as a
dataplex. Each USER-ID has a dataplex, TRNSCT, which contains all of the transactions created under that
given joined TSS-ID. The CORRECT command could be used, in effect, to perform on-line maintenance to not
only the STATIC dataplex but the TRNSCT dataplex as well.

The Load/Create program handles the TRNSCT dataplex in an update mode. A switch in the fields of the
TRNSCT dataplex indicates when the transaction record has modified a given dataplex, or the record itself is de-
leted from the dataplex. This allows the Maintenance Mainline program to have restart capabilities based on the
last record processed. The statistics on a per-dataplex basis in conjunction with the Maintenance Mainline are
used to perform control functions on a dataplex. The original number of records on the dataplex, plus the adds
and minus the deletes, is the current number of records. If any discrepancies occur, they are then detected and
eliminated.

The creation of the transaction dataplex has, as a requirement, the creation of a program which converts all
of the existing transaction files to a TRNSCT dataplex. The primary purpose of this program is to perform that
conversion.

All the retrieval statistics are automatically updated within the modules of the NASIS command system. If re-
quired, at maintenance time a "snapshot" of the statistics is printed. This is done by the RDBCHKPT module. If
the dataplex owner wishes to modify certain data pertaining to the retrieval statistics, he may use the CORRECT
command.

48

CO
o
i—
CO

CO

CO

Qi

x
Q X
O X

co O X
co o; X <
i- Q_ X O

49

TOPIC H.I - MT/T MONITOR OVERVIEW

I. OBJECTIVES

A. Problem

The NASIS system as currently implemented has several serious drawbacks. Due to the implementation
of PL/1 under TSS/360, the NASIS system is such that each user must have his own copy of the entire sys-
tem. Needless to say, this results in a serious constriction of the system's paging facilities as soon as a few
users begin running NASIS, Also, administrative control over the system is limited as there may be several
copies of the system running.

B. Solution

There is only one practical way to solve all the above-mentioned constraints: to run NASIS as an
MT/T application. An MT/T (Multi-Terminals/Task) application is a single TSS/360 task having the ability
to service as many terminals as necessary. In effect, NASIS is an operating system. (MT/T was originally
conceived as the solution to this same problem but relative to "computing" tasks like desk calculators, in-
core editors and so on. The most spectacular MT/T application to date is the use of the facility to drive
APL/360, developed at the Carnegie-Mellon University (under contract) by A. L. Vareha and J. M.
McCrossin.)

II. APPROACH AND DESIGN

A. Internal Features

For use with NASIS, the MT/T Monitor "sits on top of the remainder of the system; that is, it is the
first-level interface between both TSS/360 and NASIS and between the User and NASIS. This Monitor per-
forms operating-system functions for NASIS and terminal-processing functions for the user.

The operating-system functions include multi-programming, time-slicing, terminal-keeping, user-to-user
communications, all requests for reading/writing the terminal and scheduling of sub-tasks.

Basically the flow through the Monitor is as follows. After an entry to the Monitor is made for the pur-
pose of I/O to a terminal, the concerned section of the Monitor processes the request as far as possible (that
is to the point of actually issuing the I/O request to the terminal) and then calls a section of the Monitor
called MTTFINDQ. This section, the Queue Finder, is responsible for all the multi-programming work
within the Monitor. It searches all the Queues that the monitor used for work to be done, takes care of all
scheduling and timeing, and takes care of all task dispatching. After the original I/O request is finished, the
Queue-Finder returns to the section to complete processing of the I/O completion. Hence, basic flow
through the Monitor is I/O request to multi-program processing to I/O completion. Of course there is more
to it than that: task dispatching, time slicing, queue manipulation, operator-user communication, user-user
communication; but all this fits neatly into the scheme described.

B. External Features

The most obvious external features are the solution of the problems described in Section I. Otherwise,
running the system only in one "place" has the advantages that the operator can talk to everybody with rel-
ative ease (he doesn't have to send messages to several TSS tasks); the operator can schedule the system to
fit other needs (he can shut the system down at any time and with any amount of time-warning); and he
can monitor the usage of the system at any moment with no trouble. Furthermore, password/security proc-
essing is simplified as the Monitor is the thing that processes all passwords and security coding.

