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ABSTRACT

A new method has been devised to determine the

spherical harmonic coefficients of the lunar gravity field.

This method consists of a two-step data reduction and estima-

tion process. In the first step, a weighted least-squares

empirical orbit determination scheme is applied to Doppler

tracking data from lunar orbits to estimate long-period Kepler

elements and rates. Each of the Kepler elements is represented

by an independent function of time. The long-period perturbing

effects of the earth, sun, and solar radiation are explicitly

modeled in this scheme. Kepler element variations estimated by

this empirical processor are ascribed to the non-central lunar

gravitation features. Doppler data are reduced in this manner

for as many orbits as are available. In the second step, the

Kepler element rates are used as input to a second least-squares

processor that estimates lunar gravity coefficients using the

long-period Lagrange perturbation equations.

Pseudo Doppler data have been generated simulating two

different lunar orbits. This analysis included the perturbing

effects of triaxial lunar harmonics, the earth, sun,and solar

radiation pressure. Orbit determinations were performed on these

data and long-period orbital elements obtained. The Kepler

element rates from these solutions were used to recover triaxial
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lunar gravity coefficients. Overall results of this con-

trolled experiment show that lunar gravity coefficients can be

accurately determined and that the method is dynamically

compatible with long-period perturbation theory.

This selenodesy method has been applied to Doppler

data from the Lunar Orbiter I, II, III, and V missions. One

hundred ninety-nine sets of Kepler element rates are obtained

for gravity field determination. A lunar field of degree and

order four is derived from these rates. Equipotential surfaces

from this gravity field show the lunar mass distribution to be

that of a triaxial ellipsoid with three large areas of mass con-

centration. The greatest and by far the most dominant of these

areas is centered very near the Mare Serenitatis region and

covers a large portion of the front side of the moon. The other

two regions of mass concentration are located on the far side of

the moon but do not correspond to a specific maria region.

This gravity field has been investigated using data

from several Apollo missions. Orbit determinations from these

data show this field results in improved orbit predictions when

compared to those using two other gravity fields. A11 solutions

indicate the lunar gravity field models are still incomplete.

iii



PREFACE

This dissertation has been developed as part of

the author's work at Bellcomm, Inc., under contract NASW-417

with the National Aeronautics and Space Administration. The

author expresses his appreciation to that Company for the

assistance rendered to him in its preparation. The author alone

is responsible for its contents. Appreciation is expressed to

the National Aeronautics and Space Administration for the use

of the Doppler tracking data used in this investigation.

Miss Margaret V. Bullock and Mrs. Sheryl B. Watson

of Bellcomm developed the digital computer programs used to

embody this method and to obtain numerical results. Apprecia-

tion for their work is expressed. Dr. W. G. Heffron also of

Bellcomm has also assisted the author by offering suggestions

and discussing the various techniques used in the study.

Two members of the faculty of the School of Engineering

and Applied Science of the George Washington University have

also been of assistance. Appreciation is expressed to Professor

G. M. Arkilic for his role in formulating a program of studies

for the author and to Professor G. Hintze for acting as the

author's Director of Research.

Finally, the author wishes to express his apprecia-

tion to his wife, whose support, patience, and encouragement

have been so impottant during the course of this academic

program.

iv



TABLE OF CONTENTS

PAGE

PREFACE   iv

LIST OF TABLES  vii

LIST OF ILLUSTRATIONS   viii

TABLE OF SYMBOLS  xi

CHAPTER I INTRODUCTION  1

General  1
Data Source  1
Reviews of Previous Methods  6
Outline of this Investigation  7

CHAPTER II DYNAMICAL FORMULATION  

Newtonian Motion  
Perturbed Motion  
Lunar Potential Function  
Earth and Sun Perturbations 

11

13
15
17
28

Physical Librations of the Moon 30
Solar Radiation Pressure  31
Summary 34

CHAPTER III EMPIRICAL ORBIT DETERMINATION  36

Mathematical Theory 36
Data Reduction  40
Semi-Major Axis Determination 46
Solution Parameters 51
Pseudo Data Simulations 56

CHAPTER IV HARMONIC ESTIMATION  80

Least-Squares Processor 80
Triaxial Field Determination (Pseudo Data) . • • • 83



CHAPTER V DATA ANALYSIS 

Data Set Utilized  

95

95
Analysis of Orbit Determination Solutions . • • • 96
A Priori Coefficient Selection 103
A Lunar Gravity Field  106
Extrapolations 116

CHAPTER VI SUMMARY AND CONCLUSIONS 123

APPENDICES

A   126
B   130
C   133
D   138
E   141

BIBLIOGRAPHY   143

vi



LIST OF TABLES

TABLE PAGE

I Lunar Parking Orbit Times  2

II Ll Lunar Gravity Field   47

III Lunar Orbiter Data Arcs  97

IV Physical Constants   98

V Lunar Orbiter Convergence Statistics   99

VI Solution Correlations  102

VII Fourth Degree and Order Gravity Field  107

VIII Gravity Solution Correlation Matrix  108

IX Keplerian Rate Statistics  112

X Apollo Convergence Residuals   119

vii



LIST OF ILLUSTRATIONS

FIGURE PAGE

1 Lunar Orbiter Orbital Geometry  4

2 Apollo Orbital Geometry   5

3 Empirical Orbit Determination   9

4 Determination of Gravity Parameters   10

5 Geometry of Orbital Elements  12

6 Perturbed Potentials  20

7 Rotating Coordinates  21

8 Third Body Location   29

9 Satellite-Sun Geometry  33

10 Empirical OD Block Diagram  53

11 Lunar Orbiter V Pseudo Data Residuals   58

12 Lunar Orbiter V Pseudo Data: Fccentricitv and
Inclination as a Function of Time   60

13 Lunar Orbiter V Pseudo Data: Ascending Node
and Perifocus as a Function of Time   61

14

15

16

18

19

Lunar Orbiter V Pseudo Data: Semi-Major Axis
and Mean Anomaly Differences  62

Lunar Orbiter V Pseudo Data: Position
Difference  63

3c3
Lunar Orbiter V Pseudo Data: T- and 4 as a

Function of Time  65

Lunar Orbiter V Pseuao Data: 
_91 

and 
2L 

as a
Function of Time  

9Q 903 
66

Bp
Lunar Orbiter V Pseudo Data: TH as a

Function of Time  67

Lunar Orbiter III Pseudo Data Residuals . . . . 69

viii



20 Lunar Orbiter III Pseudo Data: Eccentricity
and Inclination as a Function of Time   71

21 Lunar Orbiter III Pseudo Data: Ascending Node
and Perifocus as a Function of Time   72

22 Lunar Orbiter III Pseudo Data: Semi-Major
Axis and Mean Anomaly Differences   73

23 Lunar Orbiter III Pseudo Data: Position
Differences   74

24 Lunar Orbiter III Pseudo Data: -5T2 and - 
D3
5-±- as a

Function of Time  76

-;a
25 Lunar Orbiter III Pseudo Data: -- and as a

Function of Time  a't 77

26 Lunar Orbiter III Pseudo Data: 
3 

as a
'

Function of Time  
abi 

78

27 Gravity Coefficient Estimation  81

28 Lunar Orbiter V Orbit: Semi-Major Axis and
Eccentricity Differences  86

29 Lunar Orbiter V Orbit: Inclination and
Ascending Node Differences  87

30 Lunar Orbiter V Orbit: Perifocus and Mean
Anomaly Differences   88

31 Lunar Orbiter V Orbit: Position and Velocity
Differences   89

32 Lunar Orbiter III Orbit: Semi-Major Axis and
Eccentricity Differences  90

33 Lunar Orbiter III Orbit: Inclination and
Ascending Node Differences  91

34 Lunar Orbiter III Orbit: Perifocus and Mean
Anomaly Differences   92

35 Lunar Orbiter III Orbit: Position and Velocity
Differences   94

36 Lunar Orbiter I and II Doppler Residuals. . . . 100

37 Lunar Orbiter III and V Doppler Residuals . . . 101

38 Eccentricity and Inclination Rate Residuals 108

ix



39 Ascending Node and Perifocus Rate
Residuals  109

40 Mean Anomaly Rate Residuals  110

41 Lunar Equipotential Surfaces (Near Side)  113

42 Lunar Equipotential Surfaces (Far Side)  114

43 Apollo Doppler Residuals (4x4) Field 118

44 Apollo Doppler Residuals L1 Field  119

45 Apollo Doppler Residuals (15x8) Field  120

B-1 Tracking Station Geometry  131



LIST OF SYMBOLS

SYMBOL DEFINITION

a Semi-Major Axis of Orbit

a
o 

Geometric Average of Osculating
Semi-Major Axis

a Mean Value of Semi-Major Axis

a
d 

Disturbing Acceleration

Ctm, Stm Gravity Parameters

c Speed of Light in a Vacuum

D Mass Density

e Eccentricity of Orbit

E Eccentric Anomaly of Orbit

F Matrix of Partial Derivatives of
Kepler Element Rates with Respect
to Ctm, Stm

f True Anomaly of Orbit

Ftmp(I) Inclination Function

G
tpq(e) 

Eccentricity Function

H Matrix of Partial Derivatives of
Doppler with Respect to Keplerian
Parameters

Inclination of Orbit

Unity Matrix

Six Vector of Kepler Elements

Keplerian Parameters

M Mean Anomaly of Orbit

n Mean Motion of Satellite

xi



F Complete Set of (Ctm, Stm)

Associated Legendre Polynominal of
Degree t and Order m

R
e 

Earth Perturbation Potential

R
e 

Sun Perturbation Potential

R
SR 

Solar Radiation Perturbation Potential

Moon Centered Inertial Position

A Weighting Matrix for Kepler Element
Rates

U Gravitational Potential Function

Moon Centered Inertial Velocity

Weighting Matrix for Doppler

Six Vector of Rectangular State

Rotation Rate of the Moon

Doppler Measurement
f!1

Selenographic Latitude

Selenographic Longitude

Noise Vector on Doppler

e Angular Displacement Between Rotating
and Inertial Axes

0 Ascending Node of Orbit

Perifocus of Orbit

11( 
Gravity Constant of the Moon

xii



CHAPTER I

GENERAL 

INTRODUCTION

Observational measurements obtained from earth

based tracking of satellites in close lunar orbits provide

a unique data source for the identification of lunar gravity

parameters. An accurate knowledge of the lunar gravity

field is essential for mission planning and for real-time

navigation, guidance, and control of the spacecraft for

lunar missions. It is also of scientific interest since

knowledge of the gravity can be correlated to physical mass

concentrations. A number of gravity fields have been obtained

from these data. However all have fairly poor prediction

qualities. The object of this investigation is to develop

a method which can be used for more accurate determination of

lunar gravity parameters.

DATA SOURCE 

Since 1966 the United States has successfully

injected eleven satellites in close lunar orbits. The length

of each of these parking orbits is given in Table I.

Data was obtained using the three stations of the Deep Space

Network (DSN) during the Lunar Orbiter flights, and by seventeen

stations of the Manned Space Flight Network (MSFN) during

the Apollo missions. The basic data types gathered by each
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TABLE I
..-

SATELLITE PARKING ORBIT TIME

LUNAR ORBITER I 76 DAYS

LUNAR ORBITER II 335 DAYS

LUNAR ORBITER III 243 DAYS

LUNAR ORBITER IV 76 DAYS

LUNAR ORBITER V 179 DAYS

APOLLO 8 20 HOURS

APOLLO 10 62 HOURS

APOLLO 11 62 HOURS

APOLLO 12 86 HOURS

APOLLO 14 68 HOURS

APOLLO 15 144 HOURS

tracking station consist of Doppler frequency shift and

range data. Since using the range data requires an extremely

accurate knowledge of the lunar ephemeris, this data type

is not used for lunar orbit determination or selenodesy. The

Doppler data is relatively insensitive to lunar ephemeris

errors; hence it is the only data used.

Two types of Doppler data are used: two-way and

three-way data. For the case of two-way data a signal is

transmitted by a station, frequency shifted by the satellite,

and retransmitted to that same station. In the case of three-

way data the signal is transmitted by one station (master

station), received and frequency shifted by the satellite,

and retransmitted to the master staions and to any other stations
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(slave stations) which are in the line-of-sight of the satellite.

Essentially, the Doppler data type measures the relative velocity

between the station and the satellite. No data are acquired

when the satellite is occulted by the moon. The tracking

stations use very sensitive double-conversion superheterodyne

automatic-phase-tracking receivers. The transmitter, receiver,

and station timing are driven by very stable atomic frequency

standards. The stability of the Doppler frequency-shift data

is a direct function of the frequency standard and is on the

order of one part in 10
12•

A11 the tracking data gathered to date covers a

restricted region of the lunar surface. The inclinations of

the Lunar Orbiters were limited to two regions, low inclinations

between 10° and 21°, and a high inclination of about 85° (see

Figure 1). The inclinations of the Apollo missions ranged

from about 178° to 154° (retrograde orbits). (See Figure 2).

Hence there exists a large gap in the tracking coverage in the

region between 26° and 85°. Any anomalous areas in the lunar

mass distribution existing in the untracked region produce only

secondary variations in the orbits that have been tracked and

consequently are very difficult to determine accurately.

