COMPUTER-ASSISTED INSTRUCTION IN PROGRAMMING: AID

BY
JAMESINE FRIEND and R.C. ATKINSON

Tty
' (NASA-CR-126156) COMPUTER~ASSISTED T

’;IN§TRUCTION IN PROGRAMMING: AID J. H72-22176
'$;;$nd, et al (Stanford Univ.) 25 Jan.
:\ 80 p CSCL 09B Unclas

e e e _63/C8B 25151

TECHNICAL REPORT NO. 164

JANUARY 25, 1971

PSYCHOLOGY SERIES

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE |

U 8 Department of Commerce
Springfield VA 22151 |

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

o7 oF

50

5!

52

53
54
55
56
57

58
59
60

6l
62
63

65

66

67
68

69

70

n
72

73
74
75
76
77
78
79
80

8l
82

83

85

86

87
88

89
90

92
93

95

TECHNICAL REPORTS
PSYCHOLOGY SERIES
INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

(Place of publication shown In parentheses; If puﬁ!lshed title is different from title of Technical Report,
this 15 also shown In parentheses.)

(For reports no, | - 44, see Technical Report no, 125,)

R. C. Atkinson and R, C. Calfee, Mathematica! learning theory, January 2, 1963, (In B, B, Wolman (Ed.), Sclentific Psychology, New York:
Basic Books, Inc. . [965. Pp. 254-275)

P, Suppes, E, Crothers, and R, Welr. Application of mathematicai iearning theory and linguistic analysis to vowel phoneme matching in
Russian words, December 28, (962,

R. C. Atkinson, R, Calfee, G, Sommer, W, Jeffrey and R, Shoemaker. A test of three models for stimulus compounding with children,
January 29, 1963, (J. exp. Psychol., 1964, 67, 52-58)

E. Crothers. General Markov models for leaming with inter-trial forgetting, Aprii 8, 1963,

J. L. Myers and R, C. Atkinson, Choice behavior and reward structure, May 24, 1963, (Journal math. Psychol., 1964, 1, 170-203)

R. E. Robinson, A set-theoretical approach to empirical meaningfulness of measurement statements, June 10, 1963,

E. Crothers, R. Weir and P, Paimer. The role of transcription in the leaming of the orthographic representations of Russlan sounds, June I7,. 1963,

P. Suppes. Problems of optimization In leaming a list of simple ltems. July 22, 1963, (In Maynard W. Shelly, H and Glenn L. Bryan (Eds.),
Human Judgments and Optimallty. New York: Wiley. {964, Pp. [16-126)

R. C. Atkinson and E. J. Crothers. Theoretical note: ali-or-none learning and Intertrial forgetting, July 24, 1963,

R. C. Calfee, Long-term behavior of rats under probabliistic reinforcement schedules. October [, 1963,

R. C. Atkinson and E. J. Crothers. Tests of acquisition and retention, axioms for paired-associate learning. October 25, 1963, (A comparison
of paired-associate learning models having different acquisition and retentlon axioms, J. math. Psychol,, 1964,], 285-3I5)

W, J. McGill and J. Gibbon, The general-gamma distribution and reaction times. November 20, 1963, (J. math. Psychol., 1965, 2, 1-18)

M. F. Norman, Incrementa! learning on random trials, Dacember 9, 1963, (J. math. Psychol., 1964, |, 336-351)

P. Suppes. The development of mathematical concepts in chiidean, February 25, 1964, (On the behavioral foundations of mathematical concepts.
Monographs of the Society for Research in Chiid Development, 1965, 30, 60-96)

P, Suppes. Mathematical concept formation In children, Aprli 10, (964, (Amer. Psychologist, 1966, 2, 139-150)

R. C. Calfee, R, C. Atkinson, and T. Shelton, Jr. Mathematical models for yerbal learning. August 21, 1964. (in N. Wiener and J. P, Schoda
(Eds.), Cybernetics of the Nervous System: Progress in Braln Research. Amsterdam,‘ The Netherlands: Elsevier Publishing Co,, 1965.
Pp. 333-349)

L. Keller, M, Cole, C. J. Burke, and W, K, Estes. Paired associate learning with differential rewards, August 20, |964. (Reward and
information values of trial outcomes in paired agsoclate learning. (Psychol. Monogr., 1965, 79, [-20)

M. F. Norman. A probabilistic model for free-tesponding, December 13, 1964,

W. K. Estes and H, A. Taylor. Visual detection In relation to display size and redundancy of critical elements, January 25, 1965, Revised
7-1-65. (Perception and Psychophysics, 1966, |, 9-16)

P. Suppes and J, Donlo. Foundations of stimulus-sampling theory for continuous-time processes. February 9, 1965, (J. math. Psychol., 1967,
4, 202-225) '

R. C. Atkinson and R. A, Kinchia, A learning mode! for farced~choice detection experiments. February 10, 1965. (Br, J. math stat, Psychol.,
1965, 18, 184-206)

E. J. Crothers. Presentation orders for items from different categories. March 10, 1965,

P. Suppes, G. Groen, and M. Schiag-Rey. Some models for response fatency In palred-associates learning. May 5, 1965, W, math. Psychol.,
1966, 3, 99-128)

M. V. Levine. The generalization function In the probabllity learning experiment. June 3, 1965,

D. Hansen and T. S. Rodgers, An expioration of psycholingulstic unlts in Initial reading., July 6, 1965,

B. C. Amold. A correlated urn-scheme for a continuum of responses. July 20, 1965,

C. fzawa and W, K. Estes. Relnforcement-test sequences In paired-assoclate fearning, August |, 1965. (Psychol. Reports, 1966, 18, 879-919)

S. L. Blehart. Pattern discrimination fearning with Rhesus monkeys. September !, 965. (Psychol. Reports, 1966, 19, 311-324)

J. L. Phillips and R. C. Atkinson. The effects of display size on shoet-term memory. August 31, 1965,

R. C. Atkinson and R, M. Shiffrin, Mathematical models for memory and learning., September 20, 1965,

P. Suppes. The psychological foundations of mathematics. October 25, 1965. (Colioques Internationaux du Centre National de la Recherche
Sclentifique. Editions du Centre National de fa Recherche Scientifique. Parls: 1967, Pp, 213-242)

P. Suppes. Computer-assisted Instruction In the schools: polentialities, problems, prospects. October 29, 1965,

R. A. Kinchla, J. Townsend, J. Yellott, Jr., and R, C. Atkinson. Influence of correlated visual cues on auditory signal detection.
November 2, 1965. (Perception and Psychophysics, 1966, 1, 67-73)

P. Suppes, M, Jerman, and G. Groen. Arithmetic driils and review on a computer-hased teletype. November 5, 1965. (Arithmetic Teacher,
April 1966, 303-309.

P. Suppes and L. Hyman. Concept learning with non-varbal geometrical stimull. Nowember 15, 1968,

P. Holland, A varlation on the minimum chi-square test, (J. matk. Psychol., 1967, 3, 377-413),

P. Suppes. Accelerated program in elementary~schocl mathematics -- the second year. November 22, 1965. (Psychology in the Schools, 1966,
3, 294-307)

P, Lorenzen and F, Binford, Logic as a dialogical game. November 29, 1965.

L. Keller, W, J. Thomson, J. R. Tweedy, and R. C. Atkinson, The effects of reinforcement interval on the acquisitloa of paired-associate
responses. December 10, [965. (J. exp. Psychol., 1967, 73, 268-277)

J. 1, Yellott, Sr. Some effects on noncontingent success in humar probability learning, December 15, 1965,

P. Suppes and G. Groen. Some counting models for first-grade performance data on simple addition facts. January 14, 1966, (InJ. M, Scandura
(Ed.), Research In Math: les Education, Washington, D, C.: NCTM, 1967, Pp, 35-43,

P. Suppes. information processing and cholce behavior, January 3!, !966.

G. Groen and R. C. Atkinson. Models for optimizing the learning process. February {1, {966, (Psychol. Bulletin, 1966, 66, 309-320)

R. C. Atkinson and D, Hansen, Computer-assistad Instruction in Ialtlal reading: Stanford project. March 17, 1966. (Reading Research
Quartery, 1966, 2, 5-25)

P. Suppes. Probabiiistic Inference and the concept of total evidence, March 23, 1966, (In J. Hintikka and P. Suppes (Eds.), Aspects of
Inductive Loglc, Amsterdam: North-Holland Publishing Co., 1966, Pp, 49-65,

P. Suppes. The axiomatic method In high-schoo! mathematics, April 12, 1966, (The Role of Axlomatics and Problem Solving In Mathematics.
The Conference Board of the Mathematical Sciences, Washington, D, C, Ginn and Co,, 1966. Pp. 69-76.

(Continved on inside back cover)

COMPUTER-ASSISTED INSTRUCTION IN PROGRAMMING: AID

by

Jamesine Friend and R. C. Atkinson

TECHNICAL REPORT 164

January 25, 1971

PSYCHOLOGY SERIES

Reproduction in Whole or in Part is Permitted for

any Purpose of the United States Government

© 1971 by Jamesine Friend and R. C. Atkinson
All rights reserved
Printed in the United States of America

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
STANFORD UNIVERSITY

STANFORD, CALIFORNIA

TABLE OF CONTENTS

Page
I. 'Computer-assisted Instruction in Programming . . « . . o o -« 1
II. Description of the Course, "Introduction to Programming: AID L
III. PréliminaryResults A I 22
IV. Computer Programs and Coding Language e 27

APPENDICES - |
A. StudentManual..';...-..;.......'..... 1
B.AIDDocumentationb..................;29
C. Excérpts from the 'Coders'_.Mar_mal o e e e e C e e 38

D. Sample Coded Problem « e o & o o e s e e s & e+ e e e o o)+5

COMPUTER-ASSISTED INSTRUCTION IN PROGRAMMING: AID*
Jamesine Friend and R. C. Atkinson

Stanford University
Stanford, California 94305

I. Computer-assisted Instruction in Programming

Research in learning theory and instructional strategies has received
a new jimpetus in recent years from technological developments in the field
of computer design. Computer-assisted instruction, entirely unknown ten
years ago, 1s evidence of the rapid growth of computer applications in
education and is already producing profound effects in the individualization
of instruction. Since January, 1963, the Institute for Mathematical Studies
in the Social Sciences has been conducting extensive programs of research
and development in computer-assisted instruction.

In 1968, the Institute received funding from NASA to design and produce
a course in programming using computer-assisted instruction as the instruc-
tional medium. The course was to be tutorial in nature and sufficiently
self-contained so that students could use it without being supervised by an
experienced teacher of programming. Supplementary material, such as manuals
and a syllabus of readings in computer sciences, was to be supplied as part
of the package.

The course was to be suitable for use by NASA personnel, and the feasi-
bility of using the course as part of-.their training program was to be
investigated. It was assumed that students would be at about the junior
college level with no experience in mathematics beyond high school algebra
and with no previous introduction to computer programming.

Work on the development of the course started in the summer of 1968.

A preliminary version of half of the course was completed by February, 1969,

and consisted of a coding language, a set of 20 one-hour lessons written in

*This research was supported by NASA Research Grant NGR-05-020-244.

the coding language, and a set of programs to interpret coded lessons and to
interact with students using standard teletypes as student stations.

In the spring of 1969, about 15 students took the course. Performance
data were collected (by hand) and summarized, and students were closely
observed and interviewed after each session. The curriculum materials and
necessary computer programs were revised and extended cn the basis of data
and observations of student reactions. The revised course is now complete
and in use by NASA personnel. Data are being collected and analyzed.

The first decision made in the development of an introductory course
in programming was what programming language to teach. Programming languages
designed expressly for teaching purposes were not considered, since we felt
that users of the course would benefit more from learning a language with
immediate practical application, even if the language was initially more
difficult to learn; for this same reason we felt that the language should
be cone that is widely available rather than one that is implemented on only
a few computers, or only on computers produced by one manufacturer. Also,
we anticipated that most students would eventually be working in an engi-
neering or scientific environment and would have more need for an algebraic
language such as FORTRAN than for a list-processing language such as ;ISP
or a business-oriented language like COROL.

. The programming languages considered included FORTRAN, ALGOL, BASIC,
and AID. For a first course, BASIC and AID are both excellent choices,
because they are considerably simpler than either FORTRAN and ALGOL; never-
theless, they contain all of the structure needed to illustrate the basic
principles of programming. AID:L (Algebraic Interpretive Dialogue) is a
high-level algebraic programming language with extensive interactive (or

"conversational") abilities. This language is an adaptation for the PDP-10

1
See PDP-10 AID Programmer's Reference Manual, Digital Equipment Corporation,
Maynard, Massachusetts, 1968.

computer of JOSS,2 a language developed by RAND Corporation for use by
scientists, engineers, etc., who needed a powerful, easy-to-learn tool
capable of performing complex algebraic tasks. A number of other minor
variants of JOSS, such as CAL and FOCAL, are now implemented on a variety

of computers. A complete description of AID will be found in the appendices.
BASIC,3 which was developed at Dartmouth as an elementary algebraic language
for beginning students, is now widely implemented and is probably better
known than AID (partly because all implementations use the same name).

BASIC is somewhat more powerful than AID in its matrix manipulation commands,
but AID has more power in recursively defined arithmetic functions. The
greatest advantage of AID over BASIC, FORTRAN, or COBOL is that AID is not

a compiler, but an interpreter with a large number of direct commands, which
the student can begin to use the .first day rather than having to delay hands-
on experience until after he has learned the concept of a stored program and
the necessary formats. These interactive capabilities are a great asset to
a student just learning a programming language since they provide a kind of
immediate reinforcement that cannot be supplied by a compiler. All in all,
it was felt that AID had a slight edge as a beginner's language, but the
final deciding factor was that AID had already been implemented for the
PDP-10 computer we would bé using, whereas BASTC would not be avallable to
us for several months. Since that time, we have obtained a BASIC compiler
and have completed a high school course in BASIC using the same structure

and programs developed for the AID course.

2See Mark, S. L. and Armerding, G. W., The JOSS Primer. The RAND Corpora-
tion, Santa Monica, California, August, 1967; Shaw, J. S., JOSS: Experience
with an Experimental Computing Service for Users at Remote Typewriter
Consoles. The RAND Corporation, Santa Monica, Céiffornia, May, 1965.

3See Kemeny, John G. and Kurtz, Thomas E., BASIC, Dartmouth College Compu-

tation Center, 1968.

II. Description of the Course "Introduction to Programming:AID"

The course consists of a set of 50 lessons, about one hour in length,
plus summaries, reviews, tests, and extra-credit problems. A student manual,
which includes instructions for operating the instructional program and a
glossary of terms used in the course, has been prepared and is included in
the appendices of this report. The course is equivalent to a three-unit
Junior college course.

The computer-assisted instruction and supplementary manual constitute
a completely self-contained course. The lessons are tutorial in nature,
that is, no previous knowledge of computers or programming is necessary.

The only prerequisite for the course is a good background in algebra, as
supplied by three semesters of high school algebra.

Computer-assisted instruction is given to the students by means of
standard Model-33 teletypewriters, located in remote training centers,
which will communicate with the PDP-10 computer located at Stanford by means
of ordinary telephone lines. The problems are typed on the student's tele-
type by the computer and the student responds by typing his answers on the
same teletype. After the computer analyzes the student's response, the
student is informed as to whether his response was correct or incorrect,
then he 1s given additional instruction and asked to respond again, or he
is given a different problem.

The course does not require the supervision of a trained teacher of
programming, but a one-day teachers' workshop should be given to acquaint
teachers with operating procedures and to provide them with an overview of
the content of the course.

Although the course is ordinarily used on a regularly scheduled basis
in a college environment or training center, it is also well suited for
individual use as an on-the-job training course for people working in assoc-
ilation with a computer facility. Use by individuals can be on a nonscheduled
basis or on a flexibly scheduled basis, since there are few time restrictions
on the use of the computer; some students might prefer to spend several hours
a day on the course, with the possibility that they could complete the course

within a few weeks rather than distributing their lessons over several months.

The 50 lessons cover the following fundamental concepts of programming
and the use of computers.

(1) An interactive time-sharing executive system.

(2) An interpreter.

(3) Concept of a stored program.

(4) Debugging technigues.

(5) Labels and variables.

