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ABSTRACT 

Results are given of a comparative study of numerical procedures for 
computing solid wall boundary poiiits in supersonic Fnvisci3 flow calculations. 
Twenty five different calculation procedures were tested on two sample problems, 
a simple expansion wave and a simple compression (two dimensional steady flow). 
A new simple but accurate calculation procedure wits developed. 
shortcomings of the vsz;~us procedures are thoroughly discussed along with 
complications for three dimensional and time dependmt flows. 
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NOMENCLATURE 

speed qf sound 

pU2/JMz - 1 

ordinate of lower wall  (y = B ( x ) )  

static enthalpy 

total enthalpy ( H  = h + (u2 + v2)/2) 

Mach nttlliber 

h = 1 e 
Y - l P  

pressure 

total pressure 

tn  PIP, 

ve loc i ty  modulus (q2 = u2 + v2) 

entropy (S = Y - yR) 

ve loc i ty  components i n  x,y direct ion 

ordinste of upper wall  ( y  = T(x)) 
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transformed coordinates (computational space) 
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SECTION 1 

INTRODUCTION 

The purpose of this study is twofold: (1) to review and evaluate tech- 
niques for handling boundary points in the numerical solution of supersonic 
steady flow fields with finite difference procedures, and ( 2 )  to improve an 
existing or develog a new technique which is simple to implement and accurate. 
In order to clarify and simplify the study as much as possible, attention is 
primarily focused on two-dimensionai, steady, supersonic flow of an ideal gas. 
Although some implicit procedures for handling boundary conditions are considered, 
the object is to consider methods that fit in well with explicit differencing 
procedures (particularly that of MacCormack) for the interior. 

The study is organized into three parts: (1) review, (2 )  evaluation, 
and (3) development. A preliminary review of current procedures was first per- 
fcrmed, and it resulted in the categorization of the various procedures accordil.j 
to the basic principles incorporated. Then representative techniques from each 
category were compared on problems for which the exact solution is known. 

Unless otherwise specified, a two-dimensional steady flow is implied, with 
the flow direction globally from left to right. Axes and velocity components are 
(x,y) and (u,v) respectively, with the x axis positive to the right. Thus, a 
numerical solution is obtained by marching from the left to the right. 

This report begins (Section 2) with a brief review and categorization of 
computational procedures which are now in use, including one developed in this 
study. Then (Section 3) we discuss the most important elements of a computational 
procedure, with emphasis on boundary points. 
of the significance, are given in Section 4. The report is concluded (Sectim 5) 
w i t L  an overview of the results of the study. 

Comparative results, and a discussion 

It became evident early that the procedures currently in use which give 

Also, they often require relatively long computing times per mesh point 
acceptable accuracy tend, in general, to be cumbersome to implement in a computer 
code. 
when compared to interior points. The latter is not a strong objection, since it 
is in the boundary calcul.ations that the particular solution is selected from the 
infinity of possible solutions to the partial differential equations. 
is important in the sense that when boundary point calculations comprise a signifi- 
cant portion of the computing time, improving them can result in significant sav- 
ings in computational expense. 

However, it. 



Because ,of t h e  obvious need fo-r s impler ,  f a s t e r ,  accu ra t e  procedures,  
e f f o r t s  were d i r e c t e d  toward understanding t h e  f a c t o r s  determining a good boundary 
poin t  computation procedure,  p a r t i c u l a r l y  i n  t h e  context  of a p red ic to r / co r rec to r  
scheme a t  i n t e r i o r  po in ts .  Subsequently, a new scheme for computing boundary 
po in t s  was developed. This scheme is very simple,  r e q u i r e s  l i t t l e  computing t i m e ,  
and seems t o  be q u i t e  accura te .  It is discussed i n  Sect ions 2 ,  3, and 4.  
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SECTION 2 

REVIEW 

2 . 1  CATEGORIZATION OF METHODS 

The var ious procedures have been c l a s s i f i e d  i n  f i v e  ca t egor i e s :  r e f i e c -  
t i o n ,  explicit  d i f f e renc ing  (one-sided d e r i v a t i v e s ) ,  i m p l i c i t ,  c h a r a c t e r i s t i c s ,  
and miscellaneou_s. 
should no t  be viewed d isparagingly ,  for t h a t  i s  probably where t h e  most sstis- 
fac to ry  procedure (from t h e  s t andpo in t  of s i m p l i c i t y  and accuracy) w i l l  be 
found . 

Although t h e  l a s t  category i s  somewhat of a grab-bag, it 

2.2 DISCUSSION OF VARIOUS PROCEDURES TO DATE 

2.2.1 Re f l ec t ion  

The use of t h i s  procedure i s  b a s i c a l l y  phys i ca l iy  motivated.  The wall 
boundary of an i n v i s c i d  flow is  e s s e n t i a l l y  a s l i p  stream, and i n  t h i s  sense - 
t he re  i s  no basic d i f f e r e n c e  between a s t r e a n l i n e  -.long a so l id  w a l l  and the 
same streamline which is  located wi th in  a. f l u i d  on one side of a s l i p  stream. 
On t h i s  b a s i s ,  one reasons t h a t ,  f o r  computational convenience, he can 
rep lace  h i s  o r i g i n a l  problem w i t h  i t s  s o l i d  boundary w i t h  another  problem 
having an extended flow f i e l d  which (hopeful ly)  w i l l  inc lude  a s l i p  stream 
where there was o r i g i n a l l y  z s o l i d  wal l  ( ske tch ) .  

Or ig ina l  Flow F ie ld  

s l i p  stream 

F i c t i t i o u s l y  Extended Flow F i e l d  

Sketch 1 The Concept of Ref lec t ion  Procedures 
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Knowing the s o l u t i o n ,  zt a given i n i t i a l .  l i n e ,  scmewhat i n t o  t h e  extended flow,* 
it i s  p o s s i b l e  t o  c o n t h u e  the  s o l u t i o n  downstream d c c u r a t e l l  by t r e a t i n g  t h e  
s l i p  stream as a r e g u l a r  p a r t  of the i n t e r i o r  f l o w .  So the  problem of computing 
the  s o l u t i o n  a t  the so l id  boundary has  disappeared.  Unfortunately,  it ht.s been 
replaced by t he  problem of determining t h e  f i c t i t i o u s l y  extended f l o w  f i e l d  be- 
low t h e  sol id  w a l l .  

I n  looking a t  two-dimensional problems w i t h  s t r a i g h t  w a l r s ,  it is  n o t  
d i f f i c u l t  t o  cons t ruc t  an extended f l o w  f i e l d  which w i l l  e f f e c t i v e l y  s imula t e  
t h e  so l id  boundary, ;.nd there t h e  idea of r e f l e c t i o n  e n t e r s  n a t u r a l l y .  I n  t h i s  
case, a t  the wall  t h e  normal d e r i v a t i v e  of p r e s s u r e  vanishes  a long  wi th  t he  
normal component of v e l o c i t y .  
s t r u c t e d  by simply r e f l e c t i n g  the  a c t u a l  f l o w  f i e l d  abovt t h e  so l id  w a l l .  
q u a n t i t i e s  are reflected evenly,  except  t h e  normal v e l o c i t y  component, which 
s u f f e r s  odd r e f l e c t i o n  i n  order t o  impose the requirement t h a t  it vanish a t  the  
sol id  w a l l .  

Therefore, t he  ex t tnded  f l o w  f i e l d  can  be con- 
A l l  

To c a r r y  t h i s  idea f u r t h e r ,  t o  flows wi th  curved walls or t o  three- 
dimensional f lows, leads t o  a real quagmire, Though there can be no argument 
i n  ar-y p a r t i c u l a r  case about  t h e  concept of an  extended flow f i e l d ,  except  i n  
s p e c i a l  cases the d i f f i c u l t y  of cons t ruc t ing  one which w i l l  y i e l d  a n  a c c u r a t e  
s o l u t i o n  t o  the posed problem is probaMy a t  leas t  as d i f f i c u l t  as it is t o  ob- 
t a i n  more d i r e c t l y  a s o l u t i o n  of comparable accuracy. 

** 

It is evident  f r o m  this d i scuss ion  that  the b igges t  shortcoming of r c -  
f l e c t i o n  procedures i s  t h a t  their  accuracy depends so s t rong ly  on t h e  local 
c h a r a c t e r i s t i c s  of the f l l w  (and on the  coord ina te  system used i n  t he  computa t im; ,  
and no one has u t i l i z e d  procedures r e f l e c t i n g  t h i s  f ac t  w i t h  enough p r e c i s  

is a n  a t tempt  t o  a c c m p l i s h  t h i s .  
However, it should be recognized t h a t  the use of body o r i en ted  coord ina te  TilS 

Ref lec t ion  procedures have been used by a iiumber of au tho r s  wi th  varying 
degrees of success .  The i n c o r r e c t  behavior OX the  son ic - l ine  f l o w  about a n  
Apollo-like body as computed by Bohachevsky and Mates and Bohachevsky and 
Kostoff c e r t a i n l y  r e s u l t s  from poor s o l u t i o n s  a t  boundary points.*** Ref l ec t ion  
procedures i n  one form or another  have been u t i l i z e d  by many o t h e r  au tho r s ,  i n -  
c luding Bohachevasky and Hubin, Burs te in ,  Eaton, Ku t l e r ,  Kut le r  and Lomax, 

k 
--Note t h a t  t h i s  extended s o l u t i o n  is not  uniquely determined u n t i l  one re- 
q u i r e s  t h a t  t h e  s o l u t i o n  be continuous across t h e  s l i p s t r eam.  Tha t  assump- 
t i o n  i s  usua l ly  i m p l i c i t .  
This w i l l  become more eirident i n  Sec t ion  4 .  

** 
***  

Compare these s o l u t i o n s  w i t h  those of Barnwell (1971),  fo r  i n s t a n c e .  
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MacCormack, Serra, Tyler  and Z u m w a L t ,  and Walker and Z u m w a l t .  I n  t h e  la t ter  
r e p o r t  (pg 49)  ' the fol lowing j u s t i f i c a t i o n  is rltade for u t i l i z i n g  a r e f l e c t i o n  
procedure ... "The obvious advantage of t h e  i m P q e  p o i n t  method ( r e f l e c t i o n )  for  
t r e a t i n g  boundary poi,its i s  t h a t  it completsly deletes t h e  necesc i ty  of Licta- 
t i n g  a p r i x i  the 1 l u e s  of s e r i v a t i v e s  a t  a sur face ."  This s ta tement  is  errone-  
ous and misleadinc, 2 t  fol lows a s t a t emen t  
(p. 4 2 )  t ha t  t h e r e  +-e " t h r e e  ways by which one can t a k e  i n t o  account  t h e  presence 
of lboundary when a f i n i t e  d i f f e r e n c e  meth-d i s  cnployed." 
is a lso  erroneous (and was i-? 1966) s i n c e  t h e r e  a r e  far  m G r e  t han  t h r e e  p o s s i b i l -  
i t ies .  Actua l ly ,  it should be clear from t h i s  d i scuss ion  t h a t  image p o i n t  o r  
r e f l e c t i o n  procedures themselves do impose normal d e r i v a t i v e s  a t  t h e  boundari- 
(u sua l ly  = 0 f o r  most q u a n t i t i e s ,  # 0 f o r  normal v e l o c i t y  component). 

nce e x a c t l y  the  oppos i te  i s  t r u e .  

The la t ter  s ta tement  

2.2.3 E x p l i c i t  One-sided Der iva t ives  

It  has  been implied above t h a t  i t  would be very m n v e n l e n t  t q  solve 
boundary p o i n t s  exac t ly  as i n t e r i o r  p o i n t s ,  and t h i s  i s  one of t h e  d r i v i n g  
for.ces behind t h e  common u t i l i z a t i o n  of r e f l e c t i o n  procedures.  The problem i s  
that v i r t u a l l y  a l l  s a t i s f a c t o r y  d i f f e r e n c e  schemes f o r  i n t e r i o r  p o i n t s  r e q u i r e  
some form of centered  d i f f e renc ing .*  Howevt. I there i s  no reason t o  r e q u i r e  
that  the idea Gf c e n t r a l  d i f f e r e n c e s  be c a r r i e d  over tr, boundary p o i n t s .  I n  
fac';, it v i o l a t e s  what w e  know t o  be the  physical/mathemacical s t r u c t u r e  cf 
t h e  problem. A t  a solid w a l l ,  -bhe s o l u t i o n  a long  t h e  wa?; is  determined s o l e l y  
by t h e  i n t e r a c t i o n  of the wall geometry and t h e  i n t e r i o r  f low. Therefore ,  thLJgh 
it is not  q u i t e  as convenient ,  it i s  much more n a t u r a l  t o  t h i n k  i n  terms of one- 
s ided  d e r i v a t i v e s  a t  the w a l l  i f  one is embarked on a zourse of s o l v i n g  t h e  
p a r t i a l  d i f f e r e n t i a l  equat ions  - a long  t h e  w a l l .  

