
--- -

N72-22176

COMPUTER-ASSISTED INSTRUCTION IN PROGRAMMING: AID

BY

JAMESINE FRIEND and R.C. ATKINSON

(----- -- -- - - - - ------

.- (NASA-CR-126156) COl-IP UTER- ASSISTED
;IN~TRUCTION IN PROGRAMMING: AID· J.
Fr1end, et al (Stanford Univ.) 25 Jan

:1971 80 p CSCL 09B Unclas
~- ---- -- ---- G3~~_~ __~?151

TECHNICAL REPORT NO. 164

JANUARY 25, 1971

PSYCHOLOGY SERIES

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
Springfield VA 22151

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UN IVERS lTV

STANFORD, CALIFORNIA

~WI

TECHN ICAL RE PORTS

PSYCHOLOGY SERIES

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

(Place of publication shown In parentheses! If published title Is different from title of Technical Report,
this I. also shown In oarentheses.)

IF." replYts no. 1- 44,.ee Technical Report no. 125.)

50 R. C. Atlclnson and R. C. Calfee. Mathematical le...nlng theory. JanlJalY 2, 1963. (In B. B. Wolman (EdJ, Scientific P.ychology. New York:
BasIc BooIcs, Inc., 1%5. Pp.254-2751

51 P. Suppes, E. Crothen, and R. Weir. Application of mathematical i....ojn. theory and linguistic analysl. to vowel phoneme matching in
Russian word.. December 2B, 1962.

52 R. C. Atkinson, R. Calfee, G. Sommer, W. Jeffrey and R. Shoemaker. A test of three models for .tlmulu. compounding with chl/dren.
January 29,19&3. CJ. expo Psychol., 1964, 67, 52-5B)

53 E. Crathers. General ~ov models for learnIng wiii, Inter-trial fOl'llllltlng. April 8', I%¥.
54 J. L. My... and R. C. Atkinson. Choice behavior and reward structlft. May 24, 1963. (J0II'fta1 math. Psychol., 1964,1,170-2031
55 R. E. RoblnsOli. A set-theOftltlcalllllP"Dach to empirical meaningfulness of meutrement.ta;;;;;t;.J;;'"ne 10,19&3. -
56 E. Crothers, R. Weir and P. Palner. The role of transcription In the learning of the orthO'7llphlc representations of Russian .ound•• June 17 .. 191>3.
57 P. Suppe•. Problems of optimization In learning a list of simple Items. July 22, 191>3. (In Maynard W. Shelly, II and Glenn L. Bryan (Ed•.),

Human Judgments and Optimality. New York: Wiley. 1964. Pp.1I6-12&)
58 R. C. Atkinson and E. J. Crothel's. Theoretical note: all-or-none learnIng and Intertrlal forgetting. July 24, 191>3.
59 R. C. Calfee. Long-term behavior of rats under probabilistic reinforcement schedules. October I, 191>3.
bO R. C. Atkinson and E. J. Crothers. T••ts of acqUisition and retention, axioms for paired-assocIate learning. October 25,191>3. (A comparl.on

of palred-iuoelate learning model. having different acqUisition and retention axioms, =!.. '!!!!!: Psychol'.. 1964,!.- 285-315)
61 W. J. McGill and J. GIbbon. The general-gamma dl.trlbutlOll and reaction time•. November 20, 1963. C:!.. math. Psycho/., 19&5, b 1-18)
62 M. F. Norman. Incremental learning on random trials. Decenil., 9,19&3. (:!. math. P.ychol., 1964,!J 336-351)
63 P. Suppes. The development of mathematical concepts In children, February 25, 1964. (On the behavioral foundations of mathematical concepts.

Monograph! ~~ Society ~ Rmarch ~'2. ~,I!d,De"!!!'I'~_n!,1965, ~' &0-96)
b4 P. Suppes. Mathematical concept f",matlon In ohlldren. April 10, 1964. (Amer. Psychologist. 1966, ~,139-150)
65 R. C. Calfee, R. C. Atkinson, and T. Shelton, Jr. Mathematical modelaJ'1I';l(erbJf learning. August 21,1964. (In N. WIener and J. P. Schoda

CEds.), Cybernetics ~ the~ System:~ '!!~Research. "1II.terda"',- flie NIther~ds: EI.evler Publl.hlng Co., 191>5.
Pp. 333-349)

66 l. Keller, M. Cole, C. J. Burke, and W. K, Estes, P.lted ..soclate I.arnlng with dIfferential rewards. August 20, 19&4. (Reward and
Information values of trial outcome. In paired usoclate leamlng. (Psychol. Monogr., 1%5, !!J., 1-211

67 U. F. Norman. A probabillstic model for freeoffspondlng. December 14, 1964.
b8 W. K. Esws and H. A. Taylor. Visual detecUon In ,...Iatlon to dl.play .Ize and redundancy of crItical element•• January 25, 1965, Revised

7-1-65. (Perception and P.ychophyslcs, 1966, ,-,9-16)
69 P. Suppes and J. Donlo. FoundaUon. of .1Imulu.-sampling theory for conllnuou.-lI proce..... February 9, 191>5, (=!.. math. P.ychol., 1967,

~' 202-225)
70 R. C. Atlclnson and R. A. Klnchla. A learning model for forced-eholce detection experiments. February 10, 1965. (~. =!.. math~. Psychol ..

1965,~, 184-206)
7/ E. J. Crothers. Pre..ntatlon order. for Items from different cat.garl*!, March 10,1%5.
72 P. Suppes, G. Groen, and M. Schlag-Rey, Some model. forre.pon.e latency In palred-as.oclate.learnlng. May 5,1%5. C:!.. math. Psychol"

1%6,~, 99-1281
73 M. V, Levine, TM generallzaUon functlor '" the probability learnl"9 .xperlm.nt. Jun. 3,1965.
74 D. Hansen and T. S. Rodgers. An exploration of psychollng"I,tlc units In Initial r.adlng. July 6,19&5.
75 B. C. Arnold. A correlated urn..cheme lor. continuum of "..pon••s. July 20, 1965.
76 C. lzawa andW. K. Esle5. RelnforcemenHest sequenc.s In palrea-assoclate learning. August 1,1965. (Psychol. Reports, 1%6, IB, 879-9(9)
77 S. L. Blehart, Pattern dl.crlm!nallor '.arnlngwlth Rhesu. monkeys. S.pt.mberl, 1965. (P.ychol. Reports,1966,!.2.,311-324)
78 J. L. Phillip> and R. C. Atkln.on. The .ff.r.!s of dlspl.y .1" on sh«t-t.rm memory. Augu.t 31,1965.
79 R. C. Atkinson and R. M. Shlffrln, Mathematical models for memorv and learning. September 20, 191>5.
80 P. Suppes. The P5ychologlcal foundaUon. of mathemallcs, October 25,1%5. (Colloque. Intemallonaux du Centre National <!! ~ Recherche

Sclentlflque. Edition. du Centre National de la Recherche Scl.ntlflque. Paris: 1967. Pp. 213-242)
81 P. Suppes, Computer""asslsted Instruction In the 5c'l1ools: ilOlctl'llidJilies, problems, prospects. October 29,1965.

82 R. A. Klnch'a, J. Town.end, J, V.llott, Jr., and R, C, Atkinson. Influ.nce of correlat.d vl.ual cues on auditory signal d.t.cllon.
November 2,1965. (Perception and Psychophysics, 1966,~, 67-73)

83 P. Suppes, M. Jerman, and G. Groen. Arithmetic drills and r.vl.w on a computer-bas.d tel.type. Nov.mb.r 5,191>5. (Arithmetic Teacher,
April 1966, 303-309.

84 P. Suppes and l. Hyman. Concept ieirnlng with non-v.rbal geometrical stimuli, November 15,1968.
85 P. Holland. A variation On tbe minimum chl-squar. test. (~. matt'. PSYCh~,:, 1967, !' 377-4131.
86 P. Suppes. Accelerated program In ele"",nlary-schocl mathematics -- the second year. Noveniler 22, 1965. (Psychology I~ the Schools, 1966,

~ 294-307)
87 P. Lorenzen and F. Binford. LogiC as a dialogical game. November 29, 19&5.
88 l. Keller, W. J. Thomson, J. R. TWHdy, and R. C. Atkln.on. Th. effects of reinforcement Interval on the acqul.ltlO.1 Of paired-associate

responses. DecemberlO,1965. (=!.. expo P.ychol.,I967,~, 268-277)
89 J. I. V.llott, Jr. Some effects on noncontlngent success In humar probability learning. Oecember 15,1965.
90 P. Su~s and G. Groen. Some counting model. for flrst-grade performance data on .Impl. addition fact•. January 14,1966. (In J. M. Scandura

CEd.), Reteln:h In Mathematic. Education, Washington, 0, C., NCTM, 1967. Pp.35-43.
91 P. Suppes~uon processing~ behavior. january 3i, 19b6.
92 G. Groen and R. C. Atkln.on. Model. for optimiZing the I.arnlng 1l'000SS. February II, 1966. (P.ychol. Bulletin, 19&6, 6&, 309-320)
93 R. C. Atkinson and D. H..,sen. Computer-anl3tad Instruction In Initial reading: Stanford project. March 17,196&. (Reading Re.earch

Quarlerly, 19b6, 2,5-25)
94 P. Suppes. Probabliistlc Inference and the concept of total evidence. March 23, 1%1>. (In J. Hlntlkka and P. Suppes (Eds.), A.pects ~

Inductive Logic. Am.terdam: North-Holland Publl.hlng Co., 1966. Pp.49-&5.
95 P. Su~•• The olo...tlc method In hlgh-school mathematics. AIl'II 12, 1966. (The Role ~ Axiomatic. and~Solving '!!. MathematIc••

The Conr-nce Board of the Mathematical Sciences, Washington, D. C. Ginn and Co., 1966. Pp. &9-71>.

(Continued on in. Ide back cover)

COMPUTER-ASSISTED INSTRUCTION IN PROGRAMMING: AID

by

Jamesine Friend and R. C. Atkinson

TECHNICAL REPORT 164

January 25, 1971

PSYCHOLOGY SERIES

Reproduction in Whole or in Part is Permitted for

any Purpose of the United States Government

@ 1971 by Jamesine Friend and R. C. Atkinson
All rights reserved

Printed in the United States of America

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

r

Excerpts from the Coders' Manual

Sample Coded Problem . • • • • • •

TABLE OF CONTENTS

I. Computer-assisted Instruction in Programm~ng • • • . . •

II. Description of the Course, "Introduction to Programming: AID

III. Preliminary Results •• . . • • • • •

IV. Computer Programs and Coding Language

APPENDICES

A. Student Manual • • • • • • .• •

B. AID Documentation

C.

D.

Page

1

4

22

27

1

29

38

45

COMPUTER-ASSISTED INSTRUCTION IN PROGRAMMING: AID*"

Jamesine Friend and R. C. Atkinson

Stanford University
Stanford, California 94305

I. Computer-assisted Instruction in Programming

Research in learning theory and instructional strategies has received

a new impetus in recent years from technological developments in the field

of computer design. Computer-assisted instruction, entirely unknown ten

years ago, is evidence of the rapid growth of computer applications in

education and is already producing profound effects in the individualization

of instruction. Since January, 1963, the Institute for Mathematical Studies

in the Social Sciences has been conducting extensive programs of research

and development in computer-assisted instruction.

In 1968, the Institute received funding from NASA to design and produce

a course in programming using computer-assisted instruction as the instruc­

tional medium. The course was to be tutorial in nature and sUfficiently

self-contained so that students could use it without being supervised by an

experienced teacher of p~ogramming. Supplementary material, such as manuals

and a syllabus of readings in computer sciences, was to be supplied as part

of the package.

The course was to be suitable for use by NASA personnel, and the feasi­

bility of us ing the course as part of the ir training program was to be

investigated. It was assumed that students would be at about the junior

college level with no experience in mathematics beyond high school algebra

and with no previous introduction to compute r programming.

Work on the development of the course started in the summer of 1968.

A preliminary version of half of the course was completed by February, 1969,

and consisted of a coding language, a set of 20 one-hour lessons written in

*This research was supported by NASA Research Grant NGR-05-020-244.

1

the coding language, and a set of programs to interpret coded lessons and to

interact with students using standard teletypes as student stations.

In the spring of 1969, about 15 students took the course. Performance

data were collected (by hand) and summarized, and students were closely

observed and interviewed after each session. The curriculum materials and

necessary computer programs were revised and extended on the basis of data

and observations of student reactions. The revised course is now complete

and in use by NASA personnel. Data are being collected and analyzed.

The first decision made in the development of an introductory course

in programming was what programming language to teach. Progra@ning languages

designed expressly for teaching purposes were not considered, since we felt

that users of the course would benefit more from learning a language with

immediate practical application, even if the language was initially more

difficult to learn; for this same reason we felt that the language should

be one that is widely available rather than one that is implemented on only

a few computers, or only on computers produced by one manufacturer. Also,

we anticipated that most students would eventually be working in an engi­

neering or scientific environment and would have more need for an algebraic

language such as FORTRAN than for a list-processing language such as LISP

or a business-oriented language like COBOL.

The programming languages considered included FORTRAN, ALGOL, BASIC,

and AID. For a first course, BASIC and AID are both excellent choices,

because they are considerably simpler than either FORTRAN and ALGOL; never­

theless, they contain all of the structure needed to illustrate the basic

principles of programming. AIDl (Algebraic Interpretive Dialogue) is a

high-level algebraic programming language with extensive interactive (or

"conversational") abilities. This language is an adaptation for the PDP-10

1
See PDP-10 AID Programmer's Reference ManualJ Digital Equipment Corporation,
Maynard, Massachusetts, 1968.

2

2computer of JOSS, a language developed by RAND Corporation for use by

scientists, engineers, etc., who needed a powerful, easy-to-learn tool

capable of performing complex algebraic tasks. A number of other minor

variants of JOSS, such as CAL and FOCAL, are now implemented on a variety

of computers. A complete description of AID will be found in the appendices.

BASIC,3 which was developed at Dartmouth as an elementary algebraic language

for beginning students, is now widely implemented and is probably better

known than AID (partly because all implementations use the same name).

BASIC is somewhat more powerful than AID in its matrix manipulation commands,

but AID has more power in recursively defined arithmetic functions. The

greatest advantage of AID over BASIC, FORTRAN, or COBOL is that AID is not

a compiler, but an interpreter with a large number of direct commands, which

the student can begin to use the·.first day rather than having to delay hands­

on experience until after he has learned the concept of a stored program and

the necessary formats. These interactive capabilities are a great asset to

a student just learning a programming language since they provide a kind of

immediate reinforcement that cannot be supplied by a compiler. All in all,

it was felt that AID had a slight edge as a beginner's language, but the

final deciding factor was that AID had already been implemented for the

PDP-10 computer we would be using, whereas BASIC would not be available to

us for several months. Since that time, we have obtained a BASIC compiler

and have completed a high school course in BASIC using the same structure

and programs developed for the AID course.

2See Mark, S. L. and Armerding, G. W., The JOSS Primer. The RAND Corpora­
tion, Santa Monica, California, August~9~Shaw, J. S., JOSS: Experience
with an Experimental Computing Service for Users at Remote TYPewriter
consoles. The RAND Corporation, Santa Monica, California, May, 1965.

3See Kemeny, John G. and Kurtz, Thomas E., BASIC, Dartmouth College Compu­
tation Center, 1968.

3

II. Description of the Course "Introduction to Prograrruning :AID"

The course consists of a set of 50 lessons, about one hour in length,

plus surrunaries, reviews, tests, and extra-credit problems. A student manual,

which includes instructions for operating the instructional program and a

glossary of terms used in the course, has been prepared and is included in

the appendices of this report. The course is equivalent to a three-unit

junior college course.

The computer-assisted instruction and supplementary manual constitute

a completely self-contained course. The lessons are tutorial in nature,

that is, no previous knowledge of computers or prograrruning is necessary.

The only prerequisite for the course is a good background in algebra, as

supplied by three semesters of high school algebra.

Computer-assisted instruction is given to the students by means of

standard Model-33 teletypewriters, located in remote training centers,

which will corrununicate with the PDP-10 computer located at Stanford by means

of ordinary telephone lines. The problems are typed on the student's tele­

type by the computer and the student responds by typing his answers on the

same teletype. After the computer analyzes the student's response, the

student is informed as to whether his response was correct or incorrect,

then he is given additional instruction and asked to respond again, or he

is given a different problem.