(6) Loops.

(7) Input and output.

(8) Computer storage, including both core and disk.

(9) Subroutines.

(10) Recursive functions.

(11) List sorting and table look-up routines.
The student is required to write and debug at least 50 programs, several of
which are major programs for solving difficult algebraic problems. An out-
line of the course is found in the appendices.

FEach lesson covers one basic concept, varying in length from 50 to 200
problems and requiring about one hour for an average student to complete.
A lesson contains three sections: a core lesson, a summary, and a review.
Selecfed lesscons contain an additional extra-credit section. The core lesson
contains about 20 to 30 problems that present the concept and supplies some
practice problems. At the end ol the core lesson there is an optional summary
of the lesson; the summary is typed in an 8 1/2ﬂx 11" format, which the
student can save as a permanent reference. TFollowing the summary, there is
an optional review section, which is divided into several parts, one for
each idea presented in the core lesson, so that the student may review only
that part of the lesson that he <id not completely understand. The review
problems, like the problems in tlre core lesson, are tutorial, not merely
additional practice and present the ideas afresh from a different point of
view. After the review section, there may be a short section of optional
extra-crelit problems; these are usually programming problems, which are
much more difficult than the programming problems given in either the review
or the core lesson. Most of the extra-credit problems require considerable

thought and time, and the student is not expected to complete them during

a current session, but may, instead, submit them at any time before the end
of the course. Extra-credit problems are not supplied with each lesson, but
there are at least 50 such problems in the entire course, and the teacher
may wish to require some of these problems as homework assignments, or he
may use them as tests.

After each group of five lessons, there is an optional self-test designed
to help the student evaluate his understanding of the concepts presented to
date. Since this test is designed for student's use and not for grading pur-
poses, no report on student performance will be available to the teachers.
Following the self-test, there is a general overview lesson that reminds the
student of what has been taught and informs him which of the topics already
covered are essential to the subsequent material. During the overview lesson,
the student is given the opportunity to review entire lessons, or any indivi-
dual topics from preceding lessons.

The structure of the course is illustrated in Figure 2 by a block diagram
of a set of five lessons (with summariés, reviews and extra-credit problems),
followed by a self-test and an overview lesson.

Before discussing details of the instructional strategy, we give a few
examples of student interaction with the instructional program, starting
with the first problems in Lesson 1. On a student's first day, he is given
a student manual and seated at a teletype connected by telephone lines to
the PDP-10 computer at Stanford. Following the instructions in the student
manual (see the manual in the appendices), he signs on and starts the in-
structional program, which automatically starts at ILesson 1, Problem 1, for
a new student. The program prints each problem in turn, then prints an
asterisk to indicate to the student that he can respond, and awaits his
response before proceeding. In the following typical sequence, the student's

responses are marked by an asterisk at the left.

Li-1: INTRODUCTION TO PROGRAMMING
BY JAMESINE E., FRIEND

IN THE FIRST LESSON YOU WILL LEARN HOW TO USE THIS PROGRAM.

AFTER YOU TYPE YOUR ANSWERS YOU MUST PRESS THE RETURN KEY,
CAN YOU FIND THE RETURN KEY?

Lesson |

Ilesson
1
Summary | } Review | | Extra-
ILesson Lesson | | Credit
1l Problems

Lesson

|

|

Summary
Lesson

p

Review
Iesson

p)

Extra-.
Credit
Problems

y

Self-
Test

Over--
view

One lesson block is shown, including 5 lessons (with S{.lmmaries, Reviews, and Extra-Credit
Problems), Self-Test, and Overview Lesson.

Student decision points are marked —?— .

Optional lessons are shown below the main line.

Figure 1.

Structure of Course

*YES
GOOD, DON'T FORGET TO PRESS THE RETURN KEY AFTER YOU TYPE YOUR ANSWERS.,

11-2: WRONG ANSWERS ARE NOT COUNTED. YOU ALWAYS GET ANOTHER CHANCE
IF YOUR ANSWER IS WRONG.

WHAT DOES THE CCMPUTER PRINT WHEN IT IS READY FOR YOUR ANSWER?
A, AN EXCLAMATION POINT !
B. A QUESTION MARK 7
C., AN ASTERISK ¥

TYPE "A", "B", OR "C". (DON'T FORGET THE RETURN KEY.)

*C
CORRECT

L1-3: IF MULTIPLE-CHOICE PROBLEMS HAVE MORE THAN ONE CORRECT ANSWER,
YOU MAY LIST THE CORRECT CHOICES IN ANY ORDER.

SUPPOSE B, C, AND D ARE THE CORRECT CHOICES FOR A PROBLEM. WHICH OF
THESE WOULD BE CORRECT WAYS TO ANSWER?

. D, B, C, A

5 J

gaowr
W QU w

‘o

©
(wivsMloe]
%

o

~
QJdQQ

*B
YOU HAVEN'T FOUND ALL OF THE ANSWERS YET. START AGAIN.

*BCD
CORRECT

Lesson 1, a short introduction to the teaching program, continues by
explaining to the student the various problem formats he will encounter in
the course and gives him an opportunity to practice each of these formats.
The second lesson begins by teaching the student how to start and stop the

AID interpreter and how to use a few simple, direct commands to solve

arithmetic problems.

L2-1: LESSON 2
USING AID FOR ARITHMETIC

IN THIS COURSE YOU WILL USE TWO DIFFERENT PROGRAMS:
1. THE TEACHING PROGRAM., YOU ARE USING THE TEACHING PROGRAM NOW.

THE TEACHING PROGRAM WILL TEACH YOU TO WRITE PROGRAMS USING THE
ATD LANGUAGE.

2. THE AID INTERPRETER, AFTER YOﬁ LEARN TO WRITE AID PROGRAMS, YOU
WILL USE THE AID INTERPRETER TC TRY OUT YOUR PROGRAMS.

YOU WILL ONLY BE ABLE TO USE ONE OF THE PROGRAMS AT A TIME Sd YOU HAVE
TO KNOW HOW TO STOP A PROGRAM AND START ANOTHER,

WHICH PROGRAM ARE YOU USING NOW?

*THE TEACHING PROGRAM
CORRECT

12-2:

HOW TC START THE AID INTERPRETER:
FIRST, STOP THE TEACHING PROGRAM (TYPE CTRL-C).
SECOND, TYPE "L AID" AND THE RETURN KEY.

HOW TO STOP THE AID INTERPRETER:
TYPE CTRL-C.

AFTER THE TEACHING PROGRAM IS STOPPED, WHAT SHOULD YOU TYPE TO START
THE AID INTERPRETER?

*CTRL-C
WRONG. TYPE A QUESTION MARK FOR A HINT OR CTRL-T FOR THE ANSWER,

*9
READ THE SECOND STEP UNDER "HOW TO START THE AID INTERPRETER,"

*L AID
CORRECT

12-3: WHICH COMMAND WILL STOP THE AID INTERPRETER?

CTRL-H
CTRL-T
CTRL-C
CTRL-G

Pauw >

*C
CORRECT

After some practice in starting and stopping the AID interpreter, the
TYPE command is introduced and the student practices using commands like
TYPE 15 + 249
TYPE 76 - 3 + 42

Lesson 2 also introduces the symbols ¥ and / for multiplication and division.

9

I12-10: AID SYMBOLS FOR ARITHMETIC OPERATIONS:

ADDITION
SUBTRACTION
MULTTPLICATION
DIVISION

Nk o+

WHICH COMMANDS WILL CAUSE AID TO MULTIPLY 3 by 4%

TYPE (3) (L)
TYPE 3 X 4
TYPE 3 * L
TYPE 3/4
TYPE 3%k

HoQwp

*A
WRONG

*C
YOU HAVEN'T FOUND ALL OF THEM, START OVER.

*CE
CORRECT

L2-11: WHICH COMMAND WILL CAUSE AID TO MULTIPLY 25 BY 5 AND DIVIDE
BY 37

TYPE 25 X 5/3
TYPE 25 * 5/3

TYPE 25(5/3)
NONE OF THE ABOVE

=owp

*B
CORRECT

At the end of each lesson, the student is asked if he wants a summary
of the lesson to save as a permanent reference. The summaries are printed
in 8 1/2 x 11" format, so that they may be punched and put in a loose-leaf

note book. The following summary of Lesson 2 is typical,

SUMMARY OF LESSON 2
USING AID FOR ARITHMETIC

1. TO START THE AID INTERPRETER, TYPE
L AID

2. TO STOP THE AID INTERPRETER, TYPE
CTRL-C

10

3. THE "TYPE" COMMAND
.. .STARTS WITH THE WORD "TYPE"
...THEN A SPACE
.. .THEN AN ALGEBRAIC EXPRESSION
...ENDS WITH A RETURN,

YOU TYPE: AID ANSWERS:
TYPE 2+h 244 = 6
TYPE L42/4 ho/h = 10.5
TYPE 6%1.2 6%¥1.2 = 7.2

4. THE SYMBOLS FOR ARITHMETIC OPERATIONS :
+ ADDITION
- SUBTRACTION
¥ MULTIPLICATION

/ DIVISION

After the summary is printed (if the student requests it), the student
is asked if he wants to review any of the concepts covered in the lesson.
The review, which is about the same length as the lesson, does not cover
topics sequentially as in the original presentation, but is instead organ-
ized into independent sections, once for each concept so that the student
may review only the parts of the lesson that he wishes; also, the student
is told which topics are important to ensuing lessons, so thaf he knows
where to concentrate his effort. Here, for example, are é few problems
from the review of Lesson 4 (note that the symbol t is used to‘denote

exponentiation, i.e., 5%2 means 52).

Rh-1: REVIEW OF LESSON L4
EXPONENTS AND SCIENTIFIC NOTATION

WHICH OF THESE TOPICS DO YOU WANT TO REVIEW NOW?
(EE SURE YOU KNOW THE STARRED TOPICS.)

*A. EXPONENTS
B. USING O AND 1 AS EXPONENTS
*C. ORDER OF ARITHMETIC OPERATIONS
D. USING FRACTIONAL EXPONENTS TO FIND ROOTS
*E. NEGATIVE EXPONENTS
¥F. FREADING SCIENTIFIC NOTATION
G. WRITING SCIENTIFIC NOTATION
N. NONE

*C

11

Ri-17: IF AN EXPRESSION HAS EXPONENTIATION AND ALSO SOME OTHER OPERATION,
SUCH AS MULTIPLICATION, DO THE EXPONENTTATION FIRST.

TO FIND THE VALUE OF

Lxs5¢2
DO 5%2 FIRST, THEN MULTIPLY BY L,
WHAT IS THE VALUE?

*100
CORRECT

R4-18: DO EXPONENTIATION BEFORE ADDITION, SUBTRACTION, MULTIPLICATION
OR DIVISION., FIND THE VALUE OF EACH EXPRESSION.

50 - 712
*1
CORRECT

3%3 - 20
*11
WRONG

*-11
WRONG

*T
CORRECT

In general, students are expected to have had some previous work with
algebra, but it is not assumed that the level of skill is high, or that a
student will remember such concepts as the use of zero as an exponent, or
the definition of "positive" as contrasted with "non-negative." All such
topics are reviewed at appropriate times for the student who needs a re-
fresher. For example, Lesson 15, which introduces the IF clause, reviews

relations between numbers in the context of introducing new symbols.

L15-1: LESSON 15
RELATIONS, "IF" CLAUSES

SYMBOLS USED FOR RELATIONS:

FOR "LESS THAN"

FOR "GREATER THAN"

FOR "EQUALS"

FOR "NOT EQUALS"

FOR "LESS THAN OR EQUALS"
FOR "GREATER THAN OR EQUALS"

It

Y/\:H:ll VA

12

TYPE THE SYMBOL FOR
"GREATER THAN OR EQUALS"
*>=

CORRECT

"NOT EQUAL"
x4

CORRECT
HLESS THAN"

*<
CORRECT

115-2: FELATTONS BEETWEEN NUMBERS CAN EE SHOWN ON A NUMEER LINE.
3 -2 1. 0 1 2 3 A

ey e o e v e e ey e e e , em o e

¢ t 1
X Y : Z

ANY NUMEER TO THE RIGHT OF 2 IS GREATER THAN 2.

ANSWER TRUE OR FALSE (T OR F):

X>2 *F
Y >2 *F
Z >2 *T
X>Y X*F

ANY NUMBER TO THE LEFT OF 2 IS LESS THAN 2.
ANSWER T OR F: '

X <2 T
Y <2 *7
4 <2 ¥F
2 <X ¥F

After reviewing the relations between numbers, Iesson 15 prbCeeds to
teach the use of conditional commands using the algebraic notation Jjust

introduced.

L15-10: WHICH MEANS "Q IS NON-NEGATIVE"?

A, Q>0
B. @>=0
C. Q<0
D. @<= 0
N. NONE

13

*B
CORRECT

115-11: NOW THAT YOU KNOW ABOUT THE RELATIONS = # < > <= AND >= I WILL
SHOW YOU HOW TO USE THEM IN AID COMMANDS.

ANY ATD COMMAND CAN BEE MODIFIED BY AN "IF" CLAUSE.
EXAMPLES :

SET 2 = 2 IF X < 10.

TYPE X IF X < O.

DO PART 5 IF M = N.

COMPLETE THIS COMMAND SO THAT Y = Xt2 IF X IS POSITIVE.
SET ¥ = Xt2 IF X....0

*>
CORRECT

L15-12: THE NEXT FEW PROBIEMS ARE ABOUT THESE COMMANDS.
22,1 SET Y =X IF X > O.
22.15 SET Y = -X IF X < O.
22,2 SETY=01IFX-=0.
22.25 TYPE Y.
DO PART 22 FOR X = -3.15.

AFTER STEP 22.25 WHAT WILL AID ANSWER?

*-3.15
WRONG

%7
LOOK AT STEP 22.15. IF X IS NEGATIVE, WHAT IS THE VALUE OF Y?

*¥3.15
CORRECT

Although there is considerable variation in the sequence of problem
types within a lesson and in the style of presenting new concepts, the |

’ general scheme is to review any necessary algebraic ideas, present new

symbols and new commands, give sample programs using the new commands, and

then give programming problems that can be solved by using the ideas Jjust

introduced. The following is an example of a programming problem from
Tesson 15.

1L

115-20: WRITE A PROGRAM THAT WILL PRINT "SAME" IF ALL THREE NUMEBERS X,
Y AND Z HAVE THE SAME SIGN. THE PROGRAM SHOULD PRINT "DIFFERENT" IF THE
NUMEERS DO NOT ALL HAVE THE SAME SIGN.

BEFORE YOU START, TELL ME WHAT YOUR PROGRAM SHOULD PRINT IF X = -2, Y = 3
AND Z = 1%

*DIFFERENT
CORRECT

WHAT SHOULD YOUR PROGRAM PRINT IF X = -2, Y = -3 AND Z = -17

*DIFFERENT
WRONG

*SAME
CORRECT

115-21: OK, GO AHEAD AND WRITE THE PROGRAM TO FIND OUT IF THE 3 NUMBERS
ALL HAVE THE SAME SIGN. TEST YOUR PROGRAM FOR THESE VALUES OF X, Y AND Z.

X=2 Y=13 Z =15
X=2 Y=23 2 =20
X = -5 Y = -3 Z = -1
X=-5 Y = -3 Z =0

At this point the student is expected to stop the teaching program
and to use the AID interpreter to write and debug his program. When he
has completed the program to his satisfaction, he starts the teaching

pregram again,

WHAT ANSWER DID YOU GET FOR THE LAST PART?

*DIFFERENT
EXCELLENT

DID YOU USE ANY "DEMAND" COMMANDS IN YOUR PROGRAM?

*NO
YOU COULD HAVE SAVED YOURSELF SOME TYPING IF YOU HAD STARTED THE PROGRAM
WITH THESE COMMANDS:

DEMAND X
DEMAND Y
DEMAND Z

15

The student may request additional information or suggestions about how

to write the program either before or after he tries to produce the program.
If the student cannot éolve the problem, even using the additional help, he
| is shown a correct solution to the problem and is asked to study it carefully,
and to copy and execute it.
There are over 50 programming problems in the course. Many lessons also

supply extra-credit programming problems such as the following.

