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INTRODUCTION 
(Figure 1 )  

The requirement for  satisfactory handling qual i t ies  of the  space  shuttle  vehicle (SSV) may 
have a major impact on the  vehicle and control system configuration. The present  military 
specification  for  the  flying  qualities of piloted airplanes (MIL-F-8785B) has been developed t o  
specify  the  requirements  for  satisfactory handling quali t ies  for  piloted  mili tary  aircraft .  
While much of this   specif icat ion  for   pi loted  a i rcraf t   i s   appl icable   to  the SSV dur ing  terminal 
area, approach, and landing,  there  are some aspects of the SSV that   are  n o t  sa t isfactor i ly  
covered (e. g . unpowered approach and landing) , 

Consequently, the NASA Ames Research Center (ARC) contracted  (Contract MAS2-6057) w i t h  
Systems Technology, Incorporated, t o  derive handling qual i t ies   cr i ter ia   for   the SSV orbiter 
during the  terminal phases of flSght using MIL-F-8785B as a p o i n t  of departure, The study 

r3 combined the  results of  an analytical  pilot-vehicle systems analysis w i t h  the  results of an 
0 extensive  simulation conducted simultaneously a t  ARC, The purpose of this paper i s   t o  present e 

some results of this study, The complete results w i  11 be reported i n  a low  number NASA 
contractor  report  in  the near future. 

Several areas , o f  MIL-F-8785B were ini t ia l ly   ident i f ied as needing additional or modified 
c r i te r ia .  These are  l isted  in  f igure 1. Each of these  areas  will be discussed and c r i t e r i a  
recommended. Two problem areas were a1 so identified and are 1 i sted i n  figure  1. They w i  11  a1 so 
be discussed. 
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UNPOWERED APPROACH ANP LANDING  TRAJECTORY 
(Figure 2 )  

Before getting  into  the  specific problem areas, a look a t  the  various phases of an 

unpowered approach and landing  trajectory is  desirable.  Figure 2 depicts  a  trajectory  for t h a t  

port ion of the SSV trajectory  considered I n  the  present  study, There are  three  fairly  separate 

phases. 

The h i g h  a l t i tude maneuvering phase of f l i gh t  extends from  end of reentry (assumed for   the 

study t o  be 30,000 m a1 t i  tude and Mach = 3 ) down to  capturing the  ini t ia l  approach 

p a t h  (3000 - 6000 meters), I t   i s  characterized by f l i gh t  near maximum L/D using roll maneuvers 

for  energy management.  While  most current SSV configurations have quite poor HQ characterist ics 
t" 
-r= 
Iu 

Iu (caused by high a ,  supersonic-transonic aerodynamics, e tc , )   the  HQ requirements during this 

phase are  quite low since  precise maneuvering is  not  required. 

The straight-in,  constant  flight p a t h  angle (10-20 degrees), i n i t i a l  approach phase usually 

starts a t  about  3000 - 6UOO meters and extends down to  the  ini t ia l   f lare   (200 - 600 m 1, 
Flight  during  this phase i s  characterized by fairly  precise maneuvering. The vehicle i s  usually 

flown a t  a fairly  constant  equivalent speed (subsonic) 20-50% in excess of t h a t  for maximum L/D. 

The constant  flight p a t h  angle  (about 3") final approach . .  - extends from the  init ial   f1,are down 

to   f ina l   f la re  and touchdown. This phase of f l i gh t  i s  one  of the most c r i t i ca l   for   the  SSV, 

requiring very precise maneuvering. The vehicle is   decellerating from the  equilibrium speed o f  

the   ini t ia l  approach down t o  touchdown near  the speed for maximum L / D .  