With t h i s  i n  mind, cne can e a s i l y  c o n s t r u c t  procedures for  i n t e g r a t i n g  
one or mor€ of t h e  diffc- . -ent ia1 equat ions  a long  t h e  w a l l  wi th  d e r i v a t i v e s  nor- 
mal t o  t h e  w a l l  i n  t h e  computational space be ing  computed bv one-sided d i f f e r e n c e s .  
The a c t u a l  prozedures employed can vary somewhat., F a r t i c u l a r l y  wi th  r e s p e c t  t o  
how many and which equat ions  are t o  be i n t e g r a t e d  i n  t h i s  manner. 

Such procedures have been employed by Barnwell (19701, Grossman and 
Moretti, L$ Moret t i  (PIBAL 70-20) ,and  Skoglund and Guy,** a d  they  art: d i s c u r s e d  
by Ciment, Eaton, and Walker and Zumwalt. Probably the  most appeal ing a s p e c t  

I t  need not  be symmetric, and m u l t i - s t e p  procedures a r e  included i n  t h i r  
r a t h e r  broad i n t e r p r e t a t i o n  of centered  d i f f e r e n c i n g .  

Though t h e i r  procedur. i s  more than  j u q t  u t i l i z u i g  one-sided d e r i v a t i v e s .  
** 
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of procedures based on simple one-sided differencing of the partial dilferential 
equations is &at, with the exception of reflection procedures, they most con- 
veniently fit into schemes for integrating the equations at interior points. 

2.2.3 Standard Predictor-Corrector Schemes - One-sided Derivatives 
A lcgica: extention to the simplest explicit scheme with one-sic?ed deriva- 

tives is to consider a predictor-corrector scheme with dezivatives in both the 
predictor and corrector steps camputed es one-sided differences cn the same side. 
Such an approach is a lcgical extension of a predictor-corrector scheme at interior 
points tc boundary points. Though we can expect to have potentially more accurate 
calcuiations than those outlined in the Preceding section,'accuracy will be lim- 
i ted  by the facL that no direct coupling is made between the partial differential 
squatioxs and the wall geometry. 

2.2.4 Implicit Schemes - One-sided Derivatives 
ImpYicit schemes, and mixed implicit/explicit schemes, are the same as 

corresponding completely explicit schemes except that the derivatives "normal" 

Ax). Thus, the solution depnds on the "normal" derivatives which, in turn, 
depend on the solutior, and the solution must be determined iteratively. 

to the wall are computed with the values at the next x station (i.e., x = xo + 

Ltese are two obvious objections to implicit schemes for our purposes: 
(i) since the interior points will be computed completely explicitly, it is 
desirable to coqute the boundary pohts explicitly also, and (ii) computing 
normal derivatives implicitly "violates" the laws of the transmission of signals 
which are known for the hyperbolic equations under consideration. The latter is 
an objection concerned with accuracy, not stability, since purely implicit schemes 
can be unconditionally stable. 

Keeping these objections in mind, it is proper that we include implicit 
schemes in the comparison in order to understand more completely the origin and 
nragnitude of inaccmacies of other schemes, as well as to be certain that no 
approach is discarded until it has had a chance to prove itself. 

2.2.5 Method of Characteristics 

Gas dyriamicists and numerical ana'lysf -e f?.miliar with the method of 
characteristics for numericdly so: vir: -L -iinear hyperbolic equations for 
supersonic, inviscid flow. This ne ..f . on special properties of the 
goveraing partial differential equat,.c. 

ary differential equations (two independent variables) with variable coeffi- 
cients. 

+A.Ja~ permit them to be reduced to ordin- 

These ordinary differential equations hold only in special directions, 
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called characteristic directions, and they reflect the facts that: (i) there a 
are preferred directions for the propagation of signals in supersonic inviscid 
flow and that (ii) these signals suffer no Ciepersion or dissipation (at least 
theoretically). In most instances, the method of characteristics has been the 
most accurate procedure for numerically integrating the governing differential 
equations. 
partial derivatives normal to the boundary. 
complexity, which results from two sources. First, to employ the method only 
at boundaries while utilizing other differencing procedures at interior points 
leads to a number of interpolations that must be made in orJe-- to integrate the 
equations along characteristics. SeconC, the equations mcst be combined in the 
form of characteristic compatibility equations, and this is inconvenient at best 
and time consuming at worst. The result is that boundary points require a dis- 
proporttonate amount of analytical/coding effort from the analyst/programmer. 

It is espcially convenitnt at bomdaries where other m e t h o d s  require 
It's biggest shcrtcoming is its 

These disadvantages are offset by the fact that the use of characteristic 
equations at the wall undoubtedly results, in general, in as accurate solutions 
as it is possible to achieve. 
the fact that the inconvenience to the analyst and compbter coder is substantial 
and results in considerable increase in code development cost. However, if large 
numbers of production runs are to be made, these additional costs can be more 
than offset by the decreased cost per run for given accuracy that can be antici- 
pated when characteristic procedures are used at boundaries. 

** 
That they are not more commoniy used reflects 

Characteristics methods in one form or another have been used by raany *** 
investigators, including Abbett, Barnwell, Coakley and Porter, Kentzer, 
Mmetti, Moretti and Abbett, Moretti and Bleich, and Kutler and Loinax (1971). 

2.2.6 Miscellaneous Methods 

In this category are methods which do not natua?lyr fall into the categor- 
ies Qf more standard techniques already described. Some of these procedures are 
not promising enough to receive more than passing attention; others show consid- 
erable merit. 

Extrapolation 

Probably the most simple is a simple extrapolation procedure where the 

Wnile it is possible to construct problems in which 
solution at the boundary at x = x 

tion at interior points. 
+ Ax is obtained by extrapolating the solu- 

0 - 
From both analytical and computational points of view. 

This will be demonstrated in Section 4. 

Reported i n  Edelman, et al. 

** 
*** 
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this procedure is adequate, in general it will yield completely unsatisfactory 
results, especially when the solution changes rapidly near the wall. 

Skoglund and Guy have employed an extrapolation procedure which is 
somewhat more complicated than t k e  most simple approach. 

Kentzer's Scheme 

A rather clever approach, Lirst proposed by Kentzer (1970) and also used 
by Barnwell (19711, is based on the method of characteristics. The basic moti- 
vatior, seems to be to get most of the advantages of utilizing characteristics 
compatibility equations without some of the disadvant<:ges. We have seen that 
there are basically two  disadvantages of characteristics methods: (i) the added 
analytical work required to put the partial differential equations into charao- 
teristic form, and (ii) the additional special coding required, including a 
n-r of interpolations to get data at specific points on a characteristic. 
Rentaer's approach eliminates the second disadvantage while rstaining t h e  first 
and, hopefully, the accuracy of a complete characteristic procedcre. 

* 

- Th2 approach in its simplest f o r m  is best illustrated by looking zt our 
basic example, supersonic, inviscid, two-dimensional flow. The governing 
differential equations for the momentum equations in characteristic form are 
are 

along the characteristic directions 

with T = v/u being the local streamiine slope. Here 

is a total cierivative with respect to the x - a l o z  the chxracteristic. 
standard procedure for implementiqg this characteristSc compatibility equation 

The 

We will see in Section 4 that  it is not completely successful with regard to 
accuracy. 

8 



at a sol id  boundary hs i nd ica t ed  i n  t h e  a?.tztch. 
the characteridtic between p o i n t s  D and 
C, where D is somewhere between t h e  
mesb p o i n t s  A and T: . S i x e  t h e  bound- 
ing geometry i s  syecified, T i r  known. 
With T~ and pD o t , t a in  d by i n t e r p o l a t -  
i n g  between p o i i t s  A and E, w e  have 

C 

The equat ion is w r i t t e n  along 

Sketch 2 Method of C h a r a c t e r i s t i c s  
at Boundary Po in t  

,with 6 an  average value of p u 2 / m  between D and C. The inconvenience and 
computat ional  t i m e  involved i n  l o c a t i n g  p o i n t  D and t h e  data there are obvious,  
p a r t i c u l a r l y  when t h e r e  are more than t w o  independent variables. 
idea is to write d e  c -mpa tab i l i t y  equat ions i n  partial  d i f f e r e n t i a l  form a t  
poi- i t  A. Thus, we  have 

Kentzer’s  

or 

with  

uv 2 a vu2  + v2 - a2  A = -  
u2  - a* 

and t h e  rest of the  r j g h t - h a m  side evaluated a t  A. The i n t e r e s t i n g  p o i n t  Ls 
t h a t ,  whi le  Equation ( 5 )  holds gene ra l ly ,  i n  t h e  method of c h a r a c t e r i s t i c s  t h e  
d e r i v a t i v e s  i n  Equation ( 4 )  are treated as d i r e c t i o n a l  t o t a l  d e r i v a t i v e s  i n  t h e  
d i r e c t i o n s  having s lopes  A*. 
t h i s  s p e c i a l  way but  s t i l l  r e t a i n i n g  t h e i r  p a r t i a l  d i f f e r e n t i a l  c h a r a c t e r ,  t h e  
s o l u t i o n  w i l l  be obtained w i t h  accurac ies  t y p i c a l  of method of c h a r a c t e r i s t i c s  
c a l c u l a t i o n s  w h i l e  r e t - i i n ing  t h e  s i m p l i c i t y  of s tandard  e x p l i c i t  p a r t i a l  der iva-  
t i v e  ca l cu la t ions .  

The hope is  t h a t  b,. combining t h e  equat ions  i n  
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* 
Combined Equations 

Another approach, which has been used by Thomas and Thamas, et al., is 
to combine one or more of Euler's equations with the surface boundary condition 
Lr- differential form. The object is to obtain a* direct coupling of the surface 
boundary condition with the partial differential equation(s1 to be integrated. 
There are many possible variations on the basic theme, and we look at some of 
tht ln Section 4.3.5. 

L. b New Technique 

The new procedure developed in this study is analytically simple, easy to 
code, and computationally fast. It is a predictor-corrector scheme in which-the 
predictor step is a regular predictor step in MacCormack's scheme. 
variables are computed in the predictor step. The corrector step is a simple 
expansion or compression wave, whichever is hecessary, which turns the velocity 
vector parallel to the wall. It is discussed in more detail in Sections 4.3.7.3 

and 4.6.2. 

All dependent 

- 
Actually, Kentzer's scheme is one of this group, but we consider it somewhat 
separately because of its unique features. 
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SECTION 3 

WHAT TO LOOK FOR IN A COMPUTATIONAL PROCEDURE 

When confronted with the question, "What should I look for in a computa- 
tional procedure?" one's spontaneous reply is apt to be "accuracy". In this 
aection we discuss the elements which determine the accuracy of a technique and 
how.we can make preliminary evaluations of a technique prior to testing it. 
Moretti (1969) has pointed out the importance of considering the computational 
procedures used at boundary points as well as at interior points in evaluating 
a numerical technique. That point is certainly valid, but it does not mean that 
we cannot examine and evaluate separately the components of a technique, but 
rather that in evaluating a computer code and predictions it will yield it is 
necessary to consider the contributions of all components of the technique, 

* 

including calculation procedures used at computational boundaries as well as 
those used at interior points. Furthermore, though nany of the subsequent 
arguments have much broader validity, the discussion is directed toward computa- 
tional procedures at solid wall boundary points of supersonic, inviscid flows 
where interior points are computed with MacCormack's scheme. Unless otherwise 
stated, we will be considering two dimensional, steady flow. Some discussion of 
unsteady and three dimensional fiow calcalations is given in Section 4.6.2. 

Obviously, a good computation procedure must be able to convey numerically 
information incorporated in the physical/mathematical problem which is being 
solved. That is why the method of charecteristics is such a good procedure for 
hyperbolic problems in two independent variables. That is also why implicit 
integration procedures, though they possess nice stability characteristics, 
are not, in general, nearly as weli suited to hyperbolic problems as are explicit 
procedures. The implicit procedures numerically transmit signals in directions 
quite different from those directions that the partial differential equations say 
signals ought to travel (the characteristic directions). In supersonic inviscid 
flow, we know that the signals are transnitted along characteristics. This does 
not mean that we must use the method of characteristics to compute such a flow, 
but that any chosen method ought to maintain, in some fashion, that basic mechan- 
ism of transmitting signals. 
corrector scheme of MacCormack evidentally does. So what does this tell us about 
numerical procedures for computing solid boundary points in supersonic, inviscid 
flow? 

