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FOREWORD 

This final report summarizes the work performed under contract NAS-10944 

for National Aeronautics and Space Administration, Langley Research Center, 
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Hoell of NASA, Langley, 

Dr. W. J. Guman was the Principal Investigator with Dr. D. Palumbo a 
principal contributor to the results of this study. The laboratory effort was performed 

with the assistance of Messrs. W. Johnson, E. Poggi and A. Scheiweiller. The 
constructive discussions with Mr. Hoell a r e  gratefully acknowledged. 
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ABSTRACT 

The technique of feeding a solid propellant into the discharge from the sides of 
the discharge was  evaluated. The thrust/power ratio could in cases be significantly 

effected by the included angle of V-shaped propellants and by the electmde length. 

This result implies that when results a r e  compared at  the same specific impulse it 
is possible to obtain higher thrust efficiencies. In particular, it was found that for 

a given discharge energy the thrust/power ratio correlated with propellant mass. 

Increasing the integral ,Ci2dt simultaneously increases both the gasdynamic and 

electromagnetic thrust. An analytic expression was formulated for  ablated mass 

which comprehensively describes experimental data in terms of geometry and 

electrical parameters. The previously reported correlation of the product impulse 

x specific impulse with discharge energy has also been analytically described. 

Tentatively it is concluded that the reliability of dry energy storage capacitors 

does not equal the reliability of liquid impregnated units when the comparison is 
made at the same joules/Kg rating. 
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SECTION I 

INTRODUCTION 

I 

Y 

Modern space mission objectives have become increasingly dependent upon 

accurately positioning and orienting either orbiting satellites or  inter-planetary 

spacecraft. 
a pulsed plasma electric propulsion system. Such a propulsion system can either 

provide an equivalent steady state thrust in the micropound and millipound regimes 

o r  repeatedly provide sharply defined impulse bits of known amplitude at high values 

of specific impulse. 

For this reason considerable emphasis has been placed on developing 

Among the various cr i ter ia  used for assessing the relative usefulness of an 

electric propulsion system for  a particular mission, the characteristic thrust-to- 

power ratio (or the specific thrust) is a parameter of considerable importance. This 

parameter determines whether or not the thrust levels required for a particular 

mission can be produced by the thruster with the available on-board power. The 

thrust-to-power ratio of a pulsed plasma propulsion system will also have a direct 
effect on the weight of the propulsive system since the energy storage capacitors, 

which are prime components, will increase in weight as the required discharge energy 

increases. Isolated data reported in  a previous program (1) revealed that it should 

be possible to realize a significant increase in the thxust/power ratio by providing 

propellant from the sides of the discharge. The major effort of this program has, 

therefore, been directed at a systematic study for increasing the thrust-to-power 

ratio of the solid propellant pulsed thruster and to determine the physical parameters 

that govern this ratio. The experimental work performed during this,program was in 
the millipound thrust regime and limited to discharge energies of 300 and 500 joules. 

It should be noted that this program was primarily concerned with a determination 

of the parameters and an understanding of the factors governing the thrust/power ratio. 

No attempt was made to optimize thruster efficiency. Thus, any comparison of 

efficiency as reported herein with other thrusters should be made at the same value of 

specific impulse. 

Electrode erosion was also examined during this study and results are presented 

in Section VII. 
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Concurrent with the aforementioned studies, two 300 joule energy storage 

capacitors were procured from Capacitor Specialists Inc. (CSI) and experimentally 
evaluated for their applicability as an energy storage source. The capacitors were 

of a dry construction (no liquid impregnant) using Kapton as the dielectric and rated 

at about 10 joules/lb. 

VIII of this report. 

The result of this capacitor evaluation is presented in Section 
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SECTION 11 

THRUSTER DESCRIPTION 

Most of the studies being reported upon were performed with the basic short 

pulse discharge thruster reported in  Reference 1. This latter thruster is comprised 

of two aluminum disk shaped current collector plates (anode and cathode) separated 

by a dielectric. Up to twelve energy storage capacitors can be connected to these 

collector plates thereby forming a relatively low inductance discharge circuit. 

The anode and cathode of the electrode nozzle assembly a r e  attached to the respective 
positive and negative collector plates. 

allow fastening of the electrodes. 

whereas Figure 2 presents a front view showing the V-shaped teflon propellant 

located between a parallel rail accelerator nozzle. The discharge current flows in 

a radial direction from the capacitors, to the electrodes through the arc ,  and back 

to the capacitors. 

These plates have appropriate cutouts to 

Figure 1 shows a typical rear view of the assembly 

Figure 1. Rear View of 300 Joule Capacitor Short Pulse Test Bank 
Mounted on Thrust Balance 
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Figure 2. Front View of Thruster with V-shaped Propellant 

Conceptually the thruster is schematically represented as shown in Figure 3. 

The propellant used is virgin TFE teflon. Various geometric configurations 

for the electrode-propellant assembly have been examined in the past. This 

research was  performed using a parallel rail electrode configuration with propellant 

being fed in from either side of the interelectrode gap. This geometry is illustrated 

in Figure 4. 

using Mykroy to insure that only the teflon surfaces of the V a r e  exposed. A l l  

exterior electrode surfaces are insulated with a coating of epoxy cement. 

The front face of the teflon fuel rods are shielded from the plasma 
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Figure 3. Thruster Schematic 

Figure 4. Schematic of Side-Fed Electrode-Propellant Configuration 
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The parameters that were varied during the performance evaluation studies 
include the electrode length R and the included angle 8 between propellant surfaces. 

Variations in thruster performance as a function of these parameters were recorded 

and results are presented in Section V of this report. 

A photo of a typical fuel assembly and electrodes taken after a test is included 

below in Figure 5. 

Figure 5. Typical Electrode - Propellant Components A f t e r  3500 Shots. 
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SEC TION III 

THRUSTER PERFORMANCE EVALUATION 

In order to evaluate thruster performance it was necessary to  directly 

measure: 
a)  Thrust 

b) Impulse Bit Amplitude 

c) Pulse Frequency 

d) Propellant Mass Per Discharge 

e) Eroded Mass Per Discharge 

f )  Discharge Current Variation 
g) Discharge Voltage Variation 

h) Initial Capacitively Stored Energy 

Details of haw these parameters a r e  experimentally measured and the 
equipment that was used to  perform the measurements a r e  described in Reference 1. 

Each set of performance data presented in this report was obtained through 

the laboratory procedure briefly described below: 

(1) 

(2) 

(3) 

Weigh the propellant and electrodes individually to within f 0.2 milligram. 

