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ABSTRACT

Results are given of a comparative study of numerical procedures for
computing solid wall boundary points in supersonic inviscid flow calculations.
Twenty five different calculation procedures were tested on two sample problems,
a simple expansion wave and a simple compression (two dimensional steady flow).
A new simple but accurate calculation procedure wuas developed. The merits and
shortcomings of the various procedures are thoroughly discussed along with
complications for three dimensional and time depend:nt flows.
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NOMENCLATURE

a speed »f sound

b pu?/vMZ = 1

B ordinate of lower wall (y = B(x))

h static enthalpy h = 7_¥_I'%

H total enthalpy (H = h + (u? + v?)/2)

M Mach nuxber

P . pressure

PP, total pressure

P tn p/p,

q velocity modulus (q?2 = u? + vz).

S entropy (S = P - YR)

u,v velocity comporients in x,y direction

T ordinate of upper wall (y = T(x))

X,y Cartesian coordinates

E/n transformed coordinates (computational space)
Y isentropic exponent

Ai slopes characteristics in x,y space (A = dy/dx)
) T-B



density

total density

Ln /Py
streamline slope

angle streamline makes with x-axis



SECTION 1
INTRODUCTION

The purpose of this study is twofold: (1) to review and evaluate tech-
niques for handling boundary points in the numerical solution of supersonic
steady flow fields with finite difference procedures, and (2) to improve an
existing or develoo a new technique which is simple to implement and accurate.

In order to clarify and simplify the study as much as possible, attention is-
primarily focused on two-dimensionai, steady, supersonic flow of an ideal gas.
Although some implicit procedures for handling boundary conditions are considered,
the object is to consider methods that fit in well with explicit differencing
procedures (particularly that of MacCormack) for the interior.

The study is organized‘into three parts: (1) review, (2) evaluation,
and (3) development. A preliminary review of current procedures was first per-
fcrmed, and it resulted in the categorization of the various procedures accordi..y
to the basic principles incorporated. Then representative techniques from each
category were compared on problems for which the exact solution is known.

Unless otherwise specified, a two-dimensional steady flow is implied, with
the flow direction globally from left to right. Axes and velocity components are
(x,y) and (u,v) respectively, with the x axis positive to the right. Thus, a
numerical solution is obtained by marching from the left to the right.

This report begins (Section 2) with a brief review and categorization of
computational procedures which are now in use, including one developed in this
study. Then (Section 3) we discuss the most important elements of a computational
procedure, with emphasis on boundary points. Comparative results, and a discussion
of the significance, are given in Section 4. The report is concluded (Secticn 5)
witi, an overview of the results of the study.

It became evident early that the procedures currently in use which give
acceptable accuracy tend, in general, to be cumbersome to implement in a computer
code. Also, they often require relatively long computing times per mesh point
when compared to interior points. The latter is not a strong objection, since it
is in the boundary calculations that the particular solution is selected from the
infinity of possible solutions to the partial differential equations. However, it
is important in the sense that when boundary point calculations comprise a signifi-
cant portion of the computing time, improving them can result in significant sav-
ings in computational expense.



Because of the obvious need fo- simpler, faster, accurate procedures,
efforts were directed toward understanding the factors determining a good boundary
point computation procedure, particularly in the context of a predictor/corrector
scheme at interior points. Subsequently, a new scheme for computing boundary
points was developed. This scheme is very simple, requires little computing time,
and seems to be quite accurate. It is discussed in Sections 2, 3, and 4.



SECTION 2

REVIEW

2.1 CATEGORIZATION OF METHODS

The various procedures have been classified in five categories: reflec-
tion, explicit differencing (one-sided derivatives), implicit, characteristics,
and miscellaneous. Although the last category is somewhat of a grab-bag, it
should not be viewed disparagingly, for that is probably where the most satis-
factory procedure (from the standpoint of simplicity and accuracy) will be

found.

2.2 DISCUSSION OF VARIOUS PROCEDURES TO DATE

2.2.1 Reflection

The use of this procedure is basically physically motivated. The wall
boundary of an inviscid flow is essentially a slip stream, and in this sense
there is no basic difference between a streamliine ~long a solid wall and the
same streamiine which is located within a fluid on one side of a slip stream.
On this basis, one reasons that, for computational convenience, he can
replace his original problem with its solid boundary with another problem
having an extended flow field which (hopefully) will include a slip stream

where there was originally a solid wall (sketch).
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Sketch 1 The Concept of Reflection Procedures



Knowing the solution, at a given initial line, scmewhat into the extended flow,*
it is possible'to continue the solution downstream uaccurately by treating the
slip stream as a regular part of the interior flow. So the problem of computing
the solution at the solid boundary has disappeared. Unfortunately, it h.s been

replaced by the problem of determining the fictitiously extended flow field be-
low the solid wall.

In looking at two-dimensional problems with straight walis, it is not
difficult to construct an extended flow field which will effectively simulate
the solid boundary, ~nd there the idea of reflection enters naturally. In this
case, at the wall the normal derivative of pressure vanishes along with the
normal component of velocity. Therefore, the extended flow field can be con-
structed by simply reflecting the actual flow field abovrt the solid wall. All
quantities are reflected evenly, except the normal velocity component, which

suffers odd reflection in order to impose the requirement that it vanish at the
solid wall.

To carry this idea further, to flows with curved walls or to three-
dimensional flows, leads to a real quagmire. Though there can be no argument
in any particular case about the concep£ of an extended flow field, except in
special cases the difficulty of constructing one which will yield an accurate
solution to the posed problem is probahly at least as difficult as it is to ob-

* %
tain more directly a solution of comparable accuracy.

It is evident from this discussion that the biggest shortcoming of rc -
flection procedures is that their accuracy depends so strongly on the local
characteristics of the flow (and on the coordinate system used in the computaticu) ,
and no one has utilized procedures reflecting this fact with enough precis
However, it should be recognized that the use of body oriented coordinate NS
is an attempt to accomplish this.

Reflection procedures have been used by a aumber of authors with varying
degrees of success. The incorrect behavior of the sonic~-line flow about an
Apollo-like body as computed by Bohachevsky and Mates and Bohachevsky and
Kostoff certainly results from poor solutions at boundary points.*** Reflection
procedures in one form or another have been utilized by many other authors, in-
cluding Bohachevasky and Rubin, Burstein, Eaton, Kutler, Kutler and Lomax,

Note that this extended solution is not uniquely determined until one re-
quires that the solution be continuous across the slipstream. That assump-
tion is usually implicit.

* %
This will become more evident in Section 4.
kk*%
Compare these solutions with those of Barnwell (1971), for instance.



MacCormack, Serra, Tyler and Zumwalt, and Walker and Zumwalt. In the latter
report (pg 49) 'the following justification is made for utilizing a reflection
procedure ... "The obvious advantage of the image point method (reflection) for
treating boundary poiats is that it completely dele*es the necescity of cdicta-
ting a priori the v lues of cderivatives at a surface." This statement is errone-
ous and misleadinc nce exactly the opposite is true. It follows a statement
(p. 42z) that there .—-e "three ways by which one can take into account the presence
of boundary when a finite difference methnd is employed." The latter statement
is also erroneous (and was in 1966) since there are far mcre than three possibil-
ities. Actually, it should be clear from this discussion that image point or
reflection procedures themselves do impose normal derivatives at the boundary
(usually = 0 for most quantities, # 0 for normal velocity component).

2.2.2 Explicit One-Sided Derivatives

It has been implied above that it would be very conven.ent tn solve
boundary points exactly as interior points, and this is one of the driving
forces behind the common utilization of reflection procedures. The problem is
that virtually all satisfactory difference schemes for interior points require
some form of centered differencing.* Howeve. , there is no reason to require
that the idea of central differences be carried over tu boundary points. In
fact, it violates what we know to be the physical/mathematical structure cf
the problem. At a solid wall, ‘he solution along the wal' is determined solely
by the interaction of the wall geometry and the interior flow. Therefore, th.agh
it is not quite as convenient, it is much more natural to *hink in terms of one-
sided derivatives at the wall if one is embarked on a course of solving the
partial differential equations along the wall.

With this in mind, cne can easily construct procedures for integrating
one or more of the diffsrential equations along the wall with derivatives nor-
mal to the wall in the computational space being computed hy one-sided differences.
The actual procedures employed can vary somewhat, particularly with respect to
how many and which equations are to be integrated in this manner.

Such procedures have been employed by Barnwell (1970), Grossman and
Moretti, Li, Moretti (PIBAL 70-20), and Skoglund and Guy** ard they are discursed
by Ciment, Eaton, and Walker and Zumwalt. Probably the most appealing aspect

It need not be symmetric, and multi-step procedures are included in thir
rather broad interpretation of centered differencing.

ok .
Though their procedur. is more than just utilizing one-sided derivatives.



of procedures based on simple one-sided differencing of the partial diifferential
equations is that, with the exception of reflection procedures, they mos: con-
veniently fit into schemes for integrating the equations at interior points.

2.2.3 Standard Predictor-Corrector Schemes - One-sided Derivatives

A lcgical extention to the simplest explicit scheme with one-sided deriva-
tives is to consider a predictor-corrector scheme with derivatives in both the
predictor and corrector steps computed s one-sided differences cn the same side.
Such an approach is a lcgical extension of a predictor-corrector scheme at interior
points tc boundary points. Though we can expect to have potentially more accurate
calcuiations than those outlined in the preceding section, accuracy will be lim-
ited by the fac. that no direct coupling is made between the partial differential
equations and the wall geometry.

2.2.4 Implicit Schemes - One-sided Derivatives

Imp)icit schemes, and mixed implicit/explicit schemes, are the same as
corresponding completely explicit schemes except that the derivatives "normal”
to the wall are computed with the values at the next x station (i.e., x = x, +
Ax). Thus, the solution depends on the "normal" derivatives wh.ch, in turn,

depend on the solutior, and the solution must be determined iteratively.

luese are two obvious objections to implicit schemes for our purposes:
(i) since the interior points will be computed completely explicitly, it is
desirable to compute the boundary points explicitly also, and (ii) computing
normal derivatives implicitly "violates" the laws of the transmission of signals
which are known for the hyperbolic equations under consideration. The latter is
an objection concerned with accuracy, not stability, since purely implicit schemes
can be unconditionally stable.

Keeping these objections in mind, it is proper that we include implicit
schemes in the comparison in order to understand more completely the origin and
magnitude of inaccuracies of other schemes, as well as to be certain that no
approach ic discarded until it has had a chance to prove itself.

2.2,5 Method of Characteristics

Gas dynamicists and numerical analyst ‘2 f:miliar with the method of
characteristics for numeric.lly so.vins i-iinear hyperbolic equations for
supersonic, inviscid flow. This re . - on special properties of the
governing partial differential =quat.... si.<n permit them to be reduced to ordin-

ary differential equations (two independent variables) with variable coeffi-
cients. These ordinary differential equations hold only in special directions,



called characteristic directions, and they reflect the facts that: (i) there a
are prefecrred directions for the propagation of signals in supersonic inviscid
flow and that (ii) these signals suffer no cdispersion or dissipation (at least
theoretically). In most instances, the method of characteristics has been the
most accurate procedure for numerically integrafing the governing differential
equations. It is especially convenicnt at boundaries where other methods require
partial derivatives normal to the boundary. It's biggest shcrtcoming is its
complexity, which results from two sources. First, to employ the method only

at boundaries while utilizing other differencing procedures at interior points
leads to a number of interpolations that must be made in orde: to integrate the
equations along characteristics. Seconéd, the equations must be combined in the
form of characteristic compatibility equations, and this is inconvenient at best
and time consuming. at worst. The result is that boundary points require a dis-
proportionate amount of analytical/coding effort from the analyst/programmer.

These disadvantages are offset by the fact that the use of characteristic
equations at the wall undoubtedly results, in general, in as accurate solutions
as it is possible to achieve.** That they are not more commonly used reflects
the fact that the inconvenience to the analyst and computer coder is substantial
and results in considerable increase in code development cost. However, if large
numbers of production runs are to be made, these additional costs can be more
than offset by the decreased cost per run for given accuracy that can be antici-
pated when characteristic procedures are used at boundaries.

Characteristics methods in one form or another have been used by many
k&
investigators, including Abbett, Barnwell, Coakley and Porter, Kentzer,
Moretti, Moretti and Abbett, Moretti and Bleich, and Kutler and Lomax (1971).

2.2.6 Miscellaneous Methods

In this category are methods which do not naturallv fall into the categor-
ies of more standard techniques already described. Some of these procedures ave
not promising enough to receive more than passing attention; others show consid-
erable merit.

Extrapolation

Probably the most simple is a simple extrapolation procedure where the
solution at the boundary at x = x, + Ax is obtained by extrapolating the solu-
tion at interior points. While it is possible to construct problems in which

From both analytical and computational points of view.

xR
This will be demonstrated in Section 4.

thk
Reported in Edelman, et al.



this procedure is adequate, in general it will yield completely unsatisfactory
results, eSpecially when the solution changes rapidly near the wall.

Skoglund and Guy have employed an extrapolation procedure which is
somewhat more complicated than the most simple approach.

Kentzer's Scheme

A rather clever approach, €irst proposed by Kentzer (1970) and also used
by Barnwell (1971), is based on the method of characteristics. The basic moti-
vatior. seems tc be tc get most of the advantages of utilizing characteristics
compatibility equations without some of the disadvant..ges. We have seen thkat
there are basically two disadvantages of characteristics methods: (i) the added
analytical work required to put the partial differential equations into charac-
teristic form, and (ii) the additional special coding required, including a
number of interpolations to get data at specific points on a characteristic.
Kentzer's approach eliminates tke second disadvantage while retaining the first

*
and, hopefully, the accuracy of a complete characteristic procedvuvre.