Implic5t schemes do not do this. The predictor- 

a 
Which is exactly what we are doing in this study. 
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In the first place, there are two sources of information which must be 
accounted for: the interior flow and its influence on the boundary, and the 
bounda-ry geometry. 
as their mutual interaction. That is why we can expect a rinple, completely 
explicit, integration procedure to be quite poor. 
mechanisms to account for the development of the interior flow near the wall, 
it has no mechanism to account for, during a step, the interaction between the 
wall geometry and the interior flow. Since that iriteraction is precisely what 
determines the wall pressure, we do not expect accurate results from such a scheme. 

We must account fox the effect of ea& individually as well 

Although it does have adequate 

Recently some investigators (c.f. Kentzer, Thomas, et al.), have attempted 
to overcome this shortcoming of explicit integration schemes by combining the wall 
boundary condition (nornal velocity component E 0 )  into one of the partial differ- 
ential equations being integrated. The idea has merit, but, as we shall see 
in Section 4, the resulting accuracy depends very crucially on which equation 
(or equations) is chosen and how the boundary condition is invoked. 

Others (Kentzer, Barnwell) have suggested that accuracy can be improved 
by putting the pa;tial differential equations in special forms prior to integrat- 
ing them along the wall. The idea here is that the ability of the equations to 
transmit information well depends not only on the way the differential equation 
is approximate by a difference equation but also on the form of the differential 
equation. The overall validity of this assertion is clear, but we expect to often 
find it difficult to predict a priori the relative merits of different ways of 
writing the equations. 
accuracy if the form of writing the equations somehow gives preference to direc- 
tions in which signals are transmitted ti.e., characteristic directions). 

However, in generai one can probably expect improved 

This brings us to another interesting point, the idea of second order 
one-sided derivatives and implications with respect to domain of influence and 
domain of dependence of a point. Consider a supersonic flow going from left to 
right with a computational grid as shown in the following sketch. The solution 
is known at station i and it is to be determined at i + 1. 

Y 

Sketch 3 
Computational Grid 

X 
i i + l  

Mach lines 

+ Ax 
xO 

0 
X 
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We focus our attention on the problem of determining the golution at (i + 1,j) 
by an explicit scheme. In a standard, second order explicit scheme (e.g., Lax 
Wendroff, MacCormack) the solution at (i + 1,j) will depend only on data at the 
three points (i,j + l), (i,j), and (i,j - 11, which is compatable with the laws 
of propagation of signals and domains of influence and dependence. 
that instead of using those three points, we use the points (i, j) I (i, j + 1)' 
and (i,j + 2 ) .  Then, though we would be using second order accurate y derivatives, 
it is obvious that we are using information to determine (i + 1,j) which comes 
from outside its domain of dependencea (Note location of Mach lines in above 
sketch.) Obviously, we can think or' the three point one-sided derivative as, 
in a sense, extrapolating the solution from (i, j + 1) and (i, j) to (i, j - 1) . 
but we should not expect as high accuracy from the second procedure as from 
the first, and we should not be surprised if such a procedure is unstable. 

Now, suppose 

With these thoughts in mind, we can anticipate pretty well the character- 
istics of a calculation procedure even before testing it. 
the folhwing question: Does the computational scheme have numerical mechanisms 
to account f x  the physical interactions which we know are present? If it does, 
then it should be one of the better schemes. If not, in the absence of fortui- 
tous blessings, we expect it to be in the ranks of the poorer schemes. These 
observations are not original, but they are important. Their validity is strik- 
ingly illustrated by the results given in Section 4 .  

We just need to answer 
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SECTION 4 

COMPARATIVE RESULTS FOR TWO SAMPLE PROBLZMS 

4.1 GENERAL COMMENTS AND DESCRIPTION OF THE SAMPLE PROBLEMS 

Now that we have reviewed the general attributes a good computational 
procedure should have and looked at the characteristics of individual categories 
of procedures, it is time to compare the predictive abilities of the various 
procedures. The objective of the test problems is not to be exhaustive, nor is 
it to test the various methods in situations favorable to certain ones. Rather, 
it is to test each case in situations which are not necessarily favorable but 
which are representative of what is required of a technique in every day working 
codes. To do this we will consider two sample problems, a simple expansion and 
a simple compression, both for two dimensional, supersonic flow (see sketch 4). 

M = 3  
___) 

y = 1.4 
Uniform 

:M = 3 
I 
' y  = 1.4 

a) simple compression P) simple expansion 

Sketch 4 Schematic Sample Problem 

Expansions and compressions are, of course, the heart of supersonic flow fields, 
and these two sample problems will serve as valid tests of the relative merits 
of the various procedures. Furthermore, although these flows are comparatively 
simple, computationally they are quite challenging, as we shall soon see. 
Finally, they enable us to make the comparison against a valid standard since 
we can obtain the exact solution along the wall boundary. 

In order to present the results in as useful and clear a mannex as possi- 
ble ,  this section is arranged as follows: First (Sectim 4.2) we outline the 
overall computational procedwe, with some special attention paid to the boundary 
point computation. 
use or non-use of the known surface entropy and total enthalpy. 

Of particular interest here are the comments relating to the 
Next (Section 4.3) 
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we discuss the,details of the surface boundary point computational procedures 
being tested. This is an important section since often small. differences in 
a computational procedure can sometimes significantly affect the result. Also 
in that section we introduce working abbreviations for the calculation proced- 
ures. The results for the simple compression are presented and discussed in 
Section 4.4, those for the expansion in Section 4.5. Additional comments and 
observat-ims (Section 4 . 6 )  include a discussicn of implications for three 
dimensional and time dependent flows, special comme?ts vis 2 vis the envelope 
shDck and its effect for the compression problem, and some discussion of the 
accuracy of the solution in the interior region. 

* 

4.2 GENERAL OUTLINE OF THE COMPUTATIONAL PROCEDURE 

4.2.1 -- Basic Fquations and Finite Difference Grid 

We are considering an ideal gas with constant specific heat ratio, y.  The 
general flow direction is from left to right. 
cases is shown in sketch 5 .  Initially, €or x i 0 . 0 ,  the flow is uniform and 

The geometry for the two sample 

1 y=1.4 

:x 
X 

a )  compression b) expansicIi 
Sketch 5 Detailed Schematic of Sample Problems 

parallel to the x axis, with M = 3 .  An initial data line of 21 points stretches 
from the lower wall to the upper wall, the latter always being horizontal. 

In particular, note the discussions of standard predictor-corrector procedures, 
Thomas' procedures, and Kentzer's procedure and the applicable results. 
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The basic equations for the steady two-dimensional flow of an ideal gas 
[isentropic flow. constant isentropic exponent) are 

continuity: (PU), + (PV), = 0 

1st momentum: puu, + pvu t p, = 0 Y 

2nd momentum: PuV, + PVV y + P y = o  

entropy: us, t vs = 0 
Y 

state: S = Inpip, - ylnp,/po = P - yR 
For steady isentropic flow, 

with a2 = yplp.  Combining (6) and (1) gives the continuity equation in terms of 
.derivatives c.2 pressure and velocity components. 

1 pu, + ov + (up, t vp”) = 0 Y 

In or??sr that mesh points always fall 
domain is mrk_oed onto a computational domain 

Physical Domain 

3, 
1 .o 

0 

4 

on the lower wall, the physics: 
as shown in the following sketch. 

* 

/-- 

/ / I  I I / 1 / 

Computational Domain 

Sketch 6 Physical and Computational Planes - 
The computation is terminated before the effect of the upper wall can be felt. 
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The transformation is 

where the lower and ralls are described by = B(x) and y = T(x) respec- 
tively and where 6 ( x )  = T(xj = B(x). Then, the equations of motion Lacome 

[Y(UV rl - vu rl ) + UVP Ti ]);6 = 0 1 CP +-- 
u2 - a2 

‘ u2 - a- 

VE + [(. + q v r l  + $ Prl],d = 0 

s + (c + ; ) s p  = 3 5 

Equations 8 and 9 are both linear (bu,: linearly indepeudent) combinations of 
Equations 1 and 2; thus they both contain information about the transport of x 

momentum as well as conservation of mass. Equations 10 ar,d 11 are, respectively 
Equations 3 and 4 transformed direction to ( E ,  n) variables where 
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For h t e r  use, we iote that 

c 

4 . 2 . 2 I n t e r i o r  Points  

A t  i n t e r i c r  po in t s ,  the equat ions w i l l  be i n t e g r a t e d  fol lowing t h e  scheme 
of MacCormack as appl ied  t o  equat ions  i n  non-divergence form. MacCormack's is 
a pred ic to r  corrector scheme which is e a s i l y  describei! by looking a t  the equat ion 

f + f n = O  5 

Then, l e t t i n g  i be t h e  5 index and j t h e  index, t o  ob ta in  t h e  s o l u t i o n  a t  a 
po in t  (i + 1, j)  using data known a t  a preceding 5 s t a t i o n  (i, a l l  j )  w e  procezd 

For f u r t h e r  d e t a i l s  about t h e  method, see t h e  

(1Sa) 

- 
- - 
f ( i  + 1, j)  - f l i  + 1, 

An 

t w o  papers by MacCormack. 

(15b) 

4.2.3 L o w e r  Wall Boundary Po in t s  - 
Along the  su r face  s t reaml ine  t h e r e  i o  a c e r t a i n  degree of f l e x i b i l i t y  

s ince  t h e  dntrbpy and t o t a l  enthalpy are known. 
we w i l l  use t h a t  inEomat ion ,  as w e l l  as the  known body s lope ,  i n  order tc solve 
as few p a r t i a l  d i f f e r e n t i a l  equat ions a s  poss ib l e .  
solving only one d i f f e z e n t i a l  equaclon along t t c ?  w a l l ,  and t l x t  one w i l l  be an 
equation fox . ; sure .  I n  o t h e r  i n s t ances  (e.g., Thomas' scheme) t h e  b a s i c  
scheme requ i r e s  t h a t  more than one d i f f e r e n t i a l  equat ion be i n t e g r a t e d  along 

I n  almost a l l  t h e  c a l c u l a t i o n s  

Thus, u sua l ly  w e  w i l l  be 
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the wall. In such instances we can expect errors in surfact entropy and/or 
total enthalpy to develop. We proceed in this manner because of our two-fold 
purpose: i) 
currently in use, and ii) to evaluate the best. results that can be achieved 
within a particular c?-asa of schemes. For instance, take the simple explicit 
integration procedureb. We could integrate all four differential equations, 
continuity, x and y momentum, and sntropy. Or we could integrate one equation, 
say for pressure, and use the three relations for entropy, total enthalpy, and 
wall slope to calculate the density and two velocity components. If the differ- 
ential equation to be integrated is chosen optimally, we expect the second approach 
to yield better results sincc we are solving three of the four equations exactly. 

tr, compare the relative merits of various computation procedures 

4.3 DETAILS OF THE COMPUTATION P2OCEDu'RES USED AT S U W X E  BOUNDARY POINTS 

4.3.1 General Comments 

The details of the various surface boundary condition calculation procedures 
are given in this section. In all, we will consir?er 25 different pracedures, 
some of which are variations on various themes. 

We use simple notation. In the finite difference grid, a point is denoted 
by two indices, (i,j), where i is the index which increases in the 5 (abscissa) 
direction and j the index which increases in the rl (ordinate) direction. At the 
initial station, i = 1. In order to invoke reflection type boundary conditions, 
the j index for lower surface mesh points is j = 2; thus j = i is reserved for 
the row of "image" points needed when reflection type calculations are being used. 

The various procedures are given abbreviations which permit a concise and 
descriptive yraphical Fresentation of the results of Sections 4.4 and 4.5. 

In many of the schepes, we simply integrate Equatior 8 to obtain the 
change in surface pressure between stations i and i + 1. In such cases, we have 

where RHS is some representatior. of the term 
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It is ass:med t h i t  the reader is f a m i l i a r  enough wi th  s t ansa rd  n o t a t i o n  t o  kncv 
t h a t ,  for iristance,  i n  a s imple explicit scheme with two-point one-sided 11 

d e r i v a t i v e  , we would have 

etc. 