Attitude control maneuvers performed by the satellite

have damaging effects on the overall usefulness of these data

for selenodesy purposes. In the case of Lunar Orbiter the



LUNAR ORBITER V

(I = 85°)

LUNAR ORBITER IV

(I = 85°)

LUNAR ORBITER I & II
(I = 12°)

LUNAR ORBITER III

(I = 21°)

FIGURE 1 - LUNAR ORBITER ORBITAL GEOMETRY

LUNAR

ORBITER

PERILUNE
ALT.

(km)

APOLUNE
ALT.
(km)

50 1850

11 50 1850

III 50 1850

(140)* (320)*

IV 2700 6100

V 100 1500

*POST MANEUVER



APOLLO 10, 11

(I = 178°)
APOLLO PERILUNE

ALT.

(km)

APOLUNE
ALT.

(km)

8 95 95

10 95 95

11 95 95

12 95 95

APOLLO 8, 12,14 14 13 95

(168°) (95)* (95)*

15 13 95

(95)* (95)*

*POST MANEUVER

APOLLO 15

(1540)

FIGURE 2 - APOLLO ORBITAL GEOMETRY
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attitude control system was not coupled in either the pitch

or yaw direction. During all of the early Apollo missions

(8, 10, and 11) a large number of attitude control maneuvers

were performed using only one thruster quad. In each case

the effect of these maneuvers was to produce not only the

desired rotation but also a translational velocity for the

satellite. The trajectory of the satellite is noticeably

disturbed by these propulsive maneuvers. As pointed out by

Lorell1, in theory these effects can be modeled; but in

practice it is a very difficult and costly operation. Further,

because of engineering uncertainties and incompleteness of

telemetry records, the reliability of results would be question-

able. Every precaution possible is taken during the course

of this analysis to use tracking data which is of free-flight

quality (thrust free).

REVIEW OF PREVIOUS METHODS 

Two general methods have been used to obtain lunar

gravity fields; the direct method and the indirect method

or long-term selenodesy method.

The direct method, principally used by Langley

Research Center, attempts to estimate the gravity field

from the Doppler tracking data. In this method the solution

parameter set is augmented to include both dynamical state

variables and lunar harmonic parameters. Large batches of

tracking data covering long time periods from many satellites
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are used. Results obtained by Michael2, Tolson and Gapcynski3,

and Gapcynski, Blackshear, and Compton
4
, are representative

of this method.

In the indirect method solutions are obtained using

a two-step process. The first step is to regress Doppler ob-

servations spanning about one day using an assumed gravity

field to determine the satellite state at some particular time.

The osculating states generated are averaged for each satellite

period to obtain a mean value of the Kepler elements for that

particular orbit. This process is repeated for each available

day of tracking data. The second step in this method involves

fitting the long-period perturbation equations to the Kepler

element variations. The lunar gravity determination is

accomplished by numerically integrating the perturbation

equations and differentially correcting a set of gravity param-

eters so as to give a best fit to the Kepler element variations.

The results obtained by Blackshear, Compton, and Schiess
5
,

Lorell
6
, and Risdal

7
, demonstrate this method.

OUTLINE OF THIS INVESTIGATION 

A new method for determining the lunar gravity

field is developed which uses an empirical orbit determination

(OD) and the long-period perturbation equations. The gravity

determintion is a two step process as in the indirect method.

The empirical OD, represents the Kepler orbital

elements of the satellite as a six-dimensional time series.
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The functional form chosen for each orbital element is that

which best represents the long-period and secular variations

in the orbital elements. In the first step of the process,

tracking data is reduced to obtain simultaneous estimates

for the orbital elements and the orbital element rates. This

process is repeated for as many different spans of data and

different satellites as are available (see Figure 3). In the

second step, the perturbation equations, linear in the gravity

parameters, are solved using the orbital elements and element

rates to obtain a field (see Figure 4).

This method differs significantly from the long-

period approach that has been previously used in that the

Doppler data reduction uses no assumed model and directly

estimates a mean orbital element state. Further and perhaps

most importantly, the simultaneous estimation of Kepler

states and rates makes each solution independent of the next

with respect to the gravity parameter estimator.
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CHAPTER II

DYNAMICAL FORMULATION

The motion of a close lunar satellite is governed

by a perturbed Newtonian gravitational law of attraction.

The perturbations arise from the non-central properties of

the lunar mass distribution and from the disturbing effects

of the gravity fields of the earth, the sun, and other planets.

These perturbing attractions are small; their effects are at

least one thousand times less than the inverse square attraction

of the moon.

The general equations of motion for a satellite

referenced to an inertial moon centered coordinate system is:

d
2—
r r

dt
2

- pg 
r
5 + ad

" 
(2.1)

where T is the position vector, pc is the product of the lunar

mass and the universal gravitational constant, and ad is the

sum of all the perturbations. Although the perturbations are

small numerically, their integrated effects are non-negligible

and produce changes in the satellite's orbit.

The purpose of this chapter is to present the

basic equations of Newtonian or Keplerian motion. These

equations will be extended to account for a primary gravity

field of arbitrary mass distribution and to account for the

perturbing effects of third bodies (e.g., the earth and sun).
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NEWTONIAN MOTION 

The equations of motion for a satellite located

at position-T in a moon centered inertial system under the

influence of an inverse square (Newtonian) gravity field are:

r = (2.2)

These equations possess closed form solutions which characterize

particle motion as follows:

1. The particle moves in a plane passing

through the center of mass and has a

constant angular momentum Fi .TxT7

which is perpendicular to this plane.

2. The path of the motion is a conic section.

Since the equations of motion (2.2) are a set of

three second order differential equations, a complete solution

is uniquely specified by six integration constants. Geo-

metrically, these constants are usually interpreted as the

classical Kepler elements given below (see Figure 5).

a - semi-major axis of the orbit

e - eccentricity of the orbit

I - inclination of the orbital plane

- longitude of the ascending node

w - argument of pericenter

T
o 
- time of pericenter passage.
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The variables a and e define the shape of the conic,

I, 0 and w are the Euler angles which specify the orientation of the

orbit plane and axes, and T
o 

locates the position of the satellite

in the orbit relative to pericenter. The time of pericenter

passage is relatable to the mean (M), true (f), and eccentric

(E) anomalies using the following conic relationships:

M(t)
3 
(t-T

o
) (2.3)

a

M(t) = E - e sin E (elliptical orbit)(2.4)

f = 2 tan
-1 

1- 
1/77-

e
 El
tan (2.5)

The satellite state is defined as a six vector of position

and velocity;

x

••••

r

v

(r = v) (2.6)

Correspondingly the satellite Kepler element vector is a

six vector of orbital elements

k 

a

e

I

M
.00

(2.7)
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The Kepler elements at any instant of time are non-linear

functions of the satellite state and vice versa (see

Appendix A):

= Ti(Tc.)

k = R()
(2.8)

It is important to note here that the entire Newtonian develop-

ment is based on an inverse square force law which assumes a

spherically symmetric gravitational potential of the form:

U(E) =
r

(2.9)

Potential used here has the opposite sign to that used for

potential energy in physics.

PERTURBED MOTION 

If the satellite is now assumed to be under the

gravitational influence of a primary planet (moon) of

arbitrary non-homogeneous mass distribution, and of other

planets, the gravitational potential of the satellite

has the form:

U(r) = + R(r) (2.10)

where R is the disturbing function arising from the non-

central effects. The equations of motion for the satellite

now become:
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r = VU = -p A + 
2— R

r Dr
(2.11)

where a
d 

E a R and v is the gradient operator. With R 0
D

the Kepler orbital elements in general become functions of

time. Since the non-central portion of the gravity field is

small in comparison to the central part, the magnitude of

variation in the Kepler elements is also small. The three

second order differential equations (2.11) describing the

perturbed satellite motion can be transformed into the orbital

coordinate system using the method of variation of arbitrary

constants
8 
to obtain the time rate of change of the Keplerian

elements (perturbation equations). The result is that the

satellite state is now specified by six first order non-linear

perturbation equations
9
:

da _ 2 3R

dt na DM

de _)7:: 
dt 2

na e[ 2 DR 31 
Vfl-e TR - T:

dw N67-7 1 aR cot I DR
dt 

na
2 e De

1-e
2 DI

dn _  csc I  3R
dt 

na 1-e 
DI

(2.12)

(2.13)

(2.14)

(2.15)
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dI _  csc 1
dt

na V7772

dM _
dt

where the mean motion n

n

[cos I
aR @R

- 
]

@w 312

1 [1-e2 312 + 2
na ae De @a

uQ

a
3 •

(2.16)

(2.17)

In vector notation these

equations have the following general form:

1(IC,t)
dt

(2.18)

In order to carry out a solution for the equations, the

disturbing function R must be specified and expressed in

orbital plane coordinates. The disturbing function assumed

in this investigation will have components arising from the

non-central part of lunar gravity, Rk, earth and sun pertur-

bations, R
e 

and R
e
, and solar radiation pressure, RsR.

Hence,

R = Rt + Re + R
e 
+ R

SR
(2.19)

LUNAR POTENTIAL FUNCTION 

The general form accepted by the International

Astronomical Unionl° in 1962 for the representation of the

lunar gravity field is the spherical harmonic expansion

expressed in selenographic coordinates. The selenographic

coordinate system is moon fixed and oriented such that the
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x-y plane is the lunar equatorial plane, the x-axis coincides

with the mean earth-moon line through Sinus Medii, and the

z-axis is directed along the moon's mean spin axis. The

selenographic axis system rotates about the z-axis of the

inertial system with a sidereal period of 27.32 days.

The lunar gravitational potential is the solution

to the Laplace equation (V
2
U=0) in spherical coordinates and

is expressed as follows:

U(r,(1),X) = 
Pk 

[1 + E z 
St,

m
(siP nfl C

km 
cos m x +

t=2 m=0

(2.20)

S
km 

sin m

In this equation R
e 
is the mean radius of the moon, P

k

is the associated Legendre polynominal, (r,(1),X) are the

selenographic radius, latitude, and longitude, and Cull, Skm

are the gravitational parameters which describe the non-

central features of the lunar field. The obiective of this 

investigation is to determine a finite set of {Ctill, Sstm}

which accurately describes the lunar field. It is assumed

that the origin of coordinates is located at the center of

mass of the moon. Using this assumption, the terms of first

degree (k=1) are omitted from the expansion since they repre-

sent center of mass displacements in each dimension. The terms

of degree k and order m=0 are known as zonals and are symmetric

about the z-axis. Terms of degree 2, and order m are called
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tesserals (Z=m are sectorials) and are functions of all three

dimensions. The potential of the moon is related to its

density distribution D as follows:

U(i) = IT
  dr

- T'l
(2.21)

where G is the gravitational constant and Y.' is the distance

to the mass element.

Two examples of the perturbations in the potential,

one for an even degree zonal, C
20' 

and one for an odd zonal,

C30, are shown in Figure 6.

The disturbing function for the lunar potential is:

Pd
R = U(r (1) X) - (2.22)

where U here is given by equation (2.20). The disturbing

function can also be represented as the sum of zonal and

tesseral terms.

R =
k=2

where each particular term, U~m, iszm'

Qm
(2.23)

R
e 

U
km 114. 

r
ktl 

P
k 
m
(sin(p)(C

kM 
cos m X + S

km 
sin m X) (2.24)
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FIGURE 6 - PERTURBED POTENTIALS
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A general formulation for transforming each term

in the disturbing function of a primary body has been

developed by Kaula
11
. During the course of this derivation

the spherical harmonic potential is converted from the

selenographic spherical coordinate system (see Eq. 2.20)

to the Kepler elements referenced to the inertial

system. The basic assumption in this derivation is that

the inertial and selenographic systems share a common

equatorial plane and that the selenographic system rotates about

the polar (z) axis of the inertial system (see Figure 7).

FIGURE 7 - ROTATING COORDINATES.
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The disturbing potential expressed in orbit plane

coordinates is:

Re
k

Rt(R) it+1 P(I,e)Stmpq(w,M,Q,e)
t=2 1 

11(
0 a

where

and

P(I,e) = E
p=o

F
kmp

(I) =

+.
F
kmp 

(I)G
kpq

(e)
ca=-03

(2.25)

(2.26)

(2k-2t)! 2: (2t-2t) 
sinZ-m- 

2t 
I •

t ti(t-t)1(St-m-2t)! 2

cos
s
I (k-m-2t+s) m-s )

(-1)
c-k

p-t-c

(p, q, t, s, c, and k are dummy indices)

(2.27)

where k is the integer part of 
(t 
2
m) 

t is summed to the

lesser of p or k, and c is summed over all values which

make the binomial coefficient nonzero.

The function G
tpq

(e) in equation (2.26) is defined

as follows:

G
kpq(e) = (-1)1141 (14-132)Yql 13

2k
T
Zpqk

Q
Zpqk 

(2.27)
k=o 

where

=
47-71 .-e

(2.28)
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T
ipqk

r=o

(71-21

h-r

(_1)r (st_2p,+(v)e r
(2.29)r! 2(3,

and

h

h =

'-2p)

k+g', qi>0; h=k, ql<0

r
Q
ipqk

r=o (h-r

[(9,-4)1+q1)1
(2.30)r! 26

h=k, qi>0; h=k-ql, g'<0

p l =p, q l =q for p<212

p'=k-p, g'=-q for p>2./2

Also in equation (2.25)

C 

s
km k-m odd

-m even
km

S
kmpq cos[(k-2p)w+(k-2p+q)M + m(0-8)] +

(2. 31)

k-m even
km

sin((k-2p)w + (k-2p+q)M + 111(S1-6)]

Ckm k-m odd

and e is the angular displacement between the inertial and the

graphic axis systems.
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The effects of the U
km 

disturbing term can be

approximated by using standard perturbation theory concepts
12
.