Mount the engine on the thrust balance and place it in the vacuum 
chamber. Evacuate the chamber to  about .05  microns (5 x mm Hg). 
Fire the engine for approximately 200 consecutive discharges to  remove 
any mass absorbed on the  propellant and electrode surfaces while they 
were exposed to atmospheric conditions. 

Take three thrust balance ball calibration readings and three thruster 
thrust level readings. Take photographs of oscilloscope traces of 
thruster discharge current and voltage and a t rue ground reading. 
Measure discharge pulse rate. 

Repeat Step (4) a t  1000, 2000, and 3000 consecutive shots. 

Allow engine to cool in vacuum and then remove it from the vacuum 
chamber. Reweigh propellant and electrodes individually. 

(4) 

(5) 

(6) 

Each of the four sets of thrust data readings (i.e., at  200, 1000, 2000, and 

3000 discharges) a re  reduced separately by averaging the three amplitufies of the 

ball calibration waveforms and thruster waveforms and using these averages to 

compute the thrust. Test average thrust (T) is computed a s  the average of these 
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four values. Generally these four values a re  within -IS% of the test average value 

(See Reference 1). The four recorded discharge frequencies (f) are averaged and the 

impulse bit (I) is calculated, from the relation I = T/f. 

The test average energy initially stored in the capacitor (Eo) is computed 

from the average value of the initial voltages recorded on the oscilloscope photo- 

graphs obtained during the performance test. The test average power (J3 consumed 

is then equal to the test average pulse frequency multiplied by the test average initial 

energy. The thrust-to-power ratio is then computed from the ratio of test average 
thrust to test average power. 

. 

A s  described in  Reference 1, the propellant mass per  discharge (m ) used d 
in performance calculations is the test average change in initially stored propellant 

mass. N o  corrections are applied for mass utilization efficiency. 

The test average specific impulse (Is) is calculated from the ratio of test 

average impulse bit (I) to the test average propellant mass per discharge. 
Thruster efficiency 1 = T /2mP = I /2 mdEo. In this study no corrections were 

applied for mass utilization efficiency o r  energy transfer efficiency in presenting 

thruster effic kncy. 

2 .  2 

One of the oscilloscope photographs of a given test is used to determine the 

discharge current (i ) and voltage (v) a s  a function of time. The product of i 

and v is then tabulated with the time and numerically integrated to determine the 

energy delivered to the electrodes, Energy transfer efficiency Il E, for  ihe 
discharge being examined is then computed from the relation 1 

with Eo based on the initial voltage of that particular recording on the same 

photograph. 

= l/Eo i (t) v (t) dt 
0 E 

Y 
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SECTION IV 

PERFORMANCE DATA AND ANALYSIS 

Performance data on rail-electrode V-shaped propellant configurations, a s  

illustrated in Figure 4, were obtained for electrode lengths of 5.72 cm (2.25"), 

4 .09  cm (1.61"), 3.17 cm (1.25") and 2.28 cm (0. 911) and included propellant 

angles of 0", 40°, 60", and 80". A l l  but two tests were performed at  initial 

energies of approximately 300 joules. The interelectrode spacing was 5.72 cm 

(2.25") in all cases. The results of these tests a re  presented in tabular form in 

Table 1 of this report. A discussion of the results is presented below. 

4 . 1  THRUST/POWER RATIO AS A FUNCTION OF GEOMETRY 

The thrust-to-power ratio is presented in Figure 6 a s  a function of electrode 

length for the various included angles of the V-shaped propellant configurations 

considered. A s  indicated by this figure, the thrust/power ratio was  found t o  be 

virtually independent of included angle 8 at electrode lengths 0.90 in. and 

2.25 in. 

angle was found at  an electrode length of 1.60 in. 
observed that values of thrust/power ratio a re  maximum for all three angles 

examined at this particular length. Hence, it appears t h  t for the conditions 

examined, a length of 1.60  in. provides the largest thrust-to-power ratio. 

Because of the rather large spacing between the data points, an additional test 

using an electrode length of 1.25 in., and included angle of 40" was performed to  

determine whether or  not the optimal length could possibly be located between 

electrode lengths from 0.90 in. to 1.60 in. 

1.25 in. electrode produced a thrust-to-power ratio of 5.84 u lb/watt as compared 

to 6. 04 il lb/watt at an electrode length of 1.60 in. 

electrode length between 1.60 in. and 2.25 in. was not carried out. The 

possibility also exists that there could be an optimal length associated with each 
different included angle. While it would be interesting to resolve these questions, 

a comprehensive optimlzation of thrust/power with respect to all of these 
pararm t e r s  was beyond the scope of the program. To the best of our knowledge, 

for the conditions examined, an electrode length of 1.60 in. provided the largest 
thrust-to-power ratio that could be obtained. Because of the increase in T/P . 

In contrast, a wide variation in the thrust/power ratio with included 

Furthermore, it was 

The test performed with the  

An exploratory test with an 
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observed a s  the included angle was decreased, it was reasoned that an angle of 

zero degrees (i. e. , two flat sidewalls spaced a distance apart) should produce a 
higher thrust-to-power than any of the V-shaped propellants tested. Hence, an 

exploratory experiment utilizing a geometry consisting of 2 parallel propellant 

surfaces spaced 0.4" apart and having a 60" diverging flare at  the exit plane was 

tried (see Figure 7). This configuration produced a thrust-to-power of 6.88 I;C lb/watt 

(145 watts/m Zb), verifying the hypothesis that the thrust/power ratio could be 
increased by decreasing the included angle. When one considers this result it 

I 1 2  

Figure 7. Cross-section of Parallel Side Wall Propellant Geometry 

becomss obvious that the breech-fed geometry, with T/P typically 41~ lb/watt, 

is just the special case 8 = 180" of the side-fed geometry. Conceivably, 

therefore, one might postulate that converging propellant walls (8 negative) 
would produce even larger thrust-to-power ratios and wedge shaped propellant 

(6 
the scope of the present effort. 

18O")alower thrust-to-power ratio. A check of this hypothesis was beyond 

4 
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4.2 SPECIFIC IMPUISE AS A FUNCTION OF GEOMETRY 

The variation in specific impulse with electrode length and included angle is 
presented in Figure 8 where a previously known correlation between specific 

impulse and initial energy per unit propellant area is plotted. Included in this 
figure a re  representative data for  the breech-fed geometry. Again it appears that 
the breech-fed geometry is the special case of € = 180". Roughly, as the included 
angle of the V-shaped propellant decreases at any given value of initial discharge 

energy and electrode length, specific impulse decreases even though the energy 

to  area ratio will increase as a result of the decrease in included angle. 