I n  order t o  c a l c u l a t e  t h e  su r face  boundary p o i n t  a t  (i + 1 , 2 )  from known 

data a t  ( i , j ) ,  j 2 2,  w e  assume t h e  fol lowing t o  be known: 

i) The complete s o l u t i o n  a t  every mesh p o i n t  a t  s t a t i o n  i, [i.e., for  
a l l  ( i , j ) ,  j 2 21 

and, if necessary,  

i i )  The complete s o l u t i o n  of t h e  p r e d i c t o r  and corrector s t e p s  a t  a l l  
i n t e r i o r  p o i n t s  a t  s t a t i o n  i + 1 [i.e., for a l l  (i + 1, j) , j 31 

4.3.2 Ref lec t ion  (Image P o i n t  Procedures) 

Ref lec t ion  procedures  are probably used more than any o t h e r  s i n g l e  class 
of c a l c u l a t i o n  procedures.  We have considered s i x  v a r i a t i o n s  on t h e  basic theme. 

* 
R - l  Ref lec t ion  L i n  t he  computational p lane  - 

A l l  d a t a  a t  boundary p o i n t s  computed as a t  i n t e r i o r  p o i n t s .  
Veloci ty  component normal t o  t h  w a l l  no t  set = 0.  T o  compute 
s t a t i o n  i + 1 f r o m  d a t a  a t  s ta t ion  i, set 

* 
Here R-1  i s  t h e  abbrevia t ion  w e  w i l l  use  for t h e  f i r s t  r e f l e c t i o n  scheme, R-2 
f o r  t h e  second r e f l e c t i o n  scheme, etc. 
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- R-2 Reflection in Physical Plane 

All datz at boundary points computed as at interior points. 
Effect is to set, at station i, the  velocity component normal to 

-7 

the wall = 0 at the wall. 

ui,l = u i ,3 (cos2ei,2 - sin 8i,2 1 + 2 ~ ~ , ~ s i n  0i,2cos @i,2 

- cos2ei,2 1 + 2 ~ ~ , ~ s i n  e i , 2 ~ ~ ~  ei,2 - -  sin^^^,^ 
vi,l 

where Bi,2 is the angle the tangent to the wall makes to the 
horizontal. (See sketch below. ) 

R-3,R-4 Reflection in Physical Plane 

Same as R-2 for pressure, but known entropy, total enthalpy, and 
surface slope used to calculate, from the values of 

U i+1,2, and vi+1,20 Thus, we have from Equstions 12 and 13 
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(21) 
(concluded ) 

1 - 
(v'u) i+l , 2 - tan 'i+1,2 

The difference between R-3 and R-4 is that Equations (21) are imposed only after 
the corrector steps in R-3 and after both predictor and corrector steps in R-4,  

R-S - 

R- 6 - 

R-6A - 

R-7 

Kutler - Scheme 1 
This is one of two reflection schemes used by P, Kutler (1972). 
P, p, and u are reflected evenly, v is extrapolated, All data 
at boundary points computed as at interior points. 

i,3 = u  ui,l 

Apply v = u tan 0 after both predictor and correctc 

Kutler - Scheme 2 
Kutler's second scheme is the same as R-4, except only the pressure 
is obtained by integrating a PDE (in this case, Equation 8 ) .  

p ,  u, and v are obtained from S, H and 8 .  See R-3. 

Same as R-6 except impose surface boundary condition only after 
corrector step, not after predictor step. - 
Extrapolation 

All data at the image point are'obtained by linear extrapolation 
from the interior. Thus 
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- 
vi,l - 2vi,2 vi,3 (23 

Pressure is obtained by integrating Equation 8 with MacCormack's 
scheme. p, up v are obtained from the known-S, HI and 8. 

- 
4.3.3 Simple Explicit Integration Procedures - One-sided Derivatives 

- E-2 Equation 8 sol-Jed explicitly for Pi+1,2 (Simple Euler Scheme) 
using simple two-point, one-sided TI derivatives. p ,  u, v obtained 
from known S, H, 9 

- E-3 Same as E-2 except 3 point TI derivatives 

= (- 3Pir2 + 4Pi,3 - 'i,4 )/2An) 

4.3.4 Simple Imp licit Integration Procedure - One Sided Deriviatives 
- 1-2 Same as E-2 except q derivatives computed implicitly as, for example, 

Thus, it is necessary to iterate on the solution at (i+182). 
Iterate until relative cqange in pressure between two successive 
iterates is less than 0.0001. 

- 1-3 Same as 1-2 except 3 point one-sided rl derivatives 

4.3.5 Standard (and not-s9-Standard) MacCormack-like Predictor-Corrector Procedures 

MacCormack's scheme is a noncentered predictor-corrector scheme in which, 
say, a forward 11 difference is used in the predictor and a backward rl difference 
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is used in the,corrector. 
at solid boundaries. 

Now, let's determine how we should apply this aFproach 

Consider the equation 

f, + fy = 0 
i: 3 

Suppose that we know the solution at 
station i and we wish to continue it 
to i + 1. All points (i + l,j), Sketch 4 

j 
standard MacCormack scheme. We are 
interested in the point (i + 1,2). 

i i + l  

3 can be easily calculated by the 

The simplest approach would be to just use one-sided inward differences 
on both the predictor and corrector steps. Then, in MacCormack's notation, we 
have a scheme we call PC-2-2. 

PC-2-2 

Predictor: 
- f(i + 1,2) = f(i,2) - Ax P(i.3) AY - f(i,2)] 

- Corrector: 
f(i + 1,2) = f(i,2) + f(i + 1,2) - Ax f(i + 1,3) - f(i + 1,2) [- AY 

where f(i + 1,2) is the regular predictor value at that interior point. 
obvious reasons, we do not expect this result to be very accurate, irrespective 
of how the boundary condition has been incorporated into the differential equation. 

For 

The obvious next step is to use second order accurate one-sided y deriva- 
tives. Then we have scheme PC-3-3. 

Pc-3-3 

Predictor: - [-3f(i,2) + 4f(i,3) - f(i,4)] f(i + 1,2) = f(i,2) - Ax 
2AY 

(29b) 
One might expect scheme PC-3-3 to be better than scheme PC-2-2. 
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To c a r r y  t h e  i n v e s t i g a t i o n  somewhat f u r t h e r ,  let's look a t  t h e  MacCorrnack 
Scheme a t  an i n t e r i o r  p o i n t .  It i s  ( i n  one form): 

Basic Scheme 
Pred ic to r :  

f ( i , j )  - f ( i , j  - [ 2AY 

[- AY 

f ( i  + 1, j )  = f ( i , j )  - Ax 

11 
- 

f ( i  + 1, j  + 1) - f ( i  + 1,j) f t i , j )  + f ( i  + 1, j )  - AX 1 Corrector: 

f ( i  + 1,j) = z 

Comparing t h e  b a s i c  scheme wi th  schemes PC-2-5 and PC-3-3, .we no te  t h a t  t h e  cor-  
rect.or for  scheme PC-2-2 i s  i d e n t i c a l  t o  t h e  b a s i c  corzector. One might then 
reason t h a t  it i s  s e n s i b l e  t o  use t h e  'more accu ra t e '  p r e d i c t o r  of scheme PC-3-3 
with t h e  c o r r e c t o r  of scheme PC-2-2 i n  t r y i n g  t o  c o n s t r u c t  a c a l c u l a t i o n  scheme 
a t  the w a l l  c o n s i s t e n t  w i th  t h a t  used a t  i n t e r i o r  points. 
t h i r d  schene: PC-3-2. 

Thus, w e  have a 

PC-3-2 

Now it is  clear, o r  a t  least  seems 
t o  be, how t o  cons t ruc t  a corr tpletely con- 
s i s t e n t  scheme. 
what is  needed is a formiila f o r  r ep lac ing  
t h e  term 

Refer r ing  t o  ske tch  7 ,  

] I (31b) 
- - 
f ( i  + 1 ,3 )  - f ( i  + 1 , 2 )  

AY 
I. f ( i  + 1 , 2 )  = T f ( i , 2 )  + T ( i  + 1 , 2 )  - AX 

c 

j + 3  j + 3  
j + 2  j + 2  
j + l  j + l  

j j 
j - 1  j - 1  
j - 2  j - 2  
j - 3  j - 3  

i Corrector: 

I n  scheme PC-3-2, the p r e d i c t o r  is  an at tempt  t o  somehow s imula te  a t  t h e  boundary 
t h e  b a s i c  p r e d i c t o r  step. 

i i + l  (32 1 f ( i , j )  - f ( i , j  - 1) 
AY 

Sketch 7 
i n  t h e  bas i c  p r e d i c t o r  s t e p  w i t h  a comparable t e r m  involving f ( i , j )  , f (i, j + 1) 8 
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and f(i,j + 2). But what is (32)? It is 
just the derivative of f with respect to 
y at the midpoint between ( i , j  - 1) and 
(i,j). So, to determine the term to replace 
( 3 2 ) ,  let's look at the usual one dimensional 
difference line segment (sketch 8). The 
correspondence between points in sketches 
7 and 8 is 

8 q 2 

1 

Sketch 8 

Sketch 7 Sketch 8 
j + 2  t--c 5 
j + l  f--c 4 
j * 3 

j - 1  * 2 
j - 2  1 

Term (32) is essentially, as far as sketch 8 is concerned 

- f3 - f2 
f 5 3  - AY , (33) 

the second order derivative of f with respect to y at the midpoint between points 
2 and 3 .  
(331, but .-ng points 3 ,  4, and 5 .  Following the usual procedure, we have 

So, all that is necessary is to represent fi3 to the same accuracy as 

= f 2 3  + fi3 ($) + + 3 3  (Y) 2 

f 3  

Eliminating f23 and fi3 from these three equations yields the desired equation for 
fi3 in terms of f3, f 4 ,  f5. 

- 2 f 3  + lf4 - f5 
S I  = 
'23 AY (35 1 
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(Compare this with the usual three point, one-sided second order derivative used 
above in PC-3-3). Thus, we construct PCN-3-2, which we expect is the predictor 
corrector scheme for the boundary most consistent with MacCormack's scheme at 
interior points. 

PCN-3-2 

Predictor: 

All four of these predictor corrector schemes have been tested. As we 
shall see in Sections 4 . 4  and 4 . 5 ,  the results are somewhat surprising and quite 
enlightening. In all four of these "standard" predictor-corrector schemes, the 
known surface entropy, total enthalpy, and slope were used to calcuiate surface 
density and velocity components from the computed pressure in both predictor and - 
&orrector steps. 
grated along the surface. 

Thus Equation 8 is the only partial differential equation inte- 

4.3.6 Method of Characteristics 

MOC - Method of Characteristics - 
Interpolations and solution made in physical plane. Data at the * point 
obtained by linear interpolation between (i, 2) and (i ,3) (see sketch, 
following page). 

Pi+l, 2 computed from campatibility equation 

in finite difference form 

%+l, 2 = p" + 6('i+1,2 - T*) 
X and b are averaged between * point and (i f 1,2). 

(39) 
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4.3.7 Miscellaneous Procedures 

In this category we have 
preceding categories. Though a 
expect the potentially greatest 
concerned. 

those methods which do not fit into any of the 
diverse melange, this group is the one where we 
return as far as accuracy vs. complexity are 

* 
4.3.7.1 Kentzer's Method 

Pressure from th2 characteristic-like partial differential equation 

where 

The TI derivatives are two-point, one-sided derivatives explicit in x. 
That is, to go from i to i + 1, 

tan €Ii+l - tan 6i 
Ax - 

- 
etc. X and b are evaluated at (i,2). Then 

( 4 4 )  

For a predictor-corrector variation of this scheme, see Section 4.3.7.5.  
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(451 

f’i+1,28 U i+1,2‘ vi+1,2 are computed from Bi+1,2 

4.3.7.2 Thomas’ PrQcedure (see Thomas and Thomas, et al.) 

The basic idea is to replace one momentum equation with the boundary 
condition of zero velocity component normal to the lower wall. This is done 
by reFlacing the (x,y) velocity components, (u,v) , with components (U ,V) parailel 
to and normal to the wall. Since is everywhere normal to the wall, 0 
Also, 

-- - 

E =  u cos 8 + v sin 8 (46; 

(47) 

tiE - - \lx cos 9 + vx sin e - (u sir. 5 - v cos e)@, 

where 

Equation ( 4 7 )  for  is integrated alohrJ with Equation ( e )  fcx  pressure, as xt- 

lined by Thomas and by Thomas, et al. 
velocity distrib. tion. E 0 ,  and p = p f  , b \  complete the integration along 
the lower wall, since 

e x  = dd/dx is knokn from the specified 

u = li’ cos 6 - iT sin 0 

I 

v = u sin 8 + i7 cos 8 

We try two versions of this scheme, identified as Thomas-2 and Thomas-3. 