Essentially each term gives rise to short-period and either

long-period (and very long-period) or secular variations in

the orbital elements. As applied to this dynamical system,

short-period variations are those which are periodic with a

period of an integer multiple less than the satellite orbit

period. Long-period variations are again periodic with a

period which is an integer multiple less than the period of

the moon (28 days). Very long-period variations have a

period less than the period of the perifocus rotation.

Secular variations are nearly linear in time. Examining

equation (2.31), these different types of variations are

associated with the following factors:

1. Short-Period: (k-2p+q)M

2. Long Period: m(S-2-6)

3. Very Long-Period: (k-2p)w

4. Secular: (k-2p) = (k-2p+q) = m = 0

Analysis13 has shown that the long-period satellite

dynamics can be accurately determined from Doppler tracking

data. This form of the perturbation equations, the long-period

equations, can be obtained by averaging the lunar disturbing

function, R , with respect to the mean anomaly.
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_ r27
RQ dM

- 2 Tr j o
(2.32)

This calculation was also carried out by Kaula and the result

simplifies (2.25) to the following:

R
k

17-iA 
= 

e
% 

z+1 P'(I,e) S
t=2 m=0 a kmpq(w.0,e)

where q = 2p-2 only and

k

P'(I,e) = ): F
"up 

(I)G
kpq

(e)
p=0

F
tmp

(I) is given by (2.27) and G
kpq

(e) is:

G
Zpq

(e) -

in which

(2. 33)

(2.34)

1  
pt1 

9,-1 )(2d+Z-2p) 
2d+k-2p'

/
(1-e

2
)
Z-1/2

d=o 2d+t-2p' 
()

P' = p for p < Z/2

= k-13 for p > t/2

and S'kmpq 
(w,Q,e) is

S'zmpq

t-m even

cos [(32.-2p)w + m(0-0)] +
IS

km
k-m odd

(2.35)
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[i 

s 9,-rn even
SUrt sin [(2,-2p)w + m(0-8)]

km
k-m odd

(2.36)

It should be noted here that this entire long-period averaging

procedure is accurate to the first order
14
. (Terms of order e

2

and above are neglected.) The long periodic variations experi-

enced by Tk can be either long-periodic in the ascending node

(m 0), very long-periodic in the perifocus (k - 2p 0), both,

or secular (m = 0, k = 2p). The secular variations are associated

only with zonal perturbations of even degree
i5
. (Very lona-

periodic variations are also experienced by these terms.) Zonal

terms of odd degree have only very long-periodic variations.

Tesseral and sectorial terms have both periodic and long-periodic

variations.

Since the disturbing function, T&, is independent of

the mean anomaly, two of the perturbation equations (2.12 and

2.13) simplify to:

da = 0
(2.37)

dt

de A47.7
dt

(2.38)
na
2
e 

Du)

Therefore, to first order exactness, the semi-major axis of

the orbit is a constant of the motion.

The complete analytical equations specifying the

long-period dynamics of a satellite under the influence of



- 27 -

a moon of arbitrary mass distribution are given by (2.37),

(2.38), (2.14) , (2.15) , (2.16) , (2.17) , (2.33) , (2.34) , (2.27),

(2.35), and (2.36). As an example of the form of long-period

equations, the perturbation equations for the C
20 

zonal term

and the C
22 

sectorial are presented:

For C
20
:

da _ de _ dI 
dt d• t dt = u

yn C
20 

(Re

dt -
_ 3 
2
• (1-e

2
)
2 a

2
dw

n C
20 

R 
_ 3

:dt 4 )
(1-e

2
)
2

dM
dt n

For C
22
:

da de
= u

dt = d• t

(2.39)

cos I (2.40)

(1-5 cos
2
I)

C
20  

R 
2

3 e
(3 cos2l-1)4

(1-e
2
)
3/2 a

(2.41)

(2.42)

(2.43)

dI 
3n C

22 
R
e

sin I sin2(0-0) (2.44)
dt

(1-e
2
)
2 a

2-
3n C

22 
R
e_

cos I cos2(Q-e) (2.45
dt

(1-e
2
)
2 a
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dw _ 3
dt

dM _
dt

n
C
22 

(l_e2)2

(Re)2

a
cos2(0-0)(5sin

2 
I - 2) (2.46)

+ 
9 
- C

2)

2 
sin

2 
I cos2(Q-e)

2 22(a (1_e2)3/2
(2.47)

For both sets of perturbations the dynamical equations are

coupled non-linear equations (linear in the gravity parameters).

A principal difference between the zonal term and the sectorial

(and this is true in general) is that zonal perturbation

equations are autonomous whereas the others are not.

EARTH AND SUN PERTURBATIONS 

The disturbing function for a third body (earth or

sun in this case) located at r3 on a satellite located at T

has been computed by Brouwer and Clemence
16
.

P3 r 2
R
3 
=

r3 
 r3

5 3
-f cos lp

)

1 3 ( )3
-f + cos

2
tp
) 

+
r
r
3 (- 3

2
costp +

(2. 48)

where u3 represents the third body mass and lp is the

angle between r - and r3- (see Figure 8) and r3 » r- . This

expansion is accurate to third order. In order to

obtain the long-period portion of this disturbing function,

it must be averaged over the satellite orbit.
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FIGURE 8 - THIRD BODY LOCATION
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The averaging with respect to the anomaly of this

disturbing function has been performed by Liu and Loren
17

and has the following form:

where

1  2 =
a 1)

2

3
- (1+3/2

= L2
R3 2

[!,

+ 3A
2
(2e

(2.49)

2
2 3 B 

(1-e
2
)+ ..]

r
3

e
2
) +1/2)

(2.50)

3F
3 4 

= 5 a
Ae[(1+3/4 e2) - 5A2(e2+3/4)-

15 
B 
2 (1-e

2
).]( 7-

(2.51)

_ .
and A = T1 •• T, B = •Ti • Q. u Is the unit vector in the direction

of the third body, T is a unit vector to the perifocus and 0 

is a unit vector in the orbit plane orthogonal to T.

Hence, the total dynamical effect on a satellite

in lunar orbit due to either the earth or sun is formed by

evaluating the perturbation equations using (2.49) as the

disturbing function.

PHYSICAL LIBRATIONS OF THE MOON 

In the derivation of the lunar disturbing function

Rk it is assumed that the selenographic axis system to which

the gravity parameters are referenced rotates about the polar

axis of the inertial system. In addition to this polar

axis rotation, the selenographic system undergoes additional
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small rotations about all three axes due to precession and

physical librations. Since these rotations are not included

in the analytical formulation a correction must be applied

to the long-period equations. Analysis18 shows these effects

can be eliminated if the selenographic system fixed at epoch

is used.

SOLAR RADIATION PRESSURE 

The perturbing effects of solar radiation pressure

have been derived by Kozai
19 
. The variations in the orbital

elements are:

Aa
SR 

= 0

(first order approximation)

(2.52)

2 Nr--  
3Ae

SR 
- 

F 1e
2 4 

A* 1-e cos 2E+B*(71 sin 2E -2esin E+-
2
E)

a n

FC*
AI
SR 

=
;7W7777

cos w [(1+e2)sin E

1E7 sin w [cos E - 4 cos 2E]

AS2
SR

FC*
2

an sinfQ7.7:7

E
2

(2.53)

- 
4 

3
sin 2E - eE] +

sinw [(1+e2)sin E -

cosw [cosE -
e
4

E
2

cos2E]

(2.54)

4 2
3sin 2E - -eE] -

(2.55)
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when

Aw
SR

-F , 1 3
E + 71 sin 2E - E) +

E
2 

(2.56)

(e sinA*VT-777
2

a L e

B* (e cos E - 4 
1

cos 2E) cos IAQSR

E
1

AM
SR

_ 2F 
A* [(1+e

2 3
)sin E - 1- sin 2E - rE]

2
a n

B* E
e
4

E
2

cos 2E] - 1-e (AO
SR

E
l

cos I AO
SR
)

(2.57)

where F is the magnitude of solar acceleration and A* = T • a.,

B* = (5 • T1 , C* = 171 • I. • u
o 

is a unit vector in the direction

of the sun, T, U, 17 are vectors to perifocus, in the orbit

plane orthogonal to P, and normal to the orbit plane orthogonal

to P and U, respectively.

= (
ti 

F 
(S )(r 

2

m
) 

c r 
_SI (1+0 (2.58)

where A is the satellite effective cross-sectional area, m is

the mass, Se is the solar constant, re the distance to the sun,

U. is the reflection coefficient, and c is the speed of light.

These perturbations are only acting on the satellite

it is in sunlight. A test used to determine the sun's

visibility is (see Figure .2):



- 33 -

FIGURE 9 - SATELLITE SUN GEOMETRY
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where •

an d

SUMMARY

perturbations are

perturbations are

R
W = ltan-1

zero

present

(2.59)

lcos-1 -r*ri l (2.60)lal =
rr' I

= r
e 
- r (2.61)

The perturbation equations for the long-period

motion of a lunar satellite under the gravitational influence

of a primary of arbitrary mass distribution and the earth,

sun, and solar radiation are presented. The general form

of these dynamical equations is as follows:

de
dt

dI
dt

dt

,m

da _
dt

0 (2.62)

de
t, 

de
e 

de
SRm 

+ 

de
49

dt dt dt dt

dIQ ~ m dI dI dISR
dt dt dt dt

dS2
k,m
 ds2® dC2 dS2

SR
dt dt dt dt

(2.63)

(2.64)

(2.65)
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dw
dt

dM
dt ,,m

dw
k,m 

dw dw
e 

dw
SR

dt dt dt dt

dM dM
e 

dM dM
SRSt,m 

dt dt dt dt

(2.66)

(2.67)

These long-period perturbation equations form an

analytical basis for the development of the empirical OD.



CHAPTER III

EMPIRICAL ORBIT DETERMINATION

One method of modeling the perturbed motion of a

lunar satellite is to represent each of the Kepler elements

of the orbit as an independent time function20. This repre-

sentation forms the basis of the empirical orbit determination

method. Using Doppler tracking data and a minimizing process,

estimates are obtained for the parameters which characterize

these time functions.

The purpose of this chapter is to present the

theory and equations used to represent the long-period motion

of the lunar satellite.

MATHEMATICAL THEORY 

The long-period time dependence induced in each of

the Kepler elements by non-central gravity perturbations is

given by the perturbation equations (2.62-2.67).

dT = f(7,t)
dt

Since these equations are non-linear, general closed form

solutions are not obtainable. The non-central effects are

extremely small compared to the central body term; consequently

solutions can be approximated.
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If an analytic quadrature is performed on each

perturbation equation, a set of integral equations results:

k(t) = 7(to) +jr T(Z,t)dt
to

(3.1)

The kernels, or forcing functions, appearing above are non-

separable, non-linear functions. If only the perturbations

arising from the lunar disturbing function are considered,

these kernels can be categorized into two types:

1. T(R,t) = T(T.) (autonomous) (3.2)

2. T(T,t) = g(T)sin myt + E(R)cos myt (3.3)

m = 1,2,3,...(perturbation order index)

where y (1/27.32 rev/day) is the rotational rate of the moon

(6 E /V. (This categorization does not apply when the

standard Kepler elements become singular, for nearly circular,

nearly equatorial orbits. However, a similar approximation

can then be used with a modified orbital element set.) The

first or autonomous kernel corresponds to zonal perturbations,

and the second to tesseral and sectorial perturbations. If it is

assumed that for periods of time of 24 hours or less the

magnitude of variation in the Kepler elements is small, then

T(T), 4(7), and h(k) can be considered constant.

Solutions to equations possessing autonomous kernels

lave the following simple form:
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T(t) = T(t0) + Y(to)(t-to) (3.4)

Thesesolutions have the linear properties of secular variations.

Using the same time approximation made previously (as for 3.4),

solutions for the non-autonomous kernels can be given as follows:

k(t) = E1(to)+ c2- (to)sin m y(t-to) + c3- (to)cos m Y(t-to)

(3.5)

where E E
2' 

and c3 are constants and E (t
o 

=
o
) 

3 
(t 
o
)

If the time period of the data span (t-to) is

smaller than the period ofa spherical harmonic perturbing term,

this solution can be expanded in a truncated Taylor series:

T(t) = E1(to)+ 2
(t
o 

Y(t-to) +

(3.6)
2 2

+ -6
3
(t
o
) I( (t-to)2

 
+  1 - m

2

or

k(t) = To + Tit + 02t2 + .... (3. 7)

where the A. represent vector constants.

Hence the functional form for the Kepler elements

which best represents the long period and secular effects

is that given by (3.7). Two typical Kepler elements (for

example Q(t) and e(t)) are represented as follows:
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Q(t) = Q
o 
+ Q

l
t

e(t) = e
o 
+ e

1 
t + e

2
t
2

(secular variation)

(secular and long-
period variation)

The terms Q
0
, Q1, eo, el, and e2 are examples of Keplerian

parameters determined by the empirical OD method.