The course does not require the supervision of a trained teacher of

prograrruning, but a one-day teachers' workshop should be given to acquaint

teachers with operating procedures and to provide them with an overview of

the content of the course.

Although the course is ordinarily used on a regUlarly scheduled basis

in a college environment or training center, it is also well suited ,for

individual use as an on-the-job training course for people working in assoc­

iation with a computer facility. Use by individuals can be on a nonscheduled

basis or on a fleXibly scheduled basis, since there are few time restrictions

on the use of the computer; some students might prefer to spend several hours

a day on the course, with the possibility that they could complete the course

within a few weeks rather than distributing their lessons over several months.

4

The 50 lessons cover the following fundamental concepts of programming

and the use of computers.

(1) An interactive time-sharing executive system.

(2) An interpreter.

(3) Concept of a stored program.

(4) Debugging techniques.

(5) Labels and variables.

(6) Loops.

(7) Input and output.

(8) Computer storage, inclUding both core and disk.

(9) Subroutines.

(10) Recursive functions.

(11) List sorting and table look-up routines.

The student is reqUired to write and debug at least 50 programs, several of

which are major programs for solving difficult algebraic problems. An out­

line of the course is found in the appendices.

Each lesson covers one basic concept, varying in length from 50 to 200

problems and requiring about one hour for an average student to complete.

A less'on contains three sections: a core lesson, a summary, and a review.

Selected lessons contain an additional extra-credit section. The core lesson

contains about 20 to 30 problems that present the concept and supplies some

practice problems. At the end oi' the core lesson there is an optional summary
,'II

of the le~;son; the summary is typed in an 8 l/~ x 11" format, which the

student can save as a permanent reference. Following the summary, there is

an optional review section, whic:l is divided into several parts, one for

each idea presented in the core lesson, so that the student may review only

that part of the lesson that he ~id not completely und~rstand. The review

problems, like the problems irl tLe core lesson, are tutorial, not merely

addition~l practice and present ~he ideas afresh from a different point of

view. After the review section, there may be a short section of optional

extra-c:reiit problems; these are usually programming problems, which are

much more difficult than the programming problems given in either the review

or the core le8son. Most of the extra-credit problems require considerable

thought and time, and the student is not expected to complete them during

a current session, but may, instead, submit them at any time before the end

of the course. Extra-credit problems are not supplied with each lesson, but

there are at least 50 such problems in the entire course, and the teacher

may wish to require some of these problems as homework assignments, or he

may use them as tests.

After each group of five lessons, there is an optional self-test designed

to help the student evaluate his understanding of the concepts presented to

date. Since this test is designed for student.'b use and not for grading pur­

poses, no report on student performance will be available to the teachers.

Following the self-test, there is a general overview lesson that reminds the

student of what has been taught and informs him which of the topics already

covered are essential to the subsequent material. During the overview lesson,

the student is given the opportunity to review entire lessons, or any indivi­

dual topics from preceding lessons.

The structure of the course is illustrated in Figure 2 by a block diagram

of a set of' five lessons (with summaries, reviews and extra-credit problems),

followed by a self-test and an overview lesson.

Before discussing details of the instructional strategy, we give a few

examples of student interaction with the instructional program, starting

wi th the first problems in Lesson 1. On a student r s first day, he is given

a student manual and seated at a teletype connected by telephone lines to

the PDP-lO computer at Stanford. Following the instructions in the student

manual (see the manual in the appendices), he signs on and starts the in­

structional program, which automatically starts at Lesson 1, Problem 1, for

a new student. The program prints each problem in turn, then prints an

asterisk to indicate to the student that he can respond, and awaits his

response before proceeding. In the following typical sequence, the student I s

responses are marked by an asterisk at the left.

Ll-l: INTRODUCTION TO PROGRAMMING
BY JAMESINE E. FRIEND

IN THE FIRST LESSON YOU WILL LEARN HOW TO USE THIS PROGRAM.

AFTER YOU TYPE YOUR ANSWERS YOU MUST PRESS THE RETURN KEY.
CAN YOU FIND THE RETURN KEY?

Lesson
1

r

Summary Review Extra-
Lesson Lesson Credit

1 1 Problems

Lesson
5

r

Summary Review Extra- .
Lesson Lesson Credit

5 5 Problems

r
Self- Ove
Test vie

..

One lesson block is shown, including 5 lessons (with Summaries, Reviews, arid Extra-Credit
Problems), Self-Test, and Overview Lesson.

Student decision points are marked ~ .

Optional lessons are shown below the main line.

Figure L Structure of Course

*YES
GOOD. DON I T FORGET TO PRESS THE RETURN KEY AFTER YOU TYPE YOUR ANSWERS.

Ll-2: WRONG ANSWERS ARE NOT COUNTED. YOU ALWAYS GET ANOTHER CHANCE
IF YOUR ANSWER IS WRONG.

WHAT DOES THE COMPUTER PRINT WHEN IT IS READY FOR YOUR ANSWER?
A. AN EXCLAMATION POINT !
B. A QUESTION MARK ?
C. AN ASTERISK *

TYPE "A", "B", OR "C". (DON'T FORGET THE RETURN KEY.)

*C
CORRECT

Ll- 3: IF MULTIPIE- CHOICE PROBLEMS HAVE MORE THAN ONE CORRECT ANSWER,
YOU MAY LIST THE CORRECT CHOICES IN ANY ORDER.

SUPPOSE B, C) AND D ARE THE CORRECT CHOICES FOR A PROBLEM. WHICH OF
'1'}IESE WOULD BE CORRECT WAYS TO ANSWER?

A. D, B, C, A
B. B, D, C
Co B, C, D
D. D, B, C

*B
YOU HAVEN I '1' FOUND ALL OF THE ANSWERS YET. START AGAIN.

*BCD
CORRECT

Lesson 1, a short introduction to the teaching program, continues by

explaining to the student the various problem formats he will encounter in

the course and gives him an opportunity to practice each of these formats.

The second lesson begins by teaching the student how to start and stop the

AID interpreter and how to use a few simple, direct commands to solve

arithmetic problems.

L2-1: LESSON 2
USING AID FOR ARITHMETIC

IN THIS COURSE YOU WILL USE TWO DIFFERENT PROGRAMS:
1. THE TEACHING PROGRAM. YOU ARE USING THE TEACHING PROGRAM NOW 0

THE TEACHING PROGRAM WILL TEACH YOU TO WRITE PROGRAMS USING THE
AID LANGUAGE.

-8

2. THE AID INTERPRETER. AFTER YOU LEARN TO WRITE AID PROGRAMS, YOU
WILL USE THE AID INTERPRETER TO TRY OUT YOUR PROGRAMS.

YOU WILL ONLY BE ABLE TO USE ONE OF THE PROGRAMS AT A TIME SO YOU HAVE
TO KNOW HOW TO STOP A PROGRAM AND START ANOTHER.

WHICH PROGRAM ARE YOU USING NOW?

*THE TEACHING PROGRAM
CORRECT

L2-2 :

HOW TO START THE AID INTERPRETER:
FIRST, STOP THE TEACHING PROGRAM (TYPE CTRL-C).
SECOND, TYPE ilL AID II AND THE RETURN KEY.

HOW TO STOP THE AID INTERPRETER:
TYPE CTRL- C.

AFTER THE TEACHING PROGRAM IS STOPPED, WHAT SHOULD YOU TYPE TO START
THE AID INTERPRETER?

*CTRL-C
WRONG. TYPE A QUESTION MARK. FOR A HINT OR CTRL-T FOR THE ANSWER.

*?
READ THE SECOND STEP UNDER tlHOW TO START THE AID INTERPRETER. 11

*L AID
CORRECT

L2-3: WHICH COMMAND WILL STOP THE AID INTERPRETER?

A. CTRL-H
B. CTRL-T
C. CTRL-C
D. CTRL-G

*C
CORRECT

After some practice in starting and stopping the AID interpreter, the

TYPE command is introduced and the student practices using commands like

TYPE 15 + 249

TYPE 76 - 3 + 42

Lesson 2 also introduces the symbols * and / for mUltiplication and division.

L2-10: AID SYMBOLS FOR ARITHMETIC OPERATIONS:

+ ADDITION
SUBrRACTION

* MULTIPLICATION
/ DIVISION

WHICH COMMANDS WILL CAUSE AID TO MULTIPLY 3 by 4?

A. TYPE (3)(4)
B. TYPE 3 X 4
C. TYPE 3 * 4
D. TYPE 3/4
E. TYPE 3*4

*A
WRONG

*C
YOU HAVEN I T FOUND ALL OF THEM. START OVER.

*CE
CORRECT

L2-11: WHICH COMMAND WILL CAUSE AID TO MULTIPLY 25 BY 5 AND DIVIDE
BY 3?

A. TYPE 25 X 5/3
B. TYPE 25 * 5/3
C. TYPE 25(5/3)
N. NONE OF THE ABOVE

*B
CORRECT

At the end of each lesson, the student is asked if he wants a summary

of the lesson to save as a pennanent reference. The summaries are printed

in 8 1/2 x 1111 fonnat, so that they may be punched and put in a loose-leaf

note book. The following summary of Lesson 2 is typical.

SUMMARY OF LESSON 2
USING AID FOR ARITHMETIC

L TO START THE AID INTERPRETER, TYPE
LAID

2. TO STOP THE AID INTERPRETER, TYPE
CTRL-C

3. THE llTYPE ll COMMAND
••• STARTS WITH THE WORD llTYPE ll

••• THEN A SPACE
••• THEN AN ALGEBRAIC EXPRESSION
••• ENDS WITH A RETURN.

YOU TYPE: AID ANSWERS:

TYPE 2+4
TYPE 42/4
TYPE 6*1.2

2+4 =
42/4 =
6*1.2 =

6
10·5
7·2

4. THE SYMBOLS FOR ARITHMETIC OPERATIONS:
+ ADDITION

SUBTRACTION
* MULTIPLICATION
/ DIVISION

After the summary is printed (if the student requests it), the student

is asked if he wants to review any of the concepts covered in the lesson.

The review, which is about the same length as the lesson, does not cover

topics sequentially as in the original presentation, but is instead organ­

ized into independent sections, once for each conGept so that the student

may review only the parts of the lesson that he wishes; also, the student

is told which topics are important to ensuing lessons, so that he knows

where to concentrate his effort. Here, for example, are a few problems

from the review of Lesson 4 (note that the symbol t is used to denote

exponentiation, i.e., 5t2 means 52).

R4-1: REVIEW OF LESSON 4
EXPONENTS AND SCIENTIFIC NOTATION

WHICH OF THESE TOPICS DO YOU WANT TO REVIEW NOW?
(BE SURE YOU KNOW THE STARRED TOPICS.)

*A. EXPONENTS
B. USING 0 AND 1 AS EXPONENTS

*C. ORDER OF ARITHMETIC OPERATIONS
D. USING FRACTIONAL EXPONENTS TO FIND ROOTS

*E. NEGATIVE EXPONENTS
*F. READING SCIENTIFIC NOTATION

G. WRITING SCIENTIFIC NOTATION
N. NONE

*C

11

R4-17: IF.AN" EXPRESSION HAS EXPONENTIATION AND ALSO SOME OTHER OPERATION,
SUCH AS MULTIPLICATION, DO THE EXPONENTIATION FIRST.

TO FIND THE VALUE OF
4*5t2

DO 5t2 FIRST, THEN MULTIPLY BY 46
WHAT IS THE VALUE?

*100
CORRECT

R4-18: DO EXPONENTIATION BEFORE ADDITION, SUBI'RACTION, MULTIPLICATION
OR DIVISION 0 FIND THE VALUE OF EACH EXPRESSION.

50 - 7t2
*1
CORRECT

3t3 - 20
*11
WRONG

*-11
WRONG

*7
CORRECT

In general, students are expected to have had some previous work with

algebra, but it is not assumed that the level of skill is high, or that a

student will remember such concepts as the use of zero as an exponent, or

the definition of "positive" as contrasted with "non-negative." All such

topics are reviewed at appropriate times for the student who needs a re­

fresher. For example, Lesson 15, which introduces the IF clause, reviews

relations between numbers in the context of introducing new symbols.

L15-1: LESSON 15
RELATIONS, "IF" CLAUSES

SYMBOLS USED FOR RELATIONS:
< FOR "LESS THAN""
> FOR "GREATER THAN""

FOR t'EQUALS"
FOR "NOT EQUALS"
<::: FOR "LESS THAN" OR EQUALS"
>::: FOR "GREATER THAN" OR EQUALS"

12

'l'YPE THE SYMBJL· FOR
HGREATER THAN OR EQUALS"

*>=
CORRECT

HNOT EQUALH

*#
CORRECT

HLESS THANH

*<
CORRECT

L15-2: RELATIONS BETWEEN NUMBERS CAN BE SHOWN ON A NUMBER LINE.

-3 -2 -1 o 1 2 3 4
----.----.---~.----.----.----.----.----.----

t
X

t
Y

t
Z

r

ANY NUMBER TO THE RIGHT OF 2 IS GREATER THAN 2.

ANSWER TRUE OR FALSE (T OR F) :

X > 2 *F
Y > 2 *F
Z > 2 *T
X > Y *F

ANY NUMBER TO THE lEFT OF 2 IS lESS THAN 2.
ANSWER T OR F:
X < 2 *T
Y < 2 *T
Z < 2 *F
Z < X *F

After reviewing the relations between numbers, Lesson 15 proc~eds to

teach the use of conditional comwands using the algebraic notation just

introduced.

L15-10: WHICH :MEANS "Q IS NON-NEGATIVE"?

A. Q>O

B. Q >= 0

C. Q < 0

D. Q <= 0

N. NONE

13

*B
CORRECT

L15-11: NOW THAT YOU KNOW ABOUT THE RELATIONS = # < > <= AND >= I WILL
SHOW YOU HOW TO USE THEM IN AID COMMANDS.

ANY AID COMMAND CAN BE MODIFIED BY AN "IF" CLAUSE.
EXAMPLES:

SET Z = 2 IF X < 10.
TYPE X IF X < O.
DO PART 5 IF M = N.

COMPLETE THIS COMMAND SO THAT Y = Xf2 IF X IS POSITIVE.
SET Y = Xf2 IF X•• o.O

*>
CORRECT

L15-12: THE NEXT FEW PROBLEMS ARE ABOUT THESE COMMANDS.
22.1 SET Y = X IF X > o.
22.15 SET Y = -X IF X < O.
22.2 SET Y = 0 IF X = O.
22.25 TYPE Y.
DO PART 22 FOR X = -3.15.

AFTER STEP 22.25 WHAT WILL AID ANSWER?

*-3·15
WRONG

*?
LOOK AT STEP 22.15. IF X IS NEGATIVE, WHAT IS THE VALUE OF Y?

*3.15
CORRECT

Although there is considerable variation in the sequence of problem

types within a lesson and in the style of presenting new concepts, the

general scheme is to review any necessary algebraic ideas, present new

symbols and new commands, give sample programs using the new commands, and

then give programming problems that can be solved by using the ideas just

introduced. The following is an example of a programming problem from

Lesson 15.

14

X ::: 2 Y ::: 3 Z ::: 15
X ::: 2 Y ::: 3 Z ::: 0
X ::: -5 Y ::: -3 Z ::: -1
X ::: -5 Y ::: -3 Z ::: 0

At this point the student is

L15-20: WRITE A PROGRAM THAT WILL PRINT "SAME" IF ALL THREE NUMBERS X,
Y AND Z HAVE THE SAME SIGN. THE PROGRAM SHOULD PRINT "DIFFERENT" IF TEE
NUMBERS DO NOT ALL HAVE THE SAME SIGN.

BEFORE YOU STARr, TELL ME WHAT YOUR PROGRAM SHOULD PRINT IF X ::: -2, Y ::: 3
AND Z ::: 1?

*DIFFERENT
CORRECT

WHAT SHOULD YOUR PROGRAM PRINT IF X ::: -2, Y ::: -3 AND Z ::: -1?

*DIFFERENT
WRONG

* SAME
CORRECT

L15-21: OK. GO AHEAD AND WRITE THE PROGRAM TO FIND OUT IF THE 3 NUMBERS
ALL HAVE THE SAME SIGN. TEST YOUR PROGRAM FOR THESE VALUES OF X, Y AND Z.

expected to stop the teaching program

and to use the AID interpreter to write and debug his program. When he

has completed the program to his satisfaction, he starts the teaching

program again.