Thomas-2 - Equations 47 and 8 are integrated using two-point one-sided 
n darivatives computed explicitly ir the 5 coordinate 

Thomas-3 --- - - Same as Thomas-3 except standard three-point one-sided q 
derivatives are used. 
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4.3.7.3 Combined Equations 

The analysis used by Thomas empioys the specified variation of e(x) 
in computing the velocity changes by integrating the streamwise momentum equation. 
No use is made of the known variation of e ( x )  in integrating the equation for 
pressure, nor is there any direct coupling between the continuity equation and 
one or both of the momentum euqations. We know that the primary physical force 
determining surface pressure variation Is momentum exchange away frcm the wall, 
and it is natural to consider comLining the pressure equation (Equation 8 )  with 
one or more oc the momentum equations and with the specified variation of e ( x ) .  
This is, of course, what is done in the mefhod of characteristics and Kentzer's 
method. 

We have investigated two such additional combizstions of the differential 
eqvations cind surface boundary conditions. 
meaning Combined Equations, 

They are identified by the pxsfix CE, 

CE-1 Inspection of Equations ( 3 )  and ( 7 )  leads to one obvious possibility. 
Multiply ( 7 )  by -v and add to (3 )  to get 

P(UVX - vux) + (l - qpy - uv a2 PX = 0 

Noting that the streamline slope is given by 

we get 

V f = -  
U 

2 u Tx = uvx - vux 

This becomes, after convertiag 40 (5,n) ant! P, 

n = + + :(. - A +  'I' \ ps T 

( 5 2 )  

(53 1 

( 5 4 )  

where T~ can be computed directly from t h e  specified wall geometry. 
insye!ir -on @f Equation 54 gix; considerable cause for worry, since T appears 
twice ir the denoit'nator, and r can be zero. This reflects the fact; that 
Equaiion 54 embodies only the continuity equation and the normal momentum 
equation for determining the induced str~.emwise pressure gradient. 
im;-ortant equation for determining that pressure gradi%nt, the streamwise 

A quick 

Thc most 
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momentum equation, was not used in obtaining Xquation 5 4 .  Nevertheless, a cdcu- 
lation was made for the simple expansion problem utilizing Equation 5 4 .  The 
results were quite poor, as was expected, the pressure tejng low bv more than 
an order of magnitude in the first step. That large error is directly attribut- 
able to numerical icaccuracies resulting from the T in the denominator. 

Fuur Other CE Schemes 

Following the same basic spirit discussed above, both momentum equations 
and the continuity equation are combined, and the spscified variation of 0(x) is 
used tc; simplify the resulting equation and to give the direct coupling between 
changes in wall inclination and the streamwise pressure gradient. Equatior. 7 is 
multiplied by -u and added Equation 2 to get 

- PUlT - uv + (1 - g) px = 0 Y iF pY 

Equations 55 and 53 are added to yield 

(u2 + UVIC + v2 + uv 
P, = I($)- [2 - a2 

(55) 

(57) 
5 uz + uv 

U2 1 -  

which is a well behaved, simple partial differential equation which can be very 
easily integrated. 

We have integrated Equatior (57) in four different ways which w e  identify 
as CE-2, CE-3, CE-PC-2-2, and CE-PC-3-2. 
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CE-2 - Equation (57) is integrated in a straight forward explicit Euler type 
scheme with two-point, one-sided 0 derivatives computed at station i. 
Thus , 

P(i + 1,2) = P(5 + A5,2) = ?(i,2) + ASP5 ( 5 8  1 

where P is given by (57) and the 0 derivatives are computed as, for 5 
example, 

- P(i,3) - P(i,2) - -  
p0 An (59 1 

CE-3 - The same as CE-2 except three-point one-sided n derivatives are used, 
e.g. t 

- -3P(i,2) + 4P(i,3) - P(i,4) 
prl - 2Arl 

CE-PC-2-2 
This is a predictor-corrector type solution of Equation (57) after the 
fashion of MacCormack. First equation (57)  is integrated as in CE-2 
to get the predictor value, P(i + 1,2). Then we get the n-derivatives 

- 
in (57) by differencing (one-sided differences) the results of the predic- 
tor step at station (i + ii. Then we combine the initial value, the 
predictor value, and the corrector as in MacCormack's scheme 

where FU-IS is the right hand side of (57) with n derivatives and coeffi- 
cients computed from the predictor solution at (i + 1). Two-point one- 
sided 7 derivatives are used in both thr predictor and the corrector steps. 

CE-PC- 3-2 
The same as CE-PC-2-2 except three-point one-sided 0 derivatives used 
in predictor steps. 
steps. ) 

(Two point 0 derivatives still used for corrector 

4.3.7.4 Euler Predictor. SinDle Wave Correctcr 

-- EP-SWC Second order (and iiighcr) accurate numerical procedures for inte- 
gratiq the equations at interior point.. obviously incorporate the 
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mathematical/physAcal signal propagation phenomefia so well characterized 
by the theory of characteristics. 
(c.f. MacCormack's Scheme) can be thought of a s ,  in essence, computing 
the solutions for two simple waves, the solutions of which are summed to 
yield the complete solution. At the wall, it is not possible to do a 
regular pa'  for-corrector, since there is no flow on one side of the 
wall. ul .a) 1 koundary cordj tion replaces "the information feeding 
in from the other sidef. 
incorporating t;?ese pher.omena . 

The predictor/corrector procedures 

* 

** - .  

The problem is to devise an integration scheme 

Consider tne simplest finite difference scheme for integrating the 
continuity and bath momentum equations (p, u, v are dependent variables). 
This scheme was utilized for the continuity equation in scheme E-2.  By 
comparing €lo = v/u at x = x + Ax with the known surface inclination, we 
can evaluate the eri-or in the integration. Now, we can superimpose on 
the solution a simple wave (conpression or expansion) to "turn the flow" 
so that v/u will be correct. Corresponding to such a simple wave is a 
pressure increment, Ap, which is to be added to the pressure there. 
This procedure can be thought of as a predictor-corrector procedure with 
the corrector a simple wave. In the calculation, the corresponding 
pressure increment was computed from Equation 174 of NACA Report 1135 
for expansions through small angles, Av. Terms through (Awl2 were used, 
so the equatiop is also valid for compression waves. 

0 

The expression is 

Av is positive for an expansion and negative for a compression. In the 
reported calculations, the predictor step was computed according to scheme 
E-2, except that all four of Equations (8-11) were integrated in the pre- 
dictor step (using two-?oint one-sided derivatives). Then, the pressure 
change to correct v/u was computed from Equation ( 6 2 ) .  Finally, p ,  

u, and v were Computed from p and the known surface S, H, and streamline 
slope. 

* 
While this is not rigorously correct, the argument is an aid in helping to 
understand the important elements of computatiofial procedures. 

We omit reflection techniques from consideration here. For further comments 
on these procedures, see Section 2. 

* A  
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4.3.7.5 Kentzer's Scheme: Predictor-Corrector Version 

Moretti (1971) has used a predictor-corrector version of Kentzer's 
scheme. First equations (5)  and (6)  are transformed to the computational plane. 
Thus 

becomes 

V so we have On the lower wall, c = -bx = - - u 8  

where 
A = +(-: + A )  along the lower w a l l  

Now 

so that 

or 

V 
1 a- 

a T  U 
an  n and - = all = 3 (uv pu2 b =  

7 
(65) 

In ' version of Kentzer's scheme, equation (67) is used in a MacCormack- 
like predictor-corrector calculation. Thus, 

and 
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The q derivatives at i and i + 1 are two-point one-sided derivatives between 
the initial conditions at (i,2j and (i,3) and the predictor solution at (i + 1,2) 
and (i + 1,3) respectively. in the current calculation, the term a-c/aS was 
computed exactly, whereas in the resdts using Kentzer's procedure it was com- 
puted by taking a two point difference ( I .= . ,  a.r/a[ = [f(i + 1,2) - f(i,2)]/AE). 
4.4 SIMPLE COMPRESSION - RESULTS AND DISCUSSION 

Our interest here is the comparative ability of the variolis procedures to 
The predict the pressure distribution on the surface of the simple compression. 

predicted pressures are compared wit. each other and with the exact solution on 
Figures la-lh. The initial data (pressure and density) were specified accurate 
to four significant figures. 
shock which forms are discussed in Section 4.6.1.1; it might be fruitful to 
quickly skim that discussion prior to studying the results reported in this section. 

The results for the reflsction schemes R-1, R-2, R-3 ,  and R-4 are showii 

Pertinent considerations vis h vis the envelope 

on Figure la and for R-5, R-6, R-6A and R-7 on Figure lb. Some interesting obser- 
vations can be quickly noted. 
is disastrous, and not surprisingly so since there is no mechanism at all for 
introducing into the flow field the fact that the surface streamline must follow 
the wall whose slope is changing. Comparing schemes R-2 and R-3 ,  both of which 
use reflection in the physical plane, we see an example of the value of utilizing 
as much information as is available. The only difference between the two runs 
is that R-2 solves the Euler equations for all four variables, p,  S, u, v, while 
R-3 solves for p only with a differential equation, obtaining S,  u, and v from 
'he known surface entropy, total enthalpy, and streamline slope. The comparison 
between R-3 and R-4 is also quite interesting. The only difference between 
these two runs is that in R-4 the known surface S, H ,  8 are used in obtaining the 
predictor solution as well as the corrector solution, while in R-3 the predictor 
solution solves all four partial differential equations for p, S, u, v ,  the known 
surface S, H, 0 only being used in obtaining p ,  u, and v from p in the corrector 
step. We see that R-4 is much quicker to respond to changes in curvature, but 
that it also tends to exhibit larger overshoots. This characteristics seems to 
hold for other reflection schemes LS well, at least for the compression. Kutler's 
two schemes yield essentially comparable results. There is no distinct improve- 
ment of the :.rediction of scheme R-6 over R-5. Again, R-6a, which utilizes 
known surface S, H, and 0 only after the corrector step, lag.; R-6 where the sur- 
face slope changes, but exhibits far lees overshoot on the ramp section. Pro- 
cedure E-7, which obtains a11 the data at the image point by linear extrapolation 
from the interior, has much larger overshoot than either R-5 or R-6, the corres- 
ponding runs with Kutler's procedures. 

Simple reflection in the computational plane (R-1) 

* 

f 
Recall that R-5 and R-6 (Kutler's two schemes) obtain v by linear extrapolation 
and p,  p ,  and u by simple reflection in the computational plane. 
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We can summarize the results of the reflection schemes as follows: 

1) Reglection in the physical plane is superior to reflection in the 
computational plane. 

ii) It is preferable to obtain p by integrating a differential equation 
and p ,  u, v from known S, H, and 8. 

iii) Schemes which are most responsive to changes in surface curvature 
(note - not slope) (e.g., R-4, R-5, R-6, R - 7 )  tend to exhibit 
larger overshoots than schemes -':ich are not so sensitive to changes 
in surface curvature (e.g., R - i .  R-6a). 

i v )  

The results of the two simple explicit (E-2 an2 ' - 3 )  and the two simple 

None of the reflection schemes tested yields particularly good results. 

implicit (1-2 and 1-3) schemes also show some interesting hehavior (Figure 1-C). 
First note that the predictions of both E-3 and 1-3 using three point one-sided 
second order accurate derivatives are much worse than the corresponding predic- 
tions of schemes E-2 and 1-2 which use two-point one-sided first order accurate 
derivatives. This is an illustration of a point that is sometimes missed. Just 
because one uses higher order difference expressions it does not mean that the 
solution is more accurate. 
the law of forbidden signals, and we know further that supersonic flow fields 
can have derivativcs which are discontinuous in certain directions, namely 

In fact, we know that three point derivatives violate 

normal to the Mach lines. 
these results, we should expect them. Looking now at the two "lower order" 
schemes, E-2 and 1-2, note that the implicit scheme (1-2) gives better results 
than the explicit scheme (E-2) even though 1-2 also, in a sense, violates the 
law of forbidden signals. However, it does tie in the changes in the interior 
with changes in the surface slope during one step, and its violation is "disper- 
sive" rather than "dissipative". 
ate, the implicit schemes, compared to the simple explicit schemes, have a better 
mechanism for coupling the interior flow solution with the specified bmndary 
condition. Finally, it should be noted that the explicit schemes are more prone 
to stability problems. Though the results of scheme E-3 dc nat really look 
unstable, i is possible that the run is marginally stable or unstable. Because 
of what we know about the law of forbidden signals, it would noL De at all sur- 
prising if scheme E-3 has poorer stability limits. Thomas (AIAA 71-596) ssserts 
as much with respect to his scheme (see the discussion below) using thrc-e point 
I) derivatives. 