END OF REENTRY 
h = 30,000 m 
M = 3.0 

UNPOWERED  APPROACH  AND  LANDING TRAJECTORY 

A , INITIAL APPROACH 

I N IT1  AL  FLARE 

FINAL  FLARE AND 
\ /  RUNWAY ALIGNMENT 

"""""""""" 

FINAL  APPROACH 

Figure 2 



FLIGHT PATH STABILITY AND CONTROL FOR AN UNPOWERED APPROACH AND LANDING 
(Figure 3) 

Flight pa th  s t ab i l i t y  and control i s  a measure of the  vehicles  capability  to be controlled 

to  the  desired  flight path assuming satisfactory  att i tude  control,  The main difference  for 

f l ight  in  the approach and 

course, t h a t  the SSV may be 

recommends using the  cr i ter  

needed. 

landing phase between a conventional  airplane and the. SSV i s ,  of 

unpowered.  For a conventional powered approach, the  present  study 

ia  of MIL-F-8785B. For an unpowered approach, new c r i t e r i a  are 

As mentioned ear l ie r ,   the   in i t ia l  approach i s  made a t  essentially a constant f l i g h t  path 

angle and equivalent  airspeed.  This phase should be  made on the  frontside o f  the drag curve 

(i  .e. , a t  speeds greater than t h a t  for  maximum L / D ) .  The problem was t o  define how f a r  on the 
Iu 
c" 
-r -r frontside was necessary. A considerable amount o f  ef for t  was unsuccessfully  spent  attempting t o  

define such a c r i t e r i a .  There appeared t o  be  no hand1 i n g  quality problem per se  as long  as  the 

approach was on the  frontside of the drag  curve, The only problems were  of a performance 

nature, t h a t  i s  whether or not  the  pilot had sufficient maneuver capability  to compensate for  

in i t ia l   e r rors  and winds. The pilots d i d  object i f  the   in i t ia l  approach was too speep  because 

of the high decent  rates and large  f l ight  p a t h  angle change required dur ing  i n i t i a l   f l a r e ,  

Curing the final approach phase,  very precise  flight pa th  control  is  necessary, To ensure 

th i s  a 1 

constant 

imit  value on the f 

i n  the  response of 

l igh t  path  time constant, To,, was selected, TB2 i s  the time 

f l igh t  path to  a pitch  attitude change. 
(Continued on next  page.) 



FLIGHT PATH STABILITY AND  CONTROL 

RECOMMENDED  REQUIREMENTS 

INITIAL APPROACH ANGLE 5 20" 

FLIGHT PATH TIME CONSTANT, To2, S 2.5 sec 
FINAL APPROACH FLOAT TIME 3 6 To2 

TYPICAL SSV CHARACTERISTICS 

CONFIGURATION I To2, sec 
MDAC  HCR I 2; 

040 A 

IMPACT ON VEHICLE CONFIGURATION 

2 mv 
Figure 3 



FLIGHT PATH TIME CONSTANT 

(Figure 4) 
(Continued from previous  page,) 

Figure 4 shows a typical  variation of pilot   rating (Cooper-Harper) for   dif ferent  values of Ten 
during the  final approach. From data of this type, i t  i s  recommended that  the maximum value of 
To, up  until  the runway threshold be limited t o  2.5 seconds,  Since  the magnitude of T02 i s  
approximately inversely  proportional  to Zw, the  rate of  change of  normal force w i t h  plunge 
velocity, i t  can be seen tha t   th i s   c r i te r ia  can  have a significant  effect  on the  a i r  frame 
configuration. Values for two candidate SSV configurations  are shown i n  figure 3 and are seen 
to  be satisfactory. 

Assuming the  f l ight  p a t h  time constant i s  satisfactory,  the p i l o t  s t i l l  needs a certain 
minimum time t o   s e t t l e  down  on the shallow glide  slope and get   se t  up for f inal   f lare  and 
touchdown. The  recommended value for   f loa t  time (measured  from completion of i n i t i a l  f l a r e  t o  
runway threshold) is  6 times the  f l ight  path  time constant  or about 12 seconds for  the  particular 
SSV configurations  noted. 

The requirement for  being on the  front  side of the drag  curve during i n i t i a l  approach is  not 
necessary for  the  final approach. 