WHAT ANSWER DID YOU GET FOR THE LAST PART?

* DIFFERENT
EXCELLENT

DID YOU USE ANY "DEMAND" COMMANDS IN YOUR PROGRAM?

*NO
YOU COULD HAVE SAVED YOURSELF SOME TYPING IF YOU HAD STARTED THE PROGRAM
WITH THESE COMMANDS:

DEMAND X
DEMAND Y
DEMAND Z

15

The student may request additional information or suggestions about how

to write the program either before or after he tries to produce the program.

If the student cannot solve the problem, even using the additional help, he

is shown a correct solution to the problem and is asked to study it carefully,

and to copy and execute it.

There are over 50 programming problems in the course. Many lessons also

supply extra-credit programming problems such as the following.

X15-l: EXTRA-CREDIT PROBLEMS FOR LESSON 15

1. WRITE A PROGRAM THAT WILL TYPE "1" IF THREE NUMBERS, A, B, AND C, ARE
DECREASING IN SIZE (I.E. IF A IS LARGEST, B IS NEXT, AND C IS SMALLEST).
IF A, B, AND C ARE NOT DECREASING, THE PROGRAM SHOULD TYPE "0".

2. WRITE A PROGRAM THAT WILL TYPE "1" IF B IS BETWEEN A AND C; TYPE "0"
OTHERWISE. (NOTICE I DID NOT SAY WHETHER A WAS LARGER OR SMALLER
THAN C).

In the first few programming problems, th: program and the values to

be used for variables are specified in complete detail, and the student is

thoroughly quizzed about the performance of his program. As the course

develops, the student is supplied with less and less complete specifications,

and he is encouraged to analyze the instructions and to experiment with dif­

ferent solutions. Also, he is gradually given the responsibility for deter­

mining whether his program is correct, both in the sense of debugging and

in the sense of providing a solution to the stated problem. The aim is not

only to encourage analytic ability and creative thinking, but also to introduce

the student to the idea that working programmers spend most of their creative

effort in defining the problem (and, in many cases, deciding whether there

is a problem). Further, they spend much of their programming time satisfying

themselves that they have produced a correct program.

Little has been said so far about how a student interacts with the

teaching program, and how the teaching program is designed to provide in­

dividualized instruction. In order to explain these things, we give some

details of the teaching strategy.

One of the basic requirements of a tutorial course is to provide for

individualization of instruction, with the aim of optimizing the learning

process. The course "Introduction to Programming," which is being developed

under NASA Contract NGR-05-020-244, is designed as an application of the

results of numerous studies in the techniques of optimizing learning. The

'variety of optimization routines used in the course and the consequent rich­

ness of the curriculum material have never before been attempted in a course

of comparable length or scope.

The logic of branching used within problems permits extremely fine

discriminations between student responses and thus provides a mechanism for

remediation that is appropriate, not only to the specific problem, but also

to the specific student response; Le., gross discrimination of "correct" and

"incorrect" are not used as the basis for deciding upon appropriate remedia­

tion, as is ordinarly done in drill-and-practice material or in linearly

programmed courses. Fine discriminations can also be made between correct

responses so that the "correctness" function ranges over a set of positive

as well as negative numbers, and the program responds differentially to

categories of correct as well as incorrect responses. The analysis of

student responses is made by means of twelve basic analysis routines; each

of these routines can return from 2 to 4 different values of the correctness

function. Furth~rmore, the analysis routines can be used in any Boolean

combination to increase the number of possible values in the range of tbe

correctness function. The maximum size of the range of this function, 'i.e.,

the maximum number of correct-incorrect classifications for a given problem;

has not yet been fully exploited, since it is limited only by the size of

the core buffers in the computer, but we estimate it to be in the neighborhood

of 100. Since the probability of receiving a wide variety of distinguishable

incorrect responses to a given problem is extremely low, the current course

is designed to use from three to ten values for the correctness function,

depending upon the content of the problem. Because the system can respond

differentially to the students, each problem takes on the aspect of a small

"dialogue" between the computer and the student.

The optimization scheme d~scribed above is not, however, the only one

used in the course. A second major scheme allows the student to initiate

the dialogue. In the microbranching logic, the student is allowed two

different devices for requesting additional information. The first of these

17

is the HINT command, which may be given by the student at any time simply

by typing a question mark. The instructional system provides an unlimited

number of hints for each problem; in the current course, two hints are

provided for most problems, and as many as six are provided for particularly

difficult problems. By allowing for optional additional instruction, we

keep the pace fast enough for the more intelligent, better prepared students

without penalizing those students whose mathematical background is less

adequate.

In addition to the HINT command, there is also a TELL command that may

be used by students at any time. This command causes the computer to print

the correct answer (or ~ correct answer) to the problem, providing that such

text was coded for the problem, and then branches to the next problem in

sequence. In the current course, sample correct answers are provided for

about 80 percent of the problems. There is some evidence that adult students

learn adequately without being required to make overt responses, so students

are in no way penalized, and, in fact, are encouraged to request the answer

whenever they wish. In general, the problems that do not include sample

correct answers are those for which there is no correct answer ("Do you

want a summary of this lesson?"). Two or three representative answers may

be provided for problems that have many correct answers.

To illustrate the kind of hints and answers provided in the course,

we show a few problems from Lesson 8, with comments.

L8-2: WHAT WILL AID
LET M(X) = 3*X
TYPE M(lO)

*10
WRONG

ANSWER?

[The student makes an incorrect
response.]

*?
M(X) = 3*X

t
SUBSTITUTE 10 FOR X TO FIND M(lO)

*30
COIJ.:.u.;C'~

18

[He types a question mark to get
additional information.]

[He then gives the correct answer.]

SUPPOSE YOU HAD ALREADY GIVEN THE ABOVE COMMANDS, AND
THEN GAVE ~'HIS ONE. WHAT WOULD AID ANSWER?

~_'YPT': M(2)

-X-;)o
WRONG

-*6
CORREC~'

[The student gives a wrong answer.]

[... and corrects himself without
additional instruction.]

••• AND WHAT WILL AID ANSWER TO THIS COMMAND?
'l'YPE M(1)

*3
CORRECT

L8- 3: WHAT WILL AID ANSWER?
LET Q(X) ~ 2*X + 7
TYPE Q(5 - 3)

*?
Q(X) ~ 2*X + 7

t
SUBSTITUTE (5 - 3) FOR X.

*?
Q(5 - 3)
Q (2)
2*(2) + 7
???

*
11

[The student makes a correct response
on his first try.]

[The student requests a hint.]

[He asks for another hint]

[.•. and finally requests the answer
(by typing Ctrl-T, which is an
invisible character).]

The optimization routines described thus far are used in all problems

in "Introduction to Programming. II An additional scheme is also used for

problems that require the student to write and debug a program. Since such

problems are necessarily more complex than the kind used in most programmed

instruction, there is also a greater need for more highly differentiated

remedial material. For each programming problem, a sequence of problems

was designed to test the student's understanding of the concepts involved.

Additional hints are also available.

Although the most complex of the optimization routines are used within

problems, provision is also made for optimization at the lesson level. The

19

number of prublems that constitute a lesson for a particular student is

dependent upon the responses of that student; for example, in Lesson 3, a

ctudent may do only 30 problems, or he may do as many as 71+, including the

problems in the associated remedial lesson. Further, after every five

lessom, there is un overview of the. preceding material; these lessons con­

sist of five sections (one for each of the preceding lessons), with optional

detailed review. Each overview lesson is preceded by an optional self-test,

which the student may use to evaluate his progress and which provides him

wi th a basis for deciding which of the sections in the subsequent ()verv-iew

lessons are appropriate.

One indicator of the richness of the curriculum provided by the pro­

cedures described above is the number of different messages that can be

used in the course of a single lesson; in Lesson 3, for example, one student

may see 60 different messages, while another student may see as many as 400.

~lhe number of responses required of a student is also an indicator of the

richness of the curriculum; for Lesson 3 (to use the same example), only 30

responses are required of the good stUdent, but a student who is giving

some incorrect responses and requesting much of the optional material may

make as many as 200 responses (there is actually no upper limit, since a

student may make any number of incorrect responses per problem).

Notice that a recurring theme in the optimization schemes is the

provision for student control. There are strong indications from past re­

search, both in computer-assisted instruction and elsewhere, that the

participation of the student in decisions about his course of stUdy signif­

icantly affects the rate of· learning. The stUdy of motivation in an environment

of computer-assisted instruction has not yet been approached in any very

rigorous way, but preliminary results do indicate that some factors here m~y

completely overwhelm others in an experimental design. Since curriculum

design cannot always wait on firm research results, provision was made in the

instructional system for nine student control commands (including the HINT,

TELL and GO commands as well as single-character and full-line erase commands,

qUick sign-off, etc.). These control commands are defined by the coder and

may be left undefined if desired. Thus if further testing of the system

20

indicates that there should be less student control, the scheme can be easily

modified.

As an illustration of the use of the optimization schemes, a coded

problem taken from Lesson 4 is attached as an appendix. There is a top-level

problem, followed by eight sUbproblems which are used as remediation for

students who are having difficulty with the concept of hierarchy of operations.

The top-level problem requires the student to evaluate the expression

5 -x- 2t3

(In the AID programming language, an asterisk is used as the symbol for

multiplication, and an up-arrow is used as the symbol for exponentiation,

so the expression 5 X 23 would be written 5 * 2t3 in AID.) If the student

does not understand the precedence of exponentiation over multiplication,

he will produce the incor:rect response "1000" and will then be given the

message "Wrong, AID would evaluate 2t3 first. Try again. If If the student

produces the correct response (40), he is given the standard correct-answer

message CORRECT and then goes to the next top-level problem (Lesson 4,
Problem 6), bypassing all of the following subproblems. For the student who

fails to produce the correct answer, an algebraic derivation of the correct

answer is given, and the student goes to the first subproblem. The first

four subproblems lead the student through the evaluation of the expression

32/4t2

and the fifth sUbproblem requires the student to evaluate, without detailed

help, the expression

10t3 0)(. 2.

If the student succeeds, he bypasses the remaining subproblems and proceeds

to the next top-level problem. The last three sUbproblems are written for

students who are having considerable difficulty with the concept; these last

three problems present the concept from a different viewpoint and provide

the student with a workable algorithm for solving problems of this type.

The entire sequence of subproblems is tutorial; few remedial sequences

in the course consist solely of additional practice without amplification

of the ideas. The necessary drill on the concepts presented in the course

is attained by introducing the concepts in such a sequence that immediate

21

practice is provided in the context of presenting the next concept. ThUS,

necessary skills are constantly reinforced without the need for extensive

sections of pure drill-and-practice.

III. Preliminary Results

The complete teaching system described above is now in use by NASA

personnel, and has been used by a small number of volunteer students from

Stanford University and Woodrow Wilson High School in San Francisco, but

results are not yet available. The preliminary system, which formed the

basis for the present system, was used by ten students in the spring of 1969
and sUbsequently by another half-dozen who sought out the curriculum designer

to request use of the course. The results were extremely encouraging;

student motivation was high, performance was good, and in all respects, the

preliminary system proved itself both in overall philosophy andin curriculum

design. An excerpt from the April-June 1969 progress report is given here.

f1A small pilot stUdy was designed during the Spring Quarter, 1969, to

supply information for meaningful revisions of the curriculum and the in­

structional system. Since this was the first trial of the system, the most

useful information would be derived from observations of students' reactions

to the program. There was no plan to collect detailed data or to do any

kind of statistical analysis of data. Ten students were enrolled in the

course on a flexible time scheduling basis; some students were scheduled

three sessions a week, others two , and others came only once a week, depend­

ing upon the wishes of the individual students. The students were allowed

to use the course in whatever way they felt best; but they were restricted

to taking not more than two lessons per session. Also, immediately after

each session, they were to be interviewed briefly.

"The students completed anywhere from three to twenty lessons each,

with about half of them getting as far as Lesson 20. In general, the students

who did fewer lessons did so because they spent less time on the lessons

rather than because of any great difficulties with the material. In fact,

the student who had the most difficulty with the course, and made the slowest

progress in relation to the time spent, finished Lesson 13 by the end of the

quarter and expressed regret that he hadn't been able to spend enough time

to have completed the 20 available lessons.

22

"Students were timed on several lessons in order to get a rough idea of

the time which would be necessary for future students to complete the course.

The average time per problem for different students ranged from about one

minute per problem to three minutes per problem; the assignments for each

lesson required about as much time as the lesson i tselfo [In the preliminary

version of the course, programming problems were given as additional assign­

ments rather than being incorporated in the lessons as they are now.]

"Extensive notes were taken during interviews with the students and

were summarized in an anecdotal weekly report. AlSO, the responses to

individual problems were tabulated and the percentages of correct and in­

correct responses were calculated. The most frequent incorrect response to

each problem was also tabulated.

"The students were qUite enthusiastic about the course and would have

worked for several hours at a time had they not been restricted to taking

no more than two lessons per session. Since most of the students' comments

were about specific problems, there was no indication that a major revision

of the curriculum is needed. The following are a few general observations

based on students' comments and behavior.

"Use of student controls. The student control commands, which were

explained in detail in Lesson 1, were received with enthusiasm. (A control

command is given by holding down the 'CTRL' key while striking a letter key.)

The commands used were

Ctrl-H

Ctrl-T

Ctrl-S

Ctrl-G

(used to request a hint) [This has been changed to a question
mark in the newer version.]

(used to reque s t the answe r)

(skip to next problem) [This control command is available,
but not stressed in the revision.]

(used to get another problem or lesson. After the student
types Ctrl-G he is asked to specify the lesson and problem
he desires 0)

"Both Ctrl-H and Ctrl-T were used frequently, although there was

noticeable tendency for students to use one or the other but not both.

Ctrl-S was rarely used; in fact, several students were asked, at the end

of Lesson 3, what control commands were available and were not able to

recall Ctrl-S.

"Ctrl-G was used much less than anticipated. At the end of the pilot

study, the students were queried about this; several students replied that

they thought they would not be contributing fully to the experiment (the

pilot study) if they skipped any of the lessons; a few students felt that

they would not know what they had skipped and that it might be important to

them in later lessons (this comment was made even in reference to reviews

and self-tests in which there was an explicit statement that no new material

would be presented and that it was perfectly acceptable to skip the entire

lesson); only one student consistently chose to review previous lessons and

he commented that he felt he simply repeated the same mistakes without

achieving any noticeable gain in understanding.

"Language confusion. Almost all students evidenced some confusion

between the language they were learning (the AID programming language) and

the language (English) used in the exposition. Part of this confusion un­

doubtedly arose because the AID language is a subset of English (AID commands

are syntactically correct English sentences containing a verb, ending with

a period [the newer version of AID does not require a period], etc.);

although this is certainly not a complete explanation and it is obvious

that the advantages of teaching an English-based programming language far

outweigh the disadvantages even if it could be shown to be a significant

factor in the language confusion.

"Furthennore, a few students were also puzzled about which program they

were using--the teaching pTogram or the AID interpreter (which they used

for doing assignments); one student tried to ask the AID interpreter for

hints about an assigned programming problem. It is felt that some confusion

between languages and between programs is almost inherent in the situation

and no satisfactory way of dispelling the confusion has been found.

"Constructed responses to multiple-choice problems. The multiple­

choice problems used in the course consist of a problem statement or

question and a list of possible answers, each of which is labeled with a

letter. For example,

WHICH OF THESE

A. TYPE

B. PRINT

ARE CORRECT AID

2 X 3.

2 *3.

COMMANDS?

24

C. TYPE 2*3.

N. NONE OF THE ABOVE.

"Students are expected to respond by typing a letter (or list of letters)

corresponding to the correct answer (or answers).

"There is a noticeable tendency for students to respond to certain

multiple-choice problems by typing the answer itself rather than typing the

corresponding letter. In the AID course, a response other than a single

letter (or list of letters) is treated as an error, and the message

PLEASE TYPE LETTERS ONLY

is given. This error message has been found to be remarkably ineffective;

the probability that a student will repeat the same kind of error after

receiving the above error message seems to be greater than one half, possibly

as much as three quarters.

liThe tendency to make the kind of error described above seems to be

influenced by the following factors: [Note: the following remarks were

based on observations and suggest future lines of research.]

