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ABSTRACT

A new method has been devised to determine the
spherical harmonic coefficients of the lunar gravity field.

This method consists of a two-step data reduction and estima-
tion process. In the first step, a weighted least-squares
empirical orbit determination scheme is applied to Doppler
tracking data from lunar orbits to estimate long-period Kepler
elements and rates. Each of the Kepler elements is represented
by an independent function of time. The long-period perturbing
effects of the earth, sun, and solar radiation are explicitly
modeled in this scheme. Kepler element variations estimated by
this empirical processor are ascribed to the non-central lunar
gravitation features. Doppler data are reduced in this manner
for as many orbits as are available. In the second step, the
Kepler element rates are used as input to a second least-squares
processor that estimates lunar gravity coefficients using the
long-period Lagrange perturbation equations.

Pseudo Doppler data have been generated simulating two
different lunar orbits. This analysis included the perturbing
effects of triaxial lunar harmonics, the earth, sun, and solar
radiation pressure. Orbit determinations were performed on these
data and long-period orbital elements obtained. The Kepler

element rates from these solutions were used to recover triaxial
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lunar gravity coefficients. Overall results of this con-
trolled experiment show that lunar gravity coefficients can be
accurately determined and that the method is dynamically
compatible with long-period perturbation theory.

This selenodesy method has been applied to Doppler
data from the Lunar Orbiter I, II, III, and V missions. One
hundred ninety-nine sets of Kepler element rates are obtained
for gravity field determination. A lunar field of degree and
order four is derived from these rates. Equipotential surfaces
from this gravity field show the lunar mass distribution to be
that of a triaxial ellipsoid with three large areas of mass con-
centration. The greatest and by far the most dominant of these
areas is centered very near the Mare Serenitatis regién and
covers a large portion of the front side of the moon. The other
two regions of mass concentration are located on the far side of
the moon but do not correspond to a specific maria region.

This gravity field has been investigated using data
from several Apollo missions. Orbit determinations from these
data show this field results in improved orbit predictions when
compared to those using two other gravity fields. All solutions

indicate the lunar gravity field models are still incomplete.
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CHAPTER I

INTRODUCTION

GENERAL

Observational measurements obtained from earth
based tracking of satellites in close lunar orbits provide
a unique data source for the identification of lunar gravity
parameters. An accurate knowledge of the lunar gravity
field is essential for mission planning and for real-time
navigation, guidance, and control of the spacecraft for
lunar missions. It is also of scientific interest since
knowledge of the gravity can be correlated to physical mass
concentrations. A number of gravity fields have been obtained
from these data. However all have fairly poor prediction
qualities. The object of this investigation is to develop
a method which can be used for more accurate determination of
lunar gravity parameters.

DATA SOURCE

Since 1966 the United States has successfully
injected eleven satellites in close lunar orbits. The length
of each of these parking orbits is given in Table I.
Data was obtained using the three stations of the Deep Space
Network (DSN) during the Lunar Orbiter flights, and by seventeen
stations of the Manned Space Flight Network (MSFN) during

the Apollo missions. The basic data types gathered by each



TABLE I
SATELLITE PARKING ORBIT TIME
LUNAR ORBITER I 76 DAYS
LUNAR ORBITER II 335 DAYS
LUNAR ORBITER III 243 DAYS
LUNAR ORBITER IV 70 DAYS
LUNAR ORBITER V 179 DAYS
APOLLO 8 20 HOURS
APOLLO 10 62 HOURS
APOLLO 11 62 HOURS
APOLLO 12 86 HOURS
APOLLO 14 68 HOURS
APOLLO 15 144 HOURS

tracking station consist of Doppler frequency shift and

range data. Since using the range data requires an extremely
accurate knowledge of the lunar ephemeris, this data type

is not used for lunar orbit determination or selenodesy. The
Doppler data is relatively insensitive to lunar ephemeris
errors; hence it is the only data used.

Two types of Doppler data are used: two-way and
three-way data. For the case of two-way data a signal is
transmitted by a station, frequency shifted by the satellite,
and retransmitted to that same station. In the case of three-
way data the signal is transmitted by one station (master
station), received and frequency shifted by the satellite,

and retransmitted to the master staions and to any other stations



(slave stations) which are in the line-of-sight of the satellite.
Essentially, the Doppler data type measures the relative velocity
between the station and the satellite. No data are acquired
when the satellite is occulted by the moon. The tracking
stations use very sensitive double-conversion superheterodyne
automatic-phase-tracking receivers. The transmitter, receiver,
and station timing are driven by very stable atomic frequency
standards. The stability of the Doppler frequency-shift data
is a direct function of the frequency standard and is on the
order of one part in 1012-

All the tracking data gathered to date covers a
restricted region of the lunar surface. The inclinations of
the Lunar Orbiters were limited to two regions, low inclinations
between 10° and 21°, and a high inclination of about 85° (see
Figure 1). The inclinations of the Apollo missions ranged
from about 178° to 154° (retrograde orbits). (See Figure 2).
Hence there exists a large gap in the tracking coverage in the
region between 26° and 85°. Any anomalous areas in the lunar
mass distribution existing in the untracked region produce only
secondary variations in the orbits that have been tracked and
consequently are very difficult to determine accurately.

Attitude control maneuvers performed by the satellite
have damaging effects on the overall usefulness of these data

for selenodesy purposes. In the case of Lunar Orbiter the
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APOLLO 10, 11

(1=178% APOLLO PERILUNE APOLUNE
ALT. ALT.
{km) {(km)
8 95 95
10 95 95
1 95 95
12 95 95
APOLLO 8,12, 14 14 13 95
(168°) (95)* (95)*
15 13 95
(95)* {95)*
*POST MANEUVER
APOLLO 15
(154°)

FIGURE 2 - APOLLO ORBITAL GEOMETRY



attitude control system was not coupled in either the pitch

or vyaw direction. During all of the early Apollo missions

(8, 10, and 11) a large number of attitude control maneuvers
were performed using only one thruster quad. In each case

the effect of these maneuvers was to produce not only the
desired rotation but also a translational velocity for the
satellite. The trajectory of the satellite is noticeably
disturbed by these propulsive maneuvers. As pointed out by
Lorelll, in theory these effects can be modeled; but in
practice it is a very difficult and costly operation. Further,
because of engineering uncertainties and incompleteness of
telemetry records, the reliability of results would be question-
able. Every precaution possible is taken during the course

of this analysis to use tracking data which is of free-flight
guality (thrust free).

REVIEW OF PREVIQUS METHODS

Two general methods have been used to obtain lunar
gravity fields; the direct method and the indirect method
or long-term selenodesy method.

The direct method, principally used by Langley
Research Center, attempts to estimate the gravity field
from the Doppler tracking data. In this method the solution
parameter set is augmented to include both dynamical state
variables and lunar harmonic parameters. Large batches of

tracking data covering long time periods from many satellites



are used. Results obtained by Michaelz, Tolson and Gapcynski3,
and Gapcynski, Blackshear, and Compton4, are representative
of this method.

In the indirect method solutions are obtained using
a two-step process. The first step is to regress Doppler ob-
servations spanning about one day using an assumed gravity
field to determine the satellite state at some particular time.
The osculating states generated are averaged for each satellite
period to obtain a mean value of the Kepler elements for that
particular orbit. This process is repeated for each available
day of tracking data. The second step in this method involves
fitting the long-period perturbation equations to the Kepler
element variations. The lunar gravity determination is
accomplished by numerically integrating the perturbation
equations and differentially correcting a set of gravity param-
eters so as to give a best fit to the Kepler element variations.
The results obtained by Blackshear, Compton, and Schiesss,
Lorell6, and Risdal7, demonstrate this method.

OUTLINE OF THIS INVESTIGATION

A new method for determining the lunar gravity
field is developed which uses an empirical orbit determination
(Oop) and the long-period perturbation equations. The gravity
determintion is a two step process as in the indirect method.
The empirical OD, represents the Kepler orbital

elements of the satellite as a six—-dimensional time series.



The functional form chosen for each orbital element is that
which best represents the long-period and secular variations
in the orbital elements. In the first step of the process,
tracking data is reduced to obtain simultaneous estimates

for the orbital elements and the orbital element rates. This
process is repeated for as many different spans of data and
different satellites as are available (see Figure 3). In the
second step, the perturbation equations, linear in the gravity
parameters, are solved using the orbital elements and element
rates to obtain a field (see Figure 4).

This method differs significantly from the long-
period approach that has been previously used in that the
Doppler data reduction uses no assumed model and directly
estimates a mean orbital element state. Further and perhaps
most importantly, the simultaneous estimation of Kepler
states and rates makes each solution independent of the next

with respect to the gravity parameter estimator.
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CHAPTER 1II

DYNAMICAL FORMULATION

The motion of a close lunar satellite is governed
by a perturbed Newtonian gravitational law of attraction.
The perturbations arise from the non-central properties of
the lunar mass distribution and from the disturbing effects
of the gravity fields of the earth, the sun, and other planets.
These perturbing attractions are small; their effects are at
least one thousand times less than the inverse square attraction
of the moon.

The general equations of motion for a satellite

referenced to an inertial moon centered coordinate system is:

K|

2 —
g—- =-u& J% + a

(2.1)
dt2 r d

where r is the position vector, H( is the product of the lunar
mass and the universal gravitational constant, and Ea is the
sum of all the perturbations. Although the perturbations are
small numerically, their integrated effects are non-negligible
and produce changes in the satellite's orbit.

The purpose of this chapter is to present the
basic equations of Newtonian or Keplerian motion. These
equations will be extended to account for a primary gravity
field of arbitrary mass distribution and to account for the

perturbing effects of third bodies (e.g., the earth and sun).
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NEWTONIAN MOTION

The equations of motion for a satellite located
at position-r in a moon centered inertial system under the

influence of an inverse square (Newtonian) gravity field are:
r = _u«% (2.2)
r

These equations possess closed form solutions which characterize
particle motion as follows:
1. The particle moves in a plane passing

through the center of mass and has a

constant angular momentum h = ¥ x v

which is perpendicular to this plane.

2. The path of the motion is a conic section.

Since the equations of motion (2.2) are a set of
three second order differential equations, a complete solution
is uniquely specified by six integration constants. Geo-
metrically, these constants are usually interpreted as the

classical Kepler elements given below (see Figure 5).

a - semi-major axis of the orbit

e - eccentricity of the orbit

I - inclination of the orbital plane
Q - longitude of the ascending node
w = argument of pericenter

T - time of pericenter passage.
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The variables a and e define the shape of the conic,
I, @ and 4 are the Euler angles which specify the orientation of the
orbit plane and axes, and TO locates the position of the satellite
in the orbit relative to pericenter. The time of pericenter
passage is relatable to the mean (M), true (f), and eccentric

(E) anomalies using the following conic relationships:

u
M(t) = /—%- (t—To) (2.3)
a

M(t) = E - e sin E (elliptical orbit) (2.4)
_ -1 l+e E
f =2 tan [ 1-e tan 2] (2.5)

The satellite state is defined as a six vector of position

and velocity;

T .
(2.6)

% |
i}
R
il
)

v

Correspondingly the satellite Keplér element vector is a

six vector of orbital elements

(7

~l
il

(2.7)

€ O H O

=




The Kepler elements at any instant of time are non-linear
fi'nctions of the satellite state and vice versa (see
Appendix A):
x = x(k) (2.8)
k = k(x)

It is important to note here that the entire Newtonian develop-
ment is based on an inverse square force law which assumes a

spherically symmetric gravitational potential of the form:
- He
U(r) = - (2.9)

Potential used here has the opposite sign to that used for
potential energy in physics.