Therefoie. we not on?y should not be surprised by 

Thus, though neither procedure is very accur- 

The results for the standard predict- xrector schemes are shown in 
Figure 1-d. 
grating EyLation ( 8 )  with a MacCormack-like predictor-corrector scheme, except 
that both predictor and corrector results were computed with one-sided 7 derivatives. 

In all four runs shown there, tne pressure was calculated by inte- 
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In both the predictor and corrector steps, the known surface entropy, total enthal 
enthalpy and slope were used to obtain the surface density and velocity compo- 
nents. 
(two-paint predictor/two-point corrector) responds to the initial expansion 
better than PC-3-3, the latter, surprisingly, has a much lower initial overshoot 
on the straight section. Both have about equivalent (but poor) ability to "home- 
in" on the correct solution along the stra.ight section. 
result is the poor predictive ability of scheme FCN-3-2, the scheme which is meant 
to be as consistent as possible with MacCormack's predictor-corrector scheme. 
Tne conclusion which one apparently must draw is that any attempt to deduce an 
"extended" (past the surface streacline) flow field solution is not likely to 
be very successful. On the basis of these results, it is apparsnt that standard 
predictor-corrector schemes do not show much promise. 

None of the schemes is consistently superior. While scheme PC-2-2 

A somewhat unexpected 

The results of the method of characteristics calculation (MOC) are showr 
in Figure le, along with the results of the new predictor-corrector scheme (EP- 
SIC) which utilizes a simple expliclt Euler predictor followed by a simple expan- 
sion or compression wave corrector. Both techniques yield quite accurate solutions, 
the maximum relative error in surface pressure being 0.28% for the method of 
characteristics calculation and 0.10% €or the EP-SWC calculation (see discussion 
on errors below). These small errors are achieved in calculations where the sur- 
face pressure is changing as much as 26% in one step! 

The results for both versions of Kentzer's method, Thomas-2 and CE-2 are 
shown together on Figure 1F since these four methods all use a partial differential 
equation formed by combining one or more of Euler's equations with the surface 
boundary condition. All four calculations employed two-point, one-sided TI deriva- 
tives. 
predict the solution very well, the maximum relative errors being 0.56% and 0.33% 
respectively. This is indeed amazing since Kentzer's scheme integrates the 
compatability equation as a simple partial differential equation along the stream- 
line (not along the characteristic)! - 
strikingly show the importance of how the differential equations and the boundary 
conditions are combined. Thomas essentially just made certain that his system of 
equations was complete and not redundant. 
couple the equations in a form which accounts, as well as possible, for the 
interaction between the interior flow field and the solid wall boundary. The 
superiority of CE-2 over Thomas-2 is quite clear. 

Kentzer's basic procedure and Moretti's predictor-corrector version both 

The results of these four calculations 

In procedure CE-2 we have taken care to * 

** 
The results of the two schemes Thomas 3 and CE-3 runs are shown in 

Figure lg. Obviously CE-3 is superior. In fact, Thomas-3 may be exhibiting 
some of the poor stability characteristics alluded to by Thomas (AIAA-71-596). 

-- Within the constraints of the overall solution procedure and the requirement 
that we want to integrate the equation as a simple partial differential equatior ** 
The same as Thomas-2 and CE-2 except for 
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The results of t h e  p r e d i c t o r  c o r r e c t o r  v e r s i o n s  (CF-PC-2-2 and CE-PC-3-2) 
of t h e  combincd equat ions schemes (CE-2 and CE-3)  are shown i n  F igure  l h .  These 
r e s u l t s  are f a i r l y  good, scheme CE-PC-2-2 being s l i g h t l y  b e t t e r  than  CE-PC-3-2. 
Both are b e t t e r  than CE-2 on t h e  curved! s e c t i o n ,  b u t  no t  a s  good as CE-2 on t h e  
s t r a i g h t  s e c t i o n .  Both are f a r  b e t t e r  t han  Thomas-2, Thomas-3, and CE-3. On 
t h i s  problem, none of t h e  o t h e r s  i s  compet i t ive  w i t h  Kentzer 's  scheme. 

In  o rde r  t o  b e t t e r  i l l u s t r a t e  t h e  comparative accuracy of t h e  d i f f e r e n t  
procedures,  on Figures  2a, 2b, and 2c w e  have p l o t t e d  t h e  re la t ive error i n  
computed su r face  pressure  f o r  r e p r e s e n t a t i v e  schemes from each category.  Reca l l  
t h a t  t h e  i n i t i a l  d a t a  w a s  s p e c i f i e d  t o  f o u r  s i g n i f i c a n t  f i g u r e s ,  so re la t ive  
errors less than .0002 must be considered f o r t u i t o u s .  Furthermore, it i s  impcr- 
t a n t  t o  look a t  t h e  o v e r a l l  accuracy of a scheme; i s o l a t e d  p o i n t s  of s i g n i f i c a n t l y  
h igher  than average accuracy a r e  also f o r t u i t o u s .  
istics as a s tandard ,  it seems reasonable  t o  rate t h e  schemes as  fol lows:  

Using t h e  method of cha rac t e r -  

Typical  Re la t ive  Error  i n  % 

pexact Rat ing 
~~ 

0 . 5 %  very  good t o  excellent 

0.5% t o  1% good 
1% t o  10% f a i r  

- 1 0 %  unacceptable  

W e  see t h a t  (Fig. 2 a ) ,  for t h i s  problem, t h e  method of c h a r a c t e r i s t i c s ,  
Kenfzer 's  method (both vers ions) ,  and t h e  new simple Euler  pred ic tor -s imple  wave 
c o r r e c t o r  scheme (EP-SWC) a l l  rate i n  t h e  very gDod t o  e x c e l l e n t  ca tegory  w i t h  
errors mostly less than 0.3% and t h e  average error less than 0.1%. It is  i n t e r e s t i n g  
t o  no te  t h a t  a l l  four  methods appear t o  settle on an error t r e n d  f o r  x/R > 0.3, 
though Kentzer 's  method is a l i t t l e  slow i n  homing-in on t h e  t r e n d .  The simple 
s tandard  p r e d i c t o r  corrector (PC-2-2) and r e f l e c t i o n  i n  t h e  phys ica l  plane (R-4)  

yield r e s u l t s  which are poor on t h e  compression t u r n  and t h e  f i r s t  par t  of t h e  
s t r a i g h t  segment,  bu t  which improve cons iderably  f o r  x/R > 0 . 4 .  

Simple e x p l i c i t  i n t e g r a t i o n  (scheme E-2)  must be rated poor,  whi le  s imple 
i m p l i c i t  i n t e g r a t i o n  (scheme 1-21 is i n  t h e  f a i r  t o  poor range (Figure 2b) .  

* 
O f  t h e  remaining schemes i n  t h e  combined equat ions  class, Thomas' 

scheme with two-point d e r i v i t i v e s  (Thomas-2) i s  q u i t e  poor f o r  p r e d i c t i n g  s u r f a c e  
p re s su re ,  schenie CE-2 (Euler i n t e g r a t i o n )  y e i d l s  f a i r  r e s u l t s ,  and t h e  predic+.or 
corrector scheme CE-PC-2-2, though s l i g h t l y  b e t t e r  on t h e  average than  CE-2, i s  
also i n  t h e  f a i r  category. 

7 
Recall t h a t  Kentzers method is a l s o  i n  t h i s  c lass .  
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Since it has y i e lded  such good r e s u l t s ,  it i s  i n t e r e s t i n g  t o  look a t  t h e  
new EP-SWC scheme c a l c u l a t i o n s  i n  a l i t t l e  more d e t a i l .  I n  Figure 3 w e  have 
p l o t t e d  t h e  r e s u l t s  of both t h e  p r e d i c t o r  and t h e  corrcctor c a l c u l a t i o n s .  
see t h a t  i n  t h e  f i r s t  i n t e r v a l  t he  p r e d i c t o r  has  no idea  t h a t  the  boundary 
s lope  i s  changing, so t h e  e n t i r e  change i n  t he  s o l u t i o n  along t h e  su r face  stream- 
l i n e  is taken up by t h e  simple wave c o r r e c t o r  step. Subsequently,  t h e  non- 
uniform flow above t h e  w a l l  c a r r i e s  with it inforniat ion about the changing w a l l  
s l o p e ,  and t h e  p r e d i c t o r  c o n t r i b u t e s  a l a r g e  p a r t  of the  change u n t i l  t he  s t r a i g h t  
segment is reached. For t h e  f i r s t  i n t e r v a l  t h e r e a f t e r  t h e  p r e d i c t o r  a c t s  as though 
t h e  su r face  s lope  were going t o  cont inue t o  increase, and t h e  corrector b r ings  
i n  aga in  (as i n  each s t e p )  t h e  i n t e r a c t i o n  between t h e  s u r f a c e  and t h e  i n t e r i o r  
flow. F i n a l l y ,  f o r  0.242 x/R 0.34, t h e  predictor computes an expansion which 
must be co r rec t ed  with a simple wave compression. 

W e  

I t  i s  a l so  i n t e r e s t i n g  t o  no te  t ha t  i n  Moretti's p red ic to r - co r rec to r  v e r s i o n  
of Kentzer 's  scheme, except  for one i n t e r v a l ,  t h e  c o n t r i b u t i o n  of t h e  c o r r e c t o r  is  
q u i t e  small. On the curved s e c t i o n  t h e  change from p r e d i c t o r  t o  corrector is 
between 0.13% and 0.85% while  the s o l u t i o n  is changing between 1 4 %  and 26% i n  
one i n t e r v a l .  It  is only i n  the i n t e r v a l  where the s u r f a c e  cu rva tu re  is  dis-  
continuous t h a t  the corrector c o n t r i b u t e s  a major p o r t i o n  of t h e  change. I n  
t h a t  i n t e r v a l  t h e  char7e between p r e d i c t o r  and corrector i s  8 . 3 % .  Thus, the 
s t r e n g t h  of Kentzer 's  approach appears t o  p r i m a r i l y  reside i n  t h e  fszm 01 tile 
d i f f e r e n t i a 1  equat ion ,  r a t h e r  t h a n  ref inements  i n  t h e  d i f f e r e n c i n g  procedure. 

4.5  SIMPLE EXPANSION - RESULTS AND D I S C U S S I O N  

The simple expansion i s  t h e  second of t h i s  p a i r  of e lementa l  problems 
used t o  test  these computational procedures.  The i n i t i a l  mesh spac ing  and flow 
cond i t ions  are the same as f o r  t h e  compression. 

The p r e d i c t i o n s  of t h e  va r ious  r e f l e c t i o n  schemes are compared w i t h  the  

exact s o l u t i o n  i n  F igure  2a and 2b. Again, simple r e f l e c t i o n  i n  the computa- 
t i o n a l  plane i s  d i s a s t r o u s .  These r e s u l t s  d i f f e r  somewhat from those f o r  t h e  
compression i n  t h e  fol lowing r e spec t s :  

ii) 

iii) 

! V )  

v) 

Scheme R-2, r e f l e c t i o n  i n  t h e  p h y s i c a l  p l ane  wi th  p ,  S, u ,  v all 
computed by i n t e g r a t i n g  E u l e r ' s  equa t ions ,  shows less a b i l i t y  t o  
home-in on t h e  s o l u t i o n  on t h e  s t r a i g h t  segment. 

Scheme R-4 is again  supe r io r  t o  R-3 OR t h e  curved s u r f a c e ,  b u t  it 
is now equal  t o  R-3 on t h e  s t r a i g h t  segment. 

The percent  overshoot  of R-3 i s  h ighe r  (19.1% vs 8 . 4 %  f o r  t h e  
compression).  

Conpared t o  R-3 and R-4, K u t l e r ' s  schemes R-5 and R-6 do b e t t e r  
than  they d i d  on t h e  compression. 

R-7 again shows comparatively large overshoot .  
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The results of the two simple explicit (E-2 and E-3) and two simple implicit 
(1-2 and 1-3) schemes (Figure 4c) are a bit different than they were for the 
simple compression. 
rl derivatives compared to three point derivatives. In fact, overall probably 
1-3 is a little superior to 1-2 an2 E-3 to E-2. Both E-3 and 1-3 respond quicker 
than the corresponding E - 2  and 1-2 to the initial xrvature change and to the 
change \?here the straight segmant begins, but again E-3 and 1-3 exhibit greater 
overshoot on the straight segment. As fo r  the compression, none cf these schemes 
yield good results. 