I t  should be noted that  during the  simulation  studies  to develop the  present  criteria,  part 
o f  the  final approach and the  landing was done VFR, b u t  the  cockpit  display  also  included raw 
ILS data. The l i m i t i n g  values of l/Te, and final approach f l o a t  time may change for different 
display  conditions, The requirements for  IFR may be  more stringent;  and use of a f l   i sht   ,d i rector  
display might ease  the  requirements. There were also some indications of a possibie  effect o f '  
L/D on the  cr i ter ia ;  however, the  effect  cannot be defined from the  current  data, 



EFFECT OF FLIGHT  PATH TIME CONSTANT 
FLOAT  PHASE VL/D,,,= 220 knots TFLOAT = 30 sec 
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FINAL APPROACH AND LANDING  PITCH  ATTITUDE CONTROL 

(Figure  5) 
The  recommended criteria for  the SSV for  pitch a t t i t u d e  control d u r i n g  f inal  approach and 

landing is  based on an ear l ie r  study by Systems Technology, Incorporated, sponsored by the Air 
Force (ST1 TR-189-1). 

Figure 5 shows the MIL-F-8785B c r i t e r i a  and t h a t  recornended for  the SSV for a typical 
f l i gh t  condition d u r i n g  the final approach. The abscissa i s  the  equivalent  pitch short period 
damping, 2ssp wSp, while the ordinate is  the  equivalent short period natural frequency, WSP. 
The  Level 1 and 3 flying  quali t ies boundaries are shown, Insufficient  data  existed  to  adequately 
define  the lower l e f t  corner of the recommended SSV Level 3 c r i t e r i a .  Level 1 corresponds t o  
clearly adequate flying  quali t ies (Cooper-Harper pilot   rating < 3-1/2) while Level 3 corresponds 
t o  f lying  ual i t ies  such that  the  vehicle can be controlled  safely, b u t  p i lo t  workload is  

P excessive 9 Cooper-Harper pilot  rating  6-1/2),  Characteristics  for two typical unaugmented 
Iu -F SSV's  are shown, the McDonnel/Douglas HCR Phase B configuration (model OSOB) and the NASA 040A 
03 configuration (from a Lockheed Missiles and  Space Company report, LMSC EM L4-02-01-M7-3, based 

on a September 1971 da ta  package). The  040A configuration i s  shown a t  two angles of attack as 
there was a break i n  the s t a t i c   s t ab i l i t y  curve  near the trim condition chosen. 

For Level 1 flying qualities, the MIL-F-8785B c r i t e r i a  
c r i t e r i a  recornended for  the SSV are  quite similar while for  
less restrictive. 

If i t  i s  desired t o  f l y  the SSV unaugmented or w i t h  min  
c r i t e r i a  may be significant.  

I t  should be noted t h a t  some diff icul tv  was exPerienced 

or piloted  airplanes and the 
Level 3 , the SSV criteria is much 

mum augmentation, this new Level 3 

i n  verifying  the recommended 
concluded t h a t  most o f  the c r i t e r i a  of figure 5 on the NASA ARC SSV sikulation'. It .was 

problem could be attr ibuted  to a longitudinal trim problem associated w i t h  the  particular side 
arm control 1 e r  used (discussed l a t e r )  and t h a t  w h i  1 e the recommended c r i t e r i a  was primarily 
based on piloted  aircraft   results , i t  was probably applicable t o  the SSV. 



FINAL  APPROACH  AND  LANDING  PITCH  ATTITUDE  CONTROL 
Ve = 180 knots n/cr C 5.0 g 'S /rad I /To2 i 0.53 sec-1 

A MDAC  HCR 
0 0 4 0 A  

M I L - F - 8 7 8 5 6  
- RECOMMENDED 

3 1 0 a=50 

I 

Figure 5 
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HEADING CONTROL 
(Figure 6) 

The mili tary  f lying  quali ty  speclflcatinn  for  piloted  aircraft ,  MIL-Fn8785B, has no direct 
c r i te r ia  on heading control. I t  attempts t o  insure adequate heading control by restricting  the 
amount of sidesl  ip  in  aileron-alone  turns, Because of the importance of adequate heading control 
in  the  final approach, the  present  study  attempted t o  develop a heading control  criterion. 