The approach in its simplest form is best illustrated by looking at our
basic example, supersonic, inviscid, two-dimensional flow. The governing
differential equations for the momentum equations in characteristic form are
are

—dp _ u?  dr _

3t ody _uv i ayu? + v? - a (2)

with T = v/u being the local streamiine slope. Here

g_ag_ ‘_11?__=§__ .a_._ 9
ax "3z taxsy -t (3)

is a total derivative with respect to the x along the churacteristic. The
standard procedure for implementing this characteristic compatibility equation

———
We will see in Section 4 that it is not completely successful with regard to
accuracy.



at a solid boundary is indicated in the slietch. The equation is written alonc

the characteristic between points D and

C, vhere D is somewhere between the

mestk points A and . Siace the bound- B ¢ ¢ _
ing geometry is srecified, t_ ir known. DL /’,/dY/dx=l
With 1y and py oktain d by interpolat- S~ - ‘,4/’

ing between poilrts A and B, we have T’T’Tq’T:%zﬁw.qu_,
. A S
_/'T-— c

Pc = Pp *+ b1, - 1)

. Sketrh 2 Method@ of Characteristics
at Boundary Point

with b an average value of pu?/vMZ - 1 between D and C. The inconvenience and
computational time involved in locating point D and the data there are obvious,
particularly when there are more than two independent variables. Kentzer's
idea is to write the cumpatability equations in partial differential form at
poiat A. Thus, we have

7 _pat_ (e, ). (23T, 2t).
+ 3% bdx‘+(ax+‘)‘ay) b(ax+)\ay)—0 (4)
or

) SO 3T, ,

+ 3% i>‘33'+b(ax+}‘3y (5)
with

uv * a Yu? + v? - a2
A=
2

(6)

u? - a?

and the rest of the right-hara side evaluated at A. The interesting point is
that, while Equation (5) hoids generally, in the method of characteristics the
derivatives in Equation (4) are treated as directicnal total derivatives in the
directions having slopes 2. The hope is that by combining the equations in
this special way but still retaining their partial differential character, the
solution will be obtained with accuracies typical of method of characteristics
calculations while retiining the simplicity of standard explicit partial deriva-
tive calculations.



*
Combined Equations

Another approach, which has been used by Thomas and Thoumas, et al., is
to combine one or more of Euler's equations with the surface boundary condition
‘r. differential form. The object is to obtain a direct coupling of the surface
boundary condition with the partial differential equation(s) to be integrated.
There are many possible variations on the basic theme, and we lock at some of
the _n Section 4.3.5.

? New Technique

The new procedure developed in this study is analytically simple, easy to
code, and computationally fast. It is a predictor-corrector scheme in which .the
predictor step is a regular predictor step in MacCormack's scheme. All dependent
variables are computed in the predictor step. The corrector step is a simple
expansion or compression wave, whichever is necessary, which turns the velocity
vector parallel to the wall. It is discussed in more detail in Sections 4.3.7.3
and 4.6.2.

*
Actually, Kentzer's scheme is one of this group, but we consider it somewhat
cseparately because of its unique features.

10



SECTION 3
WHAT TO LOOK FOR IN A COMPUTATIONAL PROCEDURE

When confronted with the question, "What should I look for in a computa-
tional procedure?" one's spontaneous reply is apt to be "accuracy". In this
3ection we discuss the elements which determine the accuracy of a technique and
how we can make preliminary evaluations of a technique prior to testing it.
Moretti (1969) has pointed out the importance of considering the computational
procedures used at boundary points as well as at interior points in evaluating
a numerical technique. That point is certainly valid, but it does not mean that
we cannot examine and evaluate separately the components of a technique,* but
rather that in evaluating a computer code and predictions it will yield it is
necessary to consider the contributions of all components of the technique,
inciuding calculation procedures used at computational boundaries as well as
those used at interior points. Furthermore, though many of the subsequent
arguments have much broader validity, the discussion is directed toward computa-
tional procedures at solid wall boundary points of supersonic, inviscid flows
where interior points are computed with MacCormack's scheme. Unless otherwise
stated, we will be considering two dimensional, steady flow. Some discussion of
unsteady and three dimensional fiow calcalations is given in Section 4.6.2.

Obviously, a good computation procedure must be able to convey numerically
informaticn incorporated in the physical/mathematical problem which is being
solved. That is why the method of characteristics is such a good procedure for
hyperbolic problems in two independent variables. That is also why implicit
integration procedures, though they possess nice stability characteristics,
are not, in general, nearly as well suited to hyperbolic problems as are explicit
procedures. The implicit procedures numerically transmit signals in directions
quite different from those directions that the partial differential equations say
signals ought to travel (the characteristic directions). In supersonic inviscid
flow, we know that the signals are transmitted along characteristics. This does
not mean that we must use the method of characteristics to compute such a flow,
but that any chosen method ought to maintain, in some fashion, tnat basic mechan-
ism of transmitting signals. Implicit schemes do not do this. The predictor-
corrector scheme of MacCormack evidentally does. So what does this tell us about
numerical procedures for computing solid boundary points in supersonic, inviscid
flow?

—————
Which is exactly what we are doing in this study.

11



In the first place, there are two sources of information which must be
accounted for:' the interior flow and its influence on the boundary, and the
boundary geometry. We must account for the effect of each individually as well
as their mutual interaction. That is why we can expect a rimple, completely
explicit, integration procedure to be quite poor. Although it does have adequate
mechanisms to account for the development of the interior flow near the wall,
it has no mechanism to account for, during a step, the interaction between the
wall geometry and the interior flow. Since that interaction is precisely what
determines the wall pressure, we do not expect accurate results from such a scheme.

Recently some investigators (c.f. Kentzer, Thomas, et al.), have attempted
to overcome this shortcoming of explicit integration schemes by combining the wall
boundary condition (normal velocity component = 0) into one of the partial differ-
ential equations being integrated. The idea has merit, but, as we shall see
in Section 4, the resulting accuracy depends very crucially on which equation

(or equations) is chosen and how the boundary condition is invoked.

Others (Kentzer, Barnwell) have suggested that accuracy can be improved
by putting the pa.tial differential equations in special forms prior to integrat-
ing them along the wall. The idea here is that the ability of the equations to
transmit information well depends not only on the way the differential equation
is approximate by a difference equation but also on the form of the ditferential
equation. The overall validity of this assertion is clear, but we expect to cften
find it difficult to predict a priori the relative merits of different ways of
writing the equations. However, in general one can probably expect improved
accuracy if the form of writing the equations somehow gives preference to direc-
tions in which signals are transmitted (i.e., characteristic directions).

This brings us to another interesting point, the idea of second order
one-sided derivatives and implications with respect to domain of influence and
domain of dependence of a point. Consider a supersonic flow going from left to
right with a computational grid as shown in the following sketch. The solution
is known at station i and it is to be determined at i + 1.

j +3
j+2¢ & T Mach lines
I+l e~
3 _
Sketc}l 3 j - l —
Computational Grid j -2
j -3
X
i i+1
x xo + Ax

12



We focus our attention on the problem of determining the solution at (i + 1,j)
by an explicit scheme. 1In a standard, seéond order explicit scheme (e.g., Lax
Wendroff, MacCormack) the solution at (i + 1,j) will depend only on data at the
three points (i,j + 1), (i,j), and (i,j - 1), which is compatable with the laws
of propagation of signals and domains of influence and dependence. Now, suppose
that instead of using those three points, we use the points (i,j), (i,j + 1),
and (i,j + 2). Then, though we would be using second order accurate y derivatives,
it is obvious that we are using information to determine (i + 1,j) which comes
from outside its domain of dependence. (Note location of Mach lines in above
sketch.) Obviously, we can think of the three point one-sided derivative as,

in a sense, extrapolating the solution from (i,j + 1) and (i,j) to (i,j - 1)-
but we should not expect as high accuracy from the second procedure as from

the first, and we should not be surprised if such a procedure is unstable.

With these thoughts in mind, we can anticipate pretty well the character-
istics of a calculation procedure even before testing it. We just need to answer
the following question: Does the computational scheme have numerical mechanisms
to account for the physical interactions which we know are present? If it does,
then it chould be one of the better schemes. If not, in the ahsence of fortui-
tous blessings, we expect it to be in the ranks of the poorer schemes. These
observations are not original, but they are important. Their validity is strik-
ingly illustrated by the results given in Section 4.

13



SECTION 4
COMPARATIVE RESULTS FOR TWO SAMPLE PROBLIMS
4.1 GENERAL COMMENTS AND DESCRIPTION OF THE SAMPLE PROBLEMS

Now that we have reviewed the general attributes a good computational
procedure should have and looked at the characteristics of individual categories
of procedures, it is time to compare the predictive abilities of the various
procedures. The objective of the test problems is not to be exhaustive, nor is
it to test the various methods in situations favorable to certain ones. Rather,
it is to test each case in situations which are not necessarily favorable but
which are representative of what is required of a technique in every day working
codes. To do this we will consider two sample problems, a simple expansion and
a simple compressior, both for two dimensional, supersonic flow (see sketch 4).

M=3
—_—
Y = 1.4
Uniform
M=3
e
Yy=1.4
Uniform
a) simple compression p) simple expansion

Sketch 4 Schematic .~ Sample Problem

Expansions and compressions are, of course, the heart of supersonic flow fields,
and these two sample problems will serve as valid tests of the relative merits
of the various procedures. Furthermore, although these flows are comparatively
simple, computationally they are quite challenging, as we shall soon see.
Finally, they enable us to make the comparison against a valid standard since
we can obtain the exact solution along the wall boundary.

In order to present the results in as useful and clear a manner as possi-
ble, this section is arranged as follows: First (Section 4.2) we outline the
overall computational procedure, with some special attention paid to the boundary
point computation. Of particular interest here are the comments relating to the
use or non-use of the known surface entropy and total enthalpy. Next (Section 4.3)

14



we discuss the details of the surface boundary point computational procedures
being tested. This is an important section since often small differences in

2 computational procedure can sometimes significantly affect the result.* Also
in that section we introduce working abbreviations for the calculation proced-
ures. The results for the simple compression are presented and discussed in
Section 4.4, those for the expansion in Section 4.5. Additional comments and
observat.ions (Section 4.6) include a discussicn of implications for three
dimensional and time dependent flows, special comments visS 2 vis the envelope
shock and its effect for the compression problem, and some discussion of the
accuracy of the solution in the interior region.

4.2 GENERAL OUTLINE OF THE COMPUTATIONAL PROCEDURE

4.2.,1 Basic Fquations and Finite Difference Grid

We are considering an ideal gas with constant specific heat ratio, y. The
general flow direction is from left to right. The geometry for the two sample
cases is shown in sketch 5. Initially, for x < 0.0, the flow is uniform and

X
y TAAA‘““‘—‘-‘—Z—‘-A—‘-‘—‘-
v=1.4
0.4R \_5
———
R
| —
eSS s N SONON NN L
b v=1.4
— : 1p°
‘i<<r<*r< t
» X -
x
a) compression b) expansica

Sketch 5 Detailed Schematic of Sample Problems

parallel to the x axis, with M = 3. An initial data line of 21 points stretches
fronm the lower wall to the upper wall, the latter always being horizontal.

P —
In particular, note the discussions of standard predictor -corrector procedures,
Thomas' procedures, and Kentzer's procedure and the applicable results.
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The basic equations for the steady two-dimensional flow of an ideal gas
{isentropic flow, constant isentropic exponent) are

continuity: (pu)x + (pv)v = 0 (1)

(2)

1st momentum: puu + pvuy + Py, = 0
2nd : + pvv, + =0
nd momentum: puv, p y py (3)
entropy: us, + vSy =0 (4)
state: S = lnp/’po - Ylnp/po =P - yR (5)
For steady isentropic flow,
up. + Ve, = X (up_ + vo_) (6)
x Y a? 'x Y

with a? = yp/p. Combining (6) and (1) gives the continuity equation in terms of
.derivatives c. pressure and velocity components.

1 i .
pu, + ov, + o7 (up, + pr) = 0 (7)

In order that mesh points always fall on the lower wall, the physica.
*
domain is mz.ped onto a computational domain as shown in the following sketch.

YA ?n
Lt/ 1 Lo L L L/ 1.6 (o /L [ £ L[ [/
[T
d
> X 0 T T 7T 717" f

Physical Domain Computational Domain

Sketch 6 Physical and Computational Planes

—
The computation is terminated before the effect of the upper wall can be felt.
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The transformation is

B 0

where the lower and upper walls are described by y = B(x) and y = T(x) respec-

tively and where §(x) =

p5+{
u5+{

T (x)

cCP_ +
n

cu_ +
n

o f(ee

= B(x).

_ 1

u? - a?
1

u? - a-

Then, the equations of motion lLecome

-

- +
Y(uvn vun)

2
uwvua_ - a®{v_ +
n ( n

2
v a
b4 + 2
al’n ¥ yu Pj]/é

v

5; + (c + E)Sn/ﬁ =2

(8)

(93

(10)

(11)

Equations 8 and 9 are both linear (bu: linearly indepeundent) combinations of
Fquations 1 and 2; thus they both contain information about the transport of x

momentum as well as conservation of mass.

Equations 3 and 4 transformed direction to (£, n) variables where

in p/py
in p/p,
P - yR

YP
p

n(™, - T,) - B

17
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Equations 10 and 11 are, respectively

(12)



For later use, we Yote that

cid
]
o
5
@

- (13)

4.2.2 Interior Points

At intericr points, the equaticns will be integrated following the scheme
of MacCormack as applied to equations in non-divergence form. MacCormack's is
a predictor corrector scheme which is easily described by looking at the equation

fg + fn =90 (14)

Then, letting i be the £ index and j the n index, to obtain the solution at a
point (i + 1, j) using data known at a preceding § station (i, all j) we procead

redictor - i, 9 + 1) - £(i, 3
pree——= F:+1, 3) = £(1, ) - ag|ERe 32D - TG, I) (15a)
corxector

EG+1, 3) -G +1, 3 - D{{sp
&n

£+ 1, 3) = 2 [€(G, §) + T + 1, §) - &

For further details about the method, see the two papers by MacCormack.