Or, this problem there is not clear superiority of two point 

The four standard predictor-corrector schemes yield comparable results 
(Figure 4d). Again, overall PC-2-2 seems to be somewhat better than the others, 
primarily because of its superior ability to home-in on the solution on the 
straight segment. Again, none of these results are acceptable, with errors as 
high as 26% for scheme PC-3-3. 

The method .of characteristics (MOC) and the new simple-Euler-predictor/ 
simple-wave-corrector (EP-SWC) schemes yield excellent results (Figure 4c). The 
maximum relative errors are 0.58% for the method of characteristics and 0.43% for 
the EP-SWC scheme. This high accuracy is achieved when the exact solution changes 
as much as 22% in one step! 

The results of Thomas procedure and of the basic combined equations appoach 
with Euler integration (CE-21,  both using two-point one-sided q derivatives, are 
compared with Kentzer's predictions and the exact solution on Figure 4f. Again 
we see that scheme CE-2 yields far better predictions for surface pressure thin 
does the Thqmas-2 scheme, and Kentzer's methods are still the best, Kentzer's basic 
procedure, while still pretty good, does not do as well on the expansion (Fig. 4f) 
pansion (Figure 4f) as it did on the compression (Figure If). While doing pretty 
well on the curved section, it has about a 10% overshoot on the straight segment, 
after which it very quickly homes-in on the correct solution. Even on the curved 
section, typical errors are considerably higher for the expansion (1-7%, ?igure 
Sa) than they were for the compression (0.8-1.0%, Figure 2a). There is no ob- 
vious explanation for the comparatively poorer ability tc predict expansions 
than compressions. On this problem, Marptti's predictor-corrector version model 
is considerably better than the basic Kentzer scheme. 
3 .4%,  and on the curved section the errors are 1/2 to 1 order of magnitude smaller. 
Again, except in the one interval where the surface curvature is discontinuous, 
the corrector changes the predictor by less than 1%. Thus, we can attribute some 
of the differences between Kentzer's basic scheme, as used here, and Moretti's 
predictor to the different treatment of the derivative of the surface slope (see 
Section 4.3.7.5). Additional studie; of these two approaches an5 the treatment 
of the surface sLope derivative will be reported in the future. 

The overshoot is down to 
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Schemes CE-3 and Thomas-3, both us ing  th ree -po in t  one-sided TI d e r i v a t i v e s ,  
are compared w i t h  t h e  exac t  s o l u t i o n  i n  F!.gure 4 3 .  The r e s u l t s  he re  f o r  Thomas-3 
are cons iderably  better than  they were f o r  t h e  compression, b u t  it aga in  shows 
a s t r o n g  tendency t o  cvershoot  on t h e  s t r a i g h t  segment. 

F i n a l l y ,  the r e s u l t s  of t h e  two corresponding p red ic to r - co r rec to r  schemes, 
CE-PC-2-2 and CE-PC-3-2 a r e  shown on Figure 4h. Scheme CE-PC-3-2 is s l i g h t l y  
better than  CE-PC-2-2., and on t h i s  problem both are better than  any of t h e  o th?r  
schemes i n  t h i s  ca tegory ,  except  Kentzer ' s  scheme. 

* 

%he r e l a t i v e  errors of some of t h e  schemes are compared w i t h  e? t h e r  

i n  F igures  5a,  5b: and 5c. The method of c h a r a c t a i s t i c s  (MOC) and t h  f w  E i i l e r  

p r e d i c t o r ,  simple-wave c o r r e c t o r  (EP-SV?C) scheme are f a r  s u p e r i o r  t o  any of t h e  
others, w i t h  Kefitzer's scheme considerably better than  those  remaining. 

As w i t h  t h e  expansion wale, the  path sf t h e  EP-SWC p r e d i c t o r  corrector 
scheme i s  given i n  Figure 6 (see Figure 3 and i t s  d i s c u s s i o n ) .  

4 .6  FURTHER COMMENTS AND OBSERVATIONS 

4 . 6 . 1  Accuracy of the So lu t ion  a t  In te r ior  P o i n t s  

4.6.1.1 Simple Compression - The Envelope Shock 

For t h e  compresslon problem it i s  important  t o  cons ider  t h e  i n f l u e n c e  
N o  provis::m t h a t  t h e  envelope shock which w i l l  form may have on t h e  r e s u l t s .  

w a s  taken t o  t rea t  t h a t  shock as a sharp  d i s c c n t i n u i t y ,  so it is p o s s i b l e  t h a t ,  
p a r t i c u l a r l y  with those schemes us ing  three-poin t  one-sided d i f f e r e n c e s ,  t h e  
s o l u t i o n  a t  t h e  lower wa l l  i s  affected by numerical  jnaccurac ies  r e s u l t i n g  from 
t h e  shock smearing. 

P E  a first s t e p  t o  e v a l u a t e  t h i s  e f f e c t ,  a f u l l  mpthod of c h a r a c t e r i s t i c s  
c a l c u l a t i o n  w a s  generated wi th  a code which computzs shock waves as sha rp  discon- 
t i n u i t i e s .  The code (referred t o  as SUPER), detects enveiope shock? by t h e  
c ros s ing  of c h a r a c t e r i s t i c s  of t h e  same family.  I t  i s  a second order accu ra t e  
s o l u t i o n  s i n c e  both charazterist ic s lopes  and c o e f f i c i e n t s  i n  t h e  equat ions  are 
averaged i n  a s o l u t i o n  which i terates  each s t e p .  I n  orde- t o  o b t a i n  mesh p o i n t  
spacing on the lower w a l l  a t  about t h e  same i n t e r v a l  as i n  t h e  " f i n i t e  d i f f e r e n c e "  
c a l c u l a t i o n ,  t he  mesh p o i n t s  on t h e  i n i t i a l  d a t a  l i n e  were s,:::ed a t  d i s t a n c e  
Ay/R = 0 . 0 1  a p a r t .  The ca lcu l .a t ion  proceeds from mesh p o i n t s  on t h e  i n i t i a l  
d a t a  l i n e  (x = C.0) along r ight-running c h a r a c t e r i s t i c s ,  and it w a s  cont inued 
u n t i l  t h e  code h a l t e d  because t h e  number of p o i n t s  on t h e  harac te r i s t ic  l i n e  
exceeded 50 ,  t h e  maximum allowed. The l a s t  computed r igh t - running  character is t ic  
o r i g i n a t e d  a t  x/R = 0 .0 ,  y/R = 1.28. The s u r f a c e  p r e s s u r e  computed w i t h  t h e  
full method of characteristics calcu1at ;on ag rees  very w e l l  wi th  t h e  e x a c t  

Gas dynamic equat ions combined with su r face  boundary cond i t ion  i n  d i f f e r e n t i a l  
form. 
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t r o p i c  compression s o l u t i o n  (Figure 7 ) .  

e s t i n g  a d d i t i o n a l  information a r e  showp i n  Figure 8 .  The shock was f i r s t  de t ec t ed  
a t  x/R = 0 .2548  a t  which poin: a sharp shock s o l u t i o n  y ie lded  a p re s su re  r a t i o  of 
p = p2/p1 = 1.123. 
sa of the beginning of t h e  shock, t h e  pressure  r a t i o  across the  shsck w a s  p l o t t e d  
a s  a func t ion  of x/R and t h e  p l c t  w a s  ex t rapola ted  bzck t o  t h e  a b s c i s s a  where 
P = -Dq/Fi = 1 . 0  (Figure 91 ,  yie 'q ing  t h e  i n i t i a t i o n  of t h e  shock a t  x/R = 0.24.  . 

The r i g h t  running c h a r a c t e r i s t i c  passing through t h a t  2 o i n t  h i t s  the l o w e r  w a l l  
a t  x/R = 0.38. On t h e  l a s t  computed r i g h t  running characteristic, t h e  shock w a s  
located z t  x/R = 0.379, y/R = 1 . 1 4 6 ,  and t h e  shock s l o p e  has almost reached i t s  
asymptotic value (see Figure 8 ) .  A l s o  shown on F igure  8 are t h e  i n i t i a l  f i n i t e  
d i f f e rence  g r i d  ?or t 3 e  c a l c u l a t i o n s  reported h e r e i n ,  t h e  f i n i t e  d i f f e r e n c z  g r i d  
a t  x/R = 0.255,  t h e  l e f t  running i k c h  Line which o r i g i n a t e s  a t  t h e  beginning of 
the compression tu rn ,  and t h e  asymptot ic  shock angle .  N o t e  t h a t ,  inc luding  t h e  

lower w a l l  po in t ,  t h e r e  a:-.? four mesn po in t s  between t h e  l a w e r  w a l l  and t h e  shock 
i n  the regior. x/R = 0 . 3 c  Furcher downstraan8 t h e r e  w i l l  be more p o i n t s  between 
t h e  shoch and t h e  loci A1 (see Figlrre 8 ) .  

The r e s u l t i n g  f low f i e l d  and some i n t e r -  

- 
I n  order  t d  determine a s  c l o s e l y  as poss ib l e  t h e  a c t u a l  absc is -  

- 

* 

I n  a study of orie-dimensi m a l  time-depcqdent flows with shock w&ves  cox- 
put2d by shock s m a r i n g ,  Gary compared s:.cx=k speeds p red ic t ed  by Lax-Wendroff 
d i f f e renc ing  of tl- Euler equat ions i n  divergence form w i t h  p r e d i c t i o n s  us ing  
t3e equatiofis i n  non-divergence fom- (as done i n  t h i s  s t u d y ) .  C -v obtained 
much 3-eater e r r o r s  i n  computed shock speed u t i l i z i n g  non-divergence form than 
when the divergence fo&m w a s  used. Kutler a n t i c i p a t e d  s i m i l a r  behavior i n  t h e  

preser?t case ,  enpecti9g t h e  ameared shock loca t io i l  t o  d i f f e r  s i g n i f i c n t l y  fzom 
the correct value.  To i n v e s t i g a t e  t h i s  behavior as w e l l  as t o  s tudy  thz e f f e c t  
of t h e  shock smearing on t h e  p re sen t  r e s u l t s ,  thc computed S res su re  p r o f i l e s  a t  
th re?  s e c t i b n s  are p l o t t e d  for C a s e  EP-SWC i n  Figure 10. I n  Figure 10a w e  see 
t h a t  when t h e  shock i s  j u s t  beginning t o  fc-m (x/R - .25)  t h e  reg ion  of s t rong  
pressare g r a d i x t s  as predic ted  by t h z  f i n i t e  d i f ze rence  g r i d  somewhat l a g s  
t h a t  p red ic ted  by t h e  fall method of characteristics c a l c u l a t i o n .  The f i n i t , ?  
d i f fe rence  so l l i t ion  overshoots by about 9% t h e  p re s su re  p r o f i l e  on t h e  compression 
s ide .  A t  x/R = C.3664 'Figure lob)  t h e  shock is w e l l  e s t a b l i s h a d ,  and t h e  smeared 
shcck is displaced €\en more from t h e  exact  s o l u t i o n ,  and t h e  pressur?  overshoot 
is ncw about 27%. aesxtse of t h e  mesh poi,.t l i m i t a t i o n .  we have n o  complete method 
method of character A tics s o l u t i o r  f o r  a l l  y beyond x/R = G.37. E a w e v e r ,  s i n c e  

** 

J- ,hc: sorpute? shock angle i s  T*-ry close t o  t h e  asymptot ic  va lue ,  w e  car, e x t r a p o l a t e  

it t o  ob ta in  t h e  shock locd t jon  at another  absc i s sa ,  fol example iJ- :  x/R = O . S 2 ? 4  

(Zigure 1 0 ~ ) .  Then it is s a s  3 m s t r u c t  t h e  ex;rct pressure  p r o f i i e  snd t o  

3 e c a l l  that, a t  a given x ,  t'r,.,e are twenty equal  i n t e r v a l s  between t h e  lower 
wal l  2nd the  o r J ina t2  y/R = 1 . 4 .  

+* 
:J: !.vate communication. 
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compare it with the prediction ushg the finite difference tormulation with shock 
smearing (Figurk 1Oc). Again, we see the displaced shock location and pressme 
overshcc;+-.(still 27%) predicted with shock smearing. 