PERTURBED MOTION

If the satellite is now assumed to be under the
gravitational influence of a primary planet (moon) of
arbitrary non-homogeneous mass distribution, and of other
planets, the gravitational potential of the satellite
has the form:

- Mg —
U(r) = = + R(r) (2.10)
where R is the disturbing function arising from the non-
central effects. The equations of motion for the satellite

now become:
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2

= r
r =790 = -y, =+ =R (2.11)
L r3 or
where a, = -— R and V is the gradient operator. With R # 0

d " BT

the Kepler orbital elements in general become functions of
time. Since the non-central portion of the gravity field is
small in comparison to the central part, the magnitude of
variation in the Kepler elements is also small. The three
second order differential equations (2.11) describing the
perturbed satellite motion can be transformed into the orbital
coordinate system using the method of variation of arbitrary
constants8 to obtain the time rate of change of the Keplerian
elements (perturbation equations). The result is that the

satellite state is now specified by six first order non-linear

perturbation equationsg:

(2.12)

2
de _Vl-e _.2 3R _ 3R '
= > [:\/l e ——] (2.13)

dt nale 3 dw

do _ ll:gi 1 3R _cot IR (2.14)

dat = 2 e de 2 51 *
na 1-

e (2.15)



R
%% = gsc L [%os I %; - %g} (2.16)
na W¥l-e
aM _ 1 |1-e® 3R, L3R (2.17)
dt na ae Je Ja ‘
X
where the mean motion n = — - In vector notation these
a

equations have the following general form:

&k - Kb (2.18)
In order to carry out a solution for the equations, the
disturbing function R must be specified and expressed in
orbital plane coordinates. _The disturbing function assumed
in this investigation will have components arising from the
non-central part of lunar gravity, RQ, earth and sun pertur-
bations, Re and R@, and solar radiation pressure, RSR'

Hence,

R = RQ+R6+R®+R (2.19)

SR

LUNAR POTENTIAL FUNCTION

The general form accepted by the International

Astronomical Unionlo

in 1962 for the representation of the
lunar gravity field is the spherical harmonic expansion
expressed in selenographic coordinates. The selenographic

coordinate system is moon fixed and oriented such that the



X-y plane is the lunar equatorial plane, the X-axis coincides
with the mean earth-moon line through Sinus Medii, and the
z-axis is directed along the moon's mean spin axis. The
selenographic axis system rotates about the z-axis of the
inertial system with a sidereal period of 27.32 days.

The lunar gravitational potential is the solution
to the Laplace equation (VZU=0) in spherical coordinates and

is expressed as follows:

R 2
e m, .
(7?) P2 (51n¢){F2m cos m A +

(2.20)

3
m=0

y 00
U(rl¢l>\) =_I§ 1 + Z
=2

Szm sin m A}

In this equation Re is the mean radius of the moon, P "

L

is the associated Legendre polynominal, (r,¢,A) are the
selenographic radius, latitude, and longitude, and Clm’ Szm‘
are the gravitational parameters which describe the non-

central features of the lunar field. The obijective of this

}

investigation is to determine a finite set of {Cgm' Szm

which accurately describes the lunar field. It is assumed

that the origin of coordinates is located at the center of

mass of the moon. Using this assumption, the terms of first
degree (2=1) are omitted from the expansion since they repre-
sent center of mass displacements in each dimension. The terms
of degree & and order m=0 are known as 2zonals and are symmetric

about the z-axis. Terms of degree % and order m are called



tesserals (2#=m are sectorials) and are functions of all three
dimensions. The potential of the moon is related to its

density distribution D as follows:

U(T) = G]II _Dx) g (2.21)
|lr - r'|

where G is the gravitational constant and T' is the distance
to the mass element.
Two examples of the perturbations in the potential,

one for an even degree 2zonal, C and one for an odd zonal,

207
C3O' are shown in Figure 6.

The disturbing function for the lunar potential is:

"¢
R = U(xr,¢,0) - (2.22)

where U here is given by equation (2.20). The disturbing
function can also be represented as the sum of zonal and
tesseral terms.

n

R, = U (2.23)
L 22; 2;; im

where each particular term, UQm’ is

m . .
U = g ;IFT P, (sin¢)(C . cos m x + 5, sin m A) (2.24)
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FIGURE 6 - PERTURBED POTENTIALS



A general formulation for transforming each term
in the disturbing function of a primary body has been
developed by Kaulall. During the course of this derivation
the spherical harmonic potential is converted from the
selenographic spherical coordinate system (see Eqg. 2.20)
to the Kepler elements referenced to the inertial
system. The basic assumption in this derivation is that
the inertial and selenographic systems share a common
equatorial plane and that the selenographic system rotates about

the polar (z) axis of the inertial system (see Figure 7).

- N

FIGURE 7 - ROTATING COORDINATES.
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The disturbing potential expressed in orbit plane

coordinates is:

R¢ (k) Z i u( T P(I,e)s mpq (w,M,2,0) (2.25)
m=

_‘—

where . +oo
P(I,e) = ;;; £ Fzmp(I)Gzpq(e) (2.26)
and
Fomp(D) = § 01 :iz;:;::; 5 (22-2€) sin? ™2t 1

i (m) cos®1 Y. (2-m-2t+s) ( s )(-l)cmk (2.27)
&= S c c p-t-c

(p, 9, t, 8, ¢, and k are dummy indices)

where k is the integer part of i&%EL , t is summed to the

lesser of p or k, and ¢ is summed over all values which

make the binomial coefficient nonzero.

The function Gzpq(e) in equation (2.26) is defined

as follows:

- (-1 lal +22‘lqlz 2k
g@ = ulTas? el ) w0, 08 (2.27)

where
e

B = (2.28)
l+;l—e2
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T = i 22728 )T [-2pt4gie | T (2.29)
quk r=0 h-r x! 2 |

and

h
“2P'\ 1 | (1-2p'+q)e]f
Qpqk = Z ( ) a—[ T :l (2.30)

h=k, qg'>0; h=k-q', qg'<0
p'=p, a'=q for p</2

p'=2-p, q'=-q for p>&/2

Also in equation (2.25)

C 2-m even
im
Slmpq = cos[(2-2p) w+ (2-2p+g)M + m(Q=-06)] +
“Sem J2-m odd
(2.31)
S 2-m even
Lm
sin[ (2-2p)w + (2-2p+gq)M + m(Q-8)]
C

tm j2=m odd

and 6 is the angular displacement between the inertial and the

graphic axis systems.
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The effects of the Uzm disturbing term can be
approximated by using standard perturbation theory conceptslz.
Essentially each term gives rise to short-period and either
long-period (and very long-period) or secular variations in
the orbital elements. As applied to this dynamical system,
short-period variations are those which are periodic with a
period of an integer multiple less than the satellite orbit
period. Long-period variations are again periodic with a
period which is an integer multiple less than the period of
the moon (28 days). Very long-period variations have a
period less than the period of the perifocus rotation.
Secular variations are nearly linear in time. Examining
equation (2.31), these different types of variations are

associated with the following factors:

1. Short-Period: (2-2p+g)M
2. Long Period: m(Q-9)
3. Very Long-Period: (2-2pluw
4. Secular: (2—2p) = (2=-2p+g) = m = 0
Analysisl3 has shown that the long-period satellite

dynamics can be accurately determined from Doppler tracking
data. This form of the perturbation equations, the long-period
equations, can be obtained by averaging the lunar disturbing

function, R , with respect to the mean anomaly.
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_ 1 27
R, = —_l[ R«‘dM (2.32)
O

This calculation was also carried out by Kaula and the result
simplifies (2.25) to the following:
2 L

= R
Ry = E: u( —— P'(I,e) S
¢ 2=2 m=0 ¢ a“+1 2mpg (w,2,6) (2.33)

where g = 2p-% only and

k
P'(I,e) = z; FQmp(I)Glpq(e) (2.34)
p=0
Fzmp(I) is given by (2.27) and Gqu(e) is:
' . —- t
1 1 2-1 2d+2-2p"\ 2d+2-2p
G (e) = — (—)
*pq (1-e2)*" 172 43 \2a+e-2p d 2
(2.35)
in which
p' = p for P < /2
p' = &4-p for p > 2/2
, .
and ngpq(w’ﬂ'e) is
C 2-m even
_| Tam _ _
Simpq = & cos [(2-2p)w + m(R=-6)] +
2m

£¢-m odd



g £-m even
im sin [(2-2p)w + m(R-6)] (2.36)
CSLm
L-m odd

It should be noted here that this entire long-period averaging
procedure is accurate to the first orderl4. (Terms of order 92
and above are neglected.) The long periodic variations experi-
enced by ﬁ« can be either long-periodic in the ascending node
(m # 0), very long-periodic in the perifocus (& - 2p # 0), both,
or secular (m = 0, 2 = 2p). The secular variations are associated
only with zonal perturbations of even degreels. (Very lona-
periodic variations are also experienced by these terms.) Zonal
terms of odd degree have only very long-periodic variations.
Tesseral and sectorial terms have both periodic and long-periodic
variations.

Since the disturbing function, ﬁ«, is independent of

the mean anomaly, two of the perturbation equations (2.12 and

2.13) simplify to:

da _ (2.37)

(2.38)

[oT)
IS8
Q2
€

ol
o
v

Nfo

N
(o]
|

Therefore, to first order exactness, the semi-major axis of
the orbit is a constant of the motion.
The complete analytical equations specifying the

long-period dynamics of a satellite under the influence of
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a moon of arbitrary mass distribution are given by (2.37),
(2.38), (2.14), (2.15), (2.16), (2.17), (2.33), (2.34), (2.27),
(2.35), and (2.36). As an example of the form of long-period

equations, the perturbation equations for the C20 zonal term

and the C22 sectorial are presented:
For C20:
da _ de _ dI _
ac - ac ~a - 0 (2.39)
2
n C R
ae _ 3 20 e
at -~ 2 2.2 (a) cos I (2.40)
(1-e7)
2
C R
do _ 3 T %20 (e) 2
_— = 5 —7 — (1-5 cos“I) (2.41)
dt 4 (l—e2)2 a

2
C R
dM _ 3 20 e) 2 ]
— =n - = — (3 cos“1I-1) (2.42)
at [ T 1-02)372 (a

For C22:
da _ de _
&= I 0 (2.43)
2
3n C R
dr _ 22 e . . -
g = 5 (?;> sin I sin2(Q-9) (2.44)
(1-e™)
2.
3n C R
%% = ____53% (15) cos I cos2(n-8) (2.45
(1-e7)



dw _ 3, %2 (% i s2(2-8) (5sin’I - 2) (2.46)
e~ 3" 1-a52 \a co S .
5 .
dM 9 Re sin2I cos2(q=-6)
E=n l+§'C22'5— 2 3/2 (2.47)
(1-e7)

For both sets of perturbations the dynamical equations are
coupled non-linear equations (linear in the gravity parameters).
A principal difference between the zonal term and the sectorial
(and this is true in general) is that zonal perturbation
equations are autonomous whereas the others are not.

EARTH AND SUN PERTURBATIONS

The disturbing function for a third body (earth or
sun in this case) located at f3 on a satellite located at r

has been computed by Brouwer and ClemencelG.
u 2 3
3 r ( 1 3 2 ) r ( 3
R, = = | {— - 5+ 35 cosy) + | - 5 cosy +
3 rs [(r3) 2 2 (r3) 2
(2.48)

5 3
§COSW)+...:]

where M3 represents the third body mass and ¢ is the
angle between r and E3 (see Figure 8) and f3 >> r. This
expansion is accurate to third order. In order to

obtain the long-period portion of this disturbing function,

it must be averaged over the satellite orbit.