Since the third body and solar radiation perturbations

affect the satellite state in orbit, these effects must be

included in the Kepler element equations. The actual six-

dimensional time series used to represent the Keplerian

motion of the satellite is:

a(t) = constant (3.8)

e(t) = e
o 
+ e

1 
t + e

2
t
2
+ de + 5e + 5e

SR
(3.9)

I(t) = I
o 
+ I

1 
t + I

2
t
2
+

e 
+ 51o + (sI

SR
(3.10)

Q(t) = Q
o 
+

1
t + Q

2
t
2
+ SQ

e 
+ SQ

e
+ (SQ

SR
(3.11)

w(t) =wo +w
1
t+ w

2
t
2
+ Sw + Sw + (Sw

SR
(3.12)

M(t) = M
o 
+ M

1 
t + M

2
t
2

(3.13)
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where the orbital element variations (Sf are found by numerical

integration. The third body and solar radiation perturbations

are those developed in the previous chapter. No explicit

third body and radiation pressure perturbations are modeled

for the mean anomaly. Hence the time-series for M(t) includes

the perturbations of the moon, earth, sun, and solar radiation.

The reasons for this representation are associated with the

semi-major axis estimation and are discussed later in this

chapter.

Terms of quadratic order are used in the time-series

since for the time periods (24 hours or less) over which

solutions are obtained, these will adequately (by conservative

standards) represent long-period perturbations of up to order

seven (m=7). (A harmonic perturbation of order seven has a

period of four days. Any one day segment of this harmonic can

be well represented by a quadratic function.)

DATA REDUCTION

The Doppler observation (p) is a scalar quantity

that is a non-linear function of the satellite state,

the relative earth/moon configuration and the earth-based

tracking station position and rotational velocity. During

the orbit determination only the estimates of the satellite

state are refined. The tracking data o
obs 

is related to the

satellite state as follows
21 

(see Appendix B)



- 41 -

• —

' bo s (t) = P[k(t)] + n (3.14)

where n is the random noise associated with the physical

measurements. The measurement errors are assumed to have the

following properties:

Exp[n] = 0 (3.15)

Exp[112] = a
2 

(3.16)

where Exp is the expectation operator and a
2 
is the variance

of the Doppler noise. Since the Doppler is a non-linear

function of the Kepler state, the output equation (3.14) must

be linearized about a reference trajectory.

If k(t) is the true Kepler state, W*(t) is the

reference state, and AiZ the deviation, then

Using (3.14)

W(t) = W*(t) + AW(t) (3.17)

Pobs
*

• _
= P[k*(t)] + (4)AW + . + n (3.18)

Defining Ap(t)

and

= r,
yobs '

(1*

J(t) =. ax

.
p[k*(t)]
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the linearized relationship between the deviation in the

Kepler state and the deviation in the Doppler is:

AP(t) = J AlZ(t) + n (3.19)

Using a similar procedure, a linear relationship

relating the Kepler state R and the parameter vector R can

be obtained. R is an (nxl) vector consisting of the solution

parameters

K

a

e
o
e
1

e
2
I
o

M
2

(3.20)

Since these Keplerian parameters are constant over

the trajectory, an expansion of K can be performed about a

reference set R* at some time t
o
.

Since

then

17(to) = 17*(td+ AR(to) (3.21)

= fZ[IT(to),t] (3.22)

1Zft) = k-[17*(t ),t] + 31Z *A17(t )
a

• • • 0
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or
*

Arc- = AR(to)
317

(3.23)

Deviations in the parameter set AR(t0) are then linearly

related to deviations in the Kepler elements. The output

Doppler equation (3.19) can now be expressed in terms of the

solution parameters.

whe re

Ap(tk) = H(tk) AR(to) + n (3.24)

(1*(1*
H E

aiT

The primary objective in orbit determination can be

simply stated as follows: Given a batch of Doppler measure-

ments valid at many times t
1
, t

2
, t

r' 
find the set of

Keplerian parameters which best fits these data. The linear

relationship between the Keplerian parameters and the Doppler

can be generalized as follows:

where

Ap = [H]AK + n + s (3.25)

•
Ap is the (r x 1) observation vector

H is the linearized set of functions

relating the observation and state

(r x n) matrix

AR is the column vector of Keplerian

parameters (n x 1)
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is an (r x 1) vector of observation noise

is an (r x 1) vector of systematic modeling

errors.

Since the Keplerian parameters R. only attempt to

represent the long-period dynamics of the orbit, then at any

point in time there will always be a systematic residual ()

associated with the unmodeled short-period satellite variations.

Various data smoothing techniques were used on the Doppler data

in an attempt to eliminate these short-period variations. None

of these approaches has succeeded. Attempts to model the short-

period variations directly in the empirical OD also have not

been successful.

Given the linear system of equations (3.24) the next

step in the OD process is to formulate an estimation scheme

which minimizes the estimation error and yields a best estimate

of the Keplerian parameters. If the random quantities in the

dynamical system are assumed to be normally distributed, there

are three linear estimators
22

(least squares, minimum variance,

and maximum likelihood) which all would yield the same re-

sults and could be used for this function. However, since

the errors in the dynamical system are not random, and since

the data to be processed is in batches, the weighted least

squares estimator was chosen to perform the data reduction.
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An error function, e, for r observations is given

as follows:

or

(v = n + s) (3.26)

E = (Ap - HAM 
T 

W(Ap - HAR) (3.27)

where for one data type W is an (r x r) diagonal weighting

matrix. For a minimum, the first variation of 6 must

vanish;

Se = 0 = -(Ap - HAET)TW 1-1617 - (H(ST)&(Agi - HAR) (3.28)

where AK is the value of 17 that extremizes e and sIT is the

variation in R. Since this is a scalar equation,

•
0 = - (Ap - HAK)-L 

m
W H dk

But (517 is arbitrary, hence

(Ap - HAK)
T 
W H = 0

Transposing and solving (W = WT):

= [H
T 
W H]

-1 
H W 
T 

Ap

(3.29)

(3.30)

(3.31)

(n x 1) (n x n) (n x 1)

(for minimum cS 2E = 2E7T[HTWI]-1 SK > 0 for arbitrary 617).

Since this minimization process was obtained by

linearizing a non-linear set of equations, the least squares
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estimation must be performed iteratively. The processing of

r Doppler measurements and the resulting set of differential

corrections AK constitutes- one computing iteration. The

convetgence criterion for two successive iterations is as

follows:

E Ap(t.)
i=1

E Ai; (ti)2
i=1 (K)

- 1 < S (3.32)

where (S = 10
-4 

and (K-1) and K designate computing iterations.

The entries in the H matrix are the partial derivatives

of the Doppler with respect to the Keplerian parameters. These

terms are found by using the chain rule for differentiable

functions:
•D io = Bp Bx ak. .

DT Dx DiZ DT
(3.33)

Each of the derivatives used in the above equation is given

in Appendix C.

SEMI-MAJOR AXIS DETERMINATION 

Studies using both pseudo and real Doppler data

have shown that the least squares process does not converge

when the semi-major axis is included as an independent parameter.

This condition was also observed by the Smithsonian Astro-

physical Observatory in earth satellite work
23
.
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Since the mean motion of the orbit, even in the

presence of perturbations, is nearly inversely proportional

to the semi-major axis to the three halves power, then the

estimated mean motion can be used to imply a semi-major axis.

The constraint equation between the mean motion and semi-major

axis must include the long-period effects of the earth, sun,

and solar radiation and some representation for the lunar field.

The third body perturbations on the mean anomaly have been

24
given in the previous chapter. The L1 lunar gravity model

(see Table II) developed by Langley Research Center is used.

TABLE II. Ll GRAVITY FIELD

C
20

-2.07108 x 10
-4

C
22

= 0.20716 x 10
-4

C
30

= 0.21 x 10
-4

C
31

= 0.34 x 10
-4

C
33

= 0.02583 x 10
-4

The second degree terms in this model were deter-

mined on the basis of astronomical observations of the moon's

physical librations and hence can be assumed known to at

least one signigicant digit. The third degree terms were

obtained from previous analyses of Lunar Orbiter and Apollo

data.
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The average value of the semi-major axis (a0) with

respect to mean anomaly is found by setting the mean anomaly

perturbation equation equal to the empirically determined

mean motion. Using equations (2.62) and (3.13), the following

relationship is made:

M = M
1 
+ 2M

2
t

(3.34)

77A . 
3 

1+ Ac + Ac + A + A
C 

+ A
C 

+ M® + Ao + ASR
a
o

20 22 
C
30 31 33

where M
1 
and M

2 
are the estimated Keplerian parameters. Since

this is a non-linear equation in ao, it is solved using

Newton's Method. The value a
o 

is the geometric average of the

semi-major axis under the perturbing influences of the Ll

lunar gravity field, the earth and sun, and solar radiation.

For the case of secular perturbations on an earth

satellite, Kozai25 has shown that a mean value of the semi-

major axis a yields the average satellite position in the

orbit. This value is derived such that the deviations in the

position of the orbit due to perturbations averaged over the

orbit yield only short-period variations.

1 
-2 

/r
2 ~1 6r dM = E lac cos (C M + dc )

0

CO

(3.35)

where 6r = r
TRUE rLONG PERIOD

and and cd are constants.
- 
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Hence the value g yields the proper mean position

over the orbit. Kozai has derived the relationship between

the average value, a
o
, and the mean value, a,- for the C

perturbation:

also since:

2
I

a - = a 1 + 
3 
C 
 Re 

— 
(1-3/2 sin

2 
I)

o 2 20 a
(1-e

2
)
3/2

1-1(
A 1\1/ 20 

a
o
3

(

3 
'R

e 
2 C

20
(1-3/2 sin2I)

2 a
(1-e

2
)
3/2

then the following modified Kepler law is valid:

where:

ti
u C20

A2
20

-a-3 
=

20

(3.36)

(3.37)

%
(3.38)

2

(Re (1-3/2 sin2I)]
a 

(1-e2)3/2
(3.39)

Hence the presence of the C
20 

term essentially changes the

effective mass of the moon.

Odd degree zonal, tesseral, and sectorial terms in the

semi-major axis constraint equation do not require mean value

corrections
26
. Analysis has shown that the correction for the

sun and solar radiation are on the order of a foot or less; hence

no factor is included for these perturbations. The mean value

correction arising from the earth perturbations is included.
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An analytical procedure was used to derive the rela-

tionship between the mean and average values of the semi-major

axis for earth effects. The basic formulation for the dis-

turbing effects of the sun on the moon's orbit was used as a

model. The secular effects on the mean motion generated by

earth perturbations is as follows
27
:

2

P7® 1-isl [1 - 
7 

n
o

n
2 

i (1-3/2 sn
2 
I)

a
o
3 4 

(3.40)

where terms of order e
2 

are neglected and n® is the mean

motion of the earth. Extending the mean value solution

given by Brouwer anc.:, Clemence to allow for varying inclinations,

(see Appendix D),
2

a = a
o 2

1 +   (1-3/2 sin
2 
I) (3.41)

n

where again terms of order e
2 

are neglected. Both of these

formulas agree well with those given for the sun's pertur-

bations on the moon (case in which I = 23°).

The general procedure for implying a mean value

semi-major axis has two steps. First, the average value of

the semi-major axis, .3.0, is determined once per iteration

using equation (3.34). Then, the mean value, a, is calculated

using equations (3.36) and (3.41);

a = a
o
[1 +

-20 
+

e
]

where the e terms are the mean value corrections.

(3.42)
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The quantity ao is the average value of the

osculating semi-major axis. The quantity a is introduced

to make long-period perturbation theory represent the average

satellite orbit. Since this variable is introduced to insure

compatibility between the long-period and associated rect-

angular equations of motion, it is only used for data reduction.

After convergence has been reached, the mean anomaly

rate, A is adjusted to remove the earth, sun, and solar

radiation effects.

k = 1 + 2M
2
t - A - A - A

SR
(3.43)

Here lk is the anomaly rate arising only from lunar gravity.

The average semi-major axis value, al, for the lunar gravity

is found by solving the following equation:

'1/1
( 3 M

20 
+ M22 + A30 +A

31 
+ A

33 
(3.44)

' 
aqt

It is this value of the semi-major axis that completes the

K parameter set and is used for gravity field determination.

One such value of aq,. is found for each solution.

SOLUTION PARAMETERS 

The output from processing a batch of Doppler measure-

ments is a best estimate for a set of Keplerian parameters, K.

Since the third body perturbations are modeled separately in

the OD process, and the mean anomaly parameter is adjusted
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for third body effects, these Keplerian parameters represent

the variation in the Kepler orbital elements arising from

the non-central part of lunar gravity. These solution

parameters give a simultaneous time history of the Kepler

elements and element rates valid over the data span. A

detailed block diagram of the empirical processor is shown

in Figure 10.

The time histories of the Kepler elements and

element rates are used as input data to a second processor

which fits lunar gravity harmonics to the Kepler element

rates. Since the solution parameters provide continuous

time functions for the orbital elements and rates they can

be sampled at any desired frequency. The long-period lunar

gravity effects have periods which are much greater than a

typical lunar orbiter period (lunar effects have periods of

days whereas a typical satellite period is three hours),

hence there will be no aliasing of gravity information if

the element states and rates are evaluated once per satellite

period. For example, if a typical data span contains five

satellite periods, then five sets of Kepler elements and

element rates are obtained.

