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FLOW FIELD PREDICTIONS FOR A
SLAB DELTA WING AT INCIDENCE

By R. J. Conti, P. D. Thomas, and Y. S. Chou
Lockheed Palo Alto Research Laboratory

SUMMARY

Theoretical results are presented for the structure of the hypersonic flow field of a blunt
slab delta wing at moderately high angle of attack. Special attention is devoted to the inter-
action between the boundary layer and the inviscid entropy layer. The results are compared with
experimental data.

The three-dimensional inviscid flow is computed numerically by a "marching" finite-difference
method. Attention is concentrated on the windward side of the delta wing, where detailed com-
parisons are made with the data for shock shape and surface pressure distributions. Surface
streamlines are generated, and used in the bouhdary layer analysis.

The three-dimensional laminar‘boundary layer is computed numerically using a specially-
developed technique based on small cross-flow in streamline coordinates. 1In fhe rear sections of
the wing the boundary layer decreases drastically in the spanwise direction, so that it is still
submerged in the entropy layer at the centerline, but surpasses it near the leading edge. Pre-
dicted heat transfer distributions are compared with experimental data.

This work was sponsored by the Lockheed Independent Research Program as part of the analysis
of Space Shuttle flow fields.
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INTRODUCTION

The main objective of this study was to test a complete three-dimensional flow field pre-
diction, including inviscid flow and boundary layer, by comparison with detailed wind-tunnel
measurements. During the development of the computational tools for three-dimensional flow,
the computer codes were checked by calculating flow over simple shapes (such as sharp and blunted
cones) for which the flow field is well known. The present effort takes a step beyond that by
dealing with a more complicated shape. The slab delta wing was chosen for two reasons: good
experimental results are available in the work of Whitehead and Dunavant (Ref. 1), and this shape,
which is of interest to Space Shuttle applications, poses a more severe test than, say, a typical
shuttle fuselage. This is so because the slab delta wing sustains a combination of inboard
and outboard transverse pressure gradients, due to the fact that the peak pressure is located at
the centerline near the nose, and near the leading edge in downstream sections. As a consequence,
both the inviscid and viscous analyses are tested under a combination of effects. The next step,
reserved for future.work, is to calculate the flow field for a complete shuttle configuration, in-
cluding fuselage and wings.

There were two secondary objectives in this study. The first was to pursue a complete cal-
culation tb its final stage, that is, to an estimate of heat transfer, in order to gain an appre-
clation for the difficulties involved and of the accuracy needed at the different stages of com-
putation of inviscid and boundary-layer flows. In this respect it was somewhat surprising to
find that the calculation of three-dimensional boundary layer demands considerable accuracy in the
inviscid calculations. The suspicion that finite-difference calculation of the inviscid flow
might constitute "accuracy overkill" did not materialize in this study.

The other secondary objective was to assess the interference of boundary layer and inviscid
entropy layer. Unfortunately, it turned out that the model was not long enough to produce an

extreme case of interference, but nevertheless the boundary layer did become larger than the
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entropy layer in the downstream sections near the leading edge. In this case the conventional
first-order boundary layer calculation yielded acceptable values of heat transfer, and, when
corrected grossly for edge conditions, the change in heat transfer was small. Nevertheless, this

evidence is not sufficient to conclude that the interference between boundary layer and entropy
layer is negligible. '
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MODEL AND STREAM CONDITIONS
(Figure 1)

The inviscid flow was calculated with the method of Thomas, et al. described in Ref. 2. This
is a marching finite-difference method for supersonic three-dimensional flows. Some of the
main features are a sharp-shock treatment for the bow shock, nonlinear stretching of coordinates
in the radial and meridional directions'(about the longitudinal axis) to resolve steep gradients
in the flow, acceptance of a wide range of body geometries, and perfect-gas or equilibrium-air '
options. The subsonic and transonic parts of the flow near the nose were calculated, in this case,
with the method of Inouye, Rakich and Lomax (Ref. 3). The stream conditions and body shape
corresponded exactly to those of the wind-tunnel experiments (Ref. 1). Since real-gas effects
were negligible in the experiments, the flow was calculated using the perfect-gas option.