—29

\
~

ma; THIRD BODY MASS

FIGURE 8 - THIRD BODY LOCATION
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The averaging with respect to the anomaly of this

disturbing function has been performed by Liu and Lorell17

and has the following form:

(2.49)
— L [% _.W
R, = —= |F. + F
37 ;|2 3|
where
_ a\? 1 2 2,2 382 2
F, = (__) = [— (1+3/2 e%) + 3A%(2e“+1/2) + —— (1-e7)
r3 2 2
(2.50)

3
F, = % (—a) Ae[:-;(1+3/4 e2) - 5a%(e243/4) - 12 B2 (1-e2>]
r3 4

(2.51)

and A=u -+ P, B=u + Q. u is the unit vector in the direction
of the third body, P is a unit vector to the perifocus and o)
is a unit vector in the orbit plane orthogonal to P.

Hence, the total dynamical effect on a satellite
in lunar orbit due to either the earth or sun is formed by
evaluating the perturbation equations using (2.49) as the
disturbing function.

PHYSICAL LIBRATIONS OF THE MOON

In the derivation of the lunar disturbing function
RQ it is assumed that the selenographic axis system to which
the gravity parameters are referenced rotates about the polar
axis of the ineftial system. 1In addition to this polar

axis rotation, the selenographic system undergoes additional



small rotations about all three axes due to precession and
physical librations. Since these rotations are not included
in the analytical formulation a correction must be applied
to the long-period equations. Analysis18 shows these effects
can be eliminated if the selenographic system fixed at epoch
is used.

SOLAR RADIATION PRESSURE

The perturbing effects of solar radiation pressure
have been derived by Kozailg. The variations in the orbital
elements are:

AaSR =0 (2.52)

(first orxrder approximation)

E
2
\/ 2
Ae = - Hl-e Il a¥V1-e? cos 2E+B*(l sin 2E-2esin E+§E)|
SR a n2 4 4 2
By
(2.53)
AISR = FC* | cos w [(l+ez)sin E - % sin 2E - 5 eE] +
a ngl—e:
E, (2.54)

l—e2 sin w [cos E - % cos 2E]

B

1
*
Adgp = = > F?V' > | sinw [ (1+e®)sin E - % sin 2E - %eE] -
an sinIVl-e
E, (2.55)
Vl—e2 cosw [cosE - % cos2E]
E



Aw = =F I A*Vl-e2 (e sin E +

SR a LZe

sin 2E - E) +

==
NIw

E2 (2.56)

cos 1 AQSR

B* (e cos E - % cos 2E)

Ey

AMgp = 2F | A* [(l+e2)sin E - % sin 2E - %eE] -
an
Ea
\/ 2 e 2
B* ¥1-e“ [cos E - 7 cos 2E] - ¥Yl-e (AQSR + cos I AQSR)
E
! (2.57)

where F is the magnitude of solar acceleration and A* = P - U

B* = Q - Go’ C* = W - E®. E@ is a unit vector in the direction
of the sun, P, Q, W are vectors to perifocus, in the orbit
plane orthogonal to P, and normal to the orbit plane orthogonal

to P and Q, respectively.

2
~ S r
_ (A ® ®
F = (a)(—g-')(?) (1+v) (2.58)

where A is the satellite effective cross-sectional area, m is
the mass, S@ is the solar constant, r@ the distance to the sun,
v.is the reflection coefficient, and c.is the speed of light.
These perturbations are only acting on the satellite
when it is in sunlight. A test used to determine the sun's

visibility is (see Figure 9):
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FIGURE 9 - SATELLITE SUN GEOMETRY
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la] < |8] perturbations are zero
la| > |8] perturbations are present
where . -1 Re |
8] = |tan 3?, (2.59)
-1 =yep!
la] = [eos™h 2L (2.60)
and
r'=r -T (2.61)
SUMMARY

The perturbation equations for the long-period
motion of a lunar satellite under the gravitational influence
of a primary of arbitrary mass distribution and the earth,
sun, and solar radiation are presented. The general form

of these dynamical equations is as follows:

d
H% = 0 (2.62)
de E: deﬂ,m .\ dee .\ de@ .\ deSR
at dt at dt dt (2.63)
2 ,m
ar E: MTym, o Mo dIsr -
dt dt dt dt dt (2.64)
£ ,m
an _ E: dQQ,m . de . an . dfgp 265
at h dt dt dat dt .65)
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@_ _ Z dwg’m . dw . dw N deR ] )

at at ac ac 3t (2.60)
2,m

an Z am, o . am_ , am , Mg

at at at at at (2.67)

These long-period perturbation equations form an

analytical basis for the development of the empirical OD.



CHAPTER III

EMPIRICAL ORBIT DETERMINATION

One method of modeling the perturbed motion of a
lunar satellite is to represent each of the Kepler elements
of the orbit as an independent time functionzo. This repre-
sentation forms the basis of the empirical orbit determination
method. Using Doppler tracking data and a minimizing process,
estimates are obtained for the parameters which characterize
these time functions.

The purpose of this chapter is to present the
theory and equations used to represent the long-period motion

of the lunar satellite.

MATHEMATICAL THEORY

The long-period time dependence induced in each of
the Kepler elements by non-central gravity perturbations is
given by the perturbation equations (2.62-2.67).

dk

a? = f(k,t)

Since these equations are non-linear, general closed form
solutions are not obtainable. The non-central effects are
extremely small compared to the central body term; consequently

solutions can be approximated.



If an analytic quadrature is performed on each

perturbation equation, a set of integral equations results:

t
k(t) = kK(t ) +f f(k,t)dt (3.1)
°© t

The kernels, or forcing functions, appearing above are non-
separable, non-linear functions. If only the perturbations
arising from the lunar disturbing function are considered,

these kernels can be categorized into two types:

1. f(k,t) = £(k) (autonomous) (3.2)
2. f(k,t) = g(k)sin myt + h(k)cos myt (3.3)
m=1,2,3,...(perturbation order index)

where y (1/27.32 rev/day) is the rotational rate of the moon

(6 = ¥¢). (This categorization does not apply when the
standard Kepler elements become singular, for nearly circular,
nearly equatorial orbits. However, a similar approximation

can then be used with a modified orbital element set.) The

first or autonomous kernel corresponds to zonal perturbations,

and the second to tesseral and sectorial perturbations. If it is

assumed that for periods of time of 24 hours or less the
magnitude of variation in the Kepler elements is small, then
£(k), g(k), and h(k) can be considered constant.

Solutions to equations possessing autonomous kernels

1ave the following simple form:



k(t) = k(to) + f(to)(t—to) (3.4)

These solutions have the linear properties of secular variations.
Using the same time approximation made previously (as for 3.4),

solutions for the non-autonomous kernels can be given as follows:

k(t) = cy (t )+ CZ(tO)Sln m Y(t—to) + c3(to)cos m Y(t—to)
(3.5)
where Cir Coy and c, are constants and cl(tO) = k(tO) - c3(to).

If the time period of the data span (t-to) is

smaller than the period of a spherical harmonic perturbing term,

this solution can be expanded in a truncated Taylor series:

k(t) = El(to)+ 52(to)[m Y(t—to) + ]
(3.6)
_ 2.2 ,
+2,(t,) [1 - mzY (t-t ) + ]
or
K(t) = T_ + It + Kztz ... (3.7)

where thelzj

3§ represent vector constants.

Hence the functional form for the Kepler elements
which best represents the long period and secular effects
is that given by (3.7). Two typical Kepler elements (for

example Q(t) and e(t)) are represented as follows:



Q(t) = o + a.t (secular variation)

e(t) = e + e.t + e t2 (secular and long-
o 1 2 ; .
period variation)

The terms QO, Ql’ eyt Cqv and e, are examples of Keplerian

2

parameters determined by the empirical OD method.

Since the third body and solar radiation perturbations
affect the satellite state in orbit, these effects must be
included in the Kepler element equations. The actual six-
dimensional time series used to represent the Keplerian

motion of the satellite is:

a(t) = a constant (3.8)
2

e(t) = e, + elt + e2t + dee + Geo + GeSR (3.9)
2

= I

I(t) IO + Ilt + 12t + cSIea + 61@ + 8 SR (3.10)
_ 2

Q(t) = QO + Qlt + ta + 690 + 69@ + 6QSR (3.11)

w(t) = w_ + wt + w t2 + Sw_ + Suw_ + 8w (3.12)

o) 1 2 ® © SR ‘
M(t) = M +Mt+Mt2 (3.13)



where the orbital element variations 8k are found by numerical
integration. The third body and solar radiation perturbations
are those developed in the previous chapter. No explicit
third body and radiation pressure perturbations are modeled
for the mean anomaly. Hence the time-series for M(t) includes
the perturbations of the moon, earth, sun, and solar radiation.
The reasons for this representation are associated with the
semi-major axis estimation and are discussed later in this
chapter.

Terms of quadratic order are used in the time-series
since for the time periods (24 hours or less) over which
solutions are obtained, these will adequately (by conservative
standards) represent long-period perturbations of up to order
seven (m=7). (A harmonic perturbation of order seven has a
period of four days. Any one day segment of this harmonic can
be well represented by a quadratic function.)

DATA REDUCTION

The Doppler observation (6) is a scalar quantity
that is a non-linear function of the satellite state, k,
the relative earth/moon configuration and the earth-based
tracking station position and rotational velocity. During
the orbit determination only the estimates of the satellite

state are refined. The tracking data 5obs is related to the

satellite state as follows21 (see Appendix B)
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o (t) = plk(t)] + n (3.14)

obs

where n is the random noise associated with the physical
measurements. The measurement errors are assumed to have the

following properties:

Explnl = 0 (3.15)

(3.16)

i
Q

Exp[nZ]

where ExXp is the expectation operator and 02 is the variance
of the Doppler noise. Since the Doppler is a non-linear
‘function of the Kepler state, the output equation (3.14) must
be linearized about a reference trajectory.

If k(t) is the true Kepler state, k*(t) is the

reference state, and Ak the deviation, then

k(t) = k*(t) + ak(t) (3.17)
Using (3.14)
\x
5obs = o[k*(t)] + (?%) bk + ... 40 (3.18)
Defining Bp(t) = o o = plK* ()]

o\ %
and J(t) = (%ﬁ-)



the linearized relationship between the deviation in the

Kepler state and the deviation in the Doppler is:
s (t) = J ak(t) + n (3.19)

Using a similar procedure, a linear relationship
relating the Kepler state k and the parameter vector K can
be obtained. K is an (nxl) vector consisting of the solution

parameters

. H O 0O 0O o
o N O

(3.20)

Since these Keplerian parameters are constant over
the trajectory, an expansion of K can be performed about a

reference set K* at some time t,-

=i
t
I

R'*(to)+ Af(to) (3.21)

Since

o
i

E[K(to),t] (3.22)

then

—\*
— = sk —
k(t) = k[K*(to),t] +(;;) AK(to) + ...,



—\ *
or Ak = 3% AR (t ) (3.23)
9K

Deviations in the parameter set Aﬁ(to) are then linearly
related to deviations in the Kepler elements. The output
Doppler equation (3.19) can now be expressed in terms of the

solution parameters.

.'= 74 +
bp (L) H(t,) AK(t)) n (3.24)
where
. \* < *
w22
ok oK
The primary objective in orbit determination can be
simply stated as follows: Given a batch of Doppler measure-

ments valid at many times tl, t2, R find the set of

rl
Keplerian parameters which best fits these data. The linear
relationship between the Keplerian parameters and the Doppler

can be generalized as follows:

—
.

