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DEFINITION AND APPLICATION OF LONGITUDINAL STABILITY 

DERIVATIVES FOR ELASTIC  AIRPLANES 

By William B. Kemp, Jr. 
Langley  Research  Center 

SUMMARY 

A  review of past  practices  in  the  analysis of longitudinal  stability of elastic air- 
planes  has  revealed  some  inconsistencies  arising  from  an  inappropriate  constraint on 
airplane  speed.  These  inconsistencies  lead to ambiguous  definitions of stability  deriva- 
tives  and  inaccurate  prediction of some  stability  characteristics and, possibly,  even per- 
formance  characteristics. 

A  single,  consistent set of longitudinal  stability  derivatives  for  elastic  airplanes is 
defined  in  this  paper. Unlike past  practice,  the  aeroelastic  contributions of dynamic- 
pressure  perturbations are included,  and  the  aeroelastic  contributions of normal  acceler- 
ation  appear  primarily  in  the  derivatives with respect  to pitching  velocity  and  angle-of- 
attack rate. 

Approximate  expressions  for  static  stability  and  control  parameters  in  terms of 
these  derivatives are shown to  correlate  well with results of more  complete  dynamic 
solutions. Some results of an  illustrative  analysis  cast doubt  on the  general  existence of 
a neutral point o r  maneuver  point  and  indicate  the  possibility of a strongly  divergent  phu- 
goid oscillation at relatively high frequency,  particularly when the  variation of atmo- 
speric  properties with  altitude are considered. One commonly  used  alternative  formula- 
tion of the  stability  derivatives is shown to yield  significantly  inaccurate  predictions of 
not only the  speed  stability  and phugoid characteristics, but also the  short-period fre- 
quency  and  damping. 

INTRODUCTION 

The  overall  flight  performance of many aircraft  designs of current  interest is 
strongly  influenced by the effects of elastic  deformation of the  aircraft  structure  under 
the  action of the  flight  loads.  These  aeroelastic effects are particularly  important for 
aircraft  having large size, low structural  design  load  factor, low structural weight f rac-  
tion,  and  high  operating  dynamic  pressure.  Aeroelastic effects are manifested not  only 
in  the area of structural  dynamics  (flutter,  landing  loads, etc.) but also in the  quasi-steady 
areas of stability  and  control  and  trimmed  flight  performance. 



Two different  approaches are widely  used for analysis of quasi-steady aeroelastic 
effects: the  modal  technique  and  the  influence-coefficient  technique. As pointed  out in 
reference 1, both  techniques can utilize the same  description of aerodynamic, elastic, 
and  mass  properties but  differ  in the form of the perturbation  variables  whose  effects 
are superimposed  to describe the structural  deformation. In the modal  technique, a rela- 
tively  complete  dynamic  formulation  involving the normal  modes of free vibration is 
reduced  to a quasi-steady  formulation by assuming that the velocities  and  accelerations 
in these vibration  modes are negligible. The influence-coefficient  technique  applies 
steady-state  solutions for structural  deformation  to the relatively low .frequency  rigid- 
body motions. Both techniques are developed in  some  depth  in  reference 2, which points 
out that from either technique, the quasi-steady  (termed  "equivalent elastic" in  ref. 2) 
formulation  embodies the implicit  assumption that the structural  deformation is in  phase 
with the applied  loads  and  therefore the dynamic  analysis  requires no more  degrees of 
freedom  than are needed for  analysis of a rigid  airplane. The quasi-steady  effects of 
aeroelasticity are then  represented  completely by changes  in the aerodynamic  stability . 

derivatives  and by new derivatives which are either nonexistent o r  negligible for a rigid 
airplane. 

A review of the  procedures outlined  in references 1, 2, and 3 for calculating  the 
longitudinal  stability  and  control  characteristics of elastic  airplanes  reveals  some dis- 
turbing  inconsistencies. For example,  in  reference 1 the forward-speed  degree of free- 
dom is omitted  from the basic  dynamic  formulation,  yet a static  stability  parameter  for 
l g  level  flight is developed. This  omission of the speed  degree of freedom is believed 
to be typical of many  applications of the  modal  technique. In reference 2, aerodynamic 
derivatives with respect  to  dynamic  pressure  are included  in  the  expression  for  longitu- 
dinal  static  speed  stability but a r e  omitted  in the dynamic  stability  analysis.  Moreover, 
all the derivatives  recommended  for  use  in the dynamic  analysis are derived  under a 
constraint which is valid  only at constant  dynamic  pressure.  Reference 3 makes  use of 
the same  constraint but suggests the use of two neutral-point  locations,  one  applicable  to 
constant-speed  maneuvers  and the other  applicable  to  constant  -load-factor  maneuvers. 
These  inconsistencies  can lead to   e r ro r s  not only  in the predicted  stability  and  control 
characteristics, but also in the predicted  trimmed  drag  coefficient  through  use of inap- 
propriate  aerodynamic  derivatives related to  lift-curve  slope  and  static  stability. 

When it is considered that meaningful  indices of static  stability  during  perturbations 
in either  speed  or load factor  can  be  obtained  from  control  response  transfer  functions 
resulting  from a single  solution of the dynamic  longitudinal  equations of motion, it is 
apparent that a single set of aerodynamic  stability  derivatives  must exist for a given  flight 
condition. These  stability  derivatives are then  applicable,  within the limitations of linear 
dynamic  analysis  and the quasi-steady  aeroelastic  assumptions,  to the prediction of all the 
pertinent  static  and  dynamic  stability  and  control  characteristics as well as aerodynamic 
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performance  characteristics. In this  paper,  an  attempt  to  define  such a set of derivatives 
is described and the  significance of certain of the  derivatives  to  the  longitudinal  stability ' 
and  control  problem is examined by means of illustrative  calculations. 

SYMBOLS 

a aerodynamic  operator 

hl aerodynamic  influence  -coefficient  matrix 

a velocity of sound, meters/second 

CBI aeroelastic  correction  matrix 
.- 

hi1 matrix  used  in  calculating  dynamic-pressure  contributions  to  stability 
derivatives 

[BmAd  matrix  used  in  calculating Mach number  contributions  to  stability  derivatives 

b  reference  span,  meters 

CA axial-force  coefficient, - - Fx?A 
PS 

CD drag  coefficient, 
PS 

CL lift  coefficient, qs 
MY, A 

Cm pitching-moment  coefficient, - QSC 

FZ, A 
CN normal-force  coefficient, -- qs 

CX local  X-force  coefficient, - FxYA 
PSz 

CZ local  Z-force  coefficient, - PSI 

C reference  chord,  meters 

Lift 

FZ, A 

F force, newtons 
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FX,  Fy, FZ force  components  along  reference axes, newtons 

gravity  acceleration,  meters/second  2 

gravity  acceleration at sea level,  meters/second 2 

angular  momentum,  kilogram-meters2/second 

altitude, meters  

inertia  dyadic 

moments of inertia about reference axes, kilogram-meters2 

product of inertia about X- and Z-axes, kilogram-meters2 

unit vectors  along  reference  axes 

MY,A + MY,T 2 Mach number: or I . l/second 
lY 

MX, My, MZ moment  components  about  reference  axes,  newton-meters 

m mass,  kilograms;  or any  motion  variable 

n .  component of combined  kinetic  and  gravity  acceleration  in  negative 
Z-direction,  normalized by go 

p,q,r  angular  velocities  about  reference axes, radians/second 

P  any  physical  variable 

a dynamic  pressure, @, 2  newtons/meterZ 

R  Reynolds  number, P& I.1 

S reference wing area, meters  2 

SZ local  panel area, meters2 
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structural  operator 

structural  slope  influence-coefficient  matrix 

Laplace  variable 

displacement of propulsive  thrust  control 

time,  seconds 

velocity  components  along  reference axes, meters/second 

normalized  velocity  perturbation, - v - VI 
V1 

velocity, meters/second 

airplane weight,  newtons 

orthogonal  reference axes 

X =  FqA + Fx’T, l/second 
mV1 

X,Y,Z coordinates  relative  to  reference  axes,  meters 

x distance behind leading  edge of reference  chord,  fraction of reference  chord 
C 

Z =  FZ’A + FZ’T, l/second 
mV1 

a angle of attack,  radians 

P angle of sideslip,  radians 

6 angular  displacement of aerodynamic  control  surface, radians 

€ local  slope of mean  camber  surface, -- 

€6 

dz 
dx 

weighted  value of mean-camber-surface  slope  used  to  represent unit 6 

{P damping ratio of phugoid  mode 
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CSP damping  ratio of short-period mode 

e,+, + Euler  attitude  angles in pitch, roll,  and yaw, respectively,  taken  in  order 
of qY Oy+ from  earth  reference  to  airplane  reference,  radians 

I.1 air viscosity,  newton-seconds/meter2 

P air density,  kilograms/meter3 

U induced  downwash angle  used as boundary  condition, radians 

w angular  velocity,  radians/second;  or  circular  frequency,  radians/second 

undamped natural  frequency of phugoid  mode,  radians/second 

wSP undamped natural  frequency of short-period mode,  radians/second 

Subscripts: 

A 

a 

c.g. 

des 

F 

from  aerodynamic  sources 

value at aerodynamic  control  point 

value  at  center of gravity 

value at airplane  design  condition 

increment due to  flexibility 

value at force  application  point 

from  inertial  sources 

index  indicating a member of a set 

value  corresponding  to  jig  shape 

local  value 
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P  perturbation  from  reference  flight condition 

S steady state 

S referred  to  stability axes 

T from  propulsive  sources 

U unsteady 

1 value at reference  flight condition 

Mathematical notation: 

( *  ) derivative  with  respect  to  time 

( "  1 second  derivative with respect  to  time 

( -1  vector  quantity 

0 column  matrix 

{ >T row  matrix 

c1 matrix 

€Il diagonal  matrix 

Stability derivative  notation: 

Any  of the following  variables: 

W,W,q,Sl ,~,f i ,T,h 

when used as a subscript on any of the following  quantities: 

denotes the stability  derivative of the indicated  quantity 
variable. 

with  respect  to  the  indicated 
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DEVELOPMENT OF FORMULATION 

Fundamental  Assumptions 

As indicated  in  the  introduction, it is desired to define a self-consistent set of aero- 
dynamic  stability  derivatives  applicable  to  the  calculation of the  longitudinal  static  and 
dynamic  stability  and  control  and  trimmed flight characterist ics of an  elastic  airplane. 
These  derivatives  will be defined  in  the  context of their  role as constant  coefficients in 
the dynamic  equations of airplane motion. Since  the  aerodynamic  processes involved are 
not necessarily  linear with the  motion  variables,  the  concept of local  1ineariEation  will  be 
used so that the  aerodynamic  derivatives  can be considered  constant  for  small  motion 
perturbations  from a reference  flight condition. The  linearized  small-perturbation  equa- 
tions of motion  then  constitute  an  appropriate  form  for  use of the  derivatives. 

The  basic  assumption of quasi-steady  aeroelasticity  will  be made,  namely, the 
structural  deflection is assumed  to be in  phase  with  the  applied loads. This  assumption 
is equivalent to  ignoring the velocities  and  accelerations  in  the  elastic  degrees of f ree-  
dom. One result of this  assumption, stated in  reference 2, is that  the set of equations of 
motion is reduced  to  include  only  those  governing  motion of the  airplane  center of gravity 
(abbreviated c.g.). The  quasi-steady  aeroelastic  effects are then  embodied  completely 
in  the  aerodynamic  characteristics,  and  the  equations of motion are otherwise  identical 
to  those  for a rigid  airplane.  The related assumption that the  aerodynamic  load  change 
arising  from  structural  deformation is in  phase  with  the  structural  deflection is also 
made. In other  words,  the  unsteady  aerodynamic  effects related to  structural  deforma- 
tion a r e  neglected. However, this does not preclude  the  existence of aerodynamic  deriva- 
tives with respect  to  the  rate of change of angle of attack. 

Although use of the  quasi-steady  assumptions  clearly  introduces no error  in  the 
prediction of steady-state  flight  characteristics,  some  inaccuracy  can  occur  in  the  char- 
acteristic stability (rigid body) modes  because  dynamic  coupling  between  these  modes  and 
the  elastic  modes of structural  vibration is neglected. This coupling  can  become  increas- 
ingly  significant as the frequency of any structural mode  approaches  that of any rigid-body 
mode. In spite of the  possible  inaccuracy,  the  quasi-steady  assumptions are frequently 
made, particularly  in  preliminary  aircraft  design  studies,  because of the  simplified 
dynamic  formulation that results  from  their  use. 

To describe  the  elastic  properties of the  airplane  structure, a structural  reference 
plane is assumed  to exist and  to be oriented  in  suck a way that  the  in-plane flexibility is 
negligible  relative  to  that  normal  to the reference plane. Furthermore,  the  longitudinal 
aerodynamic  characteristics are assumed  to be unaffected by elastic  distortion of either 
vertical  fins or  fuselage cross sections. All remaining  structural  deflections are con- 
strained  to  the  direction  normal  to a single  plane  chosen  to lie as nearly as possible 

8 



I 

parallel  to  the  mean  camber  surfaces of the wing, body, and  horizontal tail. It is appro- 
priate,  then,  to  choose  an  orthogonal  system of reference  coordinate axes, as shown in  fig- 
ure  1, so that  the  Z-axis is parallel  to  the  direction of allowed structural  deflections  and 
the  X-axis lies in  the  plane of symmetry.  For  small  perturbations  from  the  deflections 
existing  in a reference  flight condition, the  center -of -gravity  location,  the  pitching  moment 
of inertia,  and  the  aerodynamic  and  structural influence coefficients can be  considered  to 
be  constant. In practice,  these  quantities,  determined  for a given  reference condition, 
are frequently  used  over a set of flight  conditions  to  be  analyzed. 

Formulation of Stability  Derivatives 

In airplane  longitudinal  stability  analysis,  one is concerned with the  motion of the 
airplane as a whole in  three  degrees of freedom,  including two components of translational 
freedom  and one of pitch  rotation. An additional  degree of freedom  exists  for  each  inde- 
pendent control  system. In the  present  development, two such  control  systems  will  be 
assumed, one aerodynamic  and one propulsive, having control  displacements  denoted by 
6 and T, respectively.  The  conditions  for  dynamic  equilibrium  in  the  three  airplane 
degrees of freedom are 

FZ,A " FZ,T " FZ,I = ( 1b) 

MY, A " MY, T " MY, I = ( I C )  

where  the nine force  and  moment  components  may  vary with time.  Conditions  for  dynamic 
equilibrium  in  the  two  control  degrees of freedom are assumed  to  exist  and  be  satisfied 
although  they will not be  specified. 

Equations of motion are formed  from  the  equilibrium  equations when the  forces  and 
moments are expressed as functions of a set of motion  variables.  The  fundamental set of 
motion  variables  consists of the  displacement  and its successive  time  derivatives  in  each 
degree of freedom.  Alternative sets of motion  variables  can  be  derived  from  the  funda- 
mental set by transformation.  The  total  number of motion  variables is somewhat  arbi- 
t ra ry  and depends  on  the  maximum  and  minimum  order of differentiation of each  displace- 
ment  needed  to  express  the  forces  and  moments with  sufficient  accuracy  for  the  problem 
at hand. Second derivatives of the  airplane  displacements are needed to define  the  inertial 
contributions  and are believed  to  be of sufficiently high order  to  describe  the  aerodynamic 
and  propulsive  contributions at frequencies  compatible with the  quasi-steady  assumption 
made  in  the  present  problem. At the  low-order end, one or more of the  displacements 
themselves  may be omitted  from  the set of motion  variables.  Under  the  frequently  made 
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assumption of a uniform  atmosphere, the forces  and  moments  do  not  depend  on the loca- 
tion of the  airplane, and even if atmospheric  variations  with  altitude are considered, the 
horizontal  displacement is of no significance. 

Alternative sets of motion  variables  can be derived by transformation  from the 
fundamental set. Common practice  in the analysis of longitudinal aircraft  motions has 
resulted in  the  use of variables  such as (V,a, 0) as the set of lowest  order  motion  vari- 
ables in the three airplane degrees of freedom. These variables  must be supplemented 
by the  control  displacements 6 and  T for the five-degree-of-freedom  problem at 
hand. These five  variables  and  their  time  derivatives  constitute  an  appropriate set of 
motion  variables  only if a locally  uniform  atmosphere is assumed. If the variation of 
atmospheric  properties  with.altitude is to  participate  in the dynamic  problem, a more 
appropriate set will  be  (V,h,a, 0,6,T), but because these variables are not mutually  inde- 
pendent, the equations of motion  must  include a kinematic  equation  relating li to V, a, 
and 0. This  scheme is retained  in the present  development. 

Common practice  in  dynamic  stability  analysis has led to  the  use of stability  deriv- 
atives  expressed  in  either  coefficient  form or a dimensional  form having units of negative 
powers of time.  The  coefficient  form is usually applied only to  aerodynamic  forces and 
moments,  whereas the dimensional  form  includes both aerodynamic  and  thrust  contribu- 
tions. To define these derivatives,  equations (1) may be restated as 

1 FZ, I 
mV1 = + F ~ , ~ )  = -- 

Expressing X,  Z, and M as functions of the motion  variables  and  applying the prin- 
ciple of linear  superposition of small  perturbations  give 
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where  mj, 1 is the  value of the  jth  motion  variable  in  the  reference  flight  condition .and 
mp,j is the  perturbation of the  jth  motion  variable  from its reference value.  The  partial 
derivatives  appearing in equations (3) are defined as the  complete set of stability  deriva- 
tives  in  dimensional  form.  The  stability  derivatives in coefficient  form are similarly 
defined as the  partial  derivatives of the  coefficients CA,  CN, and  Cm  with  respect  to 
motion  perturbations  where 

MY, A 
qsc C,=- 

In  determining  the  values of the  stability  derivatives by theoretical,  experimental,  or 
combined  means,  the set of motion variables is not necessarily  the  most  appropriate set 
for  isolating  and  understanding all the  contributions  to  the  stability  derivatives. A more 
appropriate  set might  be  those  variables  describing  the  physical  processes involved  in 
the  production of aerodynamic  and  propulsive  loads. In general,  any  change  in  the  shape 
of an  airplane  surface  will  produce a change  in  the  aerodynamic  load  distribution.  There- 
fore, any process  capable of deforming  the  structure of an  elastic  airplane  will  contribute 
to one or  more  stability  derivatives.  Conversely,  for  an  elastic  airplane, a change in 
aerodynamic or  thrust  loading will,  in  general,  -change  the  structural  deformation.  Con- 
sequently, all stability  derivatives  reflect  contributions  from  one  or  more  processes 
capable of deforming  the  structure.  Therefore, a set of physical  variables  capable of 
defining  the  structural  deformation is a suitable  set  for  determining  the  stability  deriva- 
tives of an  elastic  airplane. 

If it is assumed  that  such a set of physical  variables pk exists and  that it can  be 
functionally  related  to  the set of motion  variables,  then a stability  derivative,  aX/amj 
for example,  can  be  expressed as 

K 

1 k=l 1 

The  number of physical  variables K need not equal  the  number of motion  variables J 
and  the  physical variables need not be  mutually  independent  under  the  constraints of the 
airplane  dynamic  problem. 

Under the  concept  described,  the  distribution of structural  deflection  can  be  consid- 
ered as the  linear  superposition of a number of deflection  distributions,  each  identified 
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with a particular  physical  variable.  For  small  perturbations  from a given  reference 
flight condition, the  shape of each  distribution is invariant  and its amplitude is propor- 
tional  to  the  perturbation of its physical  variable. 

An appropriate set of physical  variables  may now be  determined.  Consider  an air- 
plane  configuration  represented by a nearly  planar  mean  camber  surface  divided  into a 
large number of elemental  panels. In symmetric  flight,  the  configuration  shape is defined 
for  aerodynamic  purposes by the  paneling  geometry  and  the set of chordwise  slopes 
( E )  = (-dz/ax} at all panels.  The  configuration is flying  in an aerodynamic  environ- 
ment  defined  globally by Mach number,  Reynolds  number,  and  dynamic  pressure,  and 
locally by the set of local  angles of attack {ai} and  angle-of-attack  rates {&i} act- 
ing  on  each  panel  and  arising  from  aircraft  motion  and  induced  effects of the  propulsion 
system.  The sets of X- and  Z-components of the  aerodynamic  force  coefficients  acting 
on the  panels  can  be  expressed by 

where a represents  an  aerodynamic  operator  dependent  on  paneling  geometry, Mach 
number,  and  Reynolds  number.  The  subscripts S and U refer, respectively,  to 
steady-state  and  first-order  unsteady  aerodynamic  processes.  The  corresponding sets 
of force  components are 

The  distributions of 1ocaLangle of attack,  angle-of  -attack  rate,  and  surface  slope 
are represented by the  superposition of specifically  identifiable  contributions as follows: 

{hL> = h {l}- - sl {xa} 

The  contributions  to ai and &i arise from  the  time-dependent  airplane  angle of attack 
and  pitch rate and  the  thrust-induced flow perturbations.  The set (.a) consists of the 
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x-coordinates of points  (one  per  panel) at which  the  aerodynamic  boundary  condition of 
no flow  through  the  surface is satisfied.  The  contributions  to  local  surface  slope,  defined 
at the  same  points as x, arise from the jig  shape  (mean  camber  surface of the com- 
pletely  unloaded  structure),  control-surface  deflection,  and  structural  flexibility. 

The flexible contribution  to  surface  slopes  can be expressed as the  influence of a 
structural  operator A operating  on  the  Z-component of the  forces  acting on each  panel 
arising  from  aerodynamic,  inertial, and  propulsive  sources as follows: 

The  aerodynamic-force set {Fz,A} has  been  defined by equation (7b). The  inertial- 
force set {Fz,~}  results  from  the  action on  the  mass  distribution of the set of 
Z-components of linear  acceleration  arising  from  gravity and airplane motion. By using 
a lumped parameter concept, let  mi be the  mass  assigned  to  the ith panel, assumed  to 
be located  at  the  point xf,i,yf,i,O).  The effect of this  mass  can be replaced by the 
inertial-force  vector 

( 

where Vi is the  velocity of mi  in  inertial  space.  Under  the  quasi-steady  assumption, 
the  velocity  and  acceleration of mi  relative  to the airplane as a whole are neglected, 
and  the  Z-component of inertial  force  can be written (ref. 4)  as 

In the  following  section,  equations of motion  applicable  to  analysis of longitudinal  motions 
in a banked turn are developed.  For  this  case,  the bank angle @ and  the  rolling  and 
yawing velocities  p  and r are nonzero but are considered  to be constants. In equa- 
tion (30) the  first  four  terms  in  the above  equation are related to n, the  normal  acceler- 
ation  sensed  at  the  airplane  center of gravity.  The last term  gives rise to  an  antisym- 
metric  distribution of inertial  force  whose  effect on the  longitudinal  stability  derivatives 
should  be  negligible  and will be neglected. With these considerations,  the  inertial-force 
set can be written as 

where rm] is the  diagonal  matrix of masses  assigned  to  the  individual  panels and {xd 
is the set of x-coordinates of points at which loads are applied to  the  panels and is not 
necessarily  identical with {Xa}. The  relationship of X a  and xf to  panel  geometry is, 
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of course,  involved  in  the  processes  represented by both the  aerodynamic and the  struc- 
tural operators, a and 2. 

The  propulsive-force set {Fz T} is the set of Z-components of panel forces 
statically  equivalent  to  the  direct  thrust  reactions at the  engine  mounts. 

The  quantities X, Z, and M and  the  coefficients CA,  CN, and  Cm  can be 
obtained by summation  over  the set of panels  lying  on  one  side of the  plane of symmetry. 
Thus, 

It is now possible  to  identify  the set of physical  variables with  which structural 
deflection  modes can be associated and aerodynamic  and  thrust  loads  can be determined. 
Table I lists these  variables and the  symbols  used  for  each  value  in a steady  reference 

TABLE I.- THE PHYSICAL VARIABLES 

Physical  variable 

Control  deflection 
Angle of attack 
Angle-of -attack rate 
Pitch  rate 
Pitch  acceleration 
Normal  acceleration 
Mach number 
Reynolds  number 
Dynamic pressure 
Thrust  command 

Value in  reference 
condition 

61 
a1 
0 

91 
0 

n l  
M1 
R1 
61 
T1 

7 

” 

L 

Perturbation from 
reference condition 

6P 
aP 
A! 

qP 
4 
“P 
MP 
RP 
4, 
TP 
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flight  condition  and for  the  perturbation of each  from  the  reference condition. The equa- 
tions  through which their effects enter  the  aeroelastic  problem are also identified. 

In the  foregoing  discussion,  the  propulsive  process  was not described  in  detail. To 
define  the  form of stability  derivatives,  the  assumption is made  that  the'propulsion  sys- 
tem  outputs, {Fx,T), {FZ,T},. and {az ,~ }  can  be  described  in  terms of the  physical 
variables  listed  in  table I. 

In concept,  the  partial  derivatives of X, Z, and M or of CA, CN, and Cm 
with respect  to  each  physical  perturbation  variable  can  be  obtained  through  application 
of equations (6) to (13). The  desired  stability  derivatives are then  defined  by relations 
such as equation (5) once  the  partial  derivatives  a%/amj  have  been  determined. 
Because a mutually  dependent set of motion  variables  has  been  adopted,  the  partial  deriv- 
atives  will  be  evaluated  from  expressions for each  physical  variable  in  terms of a mutu- 
ally independent set of motion  variables  obtained by omitting  either  h or  a! from  the 
set (V,h,a!, 0,6,T). Thus,  the  physical  variables 6, a!,  iu, and T appear without  change 
in the  set of motion  variables.  The  variables q and 4 will also  appear unchanged in 
the  motion  variables,  replacing 6 and  since,  for  longitudinal  motions, 6 is a lin- 
ear function of g ,  as shown in  the following  section.  The  normal  acceleration  n is 
expressed as a function of V, a!, and 0 and  their  time  derivatives  in  equation (34) of 

' the  following  section.  The  remaining  physical  variables are  expressed as functions of 
V and  h as follows: 

In  applying  the  principle of small  perturbations,  it is convenient to define a non- 
dimensional  perturbation  in  velocity  magnitude as 

v - v1 
V 1  

Q=- 

where  the  perturbation  velocity  component iIV1 is directed  along  the  unperturbed  veloc- 
ity  vector  and is orthogonal  to  the  component apV1, as shown in figure 1. 