X15-1: EXTRA-CREDIT PROBLEMS FOR LESSON 15

1. WRITE A PROGRAM THAT WILL TYPE "1" IF THREE NUMBERS, A, B, AND C, ARE
DECREASING IN SIZE (I.E. IF A IS LARGEST, B IS NEXT, AND C IS SMALLEST).
IF A, B, AND C ARE NOT DECREASING, THE PROGRAM SHOULD TYPE "0".

2. WRITE A PROGRAM THAT WILL TYPE "1" IF B IS BETWEEN A AND C; TYPE "O"
OTHERWISE. (NOTICE I DID NOT SAY WHETHER A WAS LARGER OR SMALLER
THAN C).

In the first few programming problems, the program and the values to
be used for variables are specified in completé detail, and the student is
thoroughly quizzed about the performance of his program. As the course
develops, the student is supplied with less and less complete specifications,
and he is encouraged to analyze the instructions and to experiment with dif-
ferent solutions. Also, he is gradually given the responsibility for deter-
mining whether his program is correct, both in the sense of debugging and
in the sense of providing a solution to the stated problem. The aim is not
only to encourage analytic ability and creative thinking, but also to introduce
the student to the idea that working programmers spend most of their creative
effort in defining the problem (and, in many cases, deciding whether there
is a problem). Further, they spend much of their programming time satisfying
themselves that they have produced a correct program.

Little has been said so far about how a student interacts with the
teaching program, and how the teaching program is designed to provide in-
dividualized instruction. In order to explain these things, we give some
details of the teaching strategy.

One of the basic requirements of a tutorial course is to provide for

individualization of instruction, with the aim of optimizing the learning

16

" which is being developed

process. The course "Introduction to Programming,'
under NASA Contract NGR-05-020-24k4, is designed as an application of the
results of numerous studies in the technigues of optimizing learning. The
‘'variety of optimization routines used in the course and the consequent rich-
ness of the curriculum material have never before been attempted in a course
of comparable length or scope.

The logic of branching used within problems permits extremely fine
discriminations between student responses and thus provides a mechanism for
remediation that is appropriate, not only to the specific problem, but also
to the specific student response; i.e., gross discrimination of "correct" and
"incorrect" are not used as the basis for deciding upon appropriate remedia-
tion, as is ordinarly done in drill-and-practice material or in linearly
programmed courses. Fine discriminations can also be made between correct
responses so that the "correctness" function ranges over a set of positive
as well as negative numbers, and the program responds differentially to
categories of correct as well as incorrect responses. The analysis of
student responses is made by means of twelve basic analysis routines; each
of these routines can return from 2 to 4 different values of the correctness
function. TFurthermore, the analysis routines can be used in any Boolean
combination to increase the number of possible values in the range of the
correctness function., The maximum size of the range of this function, 'i.e.,
the maximum number of correct-incorrect classifications for a given problem,
has not yet been fully exploited, since it is limited only by the size of
the core buffers in the computer, but we estimate it to be in the neighborhood
of 100. Since the probability of receiving a wide variety of distinguishable
incorrect responses to a given problem is extremely low, the current course
is designed to use from three to ten values for the correctness function,
depending upon the content of the problem. Because the system can respond
differentially to the students, each problem takes on the aspect of a small
"dialogue" between the computer and the student.

The optimization scheme described above is not, however, the only one
used in the course. A second major scheme allows the student to initiate
the dialogue. In the microbranching logic, the student is allowed two

different devices for requesting additional information. The first of these

a7

is the HINT command, which may be given by the student at any time simply

by typing a guestion mark. The instructional system provides an unlimited
number of hints for each problem; in the current course, two hints are
provided for most problems, and as many as six are provided for particularly
difficult problems. By allowing for optiocnal additional instruction, we
keep the pace fast enough for the more intelligent, better prepared students
without penalizing those students whose mathematical background is less
adequate.

In addition to the HINT command, there is also a TELL command that may
be used by students at any time. This command causes the computer to print
the correct answer (or a correct answer) to the problem, providing that such
text was coded for the problem, and then branches to the next problem in
sequence. In the current course, sample correct answers are provided for
about 80 percent of the problems. There is some evidence that adult students
learn adequately without being required to make overt responses, so students
are in no way penalized, and, in fact, are encouraged to request the answer
whenever they wish. In general, the problems that do not include sample
correct answers are those for which there is no correct answer ("Do you
want a summary of this lesson?"). Two or three representative answers may
be provided for problems that have many correct answers.

To illustrate the kind of hints and answers provided in the course,

we show a few problems from Lesson 8, with comments.

18-2: WHAT WILL AID ANSWER?
ILET M(X) = 3%X

TYPE M(10)
*10 [The student makes an incorrect
WRONG response.]
*? [He types a question mark to get

M(X) = 3%X additional information.]

T

SUBSTITUTE 10 FOR X TO FIND M(10)
*¥30 [He then gives the correct answer.]
CORKRL (L

18

SUPPOSE YOU HAD ALREADY GIVEN THE ABOVE COMMANDS, AND
THEN GAVE THIS ONE. WHAT WOULD AID ANSWER?

TYpE M(2)
*20 [The student gives a wrong answer.]
WRONG
%6 [...and corrects himself without
CORRECT additional instruction.]

. AND WIAT WILL AID ANSWER TO THIS COMMAND?
TYPE M(1)

*3 [The student makes a correct response
CORRECT on his first try.]

18-3: WHAT WILL AID ANSWER?
IET Q(X) = 2%¥X + 7

TYPE Q(5 - 3)

*? : [The student requests a hint.]
Q(X) = 2¥X + 7
t

SUBSTITUTE (5 - 3) FOR X.
*? [He asks for another hint.]

Q(5 - 3)
= Q (2)
= 2%(2) + 7
= 777
* [...and finally requests the answer
11 (by typing Ctrl-T, which is an

invisible character).]

The optimization routines described thus far are used in all problems
in "Introduction to Programming." An additional scheme is also used for
problems that regquire the student to write and debug a program. Since such
problems are necessarily more complex than the kind used in most programmed
instfuction, there is also a greater need for more highly differentiated
remedial material. TFor each programming procblem, a sequence of problems
was designed to test the student's understanding of the concepts involved.
Additional hints are alsoc available.

Although the most complex of the optimization routines are used within

problems, provision is also made for optimization at the lesson level. The

19

nunber of problems that constitute a lesson for a particular student is
dependent upon the responses of that student; for example, in Lesscn 3, a
student may do only 30 problems, or he may do as many &s rh, including the
problems in the associated remedial lesson. Further, after every five
lessons there is an overview of the preceding material; these lessons con-
sist of five sections (one for each of the preceding lessons), with optional
detailed review. Iach overview lesson is preceded by an optional self-test,
which the student may use to evaluate his progress and which provides him
with a basis for deciding which of the sections in the subseqguent overview
lessons are appropriate.

One indicator of the richness of the curriculum provided by the pro-
cedures described above is the number of different messages that can be
used in the course of a single lesson; in Iesson 3, for example, one student
may see 60 different messages, while another student may see as many as 400.
The number of responses regquired of a student is also an indicator of the
richness of the curriculum; for Lesson 3 (to use the same example), only 30
responses are required of the good student, but a student who is giving
some incorrect responses and requesting much of the optional material may
make as many as 200 responses (there is actually no upper limit, since a
student may make any number of incorrect responses per problem).

Notice that a recurring theme in the optimization schemes is the
provision for student control. There are strong indications from past re-
search, both in computer-assisted instruction and elsewhere, that the
participation of the student in decisions about his course of study signif-
icantly affects the rate of learning. The étudy of motivation in an environment
of computer-assisted instruction has not yet been approached in any very
rigorous way, but preliminary results do indicate that some factors here may
completely overwhelm others in an experimental design. Since curriculum
design cannot always wait on firm research results, provision was made in the
instructional system for nine student control commands (including the HINT,
TELL and GO commands as well as single-character and full-line erase commands,
quick sign-off, ete.). These control commands are defined by the coder and

may be left undefined if desired. Thus if further testing of the system

20

indicates that there should be less student control, the scheme can be easily
medified,

As an illustration of the use of the optimization schemes, a coded
problem taken from Lesson 4 is attached as an appendix. There is a top-level
problem, followed by eight subproblems which are used as remediation for
students who are having difficulty with the concept of hierarchy of operations.
The top-level problem reguires the student fo evaluate the expression

> % 213
(In the AID programming language, an asterisk is used as the symbol for
multiplication, and an up-arrow is used as the symbol for exponentiation,
so the expression 5 X 23 would be written 5 * 243 in AID.) If the student
does not understand the precedence of exponentiation over multiplication,
he will produce the incorrect response "1000" and will then be given the
message "Wrong, AID would evaluate 2t3 first., Try again."” If the student
produces the correct response (40), he is given the standard correct-answer
message CORRECT and then goes to the next top-level problem (Lesson L,
Problem 6), bypassing all of the following subproblems. For the student who
fails to produce the correct answer, an algebraic derivation of the correct
answer is given, and the student goes to the first subproblem. The first
four subproblems lead the student through the evaluation of the expression

32/ht2
and the fifth subproblem requires the student to evaluate, without detailed
help, the expression

1013 * 2,
If the student succeeds, he bypésses the remaining subproblems and proceeds
to the next top-level problem. The last three subproblems are written for
students who are having considerable difficulty with the concept; these last
three problems present the concept from a different viewpoint and provide
the student with a workable algorithm for solving problems of this type.

The entire sequence of subproblems 1s tutorial; few remedial séquences
in the course consist solely of additional ptractice without amplification
of the ideas. The necessary drill on the concepts presented in the course

is attained by introducing the concepts in such a sequence that immediate

21

practice is provided in the context of presenting the next concept. Thus,
necessary skills are constantly reinforced without the need for éxtensive
sections of pure drill-and-practice.

III. Preliminary Results

The complete teaching system described above is now in use by NASA
personnel, and has been used by a small number of volunteer students from
Stanford University and Woodrow Wilson High School in San Francisco, but
results are not yet available. The preliminary system, which formed the
basis for the present system, was used by ten students in the spring of 1969
and subsequently by another half-dozen who sought out the curriculum designer
to request use of the course. The results were extremely encouraging;
student motivation was high, performance was good, and in all respects, the
preliminary system proved itself both in overall philosophy andin curriculum
design. An excerpt from the April-June 1969 progress report is given here.

"A small pilot study was designed during the Spring Quarter, 1969, to
supply information for meaningful revisions of the curriculum and the in-
structional system. Since this was the first trial of the system, the most
useful information would be derived from observations of students' reactions
to the program. There was no plan to collect detailed data or to do any
kind of statistical analysis of data. Ten students were enrolled in the
course on a flexible time scheduling basis; some students were scheduled
three sessions a week, others two, and others came only once a week, depend-
ing upon the wishes of the individual students. The students were allowed
to use the course in whatever way they felt best; but they were restricted
to teking not more than two lessons per session. Also, immediately after
each session, they were to be interviewed briefly.

"The students completed anywhere from three to twenty lessons each,
with about half of them getting as far as Lesson 20. In general, the students
who did fewer lessons did so because they spent less time on the lessons
rather than because of any great difficulties with the material. In fact,
the student who had the most difficulty with the course, and made the slowest
progress in relation to the time spent, finished Lesson 13 by the end of the
quarter and expressed regret that he hadn't been able to spend enough time

to have completed the 20 available lessons.

22

"Students were timed on several lessons in order to get a rough idea of
the time which would be necessary for future students to complete the course.
The average time per problem for different students rsnged from about one
minute per problem to three minutes per problem; the assignments for each
lesson required about as much time as the lesson itself. [In the preliminary
version of the course, programming problems were given as additional assign-
ments rather than being inéorporated in the lessons as they are now.)

"Extensive notes were taken during interviews with the students and
were summarized in an anecdotal.weekly report. Also, the responses to
individual problems were tabulated and the percentages of correct and in-
correct responses were calculated. The most frequent incorrect response to
each problem was also tabulated.

"The students were quite enthusiastic about the course and would have
worked for several hours at a time had they not been restricted to taking
no more than two lessons per session. Since most of the students' comments
were about specific problems, there was no indication that a major revision
of the curriculum is needed. The following are a few general observations
based on students' comments and behavior.

"Use of student controls. The student control commands, which were

explained in detail in Lesson 1, were received with enthusiasm. (A control
command is given by holding down the 'CTRL' key while -striking a letter key.)
The commands used were

Ctrl-H (used to request a hint) [This has been changed to a question
mark in the newer version.]

Ctrl-T (used to request the answer)

Ctrl-S (skip to next problem) [This control command is available,
but not stressed in the revision.]

Ctrl-G (used to get another problem or lesson. After the student
types Ctrl-G he is asked to specify the lesson and problem
he desires.)

"Both Ctrl-H and Ctrl-T were used frequently, although there was
noticeable tendency for students to use one or the other but not both.
Ctrl-S was rarely used; in fact, several students were asked, at the end
of Lesson 3, what control commands were available and were not able to

recall Ctrl-S.

23

"Ctrl-G was used much less than anticipated. At the end of the pilot
study, the students were queried about this; several students replied that
they thought they would not be contributing fully to the experiment (the
pilot study) if they skipped any of the lessons; a few students felt that
they would not know what they had skipped and that it might be important to
them in later lessons (this comment was made even in reference to reviews
and self-tests in which there was an explicit statement that no new material
would be presented and that it was perfectly accéptable to skip the entire
lesson); only one student consistently chose to review previous lessons and
he commented that he felt he simply repeated the same mistakes without
achieving any noticeable gain in understanding.

"Language confusion. Almost all students evidenced some confusion

between the language they were learning (the AID programming language) and
the language (English) used in the exposition. Part of this confusion un-
doubtedly arose because the AID language is a subset of English (AID commands
are syntactically correct English sentences containing a verb, ending with
a period [the newer version of AID does not require a period], etc.);
although this is certainly not a complete explanation and it is obvious
that the advantages of teaching an English-based programming language far
outweigh the disadvantages even if it could be shown to be a significant
factor in the language confusion.

"Furthermore, a few students were also puzzled about which program they
were using--the teaching program or the AID interpreter (which they used
for doing assignments); one student tried to ask the AID interpreter for
hints about an assigned programming problem. It is felt that some confusion
between languages and between programs is almost inherent in the situation
and no satisfactory way of dispelling the confusion has been found.

"Constructed responses to multiple-choice problems. The multiple-

choice problems used in the course consist of a problem statement or
question and a list of possible answers, each of which is labeled with a
letter. For example, | |
WHICH OF THESE ARE CORRECT AID COMMANDS?
A, TYPE 2 X 3.
B. PRINT 2 3.

2k

C. TYPE 2 3.
N. NONE OF THE ABOVE.

"Students are expected to respond by typing a letter (or list of letters)
corresponding to the correct answer (or answers).

"There is a noticeable tendency for students to respond to certain
multiple-choice problems by typing the answer itself rather than typing the
corresponding letter., In the AID course, a response other than a single
letter (or list of letters) is treated as an error, and the message

PLEASE TYPE LETTERS ONLY
is given., This error message has been found to be remarkably ineffective;
the probability that a student will repeat the same kind of error after
receiving the above error message seems to be greater than one half, possibly
as much as three quarters.

"The tendency to make the kind of error described above seems to be
influenced by the following factors: [Note: the following remarks were
based on observations and suggest future lines of research.]

"1, Answer length. If the number of characters in the answer choice
is small (say, two to six characters), there is a strong tendency to type
the answer itself.

"2. Context. If the problem is preceded by several problems requiring
constructed responses, the tendency fo construct a response is somewhat
increased. If the preceding constructed responses are closely related to
the choices in the multiple-choice problem, there is an even stronger
tendency to construct a response; for example, if the six preceding problems
require 3-digit numbers as a response, and the choices in the multiple-choice
problem are 3-digit numbers, there is a high probability of making an error.

"3, Problem-solving strategy required. There seem to be two distinct
kinds of problem-solving strategies used in producing the answer to a multiple-
choice problem. One is a 'mental construction' of the correct answer, fol-
lowed by a search of the choices for that answer, and the other kind is a
'feasibility-elimination' approach in which the student inspects the list
of possible answers and chooses that which is most feasible, or eliminates

those choices which are least feasible. (Generally, students working on a

25

specific problem will not switch from one strategy to another unless there

is a compelling reason; for instance, a student will abandon a 'feasibility-
elimination' approach if several choices are equally feasible.) The strategy
a student uses is influenced by the problem statement although there is some
tendency for individual students to prefer one strategy over another. If

the 'mental construction' strategy is used, the student is more likely to
produce an overt construction of the answer, thereby producing an 'error.'

