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OPTIMAL CRUISE TRAJECTORIES FOR SUPERSONIC AIRPLANES 

by Fred Teren a n d  Car l  J. Danie le  

Lewis Research Cen te r  

SUMMARY 

Equations are derived for maximizing range for specified initial and final values of 
mass and altitude. Constant-velocity flight is assumed, and normal acceleration is 
neglected. 

The optimization problem is solved by using the maximum principle. The resulting 
optimal control histories a r e  shown to consist at most of one maximum, one minimum, 
and one interior thrust arc.  Optimal trajectories a r e  obtained, and uniqueness is dem- 
onstrated. Results are obtained for a supersonic airplane. Curves a re  presented which 
can be used to obtain the optimal trajectory and maximum range for a range of initial and 
final mass and altitude. In addition, the optimal range is compared to the range obtained 
by using the standard cruise trajectory profile (consisting of a Breguet cruise plus 
maximum- and minimum-thrust connecting segments) and to the range at constant- 
altitude cruise. The difference between optimal and standard trajectory range is shown 
to be small. 

INTRODUCTION 

The optimization of airplane trajectories is generally considered as three separate 
optimization problems - takeoff and climb , cruise, and descent and landing. The optimal 
climb problem has been treated in  the literature by using the energy-state approximation 
(ref. 11, as well as by treating a more precise formulation of the system equations with 
the attendant complexities (ref. 2). The descent phase is generally highly constrained, 
and therefore not subject to mathematical optimization. The importance of optimizing 
the cruise trajectory (maximizing cruise range) is obvious. Yet,  this phase has re-  
ceived little attention in the literature. The reason for the lack of attention is that the 
approximations generally made in considering the cruise trajectory optimization reduce 
the solution to a nearly universal equation for all airplanes, the so-called Breguet range 



equation. Furthermore, the Breguet cruise seems intuitively to be difficult to improve 
on, since the associated approximations seem to be quite reasonable. 

The Breguet range equation is derived by assuming steady flight. All accelerations 
a r e  assumed to be zero, and the climb rate  is also neglected. Therefore, altitude be- 
comes a control variable for the problem, and the Breguet range equation results. In 
the present study, the cruise trajectory model is made more realistic by including the 
altitude as a state variable. With this formulation, the cruise trajectory is defined as 
the portion of the flight at cruise velocity, with specified initial and final altitudes corre- 
sponding to the end of climb and the beginning of descent. The optimization problem is 
formulated by using the maximum principle (ref. 3). Costate equations a r e  derived and 
a r e  used to determine the optimum thrust level as a function of the state variables. 

The procedure for obtaining optimal trajectories is illustrated for a supersonic air- 
plane. A s e t  of curves is presented from which maximum range can be determined for 
any values of initial and final mass and altitude. Comparisons a r e  also made between 
the optimal range and the range obtained by using two suboptimal cruise trajectory 
profiles. 

CRUISE RANGE OPTIMIZATION 

Equations of Motion 

It is desired to maximize range for an airplane with fixed initial and final mass. 
The velocity is assumed to be constant: and the initial and final altitudes a r e  specified. 
The flight time is free. The equations of motion a r e  

- 1  v = - (T - D - mg sin y )  
m 

* 1  y = - (L - mg cos y )  
mv 

All symbols a r e  defined in the appendix; some of the variables a r e  illustrated in figure 1. 
The thrust is assumed to be parallel to the airplane longitudinal axis, and the angle of at- 
tack is neglected. The specific fuel consumption S is a function of thrust and altitude. 
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Equations (1) apply for planar flight with a constant gravity field (that is, a flat Earth is 
assumed). The .range is given by 

R =  ltf v cos y dt 
0 

B reguet  C r u i s e  

The Breguet equation has generally been used to calculate airplane cruise range. 
For completeness and for comparative purposes, the Breguet equation is derived in this 
section. The following assumptions a r e  made: 

(1) The normal acceleration vi. is negligible. This does not mean that y is con- 
stant, only that the acceleration required to change y is negligibly small. 

(2) The vertical velocity h is negligible. H e r e  again, h is not necessarily con- 
stant. Neglecting h requires setting sin y = 0 and cos y = 1 in equation (1). Further- 
more, this assumption makes h a control variable. 