After  expressing  each  motion  variable as the  sum of a reference  value  and a per- 
turbation  value,  the  partial  derivatives  (a%/amj)l  can  be  derived  and are given  in 
table 11. 
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TABLE II.- THE PARTIAL DERIVATIVES (%)1 

The  desired  stability  derivatives  can now be defined by using  equation (5) and 
table II. In dimensional  form, 

X6 = (%)l 

x&# = (g)l - 3 cos al(@ 
g0 1 

16 



xq = (g)l + g, V1 cos 

xT = (%)1 

where  the  subscript 1 denotes a quantity  evaluated  at the reference  flight  condition  or, 
more  specifically, at the reference  condition  values of the  physical  variables as noted in 
table I. The Z and M stability  derivatives are defined by the  expressions  obtained 
by replacing X in  equations (18) by Z or  M. The  defining  expressions  for  the  coef- 
ficient  stability  derivatives are equivalent  to  those  for  the  dimensional  derivatives but 
may  include  constant  factors as appropriate  to  render  each  motion  variable  dimension- 
less; thus 

The  motion  variables 6,  a, 8, ii, and  possibly  T are already  dimensionless.  The 
stability  derivatives of CA, CN, and Cm with respect  to 4, i, and h are considered 
herein  to  retain  units  reciprocal  to  those of the respective motion variables. 

In evaluating the stability derivatives  from wind-tunnel experiments  and/or  theory, 
it is anticipated that the  coefficient  form will be evaluated first and  then  converted  to the 
dimensional  form  for  use  in  stability  analysis.  Expressions  for the dimensional  deriva- 
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tives in t e rms  of the coefficient  derivatives are needed therefore. Combining  equa- 
tions (2) and (4) gives 

The partial derivatives  with  respect  to the physical  variables are 

Note that 

Substituting  equation (21a) into  each of equations (18) in  sequence  results  in 
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(221) 

Equations (22) express  the  dimensional  X  derivatives  in  terms of the  partial  derivatives 
of CA  with respect  to  the  physical  variables.  Equivalent  expressions  in  terms of the 
complete  coefficient  form of the  stability  derivatives are 
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The  expressions  for  the Z stability  derivatives  can  be  written  simply by replacing 
X  with Z, CA with CN, and  FX,T  with FZ T in  equations (22) and (23). Simi- 
larly,  expressions for the M  stability  derivatives are obtained by replacing X with 
M, CA with -cC,, FX,T with MY,T, and  mV1  with Iy in  equations (22) and (23). 

The  relationship of the  stability  derivatives  developed  herein  to  those  discussed  in 
references 2 and 3 is of interest.  The  derivatives  with  respect  to  physical  variables as 
used  in  this  paper are, in  many cases, analogous to, and  may be equal to, the  derivatives 
termed  "zero  mass  derivatives"  in  references 2 and 3. The  stability  derivatives of this 
paper (Le., derivatives with respect  to  the motion  variables) are analogous  to  those 
termed "equivalent elastic  derivatives"  in  references 2 and 3. The  values of the  equiv- 
alent  elastic  derivatives as defined  in  references 2 and 3, however,  will be different  from 
those of the  stability  derivatives  defined  herein  because  the  equivalent elastic derivatives 
were  defined  under the assumption of constant  dynamic  pressure. This assumption 
results not only in  the  omission of the  dynamic-pressure  contribution  to  the ii deriva- 
tives, but also  in a completely  different  form  for the normal-acceleration  contribution 
to all derivatives. Note in  particular  that  for  an  unaccelerated  reference  flight  condition 
(ql = 0), equations (18) show that the derivatives with respect  to  angle of attack  reflect 
no contributions  from  normal  acceleration. In contrast, all the  equivalent  elastic  deriva- 
tives of references 2 and 3 are influenced by normal-acceleration  contributions  termed 
"inertial relief.'' 

Formulation of Equations of Motion 

The  equations of motion are formed by expressing the conditions  for  dynamic  equi- 
librium  in  each  degree of freedom (eqs. (1)) in te rms  of the motion  variables.  The sta- 
bility  derivatives  defined  in  the  preceding  section  represent  the  aerodynamic  and  thrust 
contributions  in t e rms  of the motion  variables.  The  inertial  contributions  must now be 
expressed  in  terms of the  same  motion  variables.  For  the  airplane as a whole, the  iner- 
tial reaction  to  gravity and translational  accelerations  in  vector  form is 

where 
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and 

T j = T p + j q + E r  

and T, j ,  and k' are unit vectors  directed  along  the X, Y, and Z body axes, 
respectively. 

4 

Similarly,  the  inertial  reaction  in  the  airplane  rotational  degrees of freedom is 

M 1 = - - = - i H x -  j H y - k H Z - Z X H  
4 dii - *  -C. e. 4 

dt 

where  the  angular  momentum fi can  be  written fi = I - G and the  components of the 
m 

L 

inertia  dyadic  in the body-axis  system  can be written  in  matrix  form as 

n r  I =  0 IY 0 

-Ix! 0 

if inertial  symmetry about the X-Z  plane is assumed. 

After performing  the  indicated  vector  operations,  the  inertial  components  in  the 
six airplane  degrees of freedom are found to be 

FKI = m(-g  sin e - 6 - qw + rv)  (264 

FY,I = m(g  cos 8 sin C$ - ir - r u  + pw) (26b) 

FZ,I = m(g  cos 8 cos C$ - i - pv -I- qu)  (26c) 

In order  to relate the  variables  in  equations (26) to  the  reference and  perturbation 
values of the motion variables adopted  in  the  preceding  section,  use will be made of the 
defining  equations  for  angle of attack  and  sideslip, 
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the  expression  for  altitude rate, 

k = u sin e - v cos 8 sin @ - w cos e cos @ (28) 

and the  expressions for the  Euler  angle rates, 

Note that  equations (27) relate  the  linear  velocity  components  to  aerodynamic  flow 
angles  and  equations (29) relate the  angular  velocity  components  to  an  earth-fixed refer- 
ence. If a quiescent.atmosphere  and a nonrotating  earth are assumed, the linear and 
angular  velocities of equations (27) and (29) are identical  to  the  velocities  relative  to 
inertial  space  appropriate  for  use  in  equations (24) and (25). 

The  acceleration  sensed by a seismic  translational  accelerometer  located at the 
airplane  center of gravity is FI/m.  The  Z-component of this  acceleration  expressed  in 
g units is defined  herein as the  normal  acceleration n. Thus, from  equation (26c) 

cos e cos 4 + -(-G - pv + qu) 1 n = -  
g0 g0 

It should  be  noted  that  n is directed along  the Z-axis and is, therefore, not iden- 
tical with the  load  factor,  which is usually  defined as the component of inertial  force  nor- 
mal to the  flight  path  and  the  Y-axis,  relative  to  the  airplane weight, 

FZ,I COS - F ~ I  sin CY 
Load factor = 

"go 

Equations (24) to (31) are applicable to large  amplitude  airplane  motions  in six 
degrees of freedom  but are, in  general,  nonlinear.  The  linearized  equations  in  the  three 
longitudinal  degrees of freedom  usually  have  been  derived by constraining  the  asymmetric 
motion  variables  (v,p,r,@)  and  their  time  derivatives to zero and  expressing  the  remaining 
variables as the sum of a steady  reference  value  and a small  time-dependent  perturbation. 
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The  equations are then  linearized by neglecting squares  and  products of perturbations. 
On examining  the  impact of the  above  constraints on  equations  (29a)  and  (26a  and c), it is 
concluded  that  the only reference  flight  conditions  which are both symmetric  and  steady 
are those with zero pitching  velocity,  implying a straight  flight path. If an  altitude- 
dependent  atmosphere is considered,  the  admissible  reference  flight  conditions are f u r -  
ther  constrained  to  straight  level  flight. 

It is apparent  that  analysis of flight at load factors  significantly  different  from  unity 
requires  either  violation of the  small  perturbation  assumption  or  relaxation of either  the 
symmetric  constraint  or  the  steady  constraint on the  reference  flight condition. In order 
to  retain  small  perturbations  for  elevated load factors, a symmetric,  pseudosteady ref- 
erence  flight  condition  having  constant  pitching  velocity  has  been  assumed  on  occasion. 
This  condition is visualized as a wings-level  pullup with a vertically  curved  flight path. 
Reference  values of 8, h, and d can be defined  only at one  instant of time.  Physical 
interpretation of the  perturbations at other  instants  then  becomes  unclear  under  this 
assumption. 

Alternatively, a steady,  pseudosymmetric  reference  flight  condition  can be assumed. 
Steady flight is achieved by constraining  the  time  derivatives of all variables  to  zero, 
which requires  that the angular  velocity  vector 3 be directed  along  the  gravity  vector E. 
This condition  can be visualized as a constant-altitude  banked  turn, or  if a uniform  atmo-. 
sphere is assumed, a climbing o r  diving spiral.  Approximate  symmetry is achieved by 
constraining only the sideslip  angle  to  zero.  The  reference  flight condition  must  then 
satisfy  the  conditions  for  static  equilibrium  in all degrees of freedom, and the  linearized 
longitudinal  equations of motion are  formulated by allowing small  perturbations  in only 
the  longitudinal  degrees of freedom.  The  equations of motion  developed  herein will be 
formulated  for this steady,  pseudosymmetric  class of reference  conditions  since  the  truly 
symmetric  conditions are special  cases of this  class. 

By applying  equations (27) to  the case of zero  sideslip,  the  velocity  components  can 
be  written as 

u = v cos a! 

v = o  

w = V sin a! 

The  longitudinal variables are stated  in  perturbation  notation as 

V = Vl(1 + ii) (See eq. (17).) 
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. .  
h =   h l   + h p  

Then, for  small  perturbations 

u = V1 cos cy1 + GV1 cos al - a! V sin a1 

w = V 1 ~ i n a l + i i V 1 s i n a ! 1 + a ! ~ V 1 c o s a ! 1  

P 1  

i = iiVl sin a1 + &Vl cos a1 

and,  by substitution  in  equations (26),  (28), and (30), 

Reference  value  Perturbation 
A 

-g sin el - vlql   s in  “1) sin cy1 - G cos a1 - apql cos a!; \ f  

+ & sin a1 - q sin a1 - P 

FZ,I = m g cos el cos I$ + Vlql cos al) + mV1 uql cos a1 - k sin al - apql sin cy1 

- & COS a1 + q p  COS a1 - ep - v1 g sin 81 cos 

( t 
(32c) 
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Reference  value  Perturbation 

6 = V1(cos a1 sin 01 - sin a1 cos 01 cos 4) + Gvl (cos a1 sin el - sin al cos el cos 4) 

- apVl(sin cy1 sin el + cos a1 cos el cos 4) 

+ epV1(cos cul cos el + sin al sin el cos 4) 

(33) 

+ vl(;ql  cos a - h sin a1 - apql  sin o! 

- cos a1 +q   cos  al) - e - sin el cos ,# 

g0 

g 
P go 

(34) 

Unfortunately,  equations (32b, d, and f )  show that  in  turning  flight,  the  lateral- 
directional  components of the inertial  reactions  depend on the  longitudinal  motion pertur- 
bations.  Clearly,  the  resulting  lateral-directional  perturbations  could  couple  back  into 
the  longitudinal  motions. In order  to  perform a longitudinal  analysis  without  detailed 
knowledge of lateral-directional  characteristics,  the  lateral-directional  excitation  will be 
neglected,  with  the knowledge that  the e r r o r  introduced  diminishes  to  zero as the  turn 
rate is reduced  to  zero. 

For the  steady,  pseudosymmetric  reference  condition,  assume  that  static  equilib- 
rium of rolling and yawing moments can be achieved at zero  sideslip with no net lateral  
force  arising  from  aerodynamic  and  thrust  sources.  Equation (32b) then  becomes 

- cos 81 sin 4 - r cos a1 + p sin a1 = 0 g 
V1 

(35) 

and  from  equations  (29a  and b) 

q1 cos @ - r sin @ = 0 

p + (ql sin # + r  cos @)tan el = o 

26 



Static  equilibrium  in  the  longitudinal  degrees of freedom is expressed by substitution of 
the  reference  portion of equations (32a, cy and e)  into  equations (2) 

The  system of eight  equations  made up of equations (35) to (37) and  the  reference  portion 
of equations (33) and (34) is sufficient to define G1, alY ql, T1, el, +, p, and r 
if values of VI, M1, R1, al, "1, and 61 are specified. It is interesting to note 
from equation (37c) that  an  inertial  pitching  moment exists in  steady  turning  flight,  whict 
can  influence  the  control-limited  load  factor of interest  for  fighter  airplanes. 

The  system of linearized  longitudinal  perturbation  equations  can now be  formed 
from  equations (2) by expressing  the  aerodynamic and thrust  contributions  in  terms of the 
dimensional  stability  derivatives,  expressing  the  inertial  contribution by equations (32a, 
c,  and e), supplementing  the  system  with  the  altitude  equation (33), and  subtracting  the 
reference  equations (37) and  the  reference  part of equation (33). The  resulting  equations 
are 

i(q - cos a1) + G(XG - q1 sin 01)  + &(X& + sin a,) + qP(xa - q1 cos a1) 

QV cos cy1 sin el - sin a1 cos el cos @ - a V s i n a l   s i n  el +cos cy1 cos el cos + 4 ) ) 
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To obtain a solution, this set must  be  supplemented by equations  for  the two control  sys- 
tems, which will not be  stated  here,  and by the  perturbation  equation  obtained by subtract- 
ing  equation (36a) from equation (29a), that is, 

ip - qp cos @ = 0 

since 61 = 0. 

For the  special  case of a steady, straight,  symmetric  reference,flight condition, 
@ = p = q - r = 0 and  the  equations of motion are simplified  accordingly. In particular, 
equation (38d) becomes 

1 -  

and  the  reference  equations are 
. 

X1 = - sin 81 g 
V1 

cos(el - al) + epvl cos(el - 1) - I$, = o (39) 

h l  = VI sin(el - al) 

n1 = g, cos O1 
g I 

If the  reference condition is further  constrained  to  level  flight,  then el = al, and  the 
resulting  simplification of the  equations of motion is obvious. 

It should  be  noted  that  equations (38) can  be  considered  to be a hybrid set of equa- 
tions of motion  in  the  sense  that  the  motion  variables are resolved  on  stability axes (iiV1 
is directed along TI), whereas  the X and Z forces  are  resolved on a body-fixed axis 
system whose  orientation  in  the  airplane  plane of symmetry is arbitrary  for  rigid air- 
planes and is determined by structural  consideration  for  elastic  airplanes.  The  more 
conventional  stability-axis  system of equations of motion is obtained  from  equations (38) 
by simply  setting a1 = 0. If the  stability-axis  system is to  be  used  for  elastic  airplanes, 
it is recommended  that  the  stability  derivatives  be  determined first on a structurally 
appropriate  body-axis  system  and  then  be  transformed  to  the  stability-axis  system by 
the  usual  force  transformation. 

-c 
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Calculation of Stability  Derivatives 

In this  section,  an  influence-coefficient  procedure for  calculating  the  stability 
derivatives is outlined. This  procedure  has  been  implemented  in a digital  computer  pro- 
gram which is presented  and  described  in  the appendix. In  addition to  the  assumptions 
already  made  in  defining  the  stability  derivatives,  the  following  assumptions are made  in 
order  to  simplify  the  calculation  procedure: 

1. Aerodynamic  loadings are derived  from a linearized,  inviscid,  thin  lifting-surface 
theory. 

2. Singular  aerodynamic  loads  arising  from  edge  suction are neglected. 

3. All unsteady  aerodynamic  effects are neglected. 

4. All contributions of the  propulsion  system are neglected. 

The  effect of assumptions 1, 3, and 4 is to  eliminate  the  variables R, h, and T 
from  the list of physical  variables  in  table I. Equations (6b) and (7b) a r e  then  represented 
by the  matrix  expression 

where b] is an  aerodynamic  influence-coefficient  matrix  which  can be obtained from 
any suitable  lifting-surface  theory  for a given Mach number  and  paneling  geometry. ’ In 
the  present  development,  aerodynamic  symmetry is assumed,  and  each  element of b] 
represents  the  aerodynamic  normal  force  acting at a load point  (q,yf,O)  due to a unit 
change  in  mean-camber-surface  slope at a symmetric  pair of control  points Xa,*Ya,O) 
for unit  dynamic  pressure. 

( 

The  structural  operator  in  equation (10) can  also be represented by an  influence- 
coefficient  matrix  such  that 

where  each  element of [S] is the  elastic change in  mean-camber-surface  slope at an 
aerodynamic  control  point (xa,ya,O) due  to a unit force applied at a symmetric  pair of load 
points (q,*yf,O).  Combining equations (8a), (9), (ll),  (41), and (42) and  solving  for  the 
aerodynamic-force  set  give 

I 



The  coefficients CN and Cm can now be written 

Under the  second  assumption  stated  at  the  beginning of this  section,  aerodynamic 
edge  suction is neglected,  and  the  aerodynamic  force  on  each  panel  then  acts  normal  to 
the  mean  camber  surface at that  panel. If the  mean-camber-surface  slope is small 
everywhere,  the  axial-force  coefficient is approximately 

where {q} is the set of mean-camber-surface  slopes at the  panel  load  points 

It should be observed,  however,  that  the  neglect of edge  suction  implies a rather  gross 
cwersimplification of the  true  aerodynamic  loads,  particularly  in  subsonic  flight, and the 
resulting  axial-force  coefficient  must be considered  incomplete.  Despite  this  shortcom- 
ing, the axial stability  derivatives  will  be  formulated  herein  to  provide a basis for  future 
refinement  and to allow  an  examination of their  possible  significance  to  the  stability of 
elastic  airplanes. 

The  stability  derivatives are calculated by substituting  the  partial  derivatives of 
equations (44) with respect  to  each of the  physical  variables a, 6, qc/2V1, n, 4, M, 
and cj into  the  coefficient  form of equations (18). By denoting  any  physical  variable 
by P, 
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The  right-hand  side of equation (43) can  be  interpreted as the  product of an aero- 
elastic  correction  matrix,  the  aerodynamic  influence-coefficient  matrix,  and a vector of 
pseudorigid  aerodynamic  boundary  conditions which includes  structural  distortion  from 
only the  inertial  loads.  To  simplify  the notation, the  aeroelastic  correction  matrix can 
be  defined as 

and  the  vector of boundary  conditions as 

(48) 

At the  reference  flight  condition, 

and 



The  partial  derivatives  appearing  on  the  right-hand  side of equations (46) can be 
evaluated  in a straightforward  manner with respect  to  the first five  physical  variables a, 
6, qc/2V1, n, and 4. A finite-difference  technique  has  been  chosen  to  evaluate  the 
derivatives with respect  to M and 6 .  For  increments  in M and ij which are small 
relative to the  reference-condition  values,  the  following  matrices are defined: 

The  matrices of the  partial  derivatives of Fz,$ and q with respect  to  each  phys- 
ical  variable are expressed  in  table III. These  values  along with  the  reference-condition 
values of equations (49) to (51) are used  in  equations (46) to  find  the  derivatives of CA, 
CN, and Cm which are in  turn  substituted  into  the  coefficient  form of equations (18) to 
find  the  stability  derivatives. 

TABLE III.- THE PARTIAL-DEFUVATIVE MATRICES 

I 
Physical 

variable,  p 

32 



111111 

Evaluation of equations (49) to (51) requires knowledge of the  mean-camber-surface 
slopes of the  jig  shape ("jig} and {9ig,f} as well as the  reference-condition  values 
of 01 1, 61, 91, "1, p, and r. Assume  that  the  airplane  configuration  has  been  fully 
defined at a single,  straight,  level  design  flight  condition  and  that the design  air-load  disd 
tribution is known. By applying  equations (9), (42), and  (45),-the  jig  shape  slopes are 
found to  be 

. .  ." . 

The  values of the  physical  variables at any desired  reference  flight condition  can be found 
by applying  equations  (33)  to (37). Some  simplification  results,  however,  from  the  present 
assumptions  under  which  the  effects of thrust and  nonlinear  aerodynamics are neglected. 
If the thrust is assumed  just  sufficient  to  balance the X  forces,  equation  (37a)  can be 
neglected.  Equations  (37b  and  c)  can be restated as 

where 

I 



and 

The derivatives with respect  to Q are used to express the pr contributions  since the 
inertial-force  distribution  for unit 6 is shown  by equation (11) to be equal to that for a 
unit value of -pr. For specified  values of M1 and ql, the derivatives  appearing  in 
equations (53) can be calculated by using  equations (46) and table ID. The  reference  flight 
condition can  then be fully  defined by solution of equations (33) to  (36) and (53). 

Effect of Structural  Fixity  Point  Location 

The  influence-coefficient  procedure  for  calculating stability derivatives of an elas- 
tic airplane, as outlined  in the preceding  section,  makes  use of a structural  influence- 
coefficient  matrix [a, each element of which is the  elastic  change  in  mean-camber- 
surface  slope  at  an  aerodynamic  control point due  to a pair of unit forces applied at  a 
symmetric pair of load  points.  Evaluation of this matrix  requires that the  structure be 
assumed  clamped at a structural  fixity point. Any nonequilibrium  distribution of loads 
applied to the structure  must  then be reacted by a force and  moment  imposed at the fixity 
point, and the deformed  shape,  calculated by using the matrix [SI, will  include  implicitly 
the effects of these  reactions.  The  deformed  shape  depends,  therefore, on the  fixity  point 
location.  Since the load distribution  arising  from a unit perturbation of any  single  phys- 
ical  variable is, in  general, not in  equilibrium, the values of the stability  derivatives  cal- 
culated by the procedure  outlined  will  depend on fixity point location. 

When a complete and consistent  set of stability  derivatives is used  in the equations 
of motion  derived  from the conditions  for  dynamic  equilibrium,  the  reactions at the fixity 
point vanish  and the deformed  shape at any instant is, in a coordinate-free  sense,  inde- 
pendent of fixity point location. Some of the  motion  variables,  however,  for  example, CY, 
0, and  their  time  derivatives, are not coordinate-free but are defined  relative  to  the  ref- 
erence axis system.  Moreover  the  elastic surface slope  changes  defined by the  matrix 
[SI are also  expressed  relative  to  the  reference axis system  and  must be zero at the 
fixity point. Thus, the orientation of the  reference axis system  must be considered 
invariant  with  respect  to a material  element  located at the  fixity point, as indicated  in 
figure 1. 

It is apparent,  then, that after application of the equations of motion,  any quantities 
that are independent of reference axis system  orientation  in the airplane,  such as char- 
acteristic  roots,  the  variables ii, 6, h, and the magnitudes of resultant  force, moment, 
or  acceleration  vectors, are also independent of the fixity  point  location.  Those  quan- 
tities dependent  on  reference axis system  orientation,  such as the variables CY, 0, q, 
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and  components of force  or  acceleration  vectors, are also  dependent  on  the  location of the 
fixity point assumed  in  the  definition of the  matrix [a. 

ILLUSTRATIVE ANALYSIS 

The  Example  Airplane 

To  illustrate  the  calculation  and  use of the  stability  derivatives  defined  in  this 
paper, a longitudinal  quasi-steady  aeroelastic  analysis of a high-performance  supersonic 
transport  airplane  configuration  has  been  performed. Although the  analysis  was  per- 
formed  in U.S. Customary  Units,  the  results are presented  in  the  International  System of 
units (SI). The  configuration  selected  was  that  used  in  reference  5  to  illustrate a number 
of aerodynamic  design  integration features. This  configuration  was also the  subject of 
a preliminary  design  study by The  Boeing Company during  which  airplane  weight  and  bal- 
ance  information  and elastic properties of the  structure  were developed.  The  author 
gratefully  acknowledges  the  cooperation of The Boeing  Company in  supplying a symmetric 
structural  slope  influence-coefficient  matrix  and  weight  distribution  data  for  use  in  the 
present  analysis. It should  be  emphasized  that  these  data  resulted  from a preliminary 
design  study  and are not necessarily  applicable  to  an  airplane  design  meeting all the 
requirements of a commercial  supersonic  transport  airplane. In particular,  the  struc- 
tural  elastic  characteristics  do not reflect any additional  stiffening  which  might  be  neces- 
sary  to  achieve  adequate  controllability  and  flutter  margin. 

For the  present study, the  aerodynamic  effects of the  vertical tails and  engine 
nacelles  were  neglected  and a new mean  camber  surface  was  designed  to  minimize  the 
drag due to  lift  and  to  trim  the  airplane with zero  control-surface  deflection at M = 2.7, 
CN = 0.07914, and a center-of-gravity  location at 0.417~.  The  configuration  planform 
and  the  paneling  geometry  used  for  subsonic  and  supersonic  analyses are illustrated  in 
figure 2. Corresponding  aerodynamic  influence-coefficient  matrices were calculated by 
using  the  vortex-lattice  method of reference 6 for  the  subsonic  analysis (MI = 0.8) and a 
procedure  based  on  the  method of reference 7 for  the  supersonic  analysis (MI = 2.7). 
The  load  points  and  aerodynamic  control  points  were  located  at  the  quarter-chord  and 
three-quarter-chord  points,  respectively, of the  panel  midspan  chords  for  the  subsonic 
case  and at the  panel  centroids  and 0.95 panel  chord  points,  respectively,  for  the  super- 
sonic  case. 