"4, Wording used in problem statement. The wording used in instructions
to the student seems to have some effect on the tendency to give a constructed
answer to a multiple-choice problem. In particular, use of the word 'what'

in the problem statement produces more errors than the word 'which.' For
| example, compare 'What command causes AID to give N a value of 127?' with
'Which command causes AID to give N a value of 127!

"One additional comment: Although the above remarks may imply that :the::
error of constructing a response in answer to a multiple-choice question is
a use-mention error, this may not be the case. There are a number of problems
in the course which require a 'partial construction' and there is an observ-

- able tendency in students to give a more complete answer than is required;
for example, students tend to answer 'Do Part 12' rather than *Do' in
response to this problem:
COMPLETE THIS COMMAND TO EXECUTE PROGRAM 12,
' ceoss PART 12

"The error of constructing a more complete response than required is
clearly not a use-mention error, and it seems to be closely related to the’
error of constructing a response to a multiple-choice problem. b

"Answer length, context, required strategy, and wording used in the
problem statement are not the only factors which contribute to the kind of
use-mention error under consideration here; there are also individual factors,
such as age and previous experience. However, the above four factors are
the only curriculum-oriented factors which seem to have an effect."

Starting in the summer of 1969, extensive revision of the curriculum
and programs was undertaken. The major changes were the provision for

multiple hints (in the first version, there was only one hint per problem)

26

and the provision of a multiple-strand structure to provide for review les-
sons, summaries, and extra-credit problems. The coding language and programs
were extended considerably. As mentioned before, detailed results are not
available, but all indications are that the revision is extremely successful;
both students and teachers were enthusiastic.

IV. Computer Programs and Coding Language

One of the major efforts of the AID project has been in the development
of a sultable coding language and a manual explaining the use of that coding
language. The neceésity for developing a coding language became apparent
quite early in the planning stage of the system, since no available high-
level language sultable for implementing the kind of optimization schemes
was envisioned. The coding language, INSTRUCT, developed for this project,
was designed to be learned and used easily by inexperienced coders and
writers. Further, the manual, which includes a complete description of the
instructional system, is written for readers who are unfamiliar with com-
puters and programming. There are step-by-step instructions on coding,
processing, and debugging lessons, as well as instructions for initializing
a course, and for defining additional coding commands. The coding commands
are summarized in a separate section, so that the manual can serve as a
reference source as well as a primer. One of the major reasons for produc-
ing such a complete coding manual was to provide an adequate basic document
for the instructional system should it be implemented on another computer
for use in other places. The manual, which contains 90 pages, cannot be
included in its entirety in this report, but excerpts containing a summary
of op codes and a BNF definition of the language are included in the appen-
dices. An example of a coded problem sequence (taken from Lesson 4) is also
included.

Briefly, the coding language is a high-level computer language designed
specifically for writing tutorial computer-assisted instruction. The language
contains over 30 different types of commands, such as problem statement com-
mands, response analysis commands, conditional branching commands, that
enable a curriculum coder to specify problem statements, hints, sample
answers, detalled analyses of student responses and contingent actions to

be taken, sequence of problems, and format of all messages.

27

In order to provide programmed lessons that are highly individualized,
there must be nontrivial routines for analyzing student responses and per-
forming appropriate actions contingent upon the results of such analyses.
Analysis routines must be highly differential so that specific errors may
be isolated and appropriate remedial material presented. A simple correct-
incorrect classification of responses is insufficient for an individualized,
tutorial system of teaching. There are twelve basic analysis routines:
EXACT, KW, EQ, MC, TRUE, YES, and their negations NOTEXACT, NOTKW, NOTEQ,
NOTMC, FALSE and NO. The EXACT routine checks the student response for an
exact character-by-character match with a coded text string; KW (key word)
checks for the occurrence of a coded key word; TRUE checks for a response
of TRUE or T; the MC (multiple-choice) routine can be used for multiple-
choice problems in which several choices are correct (a correct response
may be a list of all correct choices, or a list of a minimum number of
correct choices, depending upon how the MC command is used by the coder);
the EQ routine checks for a number within a range of numbers, as specified
in the coding, or checks for equality with a single number, alsc as specified
in the coding.

The basic analysis routines not only check on the correctness of a
student response, they also check on the form of the student response. For
example, the EQ routine accepts as a response any number in integer form,
decimal form, or scientific notation; any response not in an acceptable
form, e.g., a response of the word "four,"
ERROR IN FORM: PLEASE TYPE A NUMBER. Another routine that differentiates

between correctly formed and incorrectly formed responses, as well as be-

elicits an error-in-form message:

tween correct and incorrect responses is TRUE, which expects either TRUE
or T as a correct answer, and either FALSE or F as an incorrect answer.
Any other response from the student elicits an error-in-form message:
PLEASE ANSWER TRUE OR FALSE. Most other analysis routines (YES, MC, etc.)
also contain error-in-form subroutines.

Complex analyses of student responses can be made by using simple

Boolean combinations of the basic analysis commands. For example, the

28

coder may specify a check for a number between 1 and 10, but not. equal to
either 5 or 5.5, by using appropriate combinations of EQ and NOTEQ commands.
Since most of the action performed by the analysis routines is internal,
i.e., with no action visible to the student, there are also commands that
cause coded messages to be relayed to the student, appropriate branching to

' are all contin-

take place, etc. These commands, called "action commands,'
gent upon the results of the analyses performed by the analysis commands,
i.e., the actions are contingent upon the correctness of the student response.
In addition to the problem coding described above, the system also
allows the coder to specify the number of strands, which of the student con-
trol commands are to be made available, and the characters to be used by the
student for giving such commands. As a labor-saving device, about 15
"standard messages" can be defined by the coder so that he is not reguired
to code commonly used messages (such as CORRECT, WRONG, TRY AGAIN) more than
once.
Because all problems are written in a high-level coding language, any
changes needed in the curriculum for research purposes are easily accomplished.
The teaching system described above is implemented for the PDP-10
computer located at the Computer-based Laboratory, operated by the Institute
for Mathematical Studies in the Social Sciences of Stanford University. The
teaching system consists of a coding language, a lesson processor program
that will translate from the coding language into machine-readable code, a
lesson interpreter that will interpret the translated code at the time a
student is using the system, and a set of auxiliary cperational programs.
The lesson processor is essentially a compiler for the lesson coding language
and is used to translate coded lessons into a form that can be stored ef-
ficiently for later use by the lesson interpreter. The program (the lesson
interpreter) that will be in operation at the time a student takes a
lesson 1s the most important and largest program in the teaching system.
It is a time-sharing program that must be extremely efficient both in terms
of core space required and in terms of processing time, since both of these
factors affect the response time for all users of the system. Past experience
has shown the length of response time as the single, most critical item of

concern in the design of a system for computer-assisted instruction. A

29

response time of less than 3 seconds is most desirable, and a response time
of more than 10 seconds is totally unacceptable. Response time is affected
both by the efficiency of the processing done by the program and by the total
size of the program. For these reasons, the lesson interpreter is carefully
designed and written in the most efficient available programming language.
The auxiliary operational programs include a student enrollment program and
a daily teachers' report program.

The lesson processor. The lesson processor is a two-stage processor,

the first stage being one of the PDP-10 assemblers. Since the PDP-10 has a

macro-assembler, full advantage has been tsken of the macro capabilities;
the processor consists almost entirely of macro definitions of the op codes
used in the coding language, plus a very short load routine, which stores
the processed lessons on a disk file (the processor is essentially a zero-
length program). The coder is also allowed the advantages of a macro
assembler; judicious use of macros can reduce coding time significantly.

The lesson interpreter. The interpreter is written as a reentrant

time-sharing program using 2K words (36 bit) of core plus 1K for each of
the students concurrently taking lessons. The program is written in one of
the assembler languages for the PDP-10. Great care has been taken to ensure
fast response time and economical use of core and disk storage. Routines
for detecting and compensating for coding errors have been incorporated.

In a similar fashion, unexpected responses from students are not allowed to
cause errors in the program. This program has been in daily operation for
as long as 10 hours per day since the first of February and is operating
well; response time is excellent and no bugs have been found in the program.
During the month of March, the lesson interpreter handled 1,050 lessons in
BASIC and AID without any failures, a more than adequate demonstration of
the abilities of the program.

As the students interact with the program, their individual history
file is continually updated and written into disk storage. The history file
is 100 words long and contains the student's name, the number of the course
in which he is enrolled, his current position on each strand (lesson and
problem number), the date, and various other information needed by the

program. These history files supply information for auxiliary programs

30

such as the daily report program; a sample daily report is included in the
appendices. The data found in the individual history files, which are con-
tinutally updated as the student progresses through the course, are the only
data collection currently done by the program.

The AID interpreter. The course "Introduction to Programming: AID"

requires the student to learn to operate two programs that are completely
independent: the lesson interpreter (instructional program) and the AID
interpreter. The AID interpreter is a commercial program supplied and
maintained by .Jigital Equipment Corpdration, the manufacturer of the PDP
computers. No changes have been made to date in the AID interpreter for
data collection or any other reason, and there is no interrelation between
ATD and the instructional system other than that it is being implemented on

the same computer.

31

APPENDIX A

Student Manual

INTRODUCTION TO PROGRAMMING: AID
Student Manual
by

Jamesine E. Friend

Revised March, 1971

Copyright 1969, 1971 by the Board of Trustees of the
Leland Stanford Junior University
All rights reserved.

Institute for Mathematical Studies in the Social Sciences
Stanford University

Stanford, California

TABLE OF CONTENTS

Page
How to Start the Teaching Program . . . +« & « « o o 4+ o o o o 1
How tO StOp « ¢« ¢« v v v v v v v 6 6 v vt e e e e e e e e e 2
Outline of the Course . « v « v & & + ¢ o o o o o+ & o o« s o o o 3
GLOSSATY '+ v « ¢ 4 & 4 o + + o o o s o + o 4 s 4 i 4 e 4 0. b

Note: Not all teletypes have the same set of characters.
For shift N, "t" is equivalent to "A".
For shift 0, "<" is equivalent to "-".

In this manual, * and < are used; if appropriate, read A and
- for these characters.

How to Start the Teaching Program

In this course, you will be taking computer-assisted instruction in

programming. The programming language you will learn is called "AID"
and the lessons will be given by the PDP-10 computer at Stanford.

Follow these instructions to start the teaching program:

1.

-1

Turn on the teletype: the switch on the front of the teletype must
be turned to the LINE position.

Push the START or BREAK key. (If the teletype doesn't start to hum,
get help.)

Type a space. The computer will then type
HI
PLEASE TYPE YOUR NUMBER AND NAME

(If this doesn't happen, get help.)

Type Q, your number, your first name, and a space. After you type
the space following your first name, the computer should print your
last name.

If your last name is printed correctly, type a space. (If it isn't,
get help.) Then the computer will print the time, the date, and
your teletype number.

Type
L INST

and then push the RETURN key. The computer will type
WHERE TO?

Type the RETURN key.

Steps 1, 2 and 3 are used to establish communication with the computer.
Steps 4 and 5 cause you to be "signed on." Steps 6 and 7 start the
teaching program.

If the computer does not respond correctly after each step, get help.

Good luck!

How to Stop

When you are through for the day, follow these instructions:

1. Hold down the CTRL key while you type the letter C.
The computer will print a period.

2. Type the letter K, then push the RETURN key.
The computer will print the sign-off message.

You do not have to turn the teletype off. It will turn off by itself,

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

6.

Te
8.

10.

11.

j2.

13.
1k,

Outline of ‘the Course

Computer-Assisted Instruction in Programming:. AID

How to answer. How to erase. Control commands.

Signing on and off AID. The TYPE command. Arithmetic
operators: + - ¥ / . Decimal numbers.

Using AID for arithmetic. Use of parentheses. Order of
arithmetic operations.

The operator t for exponentiation. Order of operations.
Scientific notation.

Variables. The SET command. Re-defining variables. The
DEIETE command used to delete variables.

Self-test.
Review.

The LET command (using function notation). Distinction
between LET and SET. Distinction between use of a defined
function and display of the formula for a function. Re-
defining and deleting functions.

Some standard AID functions: IP(x), FP(x), SGN(x), SQRT(x).

Indirect steps.

DO STEP

DO STEP ... FOR

Re-defining steps and deleting steps.
TYPE STEP

Parts.

DO PART

DO PART FOR
Deleting parts.

TYPE PART.

The DEMAND command.
DO PART ..., ... TIMES.
Terminaticn by refusal to answer a DEMAND command.

Self-test.

Review.

Iesson 15. Relations between numbers.
Relational symbols: < > <= > = #
Number line.
The IF clause.
Lesson 16. Branching. The TO command.
TO STEP ...
TO PART ...
Lesson 17. Traces.
Lesson 18. The indirect use of DO.
Lesson 19. How to write and debug a program.
Lesson 20. Self-test.
Lesson él. Review.
Lesson 22. The FORM statement.
Lesson 23. Loops.
Lesson 24. Loops with variable bounds.
Lesson 25. Loops compared with FOR clauses.
Lesson 26. Loops with a DEMAND command.
Lesson 27. Self-test.
Lesson 28. Review.
Lesson 29. Absolute value.
Lesson 30. Trigonometric functions: SIN(x), COS(x).
Lesson 31. EXP(x), LOG(x).
Lesson 32. Lists.
Lesson 33. Using loops with lists of numbers.
Lesson 3k. Self-test.
Lesson 35. Review.

Lesson 36. Nested loops.

Lesson 37. Iterative functions: SUM, PROD, MAX, MIN,

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

38.

39.
X0.
k1.
42,
43,
e

45,
L6.
b7,
L8.
49.

Arrays.
LET S BE SPARSE.

More about lists and arrays.
Conditional definition of functions.
Self-test.

Review.

Recursive functions.

AND, OR and NOT.
Truth tables.

TV(x). The function FIRST.

LET used to define propositions.
More standard AID functions.
Self-test.

Review.

GLOSSARY

Absolute value
The absolute value of & number is the size of that number
disregarding the sign of the number. In AID, exclamation
points are used to denote absolute value:

Examples:
r-2.7! = 2.7
2.7d = 2.7
See lesson 29. Also see Operational Symbols.

KHRK KR KK

ATID
ATD is the computer programming language being taught in this
course. "AID" stands for Algebraic Interpretive Dialogue.

See AID Interpreter. RRH KRR RN

ATD commands
All ATD commands have a similar form.
Each command must be on one line and must end with a
RETURN., The form of the commands is as follows:
1. An optional step number, like 2.1 or 37.54 or 16.165.
2. A verb such as TYPE, SET, DELETE.
3. An argument whose form depends upon the preceding verb.
The argument for TYPE is an algebraic expression:
TYPE X + 2/Y
The argument for SET is an equaticn with a single variable
on the left of the equal sigu:
SET C = 72/B + 3.134
Ete.
4, An optional IF clause.
TYPE X + Y IF Z <O
SETQ =3 IF P =15
DO PART 3 IF X < 27
In addition to the above four parts, certain commands may
contain FOR clauses, or IN FORM clauses.
The AID commands taught in this course are

DELETE Lessons 5,11

DEMAND Lessons 12,26

DISCARD Lesson 19

DO Lessons 10, 11, 12

FIIE Lesson 19

FORM lesson 22

LET Lesson 8

RECALL Lesson 19

SET Iesson 5

TO Lesson 16

TYPE Lesson 2

USE Lesson 19

See Direct Steps, Indirect. Steps

FHHRHHHH

.6

ATD functions
ATD functions are the functions already defined by AID.
These functions are
ARG, COS, DpP, EXP, FIRST, FP, IP, LOG, MAX, MIN, PROD,
SGN, SIN, SQRT, SUM, TV, XP.
Each of these functions is separately defined in the glossary.