"1. Answer length. If the number of characters in the answer choice

is small (say, two to six characters), there is a strong tendency to type

the answer itself.

112. Context. If the problem is preceded by several problems requiring

constructed responses, the tendency to construct a response is somewhat

increased. If the preceding constructed responses are closely related to

the choices in the multiple-choice problem, there is an even stronger

tendency to construct a response; for example, if the six preceding problems

require 3-digit numbers as a response, and the choices in the mUltiple-choice

problem are 3-digit numbers, there is a high probability of making an error.

113. Problem-solving strategy required. There seem to be two distinct

kinds of problem-solving strategies used in producing the answer to a multiple­

choice problem. One is a 'mental construction' of the correct answer, fol­

lowed by a search of the choices for that answer, and the other kind is a

'feasibility-elimination' approach in which the student inspects the list

of possible answers and chooses that which is most feasible, or eliminates

those choices which are least feasible. (Generally, students working on a

specific problem will not switch from one strategy to another unless there

is a compelling reason; for instance, a student will abandon a 'feasibility­

eJimination' approach if several choices are equally feasible.) The strategy

a student uses is influenced by the problem statement although there is some

tendency for individual students to prefer one strategy over another. If

the 'mental construction' strategy is used, the student is more likely to

produce an overt construction of the answer, thereby producing an 'error.'

"4. Wording used in problem statement. The wording used in instructions

to the student seems to have some effect on the tendency to give a constructed

answer to a multiple-choice problem. In particular, use of the word 'what'

in the problem statement produces more errors than the word 'which.' For

example, compare 'What command causes AID to give N a value of 12?' with

'Which command causes AID to give N a value of 12?'

"One additional comment: Although the above remarks may imply that :the:.'

error of constructing a response in answer to a mUltiple-choice question is

a use-mention error, this may not be the case. There are a number of problems

in the course which require a 'partial construction' and there is an observ­

able tendency in students to give a more complete answer than is required;

for example, students tend to answer 'Do Part 12' rather than fDo' in

response to this problem:

COMPLETE TillS COMMAND TO EXECUTE PROGRAM 12.

PART 12

"The error of constructing a more complete response than required is

clearly not a use-mention error, and it seems to be closely related to the'
,

error of constructing a response to a multiple-choice problem.

"Answer length, context, required strategy, and wording used in the

problem statement are not the only factors which contribute to the kind of

use-mention error under consideration here; there are also individual factors,

such as age and previous experience. However, the above four factors are

the only curriculum-oriented factors which seem to have an effect."

Starting in the summer of 1969, extensive revision of the curriculum

and programs was undertaken. The major changes were the provision for

multiple hints (in the first version, there was only one hint per problem)

and the provision of a multiple-strand structure to provide for review les­

sons, summaries, and extra-credit problems. The coding language and programs

were extended considerably. As mentioned before, detailed results are not

available, but all indications are that the revision is extremely successful;

both students and teachers were enthusiastic.

IV. Computer Programs and Coding Language

One of the major efforts of the AID project has been in the development

of a suitable coding language and a manual explaining the use of that coding

language. The necessity for developing a coding language became apparent

quite early in the planning stage of the system, since no available high­

level language suitable for implementing the kind of optimization schemes

was envisioned. The coding language, INSTRUCT, developed for this project,

was designed to be learned and used easily by inexperienced coders and

writers. Further, the manual, which includes a complete description of the

instructional system, is written for readers who are unfamiliar with com­

puters and programming. There are step-by-step instructions on coding,

processing, and debugging lessons, as well as instructions for initializing

a course, and for defining additional coding commands. The coding commands

are summarized in a separate section, so that the manual can serve as a

reference source as well as a primer. One of the major reasons for produc­

ing such a complete coding manual was to provide an adequate basic document

for the instructional system should it be implemented on another computer

for use in other places. The manual, which contains 90 pages, cannot be

included in its entirety in this report, but excerpts containing a summary

of op codes and a BNF definition of the language are included in the appen­

dices. An example of a coded problem sequence (taken from Lesson 4) is also

included.

Briefly, the coding language is a high-level computer language designed

specifically for writing tutorial computer-assisted instruction. The language

contains over 30 different types of commands, such as problem statement com­

mands, response analysis commands, conditional branching commands, that

enable a curriculum coder to specify problem statements, hints, sample

answers, detailed analyses of student responses and contingent actions to

be taken, sequence of problems, and format of all messages.

27

In order to provide programmed lessons that are highly individualized,

there must be nontrivial routines for analyzing student responses and per­

forming appropriate actions contingent upon the results of such analyses.

Analysis routines must be highly differential so that specific errors may

be isolated and appropriate remedial material presented. A simple correct­

incorrect classification of responses is insufficient for an individualized,

tutorial system of teaching. There are twelve basic analysis routines:

EXACT, KW, EQ, MC, TRUE, YES, and their negations NOTEXACT, NOTKW, NOTEQ,

NOTMC, FALSE and NO. The EXACT routine checks the student response for an

exact character-by-character match with a coded text string; KW (key word)

checks for the occurrence of a coded key word; TRUE checks for a response

of TRUE or T; the MC (multiple .. choice) routine can be used for multiple­

choice problems in which several choice~ are correct (a correct response

may be a list of all correct choices, or a list of a minimum number of

correct choices, depending upon how the MC command is used by the coder);

the EQ routine checks for a number within a range of numbers, as specified

in the coding, or checks for equality with a single number, also as specified

in the coding.

The basic analysis routines not only check on the correctness of a

student response, they also check on the form of the student response. For

example, the EQ routine accepts as a response any number in integer form,

decimal form, or scientific notation; any response not in an acceptable

form, e.g., a response of the word "four," elicits an error-in-form message:

ERROR IN FORM: PLEASE TYPE A NUMBER. Another routine that differentiates

between correctly formed and incorrectly formed responses, as well as be­

tween ~orrect and incorrect responses is TRUE, which expects either TRUE

or T as a correct answer, and either FALSE or F as an inoorrect answer.

Any other response from the student elicits an error-in-form message:

PLEASE ANSWER TRUE OR FALSE. Most other analysis routines (YES, MC, etc.)

also contain error-in-form subroutines.

Complex analyses of student responses can be made by using simple

Boolean combinations of the basic analysis commands. For example, the

28

coder may specify a check for a number between 1 and 10, but not equal to

either 5 or 5.5, by using appropriate combinations of EQ and NOTEQ commands.

Since most of the action performed by the analysis routines is internal,

i.e., with no action visible to the student, there are also commands that

cause coded messages to be relayed to the student, appropriate branching to

take place, etc. These commands, called "action commands," are all contin­

gent upon the results of the analyses performed by the analysis commands,

i.e., the actions are contingent upon the correctness of the student response.

In addition to the problem coding described above, the system also

allows the coder to specify the number of strands, which of the student con­

trol commands are to be made available, and the characters to be used by the

student for giving such commands. As a labor-saving device, about 15

"standard messages" can be defined by the coder so that he is not required

to code commonly used messages (such as CORRECT, WRONG, TRY AGAIN) more than

once.

Because all problems are written in a high-level coding language, any

changes needed in the curriculum for research purposes are easily accomplished.

The teaching system described above is implemented for the PDP-10

computer located at the Computer-based Laboratory, operated by the Institute

for Mathematical Studies in the Social Sciences of Stanford University. The

teaching system consists of a coding language, a lesson processor program

that will translate from the coding language into machine-readable code, a

lesson interpreter that will interpret the translated code at the time a

student is using the system, and a set of auxiliary operational programs.

The lesson processor is essentially a compiler for the lesson coding language

and is used to translate coded lessons into a form that can be stored ef­

ficiently for later use by the lesson interpreter. The program (the lesson

interpreter) that will be in operation at the time a student takes a

lesson is the most important and largest program in the teaching system.

It is a time-sharing program that must be extremely efficient both in terms

of core space required and in terms of processing time, since both of these

factors affect the response time for all users of the system. Past experience

has shown the length of response time as the single, most critical item of

concern in the design of a system for computer-assisted instruction. A

29

response time of less than 3 seconds is most desirable, and a response time

of more than 10 seconds is totally unacceptable. Response time is affected

both by the efficiency of the processing done by the program and by the total

size of the program. For these reasons, the lesson interpreter is carefully

designed and written in the most efficient available programming language.

The auxiliary operational programs include a student enrollment program and

a daily teachers' report program.

The lesson processor. The lesson processor is a two-stage processor,

the first stage being one of the PDP-IO assemblers. Since the PDP-IO has a

macro-assembler, full advantage has been taken of the macro capabilities;

the processor consists almost entirely of macro definitions of the op codes

used in the coding language, plus a very short load routine, which stores

the processed lessons on a disk file (the processor is essentially a zero­

length program). The coder is also allowed the advantages of a macro

assembler; judicious use of macros can reduce coding time significantly.

The lesson interpreter. The interpreter is written as a reentrant

time-sharing program using 2K words (36 bit) of core plus lK for each of

the students concurrently taking lessons. The program is written in one of

the assembler languages for the PDP-lOG Great care has been taken to ensure

fast response time and economical use of core and disk storage. Routines

for detecting and compensating for coding errors have been incorporated.

In a similar fashion, unexpected responses from students are not allowed to

cause errors in the program. This program has been in daily operation for

as long as 10 hours per day since the first of February and is operating

well; response time is excellent and no bugs have been found in the program.

During the month of March, the lesson interpreter handled 1,050 lessons in

BASIC and AID without any failures, a more than adequate demonstration of

the abilities of the program.

As the students interact with the program, their individual history

file is continually updated and written into disk storage. The history file

is 100 words long and contains the student's name, the number of t~e course

in which he is enrolled, his current position on each strand (lesson and

problem number), the date, and various other information needed by the

program. These history files supply information for auxiliary programs

such as the daily report program; a sample daily report is included in the

appendices. The data found in the individual history files, which are con­

tinutally updated as the student progresses through the course, are the only

data collection currently done by the program.

The AID interpreter. The course "Introduction to Programming: AID"

requires the student to learn to operate two programs that are completely

independent: the lesson interpreter (instructional program) and the AID

interpreter. The AID interpreter is a commercial program supplied and

maintained by ~)igital Equipment Corporation, the manufacturer of the PDP

computers. No changes have been made to date in the AID interpreter for

data collection or any other reason, and there is no interrelation between

AID and the instructional system other than that it is being implemented on

the same computer.

31

APPENDIX A

Student Manual

INTRODUCTION TO PROGRAMMING: AID

Student Manual

by

Jamesine E. Friend

Revised March, 1971

Copyright 1969, 1971 by the Board of Trustees of the
Leland Stanford. Junior University

All rights reserved.

Institute for Mathematical Studies in the Social Sciences

Stanford University

Stanford, California

TABLE OF CONTENTS

Page

How to Start the Teaching Program

How to Stop

Outline of the Course

Glossary

Note: Not all teletypes have the same set of characters.
For shift N, ff t ff is equivalent to ff 1\ ff.

For shift 0, ff~1 is equivalent to ff ff

1

2

3

6

In this manual, t and +- are used; if appropriate, read 1\ and
- for these characters.

How to Start the Teaching Program

In this course, you will be taking computer-assisted instruction in
programming. 'l'he programming language you will learn is called "AID"
and the lessons will be given by the PDP-10 computer at Stanford.

Follow these instructions to start the teaching program:

1. Turn on the teletype: the switch on the front of the teletype must
be turned to the LINE position.

2. Push the START or BREAK key. (If the teletype doesn't start to hum,
get help.)

3. Type a space. The computer will then type
HI
PLEASE TYPE YOUR NUMBER AND NAME

(If this doesn't happen, get help.)

4. TypeQ, your number, your first name, and a space. After you type
the space following your first name, the computer should print your
last name.

5. If your last name is printed correctly, type a space. (If it isn1t,
get help.) Then the computer will print the time, the date, and
your teletype number.

6. Type
L INST

and then push the RETURN key. The computer will type
WHERE TO?

7 . 'Type the RETURN key.

Steps 1, 2 and 3 are used to establish communication with the computer.
Steps 4 and 5 cause you to be "signed on." Steps 6 and 7 start the
teaching program.

If the computer does not respond correctly after each step, get help.

Good luck!

1

How to Stop

When you are through for the day) follow these instructions: ,

lQ Hold down the CTRL key while you type the letter C.
The computer will print a period.

2. Type the letter K, then push the RETURN key.
The computer will print the sign-off message.

You do not have to turn the teletype off. It will turn off by itself.

2

Lesson 1.

Lesson 2.

Lesson 3.

Lesson 4.

Lesson 5.

Lesson 6.

Lesson 7.

Lesson 8.

Lesson 9.

Lesson 10.

Lesson 11.

Lesson 12.

Lesson 13.

Lesson 14.

Outline of :the Course

Computer-Assisted Instruction in Programming:. AID

How to answer. How to erase. Control commands.

Signing on and off AID. The TYPE command. Arithmetic
operators: + - * /. Decimal numbers.

Using AID for arithmetic. Use of parentheses. Order of
arithmetic operations.

The operator t for exponentiation. Order of operations.
Scientific notation.

Variables. The SET command. Re-defining variables. The
DELETE command used to delete variables.

Self-test.

Review.

The LET command (using function notation). Distinction
between LET and SET. Distinction between use of a defined
function and display of the formula for a function. Re­
defining and deleting functions.

Some standard AID functions: IP(x), FP(x), SGN(x), SQRT(x).

Indirect steps.
DO STEP .•.•
DO STEP ..• FOR
Re-defining steps and deleting steps.
TYPE STEP

Parts.
DO PART
DO PART FOR
Deleting parts.
TYPE PART.

The DEMAND command.
DO PART .•. , .•• TIMES.
Termination by refusal to answer a DEMAND command.

Self-test.

Review.

3

Lesson 15.

Lesson 16.

Relations between numbers.
Relational symbols: < > <= >=
Number line.
The IF clause.

Branching. The TO command.
TO STEP
TO PART

#

Lesson 17·

Lesson 18.

Lesson 19·

Lesson 20.

Licsson 21-

Lesson 22.

Lesson 23·

Lesson 24.

Lesson 25·

Lesson 26.

Lesson 27·

Lesson 28.

Lesson 29·

Lesson 30.

Lesson 31-

Lesson 32.

Lesson 33·

Lesson 34.

Lesson 35.

Lesson 36.

Lesson 37·

Traces.

The indirect use of DO.

How to write and debug a program.

Self-test.

Review.

The FORM statement.

Loops.

Loops with variable bounds.

Loops compared with FOR clauses.

Loops with a DEMAND command.

Self-test.

Review.

Absolute value.

Trigonometric functions: SIN(x), COS(x).

EXP(x), LOG(x).

Lists.

Using loops with lists of numbers.

Self-test.

Review.

Nested loops.

Iterative functions: SUM, PROD, MAX, MIN.

4.

Lesson 38.

Lesson 39.

Lesson 40.

Lesson 41.

Lesson 42.

Lesson 43.

Lesson 44.

Lesson 45.

Lesson 46.

Lesson 47.

Lesson 48.

Lesson 49.

Arrays~

LET S BE SPARSE.

More about lists and arrays.

Conditional definition of functions.

Self-test.

Review.

Recursive functions.

AND, OR and NOT.
Truth tables.

TV(x). The function FIRST.

LET used to define propositions.

More standard AID functions.

Self-test.

Review.

:'5

GLOSSARY

Absolute value
The absolute value of a number is the size of that number
disregarding the sign of the number. In AID, exclamation
points are used to denote absolute value:
Examples:

!-2.7! = 2.7
!2.7! = 2·7

See Lesson 29. Also see Operational Symbols.

AID
AID is the computer programming language being taught in this
course. "AID" stands for Algebraic Interpretive Dialogue.
See AID Interpreter.

AID c:ommands
All AID commands have a similar form.
Each command must be on one line and must end with a
RETURN. The form of the commands is as follows:

1. An optional step number, like 2.1 or 37.54 or 16.165.
2. A ve rb such as TYPE, SET, DELETE.
3. An argument whose form depends upon the preceding verb.

The argument for TYPE is an algebraic expression:
TYPE X + 2/Y

The argument for SET is all equaticn with a single variable
on the left of the equal sii;n:

SET C = 72/B + 3.134
Etc.