Ap = [H]AK + 7 + s (3.25)
where

Ap is the (r x 1) observation vector

H is the linearized set of functions

relating the observation and state

(r x n) matrix

AK is the column vectcr of Keplerian

parameters (n x 1)



n 1is an (r x 1) vector of observation noise

|

is an (r x 1) vector of systematic modeling
errors.

Since the Keplerian parameters K only attempt to
represent the long-period dynamics of the orbit, then at any
point in time there will always be a systematic residual (s)
associated with the unmodeled short-period satellite variations.
Various data smoothing techniques were used on the Doppler data
in an attempt to eliminate these short-period variations. None
of these approaches has succeeded. Attempts to model the short-
period variations directly in the empirical OD also have not
been successful,

Given the linear system of equations (3.24) the next
step in the OD process is to formulate an estimation scheme
which minimizes the estimation error and yields a best estimate
of the Keplerian parameters. If the random gquantities in the
dynamical system are assumed to be normally distributed, there

22 .. .
(least squares, minimum variance,

are three linear estimators
and maximum likelihood) which all would yield the same re-
sults and could be used for this function. However, since
the errors in the dynamical system are not random, and since

the data to be processed is in batches, the weighted least

squares estimator was chosen to perform the data reduction.



An error function, ¢, for r observations is given

as follows:

e = [VWY (V= 1+ 35) (3.26)
or

e = (0p - HAR)T W(ap - HAR) (3.27)
where for one data type W is an (r x r) diagonal weighting

matrix. For a minimum, the first variation of ¢ must

vanish;

6 = 0 = =(Ap - HK?)TW HSK - (H@E)?W(KE - HA%) (3.28)

where 2K is the value of K that extremizes ¢ and 6K is the

variation in K. Since this is a scalar equation,

0 = - (Ap - HAK) 'W H $K (3.29)

But 6K is arbitrary, hence

—_— ~

(Ap ~ HEE) WH = 0 (3.30)

Transposing and solving (W = WT):

ik = mrwuarmt 8T woap (3.31)
N~ \ -~ 7 \ - J
(n x 1) (n x n) (n x 1)
2 1

(for minimum §%¢ = 26K° [H'WH] © 6K > O for arbitrary 6K).
Since this minimization process was obtained by

‘linearizing a non-linear set of equations, the least squares
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estimation must be performed iteratively. The processing of
r Doppler measurements and the resulting set of differential

corrections AK constitutes one computing iteration. The

conve¥gence criterion for two successive iterations is as

follows:
r
. sb(ey
=1 (K-1) _ 1 <5 (3.32)
r . 2
L belty)
i=1 (K)
where § = 10-4 and (K-1) and K designate computing iterations.

The entries in the H matrix are the partial derivatives
of the Doppler with respect to the Keplerian parameters. These
terms are found by using the chain rule for differentiable

functions:

Q
e
Q
D e

(3.33)

=1

|
w1l
QO Q2
=1 1%
QL QL
=1 5

Each of the derivatives used in the above egquation is given
in Appendix C.

SEMI-MAJOR AXIS DETERMINATION

Studies using both pseudo and real Doppler data
have shown that the least squares process does not converge
when the semi-major axis is included as an independent parameter.
This condition was also observed by the Smithsonian Astro-

physical Observatory in earth satellite work23.



Since the mean motion of the orbit, even in the
presence of perturbations, is nearly inversely proportional
to the semi-major axis to the three halves power, then the
estimated mean motion can be used to imply a semi-major axis.
The constraint equation between the mean motion and semi-major

axis must include the long-period effects of the earth, sun,

and solar radiation and some representation for the lunar field.
The third body perturbations on the mean anomaly have been

24
given in the previous chapter. The L1 lunar gravity modél

(see Table II) developed by Langley Research Center is used.

TABLE II. L1 GRAVITY FIELD

_ ~4
C,y = -2.07108 x 10
C.. = 0.20716 x 10 2
22 .
C = 0.21 x 1074
30 .
c = 0.34 x 1074
31 .
C.. = 0.02583 x 10 4
33 .

The second degree terms in this model were deter-
mined on the basis of astronomical observations of the moon's
physical librations and hence can be assumed known to at
least one signigicant digit. The third degree terms were

obtained from previous analyses of Lunar Orbiter and Apollo

data.



The average value of the semi-major axis (ao) with
respect to mean anomaly is found by setting the mean anomaly
perturbation equation equal to the empirically determined
mean motion. Using equations (2.62) and (3.13), the following

relationship is made:

Moo= M)+ 2Mt
(3.34)
N Y . . . . . . . .
M = —= + M + M + M + M + M + M +M +M
a> C20 “22 %0 %1 Gz o SR
where Ml and M2 are the estimated Keplerian parameters. Since

this is a non-linear equation in ag it is solved using
Newton's Method. The value a, is the geometric average of the
semi-major axis under the perturbing influences of the Ll
lunar gravity field, the earth and sun, and solar radiation.
For the case of secular perturbations on an earth

-
25 has shown that a mean value of the semi-

satellite, Kozai
major axis a yields the average satellite position in the
orbit. This wvalue is derived such that the deviations in the

position of the orbit due to perturbations averaged over the

orbit yield only short-period variations.

1 27 ©
= Sr dM = z: cos(cM + g, ) (3.35)
2m o Z;—]_bz z

= - are constants.
where §Y rTRUE T ONG PERIOD and bg and dC



Hence the value a yields the proper mean position
over the orbit. Kozai has derived the relationship between
the average value, agr and the mean value, a, for the C20

perturbation:

2
R . 2
— 3 e (1-3/2 sin I)]
a=a 1 +=¢C (——)
o [ 2 720 \a (l-e2)3/2
(3.36)
also since:

9 2
u R C,n(1-3/2 sin”I)

y _ A\ _ 3 e 20

M0 'Va—‘§ [l 3 (a) 22,372 J (3.37)

° (1-

then the following modified Kepler law is valid:

2 =3 _
M3 ,2 = q (3.38)
where:
R \2 2
N 3 e (1-3/2 sin”1)
u = u {1l +35C¢C —_— (3.39)
Q[ 2 720 (a) (1-e2)3/2 |

Hence the presence of the C 0 term essentially changes the

2
effective mass of the moon.
0dd degree zonal, tesseral, and sectorial terms in the
semi-major axis constraint equation do not require mean value
correctionsZG. Analysis has shown that the correction for the
sun and solar radiation are on the order of a foot or less; hence

no factor is included for these perturbations. The mean value

correction arising from the earth perturbations is included.



An analytical procedure was used to derive the rela-
tionship between the mean and average values of the semi-major

axis for earth effects. The basic formulation for the dis-

turbing effects of the sun on the moon's orbit was used as a

model. The secular effects on the mean motion generated by
earth perturbations is as follows27:
u n 2
n =\—8 11 -2 2 (1-3/2 sin®n) (3.40)
® 3 4 2
a, n

where terms of order e2 are neglected and ng is the mean
motion of the earth. Extending the mean value solution
given by Brouwer and Clemence to allow for varying inclinations,
(see Appendix D),
- 0 . 2
a = aj [l + = (1-3/2 sin I;} (3.41)
n -
where again terms of order e2 are neglected. Both of these
formulas agree well with those given for the sun's pertur-
bations on the moon (case in which I = 23°).

The general procedure for implying a mean value
semi-major axis has two steps. First, the average value of
the semi-major axis, agr is determined once per iteration
using equation (3.34). Then, the mean value, a, is calculated

using eguations (3.36) and (3.41);

a = ao[l + £50 + Esl (3.42)

where the ¢ terms are the mean value corrections.



The quantity a, is the average value of the
osculating semi-major axis. The quantity a is introduced
to make long-period perturbation theory represent the average
satellite orbit. Since this variable is introduced to insure
compatibility between the long-period and associated rect-
angular equations of motion, it is only used for data reduction.

After convergence has been reached, the mean anomaly
rate, M, is adjusted to remove the earth, sun, and solar

radiation effects.

B o= M+ 2Myt - 3'46 -M - M

1 (3.43)

SR

Here ﬁ& is the anomaly rate arising only from lunar gravity.
The average semi-major axis value, a«., for the lunar gravity

is found by solving the following equation:

. “& . . . . .
M( = :(E + My, t M22 My Mgy Mag (3.44)

It is this value of the semi-major axis that completes the
K parameter set and is used for gravity field determination.
One such value of a«~is found for each solution.

SOLUTION PARAMETERS

The output from processing a batch of Doppler measure-

~

ments is a best estimate for a set of Keplerian parameters, K.
Since the third body perturbations are modeled separately in

the OD process, and the mean anomaly parameter is adjusted



for third body effects, these Keplerian parameters represent
the variation in the Kepler orbital elements arising from
the non-central part of lunar gravity. These solution
parameters give a simultaneous time history of the Kepler
elements and element rates valid over the data span. A
detailed block diagram of the empirical processor is shown
in Figure 10.

The time histories of the Kepler elements and
element rates are used as input data to a second processor
which fits lunar gravity harmonics to the Kepler element
rates. Since the solution parameters provide continuous
time functions for the orbital elements and rates they can
be sampled at any desired frequency. The long-period lunar
gravity effects have periods which are much greater than a
typical lunar orbiter period (lunar effects have periods of
days whereas a typical satellite period is three hours),
hence there will be no aliasing of gravity information if
the element states and rates are evaluated once per satellite
period. For example, if a typical data span contains five
satellite periods, then five sets of Kepler elements and
element rates are obtained.

The Kepler element rates, which form the actual data
for the gravity estimation, consist of the following five

rates
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(3.45)

Al e
1
De

The semi-major axis rate is zero in long-period theory, sO
it is not used.

The five orbital element rates are simultaneously
processed to obtain gravity coefficients. Since the input
data consists of five different quantities (e ’ I ’ ® ’ Q , M),
a weighting matrix is required to define the relative accuracies
of each of the rates.

If the empirical OD method could model the Doppler
such that the residuals remaining after convergence were
normally distributed random errors, the [HT W H]_l matrix
given by equation (3.31) would be the covariance matrix
associated with the ﬁ solution set. Since only the long-period
satellite dynamics are represented in the empirical process,
then the [HT W H]_l matrix is not the covariance matrix of the

processzg. However since the terms in the [HT W H]—l

matrix
do reveal the relative sensitivity and correlations among the
solution parameters, it is assumed for weighting purposes that

these terms can be regarded as variances and covariances in

the conventional manner.
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The weighting matrix for the orbital element rates,

A, is a (5x5)

.2 T
Oe 12
0'2
T21 °1
At =
T
| 51

where okz are the error

the covariances. It is
Keplerian parameters is

rates has the following

29

matrix having the following form™ ~:

13 Ti1a  T1s
2
o . ' (3.46)
2 L]
G-
- . - L ] 02
M

variances among the rates and Tij are
assumed that the mean error in the
zero. Each of the orbital element

form,

Q= 9 + 20,t - (3.47)
The variance of the error in 5 is found as follows:
622 = Exp[(2, - 202 + 4t(2. - 9.) (9. - 0.)
Q i i 1 1 1 2 2
2., 2
+ 4t (92 - 92) ] (3.48)
or
2 2 2 2
g:" = ¢ + 4t covi{e_ € _ ) + 4t° ¢ (3.49)
Q Ql Ql 92 92
where 691 = (Ql - Ql) and 897 = (92 - Qz)
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The covariance terms among the rates (e.g., cov (EQE&))

are formulated in a similar wav (see 3.48)

cov (e

Qe&) = cov(eQ €, ) + 2t[cov(eQ €, ) + cov(e, € )]

1 %1 1 %2 2 Y1

+ 4t2 cov(eQ e ) (3.
Y2 Y2

Then if it is assumed for weighting purposes that

1. . . .
is the covariance matrix, each of the entries

the [HT w H]
in the A matrix can be found from the appropriate slots in
the [HT W H]_l matrix. Hence a weighting matrix is auto-

matically obtained for each set of orbital element rates.