The  recommended cr i te r ion   i s  based on the  aileron-to-rudder  crossfeed which  would be 
required  to  coordinate turns, i ,e .  , keep sidesl i p  equal t o  zero, The criterion involves two 
parameters and i s  shown in figure 6. One i s  the ra t io  of yaw acceleration  to  roll  acceleration 
due t o  ai 1 eron NQLsA , measured in stabi 1 i ty axes , divided by dutch rol l  frequency  squared. 
The second parameter, p, defines  the shape of the  required  crossfeed i n  the  frequency domain, 
This  parameter i s  computed as  follows : 

0 Compute the  ideal  rudder/aileron  crossfeed, Y f ,  required t o  keep zero 
sideslip.  This  computation can  be based on the measured or  estimated 
sideslip/st ick and sidesliplrudder pedal frequency  responses, i , e , ,  

sideslip/st ick frequency  response 
'cf = sideslip/rudder pedal frequency  response 

where the frequency  responses are  those of the  airplane  plus  appropriate 
augmentation systems, 

by a f i  1 ter of the form 
0 Over the frequency  range 0.2-5 rad/sec, approximate the  ideal  crossfeed 

0 p i s  given by 

The value of p and N s A / L a A ~ i  should  then f a l l  w i t h i n  the  contours shown in  figure 8, 

[Continued on next  page,] 



(Figure 6) 
(Continued  from previous page , ) 

For 1.1 = 0 the  ideal  crossfeed would  be a pure g a i n ;  rudder in to  the turn for adverse yaw 
and rudder opposite t o  the turn for proverse yaw, For p = -1 the ideal  crossfeed low frequency 
characteristics or D.C.  gain would equal zero w i t h  the h igh  frequency crossfeed  characteristics 
s t i l l  requiring rudder i n t o  or opposite t o  the turn for adverse or proverse yaw respectively. 
For values of p -1 the  ideal  crossfeed  required rudder reversals while f o r  1.1 > 0 large 
amounts of D.C. gain are  required. 

for  the NASA 040A configuration). 
The MDAC HCR vehicle i s  shown for s,everal  subsonic flight  conditions (no calculations made 

L" 
8 
P becomes quite  small, Then the yaw due t o  roll   rate  is   the  cri t ical  parameter. I t   i s ,  therefore, 

I t  was found that  the above cr i te r ia   i s  not  appropriate  if  the magnitude of aileron-yaw 

recomnended t h a t  i f  I N$L& 1 c 0.04, the  following be  used instead of figure 7 (N1; also 
measured i n  stability  axes): 
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Figure 6 



LONGITUDINAL  PILOT-INDUCED  OSCILLATIONS 
(Figure 71 

MIL-F-8785B mere ly   p roh ib i ts   p i lo t - induced  osc i l la t ions   (P lOs)   w i thout   p rov id ing  any 

quant i tat ive  guidance.  For  the  orbi ter ,   the recommended c r i t e r i a   i s  based on ST1 TR 189-1. This  

c r i t e r i a   a p p l i e s   o n l y   f o r   t a s k s   w h i c h   r e q u i r e   t l g h t   a t t i t u d e   c o n t r o l .  

Figure 7 shows t h e   p i l o t / v e h i c l e  model of t h e   p i t c h   a t t i t u d e   l o o p  used f o r   a n a l y s i s  and 

the   resu l t i ng   roo t   l ocus .  The system  e lements  are  the  p i lo t ,   the  e f fect ive  cont ro l  system,  and 

P 
u -!= 
IU t h e   e f f e c t i v e   a i r  frame. Each o f  these components are  represented  by an appropr iate  s imple 

t rans fe r   f unc t i on  form which i d e n t i f i e s   t h e  key fac to rs   con t r i bu t i ng   t o   t he   c losed- loop  

s t a b i l i t y  o f  the system. These a r e   t h e   p i l o t   g a i n ,  Kp, the  control   system  lag,  'IC; and the  

e f fec t i ve   a i r f rame dynamics, sp wSp, and l/To,. I 1  

(Continued on next  page.) 



LONGITUDINAL PILOT - INDUCED OSCILLATIONS 
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Figure 7 



REQUIREMENT FOR AVOIDANCE OF LONGITUDINAL  PILOT-INDUCED  OSCILLATIONS 
(Figure 8) 

(Continued  from  previous page.) 
The P10 c r i t e r i a  shown i n   f i g u r e  8 i s  expressed i n  terms  which  are  re la ted  to   these  factors .  