See Lessons 9, 30, 31, 45 and 47.
KHEKKEFH

ATD Interpreter
The ATD Interpreter is the program used when you want AID to
solve a problem for you. After you start AID, you can type
any AID commands. The AID Interpreter interprets your commands
and executes them. To start the AID Interpreter (after you are
signed on), type CTRL-C then type "L AID".

To stop the ATD Interpreter, type CTRL-C.

To stop a runaway AID program, type CTRL-C twice.
FHKHHHHHe

"AND" is a logical operator used in propositions. All elements
connected by "AND" must be true for the entire expression to be
true. If any one element is false, the expression is false.
Examples: Asgume A = TRUE, B = TRUE, C = FALSE

X = A AND B X = TRUE
Z = A AND B AND C Z = FALSE
See Lessons 15 and 44. Also see Proposition.
KRR KR

Answer, How to

To answer a problem in the teaching program type your answer,
then type the key labeled "RETURN," For multiple-choice problems,
there may be more than one correct answer; you may type the letters
in any order (with spaces or commas between them, if you wish),
for example,

ABC

CRA

A, C, B

BCA
For TRUE-FALSE questions, you may type "T" for "TRUE" and "F"
for "FALSE." For YES-NO questions, you may type "Y" for "YES"
and "N" for "NO," -
See Iesson 1.

KHHRKHHH

Answer, How to Get
To get the correct answer to a problem, hold down the "CTRL" key
while you type the letter "T" (for "Tell me the answer").
HRAKHKRHK

ARG
ARG(x,y) is the argument function. AID finds the angle between

the +x axis of the x,y plane and the line joining 0,0 and x,y. The

result is in radians.
KR KK RKRH

Arithmetic symbols

See Operational symbols
FHRHHHKKH

Array
An array is a set of numbers identified by a single letter and from
1 to 10 subscripts (indices). The subscripts may be any integers
from -250 to 250.
Examples:
The following are all members of the same array A:

A(-10,2,5) = 2.789

A(-10,1,0) = -45

A(1,20,59) = 0
You can set all undefined members of an array (for example X) to
be O with this command:

LET X BE SPARSE.

See Lessons 38 and 39. Also see List.
FHKKRHHHRN

]

Asterisk (*)
Both the teaching program and the AID Interpreter print an asterisk
when ready for a response from the user. The asterisk is also used

as the multiplication symbol (6 * 7 means 6 times 7).
P

Base
(See also Exponent, Exponential function.) In an exponential
function the base is the number multiplied by itself as often
as specified.
Example:
X is the base: Xt2 = X¥X
The base may be either a number or a variable.

See Lessons U4 and 31.
RHXHKXKKHR

Boolean expression

See Proposition.
FHRHFH KRN

Branch
Tc branch means to go from one part of a program to another part
of the program out of sequence. To do this use the DO command
or the TO command.

See DO, TO.
KRKKKKRHH

Command

See Control commands, AID commands
HRHEHKFHRH

Control commands

CTRL stands for the key marked "CTRL." Whenever you see a command

with CTRL- and a letter, you are supposed to hold down the CTRL

key while you type the letter. ("CTRL" stands for "control.")

CTRL-A. The "repeat" or "again" command causes the retyping of
a problem.

CTRL-C. This is the call command. It is used to stop a program
that is running. Use CTRL-C to stop either the teaching program
or the AID Interpreter. If you have written an AID program
that is endlessly looping, type CTRL-C, then type REENTER to
start ATD again without restarting the program which was looping.
See Lessons 1, 2 and 16.

CTRL-G. This is the "go" command. You use this command only in
the teaching program to go to the lesson or problem you choose.
After you type CTRL-G, the computer asks "WHERE TO?" Then you
specify the lesson or problem you want. See Lesson 1.

CTRL~H. This is the "hop" command. It causes the teaching program
to skip the problem you are working on and go to the next one.
Use this command whenever you want to go on to the next problem
without doing or finishing the current one.

CTRL-0., This is the "Oh, shut up" command. It will stop the
computer from typing. The computer will then wait for a response
from the user.

CTRL-T. This is the "tell" command. If you are using the teaching
program and want the answer to a problem, type CTRL-T and the
computer will print the answer and then go on to the next problem.
See Lesson 1.

CTRL-U. This is the "undo" command. It will cause the computer
to erase the line you have Jjust typed.

?. This is the hint command. If you are using the teaching
program and want a hint about the problem you are working on,
type a guestion mark, 7. The computer will then give you a

hint. See Lesson 1.
xS

Conditional definition of functions

A function is said to be defined 'conditionally" if the value of
the function dépends upon some condition such as "...IF X > O"
or "...IF 2 < X AND X < 7." For example, the absolute value
function can be defined in this way: '

For x > = 0, A(x) = x.

For x <0, A(x) = -x.
In ATD, this conditional function is defined by the command

IET A(X) = (X >=0: x; x < 0: -x)
The form of a conditional definition in AID is

(condition: value; condition: value; ...; condition: value)
Generally, the last condition (and last colon) may be omitted,

in which case the last value listed is used for "everything else,"
i.e., for all cases not covered by one of the precéding conditions.
The absolute value function may be written without the last condition:
IET A(X) = (X >=0: X; -X)
RHHHHHH K

Counter

A counter is a variable used for counting. The counter is usually
set to some initial value, say O, and then increased by some amount,
say 1, at regular intervals. One common use of a counter is to

count the number of times a loop is used. One of the commands inside
the loop should change the value of the counter (usually by adding
or subtracting a given number). Somewhere inside the loop there is
an "exit condition," in which the counter is compared with another
number to decide if AID should repeat the loop or if it should exit
from the loop and go on to some instruction outside the loop. See
Lessons 23, 24, 25, 26 and 36.

HRRHHREKR
Ccos
COS(x) is the cosine function. AID will give the cosine of the
number you give. X must be given in radians and the absolute value
of X must be less than 100.
Example:
cos(o) =1
U NN
CTRL
See Control commands
NN
Debug
(See also Trace) To debug a program, you must find and correct all
the errors in it, whether they are logical errors or simply typing
errors. A trace is an effective method for finding precisely where
an errcr is. ©See Lesson 19.
FHRREHRHR RN
IELETE

Use DELETE to remove a variable, a specific element in an array,
or an entire array, along with the values belonging to them from
computer storage. You may alsc DELETE a step, e part, a formula,
or a form, One DELETE commend may be used to DELETE several items.
Examples:

DEIETE Z

DELETE A(2)

DELETE FORM 71

DELETE Y, FORMULA B, PART 7

See lLessons 5, 8, 10, and 1l,..Also see FILE commands.
R 2]

10

DEMAND
DEMAND X causes the computer to stop and wait for the user to type
a value. DEMAND can only be used as an indirect command.

Examples
ATID command: output:
1.3 DEMAND B B = *
7.12 DEMAND M(2,4) M(2,4) = *
4.1 DEMAND P AS "POUNDS" POUNDS = *

See Iessons 12 and 26.
KRHHRHHK

Direct step
An AID command not preceded by a step number is called a "direct
step." AID interprets and executes a direct step &s soon as you
type the RETURN key. 7You must type a direct step each time you
want it executed. DEMAND and TO may not be used as direct steps.

Examples:
ATD command: output:
TYPE 2%7 2¥7 = 14
SET X = -3 no output (stores -3 in location X)
FRRHERKRHR
DISCARD
See FILE commands. Also see DELETE.
HHKKHHRKHR
DO
The DO command is used to execute an indirect step or part. You
may specify how many times the step or part is executed (if you
don't specify, it will be executed only once). You may also use
a FOR clause and specify a range of values for which the step or
part is to be executed.
Examples:
DO STEP 10.1.
DO PART 6, 2 TIMES.
DO STEP 8.2 FOR X = 12(2)20.
See Lessons 10, 11, 12, and 18. Also see FOR clause.
HKHH KRR
Dp

DP(x) is the digit part function. This function uses the scientific
notation form of a number and finds the new form of the digit part
of the number you specify.
Examples:
241,37 in scientific notation is 2,4137%1012, so
DP(241.37) = 2.4137
.24137 in scientific notation is 2.4137*%10t(-1), so
DP(.24137) = 2.4137
The DP function is introduced in Lesson 47.

See Scientific Notation, XP.
FHHHRKKK

11

Erase
To erase a line, hold down the CTRL key while you type the letter
U. To erase one character at a time, type the RUBOUT key once for

each letter you want erased. See DELETE, DISCARD. See Lesson 1.
FRERR KKK

Errors

In writing AID programs you may make two kinds of errors:

1. Semantic errors. A semantic error is the kind that occurs
when you leave out a necessary command or use a valid AID
command when you intended to use another. AID will execute
the commands Jjust as you wrote them. This means that the
only way to detect this kind of error is to see if you are
given a wrong answer. A program may keep running indefinitely
if an infinite loop is introduced. Type CTRL-C twice to escape,
then type "REENTER."

2. Syntax errors. These are the errors that occur when you type
something which is meaningless to AID. Because AID does not
understand, it will stop and print an error message, then
wait for you to do something (such as correcting the mistake
and starting again!).

See Lesson 19. Also see Erase.

FRKEKKHH

Execute
To execute a program, you make the computer do the commands in
the program. This is done by writing the program and then giving
AID a command to execute the program (for example, DO PART 5).
Indirect steps and parts are stored and you must use a DO command
to cause AID to execute them. Direct steps are always executed
immediately.

FRKHHHHK

Exit condition

An exit condition is a command within a loop which tells AID
whether to repeat the loop or to quit looping. One kind of exit
condition compares a counter with another number to decide. When
the conditicn of the comparison is not met, AID exits from the
loop and goes to the next step. No exit condition is needed if
the loop contains a DEMAND command, since you can stop the loop
at any time by typing only a carriage return when AID waits for
you to give a value.
Examples:

1.4 TO STEP 1.25 IF X > 25,

9.34 TO STEP 9.1 IF SQRT (X) < 10.
See Lessons 23, 24, 25, 26 and 36. See Counter.

KRKEHHRHK

12

EXP
EXP(x) is the exponential function, EtX, where E is Euler's number
(2.71828183).
Example:
EXP(3) = 20.0855369
See Lesson 31.
e T

Exponent
In an exponentlal function the exponent tells how many times the
base is multiplied by itself. The exponent may be either a number
or a variable.
- Examples:
3 is the exponent: Xt3
Z is the exponent: T7.43t2Z

The AID function EXP(X) is equivalent to 2.71828183tX, so X is

the exponent. A fractional (or decimal) exponent indicates which

root of a number is being calculated. For example, the square

root of X may be written either
Xt(1/2)
or
Xt(.5).

If the exponent is negative you first do whatever is indicated by

the numerical value of the exponent (find the proper root or

multiply the base by itself the correct number of tlmes) Then
take the reciprocal of the result,

Examples:
4t(-3) = 1/413
104(-6) = 1/1016

If the exponent is O, the value of the expression is 1, regardless

of the value of the base.

Examples:
210 = 1
5.510 =
0t0 = 1

See Lessons 4-and 31.. See Base, Exponential Function.

HHHRXHHK

1

Exponential function
An exponential function is a function in which the variable appears
as an exponent,

Examples:
F(X) = 21X
G(X) = 1l.21(3%X)
H(X) = XtX

" The AID function EXP(X) is an exponential function which is

equivalent to 2,718281834X. Also see Base, Exponent.
FRKRRERR

13

FI1LE commands

Programs, formulas, forms, etc., may be filed for later use by
using the AID file commands. The commands

USE FILE 100

FILE PART 3 AS ITEM 5
will cause PART 3 to be permanently stored as item 5 on disk file
100. The PART may be fetched from the file at a later date by
using the commands

USE FILE 100

- RECALL ITEM 5

Item numbers can be from 1 to 25.
Examples of file commands:

USE FILE 100

FIIE F AS ITEM 6

FILE FORM 70 AS ITEM 10

FILE PART 2 AS ITEM 12
An item is erased from a file by a DISCARD command:

DISCARD ITEM 17
See Storage. See Lesson 19.

FRERKHHH

FIRST

FOR

FIRST is an AID function that finds the first value in an array
which satisfies the specified proposition.
Example:

FIRST(I = 1(1)30: A(I) > 700)
I is the index of the array A so I = 1(1)30 tells which elements
of the array are to be considered. A(I) > 700 is the proposition
which must be satisfied. The result of the FIRST function will be
the index of the first element in the array A which is greater
than 700. See Lesson 4.

K RHRHKHRHK

A FOR clause can be used after a DO command. The FOR clause
specifies the values for which the DO command must be executed.
There are two ways to specify the values in a FOR clause:
1. The values can simply be listed:
DO STEP 1.3 ¥OR X = 1,2,3,10.
Step 1.3 is done one time for each of the four values of x
listed.
2. The values may be specified by giving the range:
DO STEP 1.3 FOR Y = 3(2)13. -
Step 1.3 will be done for Y = 3, 5, 7, 9, 11, and 13.
3 is called the initial value, 2 is the step size, and 13 is
the final value. (See Range.)
See Lessons 10, 11, and 25.
FRERRHH*

14

FORM

P

FORM is the command used to tell ATID to type an answer in some form
other than the standard form. To specify the form, first type the
word "FORM," then give it a number, and follow it with a colon. On
the next line type the form you want AID to print your answer in,
including any words you want. Where AID is to fill in the number,
use back arrows to represent digits. Put the decimal in the appro-
priate place. Caution: use only one line.
Example:

FORM 73:

THE ANSWER IS <<+ <<
Then when you want AID to use your form, use a command like

TYPE X IN FORM 73.

See Lesson 22.
He KKK R KK

FP is the fraction part function. AID answers with the fraction
part of the number or variable you specify. '
Examples:
FP(132.576) = .576
- FP(-8.543) = -.543
The FP function 1s introduced in Lesson 9.
KR HRHHHKR

Function

Go

See ATD functions.
KRR RHRK

See CTRL-G, WHERE TO?
FHRFHRKRHH

Hint

In the teaching program, hints are provided for most problems.
To get a hint, type a question mark, ?. .There are usually
several hints with each problem; the first time you type a
question mark you will get the first hint, the second guestion

mark will give you the second hint, etc.
FRRHK KKK

IF clause

An TF clause may be added to any AID command so that the command
will be executed only if the proposition in the IF clause is
satisfied.
Example:

1.1 SET B = 50 IF A > 100.
ATD will set the value of B equal to 50 only if A is greater

than 100. See lesson 15.
FHHHHKHK

15

Index
An index is a reference number for a list or an array. The index
is the number in parentheses. Since all the members of a list or
an array have the same letter, each member has its own index to
distinguish it from the others.
Example:
L(16) = 10 means the 16th number in the list L is 10.
I, is the label for the list.
16 is the index of a particular element.
10 is the value of that element of the list.
The plural of "index" is "indices." An index is also called a

subscript. See Lesson 32.
HRHHHHH K

Indirect step

An indirect step is an AID command preceded by a step number.
Indirect steps are stored for later use, rather than executed
immediately. When you use a DO command or a TO command, the
step will be executed.
Example:

1.3 TYPE 3*%2,
ATD will not print anything until you give an indirect DO or TO
command or one of these direct commands:

DO PART 1,

or

DO STEP 1.3.
Step numbers must be decimal numbers containing both an integer
portion and a decimal portion; a step number can contain a maximum
of nine significant digits. Some commands may only be used in
indirect steps; those commands are DEMAND and TO. See Lesson 10.

Also see Part, Step number.
R HAKRH

Initial value

The term initial value may refer to two different things. It is
the first value given to a counter (see Loops, Exit conditions).
It also refers to the first value of a range of values in a FOR
clause using this form:

initial value (step size) final value
In the command

DO PART 3 FOR X = 6(2)20
the initial value is 6.
See Range.