The Kepler element rates, which form the actual data

for the gravity estimation, consist of the following five

rates
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k (3.45)

The semi-major axis rate is zero in long-period theory, so

it is not used.

The five orbital element rates are simultaneously

processed to obtain gravitY coefficients. Since the input

data consists of five different quantities (e , I, (:) ► I A ) ,

a weighting matrix is required to define the relative accuracies

of each of the rates.

If the empirical OD method could model the Doppler

such that the residuals remaining after convergence were

normally distributed random errors, the [H
T 
W H]

-1 
matrix

given by equation (3.31) would be the covariance matrix

associated with the K solution set. Since only the long-period

satellite dynamics are represented in the empirical process,

then the [H
T 
W H]

-1 
matrix is not the covariance matrix of the

process
28
. However since the terms in the [H

T 
W H]

-1 
matrix

do reveal the relative sensitivity and correlations among the

solution parameters, it is assumed for weighting purposes that

these terms can be regarded as variances and covariances in

the conventional manner.
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The weighting matrix for the orbital element rates,

A, is a (5x5) matrix having the following form
29
:

A-
1

2
a-

T12 T13 T14 T15

2
-

T21 
a 

•
•

T51

2
a

2
G.
w

(3.46)

where cr.
2 
are the error variances among the rates and Tij are

the covariances. It is assumed that the mean error in the

Keplerian parameters is zero. Each of the orbital element

rates has the following form,

= 222t
The variance of the error in Q is found as follows:

or

a-
2 
= Exp[(Q1 - Q1) 

2
+ 4t(21 - Q1)(22 - 02)

2 ,,+ 4t (Q Q2)2J2

2
G.
2 
= G

Q1 

4t cov(E
01

E

Q2
) + 4t

2
 6

2

where
Q1 

= (Q
1 
-

1
) and = (0

2 
- Q

2
).

2

(3.47)

(3.48)

(3.49)
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The covariance terms among the rates (e.g., cov (E:2E:1)))

are formulated in a similar wav (see 3.48)

cov(e.c-) = cov(E
Q1 wl

) + 2t[cov(E
Q1 w2

) + cov(E E
ww 2 1

+ 4t
2 
cov(E c )

2 
w 
2

(3,50)

Then if it is assumed for weighting purposes that

the [H
T 
W H]

-1 
is the covariance matrix, each of the entries

in the A matrix can be found from the appropriate slots in

the [H
T 

W H]
-1 

matrix. Hence a weighting matrix is auto-

matically obtained for each set of orbital element rates.

PSEUDO DATA SIMULATIONS 

In order to demonstrate the operational capabilities

of the empirical orbit determination method, pseudo Doppler data

were generated from numerically integrated trajectories and

converged solutions were obtained. The estimated Keplerian para-

meters from two such typical convergences are presented. In both

cases a triaxial lunar gravity field is assumed (C
20 

and C
22

harmonics) and the earth, sun, and solar radiation perturbations

are also included. No noise or biases are added to the pseudo

data.

The first data simulation was generated for a Lunar

Orbiter V (polar) orbit. The data span contains tracking data

from three stations (Goldstone, Calf., Madrid, Spain, and

Woomera, Australia) and is approximately 21 hours 30 minutes in
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duration. The epoch data and initial conditions for this

orbit are:

Epoch Date: Aug. 9, 1967 7 hours 20 min.

Initial Conditions: (Selenographic)

a = 8,324,332 ft. e = .27618984

I = 84°764923 0 = 70°2050009

w = 1°8616071 M = 244°.73644

The Doppler residuals (AU associated with this convergence are

shown in Figure 11. These residuals are systematic and have the

general form of the unmodeled short-period orbital variations.

The residuals possess a mean of .0216 feet per second (fps) and

a standard deviation of a = .1 fps.

The Keplerian parameter set used consists of thirteen

terms. The best estimates for these parameters are:

e
o 
= .27600103

e
1 
= .46568305 2 10

-9

I
o 
= 84°765987

I
1 
= .89524714 x 10

-6 
deg/sec.

o= 70°202817

1 
= -.61366823 x 10

-6 
deg/sec.

Q
2 
= .74160675 x 10

-12 
deg/sec

2

w
o 
= 1°8611893

(0
1 
= -.34733259 4 10

-5 
deg/sec

w
2 
= -.12242802 x 10

-11 
deg/sec

2
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M
o 
= 244:73515

M
1 
= .031390311 deg/sec.

M
2 
= -.55419592 x 10

-11 
deg/sec

2

The constrained values of the semi-major axis obtained are:

a
o 
= 8,323,991 ft.

a = 8,324,561 ft.

In order to determine the quality of this converged solution,

comparisons are made between the numerically integrated source

trajectory and the solution obtained. Figures 12-15 show the

variations in the six Kepler elements for both the converged

solution and the source trajectory. The variations presented

for the eccentricity (e) and the three Euler angles (I, Q,

(see Figures 12 and 13) show the actual variations of these

elements plotted on common axes. Since the variations in the

mean anomaly are very large and the semi-major axis has a large

magnitude, the differences in the converged solution and source

trajectory values are shown for these variables (see Figure 14).

As can be seen in Figures 12 and 13, the estimates of the

eccentricity, ascending node, and perifocus have slight biases

at epoch. The inclination parameter has a slight rate error.

The mean anomaly and semi-major axis variations are only short-

periodic and display essentially no growth characteristics. A

plot of the difference in position between the source trajectory

and the converged solution is shown in Figure 15. The 400 ft.

bias between positions is relatable to the error bias in the

estimated eccentricity parameter at epoch (e0). The slight
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time variations in the position differences arise from small

errors in the eccentricity and mean anomaly rates.

Analysis of the functional properties of the partial

derivatives used in the least-squares convergence shows that

two of the state variables have similar sensitivities to the

data;

af5 % ar5
aw am (3.51)

This lack of separability arises primarily from the poor

geometrical configuration from which the Doppler measurements

are taken. Plots of the functional behavior of the five basic

partial derivatives used in the solution are shown in Figures 16-18.

The presence of these nearly equal sensitivities among the state

parameters leads to high correlations in the (H W H)
-1 

matrix.

These correlations lead to linear combinations among the state

parameters being estimated. For this particular solution very

high correlations (p 1.91) exist between the following sets of

parameters:

Correlation Coefficient Parameter Pair 

- . 98 I ,S2
0 0

.97 I ,w
o o
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Linear combinations among the Keplerian parameters can be viewed

as a measure of observability. Hence the slight biases obtained

in the converged solution can be ascribed to these equal sensi-

tivites among some state variables and to the aliasing effects

of the unmodeled short-period variations.

The second data simulation was generated for a Lunar

Orbiter III (Apollo type) orbit. This data span contains

tracking data from the same three stations and is approximately

10 hours in duration. The epoch date and initial conditions

for this orbit are:

Epoch Date: August 30, 1967 20 hours 55 min.

Initial Conditions: (Selenographic)

a = 6,457,093 ft. e = .04348376

I = 20°899211 0 = 63°970000

w = 354°05800 M = 194°90793

The Doppler residuals (A170 associated with this solution are

shown in Figure 19. As in the previous solution, these residuals

are systematic and have the general shape and form of the

urimodeled short-period variations. The residuals have a mean

of -.016 fps and a standard deviation a= .08 fps.

The thirteen Keplerian parameters found for this

solution are the following:
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e
0 
=

e1 =

.04363890

-.22143541 x 10
-9

I
o 
= 20°902504

I
1 
= .75197331.x 10

-6
deg/sec.

Q =
0

63°984837

0_ = -.14299451 x 10
-4

deg/sec

2 
= .52154323 x 10

-10
deg/sec

2

w
o 
= 354°05553

wl = .23548454 x 10-4 deg/sec

0,2 = -.81426635 x 10-10 deg/sec2

M
o 
= 194°89384

M
1 
= .045951285 deg/sec.

M
2 
= .26356956 x 10-1° deg/sec2

The associated semi-major axes found are:

a
o 
= 6,457,426 ft.

a = 6,456,214 ft.

Variations in the eccentricity and the Euler angles of this orbit

are shown in Figures 20 and 21. Semi-major axis, mean anomaly,

and position differences are shown in Figures 22 and 23. As can

been seen from Figure 20 the inclination parameter has a bias

error at epoch and a slight slope error. The ascending node

parameter (see Fig. 21) has only a slight slope error. The semi-

major axis difference has a bias of 150 ft. The position

difference has a slight error trend and a bias of 150 ft.
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Again an examination of the functional properties

of the partial derivatives used in this solution reveals that

three of the state variables have virtually identical sensi-

tivities to the data (see Fig. 24-26)

ar5 = p f5 = ap
DO TU DM

(3.52)

High correlations in the solution [HT W H]-1 matrix were found

to exist between the following sets of parameters:

Correlation Coefficient Parameter Pair 

-.95

.99

.98

.98

.97

.99

.99

.99 w
1 1

Again the slight biases and trend errors experienced

in the convergence are a reflection of the equal sensitivities

among the state parameters and the aliasing effects of short

period variations.
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The overall results of these simulations show that

the empirical orbit determination method can be used to

accurately estimate long-period orbital element variations

arising from the non-central features of the moon, from earth

and sun perturbations, and from solar radiation. This analysis

shows the largest single error source is the lack of separability

of dynamical effects from the Doppler measurements. Analysis

has shown (for Doppler data) the only way of enhancing these

sensitivities is to choose earth based tracking stations with

the greatest north-south separation relative to the lunar orbit

and to have simultaneous tracking coverage from these stations

whenever possible.

The set of Kepler element rates, orbital elements, and

associated weighting matrices obtained from this pseudo data

analysis will be used to determine a set of triaxial lunar

coefficients. The results of that procedure will be discussed

in the next chapter.



CHAPTER IV

HARMONIC ESTIMATION

The gravity field determination is performed in

a second weighted least-squares processor which uses as input

the Kepler element rates, the estimated Kepler elements, and

a weighting matrix and outputs a set of spherical harmonic

coefficients (see Figure 27). The perturbation equations are

of the form

= F(Z,F,t) (4.1)

where p is the vector (nxl) of gravity coefficients.

C
p

=
(4.2)

The error function to be minimized for this estimator is:

e = (k 
T 

k*) A(k - k*) (4.3)

where A is the (5x5) weighting matrix introduced in the pre-

vious chapter, k* is an estimate of k.

LEAST SQUARES PROCESSOR 

Since the gravity parameters appear as linear

functions in the perturbation equations, then (4.1) can be

expressed in the following form:



R(tk)

Altk)

LONG-PERIOD

PERTURBATION

EQUATIONS

EMPIRICALLY

DETERMINED

KEPLER

ELEMENT RATES

 d 

FIGURE 27 - GRAVITY COEFFICIENT ESTIMATION
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R* = F(R)137* (4.4)

where F is a (5xn) matrix of partial derivatives of the Kepler

element rates with respect to the gravity coefficients:

F(k) =

Be  Be  Be  .
ac 
20 

BC
.em 

as 
21

. . .
am   am  am  .
ac
20 

ac
tm 
'as

21

(4.5)

The error function can be written in terms of the gravity

coefficients as follows:

= (IT - FP)
T
 A(k - Fp*) (4.6)

The minimum of the error function is found by setting Se = 0.

The resulting equations are:

EFTm/-1 T
F Ak

s-r-s

(nxl) (nxn) (nxl)

(4.7)
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where p is the best estimate of the lunar gravity parameters.

TRIAXIAL FIELD DETERMINATION (PSEUDO DATA) 

In order to demonstrate the dynamical continuity

between the empirical orbit determination and harmonic estimating

processors, the two pseudo data convergences presented in the

previous chapter will be used to find the triaxial (C20 and C22)

lunar coefficients assumed in the source trajectory. The

nominal values of these terms used for pseudo data generation

are as follows:

C
20 

= -2.07108x10
-4

C22 = .20716x10
-4

Since the orbital period of the Orbiter V satellite

is 3.2 hours and the data span 21 hours, this converged solution

contributes seven sets of Kepler element rates and elements

to the harmonic estimator. The Orbiter III satellite has an

orbital period of 2.1 hours and a data span of 10 hours, con-

sequently this solution contributes five sets of Kepler elements

and element rates.

The numerical values for the lunar triaxial coefficients

as obtained from the pseudo data Orbiter III and Orbiter V con-

vergences when used as input to the harmonic estimating processor

are as follows:

C
20 

= -2.09x10
-4

C
22 

= .209x10
-4 (4.9)
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Since this entire process is one of parameter identifica-

tion (See Appendix E) and many of the state variables are subject

to systematic errors and biases, it is questionable whether

the terms on the diagonal of the [F
T
AF]

-1 
matrix can be

regarded as variances of the C20 and C22 estimates. The

principal detriment to making this assumption is the fact

that A weighting matrix used in the process is not truly the

covariance matrix of the input Kepler element rates. The

normalized non-diagonal terms in the [F
T
AF]

-1 
matrix do reflect

the true measure of correlation between the C
20 

and C
22 terms.

The correlation coefficient between these two terms for this

harmonic determination is p = .08.