Fortunately, the decrease in specific impulse is compensated for by an increase in 

the thrust/power ratio so the efficiency remains about the same. The conclusion 

to  be drawn from the specific impulse data is that the slope of the lines of 

specific impulse (Is) a s  a function of discharge energy/propellant area ratio 

presented on log-log paper decreases a s  the thrust-to-power ratio increases. 

Thus, even though the conclusidn drawn from the original correlation (namely, 

that specific impulse increases monotonically with the energy/area ratio) is still 

valid, a larger increase in the energy/area ratio is required at  higher values of 

thrust/power ratio to produce the corresponding increase in specific impulse 

achieved at lower thrust/power ratios. 

4.3 PRODUCT OF IMPULSE x SPECIFIC IMPULSE AS A FUNCTION OF 
DISCHARGE ENERGY 

One additional previously known correlation (Reference 1) is a plot of the 

product of impulse bit amplitude with specific impulse (Ix Is) a s  a function of 

initial energy. Figure 9 presents the correlation including data of this study. 

Also indicated on this plot a r e  lines of constant thrust efficiency derived from the 

general  definition of efficiency rewritten as: 
5 I Is = .459 x 10 ?\Eo 

2 with Eo expressed in joules and I Is in u lb-sec . A s  evidenced by this  plot 

an  increase in the initial stored energy will result in an increase in efficiency, 
all other parameters remaining constant. This correlation has been verified 

analytically during this experimental effort. Details of the analysis a r e  presented 

in Appendix A of this report. 
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The increase of efficiency with discharge energy was twice demonstrated 
during the present program when two 500 joule tests were performed. The results 

of these two tests a r e  presented in Table 2. 

parallel propellant side wall geometry was used with P = 1.60 in. 

pawer increased slightly from 6.88 (log 135-7) to 7 . 0 8 ~  lb/watt while the specific 

impulse showed an increase from 620 sec to 873 sec resulting in an increase in 
efficiency from 9.3% at 295 joules to 13.5% at 521 joules. The second 500 joule 

test (log 135-18) was performed using a 40" included angle and an electrode length 

of 1.25 in. 
6.67 LA lb/watt and the specific impulse from 838 sec to 1119 sec leading to an 

increase in efficiency from 10.7% at 308 joules to 16.3% at  520 joules. 

In the first test (log 135-17) the 

The thrust-to- 

Again, the thrust/power ratio increased from 5.84 (log 135-19) to 

Pr ior  to  performing the two 500 joule tests it was  believed that the thrust/ 

power ratio of a given propellant-electrode configuration was virtually independent 

of discharge energy. The results of experimental studies on the breech-fed 

thrus ts  seemed to indicate that this was the case since over the range of discharge 
energies from 2 joules to  300 joules the thrust/power ratio remained essentially 

constant around 4~ lb/watt. The increase in efficiency as  discharge energy was 

increased for a given geometry was attributed to the expected increase in specific 

impulse resulting because an increase in discharge energy produced a corresponding 
increase in the energy to propellant area ratio. It is now observed that for the 

propellant aide-fed configuration an increase in discharge energy also leads to 

an increase in the thrust/power ratio. 

4.4 THRUST/POWER RATIO AS A FUNCTION OF PROPELLANT MASS 

A critical examination of the experimental data revealed that an increase 

in discharge energy also causes an increase in the amount of ablated propellant 
mass  per discharge. It was also noted from a11 available data that a trend existed 

between increasing thrust/power ratio and propellant mass  (md). 

the thrust/power ratio as a function of mass per discharge (m,) on log-log 

paper (See Figure 10) indicates that a rather general correlation does exist 

between the two, although scatter is evident. 

in the region where the propellant mass m d 

A plot of 

The majority of the scatter appears 

per discharge is on the order of 

The data represents discharge energies ranging from 1 .5  kg (0.1 ~1 lb). 
to 520 joules and also includes several different thruster geometries previously 

16 
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TABLE 2. RESULTS OF 500 JOULE PERFORMANCE TESTS ON 
SIDE-FED CONFIGURATIONS 

I @ (degrees) 
N 
C (LL fd) 

vo (W 
Eo (Joules) 

135-17 

1.6 
0 

3260 
114.5 

3.02 

521 
____ 

i 2511 1 T 61. lb) 

f(Hz) ! 0.681 
I (u lb-sec) ! 3687 

I 4.226 

1 I (sec) 
SP i 

i T/P (ulb-watt) i 

7 (%) 13.47 

md (v 1b) i 

8 73 

7.09 
i 

Lo 

Zo  (milliohm) 

111.9 

31.26 

.0272 i 
A (sq. in) 8.51 I 

13 5-1 8 

1.25 

40 
3 042 

114.5 

3.01 

520 

2020 

0.583 
3467 

3.099 

1119 

6.67 

16.27 

59.80 
___ 

132,7 

34.04 

,0752 

5.98 

4 
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tested a t  Republic a s  well as the data obtained during this program. Also included 

a r e  data obtained through the courtesy of the MIT Aeronautics Department(2) on a 

cylindrical solid teflon propellant geometry. The initial energy used by MIT is 

20 joules. These results, coupled with our own, suggest the presence of distinct 
trend lines superposed upon the rather general correlation of T/P versus m 

superposed trend lines exhibit both an  energy dependence and a dependence upon the 

geometry of the thruster. Generally speaking, it appears that if initial energy is 
maintained constant and geometry is changed so as to produce more mass per 

discharge, the thrust/power ratio wi l l  increase along one trend line. If, on the 
other hand, the geometry is fixed and energy is increased to increase md, thrust- 

to-power will increase along a different trend line. The observation that md is 
indeed both geometry and energy dependent will be further supported by the results 

to be presented in Section V. 

These d' 

A dependecce of thrust/pawer on propellant mass per discharge is suggested 

from results of idealized gasdynamic considerations. If a fixed mass (m) of 
quiescent gas having an energy E is suddenly allowed to escape into vacuum the 
maximum obtainable impulse bit would be given by 

1/2 IGD = F (Y ) (2mE) 

where Y is the ratio of specific heat at  constant pressure to specific heat a t  

constant volume. From this expression one obtains 

According to these idealized considerations, the gasdynamic contribution to the 

impulse bit is directly proportional t o  the square root of th mass per unit 

energy. A t  fixed energy this would imply (T/P)GDO< m1'2. If one considers 

m to be the mass per discharge md and E the initial stored energy Eo the 
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observed increase in  T / P  with md at  constant energy would agree with the 
above idealized considerations. Hence, a t  f irst  glance it would appear that the 

observed increase in  T/P with md is primarily a gasdynamic effect. 