Using these assumptions, along with constant velocity, gives for equations ( la) 
and (lb) 

T = D  (3a) 

L = mg (3b) 

and the rang e becomes 

This equation can be rewritten by using equation (3) as 

which is the Breguet range equation. Maximum range for the Breguet cruise is obtained 
by maximizing, at each flight time (or mass), the value of L/DS. The maximization 
may be performed independently at each point along the trajectory since altitude is as - 
sumed to be a control variable and may be changed discontinuously if required. 
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At this point, it is useful to describe the airplane and atmospheric characteristics in  
more detail. The following assumptions are made: 

(1) A parabolic drag polar is assumed; that is, 

and K are  constants, independent of altitude. The l i f t  and drag are given 
D, 0 where C 

by 

where A is the reference area and Q is the dynamic pressure, defined by 

Q =-pV 1 2  
2 

(2) An isothermal atmosphere is assumed; that is, 

-ph P = POe 

This also implies that speed of sound is constant. Hence, Mach number remains con- 
stant during a constant -velocity cruise. 

only of the thrust coefficient CF, where 
(3)  The airplane specific fuel consumption is a function (for constant-velocity flight) 

and c F , z ?  which a re  independent of 
F, u 

In addition, CF has upper and lower limits, C 
altitude. 

range can be determined more explicitly: 
With these assumptions, the operating conditions for maximizing Breguet cruise 

DS CDQAS 
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Equations (3a), (5b), and (8) can be combined to give CD = CF. Also, CL can be ex- 
pressed in  terms of CF as follows: 

Therefor e, 

and the optimum CF can be obtained by differentiating L/DS with respect to CF 
(with S = S(CF)) and setting it equal to zero. This results in the following equation, 
which can be solved for the optimum value of CF: 

It should be noted that the optimum value of Cp is independent of mass, and hence con- 
stant for the entire cruise trajectory. Also, from equation (91, CL is constant; thus, it 
follows that L/D is also constant. In addition, since CL = L/QA = mg/QA, 
m/Q = ACL/g = constant. Thus, Q must decrease (altitude increases) as mass de- 
creases. 
using the fact that L/D is constant: 

The Breguet cruise range can be obtained by integration of equation (4) and 

l q L )  log :) 
Ds max 

Inclusion of Altitude Effect 

In the derivation of the Breguet range equation, altitude was assumed to be a control 
variable and was allowed to change discontinuously i f  required. At this point, the prob- 
lem will be stated more realistically by including altitude as a state variable. The state 
equations (1) may be rewritten by using equations (5) to (8 )  as 
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1 
mv 

i. = - (CLQA - mg cos y )  

where the state variable h has been replaced by the equivalent state variable Q. 

of the Breguet range equation) that normal acceleration is negligible, cruise velocity is 
constant, and y is small (i. e . ,  cos y NN 1). 
will be retained. Setting equations (12a) and (12b) equal to zero, solving for sin y ,  and 

using this result in equation (12c) yield 

In order to simplify the problem, it will be assumed here (as it was in the derivation 

However, the state variables Q and m 

The optimization problem can now b e  stated as 

maximizei:f v dt 

subject to the differential constraints 

m = - AQ -CFS 
g 

an inequality constraint on the control CF 

(14) 

'F,Z - < c  F -  < c  F , u  
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and boundary conditions on Q and m. The problem is formulated by using the 
Pontryagin maximum principle in minimum form (ref. 3). 
can be  written as 

The variational Hamiltonian 

The costate equations are 

The optimal CF is obtained from 

and subject to 

- - - - A Q - ( S C F ) + Z p r O  a2H - x 2  d2 

ac $ dC$ 

and 

on interior arcs  (i. e. , CF, 
consist of maximum, minimum, and interior arcs .  It is instructive to determine the 
variation of C F  on optimal interior arcs .  
is uniquely determined by initial values of CL and CF. 
tions (18) and (19b) give 

< C F  < C F,U). The optimal thrust coefficient history may 

It will be shown that an optimal interior a r c  
On interior a rcs ,  equa- 
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For notational simplicity, let a(CF) = CFS(CF) and let ' denote differentiation with 
respect to CF. Then equation (20a) may be written 