PSEUDO DATA SIMULATIONS

In order to demonstrate the operational capabilities
of the empirical orbit determination method, pseudo Doppler data
were generated from numerically integrated trajectories and
converged solutions were obtained. The estimated Keplerian para-
meters from two such typical convergences are presented. In both
cases a triaxial lunar gravity field is assumed (C20 and C22
harmonics) and the earth, sun, and solar radiation perturbations
are also included. No noise or biases are added to the pseudo
data.

The first data simulation was generated for a Lunar
Orbiter V (polar) orbit. The data span contains tracking data
from three stations (Goldstone, Calf., Madrid, Spain, and

Woomera, Australia) and is approximately 21 hours 30 minutes in
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duration. The epoch data and initial conditions for this
orbit are:

Epoch Date: Aug. 9, 1967 7 hours 20 min.

Initial Conditions: (Selenographic)

a = 8,324,332 ft. e = .27618984
I = 842764923 Q = 7022050009
w = 128616071 M = 244%73644

The Doppler residuals (Ajp) associated with this convergence are
shown in Figure 1ll. These residuals are systematic and have the
general form of the unmodeled short-period orbital variations.
The residuals possess a mean of .0216 feet per second (fps) and
a standard deviation of o = .1 fps.

The Keplerian parameter set used consists of thirteen

terms. The best estimates for these parameters are:

e, = -27600103

e, = .46568305 x 10 °

I = 842765987

I, = .89524714 x 10°° deg/sec.
2= 702202817

Ql = -,61366823 «x 10_6 deg/sec.
2, = .74160675 x 10712 geg/sec?
w_ = 198611893

(o]

w, = -.34733259 107> deg/sec.

w, = =.12242802 x 107! deg/sec?
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M_ = 244273515
Ml = .031390311 deg/sec.
M, = -.55419592 x 10711 geg/sec?

The constrained values of the semi-major axis obtained are:

a, = 8,323,991 ft.

a = 8,324,561 ft.
In order to determine the quality of this converged solution,
comparisons are made between the numerically integrated source
trajectory and the solution obtained. Figures 12-15 show the
variations in the six Kepler elements for both the converged
solution and the source trajectory. The variations presented
for the eccentricity (e) and the three Euler angles (I, @, w)
(see Figures 12 and 13) show the actual variations of these
elements plotted on common axes. Since the variations in the
mean anomaly are very large and the semi-major axis has a large
magnitude, the differences in the converged solution and source
trajectory values are shown for these variables (see Figure 14).
As can be seen in Figures 12 and 13, the estimates of the
eccentricity, ascending node, and perifocus have slight biases
at epoch. The inclination parameter has a slight rate error.
The mean anomaly and semi-major axis variations are only short-
periodic and display essentially no growth characteristics. A
plot of the difference in position between the source trajectory
and the converged solution is shown in Figure 15. The 400 ft.
bias between positions is relatable to the error bias in the

estimated eccentricity parameter at epoch (eo). The slight



eft) x 104

1(t) (DEG.)

- 60 —

TIME (SEC.)

INCLINATION AS A FUNCTION OF TIME
MINUS EPOCH VALUE

FIGURE 12 - LUNAR ORBITER V ORBIT

2.0
10 e ]
-+ °
o113 |
Q 4 0 P fo]
o olo ], P 3B
0 »)
B o o Q b 0 4"_ QU%
of 17 . do -
L Q o Q Q -
JrERE. SLANEEERE? 2 § g
-1.0 2ot s pourt="1 2 3
- 5 # 4 f
- ﬂ 0 000 INTEGRATED _|
. = : 3% TRAJECTORY —
—2.0 —
CONVERGED _]
SOLUTION
-3.0 i
0 20,000 40,000 60,000 80,000
TIME (SEC.)
ECCENTRICITY AS A FUNCTION OF TIME
MINUS EPOCH VALUE
+- 4—+&
T T T T T T T I3 j 1 -
A2 -
—+ -
.10
08
.06
04
0000 INTEGRATED |
—
02 TRAJECTORY =
CONVERGED |
SOLUTION
0 Ll Ly O
| - , ) 0 I O O R O O
0 20,000 40,000 60,000 80,000




LISHO A H3118HO0 HVYNN1 - €L 34NOId

ANTYA HOOd3 SNNIW
JNIL 40 NOILONNA vV SV SNJ04143d

('23S) awiL
000'08 000°09 000'0Y 00002
@ 1
[*]
O. M-'
-
-
L4+ d3IOHIANOD .
U, AHOL1o3rvyl
o -
[ [ @31ved3INl oo o0 o0 ]
0
A |
INTVA HOO0d3 SNNIW
JNIL 40 NOILONNS V SY IAON DNIANIOSY
("03S) INIL
000°08 ,000°09- 000°0v 1000°02
1 90'—
50—
$0'—
€0 —
—T  NoiLN10S 20~
1 J3IDHIANOD
-+ AHOLD3rvyl
T aaivaoaint ©°°° 10~
-
0

('93a) )

('53qa) ™



Aalt) (FT))

Am(t) (DEG.)

3000

2000

1000

—1000

—2000

.04

02

—02

—.04

— 62—

DIFFERENCE IN MEAN ANOMALY

FIGURE 14 - LUNAR ORBITER V ORBIT

-
-
A
° N
0O
—pr - ()
aa 2 e
9 2
ry ] o
2 T T2 4 K| 5
o op 0 § )
[ Of o a' Qo
) d %
() o,
1 | 1
0 20,000 40,000 60,000 80,000
TIME (SEC.)
DIFFERENCE IN SEMI-MAJOR AXIS
. *
0o
JO a p o
o r o 0
° - o p ° 9
q o o
| o] 0] o )
EE )
- o
° £
oo 0 °
1O -] © 0
) g:o M4 qd o °
aQ [+ [+
v )
X }_
1 T T H
0 20,000 40,000 60,000 80,000
TIME (SEC.)



Ar (FT)

— 63—~

- — +
1200
e
. b—
800 -
400 2
.
S EEEss
o oo 10
0 >
) § B {
-400 L1 1 -
0 20,000 40,000 60,000 80,000

TIME (SEC.)

DIFFERENCE IN POSITION AS A FUNCTION OF TIME

FIGURE 15 - LUNAR ORBITER V ORBIT



- 64 -

time variations in the position differences arise from small
errors in the eccentricity and mean anomaly rates.

Analysis of the functional properties of the partial
derivatives used in the least-squares convergence shows that

two of the state variables have similar sensitivities to the

data;

?a—z X g—p (3.51)
This lack of separability arises primarily from the poor
geometrical configuration from which the Doppler measurements
are takenf Plots of the functional behavior of the five basic
partial derivatives used in the solution are shown in Figures 16-18.
The presence of these nearly equal sensitivities among the state
parameters leads to high correlations in the (ﬁTW H)_l matrix.
These correlations lead to linear combinations among the state

parameters being estimated. For this particular solution very

high correlations (p 2 |9|) exist between the following sets of

parameters:
Correlation Coefficient Parameter Pair
—a98 IO’QO
.97 Io;ub
.91 Il;ﬁ_
-.97 R _,w
o' o

097 MlIM2
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“-97 Qllﬂz

.91 wl,w2

Linear combinations among the Keplerian parameters can be viewed
as a measure of observability. Hence the slight biases obtained
in the converged solution can be ascribed to these equal sensi-
tivites among some state variables and to the aliasing effects
of the unmodeled short-period variations.

The second data simulation was generated for a Lunar
Orbiter III (Apollo type) orbit. This data span contains
tracking data from the same three stations and is approximately
10 hours in duration. The epoch date and initial conditions
for this orbit are:

Epoch Date: August 30, 1967 20 hours 55 min.

Initial Conditions: (Selenographic)
a = 6,457,093 ft. e = .04348376
I = 202899211 £ = 632970000
w = 354205800 M = 194290793

The Doppler residuals (Ap) associated with this solution are
shown in Figure 19. As in the previous solution, these residuals
are systematic and have the general shape and form of the
unmodeled short-period variations. The residuals have a mean
of -.016 fps and a standard deviation o= .08 £fps.

The thirteen Keplerian parameters found for this

solution are the following:
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e, = -04363890
e, = -.22143541 x 107°

I_ = 200902504

(@]

I, = .75197331 107° deg/sec.

9 = 632984837

(0]

Q, = -.14299451 x 10™% deg/sec
R, = .52154323 x 10710 deg/sec’
w, = 354205553
w, = 23548454 x 10~% deg/sec

- 2
6, = -.81426635 x 10 10 3eq/sec
= o

M_ = 194289384
Ml = ,045951285 deg/sec.
M, = .26356956 x 10710 geg/sec?

The associated semi-major axes found are:

a, = 6,457,426 ft.

a = 6,456,214 ft.
Variations in the eccentricity and the Euler angles of this orbit
are shown in Figures 20 and 21. Semi-major axis, mean anomaly,
and position differences are shown in Figures 22 and 23. As can
been seen from Figure 20 the inclination parameter has a bias
error at epoch and a slight slope error. The ascending node
parameter (see Fig. 21) has only a slight slope error. The semi-
major axis difference has a bias of 150 ft. The position

difference has a slight error trend and a bias of 150 ft.
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Again an examination of the functional properties
of the partial derivatives used in this solution reveals that
three of the state variables have virtually identical sensi-

tivities to the data (see Fig. 24-26)

ﬁ = 36 = 36

5 0 ] (3.52)

1

High correlations in the solution [HT W H] — matrix were found

to exist between the following sets of parameters:

Correlation Coefficient Parameter Pair
-095 Ml’Mz
.99 I.,0

o'"o
.98 I ,w

o'l o
.98 Il,s’ll
.97 Ilfwl
.99 Qo,wl
.99 w_, 0

o'"o
.99 wl,Ql

Again the slight biases and trend errors experienced
in the convergence are a reflection of the equal sensitivities
among the state parameters and the aliasing effects of short

period variations.
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The overall results of these simulations show that
the empirical orbit determination method can be used to
accurately estimate long-period orbital element variations
arising from the non-central features of the moon, from earth
and sun perturbations, and from solar radiation. This analysis
shows the largest single error source is the lack of separability
of dynamical effects from the Doppler measurements. Analysis
has shown (for Doppler data) the only way of enhancing these
sensitivities is to choose earth based tracking stations with
the greatest north-south separation relative to the lunar orbit
and to have simultaneous tracking coverage from these stations
whenever possible.

The set of Kepler element rates, orbital eleménts, and
associated weighting matrices obtained from this pseudo data
analysis will be used to determine a set of triaxial lunar
coefficients. The results of that procedure will be discussed

in the next chapter.



CHAPTER IV
HARMONIC ESTIMATION

The gravity field determination is performed in
a second weighted least-squares processor which uses as input
the Kepler element rates, the estimated Kepler elements, and
a weighting matrix and outputs a set of spherical harmonic
coefficients (see Figure 27). The perturbation equations are

of the form

kK = £(K,p,t) (4.1)

where p is the vector (nx1l) of gravity coefficients.

_ C
p=[—] (4.2)
S

The error function to be minimized for this estimator is:

- k0T Ak - B (4.3)

e

e = (

where A is the (5x5) weighting matrix introduced in the

o]
H
(I

i

vious chapter, k* is an estimate of k.