The abscissa o f  f i gu re  8 i s  based on the  root  locus  high  gain  asymptote  parameter,  oa , which i s  

f u n c t i o n a l l y   r e l a t e d   t o   t h e   f a c t o r s   o f   f i g u r e  7 (i ,e,, oa = 2< ip  w i P  - 1/2 l /To,) .  The ord ina te  

rep resen ts   t he   e f fec t i ve   con t ro l   sys tem  l ag   con t r i bu t i on   t o   t he  phase angle measured a t   t h e  

ef fect ive  a i r f rame  short-per iod  f requency (i .e., I$ A T~ asp). 

The unaugmented veh ic le  dependent cha rac te r i s t i c ,  oa, f o r   t h e  two SSV conf igura t ions  

discussed  previously,  I s  a lso shown on f i g u r e  8 fo r  a t yp i ca l   l and ing  approach cond i t i on  

(Category  C). It can  be  seen t h a t  even w i t h  no con t ro l  system  lag,  the unaugmented veh ic le  may 

be marginal f o r  Level 1 f l y i n g   q u a l i t i e s   b u t  will probably  be  acceptable f o r  Level 3. Th is  

r e s u l t  was g e n e r a l l y   v e r i f i e d  on the  NASA ARC s i m u l a t i o n   o f   t h e  MDAC HCR veh ic le  where p i l o t  

comments i nd i ca ted   t ha t   t he   veh ic le  seemed l i g h t l y  damped b u t  no P10 problem  per se. 



REQUIREMENTS FOR  AVOIDANCE OF PILOT-INDUCED  OSCILLATIONS 
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MISCELLANEOUS TOPICS 
(Figure 9 )  

Three additional  areas  will be discussed  brlefly. 

The f i r s t   dea l s  with the dynamics of the primary fl ight  control system. MIL-F-8785B 

specifies the a1 lowable control system l a g  from cockpit  control  force  input t o  control  surface 

motions. Based  on  ST1 TR 189-1 i t  i s  recommended for  the SSV Level 1 requirement that  the to ta l  

P phase lag from cockpit  control  force or displacement t o  vehicle  attitude be specified as less 
G 
CD than 135 degrees, a t  1 rad/sec. 

MIL-F-87856 limits rudder pedal forces  for  zero  side  slip i n  rolls. I t  i s  f e l t  t h a t  this 

i s  overly  restrictive and a SSV HQ c r i t e r i a  should limit rudder pedal forces t o  keep sideslip 

less than  some f i n i t e  value. 

The only MIL-F-8785B criterion  for rudder power i s  t o  ensure  adequate  rudder power for  steady 

sides1  ips  in crosswind  approaches. I t  i s  recommended t h a t  adequate rudder power be provided the 

SSV t o  rapidly decrab the  vehicle  for runway a1 ignment a t  touchdown, 



MISCELLANEOUS TOPICS 

PRIMARY FLIGHT CONTROL SYSTEM DYNAMICS 

M I L - F - 8 7 8 5  B SPECIFIES  ALLOWABLE  PHASE  LAG 
IN CONTROL SYSTEM 

PRESENT STUDY SPECIFIES TOTAL  PHASE  LAG FROM 
COCKPIT TO VEHICLE ATTITUDE 

RECOMMENDED LEVEL I CRITERIA: 135" AT 1 radlsec 

0 RUDDER PEDAL FORCES DURING ROLLS 

M I L - F - 8 7 8 5  B LIMITS FORCES FOR ZERO SIDESLIP 
IN ROLLS 

PRESENT STUDY  RECOMMENDS LIMITING FORCES  FOR 
FINITE VALUES OF SIDESLIP 

0 RUDDER  POWER FOR DECRAB 

MIL -F -8785  B SPECIFIES RUDDER  POWER  FOR  STEADY 
SIDESLIP DURING  CROSSWIND APPROACH 

PRESENT STUDY  RECOMMENDS ADDITIONAL  CRITERIA 
FOR DECRAB  NEEDED 

Figure 9 



PROBLEM AREAS 
(Figure 1 O;] 

While much additional work needs t o  be  done on the  areas of research  considered, two new 
problem areas developed dur ing  the  course of the study. Because of time 1 imitations , the 
present  study d i d n ' t  fully  resolve  these. 