The  structural  influence-coefficient  matrix  supplied by The Boeing  Company was 
transformed  to  the  appropriate  forms  for  the  subsonic  and  supersonic  panel  arrangements 
by using a second-order,  bidirectional  interpolation  procedure  applied  successively  to  the 
slope-point  and  load-point  transformations.  The f ixi ty  point of the  structural  influence- 
coefficient  matrix  used  in  the  present  analysis  was  located at 0.33~.  
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The  weight  distribution  supplied by The  Boeing  Company was transformed by dis- 
tributing  each  original  weight  element  among  the  three  closest  load  points of the new 
panel  layout  in  such a way that  the  moments about the X- and  Y-axes  were unchanged. 
The  distribution of structure,  contents,  and  payload  weight,  totaling 1.56 MN (351 560 lb), 
was  considered  invariant.  Fuel  capacity  constraints,  based  on  the  fuel  weight  distribu- 
tion  supplied by The  Boeing Company, were  assigned  to  each panel.  Within these  con- 
straints,  fuel weight  distributions  yielding  the  following  combinations of airplane  weight, 
center-of  -gravity  location,  and  pitching  moment of inertia were developed: 

~~ - 
Weight I y X  10-6 

MN kg-ma  slug-ft2 k g .  lb 

2.67 0.41 600 000 

57.43 42.36 .47 420 000 1.87 
56.33 41.55 .4 1 420 000 1.87 
62.43 46.05 .47 600 000 2.67 