4.2.3 Lower Wall Boundary Points

Along the surface streamline there is a certain degree of flexibility
since the ontropy and total enthalpy are known. 1In almost all the calculations
we will use that information, as well as the known body slope, in order tc solve
as few partial differential equations as possible. Thus, usually we will be
solving only one differential equacion along thLe wall, and thet one will be an

equation for . .isure. 1In other instances (e.g., Thomas' scheme) the basic
scheme regquires that more than one differential equation ke integrated along

18



the wall., 1In §pch in-tances we can expect errors in surfact entropy and/or

total enthalpy to develop. We proceed in this manner because of our two-fold
purpose: 1) to compare the relative merits of various computation procedures
currently in use, and 1ii) to evaluate the best results that can be achieved
within a particular class of schemes. For instance, take the simple explicit
integration procedure.. We could integrate all four differential equations,
continuity, x and y momentum, and entropy. Or we could integrate one equation,
say for pressure, and use the three relations for entropy, total enthalpy, and
wall slope to calculate the density and two velocity components. If the differ-
ential equation to be integrated is chosen optimally, we expect the second approach
ts yield better results since we are solving three of the four equations exactly.

4.3 DETAILS OF THE COMPUTATIOMN PROCEDURES USED AT SURFACE BOUNDARY POINTS

4.3.1 General Comments

The details of the various surface boundary condition calculation procedures
are given in this section. In all, we will consider 25 different procedures,
some of which are variations on various themes.

We use simple notation. In the finite difference grid, a point is denoted
by two indices, (i,j), where i is the index which increases in the £ (abscissa)
direction and j the index which increases in the n (ordinate) direction. At the
initial station, i = 1. 1In order to invoke reflection type boundary conditions,
the j index for lower surface mesh points is j = 2; thus j = 1 is reserved for
the row of "image" points needed when reflection type calculations are being used.

The various procedures are given abbreviations which pcrmit a concise and
descriptive graphical presentation of the results of Sections 4.4 and 4.5.

In many of the scheres, we simply integrate Equatior 8 to obtain the
change in surface pressure between stations i and 1 + 1. In such cases, we have
Py

+ (RHS) (16)

Piv1,2 = Fi,2

where RHS is some representatior. of the term

@ o 1 -
RHS = an Ty —yy oz [Y(uvn vun) + uan] /8 (17)
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It is assumed that the reader is familiar enough with standard notation to kncw
that, for lastance, in a simple explicit scheme with two-point one-sided n
derivatives, we would have

P. . - P.
1 ) 1'3 1'2
cPp = (By}; 2 [ X ]

(18)

V. - v,
i,3 i,2
uv“ = ui,Z [ An ]

In order to calculate the surface boundary point at (i + 1,2) from known
data at (i,j), j > 2, we assume the following to be known:

i) The complete solution at every mesh point at station i, [i.e., for
all (i'j)l : 2 2]

and, if necessary,

ii) The complete solution of the predictor and corrector steps at all
interior points at station i + 1 [i.e., for all (i + 1,j), j > 3]

4.3.2 Reflection (Image Point Procedures)

Reflection procedures are probably used more than any other single class
of calculation procedures. We have considered six variations on the basic thene.

*
R-1 Reflection in the computational plane

All data at boundary points computed as at interior points.
Velocity component normal to th wall not set = 0N, To compute
station i + 1 from data at staticn i, set

Pi,l = P,

i, 1 °
(19)

—
Here R-1 is the abbreviation we will use for the first reflection scheme, R-2
for the second reflection scheme, etc.
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Ik’
U
L)

Reflection in Physical Plane

All datz at boundary points computed as at interior points.
Effect is to set, at station i, the velocity component normal to
the wall = 0 at the wall. '

P. = P

i,l i,3
5i,1 7 54,3
Uy = ui'3(coszei'2 ~ sin 61’2) + 2vi'3sin Gi'zqos ei,2
v

- s.2 - 2 .
il= vi'3(51n 91’2 cos ei’z) + 2ui'351n ei oCOS ei 2

14 r

where ei 2 is the angle the tangent to the wall makes to the

’
horizontal. (See sketch below.)

Y.V
i
Y,V
X,U
9
)
A x'u
U5,15%;5,3
Vil T Vi3

R-3,R~4 Reflection in Physical Plane

Same as R-2 for pressure, but known entropy, total enthalpy, and

surface slope used to calculate, from Pi+1,2' the values of pi+l,2’

ui+l,2’ and vi+l,2' Thus, we have from Equations 12 and 13

Si+1,2 = 51,2 ™ Pi+1,2 * Pi1,2

Hie1,2 = 85,2 7 9541,2 = 420541 ,5 = hyyg )
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2 2 - 2 .
Viel,2 Y Yi+1,2 T 941,27 (21)

{(concluded)

(v/u)g,y,2 = tan 85,4 5)

The difference between R-3 and R-4 is that Equations (21) are imposed only after
the corrector steps in R-3 and after both predictor and corrector steps in R-4.

R-5 Kutler - Scheme 1

This is one of two reflection schemes used by P. Kutler (1972).
P, p, and u are reflected evenly, v is extrapolated. All data
at boundary points computed as at interior points.

P. =P,

i,1 i,3
Ri,1=Ri3
u; 3 =Yg (22)
v.'1 = 2v 2 " vi'3
Vi,2 T Ui, tan §; o

Apply v = u tan 0 after both predictor and correctc

R-6 Kutler - Scheme 2

Kutler's second scheme is the same as R-4, except only the pressure
is obtained by integrating a PDE (in this case, Equation 8).
p, u, and v are obtained from S, H and 6. See R-3.

R-6A Same as R-6 except impose surface boundary condition only after
corrector step, not after predictor step.

R-7 Extrapolation

All data at the image point are obtained by linear extrapolation
from the interior. Thus
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o
]

2P,

!
e

i,1 i,2 i,3
Ri,1 = 2Ry 5 ~ Ry 3
Ui,1 T 23,5 T Y3
Vi,1 = Vi,2 T Vi,3 (23)

Pressure is obtained by integrating Equation 8 with MacCormack's
scheme. p, u, v are obtained from the known.S, H, and 6.

4.3.3 Simple Explicit Integration Procedures - One-Sided Derivatives

E-2 Equation 8 solved explicitly for Pi+1 2 {Simple Euler Scheme)
r
using simple two-point, one-sided n derivatives. p, u, v obtained
from known S, H, @

e.g., P, = (Pi,3 - Pi'z)/An (24)
E-3 Same as E-2 except 3 point n derivatives

4,3.4 Simple Implicit Integration Procedure - One Sided Deriviatives

I-2 Same as E-2 except n derivatives computed implicitly as, for example,

Po= (Pi41,3 ~ Py, 2)/Am (2¢€)
Thus, it is necessary to iterate on the solution at (i+l1,2).
Iterate until relative change in pressure between two successive
iterates is less than 0.0001.

-
!
w

Same as I-2 except 3 point one-sided n derivatives

e-g-r By= (385, 5+ 4Ry 5 Pi+1,4)/2An (27)

4.3.5 Standard (and not-sn-Standard) MacCormack-like Predictor-Corrector Procedures

MacCormack's scheme is a noncentered predictor-corrector scheme in which,
say, a forward n difference is used in the predictor and a backward n difference
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is used in the.corrector. Now, let's determine how we should apply this approach

at solid boundaries.

Consider the equation j =5 A s
4 4
£+ fy =0 3 3

7772 2

Suppose that we know the solution at

station i and we wish to continue it i i+1
to i+ 1. All points (i + 1,3), Sketch 4
j 2 3 can be easily calculated by the

standard MacCormack scheme. We are

interested in the point (i + 1,2).

The simplest approach would be to just use one-sided inward differances
on both the predictor and corrector steps. Then, in MacCormack's notation, we
have a scheme we call PC-2-2.

PC-2-2
Predictor:
FGL+1,2) = £(i,2) - Ax [f(1'3)A; f(l'z’] (28a)
Corrector: _ _
£(i + 1,2) = %{f(i,Z) + T +1,2) - Ax [f‘l + 1'3’A; £{i + 1'2’]}(231))

where £(i + 1,2) is the regular predictor value at that interior point. For
obvious reasons, we do not expect this result to be very accurate, irrespective
of how the boundary condition has been incorporated into the differential equation.

The obvious next step is to use second order accurate one-sided y deriva-
tives. Then we have scheme PC-3-3.

PC-3-3

(29a)

Predictor: ]

s ey _ -3£(i,2) + 4£(i,3) - £(i,4)
£(i +1,2) = £(i,2) Ax [ T,

Correcto

£(i +1,2) = % ;f(i,Z) + £(i +1,2) - Ax [

-3F(i +1,2) + 4F(i + 1,3) - F(i + 1,4)]
240y

(29b)
One might expect scheme PC-3-3 to be better than scheme PC-2-2.

24



To carry the investigation somewhat further, let's look at the MacCormack
Scheme at an interior point. It is (in one form):

Basic Scheme

Predictor:

f(iIJ) - f(lrj - l)
24y

i+ 1,3) = £(i,3) - ax

Corrector:
F(i+1,3+1) -F@E +1,9)
dy

£(1 + 1,3) = 3 {£4i,5) + G + 1,3) - &x

Comparing the basic scheme with schenes pc-2-% and PC-3-3, we note that the cor-
rector for scheme PC-2-2 is identical to the basic corrector. One might then
reason that it is sensible to use the 'more accurate' predictor of scheme PC-3-3
with the corrector of scheme PC-2-2 in trying to construct a calculation scheme
at the wall consistent with that used at interior points. Thus, we have a

third scheme: PC-3-2,.

PC-3-2
Predictor: f
F(i+1,2) = £(i,2) - ax |=3£(,2) + 422;'3) - £(i,4) (31a)
Corrector: _ _
£li+1,2) = 34£(1,2) + T +1,2) - ax| 222232 20U 3 LB ) (31p)

-
In scheme PC-3-2, the predictor is an attempt to somehow simulate at the boundary
the basic predictor step.

o + 3 j+ 3
Now it is clear, or at least seems j + s 4+ 2
to be, how to construct a corpletely con- j+1 ? +1
sistent scheme. Referring to sketch 7, j ’ .
what is needed is a formula for replacing -1 . ] 1
the term 2 ? é
- J —-—
. -3 j -3
Ay i i+

Sketch 7

in the basic predictor step with a comparable term involving £(i,j), £(i,j + 1),
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and £(i,j + 2). But what is (32)? It is
just the derivative of f with respect to

5 Y

y at the midpoint between (i,j - 1) and 4
(i,j). So, to determine the term to replace 3
(32), let's look at the usual one dimensional 2
difference line segment (sketch 8). The 1
correspondence between points in sketches
7 and 8 is Sketch 8

Sketch 7 Sketch 8

j o+ 2 ~—n 5

j+1 -— 4

3 -— 3

j -1 - 2

j - 2 .~ 1l
Term (32) is essentially, as far as sketch 8 is concerned

féB = fg—xyfz, (33)

the second order derivative of f with respect to y at the midpoint between points

2 and 3. So, 2ll that is necessary is to represent fé3 to the same accuracy as

(33), but ._ag points 3, 4, and 5. Following the usual procedure, we have
£3 = £33 + £33 (Azx) + 3 £3 (ézm)2
£a= £3 + £33 (3 oy) + 3 £3 (% AY)Z (34)
fg = fy3 ¢+ f:'z3(% AY) +3£35(5 AY)z

Eliminating f,5 and f53 from these three equations yields the desired equation for
v s
f23 in terms of f3, f4, f5'

f53 = (35)
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(Compare this with the usual three point, one-sided second order derivative used
above in PC-3-3). Thus, we construct PCN-3-2, which we expect is the predictor
corrector scheme for the boundary most consistent with MacCormack's scheme at

interior points.

PCN-3-2
Predictor:
T+ 1,2) = £i,2) - ax [22E0.2) + 3EUEI) - £U.4)] (36a)
Corrector:
£1+1,2) = 1 {f(i,Z) + E(1 +1,2) - bx [f‘i +1.3) ;y-f_'(i +1,2) ]} (36b)

All four of these predictor corrector schemes have been tested. As we
shall see in Sections 4.4 and 4.5, the results are somewhat surprising and quite
enlightening. 1In all four of these "standard" predictor-corrector schemes, the
known surface entropy, total enthalpy, and slope were used to calcuiate surface
density and velocity components from the computed pressure in both predictor and
¢orrector steps. Thus Equation 8 is the only partial differential equation inte-
grated along the surface.

4.3.6 Method of Characteristics

MOC - Method of Characteristics

Interpolations and solution made in physical plane. Data at the * point
obtained by linear interpolation between (i,2) and (i,3) (see sketch,
following page).

- 2 2 _ .2
A =UV a«l + v a (37)

u? - a? ’

pi+l,2 computed from campatibility equation

dp _ 4 dt _
Ix b = = 0 (38)
in finite difference form
Pit+1,2 = p* + b(Ti+1,2 - ™) (39)

A and b are averaged between * point and (i + 1,2).
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S S h

i+1,2 ‘ i,2 7 Pis1,2 7 fi41;2
Hiv1,2 = Hi,2

41,2 =V 2(Hj47,2 = Bypg,2) (40)
(/W) i41,2 = tan i+1,2

Viel,2 * Uie1,2 = 41,2

4.3.7 Miscellaneous Procedures

4

¢

in this category we have those methods which do not fit into any of the

preceding categories.

Though a diverse melange, this group is the one where we

expect the potentially greatest return as far as accuracy vs. complexity are

concerned.

*
4.3.7.1 Kentzer's Method

Pressure from the characteristic-like partial differential equation

where

(41)

(42)

The n derivatives are itwo-point, one-sided derivatives explicit in x.

That is, to go from i to i + 1,

ap . 1 Pi,3 7 Pi,))

ay & An
31 _ tan 6i+1 - tan Gi
X Ax

etc. X and b are evaluated at (i,2). Then

*

(43)

(44)

For a predictor-corrector variation of this scheme, see Section 4.3.7.5.
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= S

Si+¢1,2 = 54,2

H, = H, .
i+l,2 i,?2 (45)
pi+l,2' ui+l,2’ vi+l,2 are computed from 6i+1’2

4.3.7.2 Thomas' Proncedure (see Thomas and Thomas, et al.)

The basic idea is to replace one momentum equation with the boundary
condition of zero velocity component normal to the lower wall. This is done
by replacing the (x,y) velocity components, (u,v), with components (U.V) parailel
to and normal to the wall. Since V is everywhere normal to the wall, V = 0.
Also,

U=ucos 6 + v sin 6 (46,
a— - — - c —
UE = Ux 'y Uﬂ (47)
ﬁg =u, cos 6 + v, sin 8 - (u sir. @ - v cos e)ex
where
_ _c .
u, = u. - Fu
(48)
_ _c

Equation (47) for U is integrated alon¢ with Equation () for pressure, as out-
lined by Thomas and by Thomas, et al. ex = d8/dx is known from the specified
velocity distrib tion. V = 0, and p = p! .5) complete the integration along

the lower wall, since

u=0Ucos 6 -V sin 6
(49)
v=0U=cxin 6 + V cos 6

We try two versions of this scheme, identified as Thomas-2 and Thomas-3.