C. Specifications

This Monitor is a single TSS/360 program written in TSS/360 machine code aided by the TSS/360 sys-
tem macros and the MT/T queue manipulating macros. The monitor runs in "privileged" mode and under a
userid having the MT/T option (i.e., Authority "O" and Privilege Class "T"). All I/O performed by the
Monitor is processed in the "polling mode"; asynchronous interrupts are processed by the (TSS/360) system

50

and return indications sent back to the Monitor. (In the current NASIS system, these are handled truly
aschronously; the new method is much simpler and less prone to system complications.)

51

NASIS OVERVIEW'S GLOSSARY

"Accession Number" - A NASIS-oriented term meaning a key which servies to uniquely identify a record.

"Access Method" - A software link which aids the user in transferring data into or out of memory from a second-
ary storage device.

"Algorithm" - A sequence of instructions which perform a desired task in a definite deterministic manner.

"Anchor File" - A NASIS-oriented term to indicate the file containing "anchor" information i.e., pertinent, often-
accessed information. This information is usually stored on a fast-access medium.

"Associated File" - A NASIS-oriented term indicating one or more associated files which may exist in parallel
with the anchor file. The records of each of these files are extensions of the anchor file and have
the same key values. These records usually consist of long infrequently accessed data. These data
may be stored on slower, more economical devices and are mutually exclusive of the data in the
anchor file.

"ASRDI" - Aerospace Safety Research and Data Institute.

"Asychronous" - That which is not synchronized with respect to any other event; an event whose occurrence is
not synchronized with program execution and thus may occur at any time.

"Background" - Nonreal-time, nonconversational lower priority tasks run on a time-sharing or multiprogramming
system whenever high-priority or quick-response programs are inactive.

"Backup" - Auxiliary storage (tape, disk, cards) containing the most recent copy of a system to be used in case
the current system is accidentally destroyed.

"Batch Processing" - A technique .that loads and activates a single job which then processes several unrelated jobs
sequentially, without having to be reloaded or reinitialized for each job.

"Boolean" - Pertaining to the algebra developed by George S. Boole (1815-1864). It is used today in formal logic
systems to express relations between sets. Its main logical operators (AND, OR, NOT) are equiv-
alent to the ordinary algebraic operations (*, +, -)•

"Byte" - A string of binary digits operated on as a unit. It is the smallest division of memory which can be ac-
cessed as a unit.

"Compiler" - A program to translate a higher level language (e.g., PL/I, COBOL, FORTRAN) into machine lan-
guage.

"Compiler-Oriented Language" - A language, normally computer independent, designed to facilitate the accurate
description of procedures, algorithms, or routines belonging to a certain set of procedures.

"Connect Time" - The total time a terminal is attached to the computer during a terminal session i.e., the total
elapsed time between LOGON and LOGOFF.

"Conversational" - The interaction between a user and a time-sharing system, via a terminal device. The user can
enter his task to the system and then direct the system as to the manner of processing the task.

"CPU Time" - The total elapsed time the Central Processing Unit was dedicated to running a user's task.

"CRT" - Cathode Ray Tube - a T.V.like device most commonly used in graphics applications.

"Cross Reference File" - A file associated with some field in a NASIS anchor record. Its records consist of field
values of the anchor record field and key values of the anchor records having this specific field
value.

"Data Base" - A collection of machine-readable files so structured as to contain in an efficient and comprehensive

52

manner the total information content of a particular application.

"Dataplex" - A NASIS-oriented term indicating a data structure consisting of a FILEPLEX and an XPLEX.

"Dataset (Data Set)" - A named collection of logically related data records stored upon some machine-readable
medium.

"Direct Access" - A type of storage medium that allows information to be accessed by positioning the medium or
accessing mechanism directly at the location of the information required.

"Descriptor File" - A NASIS-oriented name indicating a file whose records contain a set of values which define
the attributes of data fields of the files within a DATAPLEX.

"Dynamic Allocation" - Providing storage to a program based upon the actual instantaneous need for storage
space, rather than its anticipated or predicted demand.

"Element" - A NASIS-oriented term indicating a logical data group within a field.

"Entry Point" - Any location in a program to which control is passed from another program.