45.44 61.61 
~~~~~ - ~ ~ . "" ~~ 

The  weight  distribution  for  the  design condition, W = 2.10 MN (472 500 lb) and center of 
gravity at 0.417c, was  also developed. 

The  chordwise  distributions of mean-camber-surface  slope  for  the  design  shape 
Edes and  the  jig  shape ejig at  several  spanwise  stations are shown in  figure 3. These 
slopes are referred  to a reference axis system  oriented  in  such a manner  that  the  angle 
of attack at the  design  condition is 2.8O. This  orientation was chosen so that  the  average 
slope of the  design  mean  camber  surface  was  approximately  zero. 

The  longitudinal  characteristics of the  example  airplane  have  been  analyzed  for a 
ser ies  of reference  flight  conditions  including  center-of-gravity  locations of 0 . 4 1 ~  and 
0.47c, the two airplane  weights  noted  previously,  and  either  five  values of dynamic pres-  
sure  ranging  from 7.2 kN/m2 (150 lb/ft2)  to 47.9 kN/m2 (1000 lb/ft2)  for M = 0.8 or  
four  values of dynamic  pressure  ranging  from 14.4 kN/m2 (300 lb/ft2) to 47.9 kN/m2 
(1000 lb/ft2) for M = 2.7. All reference  flight  conditions  corresponded  to  straight  level 
flight.  For  comparison,  the  rigid  airplane  having  the  design  mean  camber  surface was 
also analyzed. 

Longitudinal  control  and t r im were achieved by equal  deflection of the  inboard  and 
outboard  trailing-edge  control  surfaces  outlined  in  figure 2. Because  the  control  surface 
edges  were not coincident  with  panel  boundaries,  control  deflections  were  represented by 
assigning  to  each  panel a value of e6 equal  to  the  ratio of the  control  surface area lying 
within  that  panel to  the  total  panel area. For  each  panel,  the  values of e6,f and e6 
were  assumed  to  be  identical. 
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Aerodynamic  Derivatives 

The  computer  program  described  in  the  appendix was used  to  calculate  the  longi- 
tudinal  stability  derivatives  together  with  parameters  describing  the  reference  flight 
conditions.  The values of angle of attack,  control  deflection,  and  normal-  and  axial-force 
coefficients  calculated  for  the  reference  flight  conditions are. plotted  in figure 4 for  the 
rigid  and  elastic  airplanes at the .two center -of -gravity  locations.  The  axial-force coef - 
ficient  includes  an  increment of 0.00550 to  represent  skin  friction  and  form  drag at 
M = 0.8 or an  increment of 0.00533 to  represent  skin  friction  and wave drag  due  to  vol- 
ume at M = 2.7. The  aeroelastic effects on t r im angle of attack,  control  deflection,  and 
axial-force  coefficient are apparent  from  figure 4. 

The  partial  derivatives of CA, CN, and Cm with respect  to  the  physical  vari- 
ables are shown  in figures 5, 6, and 7. Because  unsteady  aerodynamic effects were 
neglected, no partial  derivatives with respect  to & were calculated. When the  stability 
derivatives are formed by using  equations (18), however,  stability  derivatives  with  respect 
to & will exist  for  the  elastic  airplane  because of the  contribution of the  partial  deriva- 
tives with respect  to n. For the  rigid  airplane, all derivatives with respect  to n, 6, 
and 4 are zero. All CA derivatives and the derivatives of CN  and Cm with 
respect  to Mach number  depend  on  the  reference  values of a! and 6 and  consequently 
vary with dynamic  pressure. Partial derivatives of CN and Cm with respect  to  the 
remaining  physical  variables are independent of the  reference  flight  condition  for  the 
rigid  airplane. 

The  effects of aeroelasticity on the  partial  derivatives  are  apparent  from  figures 5, 
6, and 7. Note in  particular  the  large  destabilizing  aeroelastic  effect on aC,/aa!. 

The Characteristic  Stability  Roots 

The  longitudinal  stability  derivatives  were  calculated by applying  equations (18) to 
the  partial  derivatives of figures 5, 6, and 7. The  three-degree-of-freedom  linearized 
equations of motion  (eqs. (38)) were then  solved  for  the  characteristic  roots  and  the  trans- 
fer functions  ii/6p  and  n 6 . The  perturbation  part of equation (34) was included  in 
the  system of equations to define np. The  altitude-dependent parameters  required  for 
the  solution are shown in  figure 8 and are based on the 1962 U.S. Standard  Atmosphere 
(ref. 8). Solutions  corresponding  to a locally  uniform  atmosphere were also obtained by 
setting  the  derivatives  xh,  zh,  and Mh equal to  zero. 

P/ P 

The real and  imaginary  parts of the  characteristic  roots are presented as functions 
of dynamic  pressure  for  the  rigid  airplane  in figure 9 and for  the elastic airplane  in  fig- 
ure  10. Real  roots are shown as faired  lines without symbols.  The  calculated real and 
imaginary  parts of complex  roots are indicated by symbols, with the  same  symbol  shape 
used  for  the real and  imaginary  parts of any particular conjugate pair of complex  roots. 
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Calculations  were  made at only four or five  values of dynamic pressure, and  therefore, 
the  lines  faired  between  calculated  points  should  be  considered as only  illustrative. In 
particular,  the  locations of branch  points,  that is, points of transition  between a pair of 
real roots and a pair of complex  roots, are only approximate. 

The  system of equations  yields  five  characteristic  roots  including  one  root  arising 
from  the  differentiation of h in  the  altitude  equation (38d). For the cases representing 
a locally  uniform  atmosphere,  the  altitude  equation is uncoupled from  the  remaining  equa- 
tions  and one root is always  zero. With a standard  atmosphere, the altitude  root was 
usually too small  to be apparent  in figures 9  and 10 except for the  aft c.g. cases  at 
M = 0.8 (figs.  9(b) and lO(b)) where  the  altitude  root  can be seen at low dynamic  pres- 
sure.  The  remaining  roots  in  most  cases  can be clearly  identified as a short-period 
pair  and a phugoid pair  although these  root  pairs  were not always  oscillatory. When the 
remaining  roots are all complex,  they  can  be  recognized  clearly as a phugoid pair and a 
short-period  pair,  with  the phugoid pair having the  smaller  magnitude  (smaller undamped 
natural  frequency).  Identification of real roots is not as straightforward, but in  most 
cases,  the  faired  lines  in  figures 9 and 10 can be used  to relate real roots  to either the 
'phugoid or  the  short-period mode at other  values of dynamic  pressure. 

The  assumption of a locally  uniform  atmosphere  had a destabilizing  effect  on the 
phugoid roots,  usually  manifested as a reduction  in phugoid frequency, but  had little  effect 
on the  short-period mode, particularly when this mode  was  oscillatory. A comparison of 
figures 9  and 10 shows  that  the  effect of aeroelasticity on the  short-period  root  pair  was 
to reduce both frequency  and  damping  with  the  frequency  reduction  being  more  pronounced. 
As a result, the  short-period  mode of the elastic  airplane  in many cases  became  over- 
critically  damped  and  therefore  yielded two aperiodic  (real)  roots.  This  tendency  was 
most  apparent  with  heavy weight, aft c.g., high  dynamic  pressure,  and  subsonic  speed. 
In all cases, however, the  short-period  root  pair  remained stable as indicated by the  neg- 
ative real  parts. 

The phugoid roots of the  rigid  airplane (fig. 9) were  always  small  in magnitude  and 
corresponded  to either a lightly  damped  low-frequency  oscillation or a mild  aperiodic 
divergence. In contrast,  the  elastic  airplane (fig. 10) exhibited,  in  many  cases, phugoid 
roots which were  much  larger  in magnitude  and were  strongly  divergent  in  either  an 
oscillatory  or  aperiodic  manner. Again this  tendency  was  most  apparent  with  heavy 
weight, aft c.g., high  dynamic  pressure,  and  subsonic  speed  and  appeared  to  be  particu- 
larly  sensitive  to  changes  in weight o r  possibly  weight  distribution. 

In an  attempt to identify  the  reasons  for the aperiodic  short-period  roots  and  the 
strong phugoid divergence,  the  equations of motion  were  simplified  to two second-order 
sets yielding  decoupled  approximations to the  short-period  and phugoid  modes. For a 
locally  uniform  atm'osphere  and a wings-level  reference  flight  condition,  equation (38d) 



can be omitted  and  equation (38e) becomes ip = qp’ After resolving  the  force  equations 
onto  stability axes and  applying the Laplace  transformation,  equations (38a, b,. and  c) can 
be written  in  matrix  form as 

A decoupled  approximation  to the short-period mode is obtained by constraining 6 to 
zero and assuming Z and Me to be negligible 0, s 

The  decoupled  short-period  roots are then  the roots of 

s2 + 2 ~ s p w s p s  + wsp2 = 0 

where 

A decoupled  approximation  to  the phugoid  mode is obtained by retaining only the zero- 
order  terms  in  the  moment  equation  and  assuming x;l ,s and Z G , ~  to be negligible 
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The  decoupled phugoid roots are the  roots of 

s2 + 2cpwps + wp2 = 0 

where up2 and 2cpop a r e  found by  expanding  the  determinant of the  matrix  in 
equation (57). 

Figure 11 presents a comparison of the  decoupled  root  parameters  from  equa- 
tions (55) and (57) with  those  from  the  coupled  system (eq. (54)) for  the  elastic  airplane 
with forward  center-of  -gravity  location at M = 0.8. The  coupled  and  decoupled  short- 
period  parameters are in good agreement  except  for  those  cases  in which the  short-period 
mode was  aperiodic.  The  decoupled phugoid approximation,  however,  was  generally  poor 
and, in  particular,  failed  to  yield  the  large phugoid magnitude shown  by the  coupled  solu- 
tion  for  the  higher  dynamic  pressures with  heavy  weight.  Observe,  however,  that  the 
total  damping  2<sposp + 2cpwp was  well  represented by the  decoupled  solutions at high 
dynamic  pressure.  This  fact  implies  that  the  coupled  system  provides a mechanism  for 
transfer of damping from  the phugoid into  the  short-period mode.  Examination of other 
simplifications of equation (54) has led to  the  conclusion  that the root-coupling  mechanism 
is provided  primarily  through  the  derivatives  and M;, and  becomes  important when 
the  numerator of equation (56a) Z a , s q  - Ma (1 + Zq,s) is small. 

It should  be  noted  that  for  the  elastic  airplane,  the  inertial  contributions  to  the 
derivatives q, Zq, M;,, and Z;, arising  from  normal-acceleration  effects (eqs. (18)) 
were much larger  than  the  aerodynamic  contributions  and  were  responsible  for  large  neg- 
ative  values of and Zq and large  positive  values of M;, and Z;,. As a result, 
the  value of osp2 remained  positive  (stable)  for  the  lightweight cases and  near  zero  for 
the  heavyweight cases  of figure 11 in  spite of the  large  unstable  values of Ma. The 
effect of weight  on wsp2 resulted  primarily  from  the  larger  magnitude of Z, arising 
from the reduced  mass of the  lightweight condition. 

Static  -Stability  Considerations 

Static  longitudinal  stability  can be interpreted as the  tendency  for  either  speed or 
normal  acceleration  to be restored to  its equilibrium  value  following a disturbance.  The 
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two types of static stability  to be discussed,  therefore,  will be termed  speed  stability and 
maneuvering  stability. The concepts of static margin and  maneuver  margin  have  been 
used as direct quantitative  measures of the two types of static stability. These stability 
margins are visualized as the distance  from the c.g. to either the neutral  point or the 
maneuver  point  where these points are the c.g. locations  for  which either the speed sta- 
bility o r  the maneuver  stability is zero.  The  stability  margins  can be quantified, there- 
fore, as values of the total  derivative  dCm/dCN  evaluated  under  constraints  appropriate 
to a disturbance  in either speed  or  normal  acceleration.  Approximate  expressions  for 
the stability margins  in  terms of the stability  derivatives exist in the literature, but their 
applicability  to elastic airplanes  should be examined. 

Other measures of static stability  express the observable  consequences of the inter- 
action of static  stability  with other airplane  properties.  For  example, the undamped  nat- 
ural  frequencies of the phugoid and  short-period  modes reflect the interaction of the speed 
stability  and  maneuvering  stability,  respectively,  with the inertial  properties of the air- 
plane.  Similarly, the static  control  parameters 6p/G and  6p/np are measures of 
speed stability and  maneuvering  stability,  respectively,  relative  to  control  effectiveness. 
In the present  analysis,  the  static  control  parameters  are  determined  from  transfer  func- 
tions  obtained  from  solution of the equations of motion and, along  with the stability  mar- 
gins,  will be utilized  in  describing the static stability. 

The asymptote  form of the frequency  response  amplitude of the ii/6p and np/6p 
transfer  functions is illustrated  in  figure 12 for the elastic  airplane  in the heavy  condition 
with c.g. at 0 . 4 1 ~  and M = 0.8 for  five  values of 4. This  form of plot,  commonly 
termed Bode plot or  corner plot, is made up of straight-line  segments  connecting  points 
at the pole  and zero  frequencies of the respective  transfer functions. For the cases  
shown, the  values of loglo of the phugoid frequency  range  from  about -1.25 at the low- 
est dynamic pressure to  about -0.5 at the  highest  dynamic pressure. Note that in the 
ii/6p responses, a plateau exists at frequencies  just below the phugoid frequency  in  which 
the amplitude ii/6p is independent of frequency. For the uniform-atmosphere  cases, 
this amplitude  level is equal  to the zero-frequency  asymptote  and  can be used  to  obtain a 
static value of the static  speed  control  parameter tjpF. The  value of 6p/6 thus 
obtained  corresponds  to a constant-altitude  constraint  because  even  though the final alti- 
tude  following a step  control input is different,  in  general,  from the initial  altitude, the 
altitude  change has no effect under the assumption of a uniform  atmosphere. The sign 
of 6pp is determined  from the phase angle of the asymptote  form of the frequency 
response (which is either Oo o r  180°) in this same  frequency  range. 

For the standard-atmosphere  cases, the zero-frequency  asymptote of fi/ijP has 
little significance  because of the long  time  required  for the aircraft  motions to approach 
the final conditions. The value of 6 ii corresponding  to  frequencies  just below the p/ 
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phugoid frequency,  on the  other hand, is believed to  represent a meaningful  measure of 
the  tendency  within a time  range  measured  in  minutes  for  the  speed  to  return to its t r im 
value  under  conditions of no  control  action,  that is, no  altitude  constraint.  Thus, a dis- 
tinction is drawn  between two speed  stability  indices, both expressed as values of tjP/ii. 
One, determined  from  the  standard-atmosphere  solutions, is a measure of the uncon- 
strained  speed  restoring tendency,  and the  other,  determined  from  the  uniform-atmosphere 
solutions, is a measure of the  control  required  to  change  speed at constant  altitude. 

The  static  maneuvering  control  parameter Gp/np is traditionally  determined  from 
solution of a two-degree-of-freedom  (decoupled  short  period)  set of equations of motion. 
The np/Cjp frequency  response  curves  identified as "constant  speed"  in figure 12 were 
obtained  from  solutions of equation (55) combined  with an  appropriate  form of the  normal- 
acceleration equation.  The  asymptote  form of the  frequency  response of np/6p obtained 
from  the  standard-atmosphere  and  uniform-atmosphere  solutions of the  complete  three- 
degree-of-freedom  equations of motion are also shown for  comparison. For the  lower 
three  values of dynamic pressure,  the  levels of np/bp  in  the  frequency  range  between 
the phugoid and  short-period  frequencies  from  the  standard-  and  uniform-atmosphere 
solutions are identical  with  the  zero-frequency  asymptote of the  constant-speed  solutions. 
Note that at these  three  values of 4, the  short-period  mode is oscillatory  and its fre-  
quency is well separated  from  that of the phugoid mode. For the  two  higher  values of 4, 
the  short-period  root  pair  has  branched  into  two real roots,  and  the  frequency  range of 
the np/6p plateau  between  the phugoid roots  and  the  smaller  root of the  short-period 
pair is greatly  diminished or nonexistent.  The  plateau  level of  nP/Gp from  the  three- 
degree-of-freedom  solution is no  longer  identical  to  the  zero-frequency  asymptote of the 
two-degree-of  -freedom  solution. While the  static  maneuvering  control  parameter 6p/np 
obtained  from  the  three-degree-of  -freedom  solution is probably  more  representative of 
the  actual  case  than  that  from  the  constant-speed  solution,  this  distinction  may be of only 
academic  interest when the  large  dynamic  instability of the phugoid mode for  these high- 
dynamic-pressure  cases (fig. 10) is recalled. 

The  values of  tjP/i.i and  6p/nP  obtained  from  the  appropriate  three-degree-of - 
freedom  transfer  functions by the  procedure  just  described  are  presented  in  figure 13 for 
the  rigid  airplane  and  in  figure 14 for  the  elastic  airplane. In a few cases,  the  pole-zero 
configurations of the  transfer  functions  were  such  that  the  appropriate  plateaus in the fre- 
quency response  curves  did not exist,  and  these  points are omitted  from  figures 13 and 14. 
The  assumption of a locally  uniform  atmosphere had little  effect on the  maneuver  control 
parameter SP/np but  showed a destabilizing  effect  on  the  speed  control  parameter tjP/ii, 
particularly at supersonic  speed.  This  result  implies  that  the  unconstrained  speed- 
restoring tendency,  indicated by the  standard-atmosphere  results, is significantly  more 
stable  than would be  inferred  from  measurements of the  control  gradient  with  speed at 
constant  altitude, as indicated by the  uniform-atmosphere  results. 
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The static speed  control  parameter  and  maneuvering  control  parameter for the 
rigid  airplane reflect the  expected  reduction  in  static  stability  with  rearward  center-of- 
gravity  movement  and  increase  in  control  sensitivity  with  increasing Q. Comparison 
of figures  13  and 14 reveals  several  manifestations of aeroelasticity. At low dynamic 
pressure,  an  aeroelastic  reduction  in  static  stability is indicated by reduced  magnitudes 
of both fjP/ii and 6p/np. The  subsequent  increase  in the magnitude of 6 n at high 
dynamic  pressures is related to the aeroelastic loss in the control  effectiveness  deriva- 
tive Cm6. The  aeroelastic loss in Cm6 is not sufficient,  however, to  explain  the  large 
increase  in 6 d at high dynamic  pressures shown in figure 14, particularly when the 
large  destabilizing  aeroelastic  effect on the partial  derivative  aCm/W shown in  fig- 
ure 7 is recalled. 

p/  p 

PI  

Further  insight  into the nature of aeroelastic  effects on static stability  may be 
gained by an  examination of approximate  forms  relating static margin and maneuver 
margin  to  the  stability  derivatives. If the atmosphere is assumed  to be locally  uniform, 
the reference  flight  condition  to be straight and  level  with a1 small,  and the perturbed 
flight  condition to be steady  trimmed  flight  along a curved  path,  then 

Also, 

Thus, by substitution 

The  stability  margins  can be expressed as values of the total  derivative  dCm/dCN 
for  the untrimmed  perturbed state (Cm f 0) obtained by constraining 1 5 ~  to  zero.  The 
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form of an  additional  constraint is used  to  distinguish  between  static  margin  and  maneu- 
ver  margin. For level  flight at varying  speed,  the  constraint  np = 0 is imposed  and 

Similarly,  for  maneuvering  flight at constant  speed, 6 is constrained  to  zero and 

Alternatively, by constraining  either np or ii to  zero,  equations (58) can  be 
solved  directly  for  the  static  control  parameters 

- 6P = static  margin 
Q 2cN,1 

The  approximations  provided by equations (60) are plotted  in  figures  13  and 14 and, in 
nearly all cases,  agree  very  well with  the results  from  the  transfer function  solutions  for 
the  uniform-atmosphere  cases.  Thus,  the  mechanism  responsible  for  the  extreme  values 
of 6 ii observed  for  the  elastic  airplane at the  highest  dynamic  pressure  must  be 
embodied  in  equations (59) and (60). Equations (60) imply  that  the  aeroelastic  reduction 
in Cm6 should  affect both €iP/ii and  6p/np  in a similar fashion. It might  be noted 

in  passing  that  the  combined  control  effectiveness  parameter  Cm6 - 
found to be  independent of center -of -gravity  position  even  for  the  elastic  airplane. 

p/ 

cN6 was 

The  difference  between  the  trends of 6p/ii and  6p/np  with  dynamic pressure 
arises  from  the  difference between the  static  margin  and  maneuver  margin.  These  sta- 
bility  margins  evaluated  from  equations (59) are shown for  the  rigid  airplane  in  figure  15 
and  for  the  elastic  airplane  in  figure 16. Values of Cma/CNa,  which is indicative of the 
distance  from  the  center of gravity to the  aerodynamic  center, are also shown to demon- 
strate the  contribution of C N ~  and Cm, to  the  static  margin and the  contribution of 

U U 
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C N ~  and Cm to the  maneuver  margin.  Considering first the  rigid  airplane (fig. 15), 
the  maneuver  margin is shown to be more  negative  (stable)  than Cm,/CN,, particularly 
at the  subsonic  speed.  The  generally  stabilizing  contribution of C to the  maneuver 
margin is thoroughly  documented  in  the literature. The  contributions of the Q deriva- 
tives  to  the  static  margin are not as well documented  but are shown by figure 15 to  be 
significant  for  the cases considered.  For  the  rigid  airplane,  the ii derivatives arise ' 

only from  the effects of Mach number  perturbation.  Their  contribution to the  static  mar- 
gin is generally  stabilizing at M = 2.7 but destabilizing at M = 0.8. For the  subsonic 