4. An optional IF clause.
TYPE X + Y IF Z < 0
SET Q = 3 IF P = 15
DO PART 3 IF X < 27

In addition to the above four parts, certain commands may
contain FOR clauses, or IN FORM clauses.
The AID commands taught in this course are

DELETE Le s sons 5, 11
DEMAND Lessons 12,26
DISCARD Lesson 19
DO Lessons 10, 11, 12
FILE Lesson 19
FORM Lesson 22
LET Lesson 8
RECALL Lesson 19
SET Lesson 5
TO Lesson 16
TYPE Lesson 2
USE Lesson 19

See Direct Steps, Indirec.t.Steps
"********

.6

AID functions
AID functions are the functions already defined by AID.
These functions are

ARG, COS, DP, EXP, FIRST, FP, IP, LOG, MAX, MIN, PROD,
SGN, SIN, SQRT, SUM, TV, XP.

Each of these functions is separately defined in the glossary.
See Lessons 9, 30, 31, 45 and 47.

AID Interpreter
The AID Interpreter is the program used when you want AID to
solve a problem for you. After you start AID, you can type
any AID commands. The AID Interpreter interprets your commands
and executes them. To start the AID Interpreter (after you are
signed on), type CTRL-C then type "L AID".

To stop the AID Interpreter, type CTRL-C.

To stop a runaway AID program, type CTRL-C twice.
*****-l(.-l(.*

AND
"AND" is a logical operator used in propositions. All elements
connected by "AND" must be true for the entire expression to be
true. If anyone element is false, the expression is false.
Examples: Arsoume A TRUE, B == TRUE, C == FALSE

X == A AND B X == TRUE
Z == A AND B J\..ND C Z == FALSE

See Lessons 15 and 44. Also see Proposition.

Ansvrer~ litY.v to
To answer a problem in the teaching program type your answer,
then type tLe key labeled "RETURN. It For multiple-choice problems,
there may be more than Olle correct answer; you may type the letters
in any order (with spaces or commas between them, if you wish),
for example,

ABC
CR~

A, C, B
B C A

For TRDE-FiiliSE questions, you may type "T" for "TRUE" and "F"
for "FALSE." For YES-NO questions, you may type "Y" for "YES"
and "]I,f' for "NO."
See Lesson 1.

-l(.*******

Answer, Ho';v to Get
To get tree cGrrect anSvler to a problem, hold down the "CTRL" key
"¥rhile ;rou tjpe the letter "T" (for "Tell me the answer").

.lE-*

'7

ARG
ARG(x,y) is the argument function. AID finds the angle between
the +x axis of the x,y plane and the line joining 0,0 and x,y. The
result is in radians.

Arithmetic symbols
See Operational symbols

Array
An array is a set of numbers identified by a single letter and from
1 to 10 subscripts (indices). The sUbscripts may be any integers
from -250 to 250.
Examples:

The following are all members of the same array A:
A(-10,2,5) = 2.789
A(-lO,l,O) = -45
A(1,20,59) = °

You can set all undefined members of an array (for example X) to
be ° with this command:

LET X BE SPARSE.
See Lessons 38 and 39. Also see List.

Asterisk (*)
Both the teaching program and the AID Interpreter print an asterisk
when ready for a response from the user. The asterisk is also used
as the multiplication symbol (6 * 7 means 6 times 7).

Base
(See also Exponent, Exponential function;) In an exponential
function the base is the number mUltiplied by itself as often
as specified.
Example:

X is the base: Xt2 = X*X
The base may be either a number or a variable.
See Lessons 4 and 31.

Boolean expression
See Proposition.

Branch
To branch means to go from one part of a program to another part
of the program out of sequence. To do this use the DO command
or the TO command.
See DO, TO.

8

condition: value)
may be omitted,

Command
See Control commands, AID commands

Control commands
CTRL stands for the key marked "CTRL." Whenever you see a command
with CTRL- and a letter, you are supposed to hold down the CTRL
key while you type the letter. C'CTRL" stands for "control. If)
CTRL-A. The "repeat" or "again" command causes the retyping of

a problem.
CTRL-C. This is the call command. It is used to stop a program

that is running. Use CTRL-C to stop either the teaching program
or the AID Interpreter. If you have written an AID program
that is endlessly looping, type CTRL-C, then type REENTER to
start AID again without restarting the program which was looping.
See Lessons 1, 2 and 16.

CTRL-G. This is the "go" command. You use this command only in
the teaching program to go to the lesson or problem you choose.
After you type CTRL-G, the computer asks "WHERE TO?" Then you
specify the lesson or problem you want. See Lesson 1.

CTRL-H. This is the "hop" command. It causes the teaching program
to skip the problem you are working on and go to the next one.
Use this command whenever you want to go on to the next problem
without doing or finishing the current one.

CTRL-O. This is the "Oh, shut up" command. It will stop the
computer from typing. The computer will then wait for a response
from the user.

CTRL-T. This is the "tell" command. If you are using the teaching
program and want the answer to a problem, type CTRL-T and the
computer will print the answer and then go on to the next problem.
See Lesson l.

CTRL-U. This is the "undo" command. It will cause the computer
to erase the line you have just typed.

? This is the hint command. If you are using the teaching
program and want a hint about the problem you are working on,
type a question mark,? The computer will then give you a
hint. See Lesson 1.

Conditional definition of functions
A function is said to be defined "conditionally" if the value of
the function depends upon some condition such as " ..• IF X > 0"
or " ... IF 2 < X AND X < 7." For example, the absolute value
function can be defined in this way: .

For x > = 0, A(x) = x.
For x < 0, A(x) = -x.

In AID, this conditional function is defined by the command
LET A(X) = (X > = 0: x; x < 0: -x)

The form of a conditional definition in AID is
(condition: value; condition: value; ••• ;

Generally, the last condition (and last colon)

·9

in which case the last value listed is used for "everything else,"
i.e., for all cases not covered by one of the preceding conditions.
The absolute value function may be written without the last condition:

LET A(X) = (X > = 0: X; -X)

Counter
A counter is a variable used for counting. The counter is usually
set to some initial value, say 0, and then increased by some amount,
say 1, at regular intervals. One common use of a counter is to
count the number of times a loop is used. One of the commands inside
the loop should change the value of the counter (usually by adding
or sUbtracting a given number). Somewhere inside the loop there is
an "exit condition," in which the counter is compared with another
number to decide if AID should repeat the loop or if it should exit
from the loop and go on to some instruction outside the loop. See
Lessons 23, 24, 25, 26 and 36.

COS
COS (x) is the cosine function. AID will give the cosine of the
number you give. X must be given in radians and the absolute value
of X must be less than 100.
Example:

COS(O) = 1
Ill00lUKKIl

CTRL
See Control commands

Debug

(See also Trace) To debug a program, you must find and correct all
the errors in it·, whether they are logical errors or simply typing
errors. A trace is an effective method for finding precisely where
an error is. See Lesson 19.

DELETE
Use DELETE to remove a variable, a specific element in an array,
or an entire array, along with the values belonging to them from
computer storage. You may also DELETE a step, a part, a fonnula,
or a form. One DELETE command may be used to DELETE several items.
Examples:

DELETE Z
DELETE A(2)
DELETE FORM 71
DELETE Y, FORMULA B, PART 7

See Lessons 5, 8, 10, and 11."."..,,4lso see FILE commands.

H******

lQ

*
*

output:
B = *
M(2,4) =
POUNDS =

DEMAND
DEMAND X causes the computer to stop and wait for the user to type
a value. DEMAND can only be used as an indirect command.
Examples:

AID command:
1.3 DEMAND B
7.12 DEMAND M(2,4)
4.1 DEMAND P AS "POUNDS"

See Lessons 12 and 26.

-3 in location X)

output:
2*7 = 14
no output (stores

Direct step
An AID command not preceded by a step number is called a "direct
step." AID interprets and executes a direct step as soon as you
type the RETURN key. You must type a direct step each time you
want it executed. DEMAND and TO may not be used as direct steps.
Examples:

AID command:
TYPE 2*7
SET X == -3

DISCARD
See FILE commands. Also see DEIETE.

DO
The DO command is used to execute an indirect step or part. You
may specify how many times the step or part is executed (if you
don't specify, it will be executed only once). You may also use
a FOR clause and specify a range of values for which the step or
part is to be executed.
Examples:

DO STEP 10. 1.
DO PART 6, 2 TIMES.
DO STEP 8.2 FOR X = 12(2)20.

See Lessons 10, 11, 12, and 18. Also see FOR clause.

DP
DP(x) is the digit part function. This function uses the scientific
notation form of a number and finds the new form of the digit part
of the number you specify.
Examples:

241.37 in scientific notation is 2.4137*10t2, so
DP(241.37) = 2.4137

.24137 in scientific notation is 2.4137*10t(-1), so
DP(.24137)== 2.4137

The DP function is introduced in Lesson 47.
See Scientific Notation, XP.

11

Erase
To erase a line, hold down the CTRL key while you type the letter
U. To erase one character at a time, type the RUBOUT key once for
each letter you want erased. See DELETE, DISCARD. See Lesson 1.

Errors
In writing AID programs you may make two kinds of errors:
1. Semantic errors. A semantic error is the kind that occurs

when you leave out a necessary command or use a valid AID
command when you intended to use another. AID will execute
the commands just as you wrote them. This means that the
only way to detect this kind of error is to see if you are
given a wrong answer. A program may keep running indefinitely
if an infinite loop is introduced. Type CTRL-C twice to escape,
then type "REENTER."

2. Syntax errors. These are the e'rrors that occur when you type
something which is meaningless to AID. Because AID does not
understand, it will stop and print an error message, then
wait for you to do something (SUCh as correcting the mistake
and starting again!).

See Lesson 19. Also see Erase.

Execute
To execute a program, you make the computer do the commands in
the program. This is done by writing the program and then giving
AID a command to execute the program (for example, DO PART 5).
Indirect steps and parts are stored and you must use a DO command
to cause AID to execute them. Direct steps are always executed
immediately.

Exit condition
An exit condition is a command within a loop which tells AID
whether to repeat the loop or to quit looping. One kind of exit
condition compares a counter with another number to decide. When
the condition of the comparison is not met, AID exits from the
loop and goes to the next step. No exit condition is needed if
the loop contains a DEMAND command, since you can stop the loop
at any time by typing only a carriage return when AID waits for
you to give a value.
Examples:

1.4 TO STEP 1.25 IF X > 25.
9.34 TO STEP 9.1 IF SQRT (X) < 10.

See Lessons 23, 24, 25, 26 and 36. See Counter.

12

EXP
EXP(x) is the exponential function, EtX, where E is Euler's number
(2.71828183) •
Example:

EXP(3) = 20.0855369
See Lesson 31,.

Exponent
In an exponential function the exponent tells how many times the
base is mUltiplied by itself. The exponent may be either a number
or a variable.
Examples:

3 is the exponent: Xt3
Z is the exponent: 7.43tZ

The AID function EXP(X) is equivalent to 2.7l828l83tX, so X is
the exponent. A fractional (or decimal) exponent indicates which
root of a number is being calculated. For example, the square
root of X may be written either

Xt(1/2)
or

Xt(.5).
If the exponent is negative you first do whatever is indicated by
the numerical value of the exponent (find the proper root or
mUltiply the base by itself the correct number of times). Then
take the reciprocal of the result.
Examples:

4 t (- 3) = 1/4 t 3
10t(-6) = 1/10t6

If the exponent is 0, the value of the expression is 1, regardless
of the value of the base.
Examples:

2tO = 1
5.5to = 1
Oto = 1

See Lessons 4· and 31. See Base, Exponential Function.

Exponential function
An exponential function is a function in which the variable appears
as an exponent.
Examples:

F(X) = 2tX
G(X) = 1.2t (3*X)
H(X) = XtX

The AID function EXP(X) is an exponential function which is
equivalent to 2.7l828183tX. Also see Base, Exponent.

FILE dommands
Programs, formulas, forms, etc., may be filed for later use by
using the AID file commands. The commands

USE FILE 100
FILE PART 3 AS ITEM 5

will cause PART 3 to be permanently stored as item 5 on disk file
100. The PART may be fetched from the file at a later date by
using the commands

USE FILE 100
RECALL ITEM 5

Item numbers can be from 1 to 25.
Examples of file commands:

USE FILE 100
FILE F AS ITEM 6
FILE FORM 70 AS ITEM 10
FILE PART 2 AS ITEM 12

An item is erased from a file by a DISCARD command:
DISCARD ITEM 17

See Storage. See Lesson 19.

FIRST
FIRST is an AID function that finds the first value in an array
which satisfies the specified proposition.
Example:

FIRST(I = 1(1)30: A(I) > 700)
I is the index of the array A so I = 1(1)30 tells which elements
of the array are to be considered. A(I) > 700 is the proposition
which must be satisfied. The result of the FIRST function will be
the index of the first element in the array A which is greater
than 700. See Lesson 4'5.

FOR
A FOR clause can be used after a DO command. The FOR clause
specifies the values for which the DO command must be executed.
There are two ways to specify the values in a FOR clause:
1. The values can simply be listed:

DO STEP 1.3 FOR X = 1,2,3,10.
Step 1.3 is done one time for each of the four values of x
listed.

2. The values may be specified by giving the range:
DO STEP 1.3 FOR Y = 3(2)13.

Step 1.3 will be done for Y = 3, 5, 7, 9, 11, and 13.
3 is called the initial value, 2 is the step size, and 13 is
the final value. (See Range.)

See Lessons 10, 11, and 25.

14

FORM
FORM is the command used to tell AID to type an answer in some form
other than the standard form. To specify the form, first type the
word "FORM," then give it a number, and follow it with a colon. On
the next line type the form you want AID to print your answer in,
including any words you want. Where AID is to fill in the number,
use back arrows to represent digits. Put the decimal in the appro­
priate place. Caution: use only one line.
Example:

FORM 73:
THE ANSWER IS ----.--

Then when you want AID to use ypur form, use a command like
TYPE X IN FORM 73.

See Lesson 22.

FP
FP is the fraction part function. AID answers with the fraction
part of the number or variable you specify.
Examples:

FP(132.576) = .576
FP(-8.543) = -.543

The FP function is introduced in Lesson 9.

Function
See AID functions.

Go
See CTRL-G, WHERE TO?

Hint
In the teaching program, hints are provided for most problems.
To get a hint, type a question mark, ?There are usually
several hints with each problem; the first time you type a
question mark you will get the first hint, the second question
mark will give you the second hint, etc.

IF clause
An IF clause may be added to any AID command so that the command
will be executed only if the proposition in the IF clause is
satisfied.
Example:

1.1 SET B = 50 IF A > 100.
AID will set the value of B equal to 50 only if A is greater
than lOa. See Lesson 15.

15

Index
An index is a reference number for a list or an array. The index
is the number in parentheses. Since all the members of a list or
an array have the same letter, each member has its own index to
distinguish it from the others.
Example:

L(16) = 10 means the 16th number in the list L is 10.
L is the label for the list.
16 is the index of a particular element.
10 is the value of that element of the list.

The plural of "index" is "indices." An index is also called a
sUbscript. See Lesson 32.

Indirect step
An indirect step is an AID command preceded by a step number.
Indirect steps are stored for later use, rather than executed
immediately. When you use a DO command or a TO command, the
step will be executed.
Example:

1. 3 TYPE 3*2.
AID will not print anything until you give an indirect DO or TO
command or one of these direct commands:

DO PART 1.
or

DO STEP 1. 3.
Step numbers must be decimal numbers containing both an integer
portion and a decimal portion; a step number can contain a maximum
of nine significant digits. Some commands may only be used in
indirect steps; those commands are DEMAND and TO. See Lesson 10.
Also see Part, Step number.

Initial value
The term initial value may refer to two different things. It is
the first value given to a counter (see Loops, Exit conditions).
It also refers to the first value of a range of values in a FOR
clause using this form:

initial value (step size) final value
In the command

DO PART 3 FOR X = 6(2)20
the initial value is 6.
See Range.

Input
Input commands assign values to the variables in a program. Most
programs must provide for input. The SET and DEMAND commands are
used for input. See Lesson 19.

16

(The first number in list L is 10.)
(The second number in list L is 6.)
(The third number in list L is 29.)
Also see Array.

INST
See Teaching program.

IP

IP(X) is the integer part function. AID will give the integer
part of the number or variable you specify.
Examples:

IP(.723) ::: 0
IP(72 .8) 72
IP(- 6 •9) ::: - 6

The IP function is introduced in Lesson 9.