"Executive" - A routine that controls the execution of other routines. This simplifies the operator intervention in-
volved in running a task and insures a more efficient operation.

"External Entry Point" - An entry point referenced by this program but defined in another program.

"FCB - File Control Block" - This is a data-base-executive created control block. It is an array of data control
blocks, work areas, and, possibly, null records required to handle the field contained in the
MFCB.

"Field" - A specific area used for a particular category of data. In the NASIS System "field" represents a logical
data group in a record.

"File" - A collection of related records treated as a unit. A physical file refers to the actual physical device on
which the data are stored. A logical file is defined in terms of the information it contains inde-
pendent of the medium on which the data are stored. Thus, a logical file might exist on two dif-
ferent physical devices.

"FILEPLEX" - The NASIS-oriented name given to the anchor file and its associated file(s).

"Global Variable" - A variable whose value is defined throughout a program as opposed to a local variable whose
value is known only within the block in which it is defined.

"Indicator" - See "Switch".

"Information Retrieval" - The technique and process of accumulating, classifying, cataloging, storing, and search-
ing large amounts of data, and reproducing or displaying the required information contained in
the data on demand.

"Information Storage" - A group of storage devices, not necessarily the same, used to hold information.

"Interactive Mode" - The executing of a task conversationally.

"Interface" - The place at which two different systems or sub-systems meet and interact with each other.

"Internal Form" - The actual binary representation of a program or data within a computer.

"Inverted Index" - A NASIS-oriented term referring to a cross referenced file. It is an index to the values of an
information field (either in the anchor file records or in an associated file's records). Each of the
records has a value of the index field as its key value and the list of anchor file keys as data.

53

"Key" - A data item that serves to uniquely identify a record. The key may be imbedded within the record, or it
may immediately precede the record, or it may be separated from the record and contain the ad-
dress of the rest of the record.

"Linear File" - A file in which the data are stored sequentially.

"List" - A group of items in the system waiting for the attention of the processor. The number of items in the list
may vary from time to time.

"List Processor" - A program in which list structures are used to organize memory.

"Lock Out" - The ability within a system to reserve any resource for exclusive use. Thus, if some resource is being
updated, the user doing the updating has the ability to exclude all other users from this resource
until he is through using it.

"Macro Instruction" - One line of program code which generates a program routine rather than one program in-
struction.

"Mainline" - A NASIS-oriented term referring to any control routine that functionally performs the various ac-
tions of the system by directing calls to the executive routines for data base I/O and performing
all internal manipulations on the data.

"MFCS - Mainline File Control Block" - A NASIS-orinted control block defined in DBPL/I. It is a direction ta-
ble which is used by a mainline program to successfully complete a necessary task.

"Module" - A functional programming unit having known properties. Usually programming modues are so con-
structed so as to be used interchangeably with a number of different prograMS. Thus, the prob-
lem of maintaining a large system is reduced.

"Monitor" - A collection of program modules that control and supervise the usage of a system.

"Multiprogramming" - A technique by which a computing system can be used to execute two or more unrelated
programs concurrently.

"MT/T - Multi-Terminal/Task" - This is a single task running under TSS/360 having the ability to service as
many terminals as necessary.

"On-Line" - Referring to a device which is capable of interfacing with the computer. The device operates under
the control of the computer and is used in cooperation with the computer to accomplish a task.

"Opcode" - A symbolic or numeric code indicating to a processor a specific operation to be done.

"Operation" - A process or a procedure that obtains a unique result from any permissable combination of ope-
rands, or the sequence of actions resulting from the execution of one digital instruction.

"Operating System" - A set of programs and routines which guide the computer in the performance of its tasks,
assists both programs and programmers with supporting functions, and increases the usefulness
of the computing hardware.

"Page" - A standard quantity of main-memory capacity usually 512 to 4096 bytes. Pages are used in allocating
memory and partitioning programs into control sections.

"Parameter" - A quantity that is assigned a temporary value in order to modify control or influence a process or a
procedure.

"PL/I" - A multipurpose programming language developed by IBM for the System/360 which can be used for
commercial and scientific purposes.

The following define some of the terms used in the PL/I language. They are not meant to be all
inclusive.