The body was a flat, slab delta wing with spherically-blunted nose and cylindrical leading
edges, having a sweep angle of 80 degrees. The angle of attack was 20 degrees. The Mach number

>

was 9.6, ratio of specific heats 1.l, Reynolds number based on thickness 107, stagnation pressure

45 atm, and stagnation temperature 920 degrees Kelvin. The wall-temperature ratio was 0.32.
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SHOCK SHAPE AND SURFACE STREAMLINE PATTERN
(Figure 2)

The flow field was calculated over the entire cross section (windward and leeward sides) in
the forward third of the body. When the cross flow became supersonic the calculation was cut off
at the geometric leading edge, and attention was focused on the windward part of the wing. At
this angle of attack it is expected that viscous effects in the leeward side are such that the
inviscid calcuiation is irrelevant.

The calculated shock shape agrees well with the measured one, but this is not corsidered to
be a stringent test because shock shape is an insensitive characteristic. The data points were
taken from a small photograph, and slight discrepancies with the calculated shock are probably due
to reading errors and are unimportant.

‘The surface streamlines were obtained with a separate calculation, by integrating the in-
viscid surface velocity. Knowledge of the velocity vector and the unit vector normal to the surface
is sufficient to calculate. the curvature vector, its projections along and normal to streamlines,
and the metric of a streamline-oriented curvilinear coordinate system. In addition, the stream-
line routine calculates inputs for the boundary layer, such as the transformed longitudinal
coordinate (which includes compressibility and edge-property effects) and edge velocity gradient.

The figure shows the effects of transverse pressure gradients on streamline shape. Near the
nose, where the peak pressure is at the centerline, all streamlines curve toward the leeward side.
Downstream, where there is a pressure ridge near the leading edge, some streamlines are turned

leeward and some are turned toward the centerline.
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WINDWARD CENTERLINE PRESSURE
(Figure 3)

The surface pressure on the centerline is plotted #ersus the axial coordinate. The figure
shows the rapid expansion around the nose, followed by a slight overexpansion (typical of blunt-
nosed bodies) and a subsequent recompression. The agreement between theory and experiment is
excellent. The theoretical curve shows a slight oscillation at the juncture between the spherical
nose and the flat underside of the wing. This oscillation is induced in the numerical results by

the discontinuity in curvature at the Juncture.
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SURFACE PRESSURE DISTRIBUTIONS IN PLANES NORMAL TO THE LEADING EDGE
(Figure 4)

Surface pressure distributions are plotted versus distance along the surface, measured from
the geometric leading edge, for several downstream locations. Notice that the downstream dis-
tance L 1is measured parallel to the leading edge, rather than to the centerline. Similarly,
the surface location S 1is normal to the leading edge, not the centerline. This change in
coordinates was needed to accommodate the experimental data. It has a slight effect on the shape
of the curves, notably near the nose where the pressure maximum appears to be off—centerlihe and
the curve appears to be nonsymmetric about the centerline. The agreement between theory and

experiment is good, except at isolated points where discrepancies remain unexplained.
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ENTHALPY PROFILE
(Figure 5)

The distribution of enthalpy across the shock layer at about 13 nose radii from the nose is’
shown for two locations: +the centerline and a point near the leading edge. The entropy layer,
a region of hot, slow-flowing gas that traversed the bow shock near the nose (where the shock is
strongest) is located near the surface. It can be seen that the entropy layer is much thicker
at the centerline (about 0.30 nose radii) than near the leading edge (about 0.05 nose radii).
This is a feature unknown to axisymmetric flows, where the entropy iayer thins out uniformly in
the downstream direction. '

The presence of the entropy layer extracts a heavy tax from the computational scheme since,

in order to resolve the steep gradients in the layer and maintain computational stability, it is

necessary to concentrate mesh points near the surface. In the present computational scheme this

is done by "stretching'" the normal coordinate. Moreover, we have found that a preset stretching

(either constant or variable in the downstream direction) is not sufficient to solve the difficulty.