L AID
See AID Interpreter.

L INST

See Teaching Program.

Lesson

To get a specific lesson using the teaching program, you must
First, sign on (see page 3)
Second, start the teaching program (Type ilL INSTil)
Third, specify the lesson (Type "L5" for Lesson 5, "L36"
for Lesson 36, etc.)

Also see CTRL-G.

LET

LET is used to define functions and propositions.
Examples:

LET A(W,L) ::: W*L (fonnula for area of a rectangle)
LET B ::: X AND Y (B will be true only if X and Y are both true.)
LET T(A) ::: SIN(A)/COS(A) (tangent function)

See Lessons 8 and 46.

Line number
See Step Number, Indirect Stepo

List

You may use one letter to represent a list of numbers. Each number
in the list must have an index to distinguish it from the other
members of the list.
Examples: L(l)::: 10

L(2) ::: 6
L(3) ::: 29

See Lessons 32 and 33.

LOG
LOG(X) is the natural logarithm function. LOG(X) gives the loga­
rithm to the base E of X. E is Euler's number (2.71828183). X
must be greater than O.
Example:

LOG(650) = 6.47697236
The LOG function is introduced in Lesson 31.

Logical operator
The logical operators in AID are AND and OR.
AND are done before operations involving OR.
see Propositions.

Operations involving
See Lesson 44. Also

Loop
A loop is a portion of a program that is repeated.
times a loop is executed depends on the counter and
condition. Loops are first discussed in Lesson 23.

The numbe r of
on the exit

same as MAX(3, 6, 9, 12)
same as
2t2, 2tO)

MAX
MAX is the AID function that finds the largest value in a list.
Example:

MAX(5, -4, 3, y, xt2)
You may also specify the list as a part of a sequence. You must
specify which numbers in the sequence are to be considered and
what the fonnula for the sequence is.
Examples:

MAX(1 = 1,2,3 4: 1*3) is the
MAX(J = 10(-2)0: 2tJ) is the

MAX(2tlO, 2t8, 2t6, 2t4,
See Lesson 37.

MIN
MIN is the AID function that finds the smallest value in a sequence.
You must tell AID which numbers in the sequence are to be considered
and what the fonnula for the sequence is. For short sequences you
may simply type the list of numbers.
Examples:

MIN(i = 1(1)5: i*3)
MIN(j = 3,0,-2: 2tj)
MIN(4 ,8,-7 ,z)

See Lesson 37. Also see MAX.

Mistakes
See Errors, see Erase.

18

MUltiple choice problems
See Answer.

NOT
See Propositions.

Numbers
Numbers may be expressed in either decimal form (2348.25) or in
scientific notation (2.34825*lOt3). Numbers are limited to 9
Gi~nificant digits. See Lesson !f.

!'Tumbe l' line
The number line is a line divided into equal parts. One dividing
point is labeled 0 a~d all the dividing points to the rigl~ are
labeled consecutively 1,2,3, •••. All the dividing points to the
left uf 0 are labeled -1,-2,-3, ..• , consecutively.
Example:

-.-.-.-.-.-.-.-.-,-
-2 -1 0 1 2 3 4 5 6·

Operational symbols
The AID symbols for arithmetic operation are these:

! absolute value
t exponentiation
* multiplication
/ division
+ addition

subtraction
The order of priority of the operations is this:

I

OR

t
* /
+

See Lessons

evaluated from left to right
evaluated from left to right
2, 3, 4 and 29.

OR is a logical operator used in propositions. If any element
connected by OR is true, then the entire expression is true,
otherwise the expression is false.
Examples: assume A = TRUE, B = FALSE, C = FALSE

X = B OR C X = FALSE
Z = A OR B OR C Z = TRUE

See Lessons 15 and 4~. Also see Propositions.

Output
.An output command causes AID to print the
Most programs should provide for output.
command is TYPE. See Lessons 2 and 19.

results of processing.
The only AID output

PART
A PART consists of all the indirect steps with the same value in
the integer portion. For example, these steps all belong to PART 2.

2.001 SET X = 1
2.99 SET X = X + 1
2.4 TYPE X

See Lesson 11.

PROD
PROD multiplies all the specified numbers in a sequence together.
You must tell AID which members of the sequence are to be used
and what the formula for the sequence is. For short sequences
you may simply type the list of numbers.
Examples:

PROD(j = 1,2,3,4: j + 3)
..• this is equivalent to (1+3)*(2+3)*(3+3)*(4+3)

PROD(i = 5(5)30: j/4)
.•• this is equivalent to (5/4)*(10/4)*(15/4)*(20/4)*(25/4)*(30/4)

PROD(2,4,z,.8,-2)
..• this is equivalent to 2*4*z*.8*(-2)

See Lesson 37. Also see SUM, MAX, MIN.

Proposition
A proposition is a mathematical sentence made up of arithmetic or
logical statements that use the relational operators (>,=,etc.),
NOT, and the logical operators (AND, OR). The value of a proposition
is either true or false. The order of execution within a proposition
is

1. evaluate expressions
2. relational operations
3. NOT
4. AND
5. OR

Examples: assume X = TRUE, Y = FALSE, Z = TRUE
B = X AND Y B is FALSE
A = X AND Y OR Z A is TRUE
C = (2 < 3) OR (7 > 10) C is TRUE

Propositions are discussed in Lessons 44-46. See TV.

Range
In a number of different AID commands a list of numbers can be
specified by defining the range of the numbers in this way:

i{s)f
where i = the initial value, s = the step size, and f : the final
value.
Examples:

DO PART 7 FOR X = 15(5)40
(The initial value is 15, the step size is 5, and the
final value is 4o, so the 11st of numbers is 15, 20,
25, 30, 35, 4o.)

TYPE MAX(N ::: 1(7)29: N/3)
(The initial value is 1, the step size is 7, and the
final value is 29, so the list of values for N is 1,
8, 15, 22, 29.)

A range specification may also be used with MIN, SUM, PROD,
and FIRST"

RECALL
See FILE Commands~

Re ciprocal
The reciprocal
number A.
Examples:

number
3

2·5
.5

1/3

of a nunber, say A, is found by dividing 1 by the

reciprocal
1/3

1/2.5 :::: .4
1/.5 e 2
]/(113) ... 3

Recursion
Recursion is a way of defining a function on the integers by (1)
specifying the value of the function for the integer 1, and (2)
defining the value of the function for integers greater than 1
in terms of the value of the function for smaller integers. For
example, the factorial function F(X) may be defined by these two
equations:

F(l) = 1
(this specifies the value of the function rOT the integer 1.)

F(X) :::: X*F(X-l) for X > 1
(this defines the value of the function for X in terms of
integers less than X.)

In AID, the above two equations are combined in a single conditional
expression, as follows:

F(X) = (X=l: 1; X > 1: X*F(X-l))

21

REENTER
To stop a runaway program, type Cfr:l-C twice, then type "REENTER."
AID does the next step and then stops and tells you where it is so
you can decide what to do next. See Ctrl-C.

equal to
or equal to

in AID:
greater than
less than or
greater than

in Lesson 15.

used
>

<=
>=

discussed

Relational symbols
These are the relational symbols

equal
not equal
< less than

The relational symbols are

Repeat
To have a garbled problem retyped, type CTRL-A, for "again."

Scientific notation
Scientific notation is used to write very large and very small
numbers.

30000
4560000
0.0025

0.00000071
See Lesson 4.

scientific notation
3.0 * 101'4
4.56 * 101'6
2 . 5 * 10 l' (- 3)
7 . 1 * 10 l' (-7)

Semantic errors
See Errors.

SErf
The SET command assigns values to variables.
Examples:

SET X := 5.25
SET Z = A*B (A and B must already have values.)

The SET co~~and is introduced in Lesson 5.

SGN
SGN(X) is the sign function. It gives 1 if X is a positive number,
o if X is 0, and -1 if X is a negative number.
Examples:

SGN(25) = 1
SGN(O) = 0
SGN(-762.4) = -1

The SGN function is introduced in Lesson 9.

22

Sign-on
See Page J- of this manual.

.********
Sign-off

To sign off
CTRL-C
K

use these commands:
(to stop the program)
(to sign off)

digits.

significant digits
203
1
976

limited to 9 significant

Significant digits
The significant digits of a number are the digits beginning with
the first non-zero digit on the left and ending with the last
non-zero digit on the right.
Examples:

number
0.2030
100
.00976

In AID, numbers are

SIN
SIN(X) is the sine fUnction. AID finds the sine of X. X must
be expressed in radians. The absolute value of X must be less
than 100.
Example:

SIN(O) = 0
The SIN fUnction is introduced in Lesson 30.

SQRT
SQRT(X) is the square root fUnction. AID finds the positive square
root of X. X cannot be negative.
Examples:

SQRT(9) = 3
SQRT(60 + 40) = 10

The SQRT fUnction is introduced in Lesson 9­

Start
To start using the computer, you must sign on (see Page ~).

To start the AID Interpreter type:
LAID

To start the teaching program type:
L INST

See Lessons 1 and 2. Also see AID Interpreter, Teaching Program.

23

STEP
Every AID command is called a "step." There are indirect steps,
which are saved for later execution, and direct steps, which are
executed immediately.
See Lesson 10. See AID Commands, Indirect Steps.

Step number
Any AID command may be preceded by a step number to make the command
into an indirect step (which is stored, rather than executed immed­
iately). Step numbers must be decimal numbers containing both an
integer portion and a decimal portion; a step number may contain a
maximum of nine significant digits. For example, the following are
all valid step numbers:

1.2
1.3
10.678
10.6781233

See Indirect Step.

Stop
To stop a runaway AID program, type CTRL-C twice, then type
"REENTER." To stop either the AID Interpreter or the teaching
program, type CTRL-C (see Control commands). To stop for the
day, you must sign off: Type "K" after you have typed CTRL-C.

Storage
Storage locations are in the short-term memory (core) of the
computer. AID gives each variable, each member of a list, etc.,
its own storage location. If you change the value of a variable,
AID finds its storage location, takes out the old value and puts
in the new value. The SET command is used to store numbers and
lists of numbers. The LET command is used to store function
definitions and definitions of propositions. Indirect steps (steps
with a preceding step number) are automatically stored. Anything
in short-term memory may be changed simply by redefining it, or
it may be erased by using a DELETE command. For long-term storage,
see FILE Commands.

SUbscript
See Index.

SUM
SUM is the AID function that adds the specified members of a sequence.
You must tell AID which members of the sequence to consider and what
the formula for the sequence is. For short sequences you may simply
list the numbers.
Examples:

SUM(j = 1,2,3,4: j*3)
.•• equivalent to (1*3) + (2*3) + (3*3) + (4*3)

SUM(i = 1(3)25: it2)
... equivalent to It2 + 4t2 + 7t2 + ... + 25t2

SUM(10,X,z,-42.1)
..• equivalent to 10 + X + Z + (-42.1)

See Lesson 37. Also see PROD; MAX; MIN.

Syntax errors
See Errors

*·a*****

Teaching program
The teaching program is the one that teaches you how to write
programs using the AID language. After you are signed on, you
may start the teaching program by typing:

L INST
For complete instructions, see page }, of this manual.

TO
TO is a branching command used to tell AID to go to a step or part
out of sequence. TO must be used indirectly only.
Examples:

2.75 TO STEP 2.3.
17.4 TO PART 15.

TO is introduced in Lesson 16.
***~

Trace
A trace is a table used to find errors which are difficult to spot
othe rwise. To make a trace, lis t the steps in a program in the
order they are done. For each step also list the values of the
variables after the step is done. Sometimes output is listed for
each step. Traces are discussed in Lesson 17.

****-1:1***

25

(A is a number)
(F is a formula)
(A is a list)
(B is an array)
(M is a proposition)

Trigonometric functions
The only trigonometric functions in AID are SIN(X) and COS(X).
You must define your own functions if you want to use any other
trigonometric functions. For example, the tangent function can
be defined by

LET T(X) = SIN(X)/COS(X)
See SIN, COS.

Truth tables
See Lesson 44.

TV
TV(X) is the truth value function, where X is a proposition. If
the proposition is true, TV(X) will be 1. If the proposition is
false, TV(X) will be O.
Examples: assume A = -5 < 3 and B = (2 < 0) OR (2 < 1)

TV(A) = 1
TV(B) = 0

The TV function is discussed in Lesson 45.

TYPE
The TYPE command causes AID to print out the specified information.

command: output:
TYPE 2*3 2*3 = 6
TYPE +- (a blank line)
TYPE "VALUES II VALUES
TYPE F F(X): 3*Xt2
TYPE X X = 3.47
TYPE STEP 17.2 17.2 SET X = 2/Y

One TYPE command may be used for several things:
TYPE FORMULA F, SQRT(12),3 + 2.7.

See Lesson 2.

USE
See FILE Commands.

Variable
In AID, variables are used to designate storage locations for
numbers, formulas, lists of numbers, arrays, etc. AID variables
are the single letters A, B, C, ... , Z.
Examples:

SET A = 2
LET F(X) = Xt2 + 3
SET A(2) = 7.05
SET B(3,7) = 21. 76
SET M = A AND B

26

WHERE TO?
In the teaching program 'twEERE TO?" is typed by the computer to
indicate that the user can specify a lesson or problem to do next.

To continue your lessons, type the RETURN key.
To start Lesson 19, type "L19"
To do Lesson 45, Problem 6, type "145_6"
To get Summary of Lesson 21, type "S21"
To get a Review of Lesson 26, type "R26", etc.

See Lesson 1.

XP

xp(x) is the exponent part function. This function takes the
number you give and finds the value of the exponent when your
number is expressed in scientific notation.
Examples:

24137 in scientific notation is 2.4137*10t4 so
xp(24137) = 4

.0024137 in scientific notation is 2.4137*10t(-3) so
xp(.0024137) = -3

See Lesson 47.

27

APPENDIX B

AID Documentation

PRECEDING PAGE BLANK N
OT FILMED

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
OPERATING NOTE NO. 32

AID FOR ON-LINE COMPUTATION

adapted from RAND documentation
by S. Russell and R. Gruen

1. INTRODUCTION

October 12, 1967

AID+is an on-line, time-shared computing service that is designed
to appear to each user as a personal "computing aide,lI interacting with
the user and responding to instructions couched in a simple language and
transmitted over communication lines from the user's Teletype.

This memorandum describes the programming language for requesting
computations of AID. Prior experience with other programming languages
(e.g., FORTRAN) is neither necessary nor applicable; indeed, reliance
upon such experience may be misleading.

The section below is an overview and" should be read carefully.
Section 3 is a fairly complete description of the language, designed as
a reference. The examples, however, should be studied; they are positive
rather than negative, showing what is permitted rather than what is not
allowed.

2. OVERVIEW

Users request actions of AID by typing single-line commands called
steps. A numerical label prefixed to the step is an implied command to
AID to retain the step as part of a stored program. AID files away
labelled steps in sequence according to the numeric value of the label
or step number. The step number, therefore, determines whether an addi­
tion, insertion, or deletion is required.

Steps are organized into parts according to the integer parts of
the step numbers. Steps and parts are units that may be introduced,
edited, typed out, or filed in long-term storage. In addition, they
are natural stored-program units for specifying, in a hierarchial manner,
procedures to be carried out by AID.

+AID - Algebraic Interpretive Dialog is derived from JOSS, a system
developed by The RAND Corporation. JOSS is a trademark and service
mark of the RAND Corporation for its computer program and services
using that program. We are indebted to The RAND Corporation for the
use of the program and its documentation.

29

Decimal and logical values may be assigned to any of the 26 letters
admitted as identifiers. Values may be organized into vectors and arrays
by using indexed letters, and the letters themselves may be used to refer
to arrays for purposes of deletion, typing,filling in long-tenn storage,
and as actual parameters of fonnulas (see below).

In addition to values, arbitrarily complex expressions for values and
letters may be assigned to a letter, which may then be used as an abbrevi­
ation for the expression; expressions so assigned are called fonnulas.
Formulas involving formal parameters (identified by letters) may also be
assigned to a letter. The 'letter and expressions for actual parameters,
in fUnctional notation, may then be used as an abbreviation for the fonnula
with the actual parameters substituted for the fonnal ones. The letter
itself may be used to refer to the formula for purposes of deletion, typing,
filing, and as an actual parameter of a formula.