54

a. BUILT-IN function - a function which has already been described in a higher level lan-
guage.

b. CHARACTER-STRING - A PL/I data item which can be constant or variable and whose
"value" is a string of characters.

c. DECLARE statement - A PL/I statement which lists the names of all variables used within
the program and their attributes.

d. DO group - A group of statements in PL/1 beginning with the DO statement and ending
with the END statement. A DO-group behaves much like a single statement within the
PL/1 syntax.

e. dynamically encompassing block - The outermost block within which the value of a speci-
fied variable is known.

f. END - This statement indicates the end of a block.

g. external procedure - A procedure entirely defined outside the procedure from which refer-
ence is made.

h. FIXED BINARY - An attribute of a variable declaring that its internal representation will
be binary and its length fixed.

i. GO TO statement - A transfer of control statement.

j. LENGTH - A built in function used in connection with character strings. It will return an
integer value which is the number of characters in the string.

k. Pointer variable - A variable whose value is the location of some variable.

1. RETURN - A statement which causes control to be returned to the calling procedure and
from there the program continues in sequence.

"Post" - To record the occurrence of an event for later interrogation by a procedure. The action of the procedure
will depend upon the status of the event.

"Preprocessor" - A program which acts upon data prior to sending it to a processor.

"Print98" - A NASIS data set used if the user wished to SAVE the current screen image appearing in the output
area of the display terminal.

"Print99" - An in core table used to KEEP information normally processed by the REVIEW/RECORD com-
mands. After a terminal session this table of commands can be REVIEWed or RECORDed to-
tally or selectively.

"Procedure" - A sequence of actions which collectively accomplish some task.

"Processor" - A program which transforms some specified input stream into some desired output stream. Proc-
essors are normally referred to as assemblers or compilers.

"Qualified Name" - A name further identified by associating it with additional names. Usually names are
qualified in an hierarchical manner. This allows for an explicit reference to a resource or a more
general reference to a group of resources.

"Queue" - A group of items in the system waiting to be acted upon by some processor.

"Read-Only" - An attribute of some medium or procedure indicating that the contents of the medium or proce-
dure cannot be altered during use.

55

"Record" - A group of related data items treated as a unit.

"Region Dataset" - The region data set is a special form of a VISAM data set. Records in region datasets are in-
dexed by two concatenated fields; region names and line numbers. Region names arranged al-
phabetically, divide the dataset into regions; line numbers index the lines within regions.

"Response Time" - The time it takes for the system to react to a given input. More generally, the response time
could be defined as the interval between an event and the system's response to the event.

"Restart" - The process of beginning a program anew at some point determined during a prior execution of the
program. Usually some catastrophic event has occurred during a previous run and the program-
mer wants to continue running the program from the last known valid point.

"Retrieval" - See "Information Retrieval".

"Routine" - A sequence of machine instructions that direct the execution of a well-defined function.

"Search" - The process of seeking a desired item or condition as a set of related or similar items or conditions.

"Self-Organizing" - The capability of a system to arrange its own internal structure.

"Sequential Access" - A process that involves reading or writing data serially and, by extension, a data medium
that must be read serially.

"Set" - A list of anchor file keys which are directly coupled to the expression in the most recent SELECT com-
mand, (i.e., The SELECT command searches the inverted index file specified for the expression
specified. All hits are stored in a special list called a set.)

"Set-number" - A number assigned to a set. Currently this number can range from 1 to 97.

"Source Program" - The form of a program just as the programmer has written it. This usually exists on coding
forms or on some machine readable medium.

"Storage" - Any device that can accept, retain, and read back data one or more times. Usually synonymous with
memory.

"Strategy" - A NASIS-oriented term indicating a sequence of commands used during a terminal session. This se-
quence can be saved. Thus, a person has a hard copy of the logic he used during the terminal
session. If desired, this sequence can be executed automatically at a later date and the user can
continue from that point.

"Strategy-name" - The name given to the data set containing the user's strategy.

"String" - A set of consecutive, adjacent items of similar type.

"Switch" - A hardware or programmed device for indicating that one of several states or conditions have been
chosen, or to interchange or exchange two data items.

"Syntax" - A set of rules needed to construct valid expressions or sentences in a language.