cases  with  the rearward c.g. location,  the  static  margin is shown to be positive  (unstable) 
in  spite of the  value of  Cm,/CN,  of -0.03. This result is compatible  with  the  existence 
of a divergent  root of the phugoid pair shown for the  uniform-atmosphere  cases  in  fig- 
ure 9(b). Figure 15 also  shows  that  the  change  in static margin with a change  in c.g. loca- 

q 

mq 

tion is significantly  different  from  the  change in . This result arises primarily 

from  the  effect of C N ~  The  contribution of CN to-the maneuver  margin  was found to 
be  much less significant. 

For  the elastic airplane (fig. 16), the  values of cm,/cN,  became  highly  positive 

q 

at high dynamic  pressure.  The ii derivatives now include  the  aeroelastic  effects  arising 
from  dynamic-pressure  perturbations (eqs. (18)) which were found to  predominate  over  the 
Mach number  effects.  Similarly,  the  q  derivatives  include  the  aeroelastic  effects  from 
np which were much larger  than  the  direct  aerodynamic  effects of pitching  velocity.  The 
resulting  contributions of  CmG to  static  margin and of Cmq to  maneuver  margin  were 
always stabilizing.  Moreover,  the  effects of C N ~  and CN were  significant  and  always 
acted to reduce  the  contribution of C,,/CN~ to  the  stability  margins. In particular, 
for  the  highest  dynamic  pressure at M = 0.8, the  values of c N ~ / 2 c N ,  1 were of the  order 
of -1; the  contribution of Cma/CN, in  equation (59a) was  therefore of little significance 
and  the  static  margin  became  extremely  stable,  leading  to  the  large  values of 6 h pre-  
viously noted. 

q 

p/ 

Figure 16 also  shows  that as dynamic pressure  was  increased,  the  stability  margins 
became less sensitive  to c.g. location,  and  the  trend of static  margin with c.g. location 
actually  reversed at high dynamic  pressures for M = 0.8. Furthermore,  calculations 
made at intermediate c.g. locations showed that  the  variations of both static margin  and 
maneuver  margin  with c.g. location  became  nonlinear  in  such a manner as to cast doubt 
on the  existence of a neutral point or maneuver point. 

Added confidence  in  the  validity of equations (59) is gained by correlating  the results 
shown in figure 16 with the  characteristic  roots  for  the  uniform-atmosphere  cases of fig- 
ure 10. Note that a divergent real root is shown in figure 10 for each case for which 
either  the  static  margin or maneuver  margin is unstable as shown in figure 16. Further- 
more,  the  appearance of an aperiodic  short-period  mode at intermediate  values of dynamic 

4 5  
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pressure  for  the lightweight, rearward c.g., subsonic  condition (fig. lO(b)) appears  to be 
related  to  the  minimum  in  the stable values of maneuver  margin shown in  figure 16(a) at 
intermediate  values of dynamic  pressure  for  the  corresponding condition. This latter 
correlation is suggested by the  similarity  between  the  form of equation (59b) for  maneu- 
ver  margin and that of equation (56a) for wsp2. 

Effect of Dynamic-Pressure  Derivatives 

One of the departures  from  past  practice  embodied  in  the  present  development is 
the  inclusion of the  aeroelastic  effects of dynamic-pressure  perturbations  in  the  stability 
derivatives  with  respect  to ii used  in the three-degree-of-freedom  dynamic  analysis. 
To illustrate the significance of this feature, stability  analyses  were  made  for a single 
(forward) c.g. location  with the dynamic-pressure  contribution  to the derivatives X<, 
Zc, and Mc omitted.  The  aeroelastically  corrected Mach number  contributions  were 
included,  however.  The resulting  characteristic stability roots are compared  in  figure 17 
with  those  from  the  more  complete  analyses  under  the  assumption of a locally  uniform 
atmosphere.  The  omission of the ij contribution  had  little  effect on the  short-period 
roots  except  for  those  cases  in which  coupling  between  the  short-period and phugoid roots 
resulted  in a coupled oscillatory mode. The  omission had a strong  destabilizing  effect  on 
the phugoid mode,  however, particularly for the  subsonic  conditions,  and  resulted  in an 
aperiodic  divergence  for all but the  lowest  dynamic  pressures.  The  resulting  effect on 
the  static  control  parameters is shown in  figure 18 by the  curves  faired with  solid  lines. 
As would be expected  from  the  characteristic  roots,  omission of the 4 contribution 
had little  effect on the  maneuvering  control  parameter GP/np but resulted in  strongly 
unstable  values of the  speed  control  parameter S P / L  

Alternative  Formulations  for  Normal-Acceleration  Contribution 

In the  present  formulation,  the  effects of aeroelastic  distortion due to  normal  accel- 
eration are embodied  implicitly in the  stability  derivatives as indicated by the  terms in 
equations (18) involving partial  derivatives with respect  to n. One alternative  formula- 
tion  which  has  been  used  in  some  segments of the  industry  results  from  omitting  these 
terms  from  the  stability  derivatives defined by equations (18) and  retaining  derivatives 
with  respect  to  n as explicit  coupling terms  in  the three force and  moment  equations 
of motion.  The set of equations of motion  must  then  include  an  additional  equation  such 
as equation (34) to  define  the  role of these coupling terms  in  the dynamic  solution.  The 
resulting  solution is identical  to that from  the  present  formulation, but approximate 
expressions  for  static  stability and control  parameters would appear  more  complicated 
than  those  presented  herein. 
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Another  alternative  formulation is that  denoted  in  reference  2 as "Formulation 1" 
and in reference 3 as the  "Direct  Formulation." In these  formulations,  the  normal- 
acceleration  contributions are broken down into  inertial  derivatives  with  respect to 
variables  representing  linear  acceleration %, centrifugal  acceleration q, and  gravity 
orientation 8. These  inertial  derivatives  appear in the  equations of motion  along  with 
aerodynamic  derivatives  representative of the %era massf1  elastic  airplane.  The 
dynamic  solution of these  equations is equivalent  in all important  respects  to  that  from 
the  present  formulation  with  the  reservation  that  the  contribution of dynamic-pressure 
perturbations  to  the  forward-speed  derivatives is not included  in  the  dynamic  formula- 
tions of references 2  and 3. Although the  inertial  derivatives  appear  in  combination  with 
aerodynamic  derivatives  in  the  equations of motion, it is not recognized  in  references 2 
and 3 that  these  combined  derivatives  can  be  considered as stability  derivatives  generally 
applicable  to  static  stability,  control,  and  performance  analysis, as well as dynamic 
analysis. 

The  final  formulation  to  be  discussed is that  denoted  in  reference 2 as "Formula- 
tion II" and  in  reference 3 as the  "Indirect  Formulation." It is stated  in  those  references 
that  this  formulation  "represents what has been  the  standard  method of accounting  for 
inertial  effects, or as it is frequently  called,  inertial  relief."  The  derivation of this  for- 
mulation  makes  use of the  expression 

CL,P 
CL, 1 

n =  1 + n p =  1 +- 

Note that  this  expression  implies  that  n is the  load  factor  rather  than  the component of 
acceleration  normal  to a structural  reference plane. Note also  that  this  expression is 
valid only for  constant  dynamic  pressure. 

To  describe  the  concept of the  indirect  formulation in the  notation of the  present 
paper, 
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where g, is a set of K physical  variables  having  n as a member.  The  indirect for- 
mulation  makes  use of equation (61) to show that the following expressions are equivalent 
to equations (62): 

where  n is not included  in  the set of K - 1 physical  variables pk' The  expressions 
in  parentheses  in  equations (63) can  then  be  transformed  into  stability  derivatives  with 
respect  to the motion  variables by a procedure  analogous  to  that  used  in  the  present 
formulation. 

The  indirect  formulation was applied to  the  forward c.g., uniform-atmosphere  cases 
of the present  analysis.  The  resulting  characteristic  roots are compared  with  those  from 
the  present  formulation  in  figure 19, and the static  control  parameters  obtained  from  the 
transfer function  solutions are shown in figure 18. Although the  contributions of dynamic- 
pressure  perturbation  were not included in the  indirect  formulation of references 2 and 3, 
it is clear from  equations (63) that 4 could be either included  in o r  excluded  from  the 
set of physical  variables. Both conditions are represented by the results given  in  fig- 
ures 18 and 19. The  effects of omitting the ij contribution  in  the  indirect  formulation 
are similar  to the effects  already  discussed  relative  to  the  present  formulation. 

The  indirect  formulation  predicts a significantly  greater speed stability  than the 
present  formulation as evidenced by larger  values of both the speed  control  parameter 
6 ii and  the phugoid frequency.  This  discrepancy of speed-related  characteristics 
p/ 
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should  be  anticipated  from  the  invalidity of equation (61) under  conditions of varying 
dynamic  pressure. A more  subtle  inadequacy of the  indirect  formulation is revealed by 
observing  that  although  the  maneuver  control  parameter €jpP/np is accurately  predicted, 
the  magnitude of the  short-period  roots is consistently  underpredicted.  This  discrepancy 
is apparently  related to the  inappropriate  application of inertial relief, under  the  indirect 
formulation,  to all derivatives  including  those  describing  control  effectiveness. 

CONCLUDING REMARKS 

A set of longitudinal  stability  derivatives  has  been  defined,  and  the  corresponding 
equations of motion  formulated,  applicable  to  the  analysis of longitudinal static and 
dynamic  stability,  control,  and  performance of elastic  airplanes.  This  development is 
subject  to  the  assumptions of small  perturbations  from a steady  reference  flight condition, 
structural  deflection  constrained  to a direction  normal  to a structural  reference plane, 
and  the  quasi-steady  aeroelastic  assumption of structural  deflections  proportional  to 
applied  loads.  The  development  described  herein  avoids  any  constraint  on  the  forward- 
speed  degree of freedom,  and  the  resulting  stability  derivatives  exhibit two important 
departures  from  past  practice: (1) The  aeroelastic  contributions of dynamic-pressure 
perturbations are included,  and (2) the  aeroelastic  contributions of normal  acceleration 
appear  primarily  in the derivatives with respect  to pitching  velocity  and  angle-of-attack 
rate and, for  an  unaccelerated  reference  flight condition, do not influence  the  derivatives 
with respect  to  angle of attack. 

Approximate  expressions  for  the  static and maneuvering  stability  margin  and  con- 
trol   parameters in t e rms  of the  stability  derivatives  defined  herein  have  been shown by 
means of illustrative  calculations  to  correlate  well  with  the  characteristic  stability  roots 
and  response  to  control  inputs  calculated by solution of the dynamic  equations of motion. 
Some results of illustrative  analyses of an  elastic  airplane  cast doubt  on the  general  exis 
tence of a neutral  point o r  maneuver  point  where  these  points are defined as center-of- 
gravity  locations  corresponding  to  zero  static  margin or maneuver  margin,  respectively. 
Some of the  results  for  an  elastic  airplane at high dynamic pressure  indicate  that  for 
stable  values of both the  static  margin  and  maneuver  margin, as the  maneuver  margin 
becomes  small,  coupling  between  the  short-period  and  the phugoid modes  can  result  in a 
strongly  unstable phugoid oscillation at a significantly  increased  frequency.  Further 
increases  in phugoid frequency result from  consideration of the  variation of atmospheric 
properties with  altitude. 

The  present  formulation of the  longitudinal  stability  and  control  problem  for  elastic 
airplanes is shown to be more  complete  than  several  alternative  formulations,  and  one 
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commonly  used  alternative is shown to  yield  significantly  inaccurate  predictions of not 
only  the  speed  stability  and phugoid characteristics, but also the  short-period  frequency 
and  damping. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Hampton, Va., January 21, 1972. 
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APPEND- 

A FORTRAN PROGRAM FOR CALCULATING LONGITUDINAL STABILITY 

DERIVATIVES OF ELASTIC OR RIGID AIRPLANES 

The FORTRAN program  described  herein  calculates  the  longitudinal  stability  deriv- 
atives of an  elastic  airplane  using  the  procedure  outlined  in  the  section of this  paper  enti- 
tled  "Calculation of Stability  Derivatives.II  The  aerodynamic  and  structural  influence- 
coefficient matrices and the  airplane jig shape are not calculated  in  the  program but must 
be  supplied as inputs.  The  program is written  in CDC FORTRAN IV, version 2.3 to  run 
on Control  Data 6000 series computers with the SCOPE 3.0 operating  system  and  library 
tape.  The  statements  in  the  program  most  likely  to  require  change to run on other  oper- 
ating  systems are those  calling  the  library  subroutine MATRIX, which is used  in  this 
program only for matrix  multiplication  and  inversion.  The  program is dimensioned  to 
accommodate up to 120 panels  on  one  side of the  aircraft  plane of symmetry  and  requires 
a field  length of approximately  140 0008 words. Input and  output data are in U.S. Cus- 
tomary Units. 

Input Data 

The  force  sign convention  used  in  the  program is such  that  positive  forces  act  in 
the  negative  Z-direction.  The  elements of both the  aerodynamic  and  the  structural 
matrices,  therefore,  have  signs  opposite  to  those of the @] and [S] matrices as 
defined  in  the body of this  paper.  Units of the  matrix  elements  are feet for  the @] 
matrix and  l/pound for  the [SI matrix. 

2 

Tape  inputs.-  TAPE 1 must  contain  the  elements of three  aerodynamic  influence- 
coefficient  matrices:  The first corresponds  to  the  nominal Mach number AM, the  sec- 
ond to a slightly  higher Mach number AM +DM,  and  the  third  to a slightly  lower Mach 
number AM - DM. A value of  DM  of about 2 to  4 percent of  AM is suggested.  Each 
matrix  has  dimensions M X M, where M is the  number of panels on one side of the air- 
craft  plane of symmetry.  The  matrix  elements are arranged  in  the following order: 
A(l,l), A(1,2), . . ., A(l,M), A(2,1), . . ., A(2,M), . . ., A(M,M), where  the first index is 
the  aerodynamic  control  point  (slope  point)  index  and  the  second is the  load  point index. 
No end-of-file  code is to  be  used  between  successive  matrices. 

TAPE 2 must  contain  the  elements of two structural  slope  influence-coefficient 
matrices: The first relates  slopes at slope  points to unit loads at load  points,  and the 
second relates  slopes at load  points to unit loads at load  points.  Each  matrix  has  dimen- 
sions M X M, and  the  matrix  elements are arranged  in  order:  S(l, l), S(l, 2), . . ., 
S(2,M), . . ., S(M,M), where  the first index is the  slope point  index and  the  second is the 
load point  index. No end-of-file  code is to  be  used  between  the two matrices. 
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APPENDIX - Continued 

Card inputs.- The  program is organized to execute  multiple  cases by use of nested 
DO loops.  The  outer  loop  provides for  various  center-of-gravity  locations,  and  succes- 
sive inner  loops  provide for various  airplane  weights at each  center of gravity,  various 
dynamic  pressures at each weight, and  various  load  factors at each  dynamic  pressure. 
Level 1 input cards  apply to all cases  and are read once. Level  2 cards  must  be  supplied 
for  each  center of gravity,  level 3 for  each weight  and  center of gravity,  and  level 4 for 
each  dynamic  pressure, weight, and  center of gravity. 

Level 1 

8 .  Card 1, 

IFLEX 

LIST 

LFT 

M 

NC 

AM 

DM 

SRE F 

CBAR 

CAF 

Format(311,213,5FlO.O) 

Set 1 for  elastic  case,  requires  TAPE 1 and  TAPE 2. Set 0 for  rigid  case, 
requires TAPE 1 only. 

Set 1 for output  listing of elastic air loads  and  flexible  slope  increments 
due to  jig  shape,  alpha,  delta,  and  normal  acceleration  and  total  slopes 
for  reference  flight condition.  Set 0 to  delete above listings  from output. 

Set 1 for  banked-turn  reference  flight  condition. Set 0 for  wings-level 
reference  flight condition. 

number of panels  on  one  side of aircraft  plane of symmetry 

number of center-of  -gravity  locations 

Mach number of reference  flight  condition 

Mach number  increment  used  in  preparing  TAPE 1 

reference wing area,  feet 2 

reference  chord,  feet 

increment  in  axial-force  coefficient  (skin  friction,  wave  drag  due  to  volume, 
etc.) to  be added to  that  calculated  from  pressures  normal  to  mean  cam- 
ber  surface. 

Each of the following a r r ays  is required  in  format (8F10.0), I ranges  from 1 to M: 

52 



I 

TSR(1,l) 

TSR(I,3) 

TLRJ(1) 

TLFZD(1) 

XSO(1) 

XLO(1) 

APPENDIX - Continued 

mean-camber-surface  slope at control point I due to jig  shape, {?}, radians 

increment  in  mean-camber-surface  slope at control  point I due to unit 6, 
(E6}, radians 

mean-camber-surface  slope at load point I due to  jig  shape, {?,e, radians 

increment  in  mean-camber-surface  slope at load  point I due to unit 6, 
{e6,$,  radians 

x-coordinate of slope  point I from nominal  origin, X positive  forward, feet 

x-coordinate of load  point I, feet 

Level 2 

Card 1, Format(I3, F1O.O) 

Nw number of airplane  weights 

XCG x-coordinate of center of gravity  from  nominal  origin, X positive  forward, 
feet 

Level 3 

Card 1, Format(I3,4FlO.O) 

NQ number of dynamic  pressures 

W airplane weight,  pounds 

YI moment of inertia  in  pitch, IY, slug-feet2 

Y1 (Iz - Ix)/Iy (A value of 1.0 is appropriate if the  actual  value is unknown.) 

Y2 Ixz /Iy  (A value of 0. is appropriate if the  actual  value is unknown.) 

The  following a r r ay  is required only if IFLEX has  been set to 1, format (6F12.0), I ranges 
from 1 to M 

Fm) weight  assigned  to  panel I, assumed to be  located at load  point I, pounds 
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APPENDIX - Continued 

Card 

NN 

Q 

V 

G 

RHO 

Level 4 

1, Format(I3,6F10.0) 

number of load-factor  values 

dynamic  pressure  in  reference  flight condition,  pounds/foot2 

true  airplane  velocity  in  reference  flight condition, feet/second 

gravity  acceleration  in  reference  flight condition,  feet/second2 

air density  in  reference  flight  condition,  pl,  slugs/foot3 

AH 

Card(s) 2, Format(8FlO.O) 

FUI) load factor in reference  flight  condition, I ranges  from 1 to NN (Note that 
FL = G/32.174 for a straight,  level  reference condition.) 

Output Data 

Program output is listed in two parts.  The first part is identified by the  values of 
Mach number,  center-of-gravity  location, weight, and dynamic  pressure read in as input. 
This  part  presents a tabulation  over all panel  load  points of the aerodynamic  normal  force 
divided by dynamic  pressure  and  the  flexible  increment  in  mean-camber-surface  slope 
produced by the  jig  shape and by unit  values of angle of attack,  control  deflection,  and 
normal  acceleration. 

The  second part  is repeated  for  each input  value of load  factor  and  presents data in 
five  groups  identified as t r im  values,  derivative  contributions,  stability  derivatives,  static 
parameters, and total  trim condition  slopes.  The trim  values  define  the  reference  flight 
condition  and  include CA 1, CN, 1, Cm, 1, a 1, 61, 81, @, "1, and  qlc/2V1  along 
with  the  number of iterations  used  to  solve  the  nonlinear  reference  equations.  The  deriv- 
ative  contributions  include  the  increments  in CN and Cm  due to  jig  shape and the par- 
tial derivatives of CA, CN, and Cm with respect to a, 6, qc/2V, n, e, M, and 9. 
The  stability  derivatives are presented  in both coefficient  form (CA,  CN, and Cm) and 
dimensional form (X, Z,  and M) as derivatives of these  quantities with respect  to ii, i, 
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a, &, 6, q (or qc/2V in  the  case of the  coefficient  derivatives), 4, 6, and h. 
Unsteady  aerodynamic  effects are not considered  in  the  program,  and  therefore  the  val- 
ues of the  derivatives with respect to ii, &, and 4 reflect only the  aeroelastic effects 
arising  from  inertial loading.  The static parameters include  the  stability  derivative 
ratio Cm,/CN, and  the  values of static  margin,  maneuver  margin, 6p/ii, and 6 n 
calculated  from  equations (59) and (60) of this  paper.  The  mean-camber-surface  slopes 
in  the  reference  flight condition are tabulated  over all panel  slope  points  and  load  points. 

p/ p 

The  units of all output  quantities not defined as input data are as defined  in  the  main 
text of this  paper  except  that  normal  force  per  unit  dynamic  pressure is in feet2 and alti- 
tude is in feet. 

Sample  Cases 

Listings of input data  cards  and  program output for two sample  cases are given  on 
the following  pages. Both cases  correspond  to  the  airplane  used  for  the  illustrative 
analysis of this  paper  flying at its supersonic  design condition. Sample case 1 is for 
the  rigid  airplane,  and  sample  case 2 is for the  flexible  airplane.  The  nominal  origin 
of x-coordinates is at 0.33~.  The  airplane is represented by 110 panels  numbered  con- 
secutively  from  leading  edge to trailing  edge  in  rows  progressing  from  root  to  tip.  The 
supersonic  paneling  arrangement  includes 11 chordwise  rows  with 10 panels  per row. 
Data  tabulated  over all panels  are  listed  in  the  order of panel  numbers. 

Program  compilation  and  execution  required 7 seconds of central  processor  time 
for  sample  case 1 and 48 seconds  for  sample  case 2. 
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I N P U T   C A T A   C A R Q S  - S A C P L E   C A S E  1 

C O L U M N  N U C B E R  