LEAST SQUARES PROCESSOR

Since the gravity parameters appear as linear
functions in the perturbation equations, then (4.1) can be

expressed in the following form:
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(4.4)
where F is a (5xn) matrix of partial derivatives of the Kepler

element rates with respect to the gravity coefficients:

_ _
se e e e .. e e . . . ae
N I
Cyp Com 21 % pm
3M C e e e .. M M . . . 3M
I’
I 3C gy '3557 %S o

The error function can be written in terms of the gravity
coefficients as follows:

£ =

(kK - Fp*)T A(K - Fp*)

(4.6)
The minimum of the error function is found by setting e = 0.
The resulting equations are:
b= [Frrar]”t Flak
TN S
(nx1) (nxn)

(4.7)
(nx1)



where p is the best estimate of the lunar gravity parameters.

TRIAXIAL FIELD DETERMINATION (PSEUDO DATA)

In order to demonstrate the dynamical continuity
between the empirical orbit determination and harmoﬁic estimating
processors, the two pseudo data convergences presented in the
previous chapter will be used to find the triaxial (C20 and C22)
lunar coefficients assumed in the source trajectory. The
nominal values of these terms used for pseudo data generation

are as follows:

C ~2.07108x10" % }
4 > (4.8)

.20716x10" J

20

Ca2

Since the orbital period of the Orbiter V satellite
is 3.2 hours and the data span 21 hours, this converged solution
contributes seven sets of Kepler element rates and elements
to the harmonic estimator. The Orbiter III satellite has an
orbital period of 2.1 hours and a data span of 10 hours, con-
sequently this solution contributes five sets of Kepler elements
and element rates,

The numerical values for the lunar triaxial coefficienfs
as obtained from the pseudo data Orbiter III and Orbiter V con-
vergences when used as input to the harmonic estimating processor

are as follows:

~2.09x10"%

Q>
]

20 (4.9)

>

4

22 .209x10



Since this entire process is one of parameter identifica-
tion (See Appendix E) and many of the state variables are subject
to systematic errors and biases, it is questionable whether

1 .
matrix can be

the terms on the diagonal of the [FiaF]~
regarded as variances of the 620 and 622 estimates. The
principal detriment to making this assumption is the fact

that A weighting matrix used in the process is not truly the
covariance matrix of the input Kepler element rates. The
normalized non-diagonal terms in the [FTAF]_1 matrix do reflect
the true measure of correlation between the 620 and &22 terms.
The correlation coefficient between these two terms for this
harmonic determination is p = .08.

Analysis shows when each of these solutions was used
separately for a coefficient determination the numerical re-
sults obtained varied. The most significant aspect of using
only single satellite solutions for gravity determination is
that the correlation coefficient between the parameters in-

creases. The harmonic estimation results from using each

satellite independently are given below:

SATELLITE ESTIMATED CORRELATION
NUMBER HARMONICS COEFFICIENT
ORBITER V . = -2.056x10 4
. 20 -4 0=.98
&yy = .219x10
ORBITER III &. = -2.044x10"4
20 i 6=.99
C.. = .668x10

22
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The small correlation coefficient associated with
the multi-satellite solution has an important physical inter-
pretation. Basically a high correlation reflects the in-
separability of gravity effects in the harmonic estimator.
Since the gravity coefficients each affect different orbits
in different ways, using solutions from as many orbits as
possible reduces this inseparability. Optimum separation of
dynamical effects is achieved by using data from orbits of
many different inclinations. The gravity estimation errors
associated with multi-orbit solutions are then largely a function
of the degree of accuracy of the estimated Keplerian states
and rates. For the case of single orbit solutions, the

1 matrix also tends

presence of high correlations in the [FTAF]
to confuse the estimation process. This notion of separability
of dynamical effects becomes very important in the actual deter-
mination of the lunar field.

In order to obtain a quantitative measure of the tri-
axial solution given by (4.9) a comparison is made between it
and the nominal triaxial values (4.8) using numerically inte-
grated equations of motion. The comparisons, covering a
one day period, are made both for the Lunar Orbiter III and V
orbits. Differences in each of the Kepler elements, position,
and velocity are shown in Figures (28-35). The position errors
developed over the Lunar Orbiter V trajectory are small and

attain a maximum value of 60 ft. The velocity errors are also
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small, reaching a peak value of .05 fps. For the case of the
Lunar Orbiter III trajectory the position errors are even
smaller, attaining a peak value of 25 ft. and the velocity
errors attaining a value of .025 fps.
DISCUSSION

The dynamical compatibility of this empirical
selenodesy method has been established in this chapter. It
is significant to note at this point that the method is de-
pendent on the following:

1. Doppler tracking data of free-flight quality
(thrust-free).

2. Tracking coverage relative to the satellite
orbit which provides the best geometrical con-
figuration possible (good north-south station
separation).

3. Tracking of satellites from many different
inclinations so as to attain the best overall
coverage of the moon.

These points are re-emphasized since in the next chapter of
this investigation the empirical method is applied to actual
Doppler data. Of the three points mentioned, none are actually

achieved for the case of real data.



CHAPTER V

DATA ANALYSIS

In the previous two chapters, the theory and equations
for this empirical selenodesy method have been developed
and a controlled pseudo data analysis has been presented to
illustrate the dynamical consistency of the method. The purpose
of this chapter is to present and discuss the results obtained
when this method was applied to actual Doppler tracking data.

DATA SET UTILIZED

As mentioned earlier in this study, large amounts of
Doppler tracking data were acquired during the lunar orbits of
both the Lunar Orbiters (I-V) and the Apollo (8, 10, 11, 12, 14,
and 15) missions. Almost all the tracking data acquired during
the photographic portions of the Lunar Orbiter missions includes
propulsive attitude control maneuvers performed at such a high
frequency (about every three hours) that these data cannot be
used for selenodesy purposes. Even the Lunar Orbiter data from
the extended mission phases (primarily that used in this analysis)
contains some minor propulsive thrusts. Data from all the
Apollo 8 mission and large portions of the Apollo 10, 11,
and 15 missions contain propulsive thrusting. The extended
mission phase Lunar Orbiter data was used to determine the
lunar gravity field presented in this study since it is not
only the largest but also the most complete (but far from

complete in an absolute sense) data set gathered to date.
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The free-flight quality data from parts of the Apollo 11,

12 and 14 missions were used as control data to test the

quality of the lunar field obtained. The small amount of

Apollo data which is of free-flight quality cannot be used in
the method since these data are from either nearly circular, or
nearly equatorial orbits and the method as it has been developed
becomes near singular for orbits of this type.

The epoch times, length, and number of tracking stations
of the various data arcs used in this analysis are listed in
Table III. No data from the Orbiter IV satellite were included;
since earth perturbations were the most dominant for this orbit,
it was assumed to have only minimal lunar gravity informa-
tion content. The length of the data arcs used in orbit deter-
mination solutions varies from a minimum of about eight hours
to a maximum of thirty-six hours.

ANALYSIS OF ORBIT DETERMINATION SOLUTIONS

Two different sized parameter sets representing the
satellite Keplerian state in lunar orbit were used. The first
set contains eleven parameters {eo, el, IO, Il, QO, Ql, Wor Wy
Mo’ Ml’ Mz} and was used exclusively when the Doppler data span was
twelve hours or less. The second solution set contains thirteen
parameters {eo, e1r ey Ior Iyy Q0r Q0 Oy wos wys wy, Mo, Mg, M2>
and was used when the data span was greater than twelve hours.
Analysis with pseudo data showed that this choice of parameters

should be adequate to model the long-period variations of the

satellite.
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TABLE TIT

LUNAR ORBITER DATA ARCS

SATELLITE EPOCH (DAY, MO., YR.) LENGTH (SEC) | STATIONS
ORBITER I 31.41180556 Aug. 1966 75,989 3
1.32430556 Sept. 1966 88,889 3
4,22916667 Sept. 1966 84,000 3
13.84722222 Sept. 1966 81,000 3
14.81597222 Sept. 1966 81,000 3
15.78263889 Sept. 1966 108,670 3
ORBITER II 8.85938421 Dec. 1966 92,700 3
10.55208333 Dec. 1966 32,760 3
29.61805556 June 1967 34,260 2
ORBITER III 20.60000000 Feb. 1967 93,290 3
21.68055556 Feb. 1967 86,000 3
27.97222222 Feb. 1967 89,280 3
2.38194444 Mar. 1967 75,000 3
5.16666667 Mar. 1967 110,800 3
6.83958333 Mar. 1967 97,740 3
24.21527778 Mar. 1967 31,380 2
11.48611111 April 1967 46,080 2
ORBITER V 18.31111111 Aug. 1967 63,000 3
19.09027778 Aug. 1967 88,000 3
20.11111111 Aug. 1967 119,450 3
21.49652778 Aug. 1967 119,068 3
24.21180556 Aug. 1967 87,928 3
25,22847222 Aug. 1967 59,340 3
26.25208333 Aug. 1967 85,000 3
27.28819444 Aug. 1967 70,468 3
2.52777778 Oct. 1967 29,880 2
3.54166667 Oct. 1967 43,200 2
17.38194444 Nov. 1967 38,040 2
21.31944444 Nov. 1967 33,568 2
29.86111111 Jan. 1968 112,618 3
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TABLE IV PHYSICAL CQNSTANTS

I. ASTRODYNAMIC CONSTANTS

Gravitational Parameters:

b, = .1731300417087798 x 10> Ft>/sec’

b, = -1407646853278542 x 1027 Fed/sec?

b, = -4686697671960888 1022 ptd/sec?
Mean Lunar Radius:

R_ = .570239501312336 x 107 Ft.
Angular Velocity of Moon's Rotation:

y = .2661703316891657 x 10 °  Rad/sec

Velocity of Light in a Vacuum:
c = .9835711942257218 x lO9 Ft/sec

II. STATION LOCATIONS

STATION E GEOCENTRIC COORDINATES
Radius, Ft. Latitude, Deg. Longitude, Deq.

Goldstone, Calf. | 20,905,479 35.118640 243,19483
(DsS12)

Woomera, Australia E 20,907,326 -31.211390 136.88779
(DSs41)

Madrid, Spain : 20,898,911 40.238540 355.75129
(DSS61) : :

Madrid, Spain : 20,898,927 - 40.263490 355.63246
(DSS62)

IITI. DOPPLER DATA WEIGHT W = JE ' o = .00213 Ft/sec
(o}

7

3.973 x 1077 Ft/sec?

o
I

IV. SOLAR ACCELERATION
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Table IV contains a list of the tracking station
locations30 and all the astrodynamical constants31 assumed known
and fixed in the orbit determination program. The positions
and relative velocities of the earth, sun, and moon are obtained
from Jet Propulsion Laboratory Ephemeris Tape DE—19.32 The
least-squares orbit determination program reads the necessary
information from this tape during the convergence process.

The rate of convergence for each orbit determination
solution varied as a function of the orbit, the data arc length,
and the number and locations of earth based stations used. 1In
general each convérgence process took about five to six iterations.
The numerical particulars associated with a typical solution for
each of the Lunar Orbiters (I, II, III, and V) will now be
discussed.

Representative residuals from Lunar Orbiter I,

ITI, ITI, and V orbit determination solutions are given in Figures
36 and 37. The residuals associated with each of these convergences

have the statistical properties listed in Table V.