Differentiation of equation (20b) with respect to time gives 

2 3  

(.F - 'D,O + Km2g3 A ~ Q ~  

h 1 Q 2 h  XI& PvA +YE Q 2 v C F - C D , o - Q ! % ) -  ( 2 2 3  
A ~ Q ~  l2m g x2m g 2 

X2m g 

Substituting for h1/h2 from equation (20b) results in 

o r ,  since L = CLQA = mg, 

Thus, the rate of change of CF on an interior a r c  is uniquely determ,,ied -y the values 
of CL and CF (for given values of the airplane parameters). The rate of change of 
CL on an interior a r c  can also be  obtained by differentiation: 

so that the rate of change of CL is also determined by the instantaneous values of CF 
and CL. A constant control a r c  (CF constant) can exist only i f  CL is also constant. 
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Thus , 

and 

must be satisfied simultaneously. 
solving 

The value of C F  on this a r c  is determined by 

The value of CL can then be determined from equation (23b) as 

It is interesting to compare the constant control a r c  given by equation (24) with the 
Breguet cruise equations (9) and (10). If equation (10) is rewritten in terms of a, the 
result is 

a 
C F  = c ~ , ~  + 2 (25) 

The similarity of equations (24) and (25) is evident. In fact, equation (24a) represents a 
modified Breguet cruise - modified by the additional thrust required to change altitude. 

Construction of CF - CL Diagram 

Because of the nonlinearity of the variational equations required for maximizing 
range, the optimal trajectories are very difficult to obtain by conventional methods 
(e. g. , solution of the two-point boundary value problem). It was found that the important 
features of the optimal trajectories could be conveniently displayed on a graph of lift co- 
efficient as a function of thrust coefficient. From these features, an approximate (but 
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quite accurate) procedure was derived for obtaining the optimal trajectories. In the fol- 
lowing development, the CF - CL diagram is presented and discussed, and the solution 
procedure is derived. 

construct a CF - CL diagram of all possible optimal interior arcs.  The airplane- 
engine data used here are representative of a supersonic transport (SST). The assumed 
values of the airplane parameters are given in table I, along with the inverse atmo- 
spheric scale height p .  

The specific fuel consumption S is shown as a function of CF in figure 2. The 
value of S is constant until afterburning is initiated at C;, after which S increases 
with CF. The data in  table I and figure 2 apply at a velocity of 754.3 meters per second 
(corresponding to a Mach number of 2.7). 

From equations (2 1) and (22), define 

Equations (21) and (22) can b e  used, for a given airplane-engine configuration, to 

Then equations (21) and (22) become 

CL = m(b - KC?) 

Als 0, 

b ' = 1 - -  a' 
pv 

Since a" 2 0 and a' < Pv for the values assumed, f and b are monotonically in- 
creasing functions of CF (see eqs. (28)). Also, f(CF) is negative for all values of CF, 
while b(CF, I )  is negative and b(C 
shape of the CF = 0 and CL = 0 curves, as shown in figure 3. Above the CF = 0 

) is positive. These characteristics define the 
F, u 

10 



curve, CF increases; below, CF dec'reases. Above the C, = 0 curve, C, de- 
creases; below, CL increases. 
the modified-Breguet-cruise (MBC) point, as discussed previously in connection with 
equations (24) and (25). 
uniquely determined (although not shown explicitly). 
ing point, the entire optimal trajectory is determined from that point on. 

In figure 3, a discontinuity in CF exists between C g  and CF 
ity is due to the constant S assumed for values of CF less than C:, which results i n  
a" = 0 for these values and makes CF increase to  infinity in  equation (27a). Thus, I 

when CF decreases to CG on an interior arc, it will jump to CF, z. A1 ter nativ e ly , 
trajectories starting at C 

Four regions a re  defined in figure 3 by the CF = 0 and C, = 0 curves and their 
intersection. In region I, CF decreases and CL increases; in region 11, CF and C, 
both decrease; in region 111, CF increases and C, decreases; and in  region IV, C F  
and C, both increase. The following optimal trajectories a r e  illustrated in the figure: 

First CF decreases while C, increases to 
the C, = 0 curve. Then CL decreases and CF decreases to CF; CF then jumps to 

'F, Z 

C F  = 0. 
while CF remains at C 

Then CL decreases while CF decreases to C 

C, = 0 curve. Then C, increases and CF increases to CF,u.  Finally, CL in- 
creases while CF remains at CF,u. 

while in region IV, CL increases and CF increases to CF,u.  

for a single optimal trajectory. A related question is whether the value of CF can jump 
discontinuously from C 
for this transition. 