COOCOOCQ011111111112222222222333333333344444444445555555555666666666677777777778 
123456785012345678901234567890123456789012345678~0123456789C12345678901234567890 

010110  12.7 .l 
- .002C858 . e 2 1 7 3 3 0   - 0 6 4 5 8 9 6  - 0 7 2 1 5 5 4  .C677656 - 0 5 8 4 6 9 7  - 0 3 9 1 7 2 3  .0218184 
- .Q15e222 -.0640460  - .C173182 .OC54t53 . C l t t 3 2 7  .I2223163 , 0 2 5 0 9 6 2  .C253127 

.023C214 . Q 2 C 6 € 5 0   - 0 1 6 4 3 1 8  .0115639 - .0407757 -.C091252 - .0024986 .a047684 

.a093366 . i l l17246  .0128243 .0128901 . C l l l t C l  .a102973 -.OS23926 - .0241893 
- .0149258 -.CCC1958  -.COC€557 .C028021 .CO53965 .0064772 .0073860 .0080724 

9932 .37   112 .€ t18   -0CC33  

- .ob46976 - .0367379  - .0204279 - . 0 1 4 4 0 4 5   - . c c e s e 2 9  - .oC49710 - .001580s  . c o c e 3 1 e  
.0026083 .a040618  - .076e725 - . c 4 7 4 ~ 4 8   - . c 3 1 ~ 4 e  - .a236675 -.01?5863 - .c126706 

- .0571262 -. .a479388  - .0421487 - .a357561  - .a312538 - .02924e5 - .o267000 - . c 2 2 e 2 e 3  

-.CO91525 - .C057909  - -0031599 - a 0 0 0 9 9 3 6  - .0851170 - .C639445  - .a418934  - .03025?5 
- .a242494 -..02C8992  -.0176371 - . 0 1 4 0 t e 7  - .C112759 - .0093210  - .0979577  - .C725046 

- .066€C34 - . C C 1 6 6 2 7   " 0 5 6 9 0 2 4  - .05C7564 - .0464143 - .a432134  - .0397698  - .C373008 
- .035C413 -.C34OC52 " 0 2 9 2 5 3 4  - .0433315 - .a423783 -.I2430595  - .0435389  - .a438573 

-.043tCCS - .a436609   - . 0436609  - .0436609 - .a436609 - .0436609 
- .0442617 - .0445019  - .0446310 -..044€31C .CCC?e23 - .C255481   -a0370163   - . 0436609  

0. 0. 0. 0. 0. 0. 
0. 0. 0. 

0. 0. 
0. 0. 

0 .  
0 .   0 .  

C .  
C .  C .  0 .   0 .   0 .  
0 .  .053i .459 

0. 0 .  0.  C .  C .  0 .  -3725   . 734  
0 .  0 .  

0 .  0 .  0.   0.  C .  0 .  0 .  
0 .  0. 

0. 

0. 
0. 0. 0 .  0 .  

0. 
C .  

.46 27   -826  
0 .  

C .  
0 .  0 .  0. 

0. 0.  
C .  * 849 

0 .  
1 .o 0.  0 .  

.758 
0.  0 .  0. 0 .  C .  0 .  0 .  

.758 

0 .  
0 .  

0 .  
0 .  0.  c .  0 .  0 .  0 .  

0 .  
0. C .  0 .  
0 .  

0 .   0 .  
C .  0 .  

0. 
0. 0. 
0. 0. 

a. 0. 0. ' 0 .  0 .  .2138 

C. 

c .  0. 
a .  0. 

- . 0 4 3 6 6 0 9  .1371082 - 0 5 5 4 6 9 9  .C755199 .C738231 .C657603 , 0 5 1 0 2 4 3  . e 2 5 4 6 3 0  
- 0 0 4 6 5 2 9  - .a542514 - .0404669 - .0031124 . C 1 3 3 t 4 2  .a208076 .0247195 .a260645 
.0248230 .a224555 . 0 1 8 6 9 5 1  - 0 1 3 7 7 7 9  -.Ct15C84 - .a174436 - .0048858 - 0 0 2 3 8 2 4  
. 0 0 7 5 t 2 5  . C l l l O O O  - 0 1 2 7 5 3 1  - 0 1 3 2 5 5 5  .C126467 .0110408 - .0688493 " 0 3 3 4 6 5 4  

- . C E t C S t 8  - .C458547  - .026C490  - .C171017 -.C105445 - .a065365 - .0026051 .0000706 
.002C907 .CC35243  -.a961399  -.058572C -.C374848 - .0260445 - .a201491 - .C140063 

- .0181140  - .cc89998  - .a021476  .0012953  .co5c137  .ca60814  .0071681  .co78364 

- . O L O C E Z ~  - . c c 6 9 5 1 8   - . 0 0 3 s 6 0 8  - .0018017 - .cee3117 - . c 7 2 2 8 9 e  - .0505014 - .a335301 
- .025!958 - .a219175  - .a189672 - .a153701 - . 0 1 1 e t 2 5  - .oc99270 - . 0 8 ~ 2 2 8  - . c a n 7 2 6  
- .061?4oe  - .c4e7982  - .a435456 - . 0 3 7 0 ~ 7  - . c 3 0 ~ 5 3 4  - .0283116 - . 0 2 6 9 1 ~ 5  - .0230386 
"06379C6   - .C650822   - e0602126   "0542942   - .C4EC555   - . 0454076   -a0415073   - e0383499  
- .036?429   - . a343914   - . a176354   "0369715   - .C42@562   - . a428395   - . 0434637   - . 0437361  

- .0436tC9  - .C436609  - .a436609  - .a436609  - .C436609  - .04366C9 
- .0441703   - .C444051   - . 0445780   "0446094   . 025E262   - .C l17544   - . 0343573   - . a437526  

0 .   0 .  0 .  0 .  
0. 

0. 
0 .  0 .  0. C .  

0 .  0. 
0 .  

0 .  

C .  
0 .  0 .  

0 .  
0 .  0 .  0 .  C .  0 .  0 .  
C .  0 .  0 .  -0532   . 459  

0 .  

0 .  
0 .  

0. 0. 0 .  0 .  0 .  .3725 
0 .  

0 .  C.  C .  0 .  0 .  
.734 

0. 
G .  

0. 
0 .  0 .  0 .  C .  

0 .  

0 .   0 .  - 4 6  27 
0 .  0 .  0 .  

0. C .  0 .   0 .  .a49 
0 .  0 .  

1 .o C. 0 .  
-2738  .758  .758 

0. C.  0.  0. 
0. 0. 0. C .  0. 

C .  
0. 

0. 0. 0. 
0. 

0. 
0. 

0. 
c.  0. 

0. 0. 
0.  

C. 
0.  C .  

0 .  0 .   0 .  
0. 

. e26 C .  0. 

a. 0 .  0.  C .   C .  

. Level 1 
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1 ~ 6 . n e  

-8.841 

-72.515 
-26.511 

1.256 
3.947 

- t t  . 7 t l  
-97.7Eb 
- 5 C . t t 0  
- 5 5 . 5 2 6  
-66.429 
-39.Cl4 

-92.140 
121.227 
-54.431 

-3.110 
6.230 
E.230 

- 6 2 . t S l  
- 5 4 . ? t 0  

- 5 7 . 5 E 4  

- 8 7 . t 4 1  
-07.153 

1-3.E2? 
-51.176 

1 S i 6 . t l 5  
1472C3C. 

-aa.E52 

-20.378 

-52.83;  

- t 4 . e e 4  

. 9 7 3 7 5 ?  

€4 .264  
-55.372 
-41 .244  
-21.251) 

-5.323 

-75.599 

- t 1 . 2 6 9  

- t5 .252  
- t 3 . 9 6 2  

-51.031 
-5C.034 
-93.306 

5E.029 

-34.734 
-61.640 

-15.543 
-4.366 

-.635 
-71.557 
- t 1 . 5 5 4  
- 5 8 . 4 7 1  
-e  1 .671 
-61 .729  
-50 .486  

-52.383 
-05.164 

-4.e92 

- t4 .se2 

61.010 

-55.577 
55.C09 

-33.660 
-19 .531  
-13.730 

-72.177 
-14.613 

-66 .077  
-67.498 
-72.C75 
-16.963 

-$.4.465 
74 .020  
65.759 

-45.c90 

-14.571 
-27.975 

-5.500 
-11.011 

- e  4 .122 
-60.019 

- 7 c .  573  
-65.759 

-91.775 
- 7  5 - 6 9 0  

- :3.599 

-92.e16 

4256C510.  1. 
i c13 .E2  3 1  -573 

39.356 

-69.514 
44.755 

-46.C69 
- 3 0 . 4 d 0  
-22.569 

-79.373 

-72.C35 
-72.486 

-78.944 
-54.751 
- 9 5 . t 2 3  

5 1 . t 1 2  
51.403 

-63.44@ 

-25.515 
-40.430 

-18.242 
-10.366 

-76.C44 
-65.757 
- 6 9 . 0 4 6  
- 7 3 . 4 1 8  

- 9 3 . 7 E 5  
-17.101 

- 5 4  - 1 9 6  

0 .  

-21.e09 

-74.eqa 

3C.422 
16.901 

40.796 
-5E.47E 

-31.401 
-41.059 

-29.C04 
-33.227 

-76.C71 
-70.094 

-77.722 
-9C.52t 
-07.514 
-56.702 

28.4C3 

4 6 . t 2 0  
3 7 . c 4 7  

-52.841 
- 3 t . 1 1 5  

-25.46E 
-21.231 

-1 5.413 
-3c.251 

- 7 t . 2 t 2  
- 7 3 . 5 3 3  

-7C.711 
-06.35C 
-qe.c02 

-5.553 
16.089 
28.387 

- 7 0 . 0 8 8  
-51.630 
-40.246 
-36.200 
-38.035 
-03.703 

-00.545 

-00.672 
-51.94'2 

5.195 

34.190 
22.551 

- t 5 . 2 7 ?  
-46.783 

-32.69? 
-36.096 

-35.056 
-01.058 
-78.020 
-19.1C7 
-01.122 
-07.c57 
- 5 7 . 2 0 9  

- e o . x 7  

-82.9~7 

.CCC17465  -.CCCC475 C .  

-20.307 
1.755 

15.577 
22.414 

-62.217 
-49.004 
-43.395 
-44.443 
-51.954 
-04.143 
-83.360 
-04.009 
-89.031 

-13.014 
8.335 

21.755 
27.446 

-46 .961  
-57.300 

-39.91 0 
-41.541 
-49.410 
-92.107 

-83.732 
-81.952 

-d0.753 

-50.461 
-12.570 

3.568 
11 .035  

-72.796 
-57.922 
-5C.591 

-55.090 

-9c .509  
-06.07 1 

-41.223 
- 6 . C 2 1  

16.042 
5.322 

-67.992 
- 5 2 .  P 2 t  

-06.195 
-53.497 

-04.796 

-05.970 
-85.743 

+ Level 1 

Level 2 
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PROGRAM OUTPUT - SAMPJiE CASE 1 

A E R O E L A S T I C   C E R I V A T I V E S .  M= 2.7009 XCG= -9.8231 W =  472503. QBAR= 

4.405367 5.086942 
-8.101925 -5.825629 

.371886 -.545671 
2.124071 1.518731 
1.846014 2.000352 

-3.577497 e861491 
.749346 

1.157658 
.489162 

-794494 .7C7317 
-.3C6045 .2t3CC2 

-3.965022  -2.247014 

-e522849 -.2892G9 
.162971 .085693 

-1.165501 -1.111301 

E L A S T I C   A I R L O A O S  

.qe8819 

E L A S T I C   A I R L O A O S  
149.818P68 99.252230 
104.610133 52.1549335 
75.136618 74.6E5779 
71.263026 70.013380 

182.627076 102.495503 
82.799433 72.631784 

52.180692 50.892719 
54.687695 53.506766 

55.441732 51.305983 

109.312972 18.634141 
65.643622 52.061183 

30.735940 30.495578 
33.034518 28.6569C7 
33.654015 32.852887 

@.000000 0.000000 
3.796512 5.776272 
0.000c00 
0.000000  0.000000 

-036935 

0.000000 0.000000 

4.269627  18.657504 
0.000000 ').oooooo 

0 .000000 0 .O@O@OO 
0.000000 .000053 

0 .oooooo 0 .oooooo 
.596000 2.451511 

0.000000 0.000c00 
0.000000 0.000000 

E L A S T I C   A I R L O A D S  

o.oooooo o.acoooo 

PER a OUE TC JIG SHPPE 

2.066525  3.56no51 
6.407287 5.590033 

-1.497147 -2.352072 
1.015405 
1.950671  1.554878 

.307909 

1.613613  1.468820 
-4.567554 

.800753 .65@775 
-003242 

.726670 
-378186 

.774167 

.378769 

-1.451682 -2.063045 
-1.251506 -.588971 

-1.034143  -.942978 
-.I19487 -e023573 

P E R  a DUE T C  ALPHA 

170.63e300  92.936603 
99.386244 116.837692 

72.390064 66.481118 

67.249463 65.149742 
68.565508 68.104686 

177.915649 100.487495 
81.837039 70.107545 

49.937338 48.327395 
47.478609 44.581055 
45.853602 45.481612 
60.797135 49.212877 
58.849529 64.530916 

31.404300 29.787274 
25.071517 22.14.3085 

P E R  Q OUE Ta n E L r A  
0.000000 0.000000 
0 .GOQ003 0.30000@ 
.lo3736 8.182117 

0.000000 .008863 
0 .000000 0 .000000 

0.00c000 0.000000 
31.418286  48.231617 
0 .ocoooo 
0.c00000 0.000000 

.005005 

o.oFo000 0.000030 
0.000000 0.01)0000 
0.000000 0.000000 

o.oooooo o . o o o m  

O.COQOOO o.oooooo 

4.137748 

"653648 
3.310008 

"344136 
1.191829 

1.076597 
1.537863 

-5.144581 

-320750 
.737781 

- . 1 5 C , 4 8 7  
-1.750619 

-.849150 
.C55301 

126.397336 
78.378010 
180.30861 1 
66.9C1651 
63.293960 
63.472436 

169.214616 
77.308528 

43.062685 

41.186243 
44.911300 

57.373415 
26.594636 
28.086723 

@ .oc!?ooo 
0 .oonooo 
0.0c0000 
5.904510 

0 .@9OFOO 
(r .0000oiJ 

0. ocoooo 
0. OOOOnO 

49.519799 
0 .oooooo 
0 .  oc9003 
0 .OD0000 
0. ocoooo 
0. GCCOOO 

1.658043 
2.858762 

-.949954 

1.432235 
.774787 

-1.C41628 
1.013636 

.63c)8C2 
-242784 

-1.370496 
,135972 

"623199 
-.75264n 

3.177942 

134.199253 
75.325785 

1'30.213469 
64.536145 
61.576594 
59.571503 
66.8968G4 

43.184773 
95.769864 

43.635639 
34.759944 
49.801898 
28.584089 
26.314333 

o.o3o')r!o 
0.01)OOflr) 

53.047485 
O.OGO300 

o.Joo1)cn 
.OO 1893 

0.000OGO 
5.000000 
52.151664 
12.447534 
0.003300 

3.303000 
0. r)90000 

0.ooooon 

596.62 

-1.973766 

2.44@543 
-2.276323 

1.180391 
.332773 

1.113111 
.626273 

-5.457239 

-244314 
.295239 

-1.039168 
-.926234 

2.353882 

131.049141 
74.677153 

183.797293 
81.761434 

6C.865743 
58.183180 
59.962141 
71.727225 

155.538858 
41.604817 

43.254497 
32.125564 

30.718988 

0.000007 

0.n000rJ3 
0.006000 

o.iJoo03fl 
32.852237 
o.or)oi)3'1 
0.030033 
0.000030 
0.00003,Y 

30.458912 
0.03003n 
0.000000 
0.000030 

-4.281655 
1.33 3546 

1.950561 
-.G40G82 
"362503 

1.216811 

-1.526993 
.434817 
-231376 

-1 128723 
-.781034 

2.4C8191 

e865549 

134.909163 
75.125173 

102.669730 
74.373917 

59.815473 
56.485101 
55.245622 
61.329331 
88.224501 
39.146471 
31.394826 

32.887397 
38.002822 

0.0000Cd 
- 4 1 0 4 5 6  

0.000007 
0 .000oor) 

50.013243 

0.3@00@~ 
.00@347 

0.000000 
0.00000rJ 

0.0000@? 
o.orCJoL'I! 
O.OCOOO0 

30.913052 
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LOAO  FACTOR = .99315 

CA = .004159 ALPHA = .048506 P H I  = 0.000000 

CM = 0.000000 THETA = .048506 P C l Z V  = .OOOOOO 

TRIM  VALUES I 2 ITERATIONSJ 

CN -079145 OELTA .OOOOOZ AN, G -992584 

OERlVATlVE  CONTRI8UTlONS 
J I G  SHAPE  ALPHA OELTA 

CA 
PC/ZV AN, .G POOT MACH OVN  PRESS 

CM 
CN -003698 1.555408 .088980 -672663 0.000000 0.000000 -e018491 0.0000000 

-009699 "199950 -.049690 "539630 0.000000 0.000000 -003161 0 ~ 0 0 0 0 0 0 0  

-.0301833 A031426 .0038041 0.0000000 0.0000000 .0306116 0.00000000 

S T A B I L I T Y   O E R I V A T I V E S  
U 

CA .0018134 -0~0000000  -.0301833 -0.0000000 -0~0000000 
CN "049926 -0.OWOOO 1.555408 -0.000000 -0.000000 
CM -008535 -0~000000 "199950 -0.000000 -0.000000 

X -e001749 -0.000000 .004660 0.000000 -0.000000 
Z -.016729 -0.000000 -.240115 0.000000 -0.000000 
M -134113 0.000000 -3.141995 0.000000 0.000000 

UOOT  ALPHA  ALPHA  DOT  THETA 

S T A T I C  PARAMETERS 
CM ALPHMCN ALPHA -.I28552 
STATIC  MARGIN = -.141924 
MANEUVER MARGIN -.130062 
OELTA/U 
OELTA/ANI  G 

= .587300 
= -.271118 

--0020858 
TOTb 

-e0198222 

-0093366 
-0236214 

-.0143258 
-.Ob46976 

-.0091525 
-0026083 

"0242494 
-.0511262 
-.Ob68034 

-.0442617 
-e0355413 

-.0436609 

-.0436609 
-0046529 

-0079625 
.0248230 

-.0183140 
-.0866568 
.0020901 

-.0105821 
-e0255958 
-.Ob13408 
-.Ob37906 
"0363429 - -0441 103 
-.0436609 

TOTA 

iL TRIM  CON01 
-0217330 

-.Ob40468 
.0206850 

-a0061958 
-0117246 

-.0361379 
.0040618 

-.0057909 

-a0479388 
-.0208992 

-a0340052 
-.Ob16627 

-.ti445019 
-a0436609 

, L   T R I M  CChOl 
-1331082 

-so542514 

.o 11 1000 
ma224995 

-.CO89998 

-.0069518 
.0035243 

-.0219175 
-.0487982 
-.Ob50822 
-a0343914 
"0444051 
-.I2436609 

-.045a547 

T  ION  SLOPES 
.Ob49896 

-.OlT3182 
.0164318 

-.0008557 
-0128243 

-.0204219 

-.0031590 
-.0176371 
-.0421487 -. 0569024 
-.0292534 
-.0446310 
-.0436609 

-.076a725 

I T I C N  SLOPES 
,0554699 

-.0404669 
-0186951 

--0021476 
,0127531 

-.0260490 
-.0961399 
-.0039599 

-.a435496 
-.0189612 

-.Ob02126 
"0176354 
-.0445780 
-.0436609 

AT SLOPE  POI 
.0721554 
,0054653 
-0115639 
.0128901 
.0028021 

-.0144045 
-.0474848 
-e0009919 
-.0140607 
-a0357561 

-e0403315 
-.0507564 

-.0436609 
-.0446310 

~ NTS 
.Ob17656 

-.0407157 
.0166321 

.0118662 
-0053965 

-.0089829 
-.0314948 
-.0851170 
-.a112742 
-.0312538 
"0464143 
-.0423783 
-0063823 

-.0436609 

1 T  LOAO P O l N l  
-0155199 

-.0031124 
.0137179 
-0132559 
,0012953 

-.0585120 
-.0171017 

-.0018000 
-.0153701 
"0370947 
-e0542942 

-e0446094 
-.0369715 

-.0436609 

rs 
-0738231 

-.Ob15084 
.0133642 

.0126468 
,0050137 

"0105445 

-.0883117 
-.0374848 

-.0118612 
- . 0308534  

-.0420562 
.0253262 

-a0436609 

-.04a0599 

Q 
.0038041 0.0000000 .0031426 0. 
.612663 0.000000 .088980 0. 

"539630 0.000000 -.049690 0. 
-.000013 -0.000000 -a000485 3.48992E-08 

POOT  OELTA  ALT  ITUOE 

-.002242 -0.000000 "013736 5.80350E-07 
-.183071 0.030000 -a780820 0. 

-0585697 

-.0091252 
.0223163 

.0102982 

-.0049710 
-0064772 

-.Ob39445 
"0236675 

-.0093190 
-.0292484 
"0432134 
-a0430595 
-.0255481 
-.0436609 

.a657603 
-0208076 

"0174436 
.0110417 

- .0065365 
.OGb0814 

-.0260449 
-.0722898 
-.0099250 
-.0283111 
-.0454076 

"0117544 
-.0428395 

-.a436609 

-0391723 

-.0024986 
.0250962 

-e0523926 
.0673867 

- .0015805 

-.0418934 
-.0175863 

-.0266985 
"0979577 

-.0397698 
-a0435309 
-.0370163 

-0510243 
.0247195 

-.0048858 
-.Ob88493 
.0071688 

-.0231491 
-.0026051 

- . 0844228  
-.0505014 

-.0269140 
-.0415073 
-.0434637 
"0343573 

.0218184 
-0253127 

-a0241893 
-0047684 

-0080739 
.0008318 

-.0302575 
-.0126706 

-.0725046 
-.0228268 
-.0373008 
-.0438973 
-.0436609 

.0254630 

.0260645 

-.0334654 
.0023824 

-0078379 
.0000706 

- .0140063 

-.0872726 
-.0335301 

-.0230371 
-.0383499 
-.0437361 
-.0437926 
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I N P U T  DATA CARDS - SAMPLE CASE 2 

C O L U H h  N U P B E R  
0 0 0 0 0 0 t 0 0 1 1 1 1 1 1 1 1 1 1 2 2 ~ 2 2 2 2 2 2 2 3 3 3 3 3 3 3 ~ 3 3 4 4 4 4 4 4 4 4 4 4 5 5 ~ 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8  
1 2 3 4 5 6 7 8 S C 1 2 ? 4 5 6 7 8 9 0 1 2 3 4 5 6 7 B ~ 0 1 2 3 4 5 6 7 8 9 C 1 2 ~ 4 5 6 7 8 9 0 ~ 2 ~ 4 5 6 ? 8 ~ C 1 2 3 4 5 4 7 8 9 0 1 2 3 4 5 6 7 B 9 C  

1 1 0 1 1 0  12.7 
. 0 0 1 5 € i ?   . C 2 4 6 6 3 0  .O667EC2  .C729176  -0678190  .OS84583  ,0388353  .01999?2 

.1 9932.37  112.EC18  .C0533 

- .024 t i13   - .C t74348   - . 0162212   . 0062563   . 01705S1   “2224678   -0250616   -0253754  
.0235865  .C2C7CS5  ,0144825  .CC93i77  - .C41OC27  - .CC51921  - .0027684  .OC43tt9 

-.3143609  -.OC55302  .COO6991  -0057361  .COS6575  .C171323  .0195188  .OtC0882 
.0330743   .C118798   . 0133369   .C180953   . 01724?3   -0153694   “0533342   - . 0245784  

- .06575?2 - .C37(484 - . C l S l 3 3 3  - .0111876 -.OC34C72 .C036071 .0101099 - 0 1 7 4 2 9 7  
.C?065C8 eC224772 - . 0 7 3 8 8 5 3  - . 0 4 2 6 4 t 7  - .C239043 - . 0 1 4 1 5 1 0  - .0049521 .CC37CEC 
. O l l 2 7 7 2  .C203119 .0303785 - 0 3 1 8 9 1 7  - .0738209 “‘2499947 - .0247094 - .0101866 
.00C36C2 .CC70773 . C 1 4 3 1 t 3  .0223143 .0304250 - 0 3 1 4 2 8 6  - .3737579 - .a450515 
- . 3 2 5 € 3 2 2  - . C l i 1 3 4 @  -.CC13252 - 0 0 6 5 6 2 5  .C1392@t .C166269 - 0 1 9 3 7 1 6  - 0 2 2 4 3 6 2  
-.02501CE -.C1754OC - . 0 0 8 4 t 2 0  .COOS5C6 .CC77CC7 .C125598 , 0 2 3 8 6 9 7  .0374343 
. c 3 7 3 ~ ~ 7   . c 3 4 7 7 5 4   . c ~ e 7 4 ~ 7   . c 1 9 2 8 c 4   . o z c 6 7 ? 8   . c 2 2 3 0 9 7   . c 2 4 5 0 0 0   . a 2 6 5 6 1 4  
.0317445 . C ~ C ~ ~ I I  . c 4 1 4 4 6 6 .   . 0 3 8 9 6 0 5   . c 8 0 9 4 s e   . c 5 c 9 3 0 8   . 0 4 1 5 1 7 9  .c3eo63e 
.049435?  .04:9335  . c40te43   .0415755  .04381c6  . c45co71 
C .  
0 .  

0 .  0 .  0 .  C .  0 .  
0 .  0 .  

0 .  
C .  

0 .  

0 .  0 .  0 .  C .  
C .  
C .  

0 .  0 .  
0 .  

0. 

0 .  0. 
0. 

0 .  
0. 

0 .  
C .  0 .  

- 0 5 3  2 .459 
0 .  0 .  0 .  0. 

0. 0 .  
.3725  .734 

C .  0 .  0. 0 .  C .  C .  0 .   0 .  
0 .  C .  
0 .  

C .  
0 .  .4627 

9. 0 .  0 .  0 .  0 .  
.E26 C .  

C .  
C .  

C .  0 .  
0 .  

0 .  
0 .  

C .  0 .  0 .  0 .  
.a49 1 .,3 0 .  
C .  .2138  .758  .758 

0 .  

C .  0 .  0 .  0 .  C .  0 .  
0 .  

e .  
0. 0 .  

0 .  

C. 0. 0. 0 .  C .  
0 .  C .  

0 .  
C .  0 .  

0 .  
0 .  
0 .  

0. 0 .  0 .  c .  C .  c .  
.0313444  - .C5E4475  - .0392262  - .0021710 .31?9EIC .C210751  .C247217  .C261119 
.0?485t1   .Ci2407t   .C179556  .C114255  - .C619CS4  - .0175373  - .004980;3   .9020224 

-.C134C5S -.CCE6seE - .CC11353 .CC35465 .CC79648 .C144903 .0198851 - 0 1 5 9 4 9 9  
- . 5 8 7 8 c 2 2  -SO466441 “ C 2 5 6 5 4 3  - . 0 1 4 8 7 i 3  - .0Ct2754 sCCC5924 s o 0 7 3 1 5 2  .0148C7J 
.ClF52C4 - 0 2 1 7 1 5 7  -.G94C4e3 - .C548035 - . 3 3 1 4 2 2 3  - .C174116 - . 0 0 9 1 4 6 9  .@OC5C58 

-.3!235tS1 .CC45208  .GlC5t58  .0189262  .32E77SS  . ‘ I315315  - .0615457  - .OtZC?4P 
.@3754EC  . ’215Se57  .Ci70648  “2319256  - .C78i l lS  -.C5SA8C1 - . 0350143   - . 0153127  

-.J227;Ci  - .022tC67  - .C137763  - .CO46018  .00457eC  . ,7’758240  .a172427 .03?t366 

.03F2EE?  .C413499  .C4?@443 .O41Z5CE .0429CeS  .C448589 

.0285394  .C3E5551  .C410t41  .C3990b5  .09@5235  .CC29536  .0422115 .P3C832e  

- . 3 3 ~ : 4 2   . ! ? t e 7 5 4  . C E ~ S ~ ~ C  . c76e654   . 0741514   . 0657412   . 0559240   . c247cee  

. c . > ? s ~ s ~   . c 1 1 1 1 7 9   . 0 1 2 5 3 e 1   . c l b e 2 7 5   . 3 1 7 8 ~ 7 4   . c l c 2 1 2 9   - . 0 7 0 0 4 2 ?  - . o Y + c ~ E ~  

- . ~ 3 2 4 7 7 9  - . c L ~ ~ B z ~  - . ( io47259 . C C ~ ~ E C C  .012qe?c  . c 1 7 3 6 5 2  .01a6121 . 0 2 2 1 0 ~ 8  

. 0 3 3 ; e i c  .C369C10 . ~ 3 5 a c 5 $   . 0 2 1 c 1 1 1  . c 1 s 1 c e l  .O.?C7521 . 9 2 2 8 9 ~ 1  . o z 5 5 ? 7 4  

0 .  C .  0 .  
C .  C .  

0 .  9. 

C .  0 .   0 .  
C .  C .  0 .  

3 .  .7512 , 4 5 5  0.  
0 .  0. 

0 .  G .  0 .  - 3 7 2 5  
0 .  

0 .  
.734 

C .  
0 .  

0.  
C .  0. 0 .  

0 .   0 .  

7 .826 C .  0 .  0 .  
0 .  

0. 
C .  

1 .o 
0 .  C .  .758 . 7 5 e  

0 .  0 .  

0 .  
C .  0 .  c .  0 .  

C .  
3 .  

C .   C .  V .  

c .  0 .  
0 .  

0 .  
C .  

9. 
0 .  

0 .  

. e 4 9  
.2?3e  

C. 
C .  

C. 
0. 
C. 
0. 
C. 

0. 
C .  

0. 
0 .  
0 .  
0 .  
C .  

C .  

C .  
0 .  

C .  
C .  
c .  
C .  

’3. C .  

C .  
C .  
C .  
C .  
5 .  

0. 

0. 
0. 

0. 
0. 
0. 
0. 

0 .  
. 4 t i  

0 .  
C .  
e .  
0 .  
0 .  

Level 1 
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-12.515 
106.718 

-8 .841  
1.256 
3.547 

-57.7E6 
-66 .761  

-55.660 
-55.526 
-56.429 
-85.014 

-52.148 
1 2 1   - 2 3 7  
- € 4 . 4 3 1  
-20.378 
' -? .110 

6 - 2 3 8  

-62 .651  
-54.368 

-51.584 
-54.EE4 
-31 .641  
- 9 7 . i 5 3  
-31.176 

:-$.E23 
14725CC. 

-26.511 

-a8.e52 

8.230 

-52.e12 

l'?;i.S3i 

5 t i - I . C l E  
2 7 ? . 1 4 C  

l l l c 1 . 3 0 E  
bC1.32C 

?2Cf.C5C 

1 1 4 5 t . C l 7  
155E.755 

1 7 7 i . l C 7  

1454.355 
5 5 3 . 2 1 ?  

7 1 7 . 5 2 5  
4E5.E4C 

2 0 2  . O l O  
1F6.54C 

; l . t i S  
c.oc0 

1 1 4 c e . 6 8 2  

-55 .372  
€ 4 . 2 6 4  

-41.244 
-21.250 

-5 .323  
-4.892 

-75 .599  
-64.582 
-61 .269  
-63 .962  
-69.252 
-91 .837  
-9C.834 
-93.3C6 

-E7.640 
58.029 

-15.543 
-34.134 

-4 .366  

-71.557 
- . t 3 5  

-61 .594  
-5  E.417 
-61 .671  
-t7.728 
-50 .486  
-85 .764  
-9i.3E3 

61.810 
59.C89 

-55.577 

-14.501 
-33.660 

-14.613 
-13.730 

-66.E77 
-72.177 

-67.998 
-72.c75 
-16.553 
-92.816 
-94.465 

74 .820  
65 .759  

-49.090 
-27.575 
-14 .971  

-1 1 .017 
-<.SO0 

-68.819 
-64.122 
-65.159 
-7C - 5 7 3  
-75 .690  
-91.775 
-53 .589  

4 2 5 6 C 5 1 6 .  1. 
50E2.200 

1 1 0 5 1 . 6 4 0  
1 2 5 7 . 9 i 3  
312  9. C l  0 
I t ? l . C 3 J  
2833.442 
2 0 i l . 2 2 4  
4 4 2 8 . 3 2 8  

lC4.51C 
1 1 8 3 . 8 4 8  
1156.124 
-12 .073  

375.13G 
0.OOJ 

3€1.520 
J.002 

42.469 
SE.559 

44.755 
37.356 

-69.514 

-30.48C 
-46.069 

-22.569 
-2l .EC9 

-72.486 
-79 .373  

-74.898 
-72.035 

-54.757 
-78.944 

-55 .623  
51 .612  
51 .403  

-63 .448  
-4C.408 
-25.575 
-18.366 
-13.242 
-76.C44 
-65 .167  
-65.846 

- 7 7 . 1 0 1  
-73 .418  

-93 .785  
- S 4 . 7 5 6  

C .  
3545.400 
5 2 6 5 . 8 1 2  

.. 

4890.585 
382.190 

1301.48C 
3190.6C6 

942.250 
2486.367 

7 8 6 . 7 6 6  
246.882 

1 5 7 . 6 9 0  
3E5.1C6 
7 1 2 . 5 6 6  

225.960 
12.122 

112.550 
2 .411  

4 2 . 4 t 9  

16.901 

4C.756 
- 5 f . 4 7 e  
-41 .c59  

-29.004 
-31.*07 

-33.227 
-18.C54 

-77.122 
-16.C71 

-87.514 
-80.S26 

-96  .782 
28.4C3 

46  ,620 
31.C47 

-36.179 
-21 .231  
-25.468 
-3c .251  

-13.531, 
-15.413 

-79.111 
-76.262 

-86.15C 
-56.COi 

30.422 

-52.841 

8 5 1 2 . 8 7 ~  

t 1 . c c e  

7 9 5 5 . i t c  
5056.200 

1285.46C 
c .ccc  

i 4 1 E . 2 5 8  
-23.8P2 

902.372 
$ 1 5 . 4 3 8  

7 1 1 . 6 1 9  
23t.Cf20 

E7.31C 
496.010 
145.890 

C.OC0 

~ 5 c . e 9 9  

68.255 

-5 .553  
16.009 

-70.888 
28.387 

-51.638 

-36.200 
-40.246 

-83.103 
-80;107 

-82.907 

-97.940 

22.691 
5.195 

34.180 

-46.783 
4 5 . 2 7 3  

-36.096 
-32.693 
-35.896 

-18.020 

- 8 1 . 7 2 2  
-79.107 

-57 .2C9 

-38.835 

-eo.545 

-e8.672 

-81.05 e 

-e7 .557  

-566 .222  
7 5 6 8 . 4 1 1  

1 5 6 8 . 8 3 3  
2540.874 
1C53.850 
2515.319 

i c c s . 0 c c  
t 6 4 . 2 6 0  

LCe6.054 
811.556 

1125.448 
7 7 9 . 3 2 3  

67,.575 
117 .050 
-11~100 
127.410 

e 1 0 . 8 9 5  

t 4 . 3 e e  
C4.3EE 0.000 

1 5 5 6 . 6 1 5  2 6 1 3 . E 2  31.573  .C9C17465  -.CCC0475 0. 
. 5 5 3 7 5 . :  

-2 8.007 

15.977 
1.756 

22 .414  
-62.217 

-43.395 
-49.084 

-44.443 
-51.854 
-84.143 
-83.368 

-89.831 
-84.889 

-18.014 
8.335 

27.446 
21 .155  

-51.388 
-44.961 
-39 .918  
-41.54 1 
-49.410 
-92.107 
-81 .952  
-83 .732  
-88.763 

8564.713 
5861.568 

-518.031 
1867.500 

8894.700 
2215.237 
1825.644 
1 6 5 2 . 7 7 6  
1036.160 

280.930 

664 .872  
852.943 

2 3 3 . 2 9 0  
148.060 

47.60R 
42 .469  

0 .  c o o  

361.850 

-50.461 
-12 .578  

3.568 

- 7 2 , 7 9 6  
-51 .922  
-50.591 
-5C.C52 
-55 .890  

-86.191 

-9C.989 
-86 .871  

-41.223 
-6.021 

16.842 
5.322 

-67 .942  
-53.826 
-47.143 
-47.187 
-53.497 
-86.1S5 

-85.743 
-85 .470  

11.835 

-88.379 

- e 4 . 7 9 6  

Leve !I. 1 

6 1  
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PROGRAM OUTPITT - SAMPLE CASE 2 

A E R O E L A S T I C  DERJUATIVES~ W= 2.1001 XCGx -9.823, Y= 4725001 PEAR= 596.62 

5.810704 
-0.567500 

.007622 

1.9>9128 
-3.131152 

1.223425 
1.671620 
1.357799 

-2.119483 