Thomas—-2 —:Equations 47 and 8 are integrated using two-point one-sided
n derivatives computed explicitly ir the £ coordinate

Thomas-3 - same as Thomas-3 except standard three-point one-sided n
derivatives are used.
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4.3.7.3 Combined Egquations

The analysis used by Thomas employs the specified variation of 6 (x)
in computing the velocity changes by integrating the streamwise momentum cgquation.
No use is made of the known variation of 6 (x) in integrating the equation for
pressure, nor is there any direct coupling between the continuity equation and
one or both of the momentum eugations. We know that the primary phvsical force
determining surface pressure variation is momentum exchange away frcm the wall,
and it is natural to consider combining the pressure equation (Equation 8) with
one or more o€ the momentum equations and with the specified variation of 6 (x).
This is, of course, what is done in the me‘hod of characteristics and Kentzer's
method.

We have investigated two such additional combinrnations of the differential
eqrations and surface boundary conditions. They are identified by the pra2fix CE,
meaning Combined Equations.

CE-1 Inspection of Equations (3) and (7) leads to one obvious possibility.
Multiply {7) by -v and add to (3) to get

2

. v uv _
vux) +l1-37)pP, -~ 37 Px = 0

p(uv az )'4 az2

X

Noting that the streamline slope is given by

T = % (51)
and
2 =3 -
uit, = uv, vu (52)
2 v? uv
we get pu’t, + |1 - az/Py " az Py = 0 (53)

This becomes, after convertiag o (£,n) anéd P,

= i c 1 a’
PE-%(-E‘FB—T,’] EC_-I_ITT—-'-T/PH (54)

where T, can be computed directly irom the specified wall geometry. A quick
inspec:.on of Equation 54 giv:s considerable cause for worry, <ince T appears
twice ir the denon ‘nator, and Tt can be zero. This reflects the fact that
Equaiion 54 embodies only the continuity egquation and the normal momentum
equation for determining the induced streamwise pressure gradient. Thc most

im;ortant equation for determining that pressure gradient, the streamwise
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momentum equation, was not used in obtaining Equation 54. Nevertheless, a calcu-
lation was made for the simple expansion problem utilizing Equation 54, The
results were quite poor, as was expected, the pressure Leing low by more than

an order of magnitude in the first step. That iarge error is directly attribut-
able to numerical iraccuracies resulting from the 1 in the denominator.

Four Other CE Schemes

Following the same basic spirit discussed above, both momentum equations
and the continuity equation are combined, and the spescified variation of 0 (x) is
used tc simplify the resulting equation and to give the direct coupling between
changes in wall inclination and the streamwise pressure gradient. Equation 7 is
multiplied by -u and added Equation 2 to get

a uv u? (33)
Equations 55 and 53 are added to yield
1 - E.z__"-_qy_ + {1 - M) + pu? (. -1)=0 (56)
a? Py * a2 ‘py P ‘x y

Converting to (£,n) and P we get

_ c-1 ya?) 1 _ (u? + uv)c + v2 + uv|
[E MY Tn]( a2) § [2 az JPn

uf + uv
1-=<—

(57)

which is a well behaved, simple partial differential equation which can be very
easily integrated.

We have integrated Egquatioi (57) in four different ways which we identify
as CE-2, CE-3, CE-PC-2-2, and CE-PC-3-2.
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CE-2

CE-3

Equation (57) is integrated in a straight forward explicit Euler type
scheme with two-point, one-sided n derivatives computed at station i.
Thus,

P(i + 1,2) = P(E + AE,2) = ®(i,2) + AEP, (58)

where Pg is given by (57) and the n derivatives are computed as, for
=xample,

= P(il3) - P(i:z)

Pn An

(59)

The same as CE-2 except three-point one-sided n deriva‘'ives are used,

e.go ’

_ -3P(i,2) + 4P(i,3) - P(i,4)

Pn 2An

(60)

CE-PC-2-2

This is a predictor-corrector type solution of Equation (%7) after the
fashion of MacCormack. First equation (57) is integrated as in CE-2
to get the predictor value, P(i + 1,2). Then we get the n derivatives
in (57) by differencing (one-sided differences) the results of the predic-
tor step at station (i + 1). Then we combine the initial value, the
predictor value, and the corrector as in MacCormack's scheme

PG +1,2) = 3 {P(i,2) + B(i + 1,2) + AE-RES (61)
where RHS is the right hand side of (57) with n derivatives and coeffi-
cients computed from the predictor solution at (i + 1). Two-point one-
sided n derivatives are used in both th~ predictor and the corrector steps.

CE-PC-3-2

The same as CE-PC-2-2 except three-point one-sided n derivatives used
in predictor steps. (Two point n derivatives still used for corrector
steps.)

4,3,7.4 Euler Predictor, Simple Wave Correctcr

EP-SWC

Second order (and uighcer) accurate numerical procedures for inte-
gratiig the equations at interior point.. obviously incorporate the
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mathematical/physical signal propagation phenomena so well characterized
by the fheory of characteristics. The predictor/corrector procedures
(c.f. MacCormack's Scheme) can be thought of as, in essence, computing
the solutions for twe simple waves, the solutions of which are summed to
yield the complete solution.* At the wall, it is not possible to do a
regular rred *or-corrector, since there is no flow on one side of the
wa!l.** 1n .arl boundary cordition replaces "the information feeding
in from the other side". The problem is to devise an integration scheme
incorporating tiese pher.omena.

Consider the simplest finite difference scheme for integrating the
continuity and bLoth momentum equations (p, u, v are dependent variables).
This scheme was utilized for the continuity equation in scheme E-2. By
comparing 6° = v/u at x = X, + Ax with the known surface inclination, we
can evaluate the error in the integration. Now, we can superimpose on
the solution a simple wave (compression or expansion) to "turn the flow"
so that v/u will be correct. Corresponding to such a simple wave is a
pressure increment, Ap, which is to be added to the pressure there.

This procedure can be thought of as a predictor-corrector procedure with
the corrector a simple wave. In the calculation, the corresponding
pressvre increment was computed from Equation 174 of NACA Report 1135
for expansions through small angles, Av. Terms through (Av)? were used,

so the equation is also valid for compression waves. The expression is

2 4 2
P, yMl , (y + l)M1 - 4(M1 - 1)
P _ 1 2 _ 2

1l ‘/Mi 1 4(M1 1)

Av is positive for an expansion and negative for a compression. In the

(Av) 2 (62)

reported calculations, the predictor step was computed according to scheme
E-2, except that all four of Egquations (8-11) were integrated in the pre-
dictor step (using two-»oint one-sided n derivatives). Then, the pressure
change to correct v/u was computed from Equation (62). Finally, p,

u, and v were computed from p and the known surface S, H, and streamline
clope.

T_
While this is not rigorously correct, the argument is an aid in helping to
understand the important elements of computatioral procedures.
k%
We omit reflection techniques from consideration here. For further comments
on these procedures, see Section 2.



4.3.7.5 Kentzer's Scheme: Predictor-Corrector Version

Moretti (1971) has used a predictor-corrector version of Kentzer's
scheme. First equations (5) and (6) are transformed to the computational plane.
Thus

AR op (Ll
xtry bt 5y (5)
becomes
] c+ A 3dp _ 3T c + A 9T
5 ¥ 5 b(ag* 3 an) (63)
On the lower wall, c = —bx = - g-, so we have
3p p _ T a1
3§+Aan‘b(8§+A§ﬁ) (64)
where
A= %—(-1-‘: + ).) along the lower wall
Now A4
b = _—_put and 2% = Ei =2 (uv - wu (65)
Vﬁp—:—T on  an  u? n n)
so that
Bp__ ), —put 3t ———BA———-(uv - vu ) (66)
] an ‘/ﬁl'_.:—lm'j JE -1 n n
or
. 2
%% = - A %E + —P2 %% + YA (uv - vu ) (67)
n ﬁz———_ T az W__'__ 1 n n
In - version of Kentzer's scheme, equation (67) is used in a MacCormack-
like predictor-corrector calculation. Thus,
P(i + 1,2) = P(i,2) + P (i,2)88 a)
and (68)

P(i +1,2) = % {P(i,Z) + P(i+ 1,2) + Pg(i + 1,2)AE} b)
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The n derivatives at i and i + 1 are two-point one-sided derivatives between

the initial conditions at (i,2) and (i,3) and the predictor solution at (i + 1,2)
and (i + 1,3) respectively. 1In the current calculation, the term 9T1/9% was
computed exactly, whereas in the results using Kentzer's procedure it was com-
puted by taking a two point difference (1.e., 9t/9E = [t(i + 1,2) - T(i,2)]/AE).

4.4 SIMPLE COMPRESSION - RESULTS AND DISCUSSION

Our interest here is the comparative ability of the various procedures to
predict the pressure dictribution on the surface of the simple compression. The
predicted pressures are compared wil.. each other and with the exact solution on
Figures la-~lh. The initial data (pressure and density) were specified accurate
to four significant figures. Pertinent considerations vis i vis the envelope
shock which forms are discussed in Section 4.6.1.1; it might be fruitful to
quickly skim that discussion prior to studying the results reported in this section.

The results for the reflection schemes R-1, R-2, R-3, and R-4 are showa
on Figure la and for R-5, R-6, R-6A and R-7 on Figure lb. Some interesting obser-
vations can be quickly noted. Simple reflection in the computational plane (R-1)
is disastrous, and not surprisingly so since there is no mechanism at all for
introducing into the flow field the fact that the surface streamline must follow
the wall whose slope is changing. Comparing schemes R-2 and R-3, both of which
use reflection in the physical plane, we see an example of the value of utilizing
as much information as is available. The only difference between the two runs
is that R-2 sclves the Euler equations for all four variables, p, S, u, v, while
R-3 solves for p only with a differential equation, obtaining S, u, and v from
*he known surface entropy, total enthalpy, and streamline slope. The comparison
between R-3 and R-4 is also quite interesting. The only difference between
these two runs is that in R-4 the known surface S, H, 0 are used in obtaining the
predictor solution as well as the corrector solution, while in R-3 the predictor
solution solves all four partial differential equations for p, S, u, v, the known
surface S, H, 6 only being used in obtaining p, u, and v from p in the corrector
step. We see that R-4 is much quicker to respond to changes in curvature, but
that it also tends to exhibit larger overshoots. This characteristics seems to
hold for other reflection schemes &s well, at least for the compression. Kutler's
two schemes yield essentially comparable results. There is no distinct improve-
ment of the vrediction of scheme R-6 over R-5. Again, R-6a, which utilizes
known surface S, H, and 0 only after the corrector step, lags R-6 where the sur-
face siope changes, but exhibits far le<s overshoot on the ramp section. Pro-
cedure k-7, which obtains all the data at the image point by linear extrapolation
from the interior,* has much larger overshoot than either R-5 or R-6, the corres-
ponding runs with Kutler's prccedures.

—
Recall that R-5 and R-6 (Kutler's two schemes) obtain v by linear extrapolation
and p, p, and u by simple reflection in the computational plane.
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We can summarize the results of the reflection schemes as follows:

1) Reflection in the physical plane is superior to reflection in the
computational plane.

ii) It is preferable to obtain p by integrating a differential equation
and p, u, v from known S, H, and 6.

iii) Schemes which are most responsive to changes in surface curvature
(note - not slope) (e.g., R-4, R-5, R-6, R-7) tend to exhibit
larger overshoots than schemes “:ich are not so sensitive to changes
in surface curvature (e.g., R-3. R-6a).

iv) None of the reflection schemes tested yields particularly good results.

The results of the two simple explicit (E-2 an¢ '-3) and the two simple
implicit (I-2 and I-3) schemes also show some interesting behavior (Figure 1-C).
First note that the predictions of both E-3 and I-3 using three point one-sided
second order accurate derivatives are much worse than the corresponding predic-
tions of schemes E-2 and I-2 which use two-point one-sided first order accurate
derivatives. This is an illustration of a point that is sometimes missed. Just
because one uses higher order difference expressions it does not mean that the
solution is more accurate. In fact, we know that three point derivatives violate
the law of forbidden signals, and we know further that supersonic flow fields
can have derivatives which are discontinuous in certain directions, namely
normal to the Mach lines. Therefore. we not only should not be surprised by
these results, we should expect them. Looking now at the two "lower order"
schemes, E-2 and I-2, note that the implicit scheme (I-2) gives better results
than the explicit scheme (E-2) even though I-2 also, in a sense, violates the
law of forbidden signals. However, it does tie in the changes in the interior
with changes in the surface slope durihg one step, and its violation is "disper-
sive" rather than "dissipative". Thus, though neither procedure is very accur-
ate, the implicit schemes, compared to the simple explicit schemes, have a better
mechanism for coupling the interior flow solution with the specified boundary
condition. Finally, it should be noted that the explicit schemes are more prone
to stability problems. Though the results of scheme E-3 dc¢ nrot really look
unstable, i 1is possible that the run is marginally stable or unstable. Because
of what we know about the law of forbidden signals, it would nou ve at all sur-
prising if scheme E-3 has poorer stability limits. Thomas (AIAA 71-596) asserts
as much with respect to his scheme (see the discussion below) using threze point
n derivatives.