Since in Section V of this report, it will be shown that the propellant mass 
2 correlates with the integral ,Ti dt and a geometric factor, the observed increase 

in thrust/power ratio could also be electromagnetic in origin. This conclusion 

is based upon the observation that an increase in the magnitude of the 

integral ,f i dt  simultaneously increases both the propellant mass (i. e . ,  gas- 

dynamic contribution to the thrust) and the magnetic pressure force. 

2 

Generally both magnetic and gasdynamic processes must be considered in 

plasma acceleration unless it can definitely be proven that one of these processes 

has a very small effect on the velocity, in comparison to the other. 

4 . 5  RESULTS O F  EXPLORATORY EXPERIMENTS ON A CONICAL 
PROPELLANT CONFIGURATION 

A t  the onset of th i s  program some exploratory experiments on a conical fuel 
geometry having rectangular cross-section were performed. TWO different 

geomstries were tested; one with zero degree included angle and the other having 

a 40" included angle. A l l  tests were performed at  300 joules. A photograph of 

the assembly mounted on the thrust balance is included in Figure 11. The 

cathode and igniter plug were located at the upstream apex end of the cone 

whereas the anode was positioned at the downstream end. 

opening (exhaust area) in the anode was slightly smaller than the downstream 

opening in the conically shaped teflon propellant. 

extended beyond the teflon propellant into the interior of the cone served a s  an 

exposed electrode to the axially directed a rc  discharge. Results of these 
exploratory tests involving conical shaped propellants, are presented in Table 3. 

The conclusions to be drawn from these results are much the same as those 

obtained from the data on the side-fed thruster; namely, that an increase in the 

included angle decreases the thrust/power ratio. Thrust/power dependence upon 

propellant mass for  the conioal configuration also follows the same general trend 
as  the data on all other geometries. 

The downstream 

The small anode lip that 

t 
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TABLE 3. RESULTS OF EXPLORATORY 300 JOULE TESTS ON 
CONICAL CONFIGURA "IONS 

d (in.) 
8 (degrees) 

N 
C (II fa) 

vo (Kv) 

En (Joules) 

134-2 

1.6 
0 
3 115 

67.4 

2.93 

289 

1433 

0.677 
2118 

6.089 

348 

7.34 

5.57 

9. 70 

134-5 

1.6 
40 
2 743 

67.4 

2.81 

266 

435 

0.286 
1522 

2.965 

513 

5.72 

6.40 

10.50 

4 
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Figure 11. Conical Engine Mounted on Thrust Balance 

4.6 COMPARISON WITH GASEOUS PROPELLANT PULSED PLASMA THRUSTER 

One of the main results of this study is the conclusion that the impulse/ 

energy, i.e., thrust/power ratio of the solid propellant pulsed plasma thruster is 
a function of propellant mass per discharge, with several additional trend lines 

(apparently due to geometry) superposed on the general correlation. The only 

h o w n  study of a gaseous propellant pulsed plasma thruster encompassing large 
changes in the thrust/power ratio is reported in Reference 3. In that study a 

given switch triggered pulsed plasma thruster geometry was located on a thrust 

balance in a vacuum chamber and operated at  a fixed discharge energy. The 

vacuum chamber background pressure, and thus the interelectrode pressure, 
was varied from about 30 microns to about 10,000 microns and thrust behavior 

was determined as a function of the uniform initial pressure. Since the inter- 

electrode volume was fixed, the mass of gaseous propellant in the interelectrode 

spacing is directly proportional to the initial pressure. Figure 12  presents 

thrust/power as a function of interelectrode pressure (i.e., proportional to 

propellant mass) as reported in Reference 3. It is interesting to  note that 

both the gaseous propellant and solid propellant results show an increase in 
22 



thrust/pawer with an increase in  propellant mass  per discharge. The presence of 
several  data trend lines making up the general correlation between thrust/power 

and pressure (i.e. , mass) was also observed in Reference 3. A similarity thus 
exists between the thrust/power variation with propellant mass for both the solid 

propellant and the gaseous propellant pulsed plasma thruster. Since insufficient 
data is presented in the literature, it was not possible to  ascertain if the general 
correlation between thrust/power ratio and propellant mass applies quite generally 

to pulsed plasma thrusters independent of type of propellant, geometry and discharge 

energy level. 

Y 

Figure 12. Thrust-to-Power as a Function of Interelectrode Propellant 
Pressure for Gaseous Propellant Thruster 
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SECTION V 

PROPELLANT ABLATION STUDY 

c 

Since the mass per discharge has been shown to be the parameter of primary 

interest regarding the magnitude of thrust-to-pmer it is essential that a relation- 
ship between propellant mass  and controllable engineering parameters be found. 

A brief examination of the literature on ablation has yielded a useful result. 
To first order, the rate of mass  ablation from a thermal insulator is proportional 

to the flux of energy per unit time per unit area impinging on the surface. I€ it 
is assumed that the energy absorbed by the plasma through resistive heating is 

converted to some degree into radiant energy, then the radiant energy per unit 
time. emitted by the plasma will be proportional to the current (i) squared. The 

percentage of this radiant energy flux impinging on the propellant surface will be 

given roughly as  the ratio of propellant area to  open area existing a t  the boundaries 

of the plasma before it leaves the exit plane of the electrodes. Hence, 

A 
I $ -  -E i2 

* O  

where A. is the open area of the plasma boundaries. Hence, 

For  the V-shaped geometry the ratio A /Ao is equal to the cosecant of the half 
P 

angle between propellant walls. For the breech-fed geometry, the factor A /A 
P O  

is difficult to estimate since the plasma will expand laterally beyond the electrode 

surfaces a s  mass ablates. With no knowledge of the expansion angle, evaluation 

of A. is not possible. Figure 13 is a plot of results using this simplified 

relations hip. 