.332300 

1.148631 
-265485 

" 2 5 9 5 9 4  

ELAS 

I .a97848 

T I C   A I R L C L O S  
5.793022 

PER a DUE 1 
6.845513 

-1.798315 
3.406742 

. ~ 2 5 7 5 e  
1.87a833 
1.8311G1 

-4.106022 
1.684915 
1.423311 

-.440357 
1.052221 

-.279069 
.140621 

-.229331 

ro JIG SHAPE 
5.147565 

-2.459552 
4.049156 

1.560583 
.345853 

1.641616 
-329446 

1.422201 

1.052091 
1.565512 

- 1 3 1 0 2 3  
-.954255 

.195548 
- . le3912 

3.5€5016 

-429105 
-.391292 
1.240003 
1.110963 

-4.430626 
1.418165 

1.557636 

3.411013 2.009673 
- 9 1 8 6 2 1  

" 9 1 2 6 3 4  
3.613510 

1.062064 
1.665462 

-.539993 
1.337896 

1.412440 

- 8 0 1 6 0 4  
-982056 

" 4 6 4 1 1 7  

-.OS6915 
.295702 

-2.122166 
2.043070 

-1.523211 
2.551219 

- 5 6 1 9 5 1  
1.469050 
3.461160 
1.081451 

-4.301451 

-.201243 
1.052415 

-.014005 

1.030886 

-5.006404 

2.324106 
-927896 

2.295400 
.198930 

1.625356 
1.379521 

-.781343 
1.159961 

-.001218 
1.246255 

-.211753 

1.3331e5 

-5.897203 
" 8 3 2 3 9 4  

1.511447 
le '281391 

1.021146 
1.68E508 
1.295655 

-1.31325t 
-864114  

- 5 8 6 2 5 6  
" 2 2 9 9 5 1  

1.115842 

. a 9 8 4 ~ 2  

1.052808 
-521116 

-.745194 

- .123204 
.990463 

381.741€55 137.051915 
53.149616 23.664056 
48.1127Q4 44.413381 
59.323128 4E.2495€4 

198.649289 1C6.C6E429 
15.575241 15.795472 

30.662899 i4.940629 
43.951051 21.614e19 
69.523591 49.144325 

12   -660122  7.5830 80 
5.505213 1.8561C1 

11.006C16 lC.EC5143 

E L A S T I C  A I R L O L O S  

83.112699  t4.515888 

22.431963  15.68e969 

PER G D U E  T O  LLPHb 
312.8405€7  121.213047 
204.221516  106.649154 

34.523551 29.612750 

76.161912 55.525452 
51.245323 41.223431 

111.6C8529 94.136399 
10.85t547 11.909068 
19.251603 14.520121 
23.108455 22.045206 
35.914603 21.326434 
25.5940C1 32.143521 

11.142255  10.682785 

4 1 . 3 9 4 1 ~ 6   2 8 . 8 a 2 ~ 0 9  

4.581620  3.011404 

327.3313816 
85.393469 

34.472135 
24.5246C9 

43.213370 
65.662674 

149.474245 
11.213539 
19.8C4528 

29.061866 
21.220555 

3.E32053 
5.935126 

211.412a19 

102.381782 
75.638748 

112.278084 

19.153164 
24.953513 

33.141160 

79.901197 
48.966151 

18.287747 
11.691614 

15.059433 
24.630426 

9.048938 
5.193406 

92.614313 
h1.436581 
86.477548 

2oa.707701 
17.554378 

37.180852 
21.311189 

116,586145 
54.951269 

16.364108 
10.061113 
20.419141 

1.929713 

- . O X 5 1 2  
-2.995311 

-.643060 
-.145799 
-.024656 

-3.671926 
-5.443196 
-4.551911 

-6.250481 

E L A S  

-2.062385 

- 3 . 3 1 4 8 ~ 4  

-1.841149 
-1.632819 
-1.815626 

T I C  b l R L O A D S  
"02C811 
1.232063 

-1.31E4C5 
-2.961556 

-.26?321 
-.610768 

-5.773664 
-5.335321 
-3.398lE4 
-4.536416 

-.I94833 
-1.211648 
-1.687032 

10 . t5ezc3  

P E R  a DUE 1 

-4.583256 

-.015410 
-.041325 

-2.532645 
-1.232489 

-.t3OOC3 
-.601959 

-4,450549 
21.49C756 

-3.96E472 
-4.257249 

-1.609174 
-1.Lt5218 
-4.313958 

'0 D E L T b  
-.000235 
-.GO1117 
2.124812 

-5.543394 
-2.139122 
-1.199788 

- . lee765 
40.186445 

-3.0519a2 

-5.145119 
-4.517133 

-4.205368 
-1.132324 
-1.482138 

.C22318 
.c59453 

-2.382481 
.C!t355 

-3.4C0072 
-2.014075 
-1.31C599 
-2.472914 

-4.967545 
41.282109 

-2.543032 
-1.t31002 
-1.335146 

-2.615158 

-1.4C5023 
-.021189 

45.543862 
-068301 

-1.696191 
-3.534259 
-2.188441 

44.599598 
7.598386 

-2.610402 
-2.920926 

-1.206799 
-1.112055 

-1.959883 

- 3 . 2 0 ~ 7 1 5  
-.20*019 

-035234 
.013895 

23.261931 
-4.908C11 
-3.411694 

-5.380092 
-2.231820 

25.152840 
-2.47031  5 
-2.416151 
- 1 . 8 3 n e o  

-4.612643 
-1.111716 -. 2201  15 

.004013 
41.913120 
-1.585171 
-4.663185 
-3.119001 

26.242122 
-2.312453 

-1.861541 
-2.023152 

-3.689807 

-2.973795 
2.941689 

.810289 

E L A S l  

1.6e4488 

'IC b I R L C b E S  
-1.58C326 

1.486455 
1.769338 
1.301237 

.395574 - .431041 

1.ClSC15 
1.303411 

-694601 
-393323 
.504723 
-285312 
-151411 
. la4113 

PER E DUE T O  
-1.C94015 

2.149542 
1.5168C4 

-.449881 
-05196 3 

1.G2451C 

.435E54 
,395586 
.429161 
.13805E 

- 2 . 9 ~ ~ 2  

.a53672 

.6a1ce? 

.1a256c 

bh. G 
-.1598C6 

-1.162037 
1.901288 

1.162463 

-.041302 
-519137 

1.0C6541 
- 6 1  510 2 
.+lo539 
-347474 

1 . e 7 7 6 ~ 5  

-.515246 
.1Cl229 

-2.603851 
2.116383 
1.369254 

-8159CO 
.225481 
-247051 
-692556 
-453432 
-302145 

2.296836 
.03 3682 

-1 -028039 
1.896195 
1.7E4550 
1.057363 

.550341 
- 2 7 1 1 2 1  
-12589.5 

- 2 9 5 3 1 1  
-497904 

-320990 
- 1 8 7 9 2 6  
.I45498 

2.920626 
,615704 

-1.975876 
- .Ma213 

1.228719 
,764423 
-356211 
.14$428 

.261939 

.496201 

.1985C9 

.214lF6 

1.886074 

3.321608 
1.444497 

-.768129 
- 2 4 3 2 2 6  

1.675090 
1.431338 

-503910 
-472464 

-227860 
-501350 

.202841 
-245237 

.8a4001 
-1.232415 

-.158782 

-244542 
.204232 
,157818 

.441503 

.1423C3 

.111861 

.319793 
-114226 
-158509 
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.0093265 

- .00053?2 
.COO6476 

.0005720 

.0014482 
-0003423 

-.0109831 
-.0097738 
-.0104494 
-.0131881 -. 015C899 
-.0290716 
-.026956? 
-.0263350 

F L E X  IBLE SLOPE 
.0091802 

-.00023€5 
- .ooc 7779 

.0004625 

.COO1810 
-.0113168 
-.a117936 
-.C129421 

- .01980t l  
-.0281724 
-.C292188 
-.C264653 

. 0 o o 7 ~ e o  

-.0149e15 

INCREMEhTS  AT  
.ooe2758 

-.000?730 
-0C735C9 

-.0004512 
-.0007366 
-.0003467 
-.0016547 
-.0159548 
-.0145660 
-.0176375 

-.0237654 
-.02129C9 

-.0298155 
-.0265132 

LOAD POlhTS 
-0068154 

-.0003592 
.0064657 

-.0030058 
-.0015552 
-.0012194 
- .0020683 
-.0172270 
-.0112609 
-.0186922 
"0224324 
-.0241633 

-e0256829 
-.0293416 

DUE 7 0  J I G  
.0041498 

-0OE2643 
-0043294 

-.0021212 
-.0049405 

-.0023196 

-.C054048 
-.0027845 

-.02028l.7 
-.0157281 

-.0234134 
-.C252019 
-.026319? 
-.0258345 

SHIPE 
.0015830 
.0039300 
-0043764 

-.0053916 
"0056999 
-.0040738 
-.0039609 
"0059996 

-.0211958 
-.0200938 

"0243034 
-.0255808 

-.0261660 
"0266395 

-.0004448 
.0018475 

.0029295 

.0033199 

-.0085141 
-.0057783 
-.0054903 
-.0070136 
-.0110115 
-.0211937 
-.0253232 
-.0258463 
-.0269513 

-.0004662 
.0002913 

.0022681 

.O021558 

-.0090879 . 
- .0090988 

-.00?7422 
-.0083952 
-.0117441 
-.0230694 
-.0282140 
-.0263332 
-.0269314 

.2718150 
-.1612471 
- . lo28083 
-.0123659 

.0316665 

.0511167 

-.4856519 -. 5475559 
- .63€5889 
-.7659422 

-1.1704522 
-1.1736419 
-1.3320485 

F L E X  

- .4e54933 

I B L E   S L C F E  
.2653555 

-.151C475 
-.I637413 

- . C Z I E ~ C B  
- . c e 4 t 6 7 ~  

.0077199 
"4917673 
-.5559290 - .6000526 
"6937276 
- .7808528 

-1.3213711 

-1.3877344 
-1.2057618 

INCREMENTS  AT 
.23554C7 

-.1806C34 
-2184813 

-.1305557 
-.OS48301 
-.C5766CZ 
- . lo76155 
-.6386993 - -6366479 
-.?5866€3 
-.E272612 

-1.3458548 
-.9742791 

-1.4177012 

L O A D   P O I N T S  
.2004067 

-.2044741 
-1925376 

-.2383490 

- .13572€1 
-.16616C7 

-.tC45427 
-.165101? 

-.6923714 
-.7716138 
-.8658580 

-1.?218345 
-.5781178 

-1.3918812 

DUE TC ALPH 
.12&9749 
-1555792 
. le23259 

-.2C91656 
-.2C73414 
-.2438254 

-.145CSC8 
-.3111987 

-.7555206 
-.85S7523 

-1.0145050 

-1.4Lt1577 

-.32?41e6 

- 1 . 1 8 7 e 6 ~ 5  

IA 
-0412762 
-1195562 
-1437793 

-.3452587 

-.2938092 
-.3364940 

-.3176108 
- . 3683608  
-.7546954 
-.8124320 
-.9282906 

-1.0472356 
-1.2101109 
-1.4417986 

-.lo42503 
..0493260 
-1042167 
-1257243 

-.4250158 
-.3562284 
-.3689685 

-.5492655 
-.4418872 

-.8086727 

-1.0876102 
-.9703982 

-1.2365246 

-.1480572 
-.0323341 

.Ob30070 

-A429938 
-0817493 

-.4431237 
-.43095?? 
"4935266 

- .E043788 
-.5885788 

-1  -1254435 
-1.1276822 
-1.2868478 i 

F L E X  
- . 0 0 0 2 9 4 2  
-.0192187 

-.0034013 
-.0106517 

-.0007055 

-.C998058 
.0010480 

-.077?259 
-.0904911 -. 1225453 
- . lo19926 
-.0903709 

- . o m e c 3 2  

- .c6e5278 

I B L E   S L C P E  
-.0002654 
-.0158353 

-.CO74713 
-.CC34182 
-.0014968 

-.0804850 
- . lo24402 

-.CS83646 
- . lo27855 - .12417t3 
-.1C6?858 
-.C760489 
-.C615235 

-.01780e7 

I N C R E M E h T S   4 7  - .0003076 
-.OC02903 
-.0242425 
-.0114313 
-.0089286 
-.0056345 
-.0047338 
"1336482 

-.12207€7 
-.1121435 

-.1254651 
-.123418S 
-.0711053 
-.C568827 

LCAO P O I h T S  
-.0002935 
-.0002683 
-.0258412 
-.C372757 
-.CL69C98 
-.0€12731 
-.CO89856 
"1456426 

"1299337 
- . lo78841 

-.12661C7 
-.1210463 

-.0572186 
"0731299 

DUE T,C DELTA 
-.CCO2632 
-.0001929 

.OCO2191 
-.0697415 
-.C241130 
-.0183115 
-.0162055 
- . 0 2 e ~ 4 4  
- . 1 6 3 2 3 e ~  
-.1416876 
-.1248482 
-.11t9590 
-.C864065 
-.053C778 

-.0012147 
-.0000675 

-.0814037 
.0010895 

-.0356909 
-.OS86673 

-.0341563 
-.0277846 

-.1675837 
-.1505454 
-.1217907 
-.1109565 
-.0852106 
-.0496569 

-.0110868 
-.00075?7 

-0011256 
.0005580 

-.0955201 
-.OS24458 
-.0420577 
-.0456250 
-.0690619 

-.1184183 
- . lo48641 
-.0806223 

-.15654e4 

-.0173026 
-.0044752 

.0002690 

.0007344 
-.LO65206 
-.0829878 - .Of529740 
"0595292 
-.a761233 
-.1566422 
- . lo56200 

- .0742764 
- .0980896 

-.0268041 
.0108165 

.0003562 

.0055157 

-.0029126 
-.001608L 

-0172588 

-0151451 
-0153452 

-0154909 

.01C8188 

.0154061) 

.CO92555 

.0114163 

F L E X  I B L E   S L C F E  
-.0255e56 

.011??41 

.COB2619 

.0043455 

.0002944 

.01713€1 

.cca22f1 

INCREMEkTS AT L O A 0  P C I k T S  

-SO193221 -.C168675 
"0225443 -.0180043 

-0070338 .C110650 
-0103155 .0126788 

-0043538 .0074153 
.OCi76C5 -0058058 
.O048172 .0063574 
-0161123 -0159463 
.0160051 .0157588 

-01523C2 -0149953 
.0140530 -0138967 

-0OEC728 .0085677 

.015e358 .0155771 

.008e746 .cos2519 

DUE T O  Ahl. 

-.01378?7 
-.01C713? 

-.01381C8 
.C154848 
.OC53750 

.CC86204 
-0lC4969 
.0154953 
.0153745 
,01468C8 
.0135250 
.0110281 
.0082501 

. c c e ~ e z  

G 
-.0035940 
-.0100688 
-.0113385 

.0170706 

.0137153 

.0122828 

.0108256 
-0115695 
.0154811 
-0151743 
-0143669 

-0109195 
-0130663 

.0078779 

-.0042747 
-0056305 

-.0083431 
-.0079015 

-0175523 

-0124939 
-0132437 

-0130912 
,0149438 

.0139386 

.0151385 

.0125265 
-0106546 

-0012337 
.OC84406 

-.0048901 
-.0056559 

.Ill86144 
,0159840 
-0142663 
.0142618 
.0152722 
.0151884 
.0115150 
-0120453 
.0100214 

.Clt lE58 

.a157221 

.0157920 

.c154449 

.C1156C.5 

.CO94€45 

.ace4688 
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LCAO FPCTOR = -55375 

C A  = .004755 ALPI-A = . 0 4 ~ 4 5 e  PHI = C . O C C O O C  

C Y  = C . O J O O O O  7 t E T A  = .we458 c c n v  = .oocooo 

T R I M  VdLCES 2 I T E R A T I C L S )  

CN = .C79145 DELTA = -.GO1151 BNI G = .09258C 

C E S I V 4 7 I V E  CCLTRIBUTIChS 
J I G  SHAPE L L F t A  DELTA QC/2V ANI G QDOT 

CA 

CM 
CN .014051  1.115244 .C2G705 .154F43  .010917  -.032467 

.005452 .C4?187 -.018252  "372356 -.OC7t24 .001052 

-.0356468  .0012515  "CC99517  .0001567 -.0012869 

S T A B I L I T Y   C E R I V I T I V E S  
U 

CA .001677$ --0006172  -so356468 -.5e9C383 -.CCCCO76 -5790866 
CN -.Ob0885 -.C42955 1.119244 -41.03C6C8 -.000526  41.225150 
CM 

X -.OC1728 .CCOO95 .OC61EO .OC15t3 . C O O C O I  -.001930 
2 -.OljJ37 .OC6t37 -.172782 . 1 3 6 7 4 9  .O@OC81 -.137397 
Y .287332 .471844 .678637 9.721432 .OC5772 -9.847756 

LCCT ALPHA PLPFA COT TCETB Q 

.01aza5  .c3oc27  .04?187  28.t553t2 . 000367  -29.027718 

STATIC F A P b l r E T E P S  
C M  ALPHPlCN  bLPHb = .C?65Eb 
STATIC WARGIN = -.C51774 
MANEUVER C P R G I N  = -.Ct3460 

OELTAlAk .  G 
DELTA/U = -762541 

= -.265611 

-.0020585 
-.Olga535 

.OZ?t225 

-.0143279 
.@OS3337 

-.0090044 
.0027601 

-.0240834 
-.0565273 
-.05653?1 
-.0351536 
-.0435389 
-.0433476 

TCTAL 

-.gt47ce2 

T R I M  CChCI 
.0217548 

-.C64C678 
.OZOteE? 

-.CCtl938 
.C117247 

-.C367440 

-.CC56184 
.CC421tS 

-.C20700C 
-.C477C79 
-.061?e36 
-.C33tC51 
-.C441t45 
-.0433460 

-.043t302 .I331363 
.0046302 -.05427Ei 
.0248239 .C225010 

-.0183161 - . C O S C O C O  
.0079553 .011C990 

-.C8tt681 -.C45E635 

-.0104473 -.CC68051 
.0022373 -0036779 

-.0254524 -.0217?48 
-.0611572 -.0485862 

-.0359$37 -.034C455 
-.0635242 -.Ct48090 

-.0436507 -.044Cb52 
-.0433465 -.C433451 

TOTAL T P I C  CChCI 

: T I O N  SLOPES 
.C652027 

-.Ol731C2 
.0164255 

-.OCC848C 
-.0204247 
-.076E635 
-.0034212 
-.0174310 - .041 8 8 C l  
-.G5661CO 
- . O i B S 3 7 0  

-.0453512 
-.C442936 

. o l z ~ z e 6  

T I C N  SLOPES 
.05548E4 

-.0404578 
.0186945 

-.0021438 
.0127458 

- .cz t05cs  
"0561360 
-.0042518 
-.O? 87512 
"0432548 
"0599264 

-.0442386 
"0173197 

-.04334t6 

AT SLCPE P O I  
.07216C8 
.0054710 
.01155tl 
.0129417 
.0028211 

-.0143851 
"0414647 
-.CC16856 
-.01381t0 
-,0354738 

-.C4CO142 
-.0504553 

-.0442990 
-.0423554 

I 

AT LCPC P C I N l  
.0755257 

-.CO31C56 
.0137691 

.0013085 
-.C170926 
-.0585583 
-.0024812 
-.0151476 
-e0368230 
-.0539571 
-.03t65t4 
"0442742 
-.0433562 

.01328e4 

81s 
.C677t58 

-.C4C7771 
.Oltt357 

.CCI42E5 

-.0850557 
-.C314577 

-.a119256 
-.0?C5467 

-.C42C570 
.octt955 

-.04335E7 

.01187e6 

-.cce9509 

-, c 4 t  10 e4 

' S  
-0738253 

-.0615112 
.01436E6 

.C1265C6 

.0050326 

-.C3i4574 
-.01C5223 

-.08@2575 

-.0305567 
-.0125261 

"0477563 
-.04173t4 

-0256357 
-.041?3570 

.05e47co 

-.0051254 
.a223172 

.0098395 

-.0049122 
-0065721 

-.Ob38657 
-.0236140 

-.0101637 
-.0292457 
-.0429040 

-.0252318 
"0427407 

"0433567 

.0657601 

.02CE093 
"0174440 

-0105862 

-.OOb4905 
.0061520 

-.0259988 

-.0107558 
-.0722216 

-.0283125 
-.0450994 
-.0425208 
-.0114377 
"0433554 

CACH 
.0008278 

-.311269 
- . O C C E S C  

QOOT 
-.0012869 
-.032467 

-001052 
.OCO199 
.OC5012 
.Olt531 

.0331715 

.O250557 
-.00250C5 
-.05240C2 

-.0014923 
.0070841 

-.0175042 
-.0417912 

-.0272503 
-.0978100 

-.0394450 

-.0367012 
-.04322C7 

.0247193 
,0510246 

-.004a8tz 
- . 0 6 a . ~ e 7  

.0068567 

- . 0200820  
-.002533E 

-.0504121 
-.0842833 
-.0274610 
-.0411916 
-.0431453 
-.0340408 

-.COr)CCC47 
OYh  PRESS 

-.COO0255 
.OOOC174 

.0012L15 1.32361E-08 
OELTP ALT I TUOE 

.020705 7.23373E-07 
-.01R252 -4.91711E-07 

-.003156 4.686RIE-07 
-.28h8C3 -7.72668E-06 

-.ooc153  3.2e54w-08 

.0218G80 

.0753123 

-.0241931 
-0047652 

-0073536 

-.0125537 
.0009690 

-.0301311 
-.0723314 

-.0369537 
-.0233828 

-.0433458 
- ~ 0 4 3 5  8C7 

.025460C 

.0260647 

- .0334707 
.00237$8 

.OC712Ob 

.0001854 

- -0334167 
-.01390tl  

-.0971175 
-.0235512 
-.0380C85 

-.0434761 
"0434177 
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Program  Listing 

The  source  program  listing is presented on the following  pages. The  listing  for 
subroutine MATRIX is not given,  but its function  can be performed by any standard rou- 
tines  for  matrix  multiplication and inversion. In the listing  presented,  any CALL MATRIX 
statement having a first argument of 20 calls  for  multiplication of the matrix  starting at 
the address named  in the fifth argument  into the matrix  starting at the address named  in 
the seventh  argument, the results to be stored  starting at the address named  in the ninth 
argument. Any CALL MATRIX statement having a first argument of 10 calls  for  inversion 
of the matrix  starting at the address named  in  the fifth argument, the inverted  matrix  to 
be stored  starting at the same address, and the determinant  to be stored at the address 
named  in the seventh  argument.  The  determinant is not used  in the present  program. 
The  remaining  arguments  transmit  instructions  and  dimensions  required by subroutine 
MATRIX. 
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PROGRAM L I S T I N G  

PRCGRAM A E O E R I V ( I N P U T I O U T P U T I T A P E ~ = I N P U T ~ T A P E ~ = O U T P U T ~ T A P E ~ ~ T A P E ~ ~ A E D  10 
AEO 20 

T A P E l  MUST  CONTAIN  THREE  AERO I C   M A T R I C E S   F O R   M A C H  = AM, MACH = AED 3 0  

OF  THE  FORM SO THAT  A(ROW,COL)*SLOPE(COL) =. FORCEIROW)/Q.   TAPE  AED 50 
AM+DM, A N 0  MACH AM-CM. E A C H   M A T R I X   H A S   D I M E N S I O N S  M*M A N 0   I S   A E D  40 

MUST BE WRITTEN  WITH  COLUMN  INDEX  ADVANCING  MOST  RAPIDLY  AND  NO  AED 60 

AED 80 
TAPE2  MCST  CONTAI 'N TWO STRUCTURAL  SLOPE I C   M A T R I C E S  FOR  SLOPES  AT  AED 90 

P A N E L   S L O P E   P O I N T S ,   A N 0   S L O P E S   A T   P A N E L   L O A D   P O I N T S .   E A C H   M A T R I X A E D  100 
H A S   D I M E N S I O N S  M*M AND I S  OF  THE  FORM SO THAT  S(ROU,COLI   AED 110 
*FORCE(COL)  = SLOPE(R0W).   TAPE  MUST BE WRITTEN  WITH  COLUMN  AED 120 
INDEX  AOVANCING MOST R A P I D L Y  AND NO E N 0   F I L E  CODE  BETWEEN  AED 130 

AED 1 5 0  
AED 16@ 

I F L E X  = 0 FOR R I G I D   C A S E   l R E P U E S T   T A P E l   C N L Y )  AED 170 
I F L E X  = 1 F O R   E L A S T I C   C A S E   ( R E Q U E S T   T A P E 1   A N D   T A P E Z )   A E D   1 8 0  
L I S T  = @ D E L E T E S   L I S T I N G  BELOW AED 190 
L I S T  = 1 L I S T S   E L A S T I C   A I R L O A O S   A N D   F L E X I B L E   S L O P E   I N C R E M E N T S   A E D  200 

C C N O I T   I O N   S L O P E S   A E D   2 2 0  
L F T  = 0 T R I M S   k I T H   W I N G S   L E V E L   A T  THE I N S T A N T   T H A T   F L I G H T   P A T H   A E D  230 

I S  LEVEL  AED 240 
L F T  = 1 T R I M S   I N  CONSTANT  ALT ITUDE  BANKED  TURN I F  LOAD  FACTOR I S  AED 2 5 0  

NC = hUMBER OF CG  LOCATIONS AED 2 7 0  
NW = kUClBER OF  A IRPLANE  WEIGHTS  FOR  EACH CG  AED 280 
NQ = hUMBER OF P VALUES  FOR  EACH  WEIGHT AED 290 

E N 0  F I L E  CODES  BETWEEh  MATRICES.  AED 70 

MATRICES.  AED 140 

DUE TO J I G  SHAPE,   ALPkA,   DELTA  AND AN, G P L U S   T O T A L   T R I M   A E D  210 

G R E A T E R   T H A N   G / 3 2 . 1 7 4   A E D   2 6 0  

NN =  UMBER OF LOAD F A C T O R S  FOR EACH a AED 300 
C A F  = INCREMENT I N   A X I P L  F O R C E   C O E F F I C I E N T   ( S K I N   F R I C T I O N ,   E T C l   A E D  310 

TO BE ADDED  TO  TI-AT  CALCULATED  DUE  TO  SURFACE  PRESSURES  AED 3 2 0  

AED 3 4 0  
I N P U T   A R R A Y S   A E D   3 5 0  

XCG = X COORDINATE  OF CG ( F R O M   N O M I N A L   O R I G I N ,  X P O S I T I V E   F O R W A R D I A E D  330 

T S R I H * l )  = SLOPES  AT  SLOPE  POINTS  DUE  TC  TWIST  AN0  CAMBER  AED 360 
TSR(C1,3l = S L O P E S   A T   S L O P E   P O I N T S   D U E   T O   U N I T   D E L T A   ( R A D )   A E D  370 
T L R J ( P l  = SLOPES AT LOAD  POINTS  DUE  TO  TWIST  AND  CAMBER  AED 300 
T L R C l M l  = SLOPES AT L C A D   P O I N T S   D U E  TO U N I T   D E L T A   ( R A D )   A E D  396 

X P O S I T I V E  FORWARD)  AED 4 1 0  
X L C ( P )  = X COORDINATE  OF  LOAD  POINTS  AED  420  
F I ( M , l )  = W E I G H T S   A C T I N G   A T   P A N E L   L O A D   P O I N T S   A E D  430 
F L ( k N 1  = LOAD  FACTOR  AEO 440 

X S C ( M )  = X C O O R D I N A T E   O F   S L O P E   P O I N T S   ( F R O M   N O M I N A L   O R I G I N ,   4 E D  400 

LOAD  FACTOR I S  NORMAL TO F L I G H T  PATH, I N  S E A   L E V E L  G U N I T S  AED 4 5 0  
AN, G I S  NORMAL  TO  THE XY PLANE OF BODY AXES, I N  SEA L E V E L  G U N I T S A E D  460 
BODY  AXES  ARE F I X E D  TO A M A T E R I A L   P O I N T  AT THE  REFERENCE  POINT  AED 470  
OF TI -€   STRUCTURAL  SLOPE  MATRIX  AED 400 

AED 490 
AED 5 0 0  

COMMCN A ~ 1 2 ~ ~ 1 2 ~ ~ ) r S ~ 1 2 0 ~ 1 2 C ~ 1 T S R ~ l Z C ~ 7 ~ ~ F R A ~ l 2 ~ ~ 7 ~ ~ X S ~ ~ l 2 ~ l ~ X L ~ ~ ~ l 2 A E ~  5 1 0  
1 0 ~ ~ X S ~ 1 2 9 ~ ~ X L ~ 1 2 0 ~ r F I ~ l 2 ~ ~ Z ~ ~ F L ~ 2 5 ~ ~ F E A ~ l Z C ~ 9 ~ ~ F I A ~ l 2 ~ ~ 3 ~ ~ C N ~ 0 l ~ C M A E O  5 2 0  
2 ( 8 1 r T L E ( 1 2 0 ~ 9 ) r C A ( 8 ) ~ T L R J ( l 2 ~ ~ ~ T L R O ( l 2 O ~ ~ S C A ~ 9 ) ~ S C N ( 9 ) ~ S C M ( 9 ) ~ S X ( 9 A E D  5 3 0  
3),52(5)vSM(91 AED 5 4 0  

REAC ( 5 1 5 4 )  I F L E X I L I S T I L F T ~ M ~ N C ~ A H I D H ~ S R E F I C B A R ~ C A F  AED 5 5 0  
DO 1 K = 1 * 3 , 2  AEO 5 6 0  
R E A D   ( 5 9 5 5 1   ( T S R ( I v K ) r I = l , M )  AED  57@ 
R E A C   ( 5 . 5 5 )   ( T L R J ( 1 )   t I = l t M 1  B E 0  5 0 0  

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

1 
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2 
C 
C 
C 

3 

C 
C 
C 

4 

5 

C 
C 
C 

6 
7 

C 
C 
C 

8 

C 
C 
C 

9 
C 
C 

R E b C   ( 5 1 5 5 )   ( T L R D ( I ) r I = l , M I  
R E N I N 0  1 
READ (1) I ( A I I , J ) , J = l , M ) . I = l r M )  
I R = l  
DO 2 I=l,M 
T S R ( I v Z I = l o  

COCPUTE R I G I D  LOACS  DUE  TO J I G  SHAPE,  ALPHA  AND  DELTA 

DO 3 K z l . 3  
C A L L   P A T R I X  ~ 2 ~ r H ~ M ~ l ~ A r 1 2 @ ~ T S R ~ 1 ~ K ~ ~ 1 2 0 ~ F R A ~ 1 ~ K ~ ~ 1 2 ~ ~  
C O N T   I h U E  
REAC  (5 ,551 (XSC’( I l r  I=ltW) 
R E A D   ( 5 1 5 5 )   ( X L O I I ) r I = l r M )  

DO 5 3   I C = l r N C  
SRCZ=SREF/Zo  

COMPUTE RIGID L O A C S  DUE T O  P C / Z V  

R E A 0   ( 5 . 5 6 )  NWIXCG 
DO 4 I = l , M  
X S ( I ) = X S O ( I ) - X C G  
XL( I ) = X L O (   I ) - X C G  
T S R ( I I ~ ) = - X S ( I ) * ~ . / C E A R  
I F  ( 1R. EQ.1) GO TO  5 
REWIND 1 
R E 4 0  (1) I I A ( I . J ) . J = l , M ) . I = l . M )  
I R = 1  
C A L L   P A T R I X  ( 2 C ~ M r M ~ l ~ A 1 1 2 3 r T S R ( l r 4 ) r 1 2 0 1 F R A ( 1 1 4 ) , 1 2 ~ ~  
DO 5 2  ILI=l,NW 
R E b D   ( 5 . 5 6 )   N O t W r Y I t Y l v Y Z  

E S T A B L I S H   I N E R T I A L   L O A C S  DUE TO LOA0  FACTOR  AN0 ODOT 

I F  ( I F L E X o E P o ? )  GO TO 7 
REAC ( 5 ~ 5 7 )   ( F I (  I : r l )  r I = l , M l  
DO 6 I=l,M 
F I I I ~ l ) = - F I I I ~ l )  
F I ( I ~ 2 ) = F I ( I ~ l ) * X L ( I ~ ~ ~ 2 o l 7 4  
D O  5 1  I a = l , ~ a  

WRITE ( 6 . 5 8 )  A M ~ X C G . W , P  

R E b D   ( 5 . 5 6 )  NN*QrV ,GIRHCrRHOH.AH 
R E b D   ( 5 , 5 5 1  ( F L ( I ) r I = l , N N )  

R E b D   e A S I C  A AND S M A T R I C E S  

I F  ( IR .EP.11  GO TO 8 
REWIND 1 
READ (1) . ( ( A ( I I J ) , J = l , W ) . I = l r M )  
I F  (1FLEXoEP.O)  G O  TO 1 3  
R E H I N D  2 
READ ( 2 )  ( ( S ( I . J ) . J = l r M ) t I = l * M )  

F I N D   A I R   L O A D S   D U E  T O  I N E R T I A L   D I S T O R T I O N  

DO 9 K I = l t 2  
K = K I + 4  
C A L L   M A T R I X  ~ 2 O r M r M r l t S ~ 1 2 0 r F I ~ l I K I ) . 1 Z O ~ T S R ~ l ~ K ~ ~ l 2 G ~  
C A L L   M A T R I X  ~ 2 0 ~ M r M ~ l ~ A r 1 2 0 r T S R ~ l ~ K ~ ~ l 2 O ~ F R A ~ l r K ) r l 2 O I  

COMPUTE  BASIC   AEROELASTIC  CORRECTION  MATRIX  

AED 5 9 0  
AED 600 
AEO 610 
AED 6 2 9  
AED 630 
AEO 640 
AED 6 5 0  
AED 660 
AED 670 
AED 686 
AED 690 
AED 700 

’ AEO 71.3 
AED 720 
AED 730 
AEO 740 

AED 760 
AED 770 
AED 780 
AED 790 
AEO 830 
AED 810 
AED 8 2 @  
4ED 8 3 0  
AEO 8 4 0  
AED 8 5 0  
AED 8 6 0  
AED 870 
AED 8 8 0  
4ED 8 9 3  

AED 910 
AED 900 

AED 9 2 0  
AED 930 
AED 940 
A E D   9 5 0  
AED 960 
AED 970 
AED 9 8 0  
AED 991) 
AEOlOOCI 
A E D l O l O  
A E D 1 0 2 0  
A E D 1 0 3 0  
AEDl(34r)  
A E D 1 0 5 0  
A E D l O 6 b  
A E D 1 0 7 0  
A E D 1 0 8 0  
A E D 1 0 9 0  
A E D l l O O  
A E D l l l D  
A E D 1 1 2 0  
A E D 1 1 3 0  
A E D 1 1 4 0  
A E D 1 1 5 0  
A E D 1 1 6 0  
A E D l l 7 0  
A E D l l 8 O  
A E D l 1 9 O  

AED 75n 

67 



C 

10 

C 
C 
C 

11 
C 
C 
C 

12 

1 3  

1 4  

1 5  

1 6  
C 
C 
C 

17 

1 8  

19 
C 
C 
C 

C 
C 
C 
C 