The results for the standard predicr . orrector schemes are shown in
Figure 1-d. 1In all four runs shown there, tne pressure was calculated by inte-
grating Equation (8) with a MacCormack-like predictor-corrector scheme, except
that both predictor and corrector results were conputed with one-sided 7n derivatives.
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In both the predictor and corrector steps, the known surface entropy, total enthal
enthalpy and slope were used to obtain the surface density and velocity compo-
nents. None of the schemes is consistently superior. While scheme PC-2-2
(two-point predictor/two-point corrector) responds to the initial expansion

better than PC-3-3, the latter, surprisingly, has a much lower initial overshoot
on the straight section. Both have about equivalent (but poor) ability to "home-
in" on the correct solution along the straight section. A somewhat unexpected
result is the poor predictive ability of scheme PCN-3-2, the scheme which is meant
to be as consistent as possible with MacCormack's predictor-corrector scheme.

Tne conclusion which one apparently must draw is that any attempt to deduce an
Yextended" (past the surface streairline) flow field solution is not likely to

be very successful. On the basis of these results, it is apparent that standard
predictor-corrector schemes do noct show much promise.

The results of the method of characteristics calculation (MOC) are showr
in Figure le, along with the results of the new predictor-corrector scheme (EP-
SWC) which utilizes a simple explicit Euler predictor followed by a simple expan-
sion or compression wave corrector. Both techniques yield quite accurate solutions,
the maximum relative error in surface pressure being 0.28% for the method of
characteristics calculation and 0.10% for the EP-SWC calculation (see discussion
on errors below). These small errors are achieved in calculations where the sur-
face pressure is changing as much as 26% in one step!

The results for both versions of Kentzer's method, Thomas-2 and CE-2 are
shown together on Figure 1l{f since these four methods all use a partial differential
equation formed by combining one or more of Euler's equations with the surface
boundary condition. All four calculations employed two-point, one-sided n deriva-
tives. Kentzer's basic procedure and Moretti's predictor-corrector version both
predict the solution very well, the maximum relative errors being 0.56% and 0.33%
respectively. This is indeed amazing since Kentzer's scheme integrates the
compatability equation as a simple partial differential equation along the stream-

line (not along the characteristic)! The results of these four calculations

strikingly show the importance of how the differential equations and the boundary
conditions are combined. Thomas essentially just made certain that his system of
equations was complete and not redundant. In procedure CE-2 we have taken care to
couple the equations in a form which accounts, as well as possible,* for the
interaction between the interior flow field and the solid wall boundary. The
superiority of CE-2 over Thomas-2 is quite clear.

* %
The results of the two schemes Thomas 3 and CE-3 runs are shown in
Figure lg. Obviously CE-3 is superior. 1In fact, Thomas-3 may be exhibiting
some of the poor stability characteristics alluded to by Thomas (AIAA-71-596).

* .
Within the constraints of the overall solution procedure and the requirement
that we want to integrate the equation as a simple partial differential equatior

k& .
The same as Thomas-2 and CE-2 except for three point one-sided n Aerivatives.
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The results of the predictor corrector versions (CF-PC-2-2 and CE-PC-3-2)
of the combined equations schemes (CE-Z and CE-3) are shown in Figure lh. These
results are fairly good, scheme CE-PC-2-2 being slightly better than CE-PC-3-2.
Both are better than CE-2 on the curved section, but not as good as CE-2 on the
straight section. Both are far better than Thomas-2, Thomas-3, and CE-3. On
this problem, none of the others is competitive with Kentzer's scheme.

In order to better illustrate the comparative accuracy of the different
procedures, on Figures 2a, 2b, and 2c we have plotted the relative error in
computed surface pressure for representative schemes from each category. Recall
that the initial data was specified to four significant figures, so relative
errors less than .0002 must be considered fortuitous. Furthermore, it is impcr-
tant to look at the overall accuracy of a scheme; isolated points of significantly
higher than average accuracy are also fortuitous. Using the method of character-
istics as a standard, it seems reasonable to rate the schemes as follows:

Typical Relative Error in %

P = Paxact x 100

Pexact Rating
< 0.5% very good to excellent
0.5% to 1% good
1% to 10% fair
2 10% unacceptable

We see that (Fig. 2a), for this problem, the method of characteristics,
Kentzer's method (both versions), and the new simple Euler predictor-simple wave
corrector scheme (EP-SWC) all rate in the very good to excellent category with
errors mostly less than 0.3% and the average error less than 0.1%. It is interesting
to note that all four methods appear to settle on an error trend for x/R > 0.3,
though Kentzer's method is a little slow in homing-in on the trend. The simple
standard predictor corrector (PC-2-2) and reflection in the physical plane (R-4)
yield results which are poor on the compression turn and the first part of the
straight segment, but which improve considerably for x/R > 0.4.

Simple explicit integration (scheme E-2) must be rated poor, while simple
implicit integration (scheme I-2) is in the fair to poor range (Figure 2b).

Of the remaining schemes in the combined equations class,* Thomas'
scheme with two-point derivitives (Thomas-2) is quite poor for predicting surface
pressure, scheme CE-2 {(Euler integration) yeidls fair results, and the predictor
corrector scheme CE-PC-2-2, though slightly better on the average than CE-2, is
also in the fair category.

.
Recall that Kentzers method is also in this class.
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Since it has yielded such good results, it is interesting to look at the
new EP-SWC scheme calculations in a little more detail. 1In Figure 3 we have
plotted the results of both the predictor and the corrcctor calculations. We
see that in the first interval the predictor has no idea that the boundary
slope is changing, so the entire change in the solution along the surface stream-
line is taken up by the simple wave corrector step. Subsequently, the non-
uniform flow above the wall carries with it information about the changing wall
slope, and the predictor contributes a large part of the change until the straight
segment is reached. For the first interval thereafter the predictor acts as though
the surface slope were going to continue to increase, and the corrector brings
in again (as in each step) the interaction between the surface and the interior
flow. Finally, for 0.242 < x/R < 0.34, the predictor computes an expansion which

must be corrected with a simple wave compression.

It is also interesting to note that in Moretti's predictor-corrector version
of Kentzer's scheme, except for one interval, the contribution of the corrector is
quite small. On the curved section the change from predictor to corrector is
between 0.13% and 0.85% while the solution is changing between 14% and 26% in
one interval, It is only in the interval where the surface curvature is dis-
continuous that the corrector contributes a major portion of the change. 1In
that interval the char-~e between predictor and corrector is 8.3%. Thus, the
strength of Kentzer's approach appears to primarily reside in the form of the
differential equation, rather than refinements in the differencing procedure.

4.5 SIMPLE EXPANSION -~ RESULTS AND DISCUSSION

The simple expansion is the second of this pair of elemental problems
used to test these computational procedures. The initial mesh spacing and flow
conditions are the same as for the compression.

The predictions of the various reflection schemes are compared with the
exact solution in Figure 2a and 2b. Again, simple reflection in the computa-
tional plane is disastrous. These results differ somewhat from those for the
compression in the following respects:

i) Scheme R-2, reflection in the physical plane with p, S, u, v all
computed by integrating Euler's equations, shows less ability to
home-in on the solution on the straight segment.

ii) Scheme R-4 is again superior to R-3 onr the curved surface, but it
is now equal to R-3 on the straight segment.

iii) The percent overshoot of R-3 is higher (19.1% vs 8.4% for the
compression).

iv) Compared to R-3 and R-4, Kutler's schemes R-5 and R-6 do better
than they did on the compression.

v) R-7 again shows comparatively large overshoot.
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The results of the two simple explicit (E-2 and E-3) and two simple implicit
(I-2 and I-3) schemes (Figure 4c) are a bit different than they were for the
simple compression. On this problem there is not cleai superiority of two point
n derivatives compared to three point derivatives. 1In fact, overall probably
I-3 is a little superior to I-2 and E-3 to E-2. Both E-3 and I-3 respond quicker
than the corresponding E-~2 and I-2 to the initial -urvature change and to the
change vhere the straight segment begins, but again E-3 and I-3 exhibit greater
overshoot on the straight segment. As for the compression, none cf these schemes
yield good results.

The four standard predictor-corrector schemes yield comparable results
(Figure 4d). Again, overall PC-2-2 seems to be somewhat better than the others,
primarily because of its superior ability to home-in on the solution on the
straight segment. Again, none of these results are acceptable, with errors as
high as 26% for scheme PC-2-3,

The method of characteristics (MOC) and the new simple-Euler-predictor/
simple-wave-corrector (EP-SWC) schemes yield excellent results (Figure 4c). The
maximum relative errors are 0.58% for the method of characteristics and 0.43% for
the EP-SWC scheme. This high accuracy is achieved when the exact solution changes
as much as 22% in one step!

The results of Thomas procedure and of the basic combined equations approach
with Euler integration (CE-2), both using two-point one-sided n derivatives, are
compared with Kentzer's predictions and the exact solution on Figure 4f. Again
we see that scheme CE-2 yields far better predictions for surface pressure than
does the Thnmas-2 scheme, and Kentzer's methods are still the best. Kentzer's basic
procedure, while still pretty good, does not do as well on the expansiaon (Fig. 4f)
pansion (Figure 4f) as it did on the compression (Figure 1f). While doing pretty
well on the curved section, it has about a 10% overshoot on the straight segment,
after which it very quickly homes-in on the correct solution. Even on the curved
section, typical errors are considerably higher for the expansion (1-7%, Tigure
Sa) than they were for the compression (0.8-1.0%, Figure 2a). There is no ob-
vious explanation for the comparatively poorer ability to predict expansions
than compressions. On this problem, Moretti's predictor~corrector version model
is considerably better than the basic Kentzer scheme. The overshoot is down to
3.4%, and on the curved section the errors are 1/2 to 1 order of magnitude smaller,
Again, except in the one interval where the surface ¢urvature is discontinuous,
the corrector changes the predictor by less than 1%. Thus, we can attribute some
of the differences between Kentzer's basic scheme, as used here, and Moretti's
predictor to the different treatment of the derivative of the surface slope (see
Section 4.3.7.5). Additional studies of these two approaches ani Lhe treatment
of the surface slope derivative will be reported in the future.
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Schemes CE-3 and Thomas-3, both using three-point one-sided n derivatives,
are compared with the exact solution in Figure 4g. The results here for Thomas-3
are considerably better than they were for the compression, but it again shows
a strong tendency to covershoot on the straight segment.

Finally, the results of the two corresponding predictor-corrector schemes,
CE-PC-2-2 and CE-PC-3-2 are shown on Figure 4h. Scheme CE-PC-3-Z is slightly
better than CE-PC-2-2, and on this problem both are better than any of the oth~r

*

schemes in this category, except Kentzer's scheme.

1The relative errors of some of the schemes are compared with ec. ther
in Figures 5a, 5b, and 5c. The method of charactcristics (MOC) and th. .:w Eulex
predictor, simple-wave corrector (EP-SWC) scheme are far superior to any of the
others, with Kentzer's scheme considerably better than those remaining.

As with the expansion waie, the path of the EP-SWC predictor corrector
scheme is given in Figure 6 (see Figure 3 and its discussion).

4.6 FURTHER COMMENTS AND OBSERVATIONS

4.6.1 Accuracy of the Solution at Interior Points

4.6.1.1 Simple Compression - The Envelope Shock

For the compression problem it is important to consider the influence
that the envelope shock which will form may have on the results. No provis:on
was taken to treat that shock as a sharp disccentinuity, so it is possible that,
particulazly with those schemes using tiiree-point one-sided differences, the
solution at the lower wall is affected by numerical inaccuracies resulting from
the shock smearing.

Pc a first step to evaluate this effect, a full m2thod of characteristics
calculation was generated with a code which computes shock waves as sharp discon-
tinuities. The code (referred to as SUPER), detects enveiope shocks by the
crossing of characteristics of the same family. It is a second order accurate
solution since both charazteristic slopes and ccefficients in the equations are
averaged in a solution which iterates each step. In orde~ to obtain mesh point
spacing on the lower wall at about ithe same interval as in the "finite difference"
calculation, the mesh points on the initial data line were s;::ed at distance
Ay/R = 0,01 apart. The calculation proceeds from mesh points on the initial
data line (x = C.0) along right-running characteristics, and it was continued
until the code halted because the number of points on the ctaaracteristic line
exceeded 50, the maximum allowed. The last computed right-running characteristic
originated at x/R = 0.0, y/R = 1.28, The surface pressure computed with the
full method of characteristics calculation agrees very well with the exact

F——

gas dynamic equations combined with surface boundary condition in differential
orm,
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tropic compression solution (Figure 7). The resulting flow field and some inter-
esting additional information are showr in Figure 8. The shock was first detected
at x/R = 0.254, at which poini a sharp shock solution yielded a pressure ratio of
P = p2/p1 = 1.129. 1In order to determine as closely as possible the actual abscis-
sa of the beginning of the shock, the pressure ratio across the shcck was plotted
as a function of x/R and the plct was extrapolated back to the abscissa where

P = p,/p; = 1.0 (Figure 9), yiel~ing the initiation of the shock at x/R = 0.24. -
The right running characteristic passing through that point hits the lower wall

at x/R = 0.38. On the last computed right running characteristic, the shock was
located at x/R = 0.379, y/R = 1.146, and the shock slope has almost reached its
asymptotic value (s2e Figure 8). Also shown on Figure 8 areé the initial finite
difference grid for the calculations reported herein, the finite differencz grid
at x/R = 0.255,* the left running ilach Line which originates at the beginning of
the compression turn, and the asymptotic shock angle. Note that, includiang the
lower wall point, there ar: four mesn points between the lower wall and the shock
in the region x/R = 0.’  Furiher downstream, there will be more points between
the shock and the low. +11 (see Figure 8).