Programs for evaluating the sum, product, largest, and smallest of a
set of decimal values--and for evaluating the first in a range of decimal
values for which a condition holds--can be expressed succinctly and used
as expressions for values:

SUM(I = l(l)N : A(I))
PROD(X, Y, Z/2)

MAX(I = l(l)N : A(I)*B(I))
MIN(X, Y/3, Z*2) .

FIRST(I =X(l)Z : P(I))

Either of the two notational styles may be used, except for FIRST which
finds the first I for which P(I) is TRUE. Programs for detennining the
conjunction or disjunction of a set of logical values can also be expressed
in either style:-and used as expressions for logical values.

Short programs for choosing expressions differentially on the basis of
a set of conditions can also be expressed succinctly and used as expressions.
The notation chosen abbreviates phrases such as:

if x = y use x + y, if x > y use x, otherwise use y

by (X = Y: X + Y X > Y: X ; Y)

Such iterative fUnctions and conditional expressions, together with fonnulas,
lead to powerfUl, direct expressions for complex procedures, particula.rly
recursive ones.

AID represents decimal numbers in scientific notation: nine digits of
significance and a base-ten scale factor in the range -99 through +99.
Addition, sUbtraction, mUltiplication, division, and square root are car­
ried out to give true results rounded to nine significant digits; zeroes
are substituted on underflow while overflow yields an error message.' In

'30

other elementary functions, care is taken to provide reasonable significance
and continuity of approximation, to factor out error conditions, and to
hit certain "magic" values on the nose.

The six numerical relations together with AND, OR, NOT, and a set of
elementary logical functions may be used to express logical values and
conditions (which may be attached to any step).

A single, general rule governs the formation and use of expressions
for values: with the exception of step labels, which must be decimal
numerals, wherever a decimal (logical) numeral is allowed in a command,
an arbitrarily complex eXp~ssion for a decimal (logical) value may be
used.

AID types answers one-per-line, identifying answers by the expression
used in the step calling for the output; in the event of conditional ex­
pressions, AID uses only the chosen sub-expression for identification.
Decimal points and equal signs are lined up, and fixed-point notation is
used whenever possible. For more formal output, the user can create full­
line FORMS to specify literal information and blank fields to be filled
in with answers. A string of up arrows with an optional decimal point is
used for fixed-point fields; a string of periods specifies a tabular form
of a scientific notation (floating point).

Users can request AID to file, in long-term storage, identifiable
units and collections of units--steps, parts, forms, formulas, and values.
Users may then request AID to recall such filed items, discard them from
the files, or type out a list of items in a file.

Users start AID off on the task of carrying out a stored program by
directing AID to DO a step or part--iteratively (for a range-of-values)
or a specified number of times, if desired. AID cancels all outstanding
tasks before beginning a direct (i.e., initiated from the console) task,
begins the interpretation of a part at the first step of the part, and
then interprets each step in sequence. Each subsequent indirect (1. e. ,
initiated by a step of a stored program) DO causes AID to retain the
status of the current task, pause to carry out the new task, and then
return to continue the suspended one. If the user wishes AID to behave
in the same manner for a directly initiated task, the DO command must be
enclosed in par~ntheses.

AID modifies this general behavior whenever it encounters: a) an
error; b) a branching command; c) a stopping command; d) a command for
terminating a task or a portion of a task; e) an interrupt-signal from
the user. The deep and involved hierarchy of tasks and formulas that
can occur (recursion is allowed) demands that AIDis status be perfectly
clear each time control is transferred to the user, for any reason. In
addition to error messages, interrupt messages, and stopping messages,
AID transmits status messages on completion of parenthetical tasks to
distinguish this state from the state of having finished a direct, non­
parenthetical task. The user is able to proceed in every situation, in

the event of errors, he can take corrective action, and then direct AID
to continue with a GO command.

3. DESCRIPTION

EDITING INPUT LINES

AID indicates that it is ready to receive input by typing out an
asterisk (*). Characters may be deleted sequentially backward by striking
the RUBOUT key. Typing asterisk (*) at the beginning or end of an input
line cancels the line.

RULES OF FORM

One command per line, one line per command.

Commands begin with a verb and end with a period.

Words, variables, and numerals may neither abut each other nor contain
embedded spaces; spaces may not appear between an identifier (of an array,
a formula or a function) and its associated grouped argument(s); otherwise,
spaces may be used freely.

Asterisk typed Step
by AID number Verb Arguments Modifiers

I > *1.23 TYPE X, Y, Z+3 IN FORlV1 3 IF X+Y > J..¢.
*1.4 DO PART 6 FOR X == l(J..¢) J..¢l, J..¢¢¢.

DIRECT COMMAND:

STORED COMMAND:

STEP:

PART:

FORM:

Step number omitted; command is executed immediately.

Step number present; command is stored in order of step
number.

A stored command; step number is limited to 9-digit
numbers> 1.

A group of steps whose step numbers have the same in­
tegral part.

A pictorial specification of literal information and
fields to be filled with values, for formal output.
Fields are denoted by strings of left arrows (with
optional point) or strings of dots (for a tabular
form of scientific representation).

*FORM 7:
*1 == --.--- AMPS.

32

V == ••••••••• VOLTS

NUMBERS:

SYMBOLS:

ARRAYS:

Range: +10- 99 to 9.99999999.1099
Precision: 9 significant digits

Single letter identifiers. May identify decimal values,
logical values (true, false), formulas, and arrays of
values.

Up to 10 indices having integer values in the range
[-250,250] .

DECIMAL OPERATIONS:

+-*/**t

Single asterisk for mUltiplication, double asterisk or
up arrow (t)for exponentiation.

RELATIONS: <><=>==#

Extended relations (e.g., a < b ~ c) permitted. Number
sign for not equal.

LOGICAL OPERATIONS:

. AND OR NOT

GROUPERS: () [] (used interchangeably in pairs)

3 + ~2 + ~4.5 = 3 + (~2 + (~4'5))

-2t3*4-5 (-(23).4)-5

2**3**4 (23)4

A OR B AND NOT C OR D = a or (b and not c) or d

BASIC FUNCTIONS

SQRT(X)

SIN(X)

COS (X)

LOG(X)

EXP(X)

ARG(X,Y)

square root, x > 0

Ix in radians I < 100

natural log, x > 0

xe '

angle of point x,y in
radians, arg(O,O)=O.

. 33

NUMBER DISSECTION FUNCTION

SGN(X) -0,0,+1 for x < O,x = 0, x > 0

IP(X) integer part ip(3.2) 3

FP(X) fraction part fp(3.2) = .2

DP(X) digit part dp(100.2) = 1.002

XP(X) exponent part xp(100.2) 2

!x! absolute value for decimal values
Itrue 1= 1, Ifalse 1=0

x,y

arg(x,y)

SPECIAL FUNCTIONS

SUM[I=A(B)C:F(I)]

PROD[I=A(B)C:F(I)]

MIN[I=A(B)C:F(I)]

MAX[I=A(B)C:F(I)]

FIRST[I=A(B)C:P(I)]

TV(P) = 0,1

= FALSE, TRUE

CONJ[I=A(B)C:P(I)]

DISJ[I=A(B)c:p(r)]

CONDITIONAL EXPRESSIONS

SUM(X,Y,Z+lO)

PROD(A+B,c+D,E+F)

MIN(A,B,C,D)

MAX(B,l,X+Y)

gives first I for which P(I) is true

IF P = FALSE, TRUE

IF P = 0, P J 0

CONJ(X=l, Y > 3,p)

DISJ(A=B=C,A > Y~ 10)

where :

means:

P. are expressions for logical values,
~

If Pl is true use El , if P2 is true use E2, otherwise use E
3

,

*SET X = (¢ < Y < = 5: ¢ ; Y < ~: 2*2 ; 5).
*LET P(X) ='.[X = ¢: 1 ; PROD(1 = l(l)X : 1)].

AID VERBS

SET Assigns value. SET and final period may be omitted on direct
commands,

*SET X = 3.
*SET A(5,X) = Y+3*X-X*2.

LET

DELETE

TYPE

DEMAND

DO

TO

STOP

GO

DONE

QUIT

CANCEL

Defines a formula of 9 or fewer parameters.

*LET F(X,Y) == X**2+~*X-6*Y.

*LET H == (B-A)/2.
*LET D(F ,X) [F(X+D)-F(X))/D.
*LET Q(R) == [R==~: 1 ; FP(R)==~: R*Q(R-l)

Erases values, parts, steps, forms, formulas.

*DELETE A, PART 3, ALL FORMS,
*DELETE ALL VALUES, ALL FORMULAS.

Types quoted text or values, blank lines (-), parts, forms, etc.

*TYPE "THE QUICK BROWN FOX. "
*TYPE x+3, D(SIN,~), -, ALL STEPS.

Requests an input value from user, Executing:

1.4 DEMAND A(3,I+~).

with I == 59 causes AID to respond with:

The desired value for A(3,69) may then be typed, followed by
a carriage return,

Executes or "does" part or step. FOR clause gives range of
values, Returns to user if direct, to next step if indirect.

*DO PART 6 FOR X == .1, 3(2)~, ~~*A+2*B.

Sends AID to indicated part or step,

*1.3 TO STEP 3,5.

Interrupts program, Console control returns to user,

Restarts program after interrupt, error message, or STOP
command,

Signals completion of DO for current FOR value.

Signals completion of DO for all FOR values.

Signals completion of all DO's.

35

(DO)

(CANCEL)

LINE

FORM

USE

FILE

RECALL

DISCARD

AID MODIFIERS

IF

FOR

TIMES

Executes part or step without disturbing interrupted
calculation.

*(DO PART 3.)

Signals completion of last (DO).

Types a blank line.

After form number, colon, and carriage-return pauses for
user to enter format for output. Fields are strings of
left arrows or dots.

*FORM 3:
*x = ..-.~y = ~.+-Z =

User file in dictionary.

*USE FILE l,e55 (DTA7).

Stores an ITEM in the files.

*FILE PART 3, A, Z, AS ITEM 7 (CODE).

Retrieves an ITEM from files.

*RECALL ITEM 7 (CODE).

Erases a filed ITEM.

*DISCARD ITEM 3 (FOO).

Precedes a logical expression conditioning any command.

*TYFE X IF (> < = X < 5.
*SET Y = 3 IF X < = l,e5 AND X*Y#l,e5.

Used on DO only. PART or STEP is executed repeatedly for
sp~cified set of values.

*DO PART 3 FOR X = 1(1)l,e5(l,e5)l,e5(>, l,e5(>(>.
*DO STEP 1.2 FOR X = .(>1, .(>3, .1(A)B.

Used on DO only. Causes repeated execution of PART or STEP.

*DO PART 4, 43 TIMES.
*DO STEP 7.3, N+l TIMES.

36

IN FORM

AID NOUNS

TIME

SPARSE

Modifies TYPE only. Causes values to be typed in fields
of specified FORM.

*TYPE X, Y, Z*2 IN FORM 3.

Gives 24-hour time.

*TYPE TIME.

Declares undefined array elements to have zero values; they
require no storage.

*LET A BE SPARSE.

The current line number. Maximum is 54.

EXAMPLE OF A COMPLETE AID TYPEOUT

*TYPE ALL.

1.1 LINE.
1.13 TYPE FORM 2.
1.15 DO PART 2 FOR B = .1(.1)4.

2.~5 SET A = - B.
2.1 LINE IF FP($/5) = 1/5.
2.6 TYPE B, EXP(B), LOG(EXP(B)), C*I(F) IN FORM 1.

FORM 1:

FORM 2:
X EXP(X) LOC PROB

r(F): H!2*SUM(I=1(1)3~:SUM[J=1(1)2:F(Y(I,J))])
F(X): EXP(-X**2/2)

H: (B-A)/3~

Y(I,J): A+H!2**[T(J)+2**I-l]

*

C =

T(1)
T(2) =

.398942281

.57735~268

-.57735~268

APPENDIX C

Excerpts from the Coders' Manual

INSTRUCT

Coders' Manual /

(excerpts)

by-

Jamesine E. Friend

Copyright 1969 by the Board of Trustees of the

Leland Stanford Jr. University

K. Surrunary of Op Codes

Note: If an op code has more than 1 argument, separate the arguments by
commas.

Op Code

LESSON

EOL

PROB

QUES

SPROB

TELL

HINT

EXACT

MC

No. of
Arguments

2

none

1

1

1

1

1

1

1

Kind of
Argument

1. Strand identi­
fier (1 to 6
letters)
2. Lesson number

text string

text string

text string

text string

text string

text string

text string
containing list
of letters

Comments

Pseudo op code. Marks
beginning of a lesson.

Pseudo op code. Marks end
of lesson.

Displays problem number and
problem text. Pauses for
student response.

Displays problem text. Pauses
for student response.

Displays problem text. Pauses
for student response.

Displays text of correct
answer, when requested by
student.
Branch to next problem.
Default routine causes branch
to pause student response.

Displays text for hint when
requested by student. Pause
for student response.

Analyzes student response for
exact match. Sets SCORE.

Analyzes response to multiple­
choice problems. Sets SCORE
to 1 if completely correct,
-1 if completely wrong,
-2 if partially wrong,
-3 if partially correct.
Checks form of response.

EQ

KW

NO

YES

TRUE

FALSE

1

1

o

o

o

b

text string
containing:
L number
2. optional
number, giving
tolerance

text string

Analyzes response for equality
with coded number,'within tol­
erance specified by second
number. Sets SCORE. Checks
form of response.

Analyzes response for existence
of coded text string. Sets
BCOBE.

Analyzes response for "no"
or "n". Sets SCORE. Checks
form of response.

Similar to NO.

Checks for "true" or "t".
Sets SCORE. Checks form of
response.

Similar to TRUE.

LIST

SET

NOTEXACT

NO'IKW

undefined

undefined

Similar to op codes
described above, with
negation of SCORE.

CA

Cl

C2

C3

WA

1

I

1

1

1

optional text
string

,optional text
string

optional text
string

optional text
string

optional text
string

Executes only if SCORE> O.
Displays message~ Branch to
next problem.

Executes only if SCORE = 1.
As for CA.

Executes only if SCORE = 2.
As for CA.

Executes only if SCORE = 3.
As for CA.

Executes only if SCORE < O.
Branch to pause for student
response.

40

Wl

W2

W3

BRCA

BRWA

WS

1

1

1

4

4

1

optional text
string

optional text
string

optional text
string

1. strand identi­
fier.
2. lesson number
3. problem number
4. optional text
string

1. strand identi­
fier
2. lesson number
3. problem number
4. optional text
string

optional text
string

Executes only if SCORE = -1.
As for WAD

Executes only if SCORE = -2.
As for WAD

Executes only if SCORE = -3.
As for WAD

Executes only if SCORE> O.
Displays message. Branch to
specified problem.

Executes only if SCORE < O.
Displays message. Branch to
specified problem.

Executes only if SCORE < O.
Displays message. Branch to
next problem.