FRRKRRRH

Input
Input commands assign values to the variables in a program. Most
programs must provide for input. The SET and DEMAND commands are

used for input. See lLesson 19.
FKHR KKK

16

INST

See Teaching program.
FHHHHRRHH

Ip
IP(X) is the integer part function. AID will give the integer
part of the number or variable you specify.
Examples:
IP(.723) =0
IP(72.8) = 72
IP(-6.9) = -6
The IP function is introduced in Lesson 9.
HHRHHHH AN
L ATD
See AID Interpreter.
FHRHHRH R
L INST
See Teaching Program.
FIHHNRHR
lesson
To get a specific lesson using the teaching program, you must
First, sign on (see page 3)
Second, start the teaching program (Type "L INST")
Third, specify the lesson (Type "L5" for Lesson 5, "L36"
for Lesson 36, etc.)
Also see CTRL-G.
KR RHHRHR
LET
IRBT is used to define functions and propositions,
Examples:
IET A(W,L) = W*L (formula for area of a rectangle)
IET B= X ANDY (B will be true only if X and Y are both true.)
LET T(A) = SIN(A)/cos(A) (tangent function)

See Lessons 8 and 46.
FWRRHHNR

Line number
See Step Number, Indirect Step.
TN

List
You may use one letter to represent a list of numbers. Each number
in the list must have an index to distinguish it from the other
members of the list.
Examples: L(1) = 10 (The first number in list L is 10.)
L(2) (The second number in list L is 6.)
L(3) = 29 (The third number in list L is 29.)

See lessons 32 and 33. Also see Array.
FRH KN

17

Il

il

1OG
LOG(X) is the natural logarithm function. LOG(X) gives the loga-
rithm to the base E of X. E is Euler's number (2.71828183). X
must be greater than O.
Example:
LOG(650) = 6.47697236
The LOG function is introduced in Iesson 31.
FHHHHHKH

Logical operator :
The logical operators in AID are AND and OR. Operations involving
AND are done before operations involving OR. See Lesson 4. Also
see Propositions.
FRKHHHRKNH

Loop
A loop is a portion of a program that is repeated. The number of
times a loop is executed depends on the counter and on the exit

condition. ‘Loops are first discussed in Lesson 23.
FHRHHHHK

MAX is the AID function that finds the largest value in a list,
Example:

M-AX(5: -k, 3, ¥, xt2)
You may also specify the list as a part of a sequence., You must
specify which numbers in the sequence are to be considered and
what the formula for the sequence is.
Examples:

MAX(I = 1,2,3,4: I*3) is the same as MAX(3, 6, 9, 12)

MAX(J = 1o(-2$o: 2%J) is the same as

MAX(2%10, 218, 216, 2t4, 2t2, 210) .
See Lesson 37. .
KR NHHHNH

MIN
: MIN is the AID function that finds the smallest value in a sequence.
You must tell AID which numbers in the sequence are to be considered
and what the formula for the sequence is. For short sequences you
may simply type the list of numbers.
Examples:

MIN(i = 1(1)5: i*3)

MIN(j = 3,0,-2: 21j)

MIN(L4,8,-7,2)
See lesson 37. Also see MAX.

FRRKRKHHH

]

Mistakes

See Errors, see Erase,
FREHHXHRH

18

Multiple choice problems
See Answer.
FRKHRHHH

NOT

See Propositions.
FRHH KR

Numbers
Numbers may be expressed in either decimal form (2348.25) or in
scientific notation (2.34825%101t3), Numbers are limited to 9
significant digits. See Lesson %.
HHRRKKRKRH

Mumber line
The number line is a line divided into egual parts. One dividing
point is labeled O and all the dividing points to the right are
labeled consecutively 1,2,3,... . All the dividing points to the
left ¢t O are labeled -1,-2,-3,..., consecutively.
Example:

Operational symbols
The AID symbols for arithmetic operation are these:

! ! absolute valuc

exponentiation

multiplication

division

addition

- subtraction

The order of priority of the operations is this:
1 !

+ Xk o>

t
* / evaluated from left to right
+ - evaluated from left to right
See Lessons 2, 3, 4 and 29.

HRKIN R HH

OR
OR is a logical operator used in propositions. If any element
connected by OR is true, then the entire expression is true,
otherwise the expression is false,
Examples: assume A = TRUE, B = FALSE, C = FALSE
X=BORC X = FALSE
Z=AO0ORBORC Z = TRUE
See lessons 15 and 4h4. Also see Propositions.
: FRKEHRHHRH

-

Output
An output commend causes AID to print the results of processing.
Most programs should provide for output. The only AID output

command is TYPE. ©See Lessons 2 and 19.
FHHHH IR

PART
A PART consists of all the indirect steps with the seme value in
the integer portion. For example, these steps all belong to PART 2.
2,001 SET X =1
2.99 SET X=X+ 1
2.4 TYPE X

See lLesson 11,
F R W R RN

PROD
PROD multiplies all the specified numbers in a sequence together.
You must tell AID which members of the sequence are to be used
and what the formula for the sequence is. For short sequences
you may simply type the list of numbers.
Examples:
PROD(j = 1)2:3:)'“ J+ 3)
...this is equivalent to (L1+3)%(2+3)%(3+3)*(4+3)
PROD(1 = 5(5)30: /L)
...this is equivalent to (5/4)%(10/L4)*(15/4)*(20/4)*(25/4)*(30/4)
PROD(2,4,2,.8,-2)
...this is equivalent to 2%L*zx.8%(-2)
See Lesson 37. Also see SUM, MAX, MIN.
FHH KR HH K

Proposition
A proposition is a mathematical sentence made up of arithmetic or
logical statements that use the relational operators (>,=,etc.),
NOT, and the logical operators (AND, OR). The value of a proposition
is-either true or false. The order of execution within a proposition

is
1. evaluate expressions
2. relational operations
3. NOT
L. AND
5. OR

Examples: assume X = TRUE, Y = FALSE, Z = TRUE
B=XANDY B is FALSE
A=XANDYOR Z A is TRUE
C=(2<3)O0R(7>10) C is TRUE

Propositions are discussed in Lessons Li-46. See TV.
AHHRRHKRHH

20

Range
gIn a number of different ATD commands a list of numbers can be
specified by defining the range of the numbers in this way:
ifs)f
where i1 = the initial value, s = the step size, and f = the final
value.
Examples:
DO PART 7 FOR X = 15(5)k40
(The initial value is 15, the step size is 5, end the
final value is L0, so the list of numbers is 15, 20,
25, 30, 35, 40.)
TYPE MAX(N = 1(7)29: W/3)
(The initial value is 1, the step size is 7, end the
final value is 29, so the list of values for N is 1,
8, 15, 22, 29.)
A renge specification may also be used with MIN, SUM, PROD,

and FIRST.
RHFRHNRNKR
RECALL
See FILE Commands.
K KR HH KKK
Reciptocal
The reciprocal of a number, say A, is found by dividing 1 by the
number A.
Examples:
numbexr reciprocal
3 1/3
2.5 /2.5 = .4
as Vu5u2
1/3 1/(1/3) = 3
FHHHRH KR
Recursion

Recursion is a way of defining a function on the integers by (1)
specifying the value of the function for the integer 1, and (2)
defining the value of the function for integers greater than 1
in terms of the value of the function for smaller integers. For
example, the factorial function F(X) may be defined by these two
equations:
F(1) = 1
(this specifies the value of the function for the integer 1.}
F(X) = X¥F(X-1) for X > 1
(this defines the value of the function feor X in terms of
integers less than X.)
In AID, the above two equations are combined in a single conditioral
expression, as follows:
F(X) = (X=1: 1; X > 1: X*F(X-1))
HH R4t

REENTER
To stop a runaway program, type Ctnl-C twice, then type "REENTER."
AID does the next step and then stops and tells you where it is so
you can decide what to do next. See Ctrl-C.
KRRRRFHH

Relational symbols
These are the relational symbols used in AID:

= equal - > greater than
not egqual <= less than or egual to
< less than > = greater than or equal to
The relational symbols are discussed in Lesson 15.
KEKRHRHRKRKR
Repeat
To have a garbled problem retyped, type CTRL-A, for "again."
FHH KKK

Scientific notation
Scientific notation is used to write very large and very small

numbers.
scientific notation
30000 = 3.0 ¥ 1044
4560000 = 4.56 * 10t6
0.0025 = 2.5 % 104(-3)
0.00000071 = 7.1 % 104(-7)
See Lesson k.
KR KRR ERe
Semantic errors
See Errors.
: KKK R K% He e
SET
The SET command assigns values to variables.
Examples:
SET X = 5.25
SET Z = A¥B (A and B must already have values.)
The SET command is introduced in Lesson 5.
KRR KR KK
SGN

SGN(X) is the sign function. It gives 1 if X is a positive number,
O 1if X is 0, and -1 if X is a negative number.

Examples:
SGN(25) = 1
SGN(0) =0

SGN(-762.4) = -1
The SGN function is introduced in Lesson 9.
FHHRHHR K%

22

Sign-on
See Page 1. of this manual.
SRR AR

Sign-off
To sign off use these commands:
CTRL-C (to stop the program)
K (to sign off)
KEEKRHRHHR

Significant digits
The significant digits of a number are the digits beginning with
the first non-zero digit on the left and ending with the last
non-zero digit on the right.

Examples:
number significant digits
0.2030 203
100 1
.00976 976

In AID, numbers are limited to 9 significant digits.

FHRHHHHH
SIN

SIN(X) is the sine function. AID 7inds the sine of X. X must
be expressed in radians. The absolute value of X must be less

than 100.
Example:
SIN(0) = O
The SIN function is introduced in Lesson 30.

KXKRXX¥X

SQRT

SQRT(X) is the square root function. AID finds the positive square
root of X. X cannot be negative.
Examples:

SQRT(9) = 3

SQRT(60 + 40) = 10
The SQRT function is introduced in Lesson 9.

HRHRHKHRK

Start
To start using the computer, you must sign on (see Page 1).
To start the AID Interpreter type:

L AID
To start the teaching program type:
L INST
See Lessons 1 and 2. Also see AID Interpreter, Teaching Program.,

KR KK AN

23

STEP

Every AID command is called a "step." There are indirect steps,

which are saved for later execution, and direct steps, which are
executed immediately.

See Lesson 10. See AID Commands, Indirect Steps.
XX HRHHH K

Step number

Any AID command may be preceded by a step number to make the command
into an indirect step (which is stored, rather than executed immed-
jately). Step numbers must be decimal numbers containing both an
integer portion and a decimal portion; a step number may contain a
maximum of nine significant digits. For example, the following are

all valid step numbers:
l.2
1.3
10.678
10.6781233

See Indirect Step.
KERKKKKK

Stop
To stop a runaway AID program, type CTRL-C twice, then type
"REENTER." To stop either the AID Interpreter or the teaching
program, type CTRL-C (see Control commands). To stop for the

day, you must sign off: Type "K" after you have typed CTRL-C.
KEXERKKRK

Storage

Storage locations are in the short-term memory (core) of the
computer. AID gives each variable, each member of a list, etc.,
its own storage location. If you change the value of a variable,
ATD finds its storage location, takes out the old value and puts
in the new value. The SET command i1s used to store numbers and
lists of numbers. The LET command is used to store function
definitions and definitions of propositions. Indirect steps (steps
with a preceding step number) are automatically stored. Anything
in short-term memory may be changed simply by redefining it, or
1t may be erased by using a DELETE command. ¥For long-term storage,

see FILE Commands.
FR KN XN KK

Subscript

See Index.
HRHRRHHR

2k

SUM
SUM is the AID function that adds the specified members of a sequence.
You must tell AID which members of the sequence to consider and what
the formula for the sequence is. For short sequences you may simply

list the numbers.

Examples:
SM(j = 1,2,3,4: j*3)
...equivalent to (1¥3) + (2%3) + (3%¥3) + (4*3)
SuM(i = 1(3)25: it2)

...equivalent to 112 + 412 + 712 + ... + 2512
suM(10,X,2,-42.1)
...equivalent to 10 4+ X + Z + (-L2.1)

See Lesson 37. Also see PROD, MAX, MIN.
FERKRKAH

Syntax errors

See Errors
HHHR R

Teaching program
The teaching program is the one that teaches you how to write
programs using the AID language. After you are signed on, you
may start the teaching program by typing:

L INST
For complete instructions, see page . of this manual.
HHIEHH K
Tell
See CTRL-T.
W HRHHHR
TO

TO is a branching command used to tell AID to go to a step or part
out of sequence. TO must be used indirectly only.
Examples:

2.75 TO STEP 2.3.

17.4 TO PART 15.

TO is introduced in Lesson 16.
3D

Trace
A trace is a table used to find errors which are difficult to spot

otherwise, To make a trace, list the steps in a program in the
order they are done. For each step also list the values of the
variables after the step is done. Sometimes output is listed for

each step. Traces are discussed in Lesson 17.
PRI RH

25

Trigonometric functions
The only trigonometric functions in AID are SIN(X) and COS(X).
You must define your own functions if you want to use any other
trigonometric functions. For example, the tangent function can
be defined by
LET T(X) = SIN(X)/COS(X)
See SIN, COS.

FHRFKRRHHH
Truth tables
See Lesson L4h.
FRRREHRHH
TV
TV(X) is the truth value function, where X is a proposition. If
the proposition is true, TV(X) will be 1. If the proposition is
false, TV(X) will be O.
Examples: assume A = -5 <3 and B= (2 <0) OR (2 <1)
TV(A) = 1
TV(B) = O
The TV function is discussed in Lesson L45.
FHHKRH KRR
TYPE
The TYPE command causes AID to print out the specified information.
command ; output:
TYPE 2*%3 2%3 = 6
TYPE + (a blank line)
TYPE "VALUES" VALUES
TYPE F F(X): 3*xt2
TYPE X X = 3.47
TYPE STEP 17.2 17.2 SET X = 2/Y
One TYPE command may be used for several things:
TYPE FORMULA F, SQRT(12),3 + 2.7.
See Lesson 2.
KHRKHH KK
USE
See FILE Commands.
FRKHH KKK
Variable

In ATD, variables are used to designate storage locations for
numbers, formulas, lists of numbers, arrays, etc. AID variables
are the single letters A, B, C, ..., Z.

Examples:
SET A = 2 (A is a number)
LET F(X) = Xt2 + 3 (F is a formula)
SET A(2) = 7.05 (A is a 1list)
SET B(3,7) = 21.76 (B is an array)
SET M = A AND B (M is a proposition)
HRAKKRKHK

26

WHERE TO?
In the teaching program "WHERE TO?" is typed by the computer to
indicate that the user cen specify a lesson or problem to do next.
To continue your lessons, type the RETURN key.
To start Lesson 19, type "L19"
To do Lesson 45, Problem 6, type "L45-6"
To get Summary of Lesson 21, type "S21"
To get a Review of Lesson 26, type "R26", etc.

See lesson 1.
FH HHH KN

XP(X) is the exponent part function. This function takes the
number you give and finds the value of the exponent when your
number is expressed in scientific notation.
Examples:
24137 in scientific notation is 2.4137*10t4 so
XP(24137) = 4
.0024137 in scientific notation is 2.4137%10t(-3) so
XP(.0024137) = -3
See Lesson 47,
KRR RN

27

APPENDIX B

ATD Documentation

PRE
RECEDH_TG PAGE BLANK NOT FILMEL

STANFORD ARTIFICTAL INTELLIGENCE LABORATORY October 12, 1967
OPERATING NOTE NO. 32

AID FOR ON-LINE COMPUTATION

adapted from RAND documentation
by S. Russell and R. Gruen

1. INTRODUCTION -

AID+.is an on-line, time-shared computing service that is designed
to appear to each user as a personal "computing aide," interacting with
the user and responding to instructions couched in a simple language and
transmitted over communication lines from the user's Teletype.

This memorandum describes the programming language for requesting
computations of AID. Prior experience with other programming languages
(é.g., FORTRAN) is neither necessary nor applicable; indeed, reliance
upon such experience may be misleading.

The section below is an overview and should be read carefully.
Section 3 is a fairly complete description of the language, designed as
a reference. The examples, however, should be studied; they are positive
rather than negative, showing what is permitted rather than what is not
allowed.

2, OVERVIEW

Users request actions of AID by typlng single-line commands called
steps. A numerical label prefixed to the step is an implied command to
ATD to retain the step as part of a stored program. AID files away
labelled steps in sequence according to the numeric value of the label
or step number. The step number, therefore, determines whether an addi-
tion, insertion, or deletion is required.

Steps are organized into parts according to the integer parts of
the step numbers. ©Steps and parts are units that may be introduced,
edited, typed out, or filed in long-term storage. In addition, they
are natural stored-program units for specifying, in a hierarchial manner,
procedures to be carried out by AID.