In a study of one-dimensioral time-dependent flows with shock waves com-
puted by shock smearing, Gary compared slicck speeds predicted by Lax-Wendroff
differencing of tl - Euler equations in divergence form with predictions using
the equations in non-divergence form {as done in *his study). ¢ -v obtained
much g-eater errors in computed shock speed utilizing non-divergence form than
when the divergence form was used. Kutler anticipated** similar benavior in the
present case, expecting the smeared shock location to differ significontly from
the correct value. To investigate this behavior as well as to study the effect
of the shock smearing on the present results, the computed pressure profiles at
three sections are plotted for Case EP-SWC in Figure 10. In Figure 10a we see
that when the shock is just beginning to fcrm (x/R ~ .25) the region of strong
pressure gradients as predicted by the finite difference grid somewhat lags
that predicted by the full method of characteristics calculation. The finite
difference solution overshocts by about 9% the pressure profile on the compression
side. At x/R = (0.3664 ‘Figure 10b) the shock is well establishad, and the smeared
shcock is displaced even more from the exact solution, and the pressur= overshoot
is pow about 27%. wsecause of the mesh poii.t limitation. we have no complete method
method of characte:. tics solutior for all y beyond x/R = 6.37. Kowever, since
“he computed shock angle is v-ry close to the asymptotic value, we car extrapolate
1t to obtain the shock location at another abscissa, for example f,. x/R = 0.525
(figure 10c). Then it is 2as ' %0 . dnstruct the exact pressure profile and to

-

Recall that, at a given x, tk~re are twenty equal intervals between the lower
wall znd tne orlinate y/R = 1.4,

*+
- ivate communication.
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compare it with the prediction using the finite difference tormulation with shock
smearing (Figuré 10c). Again, we see the displaced shock location and pressure
overshcct. (still 27%) predicted with shock smearing.

Now, what is the importance of these results vis & vis this study? One
might remark, for instance, that if the envelope shock were treated as a sharp
discontinuity, the problem of inaccuracies due to displaced shocks and pressure
overshoots would disappear. However, that is misleadirg, for the iraccuracies in
boundary point calculations do not primarily originate with the poor shock des-
cription. Also, no matter how the shock is treated, we must always live with
socme ervors which will result in the interior calculation even if the boundary

solutions are exact. Furthermore, we must fact the situation depicted in Figure
10a, wher: the shock, as a shock, contributes a negligible part of the compres-

sion, but where there still is the usual presisure overshoot which occurs even
when the equations are cast in divergence form. Thus, it is just as erroneous

to replace that smooth compression with a shock as it is to represent the compres-
sion through a shock with shock smearing. Even if we attempt to devise a code

in which shocks are essentially always treated as sharp dis~ontinuities, we must
realize that if the flow is at all complicated, weak secondary compressions and
shocks mav exist which are not accounted for within the cnde logic. Our task is
to insuvre that in such situations relatively minor inaccuracies in the interior
do not lead to large inaccuracies at boundaries.

Finally the purpose of this study is to evaluate various computation
procedures in situations they are expected to handle as a matter of course. All
the computations are identical except for the boundary point computations, and

the tests have been of situations typical of those faced by everyday working codes.

It is clear that schemes usinc three-point one-sided derivatives will be
much more susceptible to the small or large oscillations showr in Figures 10a-10c.
However, the disadvantage of three-point differences goes deeper than thet. Even
if the interior solutions were exact, these procecdures will generally exhibit
the comparatively almost undamped overshoot discussed in Section 4.4 ard 4.5.

4.6.1.2 Simple Expansion

To further clarify some aspacts of the interaction between solutions at
boundary poin’ s with those .t interior points, we consider tie simple expansion
problem, Since the solution is just a simple Prandtl-Meyer turn, we can calcu-
late the exact solution at any point in the flow field. First we consider one
of the better schemes for computing boundary points. The solutionrn using the
EP-SWC procredure at bs.ndary points is compared with the full method of character-
istics solution and with the exact soiution, all et x/R = 0.2648, in Figure 11,
The agreement is very good between all three, the fuli method of churacteristics
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solution showing excellent agreement with the exact simple wave solution. The
maximum error at an interior point for the calculation using EP-SWC is about 2
to 2-1/2%, which is somewhat higher than the errors on the boundary point.

Further downstream, the pressure profile has a sharp discontinuity in
slope. The results of the EP-SWC calculation are compared with the exact solution
at x/R = 0.5095, 0.6654 in Fiqures 12a and 126 respectively. Note that the agree-
ment in the expansici re3ion is quite good, but that there is a tendency to de-
velop small wiggles nezr the discontinuity in profile slope. However, as was
lemonstrated in Sections 4.4 and 4.5, there are schemes for computing boundary
points which are insensitive to these small wiggles, and the wigglies need not
have a deleterious affect on the boundary calculations. '

It is also interesting t¢ compare the pressure profile for a couple of
the poorer schemes with the exact solwtion. The results for schemes CE-PC-2-2
and Thomas-2 at x/R = .43 are show. ~ Figure 13. Note that the large errors in
computed surface pressure do no:t ra¢ ly have much effect on the interior flow, ac
least in this case. However, it is important to remember that surface pressure

is generally the single most important result of these calculations!

4.6.2 Three Dimensional and Time Dependent Flows

We can expect most of the results and conclusions tc carry over to time
dependerit as well as th: .- dimensional steady flows. The details of some of the
procedures will varv, of course, but the general principlas we have been discussing
and testing are not restricted to two independent variables. The advantage of the
new predictor-corrector scheme for three or more independent variables is obvious
since the implementation of either Kentzer's scheme or the method of characteristics
is quite cumbersome. There is a certa’n degree of arhitrariness in applying the
scheme tc three or more independent variables, bui comparisons with method of
characteristics calculations for shuttle type vebicles have been very favorable
(Rakich & Kutler, 1972).

The extension to three dimensional steady flow can be casily sketched.
Consider, for example, a cartesian cocrdinate system (x, y, z) with velocity ccmpo-
nents (u,v,w) and unit vectors (f,ﬁ,ﬁ). Let the flow be supersonic in the general
directicn of the x axis (i.e., -1 must be supersonic, v and w will genesrally ke sub-
sonic, though they also could be supersonic). If the surface geometry is given by
an eguation of the form

F(x,y,z) = 0 (63)
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then the unit normal to the surface is given by

-~ A

j+rEk .
= n;i + n,j + ngk (64)

_ Fxl + Fy

n=
2 2 2
" FX + FY + Fz

Finally, we denote the velocity vector by a,

~ ~

§=ui+vj+wk (65)

As in the two dimensional case, we first generate a predictor step solution
for Po’ Do' Ul Tor Wy using MacCormack's scheme with inward differences. Then,

since the boundary condition is that

a ‘h=0 (66)
along the surface, we find the angle between the predicted velocity vector
> s N - -
qg=uyi+ v, + wok and the unit normal. )
a4, ~ (67)
Av = sin™! — ‘n
lq, |

Then we impress a simple wave to turn the velocity vector through the angle Av.
Again, associated with that wave is a pressure change given by Equation (62).
Next, we find the corrected velocity components from the expression

->

->
O P R (68)

If e know exactly the surface total enthalpy and entropy at the point, we can
find the exact value of the density and velocity modulus corresponding to the
corrected pressure, P;- In such a case, we can make a final small correction to
the velocity vector by maintaining the direction given in (€8) and scaling its
modulus to the known value.

It should be clear that this procedure is not completely rigorous. For
one thing, there is no simple wave in three dimensional flow, so the use of
equations {(67), (62) and (68) is certainly an approximstion. How good an
approx_.mation it is can only be determined after the fact. Preliminary results for
sharp cones ard klunted shuttle vehicles at incidence have been very good. This
should not be toc surprising since one can often treat three dimensional flouws
as locally two-dimensional with crossflow effects accounted for in an "inhomogene-

ous" term.
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Obviously we could construct the corresponding scheme for unsteady flow
computations. ‘'In fact, in a sense the corrector is similar to Godunov's method
for time dependent flows,
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SECTION 5
CONCLUDING REMARKS

It need hardly be mentioned that the rangc of computational procedures
considered in this study is not completely comprehensive. One can, of course,
think of quite a number of variations on schemes investigated here, and it is
very likely that one could invent a scheme guite different to any of those we
have examined. MNowever, this study is complete, as far as procedures are concerned,
in that all currently used procedures are probably represented in one of the cate-
gories, and the schemes tested are representative of the best results that can
be achieved in each category.

The procedures have been compared for an ideal gas at Mach = 3 in two-
dimensional flow. The results would be essentially the same for an equilibrium
gas. Although we anticipate quantitative differences at other Mach numbers,
qualitatively these results should carry over as Mach number varies. Similar
comments should ao»ply if the geometry of the test problems wer2 altered.

There are a number of observations to be made abcut and conclusions to
be drawn from the results presented in Sections 4.4 and 4.5. It should be evident
that any purely explicit integration procedure not ircorporating explicitly the
wall geometry changes possesses an inherent lag in that it has no mechanism for
introducing into the solution for one step changes in wall geometry occuring during
that step. Thus, we can expect such procedures to give poor results any time well
curvature effects are important. On the other hand, we have seen that purely ex-
plicit reflection procedures tend to recover fairly quickly once the surface geometry
becomes straight.

Higher order one-sided differences do not generally yield better results
(c.f., vesults for schemes E-3, I-3, PC-3-3, Thomas-3, CE-3). They tend to be more
quickl, responsive to changes in surface slope, but they also show strong tenden-
cies to large, poo: , damped oscillations. As already noted, this should not be

surprisi- ~> the use of three pcint differences violates the law of forbidden
signs.

e -« ... m'ation procedures have given markedly better results
th. - i " e best procedures are the method of characteristics,
the . "2 ¢. 4. a:vor simple wave corrector procedure, and the two ver-
sin. - .~ & w» *+-1  Though very competitive on the compression, Kentzer's
meth . .: « o ..~ _ comparatively on the expansion problem.
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The success of the new predictor-cosrrector procedure (EP-SWC) is probably
to be explained as follows: The simple Euler predictor step accounts for the
development of the interior flow between the surface and the next point in. The
simple wave corrector step then accounts for the interaction of the predictor
solution with the surface boundary. We have seen that the scheme, though quite
simple, yields very accurate results. It has been extended to three-dimensional
steady flow* and the results agree very well with those achieved using the
method of characteristics in three dimensions. It requires very little comput-
ing time and, because it is so simple, is unlikely to result in numerical prob-
lems in difficult situations. While no formal analysis of its accuracy has
been made, the results achieved so far indicace that it is accurate to second
order in mesh spacing.

Other than the developme t of the new scheme, the most important result of
this study is the very striking demonstration of the fact that accuracy depends
very critically on the manner in which the equations are solved. This fact is
clearly demonstrated by comparing the results of methods E-2, Thomas-2, CE-2 and
Kentzer, all of which used two-point one-sided n derivetives. The latter two
procedures give considerably better results than the former two. The reason for
the differences lies solely in how the equations are written, including whether
and how the surface boundary condition is incorporated in the partial differential
equation for pressure.

The scheme outlined in Section 4.5.2 has been incorporaged in Kutler's code
(Kutler, et al., 1972) and comparisons have been made vith a full three-
dimensional method of charac:eristics calculation for a shuttle type vehicle
at M = 7, and 5° angle of attack (Rakich and Kutler, 1972).

48



= + + + + + + + + + + +

EXACT <0oLUTION l
+ 1 REFLECTION N COMPUTATIONAL PLANE
X <22 ZEFLECTION (N PuYsIcAL PLANE
.02 | P‘P) W,V EROM PDES —
0 23 REFLECTIN IN PHYSICAL PLANE 5 P, 4,
WV FEOM &, H, 6-CORRELTOR STEP ONLY
O R4 KEFLECNON 'N PUYSIZAL PLANE, P, WU,
V FROM 5 1 6 PREPICTOR AND LORRECTOR STEPS
015 | l i 1 1 d
O o) 02 0.3 o4 05 0,6

/
X[ R

FIlQUuREE | a FOUR REFLECTION CSCHEMES

FIGURE | SIMPLE JOMPRESSION 3 COMPARISON
OF PREDICTED SURFACES PRE<c<UR=E“
WITH EKXRALT SOLUTIONS

49



.01

|
A-2974

02—

—_— EXACT S0LUTION

+ ©B5 KUTLER-I -REFLELT Py P\,

EXTRAPOLATE V' 2 U,V FEROM PLE 4

O RLb YUTLER-Z -RELECT P,C U,

O R-EA-SAME 4S5 R-b EXCEPT SURFALE B,

X

|

EXTRAPOLATE ¥/ ; AUV FRoM 3H,6

IMPOSED AFTER CORRECTOR ONLY,
NOT AFTER PREPDICTOR,

271 SAME AS R-L EXCEPT EXTRAPOLATE
] |

P,/i 'A/Z i
|

O15

FlaURE \-b

FOUR MORE REFLECTION

ol

il |
o2 03 D4 05
X/ R

50

SCHEMES

Ob



+4

\O T , .
T i
02 =
00 + g
<
O]
T 1'
@ o4l 0%
DD
o 2x %%@@&A—
0
E]UO o
0, .© +
2]
VIR
+
T4
T EXACT SOL.UTION +
oz—--e E-2 EXPLICE -2 PT M DECIVATIVES o
. + E-2 EXPLIC - ® "
B T-2 MPLQOT-2 v « T
A -2 MPLICIT-2 1 I
LDOI\Z ! | | | I
> O\ o2 03 o4 05 Ols

K/R

FILURE |1-€ <IMPLE EXPLICIT AND
SCHEMES

51

SIMPLE IMPLICT



LA
09
01
0b
05
Pl 04
A +
+
o3/ ® |
A
— EXALT <SOLUTION
B PL2-29 2PT PREDICTOR ) 2 PT CORRECTOR
n PC- 3-5') 2 t 5 b I
OtF— X PC-3-253 « 2 v
+ PCN-352y3% » " 2 h
BUT PREPIWCTCR PERIVATIVES
COMPLTED WITH EQ 3ba
oI5 J | | i !
o) ol 0.2 03 o.4 OS5 Ola
YR
FIGUEE |- d STANDARD PReEDICTOR -CORRECTOR

SCHEMES

52

A-39706



PI%

A0
' | | | 1
02— EXACT SoLUTION — OE
M
08 O MOC; METHOD OF CHARALTERISTICS — <
+ EP-SWC; 2PT PREDICTOR y ®IMPLE
01 WNAVE CORZECTOR 7
i ] | | |
Db ] ! 1
0% — —
04 /Q}- —
orim
folyA
OlS L _
o) o\ O2 03 04 0.5 Olo
X] =2