Some data was available from earlier tests on the breech-fed geometry in 
which Mykroy side-walls were located on the downsteam sides of the electrodes. 
In such a case A /A = 1 and that data could be used in the correlation. Since 

those tests were dorE a t  lower energies (5 and 10  joules) the data allowed us  to 
P O  
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Figure 13. Ablated M a s s  per Discharge as a Function of 
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I verify the above correlation two orders of magniMe lower than the data generated 

in the present program. N o  complete set of data exists for the intermediate ordcr - 
of-magnitude regime so verification of the correlation in this region is not possilie 

at  this time. It is interesting to note that when the mykroy side-walls were removed 

and the identical thruster retested, an increase in specific impulse and decrease 

in thrust/power was observed. Based on the previous argument this can now be 

understood since by removing the walls the radiant energy in the plasma was no 
longer confined and less mass was produced thereby increasing the specific impulse 

while decreasing the thrust/pawer ratio. 

I 

2 Unfortunately, the integral J” i dt  is not a useful parameter from an 

engineering point of view since it is not known how to design a circuit (which 

includes the thruster) to produce specific values of this parameter. Evaluation 

of the integral r i dt for  an LRC circuit with fixed elements reveals that: 2 

(Fixed LRC) i2 dt = - EO 
R 

0 
(7) 

where R is the resistance. For a thruster the resistance of the circuit plus the 

a r c  is generaliy apriori unknown s o  the above result is of no help from an engineering 
standpoint except to  indicate that an  increase in Eo will cause an  increase in  the 

magnitude of the integral r i dt. An alternate way to find out what parameters 

will change the  magnitude of this integral is to nondimensionalize i an i  t with 

respect to characteristic values. Noting that i = C (dV/dt) we may nondimension- 

alize V with respect to Vo and t with respect to 

characteristic current to  be VO(C/L)lI2. Substitution of i = i V o  (C/L)l’2 and 

t =t d v -  yields: 

2 

and find the 

2 Thus, the integral f i d t  i n  its dimensional form should follow the same trend in 
order-of-magnitude as the energy divided by the initial impedance Zo = (Lo/C) 

This hypothesis is verified by the data presented in Figure 14 where the 
integral r i dt is plotted a s  a function of the initial energy to impedance ratio. 

The initial inductance used in  computing 

1/2 . 
2 

Zo is given by Lo = Vo (di/dt) -’. 
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This correlation is extremely useful since it has enabled us to examine our 

conclusions concerning the ablation of mass with the results of experimental work 

done in Russia on short pulse discharge ablation. The cited research was  
performed with a conical accelerator geometry and was  directed at  determining 

what parameters influence the amount of ablated mass per discharge (md). 

Inductance, capacitance and stored energy were varied independently in the Russian 

study and the conclusions reached were: 

4 

a) 
b) 
c) 

A S  stored energy increases so does mass per discharge 
A s  initial inductance increases mass per discharge decreases 
A s  capacitance increases so does mass per discharge. 

Our conclusions a r e  identical to those since the correlation in Figures 13 

and 14 lead to the analytical expression: 
A 
P 

md A. 

Hence, Equation 

!P J” i2 dt EO 
E A 
-0 = 1 
Z A 0 .LdJc)s A. 
0 

(9) 

(9) encompasses all of the conclusions of Reference 4 and is 
more comprehensive since it includes the electrical characteristics in one para- 

meter and also includes the appropriate geometric factor. 

Increasing the geometric factor A /A will increase md. This factor 
P O  

has a strong effect on ablated propellant mass a s  demonstrated by the data 

obtained during this study in which the integral f i dt varied only between about 

3 . 3  and 6 . 7  x KA sec whereas A /Ao varied between 0.2 and 5.0. 
P 

Indeed there were some cases in which the integral was smaller than in others and 

yet the ablated propellant mass was larger since the geometric factor A /Ao 
became the governing factor. 

2 

2 

P 
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SECTION VI 

PRACTICAL ASPECTS OF A VSHAPED PROPELLANT 

The program being reported upon was primarily concerned with a study and 
understanding of the effect of propellant side-feed configurations on the magnitude of 

of the thrust/puwer ratio. V-shaped solid propellant configurations were used to 

implement the scheme of side feeding the propellant into the discharge. The 
results presented in this report have shown that such a propellant feed-scheme 

can significantly increase the magnitude of the thrust/power ratio over previously 

studied breech-fed configurations. 

The question of how such a V-shaped propellant feed scheme could be 

practically implemented was briefly examined independently of the main effort of 

this program. The success of using a small  feed retaining shoulder and propellant 

feed spring as the propellant feed system has been adequately demonstrated in the 
laboratory as well a s  in space for breech fed geometries. A low discharge energy 

(about 8.4 joules/discharge) microthruster was modified to supply a teflon rod 

from the breech end of the thruster into the accelerator nozzle. The end face of the 
teflon in the accelerator nozzle was machined to  have a V-shaped cutout with an 

included angle of 90'. A correspondingly V-shaped fuel retaining shoulder was 

machined into the anode. A Negator spring assured, a s  in normal breech-fed 

configurations, that the propellant was always maintained against the anode 

shoulder. The complete thruster was mounted on a thrust balance and operated 

uninterrupted for a period corresponding to the delivery of tbe total impulse 

requirements of typical microthrusters in  present spacecraft. 

Figure 15 shows the thruster and the V-shaped propellant rod remaining 

after operating for 1440 hours at a pulse rate of 1.84 Hz. 

The results of this test are tabulated below: 

Performance of a VShaped Propellant Thruster (Log-129-3) 
Continuous Thrusting Time 1440 hours 
Test Average Thrust Level 
Test Average Impulse Bit 
Total Length af Propellant Consumed 
Total Number of Discharges 9,590,163 

74.2 II lb 
40.2 CL lb-sec 
12.88 in. 
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Figure 15. Endurance Tested Microthruster with VShaped Propellant 

The data presented in the previous table are  comparable to typical breech- 

fed microthruster data in terms of performance capability. This exploratory test 
has demonstrated the practicality of using a breech end supplied V-shaped 

propellant configuration in a pulsed plasma thruster. It is believed that feeding the 
V-shaped propellant from the sides instead of the breech end can also be easily 

implemented. 
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I -  
SECTION VII 

ELECTRODE EROSION 

All  data on electrode erosion was taken as explained a Section ID. In 
Reference 5 it was stated that electrode erosion in quasi-steady plasma devices 

is dependent upon the parameter i /m.  

thrusters it was found that the counterpart of this parameter is si dt/md. In the 
latter short pulse discharge thruster study, a correlation was found to exist between 

the amount of electrode erosion and the above stated parameter. The results of 
that study as well as the data obtained during this program are presented in Figure 16 

where eroded mass me is plotted as a function of the parameter J i  dt/md. The 

integral of current squared was evaluated numerically from oscilloscope traces of 
the discharge current. In all tests done in Reference 1 a tungsten anode and a 

stainless steel cathode were used in conjunction with a propellant breech-fed 

geometry. The thruster was usually fired for 9000 o r  more consecutive discharges 

2 .  For solid propellant short pulse discharge 
1 2 

2 

The reason that the trend lines depicted in Figure 16 are not coincident may 

be a result of the difference in anode material. This is conceivable since the anode 

will generally exhibit up to ten times as much erosion as the cathode. Another 

possibility for the difference is because the amount of erosion per discharge will 

decrease as the number of consecutive discharges increases. This observation is 

due to the initial high degree of erosion on sharp corners which gradually decreases 

as the corners become rounded. 

the two sets of data, but in both cases a definite trend toward increased erosion is 
evidenced as the parameter si dt/m is increased. 