From this figure it 
can be  seen that all interior a rcs  which terminate at C 
In this r e son ,  C, is positive, so  that the trajectory can never return to region I (along 
the line CF = CF,u) to start another interior arc. Similar reasoning shows that once 
CF has reached C (regions I or II), it can never return to regionIII to start another 
interior arc. 

The intersection of the CF = 0 and C, = 0 curves is 

For each CF, C, combination, the values of CF and CL a r e  
Thus, for a given CF, C, start- 

This discontinu- 

will jump to CG if  an interior arc is required. 
F, 2 

(1) Trajectory A starts in region I. * 
and C, decreases. 

(2) Trajectory B starts in region I. First C, incr,eases while CF decreases to 
Then C, increases while CF increases to CF,u. Finally, C, increases 

F,U' 
(3) Trajectory C starts in regionm. As  C, decreases, CF increases to CF = 0. 

(4) Trajectory D starts in regionm. A s  CF increases, CL decreases to the 
and remains at that value. 

F ,  2 

* For all trajectories starting in region 11, C, decreases and CF decreases to CF, 

An additional question that remains is the number of interior arcs  which can occur 
.f 

or vice versa, or  if interior a rcs  must be used 
F ,u  

to c 
F, 

The former question can be answered by referring to figure 3. 
in region IV. 

F , u  
arr ive at C 

F ,u  

F, 
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Additional interior a r c s  might still exist i f  CF could jump discontinuously k o m  
to or  vice versa. Then, for example, CF could jump from C 

while CL = 0.01, and a second interior a r c  could start at that point. To show that 
this is not possible, consider first equation (16). The control CF is chosen to minimize 
H, and if  X2 is positive, H can always b e  made negative by choosing CF such that the 
coefficient of XI has the same sign as XI. However, H = 0 for a free-time optimum 
solution. Therefore, ha must be negative. Now if CF can jump from C 
H(CF, u) = H(C 

F, 1 F , u  
cF, 1 to c 
CF,U 

F , u  to ‘F, I’ 
) at the transition time. But from equation (19), 

F, 1 

so that H(CF) is convex. Therefore, if H(CFYu) = H(C 
intermediate value of C F, as shown in sketch (a). 

), H(CF) < H(CF,u) for every F, 1 

H 11 I I I I I I I 

I 
I I 
I I 
I I 

‘F, 1 ‘F, 0 ‘F, u 

I I I 

H 11 I I I 

I 
I I 
I 

I I I 
I I I 

I I 
‘F, 1 ‘F, 0 ‘F, u 

Hence, C F  would be  equal to CFy0 ,  and not C 
from C 
H(CF) verifies the optimality of interior arcs ,  since it demonstrates that the necessary 
condition in quation (19) is satisfied for such arcs .  

consists (at most) of one maximum, one minimum, and one interior arc. 
the optimal trajectory is unique. 

Or ‘F,Z- Therefore, no jumps 
F, U 

to C (or vice versa) are possible. Furthermore, the convexity of 
F YU F, 1 

The previous discussion proves that the control history for an optimal trajectory 
Furthermore, 
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RESULTS AND DISCUSSION 

Long-Du ra t ion  C r u i s e  

As noted earlier, the values of CF and CL do not change with time at the MBC 
point. Although not shown explicitly in figure 3, the values of CL and CF change 
slowly with time near the MBC point, but change quite rapidly away from this point. For 
example, trajectory A in figure 3 requires 6.25 minutes and has a range of 283 kilo- 
meters. The initial and f inal  altitudes are both 9. 15 kilometers. Trajectory B requires 
only 1.54 minutes to climb from 9. 15 kilometers to C 
tude. The range traversed is 69.4 kilometers. Trajectory C starts at 21.37 kilometers 
and requires 8.42 minutes to descend to 9.15 kilometers, while covering a range of 
381.4 kilometers. 