METHOD OF ZHARACTERISTICS AND> NEW

FIQURE \-e
EULER - PREPICTOR [ S FPLE - WAVE-

COHRRELCT O SCHEME
53



10
, o
=
J QL
.08 a
o a|
01 3
oL 5 5 .
.
g @)
P‘Po 004 DDB -1
O
B
.03 0] |
D]
—— EXACT S0LUTION
A VENTZER'S METHOD
4+ KENTZER- MORETTI- PC
02— G  THOMAS! METHOD
O CE-Z; CONTINUITY, TWO MOMENTUM
EQUATIONS ZOLPLED WITH SURFACE
BOUNDABRY CONPITIONS l
b | | | | |
>5 ol 02 03 oY 05 b

X/ R

FIGURE (-f FOULR "COMRINEP EQUKTIONS" SEHEMES
USING TWO-POINT ONE SIDE 7
DERIVATIVES

54



,01 + -
-
Ob N
g
+
0%
L+
+
—— EXALT SOLUTION
+ THOMAS -3
A CE-3
0\5 ] | ,
5) Ql 02 03 o4 05 Olo

X[R
FIGURE -9 TWO0 "COMBINED EQUATIONS" SCHEMES
USING THREE-POINT ONE-SIDED 7]

PERIVATINES
55



01
g
o
|
1 Plm
— EXACT <O0OLUTION
g C<CE-PC-7-72
X CE-pPc-3-2
02
lo »
>5 ol X3 S 04 05 O

F 3URE I-h TWO 'COMRBRINED -ERUJATIONS' [ PREDICTOR-
CORRECT OR SCHEMES |

56



10

5

X 24 REFLECTION N PHYSICAL

O PL-72-2 STANDARD PREDLICTOR

4+ EP-SWC EULER- PREDIWCTOR

PLANE
CORZECTOR
TERISTILS

SIMPLE-WAVE

coerECTor

A KENTZERS METHOP

Q O

X a

0l

|
x 8

w [

xxam
x | Gxd

X0
g X

al
X

P—- Fexacr
PEKA(_T

000\

O

O
FIGURE Z2-a

O\

02 0,3

xR

04 05

O MOCL METHOD OF CHARAC- — 100%

.0\%,

FIGLURE 2 SIMPLE COMPRESSION: COMPARISON OF

TYPICAL RELATIVE ERRORS
PRE<S<ULURE DISsTRI BUTION
57

o el G e ks e i o

IN SURFACE




|0 100 Y,
oo g
o o 3
©lo <
O 0584 © oO
A 0 0
o o
O
O O @
o O
ol 0 +— ¥ 1%
O
-
J| & OEIE]
| > +
s
A8 4+
.00 | +++ %
++
+ ++
© E-2 SIMPLE EXPLICIT +
1 O -2 SIMPLE (IMPLIQIT +
4+ KENTZER-P-C ++
000 + | +~;'* 01,
+
+ .
0 .\ 2 3 4 = &
K/ R

F\QuURE 2Z2-%
FlaURE 2 (CONTINUED)

- 58




XALT '
|

PE XALT

P" PE

FIGURE 2

59

(coNCLIDED)

1D
9
oa :
| {
D o o0g <
o o o O
' © o0 ’ o
. o ]
+ O
+ +
g © -
© OQ 0
]+O
.0l +
o ] +
-5 o +
+ | + ++
++ + o
O]
0 ]
O)
+
o) THOMAS -2
000\ | i
0O CeE-Z
4+ CE-PC-2-2.
I | I 1, 001%
O 0/ 072 03 0.4 0.5 Ob
KR
FIGURE 2- ¢




Q
0
07 ¢
b
B
© TaboSH——
05

0%
Pl%
02 N 4 PREDICTOR <TEP
' EP-SWC |
+ O correECTOR STEP
|
02
015 5 ] 02 03 .04 .05 oL
XIR

FIGURE 2 THE "PATH" OF THE NEW EULER-PREPILTCE ¥
SIMPLE WAVE CORRECTOR (EP-SWCL) SCHEME:
4 IMPLE COMPRESSION

60



A0
EXACT <0O. UTION
4+ B-| REFLECTION \N CcOMPUTATION AL
FPLANE o
X -7 REFLECTION IN PHYSICAL PLANE-] 2
PyS, 0, ¥, ALL COMPUTED FROM <
.0% FPDE <.
O 3 SAME AS -1 EXCEPT S,Uu W FecM
., 04 KNOWN < H, 6, ON SURF, UsEP
ONLY AFTER PREDICTOR $T=P
0% | | 'r | !
A+ + + + + + + 4+ 4+ + + +
o)
0 0O R4 SAME AS R-R EXCEPT KNOWHN
072 X SURE S,H,0 USED AFTER
BOTH PREDIKTOR AND
CORRELCTOR STERR
0z S
I Ol - —_—
AN
R LI
. />>>’20°7)(
, 005
. L1
.004 X g @@
8%@@
,003 X !
X
! X X
XX x )X XX X X
0072 ’ l
O 02 04 o5 Ob 07 0.8

X[R
A) FOUR REFLECTION SCHEME S

FIGURE 4 SIMPLE EXPANSION—COMPARISON OF PRE-
DICTED SURFAME PRESSURES WITH EXACT

< OLUTION 61



10
.00

. 0&

.0l

Ol

008

00k

,004

002

|
| —— EXACT SOLUTION
Y]
+ RS iE
B EXT_}\L:AJLEE—\ REFLECT P P U )
RAPOLAT : <
iy TE 13 P, P U, » FROM
D R-b LUTLER-2 REF
B 2 LECT P, P WU
EXTRAPOLATE P 2
SXTEAT L P, UL,V FROM —
X R7T SAME A3 BRb E.
EXCEPT
4 EXTRAPO P
- T LATE P, 7, U,V AT IMAGE
éﬁ 55658
4o +
4555 +++
ettt
O 0.2 04 Ob 0.8 1,0 12
X/R | |

B) THRPEE REFLECTION SCHEMES

FIGLRE 4 (CONTINLED)

62



40

.09

lOb

04— G
A 1-5 " 3

EXALT SOLUTION

+ E-3 " =

[=2Z IMPLIGT 2

\

(1]

H

(R

1"

n

0 E-Z2 EXPLICIT 2 PT N PERWATIVES

fn

—————

.08

J0

Ati2 )

A2

O
P[%

L0l
0l 8
.00L
004
0072

O .02 .04 Ol

KR

<) SIMPLE EXPLICIT AND SIMPLE IMPLIQIT
SCHEME<,
FIGURE 4 (CONTINUED)

63



oel— T EXACT SOoLUTION

O PC2-2,2 PT PREDICTOR
2 FT COZRECTOR

A PC-2-2, 5 PT PREDICTOR,
2 PT CORRELCTOR

04 — X Pi-2-7; 3 PT PREDICTOR,
2+ T CORRECTOR

+ PCN-3-233PT PREDICTOR,
A 2 PT CORRECTDR, BUT
-2:‘5& PREDICTOR DERIVATIVES
o7 1 #COMPUTED WITH E® 3ba

Ob|—

£-4030

Ol \ga

. 008 P\QQ
wol 1@

ooa 'z

0072

) 0.2 04 Ob 08 1,0
XIR
d) STANDARD PREDICTOR - COPRELCTOR

SCHEMES
Flaure 4 (CONTINUED,
64

N



J0 el T ] T B
08 = XACT SOLUTION —{w
o
sl O MOC CHARACTERISTICS B
+ EP-SWC EULER PREDICTOR-
LIMPLE WAVE CORRECTCR
4
.0
=1=%
®
O\ \
008
,00 L
Ve dpod o600
004
0072 5 o2~ OB 0.6 o 2

Y[R

S) METHOD OF LHARACTERISTICS AN NEW
EJULER -PREDICTOR [ SIM P! E-WAVE - CORRECTCR

S CHEME .
Eioue 4 (CONTINUE D)



P | | | i | |
A KENTZER'S METHOD :
Obl—— 4+ YKXENTZER - MORETTI-P-C -
B THOMAS-2, THOMAS' METHDD
04 b——o O CE-T ) CONTINULITY, TWO ]
' MOMENTUM EQUATIDNS
COVPLED WITH SURFACE
PBOUNDARY CONDITION
2 :
\ O
\ﬁ,B
O1tH—\0O
g
S
&
PIR \i
O\ \@
008 *
0oL
48
N SVOIPELY:
A 2 X ESTHY
004 |— e éj% 5% hiad
0O
o]
002
O O 0.4 oL o8 1.0 12
x| 2

£) FOUR '"COMRINED EGULATIONS " SZHEMES
USING TWO-POINT ONE - SI0eD N DERIVATIVES

Flauee 4 ( Cc:r\rrwur_—:tgs)



005

.004

. 003

0021

,0015

9) “TWO "COMBINED EQUATIONS'" =CHEMES
USING THREE-PONT ONE -S(IDED DPERIWVA-
TWE<S,

M
] I [ 4
EXACT S OLUTION $
+ THOMAS -3 <
A CE-3
|
A ++++++
;AAA@KA‘&MM
T4t
0.4 Ob 0.8 1,0 |2
X/ R

FIGLURE 4 (CONTINUED)

67



05
04 ;’5
EXACT <OLUTION §’-
05 0 CeER-2-2 <
\\,4 X CE-PC-2-2
01 \-
0 \‘21
\i
l Ot
PIR
.005. T
. XWX %
.004- RRX & <
00%
0072 '
00
001> © 0.2 o4 - Ob (oY= \O 1.2
X[ R

h) TWO "COMBINED EQUATIONS" | PREDICTCR -
CORRECTOR S<CHEMES

FiauRE 4 (CONTINUED)

68



\OE T | | : r \00%
X R2-4 REFLECTION IN PHYrsicAL A
- PLANE o
_ 0 Pcg-1-1 STANDARD PREDICTOR=- | &«
u CORRELTOR
© MOC METHOD OF CHARACTERISTI(S
~ + EP-SWC EULER-PREDICTOR/
X sz SIMPLE WAVE (CORRECTCR
O R, A WENTZER'S METHOD —wy
[ | I ' (5
- AL X 8
— A A = :
B A
— A
3 N XX
A B
T SR "
é b' - 0N &
ﬁl.u < -4 Go +
Y ’
AW + 0 A
- Ko
001 | + -H-Q*Oo o1
- o4 o
+A
0,019
0001 - = 3 p = S - pA

FIQURE &= <SIMPLE EXPANSIoN - COMPARISON OF
TYPICAL RELATNE ERKRORS IN SURFACE

PRESSURE OISTRIRBUTIONS
69



[.,O
-
B
o
- 5 |
0 OOOO
B 0 o o
OrDD ©)
DG&)o_qL 0o |
o g a2 0y ] 5
L - 0
g _ B +
<l J - 0 onp
aY| ¢ .
iy L (]
| 6’ O
0 4+
— | +7 4 +1
.|..
+4 T+ + g
, Ol +
= © + Jo
. 0 E-7 SIMPLE exPLIAIT N
T 0 -2 SIMPLE IMPLIQIT
i 4+ KENTZER - P-C
| H
01 | l | *
0 02 04 Ob 08 1O 12

X/R
)
Figuee = ( CONTINUED)

70

100%,

A-4030bk

[7]
'I/u



B - FexacT
“PexacT

|

<)

FlaLRE = (CONCLUDED)

71

o
G
0
O 0 ¥%g
- 0 o
Oogog o U
. Sleta O
CEr Tty o -
- + +5 0 B
- _+_ o +
- +
I y 7
40 o
R +3" o
+ |+ +
o
01 + -+
i o
- O THoMA< -2 +
_ © CE-2
+ CE-Pc-2-2
001 | |
O 02 04 Ok 08 o 12
X/R

\0O ;’:)

A-4037

| %

0.\%,



.05

.04

i

0% , 4+ PREDICTOR STEP

A- 40738

O CORRELTOR <TEP

XA

005

.004

003 -

.0 02

CO\S

O 0.2 0.4 Ok 08 |10 Ir:
X/ R

FigURE & THE “"PATH! OF THE NEW EULER-
PREDICTOR [ SIMPLE ~-WAVE - CORRE CTOR
(EP -SWCL) <CHEME -<IMPLE EXPANSICN

72



{10 -
3

09 <
<

08 ‘

007 l

ISENTROPIC, PRANDTL -
MEYER COMPRESSION

@  FFUlLL METHOD OF

52 LHARALTERISTICS

' SOLULTION ( INCLUDES
ENVELOPE SHOCK
COMPULTATION )

,O\'S
‘ 50 Ol 0.2 03 04 05 Ob
KR

FIGURE 7 LOMPARISON OF SURFACE PREsSSURE BY
FUuLL METHOD OF CHARACTERISTILS <OLUTIDN

WITH THE \SENTROPIC COMPRESSION SOLUTION
73 :



QL0 H-V

W31303

NOISSIIAWOD SHL 302 GI3Ia MQA1d d3INNsnN0oD |8 32N 4

117
N\wA NQI1723<= 3INa3ND 40 AN

90 LO 9'Q S0 Yo ¢Q 2’0
1 ] o , ”
" & | 7
OO, : l.lhl/./ /° i
| | _ | ~=d- \m L SIAILINAVHD .,
ALSIA31o v AYHD _ M o PNINNGS 1437 -
ONINNNS A4S |1\ © |
019 =9V ‘saz=0Y 5
215Ny Sl =4} & . ¢!
A70Hs  F R 5 Q=44
NLOLENWASY =52 u |
o )
A 2\
O,
i ©
_ :
5 Xy
S S sS S S S S S SS SSSS

| &'\

74



i b
S
\4
Y
.
i.
In
- 172
1\ /S
/
-
/A
1.O . J '
G 25 2b 27 23 V29 20

Kl

FIQURE 9 <STATIC PRESSURE RATIO ACROSS SHOLK
NS, SHOWL ABRSCISSA (FULL METHOD
OF CHARACTERISTICS CLALCULTION)
75



J
18 | | | 5
| ! ¥
—_———— = METHOD oF |=
" CHARACTE 216715
‘ CALCULATION
O EP-SWC NTERIOR
12 FLOW Fl\EI.0o |
‘ SOLLUTION ‘
10
= LOWER WALL
'O
ogl— /1 o _l
- N
0 N
N\
\04 — \\
\
O\
\ 0 —© O,
02
C
\D2 |04 10b 108 11O Rird 14
Y/Q
1oa: %X/R= 248
FIGURE 10 CcOMPAPISON OF PRESSURE PROFILES