Thus, no firm conclusions can be drawn by comparing 

2 
d 

In the light of the excellent conductivity of copper, an attempt was made during 
this study to use copper as an electrode material. The configuration of a previously 

performed test was used and a copper anode replaced the original stainless steel 
anode. Less than one-tenth the anode erosion was evidenced when copper was used. 

Thus, in addition to being a much better electrical conductor, copper seems to erode 

to a lesser degree than stainless steel. Interestingly, the Russians have been using 

copper for electrodes at much higher energies than those being reported here. 
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SECTION VIII 

Inductance (nH) 
Impedance (milliohm) 
Resistance (milliohm) 

Quality 

CAPACITOR LIFE TESTS 

7.0 24.93 

510.0 4.0 
5 1.0 3.62 

210.0 5.74 (at -12 MC 

During the course of this effort two dry (no liquid impregnants) energy storage 
Input specifica- 

* 
capacitors were purchased from Capacitor Specialists, Inc. (CSI). 
tions for the design of these capacitors were supplied using previous voltage and 

current data to predict discharge duration, percent voltage reversal and maximum 

expected current at the 300 joule energy level. Other primary design criteria were 
based on typical mission requirements; i. e. , maximum operating temperature, high 
specific energy and high capacitor quality. 

The first capacitor measured a capacitance of 63 pfd and was rated at 3 KV. 

The capacitor was rectangular in shape, measuring .178 m x .203 m x .229 m 

(. 7" x 8" x 9") and weighing approximately 13.6 kg (30 lbs). The specific energy 

was therefore 4.55j/kg (10 j/lb) at 3.1 KV. The dielectric material used in 
construction was Kapton. 

Electrical characteristics of the capacitor were evaluated by charging the 

capacitor using a 10 VDC source and discharging it in a minimum inductance shorted 

configuration through a thin strip of oxygen-free copper around which a Ragowski coil was 

placed. Current and voltage were recorded on an oscilloscope and from the current trace 

the inductance and resistance were computed. Details of that calculation are 
included in Appendix B of this report. The results of this test are summarized in 

Table 4 along with our specification for comparison. 

TABLE 4. Comparison of Actual with Specified Capacitor Data 

PARAMETER I SPECIFIED I COMPUTED 

A s  indicated by the data, the capacitor supplied fell somewhat short of our requirements. 

* Capacitor Specialists Incorporated, Del Dios Highway, Escondido, California 
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In addition to the above design criteria a maximum service temperature of 

339°K (150°F), maximum current of 70,000 amperes, and maximum voltage reversal 
at 25% were specified. Design life was set at 20 million shots. 

A photo of the first capacitor and engine components is included in Figure 17. 
L 

Figure 17. First CSI Capacitor and Engine Components Mounted on Thrust Balance 

The first capacitor failed after delivering only 52 discharges. A 40 ohm 

resistance was measured across the strip lines and it was shipped back to the 

manufacturer for failure analysis. They concluded that failure occurred because of 

arcing between two of the end connection tabs. By isolating the shorted tabs they 

were able to repair the capacitor and have indicated that the capacitance of the 

repairedcapacitoris now reduced to about 59 pfd. A t  the time of writing the repaired 
capacitor has not yet been received. 

The second capacitor of the original two capacitors purchased delivered 4436 

discharges before it also failed. A 2 ohm resistance was measured across its 
terminals and it also was sent back to the manufacturer for failure analysis. No 
word has been received as to the reason for failure at the time of this writing. 

Unfortunately neither capacitor lasted long enough to perform a thruster 

performance test to permit a comparison of results with an identical electrode- 
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propellant geometry on the original 10 year old capacitor bank used during this 

study. It was found that our original very low inductance design approach, in which 
the electrodes were attached directly to the capacitor strip line terminals, was 

unacceptable due to thermal conditions. Thermocouples mounted on the face of the 

capacitor (between the capacitor terminals) and on the negative strip line itself 

indicated a steady rise in temperature during thruster operation. The temperature 
increased from room temperature to about 337" K (146°F) at the strip line in 

approximately 17 minutes. The thruster design was therefore modified by providing 

radiative surfaces between the electrodes and capacitor terminal strip lines so as 

to remove heat through radiation before it reached the capacitor. The modified 

design is shown in Figure 18. 

Figure 18. Second CSI Capacitor and Engine Components Mounted 
on Thrust Balance Showing Radiator Surfaces. 

The radiators a r e  3 . 7  ~ll l~l thick copper separated by 1 . 2  mm teflon sheet to 

provide a minimum inductance. The exterior surfaces a re  painted with a black 

epoxy base paint and sandblasted to optimize the surface emissivity. A plot of 
temperature vs time for both designs is presented in Figure 19. From the data 

it is obvious that the addition of radiators proves to be an efficient technique for 

cooling. The temperature w a s  leveling off but the equilibrium state was  never 

reached since the capacitor failed before the test was completed. The use of heat 

pipes for this purpose is another possibility to maintain minimum inductance. 
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The only performance parameter which could be evaluated during these tests 
was  the energy transfer efficiency Ti The data obtained with the CSI capacitor 
and copper electrodes yielded ‘tl E = 79.9% while the original bank using stainless 
steel electrodes and the same electrode-propellant geometry produced E = 60.0%. 

The initial overall inductance was calculated to be 152.8 nanohenries on the original 
thruster and 44.06 nanohenries on the thruster utilizing the CSI capacitor. Thus, 

the capacitor received from CSI delivered more energy at a much faster rate than 
the original capacitor bank. This fact is further illustrated in Figure 20 where the 

power per unit of initial energy is plotted as a function of time. It is observed that 

the major portion of the total energy delivered is supplied during the first half-cycle 

of the discharge. Maximum power is approximately 74% larger  for  the engine 

utilizing the CSI capacitor and the duration of the initial spike is almost 1.5 micro- 

seconds shorter. 