must cruise for long periods of time (several hours). Since trajectories A to C have 
durations of several minutes, it is clear that optimal cruise trajectories of several hours 
duration must spend much time very near the MBC point. In fact, it  is reasonable to as- 
sume that such trajectories include a long -duration phase at the MBC point, together 
with connecting a rcs  to the initial and final conditions. 

structed. A comparison of trajectories A and B in region I indicates that there is a 
unique trajectory, between A and B, which terminates at the MBC point. All  other tra- 
jectories in region I diverge from this p i n t .  Similarly, a single trajectory exists in 
region 111 which terminates at the MBC point, which lies between trajectories C and D. 
Also, there are only two trajectories which leave the MBC point, and these lie in regions 
II and IV. The four trajectories of this type a re  shown in figure 4. 
tories then start with connecting arc 1 or 3 (depending on the initial altitude), continue 
with an MBC, and conclude with connecting a rc  2 o r  4 ,  again depending on the desired 
final altitude. 
necting arcs  1 and 2 will normally b e  used. 
between the starting point and the MBC point, while connecting a r c  2 is the descent- 
transition arc. These transition a rcs  correspond to those phases of the trajectory in 
which the airplane is at cruise velocity but not at optimum altitude for the MBC. 

essentially of two definite connecting arcs  (with end points depending on the initial and 
final values of mass and altitude) and an  MBC. It remains to determine the values of 
CL, CF, and m, as functions of time, on connecting arcs 1 and 2. 
a r c  1, these values are best determined by numerical integration backwards in time from 
the MBC point. For connecting a rc  2, the integration is performed forward from the 

at an 18. %-kilometer alti- 
F ,u  

While these trajectories are optimal, they a r e  not normally of interest since an SST 

Figure 3 may be used to determine how such trajectories can be  numerically con- 

The optimal trajec- 

Since trajectories generally consist of climb, cruise, and descent, con- 
Connecting a rc  1 is the climb-transition a rc  

It has been established that the long-duration cruise trajectories of interest consist 

For connecting 
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MBC point. In both cases, the initial values of CL and CF are perturbed a small 
amountfrom the MBC values into the proper region. This procedure gives small, but 
nonzero, values of CL and CF which are needed to start the integration of equa- 
tions (21) and (22). 

The initial value of CL, 
CL,o, is shown as a function of time spent on connecting a r c  1 in figure 5. The required 

is a function of the initial altitude and mass. For convenience, CL/m is 
can be easily 

value of C 
plotted as a function of initial altitude in  figure 6. From this figure, C 
determined. The ratio of the mass at the start of the MBC to the initial mass mSBC/mo 
is also a function of connecting a rc  time tSBC. 
tion (15b) as 

The resulting values a r e  presented in figures 5 to 10. 

L,O 
L, 0 

This may be seen by rewriting equa- 

Since CF and CL are definite functions of time, this equation may be integrated to 
give 

-- - exp "0 

"SBC cL 

The result is shown in  figure 7.  Thus, connecting a rc  1 is completely determined for 
given values of initial mass and altitude from figures 5 and 7. Similar data a r e  pre- 
sented for connecting a r c  2 in figures 8 and 9. as a function of 
t ime spent on connecting a rc  2, while figure 9 gives the mass ratio mEBC/mf. 

For given values of initial and final mass and altitude, the time spent on connecting 
a r c s  1 and 2 is determined, as a r e  the initial and final mass at the MBC point. It r e -  
mains to calculate the time spent on the MBC a rc  tBc. This t ime may be calculated by 
integrating equation (Eb) ,  which results i n  

Figure 8 shows C 
L,  f 

where the values of CL, CF, and S a r e  those of the MBC arc. 
tion (29) a r e  plotted in  figure 10 for convenience. 

The results of equa- 
However, for greater accuracy, equa- 
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tion (29) should be  used in calculating bc. For the parameters assumed in this report, 
(CL/C#)Bc = 4.8972 hours. 