We have had to resort to a self-adjusting scheme that will regulate the concentration of mesh points

during execution of the calculation. It is emphasized that the difficulty is not just one of
losing detail in thé entropy layer (which would be affected by viscous effects in any case)

but one of losing the integrity of the whole calculation unless every region of the flow is pro-
perly resolved. The need to change the stretching factor in the meridional direction is not as
critical, in particular in the present scheme where the mesh size is proportional to the shock
layer thickness, and therefore the mesh is automatically refined at places (such as leading edges)

where the shock layer is thinner.
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BOUNDARY-LAYER CALCULATIONS

Heat Transfer Distribution Along Centerline

(Figure 6)

The three-dimensional laminar boundary layer was calculated with a technique developed by
Y. S. Chou for this particular application. The technique is based on small cross flow in
streamline coordinates. This places no restriction on the curvature of inviscid streamlines,
but assumes that inside the boundary layer the deviation from inviscid streamlines is small,
which is a good assumption for hypersonic flow over cold walls. For the sake of simplicity
it is assumed that the Prandtl number is constant (not necessarily unity), the product of density
and viscosity does not vary across the layer (it is evaluated at the "reference conditions") and
the density is inversely proportional to the enthalpy. The theory does not resort to "local
flat plate" or self-similarity assumptions. The method has been tested successfully on ellipsoids
and blunted cones at incidence.

The centerline distribution of heat transfer coefficient, referred to the stagnation-point
value, is shown versus the axial coordinate in nose radii. The 'striking feature about this
distribution is its serpentine character, most of which can be attributed to cross flow effects.
This is somewhat surprising in view of the simple geometry of the delta wing but, as stated
previously, the cross flow varies and changes sign as one moves downstream. The character of the
theoretical curve seemé to be supported by the experimental results. The general agreement between
theory and experiment is good by heat-transfer standards, the largest discrepancy being about
25 percent. The solid square at the end of the curve indicates ?he effect of making an éntropy-

layer correction, to be discussed later.
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SPANWISE DISTRIBUTICN OF BOUNDARY-LAYER THICKNESS
(Figure 7)

The boundary layer varies drastically in the spanwise direction due to three-dimensional
effects. At about 12 nose radii from the nose (L/t = 6) the physical thickness varies by about
a factor of three from the centerline (where it is thicker) to the leading edge. This decrease
in thickness towards the leading edge corresponds to an approximately equal increase in heat
transfer, in spite of the fact that the pressure is lower at the leading edge.. It will be
recalled that the entropy layer decreases by a factor of five in the same spanwise region, and

therefore the boundary layer thickens with respect to the entropy layer in the outboard direction.
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SPANWISE HEAT TRANSFER DISTRIBUTION
(Figure 8)

The absolute heat transfer, represented by the Stanton number, is plotted versus distance
from the leading edge at two downstream locations: L/t = 3 (about 6 nose radii) and L/t = 6
(about 12 nose radii). As indicated previously, the boundary layer thins out in the outboard
direction, and the heat transfer follows suit. The general agreement between iheory and experi-
ment is good, the largest discrepancy being about 25 percent. This occurs at L/t = 6, at one in-
board and one outboard point, and remains unexplained. The correction for entropy layer is
small, about 10 percent in all cases. It always increases the heat transfer, which seems to be
in the direction of the experimental dats for the inboard point,but opposite to it for the out-
board point.
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ENTHALPY PROFILE IN THE BOUNDARY LAYER
(Figure 9)

It will be recalled that near the base of the model, at about 13 nose radii from the nose,
both boundary layer and entropy layer thin out in the outboard direction, the boundary layer by a
factor of three, the entropy layer by a factor of five (see figures 5 and 7). The boundary layer,
which is about half the thickness of the entropy layer at the centerline, thus becomes somewhat
thicker than the entropy layer near the leading edge. 1In an attempt to estimate the magnitude
of the interaction we calculated the boundary layer twice: once in the classical manner, where
edge conditions match the inviscid flow at the wall; and once by patching the edge conditions
to those in the interior of the inviscid flow, at the point where the physical "edge'" of the
boundary layer would be. Partial results are shown in figure 9 in the form of enthalpy profiles
in the inviscid flow, in the classical boundary layer, and with modified edge conditions.

It can be seen that the enthalpy profile changes substantially, both in magnitude and
character. The classical boundary layer has a monotonic profile, the modified one a bulging
profile. This is particularly marked at the leading-edge location, where the edge is hotter than
the wall in the classical case and colder than the wall in the modified version. Nevertheless,
the heat transfer changes by less than 10 percent, as was indicated previously (see figures 6 and
8b). This partial evidence tends to indicate that heat transfer is not very sensitive to entropy

layer interaction, but more work is needed before a general conclusion can be reached.
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