E‘ 

Tentatively it would appear that the state-of-the-art of dry (no liquid 

impregnation) energy storage capacitors suitable for application to pulsed plasma 

thrusters has not advanced to the level of reliability of liquid impregnated units when 

compared on the same joules/lb basis. 
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SECTION M 

CONCLUSIONS 

This program was primarily concerned with an evaluation of the technique of 
feeding solid propellant into the discharge from the sides of the accelerator nozzle 

and to examine how this technique effects the thrust/power ratio. In particular, the 

effects of included angle of V-shaped propellants and of electrode length were examined. 

While these particular parameters effected the magnitude of the thrust/power ratio, 
and in some cases significantly, it was found that at a given value of initial snergy 

it is the quantity of propellant mass which more generally correlates with the thrust/ 

power ratio. While a similar result has been observed in a gaseous propellant pulsed 

plasma thruster, for the ablative thruster the geometric parameters become a specific 

means of governing the amount of mass produced per discharge. 

Normally one might therefore deduce the observed thrust/power ratio behavior 

to be gasdynamic in origin. However, for the ablative thruster studied the mass 
per discharge was found to correlate with the integral J i dt and a geometric factor. 

Since the electromagnetic contriktion to thrust also depends directly upon these latter 
parameters it is concluded that increasing the integral J i dt simultaneously increases 

both the gasdynamic and electromagnetic thrust. 

2 

2 

With regards to geometry, it has been concluded that the breech fed thruster 

is merely the special case 8 = 180” of V-shaped propellants. Exploratory tests with 

parallel side walls (e = 0’) have shown it possible to obtain higher thrust/power ratios 
than with configurations for  which 8 > Oo . Furthermore, exploratory tests providing 

propellant from all sides surrounding the plasma, i. e. , conical configurations, provide 

a geometry producing the highest th rudpower  ratio. 

The ablated propellant mass per discharge has been shown to be a function of the 

geometry as well as the electrical characteristics of the thruster. Based upon the 

results of this and previous programs it was possible to formulate an analytic expression 
for the mass: 

A c. , L  . 1  
EO m M D -  w ~ r i ’  

A 

which not only successfully correlates available data bEt also more comprehensively 

describes recently reported Russian results in terms of the geometry of electrode- 

41 



propellant configurations and electrical characteristics. 

Previously published results on electrode erosion have also been verified 

during this program where once again the dependence of electrode erosion on 
J-i dt/md has been demonstrated. The results obtained in an exploratory attempt 

to use copper as an electrode material have also been gratifying since it was found 

that copper eroded only about 10% as much as stainless steel. This result is sig- 

nificant since copper is a much better conductor than stainless steel and the use of 
copper for electrodes is attractive from that standpoint. as well. 

2 

The previously reported correlation of the product of impulse bit and specific 

impulse as a function of discharge energy has been verified through a dimensional 

analysis during this program. 
both geometry dependent and dependent upon the non-dimensional Alfvkn number 

through this latter analysis. 
possibly be tied with the magnitude of the Alfvkn number as energy is increased but 

this has not been verified. 

Furthermore, the efficiency has been shown to be 

The increase in efficiency with initial energy could 

The present results are significant in that being able to increase the ratio of 

thrust to available electric power it has been demonstrated that for the same specific 

impulse one can achieve higher thruster efficiencies. 
data presented in Figure 21 where thrust efficiency (7 ) is plotted as a function of 

specific impulse (I ) for the various configurations considered in the past as well as 

the concepts evaluated during this investigation. 

indicated on this plot and the increase in efficiency at any value of specific impulse is 

clearly evident as thrust/power is increased. A t  the present time the only known way 

to readily move in the direction of increased specific impulse along one of these 

constant T/P lines is to increase the discharge energy. Hopefully, further research 
and development programs wil l  lead to other methods for moving in this direction. 

This is demonstrated by the 

S 

Lines of constant T/P have been 

Emphasis was not directly placed on optimizing efficiency during this investiga- 

tion and therefore any comparisons of reported efficiencies with those of other types 

of thrusters should be made at the same specific impulse. 

The V-shaped solid propellant configuration can easily be fed during long time 

thruster operation. They therefore can be considered practical configurations for 
space flight applications. 
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Based upon the limited testing performed, it is  concluded that the state-of-the- 
art of dry (no liquid impregnation) energy storage capacitors for pulsed plasma 
thruster has not reached the level of reliability of liquid impregnated capacitors when 

the comparison is made at the same joules/Kg rating. 
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APPENDIX A 

ANALYTIC VERIFICATION OF 11 VERSUS Eo 
S 

Previous and ytic models which have been formulated with the hope of betta 
understanding the plasma acceleration mechanism have not accurately predicted 
pulsed plasma thruster performance behavior. 

proposed which thus fa r  has yielded results which are verified by experimental 

observation. 

A new analytic approach is 

6 
Our approach, like that of Cheng, centers around the equations of 

magnetohydrodynamics (MHD). These equations are valid in the macroscopic 

limit of a continuum and as  is well known, one then does not need to concern 

oneself with the elemental particles composing the plasma, but only with the bulk 

processes of energy transfer and acceleration of representative conglomerate 

groups of these particles. 

The first step after writing down the MHD equations and corresponding 

assumptions is nondimensionalization of these equations. The dependent variables 

appearing in the equations are the plasma density P ,  velocity u, pressure p, 

and magnetic field intensity B. 
characteristic values o o, uo, D ou and Bo, respectively. The independent 

variables are distance, x, and time, t, which are nondimensionalized with 
respect to some characteristic length 0 and the characteristic flow time 

These are nondimensionalized with respect to 

uo/c . 
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In their nondimensional form, the MHD equations exhibit three non- 

dimensional parameters - the magnetic Reynold's number RM, the Alfven 

number So, and t k  Mach number Mo - defined by the relationships: 

= u  u ACT 

B 
RM o o 

0 s = , ,  
0 

i I 2GoF uo 

where u is the permeability of vacuum, c is the electrical conductivity, and Y 
is the ratio of specific heats. A fundamental theorem states that any nontrivial 

solution to these equations must contain these parameters a s  arguments. 

The basic thruster performance parameter is the impulse bit I. 