"Syntax Analysis" - The process of determining whether or not the syntax of a given string is valid.

"Table Driven" - A process whereby the validity of the input is determined by a processor whose actions are di-
rected by the contents of a table.

"Task" - A set of instructions, data, and control information capable of being executed by the computer in order
to accomplish some purpose.

56

"TCB - Terminal Control Block" - A NASIS-oriented term used in TSPL/I. This control block provides for con-
trol interface between the user's program and TSPL/I.

"Thesaurus File" - A separate dataplex under the NASIS system. It contains synonyms of key words, more en-
compassing keywords, or more specific key words. It is to aid the user in preparing his strategy.

"Time-Sharing" - A method of using a computing system that allows a number of users to execute programs con-
currently and to interact with them during execution.

"Time Slice" - The time allotted to a user during the complete execution-time cycle for all users of a time-sharing
system.

"Trap" - An automatic transfer of control to a known location occurring when a specified condition is detected
by hardware. A trap is to be distinguished from an interrupt in that a trap is caused only by the CPU, the pro-
gram, or some internal event.

"TSS/360 - Time Sharing System/360" - An operating system for large-scale 360 configurations having time-
sharing features.

"Unary Operation" - An operation in which only a single operand is required in order to give a unique result.

"Universal-record-format" - The generalized record format used in the NASIS system. It consists of a record all
of whose variable fields follow its fixed fields. This allows high-order addressing of fixed fields and relative-
position addressing of variable fields. The net result is space savings.

"Variable Length Record" - A data or file format that does not specify exactly the size of each individual record,
but allows each record to be exactly as long as needed up to some specified fixed maximum.

"Virtual Memory" - A programming technique used in operating systems to make the actual physical memory ap-
pear (virtual) to be larger than it actually is. This is done by an elaborate mapping technique which causes cur-
rently unneeded portions (pages) of the user's program to be written to an auxiliary storage device (usually a
drum). These pages will be recalled when the user's program has need of them. This whole technique is transpar-
ent to the user and he thus has the sensation of having the entire "virtual" machine to himself.

"VI SAM - Virtual Indexed Sequential Access Method" - An IBM-supplied access method which organizes records
into an ascending collating sequence, based upon a data key associated with each record.

"Wait" - A condition which indicates that a task cannot continue until a specified event or combination of events
occurs.

"XPLEX" - A NASIS-oriented term indicating a group of cross reference files associated with a specified FILE-
PLEX.

NASA-Langley, 1972 34 E-65C1 57

. K Ondelivstabie { Section 158

. posratManual) 00>»9tRewrn

and space activities oj the United States shall1'eft
conducted so as to .contribute . '.*. to the expamiori, oj human knowl-
edge- 'oj phenomena in the atmosphere and space. T,he Admtnistratton
shall, provide for tfyetividest practicable attd appropriate dissemination
offtttformation concerning its -activities and the results thereof' ''•

"\ "• " '/" ~/ , * * ^ 1"

'", '" —^NATIONAL AERONAUTICS AND'SPACE Aer OF 1958

NASA SCaENHFlC ANDl TECHNICAL PUBOCMTONS

1 TECHNICAL/REPORTS: Scientific and }
./<;/technical' infofniation considered .important, £ j
•;-I/complete, and'xa -lasting contribution to existing'
.Wkndwledge. 7 5- , '> / ' '

' vTECkNICAL NOTES: Inforrmtipn less broad
,-in scope'but nevertheless of importance-as a
^contribution to existing knowledge. ',;

TECHNICAL MEMORANDUMS: ; :-
Information receiving limited distribution

. because of preliminary data, security classifica-
>>v |,rio

n, or other ;reasons, ;

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL, TRANSLATIONS:' Information
published'iri'a foreign language considered'' *tt
tolnierit NASA distribution in English. ' *•-'

•'J'>- / "<-' -;., , \ •";,

SPECIAL PUBLICATIONS-; Information $
derived from or of value to NASA activities. '' ,
Publications include conference proceedings,
monographs, data compilations, handbooks,
sourcebooks, and special bibliographies.,

TECHNOLOGY ^UTILIZATION
PUBLICATIONS: information on technology
used by NASA that may be of particukr
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and

Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546