In order to illustrate the w e  of the figures, an example is given. Suppose 

mo = 291 000 kg 

mf = 184 000 kg 

ho = hf = 9.2  km 

Then from figure 6, 

- -  cL - 1. OX10-7 kn-' 

CL,o = 1. OX10-7 mo = 0.0291 

c ~ , ~  = I. O X ~ O - ~  mf = 0.0184 

Next, from figure 5, 

and from figure 7, 

tSBC = 10.35 min 

mSBC = 0.9585 mo = 278 924 kg 

From figure 8, 

and from figure 9, 

= 1.0502 mf = 193 237 kg m~~~ 
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Now from equation (28), for mEBC/mSBC = 0.692795, 

tBC = 1.7974 hr 

Therefore, the total tr ip time is 

t = 10.35 + 60(1.7974) + 12.9 = 131.1 min 

and the total cruise range is 

R = Vt = 5934 km 

It is interesting to compare the maximum range with the corresponding range which 
would be obtained if the standard procedure is used to generate the connecting arcs. With 
the standard procedure, the maximum thrust coefficient is used to climb to the Breguet 
cruise altitude, and minimum CF is used to descend from the Breguet cruise altitude to 
the final altitude. A comparison of standard trajectory range is made with the optimal 
range in figure 11, for mo = 291 200 kilograms and mf = 184 200 kilograms. The range 
increase obtained by using the optimal trajectories is plotted as a function of initial alti- 
tude. The initial and final altitudes are assumed to be the same. The results in figure 11 
show that the range improvement is small, less than 7 kilometers even for initial and final 
altitudes as low as 9 kilometers (the optimal initial M E  altitude is about 17.4 km). 

S hort-Du ration Cruise 

It is reasonable to expect that the range difference will always b e  small whenever the 
flight is of long enough duration so that it is advantageous to reach the Breguet cruise 
altitude. However, for very short duration flight starting from a relatively low altitude, 
the entire optimal trajectory is a connecting arc  which remains below the Breguet cruise 
altitude, and the range penalty incurred by using the standard trajectory could be 
important. 

Therefore, a comparison of optimal trajectory range with standard trajectory range 
was made for  propellant masses ranging from 0 to 17 000 kilograms. The results are 
presented in figure 12, for initial and final altitudes of 9. 15 kilometers and a final mass 
of 184 200 kilograms. For fuel mass up to 6900 kilograms, the standard trajectory con- 
sists only of maximum and minimum thrust arcs ,  since there is insufficient fuel for the 
standard trajectory to reach the Breguet cruise altitude. The range increment increases 
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to a maximum of about 9 kilometers a t  a fuel mass of 6900 kilograms. For fuel masses 
greater than this value, the standard trajectory also includes a Breguet cruise segment 
of the required duration. 
meters. The optimum traj ectory consists of an interior a r c  for fuel masses up to 17 000 
kilograms. At this point, the conneding a rc  passes so  close to the MBC point that a 
Breguet cruise phase is included. 

For short-range (low-propellant-mass) cruise, a constant-altitude trajectory might 
reasonably be considered to be a good approximation to the optimum. A comparison of 
optimum cruise range with constant-altitude cruise range is presented in figure 13 as a 
function of fuel mass. As in figure 12, the initial and final altitudes a r e  9. 15 kilometers, 
and the final mass is 184 200 kilograms. It can be seen from the figure that constant- 
altitude cruise is a poor approximation to the optimum even for small fuel masses. For 
example, the range increment is 510 kilometers for a fuel mass of 15 000 kilograms. 

The range increment then decreases rapidly to about 7 kilo- 

VERIFICATION OF APPROXIMATIONS 

In the derivation of the optimal trajectories presented, it was assumed that y is 
small and that the normal acceleration is negligible. 
checked at this point by observing the resulting values on the optimal trajectories. 

sults in  

These approximations may be 

The value of y may be determined by set.ting v (eq. (12a)) equal to zero,  which r e -  

For long-duration cruise, the largest values of y occur on the climb-transition arc .  
The value of y on this a r c  is shown as  a function of time in figure 14 for a trajectory 
starting at an 11.4-kilometer altitude. The altitude profile is also presented in this fig- 
ure .  For values of y less than 8O, cos y is greater than 0.99,  so that the approxima- 
tion cos y = 1 is valid to within 1 percent. Figure 14 shows that y is less than 8' for 
altitudes greater than about 13.4 kilometers. Furthermore, even i f  the initial altitude is 
as low as  9 kilometers, the time required to ascend to 13 kilometers is less than 1/2 
minute (out of a total trajectory time of several hours). Therefore, the small  angle ap- 
proximation seems to be valid. 