SP 

This 

param,eter is the basic parameter, since thrust T and specific impulse I a r e  

related to it through the following equations: 

T = fI 

I 1 = -  

mdg S 

where f is the pulse discharge rate,  md is the propellant mass used per 

discharge and g the gravitational acceleration. The thruster efficiency T, is 
given by : 

1 T  - - - I2 
T =  25- p Is. 2 m p o  

where the power P = fE 
at the time the discharge takes place and is given by CV /2 with C the capacitance 

and E o  is the discharge energy stored in the capacitor 
2 0 

and V the charged voltage applied. 

In terms of t k  macroscopic parameters appearing in the MHD 

equations, it is well known that the impulse bit is given by: 



n m 

I - A  r ( p +  o u  2 + - )d t  BL 
"0 e "  

0 

where Ae is the area of the plasma cross  section at the exit plane of the thruster. 

In nondimensional form I may be written, 
m 

0 

where barred quantities are nondimensional. The characteristic impulse bit is 
therefore Aef, oo uo. The next step is to correlate the reference values D 

with the characteristic thruster parameters. If it is assumed that all  of the  

ablated mass is acclerated to  a velocity such that its kinetic energy is equal to the 

discharge energy, the resultant reference velocity u will be 

and u 
0 

0 
2E 1/2 

md 
u = (-O) 
0 

The density is equal to the mass per unit volume. Let md be the mass 
and let the volume be equal to the volume formed by the propellant4ectrode 
nozzle configuration. Then, 

and, 

Hence, 

or  equivalently, 

(2Eomd1/2 

V o u =  
0 0  

m 

I z2) d7 
0 

V 

Substitution for md in terms of the specific impulse via equation (A2) 

in  equation (A41 yields, 
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Equation (6) verifies the correlation (Figure 9) between the product IIs and 

the initial energy. 

line drawn through our data crosses lines of constant efficiency, indicating that 

by increasing the discharge energy of a particular thruster the efficiency of that 

thruster will increase. 

The most important aspect of this plot is the fact that the trend 

The effect of the parameter (Ae hr) in Equation (5) has  not yet been 
fully evaluated, since all thruster configurations that have been considered to 

date have been limited to values of (Ae fl /V) between 1 and 2. Since the thrust 
efficiency is proportional to the square of this term, it is relevant that an attempt 

should be made to make the latter parameter as large as possible. 
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APPENDIX B 

CAPACITOR EVALUATION TEST 

The voltage and current ringout traces obtained when the capacitor was charged 
I 

using a 10 volt d. c. source a re  presented below. 

settings: Upper =voltage = 5 volts/cm 

Lower = Current = .02 volts/cm 

Sweep = 2 microseconds/cm 

The resistance and inductance can be computed from the equation for an 

LRC circuit with fixed d ements. These equations yield. 

w=2 l l f  = J k - -  R2 
4L2 

where f is the frequency, L the inductance, R the resistance and C the 

capacitance. From the current trace, the frequency is found to be .12162 x 10 cps. 

Hence, 

6 
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6 w = .7642 x 10 cps. 

Knowing the ratio of two successive positive or  negative current peaks a d  the time 

between them we have: 
-i 
'1 R =  - 
2 i 

Substituting equation (2) for R into equation (1) yields an expression for L in terms 

of w and C. Namely, 

The ratio of the two successive negative peaks is 1.818 and the time between them is 

8.22 p sec. The capacitance is 63pfd and the inductance is therefore 

L = 24.93 nh 

Knowing L, R is calculated from equation (2). 

R = 3.62 milliohm. 

The impedance is given by 

2 
Z2 = R2 + (Xc - XL) 

where Xc = l / w  C = .02077 and XL = w L = .01905. Thus, 

Z = 4.0 milliohm. 

The capacitor quality Q is given by Q = Xc/R = 5.74 
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APPENDM C 

MI" SIDEFEED STUDTES 

7 The studies of Vondra and Thomasson became available after completion of 

this report. Their studies examined in considerable detail, a parallel wall side fed 

thruster (i.e. , the special case 8 = OO), They observe that at fixed energies of 

either 2 joules or 20 joules the impulse bit amplitude varies with the quantity of 
propellant mass. This result  agrees with the general conclusions reported upon 
in the main body of this report since one can readily convert the results of Reference 7 
in terms of the thrust/power ratio. The variation of efficiency with propellant mass  

noted in Reference 7 also agrees with earlier findings' of solid propellant thrusters 
whose efficiency was found to correlate with the energy/mass ratio. The suggestion 
that the performance is partly gasdynamic and partly electromagnetic in origin also 

agrees with earlier studies and the conclusion of the present study. It should be 
noted, however, that by demonstrating the dependence of md on the integral of 
the current squared and electrode-propellant configuration during OUT latest study 

it is questionable a s  to  whether observed increases in thrust/pawer with mass are 
strictly gasdynamic in origin. Since the contribution to  the impulse bit through 

magnetic pressure forces is also proportional to this integral a s  well as a 
geometric factor, it is clear that both contributions are amplified by increasing the 
integral of current squared. To resolve the question a s  tow hich contribution 

produces the largest effect on thrust/power would require knowledge of the magnetic 

field as a function of time at the breech and exit planes as well as knowledge of 

the total energy absorbed by the plasma during the discharge. 
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APPENDIX D 
GASDYNAMIC CONSIDERATIONS OF THRUST-TO-POWER 

In Section 4.4 of this report  it was pointed out that simple gasdynamics theory 
predicts a dependence of the thrust/power ratio (T/P) on the square root of the mass 
to energy ratio (md/Eo)z. Therefore, one might expect a correlation between 

these two latter parameters if the thruster behaved purely as a gasdynamic device. 
Figure 23 presents available thrust/power data as  a function of the mass/energy 

ratio. Unlike the correlation observed in Figure 10, no general correlation of the 

data is observed in  Figure 23. The lack of correlation of most of the data i n  Figure 23 

is attributed to the existence of an electromagnetic contribution to the impulse bit, not 

accounted for in  the gasdynamic analysis leading to Equation 2, thus supporting the 

hypothesis that the impulse bit of the pulsed ablative thruster, is both gasdynamic 

and electromagnetic in origin. It is interesting to note, however, that the cylindrical 

data of Ref. 2 does appear to correlate in accordance with gasdynamic predictions. 

This observation is perhaps due to the fact that magnetic pressure forces in  the 

latter cylindrical configuration a re  radially inward directed in a non-thrust producing 

direction. 

1 
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