L. BNF Definition of Coding Language

<strand> ::= <lesson> EOL<CR><Btrand>l<empty>

<lesson> ::= <lesson><prob>l<lesson identifier><cr>

<prob> : :=<PROB commandXnun-PROB commands>1
<SPROB commandXnon-PROB commands>1
<QUES commandXnun-PROB commands>

<non-PROB commands> ::= <HINT seriesXnon-PROB commands>I
<TELL commandXnon-PROB commands>I
<analysis commandXnon-PROB commands>I
<action commandXnon-PROB commands>I
<empty>

<HINT series> ::= <HINT command><HINT series>l<empty>

<analysi s command> ::= <EXACT command>I
<MC command>
<EQ command>
<K!W command>

41

<NO conunand>I
<YES conunand>I
<TRUE conunand>I
<FALSE command>I
<NOTEXACT conunand> I

<NOTKW command>

<action conunand> ::= <CA conunand>
<Cl conunand>
<C2 conunand>
<C3 conunand>
~A conunand>
~l conunand>
~2 conunand>
~3 conunand>I
<BRCA conunand>!
<BRWA conunand>
~S conunand>

Problem Statement Conunands:

<PROB conunand> ::= PROB <spaceXtext stringXCR>

<SPROB conunand> ::= SPROB <spaceXtext stringXCR>

<QUES command>

<lIINT conunand>

<TELL command>

00_

0'-

00_

0'-

0'_

0'-

QUES <spaceXtext stringXCR>

HINT <spaceXtext string><CR>

TELL <spaceXtext stringXCR>

Analysis Conunands:

<EXACT conunand> ::= EXACT <spaceXtext stringXCR>

<MC conunand> ::= MC <space><left superquoteXletter list>
<right superquoteXCR>

<letter list> 00_

0'- <letterXconuna><letter lirt>!
<letter><SpaceXletter lint~l

<letter>

<EQ conunand> 0'_
00- EQ <space><left superquote><decimal number>

<right superquoteXCR>1
EQ <space><left superquoteXdecimal number>

<decimal numberXright superquoteXCR>

«W conunand> ::= KW <spaceXtext stringXCR>

<NO conunand> ::= NO <CR>

<YES conunand> ::= YES <CR>

~RUE conunand> ::= TRUE <CR>

<FALSE conunand> :;= FALSE <CR>

<NOTEXACT conunand>
Similar to EXACT••• EQ conunands

<NOTEQ conunand>

Action Conunands:

<CA conunand> · .- CA <spaceXtext s tringXCR> ICA <CR>

<Cl conunand> ·.- Cl <spaceXtext stringXCR>ICl <CR>

<C2 conunand> ·.- C2 <spaceXtext stringXCR>IC2 <CR>·.-
<C3 conunand> ·.- C3 <spaceXtext stringxCR>IC3 <CR>· .-
<wA conunand> : : = WA <spaceXtext stringXCR>!WA <CR>

<wl conunand> : : = Wl <spaceXtext string><CR>IWl <CR>

<W2 conunand> :;= W2 <SpaceXtext stringXCR>IW2 <CR>

<W3 conunand> :;= W3 <spaceXtext stringXCR>IW3 <CR>

<BRCA conunand> ::= BRCA <Space><strand identifier>,
<lesson number>,<problem numberxCR>1
<BRCA conunand>,<text stringXCR>

.. ­.. -<BRWA conunand> BRWA <Space><strand identifier>,
<lesson number>,<problem numberxCR>1
<lBRWA conunand>,<text stringXCR>

<WS conunand> ::= WS <SpaceXtext otringxCR>IWs<CR>

<strand identifier> ;;= *1 to 6 letters*

<lesson number> ::= *natural number 1 to 999*

<problem number> ;;= *natural number 1 to 128*

Miscellaneous and "Primitives":

.. ­..- <left superquote><character string>
<right superquote>

<character string> ::= <character><character string>l<empty>

<text string>

<letter> ::= *a - z, upper or lower case*

<decimal number> ::= *any number in decimal form with not more than
9 significant digits; includes integers*

<left superquote> ..­.. - *Philco: less-than-or-equal sign
*Teletype: Ctrl-Shift-L

<right superquote> ::= *Philco: greater-than-or-equal sign
*Teletype: Ctrl-Shift-M

APPENDIX D

Sample Coded Problem

SAMPLE CODED PROBLEM
(taken from lesson 4)

PROB
"AID WILL DO EXPONENTIATION BEFORE IT DOES MULTIPLICATION, DIVISION,
ADDITION OR SUBrRACTION 0

WHAT WOULD AID ANSWER?
TYPE 5 * 2t3"

TELL
"5 * 2t3 = 5 * 8 = 40"

HINT
"AID WOULD EVALUATE 2t3 FIRST."

HINT
"DO 2t3 FIRST, THEN MULTIPLY BY 50"

NOTEQ "1000"

WA
"WRONG. AID WOULD EVALUATE 2t3 FIRST. TRY AGAIN."

EQ "40"

WS
"WRONG. 5 * 2t3 = 5 * 8 = 40"

BRCA L,4,6

SPROB
"LET'S GO THROUGH THIS PROBLEM STEP-BY-STEP.
WHICH EXPRESSION IS EVALUATED FIRST IN THIS COMMAND?

TYPE 32/4t2

Ao 4*2
Bo 32/4
Co 4t2
N. NONE"

TELL
"c (EXPONENTIATION IS DONE BEFORE DIVISION.)"

HINT
"EXPONENTIATION IS DONE FIRST."

EXACT
"4t2"

45

CA

MC "c"

CA

WA

SPROB
" ••• AND WHAT IS THE VALUE OF 4t2?"

TELL
"4 t2 = 4*4 = 16"

HINT
"4t2 = 4 * 4 = ???"

EQ "16"

CA

WA

SPROB
"S0 THE VALUE OF 32/4t2 IS THE SAME AS THE VALUE OF 32/???"

TELL
"16 (4 t2 = 16) II

HINT
"WHAT ANSWER DID YOU GET FOR 4 t2? II

HINT
1132 DIVIDED BY 4t2 IS THE SAME AS 32 DIVIDED BY WHAT NUMBER?

EQ "16"

CA

WA

46

SPROB
"THEN WHAT WOULD AID ANSWER TO THIS COlwHAND?

TYPE 32/4t2."

TELL
"32/4 t2 = 32/16 = 2"

HINT
"WHAT IS THE VALUE OF 32/4t2"

HINT
"AID WILL DO EXPONENTIATION BEFORE DIVISION."

EQ "2"

CA

WA

SPROB
"WHAT WOULD AID ANSWER?

TYPE 10t3 * 2 11

TELL
"10t3 * 2 = 1000 * 2 = 2000"

HINT
"AID WOULD DO EXPONENTIATION BEFORE MULTIPLICATION,"

HINT
"Hint: 10t3 = 10 * 10 * 10."

NOTEQ "10000 II

WA
"WRONG. AID WOULD DO EXPONENTIATION BEFORE MULTIPLICATION,"

EQ "2000"

WS
"WRONG. 10f3 * 2 = 1000 * 2 = 2000"
BRCA t,4,6

:·47

SPROE
tlTHERE IS AN EASY WAY TO DO PROBLEMS THAT HAVE EXPONENTIATION AND
ALSO SOME OTHER OPERATION: IMAGINE THAT THERE ARE PARENTHESES AROUND
THE TERM WITH THE EXPONENTIATION,
FOR EXAMPLE,
TO DO 3t4 + 2, DO (3t4) + 2.
TO DO 625/5t2, DO 625/(5t2).
TO DO 4t2 * 2t4, DO (4t2) * (2t4).
WHAT IS THE VALUE OF 5t2/2?

TELL
"5t2/2 := (5t2)/2 := 25/~ := 12.5"

HINT
"REWRITE THE EXPRESSION WITH PARENTHESES. THEN TRY TO DO IT."

HINT
"5t2/2 := (5t2)/2 := ???"

EQ "12.5"

CA

WA

SPROB
llWHAT WOULD AID ANSWER?

TYPE 10t3/10t2"

TELL
tll0t3/10t2 := (10t3)/(10t2) := 1000/100 := 10"

HINT
"REWRITE THE EXPRESSION WITH PARENTHESES (USE TWO PAIRS).
THEN FIND THE VALUE."

HINT
1l10t3/10 t2 := (10 t3)/ (10t2) := ??? tl

CA

WA

:48

SPROB
"WHAT WOULD AID ANSWER?

TYPE 10t3 0 10t2"

TELL
"10t3 - 10t2 :: (10t3) - (10t2) :: 1000 - 100 :: 900"

HINT
"REWRITE THE EXPRESSION WITH PARENTHESES BEFORE YOU DO IT."

HINT
"10t3 - 10t2 :: (10t3) - (10t2) :: ???"

EQ "900 11

CA

WA

-49

(Continued from Inside front cover)

96 R. C. Atkinson, J. W. Brelsford, and R. M. Shlffrln. Multi-process models lor lIIl!tlIory With applications to a continuous presentation task.
April 13, 1966. <.:!. math. Psychol., 1967,~, 277-300 J. -

97 P. Suppes and E. Crothers. Some remarks on stlmulus-ntsponse theories of language l..-nlng. June 12,1966.
98 R. BjOl1c. All-or-none subprocesses In the lelltl1lng of complex sequences. (:!.~. Psychol., 1968,!., 182-195).
99 E. Gammon. The statistical determination of linguistic units. July I, 1966.

100 P. Suppes, L. Hyman, and M. Jerman. Linear strUctural models fOr response and latency pefformance-'n Irlthmetlc. an J. P. Hili <ed.>,
Minnesota Symposia ~ Child Psychology. Minneapolis, Minn.: 1967. Pp. 160-200).

101 J. L. Young. Effects of Intervals between reinforcements and test trials In paired-associate lelltl1lng. August I, 1966.
102 H. A. Wilson. An Investigation of linguistic unit size In memory processes. August 3,1966.
1.03 J. T. Townsend. Choice behavior In a cued-recognltlon task. August 8,1966.
104 W. H. Batchelder. A mathematical analysis of multi-level ver!lallearnlng. August 9,1966.
105 H. A. Taylor. The observing response In a cued psychophysical task. August 10,1966.
106 R. A. BjOl1c. Learning and short-term retention of paired associates In relation to specific sequence. of Interpresentatlon Intervals.

August II, 1966.
101 R. C. Atkinson and R. M. Shlffrln. Some Two-process models for memory. September 30,1966.
1118 P. Suppes and C. Ihrke. Accelerated program In elementary-school mathematlcs--the third ye•• January 30, 1967.
109 P. Suppes and I. Rosenthal-HtII. Concept formation by klnWg.tan children In a card-sortlng task. February -21, 1967.
110 R. C. Atkinson and R. M. Shlffrln. Human memory: a proposed system and ItscontrM proce..... March 21, 1967.
I f I Theodore S. RodQl!l'S. Linguistic considerations In the design of the Stanford computer-based clll'l'lculum In Initial "'adlng, June 1,1967.
112 Jack M. Knutson. Spelling drtlls using a computer-uslsted Instructional system. June 30,1967.
113 R. C. Atkinson. Instruction In Initial reading under computer controll the Stanfcrd Projact. July 14, 1961.
114 J. W. Brelsford, Jr. and R. C. Atkinson. Recall of palred-assoclatas as a function of overt and cOl*t "'heftal Proelduras. July 21, 1967.
115 J. H. Stalzer. Some results concerning subjective probability strUCtural with semlordars. August 1,1967
116 D. E. Rumelhart. The effects of Interpresentatlon Intervals on perfOl'mancsln a continuous pa~~soclata talk. Augu.t 11,1961.
117 E. J. FI.hman, L. Keller, and R. E. Atkinson. Mused v•• dl.trlbuted practice In COlllllUtM'lzad sPelling drill•• -Augu.t 18,1961.
118 G. J. Groen. An Inve.tlgatlon of some counting algorithms for simple addition problems. Augu.t 21,1967.
119 H. A. Wilson and R. C. Atkinson. Computer-bued Instruction In InItial reading: a progress report on the Stanford Project. August 25, 1961.
120 F. S. Roberts and 1:'. Suppes. Some problems In the geometry of visual perceptIon. August 31,1967. (Synthase, 1967,.!Z., 173-201>
121 D. Jamison. Bayesian decisions under total and partial Ignorance. D. JamIson and J. Kozl.leckl. Subjective probabilities-under total

uncertainty. September 4, 1967.
122 R. C. Atkinson. Computerized Instruction and the learnIng process. September 15, 19b7.
123 W. K. Estas. Outline of a theory of punIshment. October 1,1967.
124 T. S. Rodgers. Mauurlng vocabulary dlfflcultyt Nt analysis of Item v.labl.s In I.nlng Rus.lan-Engllsh and Japanese-English vocabul~

parts. December 18, 1967 •
125 W. K. E.tes. Reinforcement In human learnlng,- December 20, 1967.
126 G. L. Wolford, D. L. Wessel, W. K. Estes. Further evidence concerning scanning and sampling u.umptlons of vl'ual detection

model.. January 31, 1968.
127 R. C. Atkinson and R. M.Shlffrln. Some speculations on storage-and retrieval processes In long-tarm memory. February 2, 19b8.
128 John Jiolmgren. Visual detection with Imperfect recognition. March 29, 1968.
129 Lucille B. Mlodnosky. The Frostlg and the Bender Gestalt as predictors of reading achievement. April 12, 1968.

130 P. Suppes. Some theoretical models for mathematics learnIng. April IS. 1968.~~~.!!! Development~ Education,
1967, 1., 5-22>

131 G. M. Olson. Learning and retention In a continuous recognition tuk. May 15.1968.
132 Ruth Norane Hartley. An Investigation of list types and cues to facilItate Initial "'adlng vocabul~ acquisition. May 29, 1968.
133 P. Suppes. StimuluS-ntsponse theory of finite automata. June 19, 1968.

134 N. Moler and P. Suppes. Quantlfler-free axioms for constructive plane geometry. June 20, 1968. (In J. C. H. Gertetsen and
F. Oort CEds.>, Comeosltlo Mathematlca. VoJ. 20. Gronlngan, The Netherlands: Wolters-NoonIhoff, 1968. Pp. 143-152.)

135 W. K. Estas and D. P. Horst. Latancy as a function of number or response alternatIves In palrtd-assoclata lellmlng. July I, 1968.
136 M. Schlll9'Reyand P. Suppes. HIgh-order dimensions In concept Identification. July 2, 19b8. (Psychom.~ •• 1968• .ll. 141-142)
137 R. M. Shlffrln. Search and retrieval process.s In long-term memory. August 15, 1968.
138 R. D. Freund, G. R. Loftus, and R.C. Atkinson. Applications of IllUltiprocess models for memory to continuous recognition tasks.

December 18, 1968.
139 R. C. Atkinson. Information delay In human learning. December 18, 19b8.
140 R. C. Atkinson, J. E. Holmgren, and J. F. Juola. Processing time as influenced by the number of elements In the visual display.

March 14,1969.
141 P. Suppes, E. F. Loftus, and M. Jerman. Problem-solvlng on a computer-based teletype. ~h 25,1969.
142 P. Suppes and Mona Morningstar. Evaluation of three computer-assisted Instruction programs. May 2, 1969.
143 P. Suppes. On the problems of using mathematics In the development of the social sciences. May 12, 1969.
144 Z. Domotor. Probabilistic relatlonai structures and their applications. May 14, 19119.
145 R. C. Atkinson and T. D. WIckens. Human memory and the concept of relnforcemert. May 20, 1969.
14b R. J. Tlllev. Some moclalootMoretlc results In measurement theory. May 22, 1969..
147 P. Suppes. Measurement: Problems of theory and appllcatlopo June 12,1969.
148 p. Suppes and C. IlI'ke. Accelnted program In .I~-school mathematlcs-the fourth year. August 7, 191>9.
149 O. Rundus and R.C. AtIIlnson. Rehearsal In free recall: A procedure for direct observation. August 12, 1969.
150 P. Suppes and S. Feldman. Young children's comprAhenslon 01 logical connectivps. October IS, 19t>9.

(Continued on back cover)

(Continued from Ins ide back cover)

151 Joaquim H. Laubsch. An adaptive teaching system for optimal Item allocation. Nove_r 14, 19&9.
152 Roberta L. K1atzky and Richard C. Atkinson. Memory scans based on alternative test stimulus representations. November 25, 19&9.
153 John E. Holmgren. Response latency as an Indicant of Information processing in visual search tasks. March 1&, 1970.

154 Patrick Suppes. Probabilistic grammars for natural languages. May IS, 1970.
155 E. Gammon. A syntactical analysis of some first-grade readers. June 22, 1970.
15& Kenneth N. Wexler. An automaton analysis of the learning of a miniature system of Japanese. July 24, 1970.
157 R. C. Atkinson and J. A. Paulson. An approach to the psychology of instruction. August 14, 1970.
158 R.C. Atkinson, J.D. Fletcher, H.C. Chetin, and C. M. Stauffer. Instruction In Initial reading under computer control: the Stanford project.

August 13,.1970.
159 Dewey J. Rundus. An analysis of rehearsal processes In free recall. August 21, 1970.

1&0 R.L. Klatzky, J.F. Juola, and R.C. Atkinson. Test stimulus representation and experimental context effects in memory scanning.

1&1 William A. Rottmayer. A formal theory of perception. NClllember 13, 1970.
1&2 Elizabeth Jane Fishman Loftus. An analysis of the struct....1variables that determine problem-solving difficulty on a computer-based teletype.

Decemer 18, 1970.

1&3 Joseph A. Van Campen. T!Mards the automatic generation of progrllmmed foreign-language rnstrlfetlona~1l1Ilt«1a1s. January II, 1971.
Ib4 Jameslne Friend and R.C. Atkinson. Computer-assisted Instruction In programming: AID. January 25, 1971.