Nov, what is the importance of these results vis a vis this study? One 
might remark, for instarxs, that if the envelope shock were treated as a sharp 
discontinuity, the problem of inaccuracies due ta displaced shocks and pressure 
overshoots would disappear. However, that is aisleadicg, for the ir-accuracies iri 
boiindaq point calculations do not primarily originate with the poor shock des- 
cription. 
sane errors which will result in the interior calculation even if the boundary 
solutions are exact. Furthemore, we must fact the situation depicted in Frgure 
loa, wher3 the sfimk, as a shock, contributes a negligible part of the compres- 
sion, but where there still is the usual preswre overshoot which occurs even 
when the equations are cast in divergence form. TLus, it is just as erroneous 
to replace that smooth compression with a shock as it is to represent the compres- 
sion through a shock with shock smearing. Even if we attempt to devise a code 
in which shocks are essentially always treated as sharp disrontinuities, we must 
realize that if the flow is at all complicated, weak secondary compressions and 
shocks nay exist which are not accounted for within the c 4 e  logic. Our task is 
to insure that in such situations relatively minor inaccuracies in the interior 
do not lead to large inaccuracies at boundaries. 

Also, no matter how the shock is treated, we must always live with 

Finally the purpose of this study is to evaluate various computation 
procedures in situations they are expected to handle as a matter of course. All 
the conputations are identical except for the baundary point computations, and 
the tests have been of situations typical of those faced by everyday working codes. 

It is clear that schemes usinq three-point one-sided derivatives will be 
much i’rars susceptible to the small of large oscillations showr i n  Figures loa-10c. 
However, the disadvantage of three-point differences goes deeper than t h z t .  Even 
if the interior solctiolis were exact, these procedures will generally exhibit 
the comparatively almost undamped overshoot discussed in Sectim 4.4 and 4.5. 

4.6.1.2 Simple Expansion 

To further clarify some aspects of the irkeraction between solutims at 
boundary poin’3 with those ..t interior points, we consider tie simple expansion 
problem. Since the solution is just a simple Prandtl-Meyer turn, we can calcu- 
late the exact solution at any point in the flow field. First we consider one 
of the better schemes for computing boundilry points. The solutim using the 
EP-SWC Froredme at bs.,ndary points is mmpared with the full method of character 
istics solution and with the exact soiution, all at x/H = 0.2648, in Figure 11. 
The agreement is very good between all three, the fuli method of characteristics 
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solution showing excellent agreement with the exact simple wave solution. The 
maximum error at an interior point for the calculation using EP-SIC is about 2 
to 2-1/2%, which is sorewhat higher than the errors on the boundary point. 

Further downstream, the pressure profile has a sharp discontinuity in 
slope. The results of the EP-SWC calculation are compared w i t h  the exact solution 
at x/R = 0.5095, 0.6654 in Figures 12s and 126 respectively. Note that the agree- 
ment in the expansis;: Ltzion is quite good, but that there is a tendency to de- 
velop snall wiggles nezr the discontinuity in profile slope. 
3-monstrated in Sections 4.4 and 4.5, there are schemes for computing boundary 
points which are insensitive to *Chese small wiggles, and the wiggles need not 
have a deleterious affect on the boundary calculations. 

However, as was 

- 
It is also interesting ts compare the pressure profile for a couple of 

the poorer schemes with the exact sol*?tion. 
and Thomas-2 at x/R = - 4 3  are Show1 1 -  Figure 13. Note that the large errors in 
computed surface pressure do ncrk ree ly have much effect on the interior flow, a c  

least in this case. However, it is important to remember that surface pressure 
is generally the single most important result of these calculations! 

The results for schemes CE-PC-2-2 

4.6.2 Three Dimensional and Time Dependent Flows 

We can expect most of the results and conclusions tc carry over to timz 
dependent as well as th: ~ dimensional steady flows. The details of some of the 
procedures will vary, of course, but the general principlss we have been discussing 
and testing are not restricted to two independent variables. 
new predictor-corrector scheme for three or more independent variables is obvious 
since the implementation of either Kentzer’s scheme or the method of characteristics 
is quite cumbersome. There is a certain degree of arbitrariness in applying the 
scheme tc three or more independent variables, bu;i comparisons with method of 
characteristics calculations for shuttle type vehicles have been very favorable 
(Rakich & Kutler, 1972). 

The advantage of the 

The extension to three dimensional steady flow can be easily sketched. 
Consider, for example, a Cartesian cocrdinate sys%em (x, y, z )  with velocity compo- 
nents (b8’r8W) and unit vectors (;,!,GI. Let the f low be supersonic in the general 
direetir-r! o€ the x axis (i.e., -I must be supersonic, t- and w will generally be sub- 

sonic, thuush they also could be supersonic). If the surface geometry is given by 
an equation of tne form 
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then the unit normal to the surface is given by 

A A A 

n 0 A Fxi + F j + F,k A 

= n i + n7j + ngk 1 L 
n =  

+ Finally, we denote the velocity vector by q, 

n n n + q = ui + vj + wk 

( 6 4 )  

As in the twa dimensional case, we first generate a predictor step solution 
r t  using MacCormack ' s scheme v i t h  inward differences . Then, for po t  Do, uo8 -0' wo 

since the boundary condition is that 

A 

6 * n = 0  (661 

along the surface, we find the angle between the predicted velocity vector 
q = uoi + voj + wok and the unit normal. 

n A n I + 

f i  

O n  40 
AV = sin-' - 

-b !sol 
Then we impress a simple wave to turn the velocity vector through the angle bu. 

Again, associated with that whve is a pressure change given by Equation (62). 
Next, we find the corrected velocity components from the expression 

If ..e know exactly the surface total enthalpy and eritropy at the point, we can 
find the exilct value of the density and velocity modulus corresponding to tbe 
corrected pressure, pl. 
the velocity vector by maintaining the directcon given in ( 6 8 )  and scaling its 
modulus to the known v?.lue. 

In such a case, we can make a final small correction to 

It should be clear that this procedure is not completely rigorous. 
one thing, there is no simple wave in three dimensional flow, so the use of 
equations (671, (62) and ( 6 8 )  is certainly an approximation. How good an 
approLmtion it is can only be determined after the fact. Preliminary result:; for 
sharp cones ard Llunted shuttle vehicles at incidence have been very gaod. 
should not be too surprising since one can often treat three dimensional flows 
as locally two-dimensional wich crossflow effects accounted for in an "inhomogene- 
ous" term. 

For 

This 
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Obviously we could construct the corresponding scheme for unsteady flow 
computations. 'In fact, In a sense the corrector I s  similar to Godunov's method 
for time dependent flows. 



SECTION 5 

CONCLUDING R E M ? S  

It need hardly be mentioned t h a t  the rangc of computational procedu-res 
considered i n  t h i s  study is  no t  completely camprehensive. One can, of course ,  
t h ink  of q u i t e  a number of v a r i a t i o n s  on schemes i n v e s t i g a t e d  h e r e ,  and it is 
very l i k e l y  t h a t  one could invent  a scheme q u i t e  d i f f e r e n t  to  any of those  w e  
have examined. However, t h i s  s tudy  i s  complete, as f a r  a s  procedures  are concerned, 
in t h a t  a l l  c u r r e n t l y  used procedures  are probably represented  i n  one of t h e  cate- 
gor ies ,  and t h e  schemes tested are r e p r e s e n t a t i v e  of the  best r e s u l t s  t h a t  can 
be achieved i n  each category. 

The procedures have been compared for  an ideal gas a t  Mach = 3 i n  two- 
dimensional f l o w .  
gas. Although we a n t i c i p a t e  q u a n t i t a t i v e  d i f f e r e n c e s  a t  o t h e r  Mach numbers, 
q u a l i t a t i v e l y  these r e s u l t s  should c a r r y  over as Mach number v a r i e s .  
comments should a?ply i f  t h e  geometry of the test problems w e r a  altered. 

T h e  r e s u l t s  would be e s s e n t i a l l y  t h e  same f o r  an  equi l ibr ium 

Similar 

There are a number of observa t ions  t o  be made abcat and conclusions t o  
be drawn from t h e  r e s u l t s  presented i n  Sec t ions  4 . 4  and 4.5.  It should be ev iden t  
t h a t  any pure ly  e x p l i c i t  i n t e g r a t i o n  procedure n o t  incorpora t ing  e x p l i c i t l y  t h e  

w a l l  geometry changes possesses  an inhe ren t  l a g  i n  t h a t  it has no mechanism f o r  
.:.ntroducing i n t o  the so lu ' ion  f o r  one step changes i n  w a l l  geometry occuring da r ing  
t h a t  s t e p .  
curvature e f f e c t s  are important.  On the other hand, w e  have seen t h a t  pure ly  ex- 
p l i c i t  r e f l e c t i o n  procedures t end  t o  recover f a i r l y  quick ly  once t h e  s u r f a c e  geometry 
becomes stre i g h t  . 

Thus, we  can expect  such procedures to g i v e  poor r e s u l t s  any t i m e  w z l l  

Higher  order one-sided d i f f e r e n c e s  do n o t  gene ra l ly  y i e l d  better r e s u l t s  
( c . f . ,  r e s u l t s  for schemes E-3, 1-3, PC-3-3, Thomas-3, CE-3). They tend t o  be more 
quickl,  responsive t o  changes i n  s u r f a c e  s lope ,  b u t  they  also show s t r o n g  tenden- 
cies t o  large, POOi damped o s c i l l a t i o n s .  As a l r eady  noted, t h i s  should n o t  be 
su rp r iy i -  *-) <.he use of three p c i n t  d i f f e r e n c e s  v i o l a t e s  the law of forbidden 
signc. 

. . t T a t i o n  procedures have given markedly better r e s u l t s  
tht L q - e  bes t  procedures a5.e t h e  method of c h a r a c t e r i s t i c s ,  
tF.: * - . .  ' t .  ,r-.tor simple wave c o r r e c t o r  procedure,  and t h e  two vur- 
sj r b .  . - ;i f i e  C - i  Though ve iy  competi t ive on t h e  compress im,  Kentzer 's  
me tk . .  : P/- .. . cmmparatively on t h e  expansion problem. 

47 



The success  of t h e  new p r e d i c t o r - c x r e c t o r  procedure (EP-SIC) i s  probably 
t o  be exp la ined ' a s  follows: The simple Euler p r e d i c t o r  s t e p  accounts f o r  t h e  
development of t h e  i n t e r io r  flow between t h e  s u r f a c e  and the  next po in t  i n .  The 

simple wave c o r r e c t o r  s t e p  then accounts for the i n t e r a c t i o n  of t h e  p r e d i c t o r  
s o l u t i o n  with t h e  su r face  boundary. W e  have seen t h a t  t h e  scheme, though q u i t e  
simple,  y i e l d s  very accu ra t e  r e s u l t s .  It has been extended t o  three-dimensional  
s teady flow* and the r e s u l t s  agree  very w e l l  wi th  those  achieved using t h e  
method of c h a r a c t e r i s t i c s  i n  t h r e e  dimensions. I t  r e q u i r e s  very l i t t l e  comput- 
ing t i m e  and, because it is  so simple,  is un l ike ly  t o  r e s u l t  i n  numerical prob- 
lems i n  d i f f i c u l t  s i t u a t i o n s .  While no formal a n a l y s i s  of i ts accuracy has  
been made, the r e s u l t s  achieved so f a r  i n d i c a r e  t h a t  it is accura t e  t o  second 
order i n  mesh spacing. 

O t h e r  than t h e  developme t of the new scheme, the most important  r e s u l t  of 
t h i s  s tudy is the very s t r i k i n g  demonstrat ion of the fact  t h a t  accuracy depends 
very c r i t i c a l l y  on t h e  manner i n  which the equat ions are solved. This  f a c t  i s  
c l e a r l y  demonstrated by comparing t h e  r e s u l t s  of methods E-2, Thomas-2, CE-2 and 
Kentzer, a l l  of which used two-point one-sided TI d e r i w t i v e s .  The lat ter t w o  
procedures give considerably better r e s u l t s  than  t h e  fonner  t w o .  The reason f o r  
t h e  d i f f e rences  lies s o l e l y  i n  how the  equat ions  a r e  w r i t t e n ,  inc luding  whether 
and how t h e  su r face  boundary cond i t ion  is incorporated i n  t h e  p a r t i a l  d i f f e r e n t i a l  
equat ion for pressure.  

t 
The scheme ou t l ined  i n  Sec t ion  4 . 5 . 2  has been incor2orated i n  K u t l s r ' s  code 
(Kutler ,  e t  a l . ,  1 9 7 2 )  and cDmparisons have been made t * i t h  a f u l l  th ree-  
dimensional method of s h a r a c L e r i s t i c s  c a l c u l a t i o n  f o r  a s h u t t l e  type  vehic le  
a t  M = 7 ,  and 5' angle a€ a t t a c k  (Rakich and Kut le r ,  1 9 7 2 ) .  
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