Analysis shows when each of these solutions was used

separately for a coefficient determination the numerical re-

sults obtained varied. The most significant aspect of using

only single satellite solutions for gravity determination is

that the correlation coefficient between the parameters in-

creases. The harmonic estimation results from using each

satellite independently are given below:

SATELLITE
NUMBER

ESTIMATED
HARMONICS

CORRELATION
COEFFICIENT

ORBITER V C20 = -2.056x10-4

a22
-4 p=.98

=
.219x10

ORBITER III
20

-2.044x10
-4

p=.99
C
22

= .668x10-5
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The small correlation coefficient associated with

the multi-satellite solution has an important physical inter-

pretation. Basically a high correlation reflects the in-

separability of gravity effects in the harmonic estimator.

Since the gravity coefficients each affect different orbits

in different ways, using solutions from as many orbits as

possible reduces this inseparability. Optimum separation of

dynamical effects is achieved by using data from orbits of

many different inclinations. The gravity estimation errors

associated with multi-orbit solutions are then laraely a function

of the degree of accuracy of the estimated Keplerian states

and rates. For the case of single orbit solutions, the

presence of high correlations in the [F
T
AF]

-1 
matrix also tends

to confuse the estimation process. This notion of separability

of dynamical effects becomes very important in the actual deter-

mination of the lunar field.

In order to obtain a quantitative measure of the tri-

axial solution given by (4.9) a comparison is made between it

and the nominal triaxial values (4.8) using numerically inte-

grated eauations of motion. The comparisons, covering a

one day period, are made both for the Lunar Orbiter III and V

orbits. Differences in each of the Kepler elements, position,

and velocity are shown in Figures (28-35). The position errors

developed over the Lunar Orbiter V trajectory are small and

attain a maximum value of 60 ft. The velocity errors are also
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small,reaching a peak value of .05 fps. For the case of the

Lunar Orbiter III trajectory the position errors are even

smaller, attaining a peak value of 25 ft. and the velocity

errors attaining a value of .025 fps.

DISCUSSION

The dynamical compatibility of this empirical

selenodesy method has been established in this chapter. It

is significant to note at this point that the method is de-

pendent on the following:

1. Doppler tracking data of free-flight quality

(thrust-free).

2. Tracking coverage relative to the satellite

orbit which provides the best geometrical con-

figuration possible (good north-south station

separation).

3. Tracking of satellites from many different

inclinations so as to attain the best overall

coverage of the moon.

These points are re-emphasized since in the next chapter of

this investigation the empirical method is applied to actual

Doppler data. Of the three points mentioned, none are actually

achieved for the case of real data.



CHAPTER V

DATA ANALYSIS

In the previous two chapters, the theory and equations

for this empirical selenodesy method have been developed

and a controlled pseudo data analysis has been presented to

illustrate the dynamical consistency of the method. The purpose

of this chapter is to present and discuss the results obtained

when this method was applied to actual Doppler tracking data.

DATA SET UTILIZED 

As mentioned earlier in this study, large amounts of

Doppler tracking data were acquired during the lunar orbits of

both the Lunar Orbiters (I-V) and the Apollo (8, 10, 11, 12, 14,

and 15) missions. Almost all the tracking data acquired during

the photographic portions of the Lunar Orbiter missions includes

propulsive attitude control maneuvers performed at such a high

frequency (about every three hours) that these data cannot be

used for selenodesy purposes. Even the Lunar Orbiter data from

the extended mission phases (primarily that used in this analysis)

contains some minor propulsive thrusts. Data from all the

Apollo 8 mission and large portions of the Apollo 10, 11,

and 15 missions contain propulsive thrusting. The extended

mission phase Lunar Orbiter data was used to determine the

lunar gravity field presented in this study since it is not

only the largest but also the most complete (but far from

complete in an absolute sense) data set gathered to date.
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The free-flight quality data from parts of the Apollo 11,

12 and 14 missions were used as control data to test the

quality of the lunar field obtained. The small amount of

Apollo data which is of free-flight quality cannot be used in

the method since these data are from either nearly circular, or

nearly equatorial orbits and the method as it has been developed

becomes near singular for orbits of this type.

The epoch times, length, and number of tracking stations

of the various data arcs used in this analysis are listed in

Table III. No data from the Orbiter IV satellite were included;

since earth perturbations were the most dominant for this orbit,

it was assumed to have only minimal lunar gravity informa-

tion content. The length of the data arcs used in orbit deter-

mination solutions varies from a minimum of about eight hours

to a maximum of thirty-six hours.

ANALYSIS OF ORBIT DETERMINATION SOLUTIONS 

Two different sized parameter sets representing the

satellite Keplerian state in lunar orbit were used. The first

set contains eleven parameters (e0 el, 10, Q0, Qi, wo, (1)1,

Mo, Mi, M2) and was used exclusively when the Doppler data span was

twelve hours or less. The second solution set contains thirteen

parameters (e0, el, e2, Io, 00, 01, 02, wo, wl, w2, Mo, M1, M2)

and was used when the data span was greater than twelve hours.

Analysis with pseudo data showed that this choice of parameters

should be adequate to model the long-period variations of the

satellite.
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TABLE III

LUNAR ORBITER DATA ARCS

SATELLITE EPOCH (DAY, MO., YR.) LENGTH (SEC) STATIONS

ORBITER I 31.41180556 Aug. 1966 75,989 3
1.32430556 Sept. 1966 88,889 3
4.22916667 Sept. 1966 84,000 3

13.84722222 Sept. 1966 81,000 3
14.81597222 Sept. 1966 81,000 3
15.78263889 Sept. 1966 108,670 3

ORBITER II 8.85938421 Dec. 1966 92,700 3
10.55208333 Dec. 1966 32,760 3
29.61805556 June 1067 34,26° 2

ORBITER III 20.60000000 Feb. 1967 93,290 3
21.68055556 Feb. 1967 86,000 3
27.97222222 Feb. 1967 89,280 3
2.38194444 Mar. 1967 75,000 3
5.16666667 Mar. 1967 110,800 3
6.83958333 Mar. 1967 97,740 3
24.21527778 Mar. 1967 31,380 2
11.48611111 April 1967 46,080 2

ORBITER V 18.31111111 Aug. 1967 63,000 3
19.09027778 Aug. 1967 88,000 3
20.11111111 Aug. 1967 119,450 3
21.49652778 Aug. 1967 119,068 3
24.21180556 Aug. 1967 87,928 3
25.22847222 Aug. 1967 59,340 3
26.25208333 Aug. 1967 85,000 3
27.28819444 Aug. 1967 70,468 3
2.52777778 Oct. 1967 29,880 2
3.54166667 Oct. 1967 43,200 2

17.38194444 Nov. 1967 38,040 2
21.31944444 Nov. 1967 33,568 2
29.86111111 Jan. 1968 112,618 3
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TABLE IV PHYSICAL CO'ZSTANTS

I. ASTRODYNAMIC CONSTANTS

Gravitational Parameters:

P,

Pe

uo

= .1731300417087798 x 10
15

= .1407646853278542 x 10
17

= .4686697671960888 x 10
22

Mean Lunar Radius:

R
e 
= .570239501312336 x 10

7

Ft
3
/sec

2

Ft
3
/sec

2

Ft
3
/sec

2

Ft.

Angular Velocity of Moon's Rotation:

y = .2661703316891657 x 10-5 Rad/sec

Velocity of Light in a Vacuum:

c = .9835711942257218 x 109 Ft/sec

STATION LOCATIONS

STATION GFOCFNTRIC COORDINATFS

Radius, Ft.'Latitude, Deg. Longitude, Deg.

Goldstone, Calf.
(DSS12)

Woomera, Australia
(DSS41)

Madrid, Spain
(DSS61)

Madrid, Spain
(DSS62)

20,905,479

20,907,326

20,898,911

20,898,927

35.118640

-31.211390

40.238540

40.263490

243.19483

136.88779

355.75129

355.63246

III. DOPPLER DATA WEIGHT

IV. SOLAR ACCELERATION

w = 1
2

a
a = .00213 Ft/sec

F = 3.973 x 10
-7 

Ft/sec
2
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Table IV contains a list of the tracking station

locations
30 

and all the astrodynamical constants
31 

assumed known

and fixed in the orbit determination program. The positions

and relative velocities of the earth, sun, and moon are obtained

from Jet Propulsion Laboratory Ephemeris Tape DE-19.
32 

The

least-squares orbit determination program reads the necessary

information from this tape during the convergence process.

The rate of convergence for each orbit determination

solution varied as a function of the orbit, the data arc length,

and the number and locations of earth based stations used. In

general each convergence process took about five to six iterations.

The numerical particulars associated with a typical solution for

each of the Lunar Orbiters (I, II, III, and V) will now be

discussed.

Representative residuals from Lunar Orbiter I,

II, III, and V orbit determination solutions are given in Figures

36 and 37. The residuals associated with each of these convergences

have the statistical properties listed in Table V.

TABLE V

SATELLITE RESIDUAL MEAN (fps) RESIDUAL STD. DEVIATION (fps)

ORBITER I -.010 .108

ORBITER II -.012 .090

ORBITER III .006 .053

ORBITER V .003 .068

As can be seen from the figures the residuals associated with

the Lunar Orbiter I and II convergences presented have a larger
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peak amplitude. Each of these residual plots also possesses

points of irregularly large amplitude relative to the remainder of

the span. These irregularities in the residuals most likely

correspond to low thrust attitude control maneuvers performed

by the spacecraft.

An analysis of the [HTWH]-1 matrix for each of these

solutions shows that many of the Keplerian parameters are

extremely highly correlated. Table VI presents a summary of the

highest correlations for each of these four convergences.

TABLE VI SOLUTION CORRELATIONS

SATELLITE PARAMETER PAIR CORRELATION COEF:

ORBITER I
Q0'

QI'

wo

wl

-.9999

.9999

ORBITER II I
0 
, 0

o
-.9908

2o' wo
-.9998

1'
w
1

-.9995

ORBITER III I 
o 
, 52o -.9938

I 
o 
, w

o
-.9946

2o' wo
-.9998

Q
I'

w
1

-.9985

ORBITER V I 
o 
, S2o .9948

I 
o 
, w

o
-.9903

2o' wo
-.9843

Q
1' 1'

.9948

These correlations represent the largest found in

each [H
T
WH]

-1 
matrix. There were other correlations present of

large magnitude (p = (.91). For the case of each Lunar Orbiter
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satellite presented almost the identical correlation pairs

reoccur. These correlations reflect the basic difficulty of

using Doppler measurements at lunar distances to separate the

dynamical properties of the Euler angles of the orbit. It should

be noted that this situation is particularly amplified for the

case of the Lunar Orbiters since in most cases the satellite was

only tracked by one earth-based station, thus losing the geome-

trical enhancement of a second or third tracker.

The thirty data arcs used for orbit determination

solutions contributed one hundredninety-nine sets of states and

rates for lunar gravity determination. The factors used in defin-

ing the degree and order of the lunar field to be determined from

these sets of Keplerian rates and elements will now be discussed.

A PRIORI COEFFICIENT SELECTION

The work of Muller and Sjogren
33 

has provided conclusive

evidence that rather large near-surface mass concentrations

("mascons") are present in the near-side lunar maria regions.

The existence of these non-central mass concentrations has a sig-

nificant impact on the application of Equation (2.20) for

describing lunar gravity. Accurately representing a "mascon"

moon mould require spherical harmonic coefficients of

high order and degree. In mathematical terminology, the presence

of "mascons" causes the convergence rate of (2.20) to be very

slow.

In theory then the proper approach to modelina the

lunar gravity field is to seek a spherical harmonic coefficient

set large enough in degree and order to represent all the non-

central lun.ar features. In practice however, due to the
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incomplete Doppler data set and due to a lack of far side

Doppler measurements, lunar gravity solutions involving large

numbers of harmonic coefficients have high correlations in

the [F
T 
AF]

-1
 matrix and in general have poor overall numerical

characteristics.

Analyses were made using the harmonic estimating program

with pseudo data input from numerically integrated long-period

perturbation equations (assuming a nominal seventh degree and

order field). Long-period trajectories for each of the Lunar

Orbiter missions were simulated. When a solution set of degree

and order seven or larger was sought, the nominal values of

the field (as could be expected) were recovered with good accuracy.

An analysis of the correlations in the [F - AF]
-1 

matrices for

these solutions (for Lunar Orbiter tracking coverage) showed

that a great many harmonic coefficient pairs (C20 & C
40'

C
30 

& C
50 

etc) were very highly correlated. This correlation

is totally a consequence of the incomplete data set used.

When subset gravity solutions (for example a complete fifth

degree and order field) were sought from the Keplerian rate data

generated from the seventh degree and order field, the numerical

values obtained were very different from their nominal values.

Basically, the higher degree harmonics which had been omitted

from the solution set were aliased into the lower ones due to the

existing large correlations. Had a complete data set (data

covering all latitudes and longitudes) been used, then ortho-

gonaiity would be induced in the [FTAF]-1 matrix and the

subset values recovered would be the nominal ones. Since the
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spherical harmonic expansion (2.20) is essentially a three

dimensional Fourier series in spherical coordinates, this

orthogonality can only be achieved when:
34

l ytm Yhk da
sphere

0 if .fA or 17112.

47 (t+m)! 
(1-m) ! (2t+1)(2-6 )om

for t=h and m=k

where: Y
tm
(0,X) = P

m
(sinfl[C

tm 
cos mA + S

tm 
sin mX]

(5.1)

and where the Kronecker delta (5
om 

is equal to 1 for m=0 and 0

for m0.