+AID - Algebraic Interpretive Dialog is derived from JOSS, a system
developed by The RAND Corporation. JOSS is a trademark and service
mark of the RAND Corporation for its computer program and services
using that program. We are indebted to The RAND Corporation for the
use of the program and its documentation.

29

Decimal and logical values may be assigned to any of the 26 letters
admitted as identifiers. Values may be organized into vectors and arrays
by using indexed letters, and the letters themselves may be used to refer °
to arrays for purposes of deletlion, typing, filling in long-term storage,
and as actual parameters of formulas (see below),

In addition to values, arbitrarily complex expressions for values and
letters may be assigned to a letter, which may then be used as an abbrevi-
ation for the expression; expressions so assigned are called formulas.
Formules involving formal parameters (identified by letters) may also be
assigned to a letter. The letter and expressions for actual parameters,
in functional notation, may then be used as an abbreviation for the formula
with the actual parameters substituted for the formal ones. The letter
itself may be used to refer to the formula for purposes of deletion, typing,
filing, and as an actual parameter of a formula.

Programs for evaluating the sum, product, largest, and smallest of a
set of decimal values--and for evaluating the first in a range of decimal
values for which a condition holds--can be expressed succinctly and used
as expressions for values:

SUM(I = 1(1)N : A(T))
PROD(X, Y, /2) :
MAX(I = 1(1)N : A(I)*B(I))
MIN(X, Y/3, z*2)
FIRST(I = X(1)2 : P(I))

Either of the two notational styles may be used, except for FIRST which
finds the first I for which P(I) is TRUE. Programs for determining the
conjunction or disjunction of a set of logical values can also be expressed
1n either style, and used as expressions for logical values.

Short progrems for choosing expressions differentially on the basis of
a set of conditions can also be expressed succinctly and used as expressions.
The notation chosen abbreviates phrases such as:
if X =y use x + y, 1f x > y use x, otherwise use y
by (X=Y:X+Y;X>Y:X;7Y)
Such iterative functions and conditional expressions, together with formulas,

lead to powerful, direct expressions for complex procedures, particularly
recursive ones.,

AID represents decimal numbers in scientific notation: nine digits of
significance and a base-ten scale factor in the range -99 through +99.
Addition, subtraction, multiplication, division, and square root are car-
ried out to give true results rounded to nine significant digits; zeroces
are substituted on underflow while overflow yields an error message. In

30

other elementary functlions, care is taken to provide reasonable significance
and continuity of approximation, to factor out error conditions, and to
hit certain "magic" values on the nose.

The six numerical relations together with AND, OR, NOT, and a set of
elementary logical functions may be used to express logical values and
conditions (which may be attached to any step).

A single, general rule governs the formation and use of expressions
for values: with the exception of step labels, which must be decimal
numerals, wherever a decimal (logical) numeral is allowed in a command,
an arbitrarily complex expression for a decimal (logical) value may be
used.

AID types answers one-per-line, identifying answers by the expression
used in the step calling for the output; in the event of conditional ex-
pressions, AID uses only the chosen sub-expression for identification.
Decimal points and equal signs are lined up, and fixed-point notation is
used whenever possible. For more formal output, the user can create full-
linre FORMS to specify literal information and blank fields to be filled
in with enswers. A string of up arrows with an optional decimal point is
used for fixed-point fields; a string of periods specifies a tabular form
of a scientific notation (floating point).

Users can request AID to file, in long-term storage, identifiable
units and collections of units--steps, parts, forms, formulas, and values.
Users may then request AID to recall such filed items, discard them from
the files, or type out a list of items in a file.

Users start AID off on the task of carrying out a stored program by
directing AID to DO & step or part--iteratively (for a range-of-values)
or a specified number of times, if desired. AID cancels all outstanding
tasks before beginning a direct (i.e., initiated from the console) task,
begins the interpretation of a part at the first step of the part, and
then interprets each step in sequence. Each subseguent indirect (i.e.,
initiated by a step of a stored program) DO causes AID to retain the
status of the current task, pause to carry out the new task, and then
return to continue the suspended one. If the user wishes AID to behave
in the same manner for a directly initiated task, the DO command must be
enclosed in parentheses.

AID modifies this general behavior whenever it encounters: a) an
error; b) a branching command; c) a stopping command; d) a command for
terminating a task or a portion of a task; e) an interrupt-signal from
the user. The deep and involved hierarchy of tasks and formulas that
can occur (recursion is allowed) demands that AID's status be perfectly
clear each time control is transferred to the user, for any reason. In
addition to error messages, interrupt messages, and stopping messages,
ATD transmits status messages on completion of parenthetical tasks to
distinguish this state from the state of having finished a direct, non-
parenthetical task. The user is able to proceed in every situation, in

31

the event of errors, he can take corrective action, and then direct AID
to continue with a GO command.

3. DESCRIPTION

EDITING INPUT LINES

ATD indicates that it is ready to receive input by typing out an
asterisk (*). Characters may be deleted sequentially backward by striking
the RUBOUT key. Typing asterisk (*) at the beginning or end of an input
line cancels the line.

RULES OF FORM

One command per line, one line per command.
Commands begin with a verb and end with a period.

Words, variables, and numerals may neither abut each other nor contain
embedded spaces; spaces may not appear between an identifier (of an array,
a formula or a function) and its associated grouped argument(s); otherwise,
spaces may be used freely.

Asterisk typed Step
- by AID number Verb Arguments Modifiers

L-—--4> *¥1,23 TYPE X, Y, Z+3 IN FORM 3 IF X+Y > 14.
*1,4 DO PART 6 FOR X = 1(106)161, 1400.

DIRECT COMMAND: Step number omitted; command is executed immediately.

STORED COMMAND: Step number present; command is stored in order of step
number.

STEP: A stored command; step number is limited to 9-digit
numbers > 1.

PART: A group of steps whose step numbers have the same in-
tegral part.

FORM: A pictorial specification of literal information and
fields to be filled with values, for formal output.
Fields are denoted by strings of left arrows (with
optional point) or strings of dots (for a tabular
form of scientific representation).

*FORM 7 :
¥T = << << AMPS. V = veeoseoos VOLTS

32

NUMEERS :

SYMBOLS :

ARRAYS:

Range : +10™%7 to 9.99999999.1077

Precision: 9 significant digits

Single letter identifiers. May identify decimal values,
logical values (true, false), formulas, and arrays of
values.

Up to 10 indices having integer values in the range
[-250,250].

DECIMAL OPERATIONS:

RELATTONS :

+ - %/ %% ¢

Single asterisk for multiplication, double asterisk or
up arrow (t).for exponentiation.

< > <= > = #

Extended relations (e.g., a < b < c) permitted. Number
sign for not equal.

LOGICAL OPERATIONS:

_AND OR NOT
GROUPERS: () [] (used interchangeably in pairs)

3+ 1/2 + 1/h.5 = 3+ (1/2 + (/L-5))

-243%4-5 = (-(2%)1)-5

DR*IRKRY = (23)h

AORBANDNOT CORD = a or (b and not ¢) or d

BASIC FUNCTIONS NUMEER DISSECTION FUNCTION
SQRT(X) square root, x >0 SGN(X) -0,0,+1 for x < 0,x = 0, x>0
SIN(X) IP(X) integer part ip(3.2) =3
lx in radiansl < 100

Cos(X) FP(X) fraction part f£p(3.2) = .2
LOG(X) natural log, x > 0 ngx) digit part dp(100.2) = 1.002
EXP(X) e XP(X) exponent part xp(100.2) = 2
ARG(X,Y) angle of point x,y in Ix! absolute value for decimal values

radians, arg(0,0)=0. ltrue|= 1, |false|=0

33

arg(x,y)

SPECIAL FUNCTIONS

SUM[I=A(B)C:F(I)] SUM(X,Y,Z+10)
PROD[I=A(B)C:F(I)] PROD(A+B, C+D,E+F)
MIN[I=A(B)C:F(I)] MIN(A,B,C,D)
MAX[I=A(B)C:F(I)] MAX(B,1,X+Y)
FIRST[I=A(B)C:P(I)] gives first I for which P(I) is true
™(P) = 0,1 IF P = FALSE, TRUE

= FALSE, TRUE IFP=0,P#£0
CONJ[I=A(B)C:P(I)] CONJ(X=1, Y > 3,P)
DISJ[I=A(B)C:P(I)] DISJ(A=B=C,A > Y > 10)

CONDITIONAL EXPRESSIONS

(Pl:El: P :E,: E3)

where : Pi are expressions for logical values,

means: If Pl is true use El’ if P2 is true use E2, otherwise use E3.
¥ET X = (8 <Y<=5:0;Y<18: 2¥2 ; 5).
¥IET P(X) ="[X =@: 1 ; PROD(1 = 1(1)X : 1) 1.

ATD VERBS

SET Assigns value. SET and final period may be omitted on direct

commands.

*SET X = 3.
*SET A(5,X) = Y+3*X-X*2,

34

LET

DELETE

TYPE

DEMAND

DO

TO

STOP

GO

DONE
QUIT

CANCEL

Defines a formula of 9 or fewer parameters.

*¥IET F(X,Y) =

*¥IET H = (B-A)/2,

*LET D(F,X) = [F(X+D)-F(X) 1/D.

*LET Q(R) = [R=6: 1 ; FP(R)=p: R*Q(R-1)]

Erases values, parts, steps, forms, formulas.

*DELETE A, PART 3, ALL FORMS.
*DELETE ALL VALUES, ALL FORMULAS,

Types quoted text or values, blank lines (*ﬁ, parts, forms, etc.

*TYPE "THE QUICK BROWN FOX,"
*¥TYPE X+3, D(SIN,d), <, ALL STEPS.

Requests an input value from user. Executing:
1.4 DEMAND A(3,I+18).

with I = 59 causes AID to respond with:
A(3,69) =%

The desired value for A(3,69) may then be typed, followed by
a carriage return.

Executes or "does" part or step. TFOR clause gives range of
values. Returns to user if direct, to next step if indirect.

*¥DO PART 6 FOR X = .1, 3(2)18, 10@*A+2%B.

Sends AID to indicated part or step.

*1.3 TO STEP 3.5.

Interrupts program. Console contrcl returns to user.

Restarts program after interrupt, error message, or STOP
command .

Signals completion of DO for current FOR value.
Signals completion of DO for all FOR values.

Signals completion of &ll DO's.

35

(po)

(CANCEL)
LINE

FORM

USE
FILE
~ RECALL

DISCARD

ATID MODIFIERS

IF

FOR

TIMES

Executes part or step without disturbing interrupted
calculation.

*(DO PART 3.)

Signals completion of last (DO).

Types a blank line.

After form number, colon, and carriage-return pauses for
user to enter format for output. Tields are strings of

left arrows or dots.

*FORM 3:

¥ = e Y = e 7 =
User file in dictionary.
*USE FILE 145 (DTA7).

Stores an ITEM in the files.
¥FILE PART 3, A, Z, AS ITEM 7 (CODE).
Retrieves an ITEM from files.
*RECALL ITEM 7 (CODEj,

Erases a filed ITEM.

*DISCARD ITEM 3 (FOO0).

Precedes a logical expression conditioning any command.

¥TYPE X IF f <= X < 5.

¥SET Y = 3 IF X < = 18 AND X*Y#18.

Used on DO only. PART or STEP is executedlrepeatedly for
specified set of values.

1(1)14(18) 168, 1608.
- .61, .83, .1(A)B

Used on DO only. Causes repeated execution of PART or STEP.

*DO PART 3 FOR X
1.2 FOR

*DO STEP R X

*DO PART L, 43 TIMES.
*DO STEP 7.3, N+l TIMES. .

36 Nt

IN FORM Modifies TYPE only. Causes values to be typed in fields
of specified FORM.

*TYPE X, Y, Z¥2 IN FORM 3.
> 1

AID NOUNS

E[;IME | Gives 2k-hour time.
*TYPE TIME,

SPARSE Declares undefined array elements to have zero values; they
require no storage.
*LET A BE SPARSE.

$ The current line number. Maximum is 5k.

EXAMPLE OF A COMPLETE AID TYPEOUT
*TYPE ALL.

1.1 LINE.

1.13 TYPE FORM 2.

1.15 DO PART 2 FOR B = .1(.1)k.
#5 SET A = - B,

LINE IF FP($/5) = 1/5.

2.
2.1
2.6 TYPE B, EXP(B), LOG(EXP(B)), C*I(F) IN FORM 1.

o ° % o ©° L4 *D

X EXP(X) LoC PROB

I(F): H/2¥SUM(I=1(1)38:SUM[J=1(1)2:F(Y(I,J))])
F(X): EXP(-x¥%2/2)
H: (B-A)/30
Y(I,J): A+H/2%%[T(J)+2¥*I-1]
C= 398942281
(1) = 5773508268
T(2) = -. 577350268

37

APPENDIX C

Excerpts from the Coders' Manual

INSTRUCT

Coders' Manual -

(excerpts)
- by"

Jamesine E. Friend

Copyright 1969 by the Board of Trustees of the
Leland Stanford Jr. University

38

K. Summary of Op Codes

Note: If an op code has more than 1 argument, separate the arguments by

commas .
No. of

Op Code Arguments
LESSON 2

EQL none
PROB 1
QUES 1
SPROB 1l
TELL 1
HINT 1
EXACT 1

MC 1

Kind of

Argument

1, Strand identi-

fier (1 to 6

letters)

2. lLesson number

text string

text string
text string

text string

text string

text string

text string

containing list

of letters

39

Comments

Pseudo op code. Marks
beginning of a lesson.

Pseudo op code. Marks end
of lesson.

Displays problem number and
problem text. Pauses for
student response.

Displays problem text. Pauses
for student response.

Displays problem text. Pauses
for student response.

Displays text of correct
answer, when requested by
student.

Branch to next problem.
Default routine causes branch
to pause student response,

Displays text for hint when
requested by student. Pause
for student response.

Analyzes student response for
exact match. Sets SCORE,

Analyzes response to multiple-
choice problems. Sets SCORE
to 1 if completely correct,

-1 if completely wrong,

-2 if partially wrong,

-3 if partially correct.
Checks form of response.

EQ

KW

NO

YES

TRUE

FALSE
LIST
SET

NOTEXACT

NOTKW
CA
Cl
c2
C3

WA

l' text string

containing:
1. number
2, optional
number, giving
tolerance

1 text string

0

0

0

0

undefined

undefined
Similar to op codes
described above, with
negation of SCORE.

1 cptional text
string

I optional text
string

1 optional text
string

1 optional text
string

1 optional text
string

Lo

Analyzes response for equality
with coded number,-within tol-
erance specified by second
number. Sets SCORE. Checks
form of response.

Analyzes response for existence
of coded text string. Sets
SCORE.

Analyzes response for "no"
or "n". Sets SCORE. Checks
form of response.

Similar to NO.
Checks for "true" or "t",

Sets SCORE. Checks form of
response.

Similar to TRUE.

Executes only if SCORE > O.
Displays message., Branch to
next problem.

Executes only if SCORE = 1.
As for CA.

Executes only if SCORE = 2.
As for CA.
Executes only if SCORE = 3.

As for CA.

Executes only if SCORE < O.
Branch to pause for student
response.

Wl 1 optional text Executes only if SCORE = -1.
string As for WA.

w2 1 - optional text Executes only if SCORE = -2.
string As for WA.

W3 1 optional text Executes only if SCORE = -3.
string Ag for WA.