COMPUTED BY FULL METHOD OF
CHARALCLTERISTICS CALCULATION WITH
THOLE OF FINITE DIFFERENCE <SOIL.UTION
USING BOUNDOCARY CONDITION SCHEME
EP-SWL COMPRESSION PROBLEM)

76



(@a=nNILNDOD ) Qi 3Z3No1d
P9<2'0=3/% (4

2| A
0zl al'l A vl 2\ O B0 aQ'] .vo._o
20°
O O 104
_ O]
O’
el 0 Qld
A70HS — 5 0O :
m r —190"
IV M
NOILNIO<S MO O >3 MO
| 20123LNl DMS-g3 O 30°
NOLYTO29VD S OILSIz 3L
i “NZAYHD 40 AOHLIAW  ———
c _
e | | | |




$Ho b -V

(g30n>N0D) Ol =anbHd

baAzZso = 3R (D

=RBY
Y < 2\ 1 a'
| Q
2Q°
|
11V M
S 'Y NI NMOHS © >3 MO
NOILY 1Ny > $0°
SOILSIZ TLOVAVHD
WOA 4 aQO3Lvni 1S3
NQ 1LY 2O yuo:¢|\ 09
. : ‘G &O.
o
SMS =43 0O 3Q"
NOILATOS 3
15VYE Aa3avWiLls3
| | | | o




|0

| | ﬂ
EXALT SOLUTION l l %
2
o FULL METHOD OF CHARACLTE TICS <
.50 =T =We
40
.50
S 0o
e o -
l o
AO
05
.04
.D?‘%
. 8 | 00 oy A L04 106 1,08 IO

Y[R

FIGLEE
GLEE Il SIMPLE EXPANSION WAVE —-COMPARISON

OF

PRESsSURE PROFILES

79



\,O

40

20

]
——— EXALCT SOLUTICN

O EP-sSWC

%

03

08

FIGURE |12 SIMPLE EXPANSION - COMPARISON

OF RESULTS OF EP-SWO <SCHEME
WITH EXACT SOLUTION FCx

FPRESSURE PROFILES

1.0 (1 v
KR |

a) Xle= 05095

80

A4 046



1.0 I I |

A-4eaq

80 EXACT
SOLUTION
b
0 0O EP-<WC
40

|3

| 4

1) \2
XIR

B) X/R= O LS4

O
> B Ay, 1.0

FIgURE 12 (CcoNcLupED)

81



1.0

| |

.80

— EXALT <O0LUTION
b0 © CE-Pc-2-2
40

Pl%

8 a 1O X 2 3 | 4
KIR

a) SCHEME CE-PC-2-2

FIGURE |2 <IMPLE EXPANSION WAVE - COMPARISON
OF PRESSURE PROFILES PREDICTED
BY TWO OF THE POCRER SCHEMES
WITH EXACT <OLUTION

A-404 8



I.O ’ l

_—

0
EXALT £0LUTION

b0 g THOMAS -2

A-4Cg9

40

20

Pl

O

, 08

. Ob

|O4’

l

O2
N 9 1,0 I\

X (R
b) SCHEME THOMAS -2

FIaURE 12 (CONCLUDED)
83

I Z

=



REFERENCES

Abbett, M. J., "Finite Difference Solution of the Subsonic/Supersonic
Inviscid Flow Field about a Supersonic, Axisymmetric Blunt Body at
Zero Incidence, Analysis and User's Manual, Aerotherm Corporatiocn,
Mt. View, California, Report No. UM-71-34, June 30, 1971.

Ames Research Staff, "Equations, Tables, and Charts for Compressible
Flow," NACA Report 1135, 1953,

Babenko, K. I., et al., "Turee-Dimensional Flow of Ideal Gas Past
Smooth Bodies," NASA TTF-380, April 1966. Iranslation of "Prostranst-
vennoye obtekaniye gladkikh tel ideal'nym gazom," Izdatel'stvo "Nauka"
Moscow, 1964.

Babenko, K. I. and Rusanov, V. V., "Difference Methods for Solving Three-
Dimensional Problems in Gas Dynamics," NASA-TTF-10,826, April 1967,
translation of "Raznostnyye metody resheniya prostranstvennykh zadach
gazovoy dinamiki," in Kolebaniya, Giroskopiya, Teoriya, Mekhanizmov,
Zhidkosti i Gaza, 2nd All-Union Proceedings of the Conference on Theoret-
ical and Applied Mechanics, Moscow, 1964.

Barnwell, Richard, "Time Dependent Numerical Method for Treating Compli-
cated Blunt Body Flow Fieilds, NASA SP-228, 1970.

Barnwell, Richard, "Three Dimensional Flow Around Blunt Bodies with
Sharp Corners," AIAA Paper 71-56, presented at Ninth Aerospace Science
Meeting, New York, N.Y., January 25-27, 1971.

Bohachevsky, I. and Kostoff, R. N., "Hypersonic Flow Over Cones with
Attached and Detached Shock Waves," AIAA Paper No. 71-55, presented
at the Ninth Aero. Science Meeting, New York, N.Y., January 25-27, 1971.

Bohachevsky, I. O. and Mates, R. E., "A Direct Method for Calculation
of the Flow About an Axisymmetric Blunt Body at Angle of Attack," AIAA
Journal, 4, 5, May 1966, 776-782.

Bohachevsky, I. and Rubin, E., "A Direct Method for Computation of Non-
Egquilibrium Flows with Shock Waves," AIAA Journal, 4, 4, 1966, 600-607.

Burstein, S. 2., "Numerical Methods in Multidimensional Shocked Flows,"
AIAA Journal, 2, 12, 1964, pp. 2111-2117.

Carriere, Pierre and Capelier, Claude, "Application de la Methode Des
Characteristiques Instationnaires au Calcul Numerique d'un Ecoulement
Permanent Compressible, AGARD CP 35, Transonic Aerodynamics, September
1968, 12 pp.

Cheng, Sin-I, "Accuracy of Difference Formulation of Navier-Stokes
Equation," Physics of Fluids, Supplement II, Proceedings of the Interna-
tional Symposium on High Speed Computing in Fluid Dynamics, 12, 12,
December 1969, pp. II-34 through II-d41. ""

84



Ciment, Melvyn, :"Stable Difference Schemes with Uneven Mesh Spacings,"
New York University, NYO0-1480-100, June 1968.

Coakley, James F, and Porter, Robert W., "Characteristics at Boundaries in
Numerical Gas Dynamics, Plasma Dynamics Lab., Dept. of Mech. and Aerospace
Engr., Illinois Institute of Technology, Chicaco, I1l., PDL Note 2-69, Nov. 1969,

Eaton, Roger R., "A Numerical Solution for the Flow Field of A Supersonic
Cone - Cylinder Entering and Leaving a Blast Sphere Diametrically, Sandia
Laboratories, Albuguerque, New Mexico, SC-CR-67-2532, May 1967.

Edelman, R. B., et al., "Some Aspects of Viscous Chemically Reacting Mod-
erate Altitude Exhaust Plumes," General Applied Science Labs., Westbury,
N.Y., Final Report on NASA Contract NAS8-21264, March 1970.

Gary, John, "On Certain Finite Difference Schemes for Hyperbolic Systems,"
Math. of Computation, 18, January 1964, pp. 1-18.

Godunov, S. K., Zabrodin, A. V., and Prokopov, G. P., "The Difference Schemes
for Two-Dimensional Unsteady Problems in Gas Dynamics and the Calculation

of Flows with a Detached Shock Wave." J. Comp. Math. Math, Physics, 1, 6,
November - December 1961.

Gonidou, René, "Ecoulements Supersonic Autour de Cones en Incidence,"
La Recherche Aerospatiale, No. 120, September-October 1967, pp. 11-19.

Grossman, B., and Moretti, G., "Time Dependent Computation of Transonic
Flow," AIAA Paper No. '0-1322, October 1970.

Johnson, J., ed., "Investigation of the Low Speed Fixed Geometry Scramjet
Part I., Inlet Design Practice Manual, General Applied Science Laboratories,
Westbury, New York, TR-667, 1967. (Also Issued as AFAPL-TR-68-7).

Kentzer, Czeslaw P., "Discretization of Boundary Conditions on Moving Dis-
continuities," presented at Second International Conference on Numerical
Methods in Fluid Dynamics, University of California, Berkeley, California,
September 15-19, 1970.

Kentzer, Czeslaw P., "Computations of Time Dependent Flows on an Infinite
Domain," AIAA Paper No. 70-45, January 1970.

Kutler, Paul, "Application of Selected Finite Difference Technigues to the
Solution of Conical Flow Problems," Ph.D. thesis, Iowa State University,
1969.

Kutler, Paul and Lomax, Harvard, "A Systematic Development of the Supersonic
Flow Fields Over and Behind Wings and Wing-Body Configurations Using a Shock-
Capturing Finite Difference Approach," AIAA Paper No. 71-99, presented at

the 9th Annual Meeting, New York, N.Y., January 1971.

Kutler, Paul, Lomax, Harvard, and Warming, R. F., "Computation of Space
Shuttle Flow Fields Using Noncentered Finite Difference Schemes," to be
presented at 10th Aerospace Sciences Meeting, AIAA, San Diego, California,
January 1972. :

Lapidus, Arnold, "A Detached Shock Calculation by Second-Order Finite
Difference," J. Computational Physics, 2, 2, 1967, 159-177.

Lee, Che Ching, "A Theoretical Stuvdy of the Interaction of Sonic Transverse

Jets with Supersonic External Flows," Ph.D. thesis, University of Alabama,
University, Alabama, 1969.

85



Mac Cormack, Robert W., "Numerical Solution of the Interaction of a Shock
Wave with a Laminar Boundary Layer," presented at the Second International
Conference on Numerical Methods in Fluid Dynamics, University of California,
Berkeley, Calif., September 15-19, 1970.

MacKenzie, D. and Moretti, G., "Time Dependent Calculation of the Compres-
sible Flow About Airfoils," AGARD CP 35, Transonic Aerodynamics, September,
1968.

Magnus, R. and Yoshihara, H., "Inviscid Transonic Flow Over Airfoils," AIAA

Masson, Bruce S., "Two Dimensional Flow Field Calculations by the Godunov
Method, " Aeronutronic Report No. U-4137, Philco Ford Corp., Aeronutronic

Div., Newport Peach, Calif., Picatinny Arsenal, Dover, N. J., PA-TR-3575,
AD 818379.

Moretti, Gino, "The Importance of Boundary Conditions in the Numerical
Treatment of Hyperbolic Equations," The Physics of Fluids, Supplement II,
Proceedings of the International Symposium on High-Speed Computing in Fluid
Dynamics," 12, 12, December 1969, pp. II-13 through II-20.

Moretti, Gino, "Transient and Asymptotically Steady Flow of an Inviscid,
Compressible Gas Past a Circular Cylinder," Polytechnic Institute of
Brooklyn, New York, PIBAL Report No. 70-20, April 1970.

Moretti, Gino, "Inviscid Flow Past a Pointed Cone at an Angle of Attack,"
General Applied Science Labs., Westbury, N.Y., TR 577, December, 1965
(also AIAA J., 4, 5, April 1967, 789-791).

Moretti, Gino, Entropy Layers, Polytechnic Institute of Brooklyn, Wew York,
PIBAL Repcrt No. 71-33, 1971

Moretti, Gino and Abbett, Michael, "A Time-Dependent Computational Method for
Blunt Body Flows," AIAA J., 4, 12, December 1966, 2136-2141.

Moretti, G. and Bastianon, R., "Three Dimensional Effects in Intakes and
Nozzles," AIAA Paper No. 67-224, 1967.

Rakich, John, and Kutler, Paul, "Application of Shock Capturing and Semi-
Characteristics Methods t. Shuttle Flow Fields," to be presented at 10th
Aerospace Science Meeting, AIAA, San Diegc, Calif., January 1972.

Scala, S. M. and Gordon, P., “Solution of the Time Dependent Navier-Stokes
Equations for the Flow Around a Circular Cylinder," AIAA Paper 67-221, 1967.

Serra, R. A., "The Determination of Internal Gas Flnws by a Transient

Numerical Technique," AIAA Paper No. 71-45, presented at the Ninth Aerospace
Science Meeting.

Singletqn, Robert E., "Lax-Wendroff Difference Scheme Applied to the Tran-
sonic Airfoil Problem," AGARD CP 35, Transonic Aerodynamics, September 1968,
pPp. 2-1 to 2-9.

Skoglund, Victer J., and Gay, Ben Douglas, "Improved Numerical Techniques
and Solution of a Separated Interaction of an Oblique Shock Wave and a
Laminar Boundary Layer," Bureau of Engineering Research, University of New
Mexico, Final Report Mu-41(69) S-068, June 1968.

Thomas, P. D., et. al., "Numerical Solution for the Three Dimensioaal
Hypersonic Flow Field of a Blunt Delta Body," AIAA paper 71-596, June 1971.

86



Thomas, P. D., "On the Computation of Boundary Conditions in Finite Differ-
ence Solutions for Multidimensional Inviscid Flow Fields," Lockheed Palo
Alto Research Laboratory, Palo Alto, California, LMSC 6-82-71-3, March 2,
1971, Revision A, September 13, 1971l.

Thompson, Joe F., "Computer Experimentation with an Implicit Numerical
Solution of the Navier -Stokes Equations for an Oscillating Body," AIAA
Paper No. 69-185.

Tyler, L. D. and Zumwalt, G. W., "Numerical Solution of thk2 Flow Field
Produced by a Shock wave Emerging into a Crossflow,"” Proceedings of the
1966 Heat Transfc:. and Fluid Mechanics Institute, ed. by M. Saad and J.
Miller, Stanford University Press, Stanford, Calif., 1966, pp. 335-350.

Walker, William . and Zumwalt, Glen W., "A Numerical Solution for the

Interaction of a Moving Shock Wave with a Turbul=nt Mixing Region, Sandia
Corp., SC-CR-67-2531, May 1, 1966.

87