This discussion of the "mascons" and the lack of

orthogonality associated with the existing Doppler data is

introduced as background for the rational process used in choosing

a harmonic coefficient solution set. The basic strategy

assumed in this analysis is to obtain the largest coefficient

set possible while incurring a minimum of high correlations in

the [F
T
AF]

-1 
matrix. It is a foregone conclusion that, with

the data available at this time, it is not possible to determine

a lunar gravity field which truly represents all the localized

fine structure near-surface mass inhomogeneities. The only

attainable goal of this data analysis then is to derive a more

accurate global lunar gravity model.
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A LUNAR GRAVITY FIELD 

Solutions varying from degree and order three to

degree and order seven were attempted from the one hundred

ninty-nine sets of Kepler element rates. All solutions ob-

tained above degree and order four contained very large

numbers of parameter correlations in the solution [F
T
AF]

-1

matrices. When these solutions were applied to the tracking

data from the Apollo orbits, both the fit and prediction

characteristics obtained were very poor. As a result of

this situation, the lunar harmonic coefficient set determined

in this study is of order and degree four.

Analysis of the numerical characteristics of the

full fourth degree and order solution revealed two important

points. First, the C20 and C40 zonal coefficients were still

highly correlated (p = .86). Second, the solution contained

very little direct information in determining the C22 harmon-

ic. In performing the least-squares gravity estimation, the

entry in the F
T 
Ak vector associated with C22 was essentially

zero (other components were of significantly larger magni-

tudes). Hence the estimate of C
22 

was dominated by correla-

tions present in the [F
T
AF]

-1 
matrix.

In order to circumvent these numerical problems,

both the C
20 

and C
22 

terms were fixed in the gravity deter-

mination to values obtained by Koziel
35 

in studying the physi-

cal librations of the moon. The values used are the following:
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C
20 

= -.2056 x 10
-3 I

C
22 

= .2258 x 10
-4 f

(5.2)

The fourth order and degree field lunar gravity

field (with C20 and C22 fixed) is given in Table VII. The cor-

relation matrix associated with this solution is given in Table

VIII. As in the pseudo data analysis previously presented,

this gravity estimation process is subject to systematic

errors and biases. Hence the diagonal terms of the [F
T
AF]

-1

matrix cannot be regarded as variances of the estimated terms.

The residuals associated with each of the five element

rates and this fourth order field are shown in Figures 38-40.

These residuals have the statistical properties listed in

Table IX.

TABLE VII

GRAVITATIONAL FIELD DETERMINED FROM LUNAR

ORBITERS I, II, III, AND. V

2, m C
km 

x 10
4

S
Zm 

x 10
4

2 0 -2.0560* ---
1 .0537 .0617
2 .2258* -.0017

3 0 .2216 ---
1 .3575 .0820
2 .0210 .0340
3 .0301 .0055

4 0 .0543 ___

1 -.0677 .1195
2 .0443 .0106
3 .0136 .0066
4 .0027 .0043

*Fixed in solution.



TABLE VIII

GRAVITY SOLUTION CORRELATION MATRIX

30 C31 C32 
c
33 

c
40 

c
41 C42 C43 C44

s
21 

s
22

s
31 S32 S33 

s
41

s
42 

s
43

s
44

C
21

-.02 .06 -.11 .11 .25 .59 -.69 .41 -.14 .18 .15 .03 .43 .08 • -.21 .05 .25

C
30

-.09 -.08 . 01 -.39 .17 .08 1 .01 -.03 .04 .05 -.05 .19I-.01 -. 5, .06 .01 .07

C
31

-.03 .04 -.34 .18 -.1 I .051 .05 .33 -.08 .06 .17: -.05 .56' .01 .29 .002

C
32

.06 .01 -.13 .22 .01 .09 -.18 .33 -.01 -.15 -.04 -.2 .81: .23 .13

C
33

.03 .07 -.01-.01 ; .28 .04 -.18 .001,-.02 -.06- .08. .02I .39 .43

C
40

.06 -.11 .21I-.08 -.12 .07 .01 -.35 -.02 -.03 -.24,-.15' .02

C
41

-.53 .43H.13 .38 .04 -.64 .4 -.06 .34 -.11 .17 .15

C
42

.07 .3 -.15 -.18 .11 -.66' .12 -.20 .19i .07 -.11

C
43

.26 .21 .01 -.16 .-.15!-.34: .36 -.22 -.01, .04

C
44

-.15 -.13 .02 -.16i-.4 :-.22 .21 .21 .09

S
21

-.23 -.13 .18 .09 .84 -.25, .4 .05

S
22 .04 .09 .16 -.18 -.14 -.12 .33 ,

S
31

!-.06 , .06! .03 -.02H-.08 .02

S
32 -.06 , .06 .08 .1 .04

S
33

.07 .04 .05 .11

S
41

-.32 .26 .03

S
42

.24 .21

S
43

-.06

CO



— 109 —

co
o

• w
<I

ILI

Lu

0

X

.5

0

.5

1

.4

.2

—.2

—.4

/

8

0
camm\
0
o

/
e

000
n

Q4kb

4

\
0 040

.,
8 ow0,

00

o
a

e
0

0

0

<klo,
o
oil

.
' A f
N 

a
0

,J0
o 0
o
o D

o o
0

o

D /

0

4a

a
0
0/

0 o
o

o

\
%

e
oeo o

o

o

0

op

0
0 100

NO. OF DATA POINTS

A; VS NUMBER OF DATA POINTS

200

GID

01%6

100

Mit

000

de

0. coo
gip

LO

 COM

Mkt
quo

0 100

NO. OF DATA POINTS

Ai VS NUMBER OF DATA POINTS

200

FIGURE 38



— 110 —

A
e
l
 x
 1
05

 (
D
E
G
/
S
E
C
)
 

A
c.
,)
 x 
1
05

 (
D
E
G
/
S
E
C
)
 

.8 Al%

.6  

.4

.2  

0  

—.2

.4

.5

aro
aI

NoGfts

••• Mao

aro
soseiskvor

0

0

—.5

 toloop-4 

100

NO. OF DATA POINTS

ASZ VS NUMBER OF DATA POINTS

o
a

WOO

0

ia"
%IN

Olt

100

NO. OF DATA POINTS

o
o

o

o

o

6o \

200

o
o
o
o
o
o 41111°
o
o

o

o

o

o

Ath VS NUMBER OF DATA POINTS

/
69

200



A
M
 x
 1
06

 (
D
E
G
/
S
E
C
)
 

.4

.2

0

.2

—.4

.6

—.8

— 111 —

o
o
o

•

coodilly oo

o

o
o
o

o

eo 

o

o
0

o
o
o
o 
o
o
o

Qt.

00) 

o
o

4 .09
0 100

NO. OF DATA POINTS

AM VS NUMBER OF DATA POINTS

FIGURE 40

200



- 112 -

TABLE IX

Kepler Element
Rate

Residual Mean
Residual Std.
Deviation

é -.272 x 10
-9

.345 x 10
-8

i -.836 x 10
-7

Deg/Sec .170 x 10
-5 

Deg/Sec

:2 .127 x 10
-5 

Deg/Sec .265 x 10
-5 

Deg/Sec

w -.965 x 10
-6

Deg/Sec .374 x 10
-5 

Deg/Sec

A -.915 x 10
-7

Deg/Sec .327 x 10
-6 

Deg/Sec

As can be seen from the Kepler element rate residual plots, the

errors are systematic in each case.

Equipotential surfaces have been calculated for this

lunar gravity field and are shown in Figures 41 and 42. These

surfaces are computed by finding the radial deviations to a spher-

ical potential (generated with the field point at the mean lunar

radius). The variations are quantized in thousand foot incre-

ments. The basic equipotential surfaces of this gravity field

are those of a triaxial ellipsoid. The solid line on the

surfaces indicates the equipotential line for the reference

potential (zero deviation from spherical potential). These

surfaces show three large areas of potential excess. The first

of these is centered about latitude q) = 25°N and longitude

X = 10°E. This region very closely corresponds to the Mare

Serenitatis region of the moon. The two other areas of poten-

tial excess are located at latitude (p = 5°S,longitude X = 117°E
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and latitude (I) = 10°S,longitude X = 170°W respectively. Neither

of these two areas corresponds to an identified lunar maria

region.

The second-degree harmonics in the potential are direct-

ly related to the moments and products of inertia of the moon.

The relations between the gravity coefficients and the moments

and products of inertia are:
36

C
20 

=
1  [A+B

mkRe2 
2 c] C

22 
= 

1 
2 
(B-A)

4m(Re

(5.3)

E D F 
2 2

C
21 
- S

21 
- S

22 
....

mkRe mkRe mkRe
2

where A, B, C are the three principal moments of inertia
(A =I 

xx 
,B=I 

YY 
,C=I

zz
) and D, E, F are the products of

inertia (D =I 
yz 
,E=I 

xz 
,F=I 

xy
). Since equation 5.3 con-

tains five equations in six unknowns (A,B,C,D,E,F) one addi-

tional relationship is needed. From studies of the lunar

physical librations the quantity

C -A
13, - B (5.4)

has been determined. The numerical value used is that computed

by Kozie137 from heliometer observations (3 = 6.294 x 10-4).

Hence given the five second degree harmonics and f3, the follow-

ing set of principal momekits and products of inertia are found:
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A = .3983208 mkRe
2

D = .617 x 10
-5 
me

e
2

B = .39841118 mkRe
2

E = .537 x 10
-5 
me

e
2

C = .39857195 mkRe2 F = -.17 x 10
-6 

m R
e
2

The imprecision in the harmonics and the simplifica-

tions in the theory relating B to the inertias make the quality

of these numbers somewhat poor.

EXTRAPOLATIONS 

In order to measure the orbit determination and

prediction qualities of the field obtained, it was applied

to Doppler data not used in its generation. Specifically,

the data used was acquired during the orbits of the Apollo 11,

12, and 14 missions (Apollo 15 data is not available at this

time). The orbit determinations were performed using a standard

least-squares processor which obtains a best estimate of a

rectangular state vector at some epoch.

-1 —7
= [H

T 
WH] H

T 
W Ap

0
(5.5)

This process is identical to that given by (3.31) with the

exception that ko is a six vector of position and velocity

and the H matrix contains the partial derivatives of the

Doppler with respect to the rectangular state at epoch. This

best estimate of the state is then used to predict the Doppler

outside the span of data used for the convergence.

Orbit determination solutions were obtained by fitting

one front side pass of Doppler data from several stations. This
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particular data length was chosen since it puts maximum stress

on the orbital period prediction capability of the model. Once

a converged solution is obtained, the Doppler data is predicted

for the next three orbital periods to test the extrapolation

capabilities of the model.

The data used from the Apollo 11 and 12 flights are

from near-circular orbits with radius vectors of about 60

nautical miles (n.m.) above the lunar surface. The Apollo 14

data is from a slightly elliptical orbit (e = .0258) with an

apolune of 60 n.m. above the surface and a perilune of 8 n.m.

above the surface. The data from the Apollo missions, since

they are collected from orbits very near the lunar surface,

reveal many gravitational perturbations not present in the

Lunar Orbiter data.

Converged solutions were obtained using the fourth

degree and order gravity field. Doppler residuals for both

the one pass fit and three passes of prediction for each of

these Apollo orbits are shown in Figure 43. The Doppler

residuals in each of these convergences are still systematic

and an order of magnitude above the noise level of the data.

The three orbital period prediction is characterized by a

secular growth (period errors) in the residuals for each case.

Both the systematic nature of the regressed Doppler and the

growth in Doppler residuals during prediction reflect the in-

complete nature of this fourth order field.

In order to obtain a relative perspective on the

quality of orbit determination and prediction attainable,
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convergences were also performed on these data using two other

gravity models. The first model, the L1 field (see Table

is used by the Manned Spacecraft Center for Apollo mission

planning. The second model, developed by Liu and Laing,
38 

is

a fifteenth degree zonal and eighth order tesseral model (84

harmonics). This model represents the latest result from the

indirect (long-period) analysis method.

The orbit determinations were again performed by

fitting one pass of data and predicting the Doppler for the

nexi three periods. The residuals associated with each of

the fit and predictions for these two gravity fields are shown

in Figures 44 and 45. Again both the Doppler residuals for

the fit and prediction, for each field, have systematic errors.

Both of these models, especially the fifteenth degree field,

are characterized by secular growth in Doppler residuals of

the prediction. Table X lists the statistical properties of the

one pass Doppler residuals for all three models.

TABLE X

ORBIT MODEL RESIDUAL MEAN (FPS) STD. DEVIATION (FPS)

Apollo 11 4 x 4* -.011 .166
L1 -.0015 .039
15 x 81- -.023 .463

Apollo 12 4 x 4 -.0029 .136
L1 -.0042 .104
15 x 8 -.022 .353

Apollo 14 4 x 4 -.0016 .187
L1 -.0055 .159
15 x 8 -.0304 .526

*Fourth degree and order model
tFifteenth degree and eigth order model
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For these Apollo orbits, the L1 field achieves slightly better

convergence statistics than the fourth degree field. However,

the fourth degree field predicts the Doppler with an error rate

of about 50% less than L1. Of the three fields compared, the

fourth degree field most accurately describes the orbital varia-

tions arising from the non-central features of the moon.