TABLE V
SATELLITE RESIDUAL MEAN (fps) RESIDUAL STD. DEVIATION (fps)
ORBITER T -.010 .108
ORBITER II -.012 .090
ORBITER IIT .006 .053
ORBITER V .003 .068

As can be seen from the figures the residuals associated with

the Lunar Orbiter I and II convergences presented have a larger
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peak amplitude. Each of these residual plots also possesses
points of irregularly large amplitude relative to the remainder of
the span. These irregularities in the residuals most likely
correspond to low thrust attitude control maneuvers performed
by the spacecraft.

An analysis of the [HTwH] "% matrix for each of these
solutions shows that many of the Keplerian parameters are
extremely highly correlated. Table VI presents a summary of the

highest correlations for each of these four convergences.

TABLE VI SOLUTION CORRELATIONS

SATELLITE PARAMETER PAIR CORRELATION COEF.
gORBITER I QO, wo -.9999
Ql, Wy .9999 |
ORBITER 1T T, % =.9908
, o (o] ;
QO, O -.9998
| Ql, Wy -.9995
ORBITER IITI I, Q -.9938
(@] (@) !
I, w -.9946 '
(@) :
Qo, Wq -.9998
Q]:' wl —09985
ORBITER V IO' Qo .9948
I, w -.9903
O
QO, w -.9843
Ql' Il' .9948

These correlations represent the largest found in

each [HTWH]_l matrix. There were other correlations present of

large magnitude (p = .9|). For the case of each Lunar Orbiter
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satellite presented almost the identical correlation pairs

reoccur. These correlations reflect the basic difficulty of

using Doppler measurements at lunar distances to separate the
dynamical properties of the Euler angles of the orbit. It should
be noted that this situation is particularly amplified for the
case of the Lunar Orbiters since in most cases the satellite was
only tracked by one earth-based station, thus losing the geome-
trical enhancement of a second or third tracker.

The thirty data arcs used for orbit determination
solutions contributed one hundred ninety-nine sets of states and
rates for lunar gravity determination. The factors used in defin-
ing the degree and order of the lunar field to be determined from
these sets of Keplerian rates and elements will now be discussed.

A PRIORI COEFFICIENT SELECTION

The work of Muller and Sjogren33 has provided conclusive
evidence that rather large near—-surface mass concentrations
("mascons"®) are present in the near-side lunar maria regions.

The existence of these non-central mass concentrations has a sig-
nificant impact on the application of Eguation (2.20) for
describing lunar gravity. Accurately representing a "mascon"
moon would require spherical harmonic coefficients of

high order and degree. In mathematical terminologyv, the presence
of "mascons" causes the convergence rate of (2.20) to be very
slow.

In theorv then the proper arpproach to modeling the
lunar gravity field is to seek a srherical harmonic coefficient
set large enouch in degree and order to represent all the non-

central lunar features. In practice however, due to the
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incomplete Doppler data set and due to a lack of far side
Doppler measurements, lunar gravity solutions involving large
numbers of harmonic coefficients have high correlations in

the [FTAF]"l matrix and in general have poor overall numerical
characteristics.

Analyses were made using the harmonic estimating program
with pseudo data input from numerically integrated long-period
perturbation eqguations (assuming a nominal seventh degree and
order field). Long-period trajectories for each of the Lunar
Orbiter missions were simulated. When a solution set of degree
and order seven or larger was sought, the nominal values of
the field (as could be expected) were recovered with good accuracy.
An analysis of the correlations in the [F?AF]_l matrices for
these solutions (for Lunar COrbiter tracking coverage) showed
that a great many harmonic coefficient pairs (C20 & C

40"

C & etc) were very highly correlated. This correlation

30 & Cso
is totally a consegquence of the incomplete data set used.

When subset gravity solutions (for example a complete fifth
degree and order field) were sought from the Keplerian rate data
generated from the seventh degree and order field, the numerical
values obtained were very different from their nominal values.
Basically, the higher degree harmonics which had been omitted
from the solution set were aliased into the lower ones due to the
existing large correlations. Had a complete data set (data
covering all latitudes and longitudes) been used, then ortho-

gonality would be induced in the [FTAF]"l matrix and the

subset values recovered would be the nominal ones. Since the
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spherical harmonic expansion (2.20) is essentially a three

dimensional Fourier series in spherical coordinates, this
. . 34

orthogonality can only be achieved when:

-
{

i

H

H

- 0 if L#h or m#k
Y, ¥, do =ﬂ (5.1)
’ ; 4o (L+m) ! for 2=h and m=tf
sphere L(l—m)! (2£+1) (2-5_ )

3P

where: Yzm(¢,x) = sz(Sin¢)[c£m cos mx + SKm sin mx]

and where the Kronecker delta Gom is equal to 1 for m=0 and O
for m#0.

This discussion of the "mascons" and the lack of
orthogonality associated with the existing Doppler data is
introduced as bdckground for the rational process used in choosing
a harmonic coefficient solution set. The basic strategy
assumed in this analysis is to obtain the largest coefficient
set possible while incurring a minimum of high correlations in
the [FTAF]_l matrix. It is a foregone conclusion that, with
the data available at this time, it is not possible to determine
a lunar gravity field which truly represents all the localized
fine structure near-surface mass inhomogeneities. The only
attainable goal of this data analysis then is to derive a more

accurate global lunar gravity model.
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A LUNAR GRAVITY FIELD

Solutions varying from degree and order three to
degree and order seven were attempted from the one hundred
ninty—nihe sets of Kepler element rates. All solutions ob-
tained above degree and order four contained very large
numbers of parameter correlations in the solution [IF‘TAFI_l
matrices. When these solutions were applied to the tracking
data from the Apollo orbits, both the fit and prediction
characteristics obtained were very poor. As a result of
this situation, the lunar harmonic coefficient set determined
in this study is of order and degree four.

Analysis of the numerical characteristics of the
full fourth degree and order solution revealed two important

points. First, the C and C zonal coefficients were still

20 40

highly correlated (p = .86). Second, the solution contained

very little direct information in determining the Cyy harmon-

ic. In performing the least-squares gravity estimation, the

T

entry in the F Ak vector associated with C22 was essentially

zero (other components were of significantly larger magni-

tudes). Hence the estimate of C22 was dominated by correla-

1

tions present in the [FTAF]_ matrix.

In order to circumvent these numerical problems,

both the C and C terms were fixed in the gravity deter-

20 22

mination to values obtained by Koziel35 in studying the physi-

cal librations of the moon. The values used are the following:
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o -.2056 x 10

20

c .2258 x 10

) (5.2)

22 i
The fourth order and degree field lunar gravity
field (with C20 and C22

relation matrix associated with this solution is given in Table

fixed) is given in Table VII. The cor-

VIII. As in the pseudo data analysis previously presented,
this gravity estimation process is subject to systematic
errors and biases. Hence the diagonal terms of the [FTAF]_l
matrix cannot be regarded as variances of the estimated terms.
The residuals associated with each of the five element

rates and this fourth order field are shown in Figures 38-40.

These residuals have the statistical properties listed in

Table IX.
TABLE VII
GRAVITATIONAL FIELD DETERMINED FROM LUNAR
ORBITERS I, II, III, AND V
4 4
2 m CZm x 10 Szm x 10
2 0 -2.0560%* -
1 .0537 .0617
2 .2258%* -.0017
3 0 .221¢6C -
1 .3575 .0820
2 .0210 .0340
3 L0301 L0055
4 0 .0543 ——
1 -.0677 .1195
2 .0443 .010¢6
3 .0136 .0006¢6
4 .0027 .0043

*Fixed in solution.
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TABLE VIII

GRAVITY SOLUTION CORRELATION MATRIX

C C C

42 43 S S S S S

30 31 32 33 40 41 44 21 22 31 32 33 41

-.02} .06}-.11} .11} .25 .59|-.69} .41|-.14| .18} .15( .03 | .43}{-.08| .3 |[-.21| .05f .25

-.09{-.08} .01|-.39} .17 .08! .01|-.03} .04} .05|-.05 1| .19i-.01i{-.05! .06} .01' .07

-.03| .04|-.34| .18{-.1 | .05/ .05| .33'-.08{ .06 | .17:-.05. .56 ' .01 .29 .002

.06| .01|-.13] .220 .01 .09-.18| .33[-.01 -.15 -.04;-.2 = .81’ .23| .13

.03| .07{-.01 -.01, .28 .04!-.18 .00l -.02 -.06 .08 .02' .39! .43

— T .
.06}-.11: .21%—.08;—.12% .07. .01 —.35;—.02_—.03

'
t -

-.53: .43!-.13 .38% .04/-.64 .4 -.06 .34 -.11 .17 .15

.24.-.15: .02

A i . g i ) K

{(-.07° .3 -.15/-.18; .11 =-.66 .12 -.20 .19: .07 -.ll

: : : i _ ; . ;
-.26 .21 ,01i-.16 -.15!-.34: .36 -.22-.01 .04
i : ; I ;

-.15{-.13| .02 -.16i-.4 -.22 .21° .21 .09

-.23-.13 | .18! .09 .84 -.25 .4 | .05

.04 | .09 .16/-.18 -.14 -.12 .33 |

-.06: .06 .03 -.02'-.08 .02

- 80T -

.24 .21
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TABLE IX
e - e
& -.272 x 1072 .345 x 1078
I ~.836 x 10”7 Deg/Sec .170 x 107° Deg/Sec
Q .127 x 107° Deg/Sec .265 x 107> Deg/Sec
5 -.965 x 10”° peg/sec .374 x 107° Deg/Sec
M -.915 x 10“7 Deg/Sec .327 x 10—6 Deg/Sec

As can be seen from the Kepler element rate residual plots, the
errors are systematic in each case.

Equipotential surfaces have been calculated for this
lunar gravity field and are shown in Figures 41 and 42. These
surfaces are computed by finding the radial deviations to a spher-
ical potential (generated with the field point at the mean lunar
radius). The variations are quantized in thousand foot incre-
ments. The basic equipotential surfaces of this gravity field
are those of a triaxial ellipsoid. The solid line on the
surfaces indicates the equipotential line for the reference
potential (zero deviation from spherical potential). These
surfaces show three large areas of potential excess. The first
of these is centered about latitude ¢ = 25°N and longitude
» = 10°E. This region very closely corresponds to the Mare
Serenitatis region of the moon. The two other areas of poten-

tial excess are located at latitude ¢ = 5°S, longitude ) = 117°E
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and latitude ¢ = 10°S, longitude )X = 170°W respectively. Neither
of these two areas corresponds to an identified lunar maria
region.

The second-degree harmonics in the potential are direct-
ly related to the moments and products of inertia of the moon.

The relations between the gravity coefficients and the moments

and products of inertia are:36
c _ 1 A+B _ o c _ 1 (B=A)
20 me R 2 2 22 Ams R 2
e (e
> (5.3)
E D F
C = S = S =
21 2 21 2 22 2
mkRe m&Re m«Re Y

where A, B, C are the three principal moments of inertia

(A = Ixx’ B = Iyy’ C = Izz) and D, E, F are the products of

yz' E=1I., F= Ixy)' Since equation 5.3 con-

tains five equations in six unknowns (A,B,C,D,E,F) one addi-

inertia (b =1I

tional relationship is needed. From studies of the lunar
physical librations the quantity

_ C-A
B = B (5.4)

has been determined. The numerical value used is that computed
by Koziel3” from heliometer observations (8 = 6.294 x 10 %).

Hence given the five second degree harmonics and g8, the follow-

ing set of principal moments and products of inertia are found:
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A = .3983208 mR,”> D = .617 x 107> mR.>

= 2 - -5 2
B = .39841118 m(R,> E = .537 x 107> mR_
C = .39857195 mR,°> F = -.17 x 107° m(R_?

The imprecision in the harmonics and the simplifica-
tions in the theory relating g to the inertias make the quality

of these numbers somewhat poor.