The f i r s t  problem area  encountered was trouble w i t h  longitudinal trim during the final 
approach w i t h  the particular  side arm controller and trim system used in the NASA  ARC simula- 
t i o n .  As mentioned ear l ier ,   the   f inal  approach is  characterized by a constant  flight pa th  
angle and constantly  decreasing  equivalent  airspeed. The decreasing  airspeed  requires t h a t  
the  vehicle be constantly retrimmed. The side arm controller used has a very l ight  force 
gradient and a series trim wheel.  Several symptoms were noted:  (1) because of the  light 

( 2 )  i t  was d i f f i cu l t  t o  coordinate  stick motion while retrimming; and, (3)  i t  was d i f f i cu l t  t o  
get  full  required  elevator and s t i l l  maintain the trim sensi t ivi ty  a t  a reasonably low value. 
Based  on the  experience  obtained, i t  appears t h a t  a comprehensive investigation needs to  be 
conducted before a specification can  be  made for  side arm controllers. 

P 

cn 
0 

Iu force  gradient, i t  was possible  to  forget  to trim resulting i n  inadequate  elevator  for  flare; 

The other problem relates more to  ride, rather than handling q u a l i t i e s ,   I t  was 
experienced  during the  simulation runs in support of the heading control work discussed 
ear l ie r .  Wi th  a large  a i rcraf t  approaching a t  h igh  angles of attach  the  pilot  can  be situated 
several  feet above the  stabi 1 i ty  axes.  If  the a i r c ra f t  i s  coordinated, i t  will roll about the 
velocity  vector or s t ab i l i t y  X axis. This can produce highly  objectionable  side  accelerations 
a t  the  cockpit,  especially  if  the  aileron  roll  acceleration i s  high.  The only solutions are 
to  reduce  the  aileron power  below  what is  normally considered  desirable  or t o  degrade the 
degree of  coordination. Both  have deleterious  effects so a design compromise must be made. 
The  outcome of the proper compromises needs further  investigation and definition. 



PROBLEM AREAS 

PITCH TRIM CHANGES  DURING FINAL APPROACH 
DICTATES A GOOD PITCH TRIM SYSTEM 

LATERAL RIDE QUALITY PROBLEM DURING FINAL 
APPROACH - CAUSED  BY  HIGH a! AND  HIGH ROLL 
POWER 

Figure 10 



AREAS NEEDING FURTHER RESEARCH 
(Fi gure 11) 

Further  research i s  a1 so needed i n  severaJ of the  areas  investigated. 

Additional  research  in  the  area of f l i gh t  path control  cri teria i s  considered  essential 
because of the  potential impact of the  cr i ter ia  on basic  vehicle parameters and trajectory 
limitations.  If an unpowered Orbiter  is   selected,   the  cri teria proposed here need t o  be 
extended. The effects of IFR f l igh t  and the  effects of adding a fl ight  director  display should 
be assessed. The potential  influence on the  cr i ter ia  of variations  in L / D  also needs further 
investigation,  If a powered Orbiter is   se lected,  a bet ter   f l ight  p a t h  control  criterion  than 
t h a t  of 8785B  may  be desirable. 

Further  verification of the recommended pitch  att i tude  control  cri teria  is  needed. The 
proposed c r i t e r i a  is  mainly based on results from conventional a i rc raf t .  Because of the 
longitudinal trim problem discussed ea r l i e r ,  i t  was not  possible  to  conclusively  verify  the 
proposed c r i t e r i a   fo r  the SSV on an unpowered trajectory,  This was especially  true  for  the 
Level 3 flying  quality boundary. 

Further  research on heading control   cr i ter ia   is  a1 so considered  important b u t  of lower 
priority than the  subjects noted above, The cr i ter ion proposed appears t o  be a significant 
advancement, b u t  additional  verification, and possible  refinement, i s  highly  desirable. 
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