CHAPTER VI

SUMMARY AND CONCLUSIONS

This study has presented an empirical method for

determining the spherical harmonic coefficients of the lunar

gravity field. This method uses a two-step data reduction and

estimation process. In the first step, a weighted least-squares

empirical orbit determination process is applied to Doppler

tracking data to estimate long-period Kepler orbital elements

and rates. Each of the Kepler elements is represented by an

independent time function. The long-period perturbing effects

of the earth, sun, and solar radiation are modeled explicitly

in this orbit determination process. Kepler element variations

estimated by the process are ascribed to non-central

lunar gravitational features. Doppler data are reduced in this

manner for as many orbits as are available. In the second step,

lunar gravity coefficients are determined using another weighted

least-squares processor which fits the long-period Lagrange

perturbation equations to the estimated Keplerian rates.

Pseudo Doppler data have been generated simulating

two different lunar trajectories. The perturbations included

were triaxial lunar gravity harmonics, the earth, sun, and

solar radiation pressure. Orbit determinations were performed

using the empirical processor and the long-period orbital

element variations obtained. The Kepler element rates from

these convergences were used to recover the triaxial lunar

gravity coefficients. The overall results of this controlled
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experiment show that lunar gravity coefficients can be accurately

determined and that the method as a whole is dynamically consist-

ent. The pseudo data analysis shows the necessity of having

Doppler data from different orbital inclinations for good

selenodesy results.

The method has been applied to Doppler data from the

Lunar Orbiter I, II, III, and V missions. One hundred ninety-

nine sets of Kepler element rates were obtained for lunar gravity

field determination. A gravity field of degree and order four

is derived from these Kepler element rates. Equipotential

surfaces from this gravity field show the lunar mass distribution

to be that of a triaxial ellipsoid with three large areas of mass

concentration. The largest and by far the most dominant of

these areas is centered very near the Mare Serenitatis region

and covers a large portion of the near side of the moon. The

other two regions of mass concentration are located on the far

side of the moon but do not correspond to any specific mare

region.

This gravity field has been investigated using data

from several of the Apollo missions. Orbit determination solu-

tions (using a standard least-squares processor) from these data

show that this fourth degree field results in improved orbit

predictions as compared to those using other lunar gravity fields.

A11 solutions indicate the lunar field models are still incomplete.
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There are three major areas of this investigation

which are original. The first is the development and applica-

tion of an empirical orbit determination method for lunar orbits.

The second is the derivation of a selenodesy method based on

empirically determined Kepler element rates. The third is the

generation of

(presented in

method. This

a fourth degree and order lunar gravity field

this study) from Lunar Orbiter data using this

is the only indirect type selenodesy method that

truly estimates long-period orbital element variations.

This study demonstrates the necessity of obtaining

more tracking data from lunar satellites at different orbital

inclinations (specifically in the I = 26° to 85° gap). Only

when this has been accomplished will correlations diminish

between the various spherical harmonic coefficients and then

an accurate gravity field will be determined.

It is recommended that a version of this method

which is determinate for both near-circular and near-equatorial orbits

orbits be applied to Doppler tracking data from the Apollo 15

Sub-satellite and any future lunar orbiters.



APPENDIX A

TRANSFORMATION FROM' ORBITAL ELEMENTS' TO STATE

The rectangular state components (T-,17) are found

from the orbital elements, T., using the following set of

non-linear relationships:

r = [R
T
] q

where the entries to the R
T 

matrix are:

and:

r
11
r
12
r
13
r
21
r
22
r
23

r
31

r
32

= cos C2 cos w - sin 0 cos I sin w

= - cos 0 sin w - sin St cos I cos w

= sin 0 sin I

= sin Q cos w + cos 0 cos I sin w

= - sin 0 sin w + cos Q cos I cos w

= - cos Q sin I

= sin I sin w

= sin I cos w

r
33 

= cos I

=

a(cos E - e)

a✓1-e sin E

0
..o

•

(A-1)

(A-2)

(A-3)
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The eccentric anomaly, E, used in these equations

is found, given M and e, by solving Kepler's equation.

E - e sin E = M (A-4)

The velocity is found as follows:

where:

q

•
v = [R

T
] q

- sin E

A7-e7 cos

0

p( i(a

(1-e cos E)

Hence the state R can be found from K at any time using

A-1 and A-5.

TRANSFORMATION FROM STATE TO ORBITAL ELEMENTS

(A-5)

(A-6)

Given (i,T7), the orbital

follows:

elements are obtained as

R =rxv (A-7)

= tan
-1
 [11 / -h (A-8)

1 2j

= tan-1 1.)/h12+h22 / h3
(A-9)
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where hl, h2, h
3 

are the components of E.

= [S]i• (A-10)

where the entries to the S matrix are:

s
11

= cos 0

s
12

= sin 0

s
13

= 0

s
21

= - sin S2 cos I

s
22

= cos 0 cos I
(A-11)

s23 = sin I

s
31

= sin 0 sin I

s
32

= - sin I cos R

s
33

= cos I

then:

w + f = tan
-1
 (ID /

2 - 11

=

a =

- h
2 
/ r

2

r p Q

(2p,- rv
2
)

1/2

e = )1 - h
2 
/ 11,, a

(
cos E =

a - r) 
ae

(A-12)

(A-15)

(A-16)
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sin E =  rr (A-17)
e IfEC

f = tan
-1 [ /1 e sin E 

cos E - e
(A-18)

M = E - e sin E (A-19)



APPENDIX B

DOPPLER MODEL EOUATIONS

The Doppler frequency shift data is modeled using

the range difference method.
39
 The estimated Doppler observable,

p, can be computed over some counting interval (typically

sixty seconds) T, using

(see Figure B-1).

_

4 
= r*

the

P4

following

\\

set of range equations

- r
sr 

(tr) (B-1)
c

=P3 *
tr

p \

- r
st r

3 P4)
c (B-2)
]

P2

r* tr
T )- r

sr 
(tr - T) (B-3)

P2
/p
1 P2

Ti = tr
rsr tr - T (3-4)

c

and r* = r + r
em

CB-5)

where r
em 

is the earth-moon distance. pi, p2, p3, p4 are

the topocentric ranges of the satellite,
sr 

and
st 

are the
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receiving and transmitting station positions in earth centered

inertial coordinates, tr is the Doppler time (at the end of

the counting interval) and is the time the signal is acquired

by the receiving station, c is the speed of light, and T is

the length of the counting interval.

The equations for these four ranges are solved

iteratively. The estimated observable is found as follows:

• 1
= 3 + - 1 4. (B-6)

where P is expressed in units of length per time. This value

of p is considered valid at the time t = t
P 

- -r c
4



APPENDIX C

PARTIAL DERIVATIVES

I. PARTIAL DERIVATIVES OF DOPPLER WITH RESPECT TO STATE

The partial derivatives of the Doppler data with

respect to satellite position and velocity are:
40

DP

ar

In these equations:

p 
3

p3
_

p 2

P P3 3 P4 P4 P4 

3
P4

p 

4 
2

- • -
• • -

ap = 1 P3 
1

3 2 Lp3 P4T7

P4- = r- * tr

• •

P4- = 
r- *

It

r* I tr

t Tr T -

P4

P4)
p3 = r* -r T c

dpi
and Pi = ITil, dt

P4

c

P4

c

r
st

- 
(tr -

.

- r
sr 

-

(tr.

(tr

Pi • Pi

Pi

r
st

rsr

T [P3 
4- 

P 
1
4j

2

T

2

%
[1°3 P 4..;

2

(C-1)

(C-2)

(C-3)

(C-4)

(C-5)

(C-6)
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II. PARTIAL DERIVATIVES OF STATE WITH RESPECT TO KEPLER

ELEMENTS 

The partial derivatives of the satellite state

- -
(r,v) with respect to the Kepler elements (a,e,I,Q,w,M) are:

where:

3q- -
3e

9r = r
Da

r
3e 

= [R] 1
3 

3e

-a
2

q2 

r(1-e
2
)

q1c12 

r(1-e
2
)

0

z sin Q

- z cos

y cos Q - x sin Q

3r - =
3Q

x0

Dr
= [T] q

Dco

(C-7)

(C-8)

(c-9)

(C-10)

(C-11)

(C-12)
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where: tll = - cos sin w - sin cos I cos

t12

t13

=

=

- cos 2 cos

t23 = t33

w

o

sin cos I sin

t
21
t22
t31

t
32

=

=

_
-

- 
_

sin sin

 - sin cos

sin I cos w

sin I sin

(.1)
COs

cos

52 cos

cos

I cos

I sin
(C-13)

Dr
= [R] BM (C-14)

where:

40.

- aq2

Bq
=

.2a 4:
e_

r
ae) (C-15)

BM

o

By 
= v (C-16)D a 2a

Dv
= [ R (C-17)

Be

Bq
Be

• 7 2 r
q1 la L2

1\ ri

V %a

r2/1-e
2

(q 11
a ) 1-e2

2
q1
r

q2

a 
(1_,e2)

2

2
q2 (C-18)
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where

v

•••••

Z sin 0

- Z cos 0 (C-19)a I

y cos 0 - x sin 0

••••

By •
x (C-20).57
0

4.0

•
Bv = Pr] q (C-21)
aw

Dv 
= - n( 

r
?- 

3 
) r

' 
(C-22)

DM

n =

III. PARTIAL DERIVATIVES OF THE ORBITAL ELEMENTS WITH RESPECT

TO THE KEPLERIAN PARAMETERS 

A typical orbital element, eccentricity for example,

is represented in the following way:

e(t) = e
o 
+ e

1 
t + e

2
t
2 
+ de + Se

o 
+ Ae

SR
(C-23)

Although the variations arising from the earth, sun,

and solar radiation are functions of the Kepler state variables,
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analysis has shown this dependence to be extremely weak. As

a result the partial derivatives of the Kepler elements with

respect to the solution parameters do not include the third

body and solar radiation effects. It should be noted that the

omission of these small parts (on the order of one ten thousandth

the smallest existing term) does not affect convergence. Hence

the necessary partial derivatives are:

De
= 1

De
o

De _
De -
1

De _
De
2 
-

(C-24)



APPENDIX D

MEAN VALUE SEMI-MAJOR AXIS EQUATION FOR 

EARTH PERTURBATIONS

The mean value calculation for the semi-major axis

of a lunar satellite under earth perturbations is carried out

using a procedure following Danby's
41 

for the sun perturbations

on the moon's orbit about the earth. Essentially this method

finds an equivalent mass for the three body system and using

this mass value and the Kepler motion equation, deduces an

adjusted semi-major axis value (mean value). The accuracy

to which this derivation is valid is of order e. Hence all

terms that are eccentricity dependent are assumed zero. This

assumption introduces only small errors for the purposes of

this investigation since all orbits used have an eccentricity

of e = .3 or less.

The radial perturbing force experienced by the satellite,

averaged over the satellite and earth periods is given as

follows:

2
n
. 

a
Fr = [1 - 3/2 sin

2 
I]2 (D-1)
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The total averaged radial force exerted on the

lunar satellite is as follows:

1-1(1

2 F- r
a

(D-2)

If an equivalent mass, u, is defined this radial force can then

be obtained from an equivalent central force law. Hence

or
ti
= u k

p __
Fr

a
2 - 

a
2 (D-3)

2

1 + 
n
e 

(3/2 sin2 I - 1)] (D-4)
2n

2

The mean value of the mean motion for third body perturbations

is given by Anderson
42 

and is as follows:

where n
o

n =

a
o

case) of the semi-major axis. Using equations D-4 and D-5 an

equivalent Kepler motion law can be written for the perturbed

motion.

2
n

n
o 
11 - 4 ;- (1 - 3/2 sin2 I).1
! 

(D-5)

and a
o 
is the average value (constant in this
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-3 -2 %
a n = p (D-6)

where .; is the desired mean value of the semi-major axis. Solving

this equation using the expressions for n and u, the mean

value expression for the semi-major axis is as follows:

2

a = ao 
n
e
21 + (1 - 3/2 sin

2

n
(D-7)



APPENDIX E

WEIGHTED LEAST-SQUARES' DATA REDUCTION 

The covariance matrix for the Doppler data weighted

least-squares process, assuming zero mean errors in the

estimates, is found by forming the expected value of (AK AKT)

using equation (3.31);

Exp (AK AKT)= 
EHTTATH3-1 HTW Exp (TT TTT) WEEHTWE3-1

(E -1)

If it is now assumed that the residuals are serially uncorrelated

and are normally distributed random variables such that

Exp (p() KTT) = (E-2)

(where a
2 
is the variance of the Doppler measurements and T is

the identity matrix) and the wei.ght used in the least-squares

processing is the inverse variance of the Doppler,

then

2'),
W = [a 11

-1

Exp (AK AKT) = [HTWH]-1

(E -3)

(E -4)
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It is only under these conditions that the [H
T
WH]

-1 
matrix is

the true covariance matrix of the process.

If conditions (E-2) and (E-3) are not satisfied, the

T -1
[H WH] matrix is not the covariance matrix. For the case of

the empirical orbit determination processor neither of these

conditions can be met since the residuals are systematic and

are also serially correlated. Hence no interpretation of

variance is made of the diagonal terms in the [H
T
WH]

-1 
matrix.
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