Consider next the approximation of neglecting normal acceleration. In equation (12b), 
was neglected and CL was set equal to mg/&A. The effect of the approximation is to 

17 



neglect the lift required to change y. The true required l i f t  coefficient is given by 

c; = CL(20S y +$) 
where 

mg CL =-  
&A 

is the approximate l i f t  coefficient. The approximate and true lif t  coefficients a r e  plotted 
in figure 15 as a function of time on the climb-transition arc.  The difference between 
CL and C; is small  near the MBC altitude, but increases to 0.03 at an altitude of 11.4 
kilometers. The e r ror  in l i f t  coefficient results in an error  in drag coefficient (CD is a 
function of CL), which changes CF by an equal amount i n  order to maintain the desired 
climb rate. The true drag coefficient is given by 

and is plotted in figure 16 along with the approximate drag coefficient as a function of 
t ime on the climb-transition arc.  Figure 16 shows that the e r ror  in  CD (hence CF) is 
fairly small (less than 10 percent for altitudes above 13 km) even though the error in CL 
is large. Furthermore, the amount of time spent in the low-altitude region, where the 
e r ror  is substantial, is very short relative to the total cruise time. Therefore, neglec- 
ting normal acceleration represents a reasonable approximation. 

C ONCLU D ING REMA RKS 

The problem of maximizing range for constant -velocity flight between fixed terminal 
conditions (mass and altitude) has been studied. Normal acceleration is neglected, as in 
the derivation of the Breguet cruise, but the thrust required to change altitude is included. 
Range is maximized for a supersonic airplane and compared to the range obtained by us- 
ing the standard trajectory, consisting of a Breguet cruise a r c  and maximum- and 
minimum-thrust connecting arcs. The difference between optimum and standard traj ec- 
tory range was shown to be small. However, the optimal range can be calculated without 
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. -  

great difficulty, as described in this report. Therefore, the method derived in this re- 
port should be considered for use in cruise trajectory calculations. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, December 13, 197 1, 
110-06. 
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APPENDIX - SYMBOLS 

A 

CF 

cL 

D 

f 

g 

H 

h 

K 

L 

m 

Q 
R 

S 

T 

t 

V 

P 

Y 

x1 

x2 

2 reference area, m 

functions of C 

drag co effi ci ent , no ndi mensi onal 

true drag coefficient, nondimensional 

zero-lift drag coefficient, nondimensional 

thrust coefficient, nondimensional 

minimum CF for afterburning, nondimensional 

l i f t  coefficient, nondimensional 

true l i f t  coefficient, nondimensional 

drag, N 

function of CF introduced for notational simplicity 

acceleration due to gravity, m/sec 

variational Hamiltonian, m/sec 

altitude, m 

slope of drag polar, nondimensional 

l if t ,  N 

mass, kg 

dynamic pressur e, N/m 

range, km 

specific fuel consumption, sec- 

thrust, N 

time, sec 

velocity, m/s ec 

exponent for isothermal atmosphere, m- l  

flight path angle, rad o r  deg 

costate variable, (m )(sec )/kg 

costate variable, m/kg 

costate variable, m/sec 

introduc d for notational simplicity 

2 

2 

2 2 
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3 p density, kg/m 

po surface density, kg/m 

Subscripts: 

BC Breguet cruise 

EBC end Breguet cruise 

f final 

Z lower limit 

u upper limit 

SBC start Breguet cruise 

0 initial 

Superscripts: 

3 

derivative with respect to time 

derivative with respect to thrust coefficient 
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TABLE I .  - AIRPLANE AND ATMOSPHERIC CONSTANTS 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Velocity, v ,  km/sec  
R e f e r e n c e a r e a ,  A,  m 704 
Slope of drag polar, K 0 .5  
Zero-lift d rag  coefficient, CD,o. 0.00878 

. . . . . . . . . . . . . . . . . . . . . . . . . .  Exponent for  isothermal  a tmosphere,  B,  km- 0. 16 

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
i 

. .  

I \\\\\\\\\\\\\e 
Figure 1. - Def in i t ion of t ra jectory variables. 

Figure 2. - Specific fuel  consumption as func t i on  o f  
t h r u s t  coefficient. 
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c r u i s e  point  i l lustrated. 
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Figure 8. - Final value o f  l i f t  coefficient. 
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