BRCA L 1. strand identi- Executes only if SCORE > 0.
fier. Displays message. Branch to
2. lesson number specified problem.
3. problem number
4, optional text
string

BRWA L 1, strand identi- Executes only if SCORE < O.
fier Displays message. Branch to
2. lesson number specified problem.
3. problem number
4. optional text
string

WS 1 optiocnal text Executes only if SCORE < 0.
string Displays message. Branch to

next problem,

L. BNF Definition of Coding Language
<strand> ::= <lesson> EOL<CR><Strand>|<empty>
<lesson> ::= <lesson><prob>|<lesson identifier>cr>

<prob> ::=<PROB command><nun-PROB commands>|
<SPROB command><non-PROB commands>|
<QUES command>nun-PROB commands>

<non-PROB commands> ::= <HINT series><non-PROB commands>l
<IELL command><non-PROB commands>|
<analysis command><non-PROB commands>|
<action command>non-PROB commands>|

<empty> '
<HINT series> ::= <HINT command><HINT series>|<empty>
<analysis command> ::= <EXACT command>|

<MC command>
<EQ command>
<KW command>

¥l

<NO command>|

<YES command>]
<TRUE command>l
<FALSE command>|
<NOTEXACT command> |

°

<NOTKW command>

<action command> ::= <CA command>
<Cl command>
<C2 command>
<C3 command>
<WA command>
<W1l command>
<W2 command>
<W3 command>|
<BRCA command>
<BRWA command>
<WS command>

Problem Statement Commands:

<PRCPR command> ::= PROB <space><text string>CR>
<SPROB command> ::= SPROB <space><text string><CR>
‘ <QUES command> ::= QUES <space><text string><CR>
<HINT command> ::= HINT <space><text string>(R>
<TELL command> ::= TELL <space><text string><CR>

Analysis Commands:

<EXACT command> ::= EXACT <space><text string>CR>

<MC command> ::= MC <space>left superquote><letter list>
<right superquote><CR>
<etter list> ::= detter><comma>letter lict>
<letter><space>letter listh;
<letter>

<EQ command> ::= EQ <space>left superquote<decimal number>
<right superquote><CR>|
EQ <space><left superquote><decimal number>
<decimal number><right superquote><CR>

L2

<KW command> ::= KW <space><text string>CR>

<NO command> ::= NO <CR>

<YES command> ::= YES <CR>
<TRUE command> ::= TRUE <CR>
<FALSE command> ::= FALSE <CR>

<NOTEXACT command>
. Similar to EXACT...EQ commands

<NOTEQ command>

Action Commands:

<CA command> ::= CA <space><text string><CR>|CA <CR>
<Cl command> ::= Cl <space><text string><CR>|Cl <CR>
<C2 command> ::= C2 <space><text string><CR>|C2 <CR>
<C3 command> ::= C3 <space><text string>CR>|C3 <CR>

<WA command> ::= WA <space><text string><CR>|WA <CR> -

.
i

<W1 command> ::= W1 <space><text string>CR>|Wl <CR>
<W2 command> ::= W2 %space><iext string><CR>lW2 <CR>
<W3 command> ::= W3 <space>text string><CR>|W3 <CR>
<BRCA command> ::= ﬁRCA <space><strand identifier>,

<lesson number>,<problem numbe r><CR>|
<BRCA command>,<text string>CR>

<BRWA command> ::= BRWA <space>strand identifier>,
<lesson number>,<problem number><CR>|
<BRWA command>,<text string>CR>

<WS command> ::= WS <space><text string><CR>|WS<CR>

<strand identifier> ::= ¥1 to 6 letters¥

<lesson number> ;:= *natural number 1 to 999%

<problem number> ::= ¥natural number 1 to 128%

])43

Miscellaneous and "Primitives":

<text string> ::= <left superquote><character string>
<right superquote>

<character string> ::= <character><character string>|<empty>
<letter> ::= ¥a - z, upper or lower case¥

<decimal number> ::= ¥any number in decimal form with not more than
9 significant digits; includes integers¥*

<left superguote> ::= ¥Philco: less-than-or-equal sign
*Teletype: Ctrl-Shift-L

<right superquote> ::= ¥Philco: greater-than-or-equal sign
*Teletype: Ctrl-Shift-M

o

APPENDIX D

Sample Coded Problem

SAMPLE CODED PROELEM
(taken from Lesson L)

PROB
"ATD WILL DO EXPONENTIATION BEFORE IT DOES MULTIPLICATION, DIVISION,
ADDITION OR SUBTRACTION.
WHAT WOULD AID ANSWER?
TYPE 5 * 23"

TELL
"5 % 243 = 5 % 8 = Lo"

HINT
"ATD WOULD EVALUATE 243 FIRST."

HINT
"DO 243 FIRST, THEN MULTIPLY BY 5."

NOTEQ "1000"

WA
"WRONG. AID WOULD EVALUATE 2%3 FIRST. TRY AGAIN,"

EQ ")-I-O"

WS
"WRONG, 5 * 2%3 = 5 % 8 = L4o"

BRCA L,k4,6

SPROB

"LET'S GO THROUGH THIS PROBLEM STEP-BY-STEP,

WHICH EXPRESSION IS EVALUATED FIRST IN THIS COMMAND?
TYPE 32/h4t2

A, Lx2
B. 32/4
C. Lt2
N. NONE"

TELL
"¢ (EXPONENTIATION IS DONE BEFORE DIVISION.,)"

HINT
"EXPONENTIATION IS DONE FIRST."

EXACT
"l 12"

45

CA
MC HC"
CA

WA

SPROB
"...AND WHAT IS THE VALUE OF Lt22"

TELL
"Ut2 < by = 16"

HINT
"hi2 = L * L = 299"

EQ 1" 16 1"
CA

WA

SPROB
"SO THE VALUE OF 32/Lt2 IS THE SAME AS THE VALUE OF 32/22%"

TELL
"16 (412 = 16)"

HINT
"WHAT ANSWER DID YOU GET FOR L4t22"

HINT
"32 DIVIDED BY 442 IS THE SAME AS 32 DIVIDED BY WHAT NUMBER?

EQ "16!1
CA

WA

46

SPROB
"THEN WHAT WOULD AID ANSWER TO THIS COMMAND?
TYPE 32/4t2,"

TELL
"32/L12 = 32/16 = 2"

HINT '
"WHAT IS THE VALUE OF 32/Lt2"

HINT
"ATD WILL DO EXPONENTIATION EEFORE DIVISION."

EQ 112H
CA

WA

SPROB
"WHAT WOULD AID ANSWER?
TYPE 10t3 * 2"

TELL
"10%3 ¥ 2 = 1000 * 2 = 2000"

HINT

"AID WOULD DO EXPONENTIATION BEFORE MULTIPLICATION. "

HINT

"Hint: 1043 = 10 * 10 * 10."

NOTEQ "10000"

WA

"WRONG, AID WOULD DO EXPONENTIATION EEFORE MULTIPLICATION,"
EQ "2000"

WS

"WRONG. 1013 * 2 = 1000 ¥ 2 = 2000"

BRCA L,4,6

4

SPROB _
“THERE IS AN EASY WAY TO DO PROBLEMS THAT HAVE EXPONENTIATION AND
ALSO SOME OTHER OPERATION: IMAGINE THAT THERE ARE PARENTHESES AROUND
THE TERM WITH THE EXPONENTIATION,

FOR EXAMPIE,

TO DO 3tk + 2, DO (3th) + 2.

TO DO 625/5t2, DO 625/(512). :

TO DO Lt2 * 244, DO (kt2) * (244).

WHAT IS THE VALUE OF 5%2/2%

TELL
"542/2 = (5t2)/2 = 25/4 = 12.5"

HINT
"REWRITE THE EXPRESSION WITH PARENTHESES. THEN TRY TO DO IT,"

HINT
"5t2/2 = (5t2)/2 = 272"

EQ 1712. 5"
CA

WA

SPROB
“"WHAT WOULD AID ANSWER?
TYPE 10t3/10%2"

TELL
"1013/10%2 = (10%3)/(10%2) = 1000/100 = 10"

HINT
"REWRITE THE EXPRESSION WITH PARENTHESES (USE TWO PAIRS).
THEN FIND THE VALUE,"

HINT
"1013/10%2 = (10%3)/(10%2) = 292"

EQ 'Hloﬂ
cA

WA

48

SPROB
"WHAT WOULD AID ANSWER?
TYPE 1013 0 10t2"

TELL
"10%3 - 10t2 = (10%3) - (10%2) = 1000 - 100 = 900"

HINT
"REWRITE THE EXPRESSION WITH PARENTHESES BEEFORE YOU DO IT,"

HINT
"1043 - 1042 = (10%3) - (10%2) = 972"

EQ it 900 1t
CA

WA

kg

96

97
98
99

100

101
102
103
104
105
106

107
108
109
1o
1
12
3
114
115
16
17
118
19
126
121

122
123
124

125
126

127
128
129
130

131
132
133

135
136
137
138

139
140

144

142
143
144
145
146
147
148
149
150

(Continued from Inside front cover)

R. C. Atkinson, J, W, Brelsford, and R. M. Shiffrin, Multi-process models for memory with applications to a continuous presentation task.
April 3, 1966, (J. math, Psychol ., 1967, 4, 277-300).

P. Suppes and E. Crothers. Some remarks on stimulus-response theories of language learning. June 12, 1966,

R. Bjork, All-or-none subprocesses in the learning of complex sequences, (J. math, Psychol,, 1968, 1, 182-195),

E. Gammon, The statistical determination of Ilrrlgulrstlc units. July I, 1966,

P. Suppes, L. Hyman, and M. Jerman, Linear structural models for response and latency performance In arithmetic. @n J. P. Hill (ed.),
Minnesota Symposia on Child Psychology. Minneapolis, Minn.: 1967, Pp, 160-200),

J. L. Young. Effects of intervals between reinforcements and test trials in paired-associate learning. August |, 1966.

H. A. Wilson. An Investigation of lingulstic unlt size in memory processes. August 3, 1966, '

J. T. Townsend, Choice behavior in a cued-recognition task, August 8, 1966,

W, H. Batcheider. A mathematical analysis of multi-level verbal learning, August 9, 1966,

H. A. Taylor. The observing response in a cued psychophysical task. August 10, 1966,

R. A. Bjork . Leaming and short~term retention of paired associates in refation to specific sequences of Interpresentation intnrvals
August i, 1966,

R. C. Atkinson and R, M. Shiffrin, Some Two-process models for memory, September 30, 1966, -

P. Suppes and C. lhrke. Accelerated program In elementary-school mathematics--the third year. January 30, 1967,

P. Suppes and |, Rosenthal-H1!l, Concept formation by kindergarten children in a card-sorting task, February 27, 1967,

R. C. Atkinson and R, M. Shiffrin. Human memory: a proposed system and its control processes. March 21,1967,

Theodore S. Rodgers, Lingulstic considerations in the desian of the Stanford computer-based curriculum In initial reading, June i, 1967,

Jack M, Knutson, Spelling drills using a computer-assisted instructional system, June 30, 1967, '

R. C. Atkinson. Instruction in Initial reading under computer control: the Stanford Project. July 14, 1967,

J. W, Breisford, Jr, and R. C, Atkinson, Recal! of paired-associates as a function of overt and covert rehearsal procedures. July 21, 1967,

J. H. Stelzer. Some resuits concerning subjective probablility structures with semiorders. August |, 1967

D. E. Rumelhart. The effects of interpresentation intervals on performance in a contlnuous pnlpd-u:oclm task. August Il I9b7

E. J. Fishman, L. Keller, and R, E. Atkinson. Massed vs. distributed practice in computerized spelfing drills, August I8, 1967,

G. J. Groen. An Investigation of some counting algorithms for simple addition problems. August 21, {967, _

H. A. Wiison and R, C. Atkinson, Computer-based Instruction in Initial reading: a progress report on the Stanford Project, August 25, 1967,

F.$

D

. Roberts and P. Suppes, Some problems in the geometry of visual perception, August 31, (967, (Synthese, (967, 17, 173-20D
. Jamison. Bayesian decisions under total and partial ignorance. D. Jamison and J. Xozielecki. Subjective probabilities -under total

uncertainty, September 4, 1967,

R. C. Atkinson. Computerized Instruction and the [earning process. September |5, 1967,

W. K. Estes. Outline of a theory of punishment. October |, 1967.

T. S. Rodgers. Measuring vocabulary difficultyt An analysis of item variables in learning Russian-English and Japanese-English vocabulary
parts, December 18, (967,

W, K. Estes, Reinforcement in human learning. December 20, (967, _

G. L. Wolford, D. L, Wessel, W, K, Estes, Further evidence concerning scanning and sampling assumptions of visual detection
models. January 3, 1968,

R. C, Atkinson and R, M. Shiffrin, Some speculations on storage and retrieval processes in fong=term memory. February 2, 1968.

John Holmgren. Visual detection with imperfect recognition. March 29, 1968,

Lucille B, Mlodnosky. The Frostig and the Bender Gestalt as predictors of reading achievement, April 12,1968,

P. Suppes. Some theoretical models for mathematics iearning. Aprit 15, 1968. (Journal of Research and Dovolopment n Education,

1967, L 5-22)

G. M. Oison. Learning and retention in a continuous recognition task. May 15, 1968,

Ruth Norene Hartley. An Investigation of list types and cues to facilitate initial reading vocabulary acquisition. May 29, 1968.

. Suppes. Stimulus-response theory of finite automata. June |9, 1968,

. Moler and P, Suppes. Quantifier-free axioms for constructive plane geometry, June 20, 1968, (In J. C. H. Gemetsen and

Oort (Eds.), Compositio Mathematica. Vol. 20. Groningan, The Netherlands: Wolters-Noordhoff, 1968. Pp. 143-152,)

. K. Estes and D, P. Horst. Latency as a function of number or response alternatives in paired-associate leaming. July |, 1968.

. Schlag-Rey and P. Suppes. High-order dimensions in concept identification. July 2, 1968. (Psychom. Sci., 1968, I, 141-142)

. M. Shiffrin. Search and retrieval processes In long-term memory, August i5, 1968.

R. D. Freund, G. R. Loftus, and R.C, Atkinson, Applications of multiprocess models for memory to continuous recognition tasks,

December 18, 1968,
R. C. Atkinson. Information delay In human learning, December I8, 1968,

R. C. Atkinson, J. E, Holmgren, and J. F, Juola, Processing time as influenced by the number of elements in the visual display.
March i4, 1969,

P. Suppes, E. F, Loftus, and M, Jerman, Problem=solving on a computer~based teletype, March 25, 1969,

P. Suppes and Mona Morningstar, Evaluation of three computer-assisted instruction programs. May 2, 1969.

P, Suppes. On the problems of using mathematics in the development of the social sciences, May 12, 1969.

Z. Domotor, Probabilistic relational structures and their applications. May 14, 1969,

R. C. Atkinson and T. D, Wickens. Human memory and the concept of reinforcement, May 20, 1969,

R. J. Tiiev. Some model-theoretic results in measwrement theory. May 22, 1969,,

P. Suppes. Measurement: Problems of theory and applicatiop:. June 12, 1969,

P, Suppes and C, Ihtke, Accelerated program in elementary~school mathematics~-the fourth year. August 7, 1969,
D. Rundus and R.C, Atkinson, Rehearsal in free recall: A procedure for direct observation. August 12, 1969,

P. Suppes and S. Feldman. Young children's comprehension of logical connectives. October 15, 1969.

TETEM2 O

(Continued on back cover)

151
152
153
154
155
156
157
158

159

160
161
162

163
14

(Continued from inside back cover }

Joaquim H. Laubsch. An adaptive teaching system for optimal item allocation. November 14, 1969.

Roberta L. Klatzky and Richard C. Atkinson. Memory scans based on alternative test stimulus representations, November 25, 1969
John E. Holmgren. Response latency as an indicant of information processing in visual search tasks. March 16, 1970

Patrick Suppes. Probabilistic grammars for natural languages. May 15, 1970,

E. Gammon. A syntactical analysis of some first-grade readers., June 22, 1970,

Kenneth N, Wexler. An automaton analysis of the learning of a miniature system of Japanese. July 24, 1970,

R. C. Atkinson and J. A. Paulson. An approach to the psychology of instruction, August 14, 1970,

R.C. Atkinson, J,D, Fletcher, H.C. Chetin, and C, M, Stauffer, Instruction in initial reading under computer control: the Stanford project.
August 13,.1970.,

Dewey J. Rundus. An analysis of rehearsal processes in free recali. August 21, 1970,
R.L. Klatzky, J.F. Juola, and R,C, Atkinson, Test stimulus representation and experimental context effects in memory scanning,
William A, Rottmayer. A formal theory of perception, November 13, 1970.

Ellzab"e‘:h J;ge !i i;hnaan Loftus. An analysis of the structural variabies that determine problem-solving difficulty on a computer-based teletype.
December

Joseph A, Van Campen, Towards the automatic generation of programmed forelan-language instructional-materials, January 11, 1971.
Jamesine Friend and R.C. Atkinson. Computer-assisted instruction in programming: AID, January 25, 1971,