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C A L L   M A T R I X  ( 2 0 t M ~ M v M v A , 1 2 ~ r S , 1 2 D , A , 1 2 0 ~  
00 10 J = l r M  
00 1c I = l , M  
A ( I I J I = - P * A ( I , J )  
I F  I1.EC.J) A ( I p J ) = A i I v J ) + l .  
C O N T I N U E  
C A L L   M A T R I X   ( l O , M , M ~ Z , d r l Z O v D E T E R M )  

A P P L Y   A E R O E L A S T I C   C O R R E C T I O N   T O   F I R S T   S I X   S E T S   O F   A I R   L O A D S  

DO 11 K = l r 6  
C A L L   P A T R I X  ~ 2 0 ~ M ~ M ~ l ~ b ~ 1 2 3 r F R A ~ l ~ K ~ v l 2 C ~ F E A ~ l ~ K ~ ~ l Z ~ ~  

SUM A I R   A N D   I N E R T I A L   L O A O S  FOR I N E R T I A L   L O A D   S O U R C E S  

00 1 2  K I = l v 2  
K=K I +4 

F I A ( I v K I ) = F E A ( I ~ K I + F I ( I ~ K I ~ / Q  
DO 12  I = l , M  

K l = 6  
GO T O  1 6  
DO 1 5  I = l v M  
DO 1 4  K = 5 v 6  
T S R l  I ,K)=O. 
FRA I I t K  )=Oo 
DO 1 5  K = l r 6  
F E A ( I , K ) = F R A ( I , K I  
C N ( 5 ) = 0 .  

C M ( 5 ) = @ .  

K 1 = 4  

C N ( 6 ) = 0 .  

C M ( 6 ) = 0 .  

DO 1 8   K = l , K l  

COMPUTE  CN  AN0  CM  DUE TO F I R S T   S I X   L O A 0  SOURCES 

CN(K)=C.  
CM(K)=O. 
DO 17 I = l , M  
C N ( K ) = C N ( K ) + F E A ( L , K )  
C M ( K ) = C M l K ) + F E A ( I , K ) * X L ( I )  
C N I K ) = C N I K I / S R O Z  
C M ( K ) = C M ( K ) / ( S R O Z * C B A R )  
I R=O 
I F  ( L I S T o E Q . 0 )  GO TO 1 9  
W R I T E  ( 6 9 5 9 )  ( F E A ( I v l ) r I = l , M )  
W R I T E   ( 6 , 6 0 1   ( F E A I I v 2 ) * I = l v M )  
W R I T E  (6.61) ( F E A ( I v 3 1   , I = l , M )  
I F  (1FLEX.NE.O)  WRITE (6162) ( F E A ( I v S ) v I = l v M )  
DO 50 I N = l , N N  

C C C P U T E   T R I M   C O N D I T I O N S  

A E D l Z O O  
A E D l Z 1 0  
A E D 1 2 2 0  
A E D 1 2 3 0  
A E D l 2 4 0  
A E D 1 2 5 9  
A E D 1 2 6 C  
A E D 1 2 7 0  
A E D 1 2 8 J  
A E D 1 2 9 0  
A E D l 3 0 0  
A E D l 3 1 0  
A E D 1 3 2 C  
A E D l 3 3 0  
A E D 1 3 4 3  
A E D l 3 5 0  
A E 0 1 3 6 0  
A E D 1 3 7 0  
A E D 1 3 8 0  
A E D 1 3 9 3  
AE D l  400 
A E 0 1 4 1 0  
A E D l 4 2 0  
A E D 1 4 3 3  
A E D 1 4 4 0  
A E D 1 4 5 0  
A E D 1 4 6 0  
A E D 1 4 7 0  
A E D 1 4 8 0  
A E D 1 4 9 0  
AEDLSO!! 
A E D 1 5 1 0  
A E D 1 5 2 0  
A E D l 5 3 0  
A E D 1 5 4 0  
A E D 1 5 5 0  
A E D 1 5 6 0  
A E D l 5 7 0  
A E D 1 5 8 0  
A E D l 5 9 0  
A E 0 1 6 0 0  
A E D 1 6 l C  
A E D 1 6 2 0  
A E D 1 6 3 0  
A E D 1 6 4 0  
A E D 1 6 5 0  
A E D l 6 6 O  
A E D 1 6 7 @  
A E D 1 6 8 0  
A E D 1 6 9 0  
A E D 1 7 0 0  
A E D 1 7 1 0  
A E D 1 7 2 0  
A E D 1 7 3 0  

C A L L   T R I M  ( C N , C M , W I F L ( I N I ~ L F T ~ Q ~ S R E F ~ C B A R ~ V I G , Y I I Y ~ ~ Y ~ ~ A T ~ D T ~ A N T ~ C A E D ~ ~ ~ O  
lNTICnTvOT,PR,PHI,lrITER) A E D 1 7 5 0  

I F  (ITER.GE.100) GO TO 49 A E D 1 7 6 0  
A E D 1 7 7 0  

A I R  L O A O S   A E D 1 7 9 0  
A E D l 8 O O  

COMPUTE T R I M   S E T S   O F   R I G I D   S L O P E S ,   R I G I D   A I R   L O A D S   A N D   E L A S T I C   A E D 1 7 8 0  
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20 

2 1  
C 
C 
C 

22 

C 
C 
C 

2 3  

C 
C 
C 

2 4  

2 5  

C 
2 6  

C 
C 
C 
2 7  

28 

DO 20 I = l , M   A E D 1 8 l O  
T S R ~ I ~ 7 ~ ~ T S R ~ I ~ l ~ + A T + D T * T S R ~ I ~ 3 ~ + Q T * T S R ~ I ~ 4 ~ + A N T * T S R ~ I ~ 5 ~ ~ P R * T S R ~ I A E D l 8 2 0  

1.6) A E D 1 8 3 0  
F R A ~ 1 ~ 7 ~ ~ F R A ( 1 ~ 1 ~ + A T * F R A ~ 1 ~ 2 ~ + 0 T * F R A ~ 1 ~ 3 ~ + Q T * F R A ~ 1 ~ 4 ~ + A N T * F R A ~ 1 ~ 5 ~ A E D 1 8 4 0  

1 - P R * F R A ( 1 , 6 )   A E 0 1 8 5 0  
F E A ( I ~ 9 ~ = F E A ( I ~ l ~ + A T * F E A ~ I ~ Z ~ + D T * F E A ( I ~ 3 ~ + Q T * F E A ~ I ~ 4 ~ + A ~ T * F E A ~ I ~ 5 ~ A E D l ~ 6 0  

1 - P R * F E A ( I , 6 1   A E D l 8 7 0  
I F  ( IFLEX.EQ.0)  GC T O  25 A E D l 8 8 O  
DO 2 1  I = l , M   A E D 1 8 9 0  
F I A ( I , 3 ~ = F E A ( I ~ 9 ~ + ( A N T * F I ~ I ~ l ~ - P R * F I ( I ~ Z ~ ~ / O  A E D 1 9 0 0  

A E D 1 9 l O  
C O R R E C T   T R I M   R I G I D   A I R L O A D S   F O R   A E R O E L A S T I C I T Y   A T   H I G H E R  Q A E 0 1 9 2 0  

A E D 1 9 3 0  

R E k I N C  1 A E D 1 9 5 0  
R E A 0  (1) ( ( A ( I t J ) t J = l r ~ ) r I = l r M )   A E D 1 9 6 0  
C A L L   M A T R I X  (20rM1MrMtA11281S112O,A,lZ~) A E D 1 9 7 n  
DO 22  J = l , M   A E D 1 9 8 O  
DO 22 I z l r M   A E D 1 9 9 0  
A ( I I J I = - Q P * A I I , J )  AEDZOOO 
I F  (1.EP.J) A ( I ~ J ) = A [ I , J ) + l .   A E D 2 0 l C  
CONT  IE iUE  AED2020  

Q P = l e O S * Q   A E O 1 9 4 0  

C A L L   M A T R I X  ( l O ~ M ~ H ~ 2 ~ 4 ~ 1 2 0 , D E T E R M ~  A E D Z 0 3 0  
C A L L   P A T R I X  ( 2 0 ~ M 1 H , 1 1 A ~ 1 2 Q ~ F R A ~ l ~ 7 ~ ~ 1 2 0 ~ F E A ~ 1 ~ 8 ~ , 1 2 ~ ~  A E D 2 0 4 0  

AED2r)5@ 
C O R R E C T   T R I M   R I G L C   A I R L O A D S   F O R   A E R O E L A S T I C I T Y  AT  LOWER 0 A E D 2 0 6 0  

A E D 2 0 7 0  

R E k I N O  1 A E D 2 0 9 0  
Q P = . 9 5 * 0   A E D 2 9 8 3  

REAC (1) ( ( A ( I , J ) , J = l r H ) , I = l , M )   A E D Z l O O  
C A L L   M A T R I X  ( 2 0 t M ~ M r M ~ A t l 2 @ r S ~ l 2 @ ~ A ~ l 2 ~ )  A E D 2 l l O  
DO 2 3  J = l , M   A E D Z l Z O  
00 23 I = l * M   A E D 2 1 3 0  
A (  I P J l = " J P * A (  I P J A E D 2 1 4 0  
I F  ( 1 . E C . J )   A ( I , J ) = A ( I * J ) + l .   A E D 2 1 5 0  
C D h T I N U E   A E D 2 1 6 0  

C A L L   M A T R I X  ~ 2 0 ~ H , M , l ~ A ~ 1 2 0 ~ F R A ~ l ~ 7 ~ ~ 1 2 ~ ~ F E A ~ l ~ 7 l ~ l 2 ~ ~  AED21817 
A E D 2 1 9 p  

C O M P U T E   E L A S T I C   A I R L O A C S  DUE TO 0 A E D 2 2 0 0  
A E D 2 2 1 3  

C A L L   C A T R I X   ( 1 0 ~ M ~ H ~ 2 ~ A ~ 1 2 O ~ D E T E R M ~  AEDZ17 'J  

DO 2 4  I=1 t H  A E D 2 2 2 0  
F E A ( I I ~ ) = ( F E A ( I ~ ~ ) - F E A ( I ~ ~ ) ) / ~ ~ ~ * Q )  A E D 2 2 3 0  
GO T O  2 7   A E D 2 2 4 0  
D O  26 I = l , M   A E D 2 2 5 0  
FEA(IpB)=P. A E D 2 2 6 0  

A E D 2 2 7 0  

AT  HIGHER  MACH  AEO2290 
U S I N G  T R I M  R I G I D  SLOPES,  COMPUTE R I G I D  AND E L A S T I C   A I R   L O A D S   A E D 2 2 8 n  

A E D 2 3 0 0  
A E D 2 3 1 0  
AEDZ 320 
A E D 2 3 3 0  
A E D 2 3 4 0  
A E D 2 3 5 Q  
A E D 2 3 6 3  
A E 0 2 3 7 0  
A E D 2 3 8 0  
A E D 2 3 9 0  
A E 0 2 4 0 0  
AED241 '1  
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C 
C 
C 
C 
29 

30 

C 
C 
C 
3 1  
3 2  
C 
C 
C 

3 3  

3 4  

C 
C 
C 

3 5  

3 6  
3 7  

3 8  

C 
C 
C 
39 

4 0  

4 1  

USING T R I M   R I G I D  SLOPES,  COMPUTE R I G I D  AND E L A S T I C   A I R  
A T  LOWER  MACH 

READ (1) ( ( A ( I * J ) r J = l r M ) r I l l r M )  
C A L L   M A T R I X  ~ 2 0 ~ H r H ~ l r ~ ~ l 2 O ~ T S R ~ 1 ~ 7 ~ ~ 1 2 0 ~ T L E ~ l ~ 1 ~ ~ 1 2 0 ~  
I f  ( I f L E X o E O o O )  GO TO 3 1  
C A L L   M A T R I X  ~ 2 0 r M r M r M r A ~ 1 2 O r S ~ l 2 O r A I 1 Z O ~  
00 30 &l,H 
DO 30 I=l tM 
A ( I * J ) = - Q * A ( I w J I  
I F  (1.EC.J) A ( I * J ) = A ( I v J ) + l .  
C O N T I N U E  
C A L L   M A T R I X  ( 1 0 t M . M r 2 r A r 1 2 0 * D E T E R M )  
C A L L   M A T R I X  ~ 2 O ~ H r M ~ l r A ~ 1 2 0 r T L E ~ l ~ 1 ~ ~ 1 2 0 ~ T L E ~ l ~ 1 ~ ~ 1 2 0 ~  

COMPUTE E L A S T I C   A I R L O A O S  DUE TO MACH 

00 3 2  I=I*M 
F E A ( I I ~ ) = ( F E A ( I I ~ ) - T L E ( I ~ ~ ~ ~ / ( ~ . * D M )  

F I h D   C h  AND CM DUE  TO C AND  MACH 

00 34 K = 7 *  8 
C N ( K I = O e  
C M ( K ) = C .  
DO 3 3  I = l q M  

C N ( K I = C N I K ) + F E A ( I * K )  
CM(KI=CM(KJ+FEA(I,KI*XL(II 
C N ( K ) = C N ( K ) / S R 0 2  
C H ( K ) = C M ( K I / ( S R 0 2 * C B A R I  
I F  ( IFLEX.EO.0)  GO TO 3 6  

COMPUTE T R I M  CONDIT ION  SLOPES  AT   SLOPE  PCINTS 

C A L L   M A T R I X  ~ 2 0 ~ M r M ~ l ~ S ~ 1 2 0 ~ F I A ~ 1 ~ 3 ~ r 1 2 0 ~ T L E ~ 1 ~ 9 ~ ~ 1 2 0 ~  
DO 3 5  I = l , M  
T S R ( I ~ 7 ) = T L E ( I r 9 ) * 4 + T S R ( I , I I + D T + T S R ( I , 3 )  
GO TO 39 
DO 37 I= l tM 
T S R ( I ~ 7 ) = T S R ( I , l I + D T * T ~ R ~ I ~ 3 ~  
00 38  K = l v 9  
00 3 8   I = l r H  
T L E  ( I r K  ) = O o  

GO TO 4 3  

COMPLTE  SLOPES  AT  LOAD  POINTS FOR ALL  LOAD  SOURCES 

REAC ( 2 1   ( ( S ( I , J ) . J = l * M l * I = l * M )  
00 4 0   K = l , 8  
IF (K.EQ.5.OR.K.EQ.6) GO T O  43 
C A L L   M A T R I X  ~ 2 0 r M ~ H r l r S ~ 1 2 Q t F E A ~ l ~ K I r l 2 O ~ T L E ~ l r K ~ ~ l 2 0 ~  
C O N T I N U E  

K l = K - 4  
L = K  

DO 4 1   K = 5 9 7  

C A L L   P A T R I X  ~ 2 0 r M ~ H ~ l r S ~ 1 2 0 t F I A ~ l ~ K l ~ r l 2 0 , T L E ~ l ~ L ~ ~ l 2 0 ~  
I F  (K.EQ.7) L=9 

C A L L   M A T R I X  ~ 2 0 r M r M r l r S t l Z O ~ F E A ~ 1 r 9 ~ r 1 2 0 r F I A ~ 1 ~ 3 ~ ~ 1 2 0 ~  
DO 4 2   K = l r 9  
DO 4 2  I = l q M  

A E 0 2 4 2 0  
LOA OS A E 0 2 4 3 0  

A E O 2 4 4 0  
A E D 2 4 5 0  
A E 0 2 4 6 0  
A E 0 2 4 7 0  
A E 0 2 4 8 0  
A E D 2 4 9 0  
AE025OO 
A E D 2 5 1 0  
A E 0 2 5 2 0  
A E D 2 5 3 0  
A E 0 2 5 4 0  
A E D 2 5 5 0  
A E D 2 5 6 0  
A E 0 2 5 7 0  
A E D 2 5 8 0  
A E D 2 5 9 0  
A E D 2 6 6 0  
A E D 2 6 1 0  
A E D 2 6 2 0  
A E 0 2 6 3 0  
A E D 2 6 4 0  
A E 0 2 6 5 0  
A E D 2 6 6 0  
A E 0 2 6 7 0  
A E 0 2 6 8 0  
A E D 2 6 9 0  
AED27OO 
A E 0 2 7 1 0  
A E D 2 7 2 0  
A E D 2 7 3 0  
A E D 2 7 4 J  
A E 0 2 7 5 0  
A E D 2 7 6 0  
A E D 2 7 7 0  
A E D 2 7 8 0  
A E D 2 7 9 0  
A E D 2 8 0 0  
A E D 2 8 1 0  
A E D 2 8 2 0  
A E 0 2 8 3 r )  
A E D 2 8 4 0  
A f D 2 8 5 0  
A E D 2 8 6 0  
A E 0 2 8 7 0  
A E D 2 8 8 0  
A E D 2 8 9 0  
A E 0 2 9 @ @  
A E D 2 9 1 0  
A E D 2 9 2 0  
A E 0 2 9 3 0  
A E D 2 9 4 0  
A E D 2 9 5 0  
A E D 2 9 6 0  
A E 0 2 9 7 0  
A E D 2 9 8 0  
A E D 2 9 9 0  
A E D 3 0 0 0  
A E D 3 r ) l C  
A E D 3 0 2 0  
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42 

C 
C 
C 
4 3  

4 4  

4 5  
4 6  

C 
C 
C 

T L E (   I r K ) = T L E I   I * K I * P  
IF (KoNE.81 GO TO 4 2  
T L E I I I B ~ ~ T L E I I ~ ~ J + F I A ~ I ~ ~ I  
C O N T I N U E  
I F  ( IFLEX.EP.a .OR.LIST.EQ.3)  GO TO 4 3  
IF ( I h . h E . 1 1  GO TO 4 3  
H R I T E   1 6 , 6 3 1  ~ T L E l I ~ l l ~ I ~ l ~ M ~  
W R I T E  ( 6 ~ 6 4 )   I T L E ( I * 2 l r I = l r M )  
H R I T E   1 . 6 . 6 5 )  ~ T L E ( 1 ~ 3 ) ~ 1 = 1 ~ M )  
W R I T E  (6.66) ( T L E ( I r 5 ) r I = l ~ H I  

COMPUTE A X I A L  F O R C E   C O E F F I C I E N T   A N D   D E R I V A T I V E S  

CA T = O o  
DO 4 4  I=l*M 
T L E ~ I ~ 3 l ~ T L E ~ I r 3 ~ + T L R O l I ~  
T L E ~ I ~ 9 ~ ~ T L E l I ~ 9 ~ i T L R J ~ I l ~ D T * T L R D l  I 1  
CAT=CAT+1TLE(I~9)*FEAlI~9~l/SR02 
00 46 K = 2 1 8  
C A I K I = O .  

C A l K I ~ C A l K l + ~ T L E ~ I r 9 ~ * F E A ~ I ~ K ~ ~ T L E l I ~ K ~ * F E A ~ I ~ 9 ~ ~ / S R O 2  
DO 4 5  I = l r M  

C O N T I N U E  
CAT=CAT+CAF 
W R I T E  (6.67) F L ( C N 1  
W R I T E   ( 6 1 6 8 )  I T E R ~ C A T I A T I P H I I C N T * D T ~ A N T ~ C ~ T ~ T I ~ T  
H R I T E   1 6 r 6 9 1   ( C A ( K ) r K = Z * B ) * C k * C M  

C O M P U T E   C O M B I N E D   S T A B I L I T Y   D E R I V A T I V E S  

F N = 2 o * V * V / ( 3 2 . 1 7 4 * G B A R )  
VOG=W/32.174 
C S A = C C S ( A T )  
S N A = S I N I A T )  
S T = S I N I T )  
C P = C O S ( P H I  1 
S C A 1 1 ~ = F N * Q T + C S A * C A ~ 5 1 + ~ M * C A ~ 7 1 + 2 o * Q * C A ~ @ 1  

SClr I1 l=FN*PT*CSA*CM( 5 I +AM*CM( 7 1+20 *P*CM( 8 )  
S C h ( l ) = F N * P T * C S A * C N l 5 ) + A M * C N ( 7 ) + 2 . * Q * C N ( B l  

S C A l 2 ) = - V O G * S N A * C A ( S )  
SCN ( 2 l=-VOG*SNA*CN( 5 I 
SCW(21=-VOG*SNA*CM(51 
SCA131=CA121-FN*4T*SNA*CA151  
S C N 1 3 ) = C N ( 2 J - F h * Q T * S N A * C N ( S )  
S C M ( 3 1 = C M ( Z I - F ~ * P T * S N A * C ~ ( 5 )  
S C A 1 4 l = - F N * C S A * C A ( 5 )  
S C N ( 4 l = - F N * C S A * C N ( 5 1  
S C C ( 4 1 = - F N * C S A * C M ( 5 1  
S C A I 5 ) = - S T * C P * C A 1 5 ) * G / 3 2 . 1 7 4  
SCN (5 )=-ST*CP*CN I 5  I * G / 3 2 . 1 7 4  
SCM(5)= -ST*CP*CM(5) *G/32 .174  
S C A 1 6 1 = C A ( 4 1 + F N * C S A * C A 1 5 1  
S C N I 6 ) = C N 1 4 ) + F N * C S A * C N O  
SCM(6)=CM(4)+FN*CSA*CM(S) 
S C A l 7 l = C A l 6 )  
S C N l 7 ) = C N I 6 )  
S C H l 7 ) = C H I 6 )  
S C A ( B I = C A ( 3 )  
S C k 1 8 ) = C N ( 3 1  

S C A l 9 ) = Q * R H O H * C A ( 8 1 - A M * A H * C A ~ 7 1  
SCWI B ) = C M ( ~ )  

AED303rJ 
A E D 3 0 4 0  
A E D 3 0 5 0  
A E D 3 0 6 0  
A E D 3 0 7 0  
A E D 3 0 8 0  
A E D 3 0 9 0  
A E D 3 1 0 0  
A E D 3 l l O  
A E D 3 1 2 0  
A E D 3 1 3 0  
A E D 3 1 4 0  
A E D 3 1 5 8  
A E D 3 1 6 0  
A E D 3 1 7 0  
A E D 3 1 8 0  
A E D 3 1 9 0  
L IED3200  
A E D 3 2 1 0  
A E D 3 2 2 0  
A E D 3 2 3 0  
A E D 3 2 4 0  
A E D 3 2 5 0  
A E D 3 2 6 0  
A E D 3 2 7 0  
A E D 3 2 8 9  
A E D 3 2 9 0  
A E D 3 3 0 0  
A E D 3 3 1 0  
A E D 3 3 2 0  
A E D 3 3 3 0  
A E D 3 3 4 0  
B E D 3 3 5 0  
A E D 3 3 6 0  
A E D 3 3 7 0  
A E D 3 3 8 0  
A E D 3 3 9 0  
A E D 3 4 0 0  
A E D 3 4 1 0  
A E D 3 4 2 0  
A E D 3 4 3 0  
A E D 3 4 4 0  
A E D 3 4 5 0  
A E D 3 4 6 0  
A E D 3 4 7 0  
A E D 3 4 8 0  
A E D 3 4 9 0  
A E D 3 5 0 0  
A E D 3 5 1 0  
A E D 3 5 2 0  
A E 0 3 5 3 0  

A E D 3 5 5 0  
A E D 3 5 4 0  

A E D 3 5 6 0  
A E D 3 5 7 0  
A E D 3 5 8 0  
A E D 3 5 9 0  
A E D 3 6 0 0  
A E D 3 6 1 0  
A E D 3 6 2 0  
A E D 3 6 3 0  
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47 

4 8  

C 
C 
C 

4 9  
50 
5 1  
52 
53  

C 

55 
5 4  

5 6  
57  
5 8  

59 

60 
61  
6 2  
63 

b4 

65 

66 

67 
68 

( 8  I -AH*AH*CN( 7 I 
(81-AM*AH*CM( 7 )  

A E D 3 6 4  
A E D 3 6 5  

43 
0 

QM=32.174*Q*SREF/  1W*V)  AED3660 
Q I = P * S R E F * C B A R / Y I   A E D 3 6 7 0  
S X I l ) = - U M * ( S t A I l ) + Z . * C ~ T )  A E 0 3 6 8 0  
SZI1)=-9M*(SCN(lI+Z.*C~Tl L I E D 3 6 9 0  
S M ~ L l ~ Q I * ~ S C M ~ 1 1 + 2 ~ * C M T l  A E D 3 7 0 0  
DO 47 K = 2 t 8   A E D 3 7 1 C  
S X ( K I = - C M * S C A ( K I   A E D 3 7 2 0  
S Z ( K I = - C M * S C N ( K I   A E 0 3 7 3 0  
S H ( K ) = P I * S C M ( K l   A E D 3 7 4 0  

S X ( K I = S X ( K ) * C B A R / ( Z . * V )   A E D 3 7 6 0  

S M ( K l = S M ( K I * C B A R / ( 2 . * V l   A E D 3 7 8 0  
S X 1 9 ) = - C H * ( S C A 1 9 ) + R H O H * C A T l  A E D 3 7 9 0  
S Z ( 9 ) = - C M * ( S C N 1 9 ) + R H O H * C N T l  AE038dt.l 
SI4 ( 9  )=a I* (SCM ( 9  1 *RHOh*CMT I A E 0 3 8 1 n  

A E D 3 8 3 0  
C O C P U T E   S T A T I C   P A R A M E T E R S   A E 0 3 8 4 d  

A E 0 3 8 5 0  
C H C N = S C W 1 3 I / S C N ( 3 1   A E 0 3 8 6 0  

DO 48  K z 4 9 6 . 2   A E 0 3 7 5 0  

S Z ( K ) = S Z ( K ) * C B A R / ( Z . * V I   A E D 3 7 7 0  

W R I T E  ( 6 r 7 0 )  SCAISCNISCMISX~SZ~SM  AED3820 

C M N U = C M C N * I l . + S C N I l ) / ~ Z ~ * C N T ~ ) - S C M ~ l ~ / ~ 2 ~ * C N T )  A E D 3 8 7 0  
8=32o174*RHO*SREF*CBAR/(4.*Wl A E 0 3 8 8 0  
CMNN=CMCN* I l . -B*SCN16)   I+B*SCM(6)   AED3890  
D U = ~ O * C N T * C M N U / ( S C M ( ~ ) - ~ H C N * S C N * S C N ( ~ ~  I A E D 3 9 0 0  
D A = - W * C M N N / ( 9 * S R E f * ( S C M ~ 8 l - C M C N 0 1 )   A E D 3 9 1 0  

IF (L IST.EQ.CI   GO TO 53 A E D 3 9 3 0  
W R I T E  ( 6 9 7 1 )  C M C N t C M N U t C M N N t D U t D A   A E D 3 9 2 0  

W R I T E   ( 6 . 7 2 1   ( T S R ( 1 1 7 l r 1 = l , M )   A E O 3 9 4 0  
W R I T E  1 6 9 7 3 )   ( l L E ( 1 1 9 ) q I = l q W )   A E D 3 9 5 0  
GO TO 50 A E D 3 9 6 0  

C O k T I N U E   A E D 3 9 8 0  
C O h T   I N U E   A E D 3 9 9 0  
C O N T I N U E   A E D 4 0 0 0  
COFIT I N U E   A E D 4 0 1 0  
S T O P   A E D 4 0 2 0  

A E 0 4 0 3 0  

W R I T E  (6.74) CNICM A E D 3 9 7 0  

F O R M A T   ( 3 1 1 * 2 1 3 , 5 F 1 0 . 0 )   A E D 4 ( ? 4 0  
F O R M A T   ( B F l O o O )   A E D 4 0 5 0  
FORMAT (13t6F10.01 A E 0 4 0 6 0  
FORMAT (6F12.01 A E D 4 0 7 0  
F O R M A T   ( l H l t 5 X r 2 7 h A E R O E L A S T I C   D E R I V A T I V E S ,   M = , F 6 . 3 1 6 H *   X C G = , F 8 . 3 ~ 4 A E 0 4 0 8 0  

1 H t  W=rF9.0,7H,  Q84R=pF8.21  AED4090 
F O R M A T   ( / / l O X g 3 9 H E L A S T I C   A I R L O A D S   P E R  4 DUE  TO J I G   S H A P E / ( l X ~ 8 F 1 2 . A E D 4 1 0 0  

1 6 1  I , A E D 4 1 1 0  
F O R M A T   ( / / L O X I ~ ~ H E L A S T I C   A I R L O A D S   P E R  9 DUE TO A L P H A / ( l X , 8 F 1 2 o 6 1 1   A E D 4 1 2 0  
F O R M A T   ( / / l O X q 3 5 H E L A S T I C   A I R L O A D S   P E R  Q DUE TO D E L T A / ( l X , B F 1 2 . 6 I I   A E D 4 1 3 0  
F O R M A T   I / / l O X v 3 5 H E L A S T I C   A I R L O A D S  PER 4 DUE TO AN, G / ( l X q 8 F 1 2 . 6 ) 1   A E D 4 1 4 0  
F O R M A T   ( / / l O X g 5 7 H F L E X I I ? L E   S L O P E   I N C R E M E N T S   A T   L O A D   P O I N T S   D U E   T O   J A E D 4 1 5 0  

1 I G   S H A P E / ( l X , 8 F 1 2 o 7 1  I A E D 4 1 6 0  
F O R M A T   I / / l O X * 5 3 H F L E X I I ? L E   S L O P E   I N C R E M E N T S   A T   L O A D   P O I N T S   D U E   T O   A A E D 4 1 7 0  

l L P H A / ( l X t 8 F 1 2 . 7 )  I A E D 4 1 8 0  
F O R M A T   ( / / l O X r 5 3 H F L E X I @ L E   S L O P E   I N C R E M E N T S   A T   L O A 0   P O I N T S   D U E  TO D A E D 4 1 9 0  

l E L T A / ~ 1 X ~ 8 F 1 2 0 7 1 1   A E D 4 2 0 0  
FORMAT ( / / ~ O X I ~ ~ H F L E X I @ L E  S L O P E   I N C R E M E N T S   A T   L O A D   P O I N T S   D U E   T O   A A E D 4 2 1 0  

1Nt  G / ( l X t 8 F 1 2 . 7 1  I A E D 4 2 2 0  
F O R M A T   1 / / 5 X * 1 3 H L O A D   F A C T O R  =,F905) A E D 4 2 3 0  
F O R M A T   ( / l O X t 1 4 H T R I M   V A L U E S  ( r I 3 9 1 2 H  I T E R A T I O N S l / 3 X p 4 H C A   = , F 1 0 . 6 * A E 0 4 2 4 0  
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1 3 X v 7 H A L P H A   = * F l C . 6 * 3 X * 7 H P H i   = * F 1 0 . 6 / 3 X * 4 H C N   = * F 1 0 . 6 p 3 X , 7 H D E L T A   = A E D 4 2 5 0  
2 r F 1 0 . 6 ~ 3 X r 7 H A N 1  G   = w F l U o 6 / 3 X r 4 H C M   = * F l D e 6 * 3 X p 7 H T H E T A   = * F l 0 . 6 r 3 X , 7 H A E O 4 2 6 @  
3 0 C / 2 V   = r F l C . 6 1   A E D 4 2 7 3  

69 F O R M A T   ( / 1 ' 3 X * 2 4 H D E R I V A T I V E   C O N T R I B U T I O N S / B X p 9 H J [ G   S H A P E * 5 X * 5 H A L P H A A E D 4 2 8 0  
l r 7 X ~ 5 H O E L T A r 7 X ~ 5 H Q C / 2 V ~ 7 X ~ 5 H A N ~  G*8X,4HQDOT*BX*4HMACH*5XV9HDVN P R E A E 0 4 2 9 0  
2 S S / 3 k  CArF26.7r5F12e7vFl3.8/4H C N   ~ 7 F l Z e 6 r F 1 3 . 7 / 4 H  CM , 7 F 1 2 o b r F l 3 o A E 0 4 3 0 ' 3  
37 1 A E 0 4 3 1 0  

70 F O R M A T   ( / l O X r Z l H S T A B I L I T Y  D E R I V A T I V E S / l 2 X ~ 1 H U ~ l ~ X ~ 4 H U D O T ~ 7 X ~ 5 H A L P H A E 0 4 3 2 0  
l A r 5 X * 9 H A L P H A  O O T ~ 5 X t 5 H T H E T A ~ 9 X w l H Q ~ l ~ X ~ 4 H O D O T r 7 X r 5 H O E L T A ~ 6 X ~ 8 H A L T I A E D 4 3 3 ~  
Z T U O E / S H   C A   r 8 F 1 2 . 7 r E 1 2 . 5 / 4 H   C N   r 8 F 1 2 . 6 , E 1 3 . 5 / 4 H  CM r 8 F 1 2 . 6 r E 1 3 e 5 / A E D 4 3 4 0  
3 4 H  X r 8 F 1 2 . 6 t E 1 3 . 5 / 4 H  Z * 8 F 1 2 . 6 * E 1 3 . 5 / 4 H  H , 8 F 1 2 . 6 t E 1 3 . 5 )   A E D 4 3 5 0  

7 1  F O R M A T   ( / l O X * 1 7 H S T A T I C   P A R A M E T E R S / Z t H  CM A L P H A / C N   A L P H A   = , F 1 0 . 6 / 1 4 A E D 4 3 6 0  
1 H   S T A T I C   M A R G I N r 5 X v l H = r F l O e 6 / 2 0 H   M A N E U V E R   M A R G I N   = , F l C a 6 / 8 H   D E L T A E D 4 3 7 6  
Z A / l J r l l X ~ l H = r F 1 0 . 6 / 1 2 H   C E L T A / A N r   G w 7 X r l H = * F 1 0 . 6 )   A E 0 4 3 8 0  

7 2   F O P M A T   ( / / l O X r 4 3 H T O T A L  T R I M  C O N D I T I O N   S L O P E S   A T   S L O P E   P O I N T S / ( l X * B A E D 4 3 9 0  
1 F 1 2 . 7 )  1 A E 0 4 4 0 6  

7 3   F O R M A T   ( / / l O X r 4 2 H T O T A L  T R I M   C O N D I T I O N   S L C P E S   A T   L O A D   P U I N T S / ( l X * 8 F A E D 4 4 1 0  
1 1 2 . 7 )  1 A E D 4 4 2 C  

7 4   F O R M A T   ( / / 5 X * 1 4 H U N A B L E  TO T R I M / 3 X ~ 3 H C N = ~ 8 F 1 2 . 6 / 3 X 1 3 H C M = r B F 1 2 . 6 )  A E D 4 4 3 0  
E N D   A E D 4 4 4 0 -  
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lMT.QFvPR,PHI r T e I 1 )  
S U B R O U T I N E   T R I M  .(CN.CMrYrFLrLFTIQrS~C.VrG.YI.Yl.Y2~AL.DEL.ANrCNT.CTRM 16 

D I M E N S I C N   C N ( 8 ) r  CM(81 
T R H  20 
TRM 30 

woas=h/~~*sl TRM 40 
GOGO=G/32.114  TRM 5 0  
A = C n ( 2 1 / C M ( 3 ) - C N ( Z ) / C N ( 3 1  TRM 60 
E=(WOPS-CN(5)1/CN(31+CM(51/CM(31 TRM 70 
I F  (LFToGE.l.AND.FLoGToGOGO1 GO TO 3 TRM 8 0  
P F = ( 3 2 . 1 1 4 * F L - G ) * C / ( Z o ~ V * V )  T R H  90 
D=(CN(l)+QF*CN(4))/CN~3~-(CM~l~+QF*CM~4)1/CM(31 TRM 100 
A L l = ( D - F L * B ) / A   T R M  110 
D O  1 I= l r100 TRM 120 
Il=I TRM 130 
A N = F L * C O S ( A L l l   T R M  140 
AL=(D-AN*B) /A  TRW 150 
IF ( b @ S ( A L - A L l ) o L E o o 0 0 0 0 0 0 5 ~  GO TO 2 TRH 160 
A L l = A L  TRM 170 

1 C O L T I N U E   T R M  180 
2 A N = F L * C C S ( A L )  TRM 1 9 D  

D E L = ( - C M I 1 1 - A L * C H ( 2 L - P F * C H ( 4 ) - A N * C M ( 5 ) ) / C M ( 3 )  TRM 200 
CNT=WOQS*AN  TRM 210 
CMT=O.  TRM 220  
PR=O T R H  230 
PHI=O.  TRM 245 
T= A L  TRH 250 
RE TURh  TRM 260 

3 FW=WOQS*GOGO T R H  270 
F I = Y I / ( Q * S * C l   T R H  28') 
F l = F I * Y l   T R H  290 
F 2 = F I * Y 2   T R H  300 
AL l=O.  TRW 310 
TT=O.  TRM 320 
C T = l .   T R H  330 
S T=O. TRM 340 
CA=l .   TRM 3 5 0  
SA=O. TRM 360 
I =G TRW 370  
CP=GOGC/FL  TRH 380 

4 QV=FL/GCGO-CT*CP*CA-ST*SA TRM 390 

QF=Pl*C/ (Z . *V)   TRM 4ln 
OP=QV*CA/(Z.*CT)  TRH 420 
CP=SQRTfl.-QV*TT*SA/CltQP*QP)-QP TRM 4 3 Q  
I F  (CP-1.) 695.5  TRM 440 

5 R=C 0 TRM 450  
P=C. TRM 460 
SP=O. TRM 470 
GO T O  7 TRH 48'! 

c SP=SQRT( 1.-CP*CP 1 T R H   4 9 G  
P = - P l * T T / S P  T ~ M  500 
R=Cl *CP/SP  TRM  51C 

7 AN=GOGO*ICT*CP+QV+CA)  TRH 520 
PR=P*R  TRM 530 
CMT=FZ*(P*P-R*RI-F l*PR  TRM 540  
I F  (1.LT.O) GO T O  9 
D = ( C ~ T - C H ( l ) - P F * C M ( 4 ~ + P R * C P o ) / C M ~ 3 ) + ( C N ~ ~ ) + O F ~ C N ( 4 ~ - P R ~ C N ( 6 ) ) / C N T R M  560 

TRH 550 

l ( 3 )  TRY 570  
AL=  ( O-AN*B ) / A   T R Y  580 
C A = C O S ( P L I   T R H  599  
S A = S I N ( A L l  TRM 63'? 

a l = a v * G / v .   T R M  400 
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TT=SA*CP/CA 

CT=COS ( T )  
S T = S I N ( T )  

T = A T A N Z ( S A * C P v C A I  

I F  ( A B S ( A L - A L l ) . L E . . O F O O O ~ ~ )  GO TO 8 
I F  II.GE.1001 GO TO 8 
I = I + 1  
I l = I  
AL 1=AL 
GO TO 4 

8 
GO TO 4 
13-1 

9 CNT=WCQS*AN 
D E L = ( C M T - C M ( l ) - A L * C H ( 2 ) - Q F * C H ( 4 ) - A N * C M ( 5 l + P R * C M ( 6 ~ ) / c M ( ~ )  
P H I = A T A h Z ( S P , C P )  
RETURN 
END 

TRM 610 
TRM 626 
TRY 630 
TRH 64C. 
TRY 65@ 
TRM 66r? 
TRY 670 
TRM 683 
TRY 690 
TRM 790 
TRd 71C' 
TRM 729 
TRH 730 
TRM 740 

TRH 766 
TRH flu- 

TRH 75n 
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Figure 1.- Illustration of reference  axis  system and several fundamental  parameters. 
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Figure 2.- Panel  arrangements  used  to  represent  example  airplane. 
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Figure 3.- Distribution of mean-camber-surface  slopes for design shape and jig shape. q e s  = 2-7; 

‘N, de s = 0.07914; cdes = 28.6 kN/m2. 
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Figure 4. - Parameters  describing  reference  flight conditions. 
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Figure 4.- Concluded. 
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