EXTRAPOLATIONS

In order to measure the orbit determination and
prediction qualities of the field obtained, it was applied
to Doppler data not used in its generation. Specifically,
the data used was acquired during the orbits of the Apollo 11,
12, and 14 missions (Apollo 15 data is not available at this
time). The orbit determinations were performed using a standard
least—squares processor which obtains a best estimate of a

rectangular state vector at some epoch.

HY W Ap (5.5)

X = [HY wH]
e}

1

This process 1is identical to that given by (3.31) with the
exception that ﬁo is a six vector of position and velocity
and the H matrix contains the partial derivatives of the
Doppler with respect to the rectangular state at epoch. This
best estimate of the state is then used to predict the Doppler
outside the span of data used for the convergence.

Orbit determination solutions were obtained by fitting

one front side pass of Doppler data from several stations. This
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particular data length was chosen since it puts maximum stress
on the orbital period prediction capability of the model. Once
a converged solution is obtained, the Doppler data is predicted
for the next three orbital periods to test the extrapolation

capabilities of the model.

The data used from the Apollo 11 and 12 flights are
from near-circular orbits with radius vectors of about 60
nautical miles (n.m.) above the lunar surface. The Apollo 14
data is from a slightly elliptical orbit (e = .0258) with an
apolune of 60 n.m. above the surface and a perilune of 8 n.m.
above the surface. The data from the Apollo missions, since
they are collected from orbits very near the lunar surface,
reveal many gravitational perturbations not present in the
Lunar Orbiter data.

Converged solutions were obtained using the fourth
degree and order gravity field. Doppler residuals for both
the one pass fit and three passes of prediction for each of
these Apollo orbits are shown in Figure 43. The Doppler
residuals in each of these convergences are still systematic
and an order of magnitude above the noise level of the data.
The three orbital period prediction is characterized by a
secular growth (period errors) in the residuals for each case.
Both the systematic nature of the regressed Doppler and the
growth in Doppler residuals during prediction reflect the in-
complete nature of this fourth order field.

In order to obtain a relative perspective on the

quality of orbit determination and prediction attainable,
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convergences were also performed on these data using two other
gravity models. The first model, the Ll field (see Table II),
is used by the Manned Spacecraft Center for Apollo mission
planning. The second model, developed by Liu and Laing,38 is
a fifteenth degree zonal and eighth order tesseral model (84
harmonics). This model represents the latest result from the
indirect (long-period) analysis method.

The orbit determinations were again performed by
fitting one pass of data and predicting the Doppler for the
next three periods. The residuals associated with each of
the fit and predictions for these two gravity fields are shown
in Figures 44 and 45. Again both the Doppler residuals for
the fit and prediction, for each field, have systematic errors.
Both of these models, especially the fifteenth degree field,
are characterized by secular growth in Doppler residuals of
the prediction. Table X lists the statistical properties of the

one pass Doppler residuals for all three models.

TABLE X
ORBIT MODEL RESIDUAL MEAN (FPS) STD. DEVIATION (FPS)
Apollo 11 4 x 4% -.011 .166
Ll -.0015 .039
15 x gt -.023 .463
Apollo 12 4 x 4 -.0029 .136
Ll -.0042 .104
15 x 8 -.022 .353
Apollo 14 4 x 4 ~.0016 .187
Ll -.0055 .159
15 x 8 -.0304 .526

*Fourth degree and order model
+Fifteenth degree and eigth order model
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For these Apollo orbits, the L1 field achieves slightly better
convergence statistics than the fourth degree field. However,
the fourth degree field predicts the Doppler with an error rate
of about 50% less than Ll. Of the three fields compared, the
fourth degree field most accurately describes the orbital varia-

tions arising from the non-central features of the moon.



CHAPTER VI

SUMMARY AND CONCLUSIONS

This study has presented an empirical method for
determining the spherical harmonic coefficients of the lunar
gravity field. This method uses a two-step data reduction and
estimation process. In the first step, a weighted least-squares
empirical orbit determination process is applied to Doppler
tracking data to estimate long-period Kepler orbital elements
and rates. Each of the Kepler elements is represented by an
independent time function. The long-period perturbing effects
of the earth, sun, and solar radiation are modeled explicitly
in this orbit determination process. Kepler element variations
estimated by the process are ascribed to non-central
lunar gravitational features. Doppler data are reduced in this
manner for as many orbits as are available. In the second step,
lunar gravity coefficients are determined usiﬁg another weighted
least-squares processor which fits the longfperiod Lagrange
perturbation equations to the estimated Keplerian rates.

Pseudo Doppler data have been generated simulating
two different lunar trajectories. The perturbations included
were triaxial lunar gravity harmonics, the earth, sun, and
solar radiation pressure. Orbit determinations were performed
using the empirical processor and the long-period orbital
element variations obtained. The Kepler element rates from
these convergences were used to recover the triaxial lunar

gravity coefficients. The overall results of this controlled
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experiment show that lunar gravity coefficients can be accurately
determined and that the method as a whole is dynamically consist-
ent. The pseudo data analysis shows the necessity of having
Doppler data from different orbital inclinations for good
selenodesy results.

The method has been applied to Doppler data from the
Lunar Orbiter I, II, III, and V missions. One hundred ninety-
nine sets of Kepler element rates were obtained for lunar gravity
field determination. A gravity field of degree and order four
is derived from these Kepler element rates. Eguipotential
surfaces from this gravity field show the lunar mass distribution
to be that of a triaxial ellipsoid with three large areas of mass
concentration. The largest and by far the most dominant of
these areas is centered very near the Mare Serenitatis region
and covers a large portion of the near side of the moon. The
other two regions of mass concentration are located on the far
side of the moon but do not correspond to any specific mare
region.

This gravity field has been investigated using data
from several of the Apollo missions. Orbit determination solu-
tions (using a standard least-squares processor) from these data
show that this fourth degree field results in improved orbit
predictions as compared to those using other lunar gravity fields.

All solutions indicate the lunar field models are still incomplete.
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There are three major areas of this investigation
which are original. The first is the development and applica-
tion of an empirical orbit determination method for lunar orbits.
The second is the derivation of a selenodesy method based on
empiricaily determined Kepler element rates. The third is the
generation of a fourth degree and order lunar gravity field
(presented in this study) from Lunar Orbiter data using this
method. This is the only indirect type selenodesy method that
truly estimates long-period orbital element variations.

This study demonstrates the necessity of obtaining
more tracking data from lunar satellites at different orbital
inclinations (specifically in the I = 26° to 85° gap). Only
when this has been accomplished will correlations diminish
between the various spherical harmonic coefficients and then
an accurate gravity field will be determined.

It is recommended that a version of this method
which is determinate for both near-circular and near-equatorial orbits
orbits be applied to Doppler tracking data from the Apollo 15

Sub-satellite and any future lunar orbiters.



APPENDIX A

TRANSFORMATION FROM ORBITAL ELEMENTS TO STATE

The rectangular state components (r,v) are found
from the orbital elements, k, using the follwwing set of

non-linear relationships:

r = [Ry] g (A-1)

where the entries to the R, matrix are:

T

’
ry, = cos Q cos w = sin § cos I sin w
i, = - cos © sin w - sin Q cos I cos w
r13 = sin  sin I
r = sin Q cos w + cos Q cos I sin w

21 : . \  (A-2)

r22 = = 81n Q s81n w + cos Q cos I cos w /
r23 = - ¢cos  sin I
r31 = sin I sin w
r32 = sin I cos w
raq = cos I

7

o -

and:
a(cos E - e)

q = av'l—e2 sin E (A-3)
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The eccentric anomaly, E, used in these equations

is found, given M and e, by solving Kepler's equation.
E~-esinE=M | (A-4)
The velocity is found as follows:
v = [R,] é (A-5)

where:

e S (2—6)

(l1-e cos E)

Qe
I
;j
l
o
[\
Q
0
n
td

Hence the state x can be found from k at any time using

A-1 and A-5.

TRANSFORMATION FROM STATE TO ORBITAL ELEMENTS

Given (E,G), the orbital elements are obtained as

follows:

h=1rxv (A-7)
_ -1 _ _
2 = tan hl / hz} (A-8)
I = tan * f-\/h12+h22 / h3] (A-9)
L
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h_ are the components of h.

h2, 3

where hl’

p = [Slr

where the entries to the S matrix are:

S;7 = cos @
Sy, = sin @
1370
S21 = - sin Q cos I
522 = cos 2 cos 1 }
523 = sin I
Sy = sin Q@ sin T
532 = - sin I cos Q
533 = cos I
y

then:

_ -1
w+ f = tan (pb / pl)

1/2
r"=[v2 - h2 / rz]
rl.l&
a = 2
(Z“Q' rv')

e=/l-h2/uqa

(a - r)

cos E =
ae

(A-10)

(A-11)

(A-12)

(A-13)

(A-14)

(A-15)

(a-16)
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sin B = ————— (A-17)
e Vp&a
‘ N Y1 = e sin E (A-18)
a cos E - e i

M =E - e sin E (A-19)



APPENDIX B

DOPPLER MODEL EQOUATIONS

The Doppler frequency shift data is modeled using

39

the range difference method. The estimated Doppler observable,

é, can be computed over some counting interval (typically
sixty seconds) 1, using the following set of range equations

(see Figure B-1).

b~ —_— —* /t — p4 \\A - - .t _l
Pg = 57 Fr T T Tsr (Fr) (B-1)
A 7 ERENY
p3 = r ‘tr - _6) - rst t'r - S J (B~2)
— - ) -
5, = t* [ty - = - | - E__ (kg - 1) (B-3)
%

r /
- P _ fpy + 0
5y E (- 2o ) - Lt,r-T-a_.l___ZH 5-1)

P1 sY \ o]
r* = v + r -5)
and r r L (B-5
where Tom is the earth-moon distance. Ppr Por P3r Py are

the topocentric ranges of the satellite, Esr and Est are the
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RECEIVER

FIGURE B-1- TRACKING CONFIGURATION
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receiving and transmitting station positions in earth centered
inertial coordinates, t, is the Doppler time (at the end of
the counting interval) and is the time the signal is acquired
by tﬁé receiving station, c is the speed of light, and t is
the length of the counting interval.

The eguations for thesé four ranges are solved

iterétively. The estimated observable is found as follows:

- [(03 + 04) -(pl + 02)] (B-6)

where p is expressed in units of length per time. This value

L - p
of p is considered valid at the time t = tr - % - Eé'

°
I
NII—-‘



APPENDIX C

PARTTIAL DERIVATIVES

I. PARTIAL DERIVATIVES OF DOPPLER WITH RESPECT TO STATE

The partial derivatives of the Doppler data with

respect to satellite position and velocity are:

;o
. lio 05 0 o 0, o
or 3 p3 4 04 '
s -
* [ %
3V P3Py
In these equations:
o
— — T 4 -
DR o R IR Ok B
SR 7S R
Pa | T2 c Tsr r 5} (C-4)
¥ ¥
P ¢ +p‘
PO S S B E oo [Ps 4] -
Py = r* {tr = 3 = 3 Tst \tr 3 3 (C-5)
: : P : Pyt 047
Py = r* {tr - 3 - 3 st {tr = 3 p (C-6)
/ !
dp. 0. * p
N 1 _ 1 1
and o; = ol &= = >
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ITI. PARTIAL DERIVATIVES OF STATE WITH RESPECT TO KEPLER

ELEMENTS

The partial derivatives of the satellite state

(r,v) with respect to the Kepler elements (a,e,I,Q,w,M) are:

where:

3q _
e
_
ar _
oI
L.
or
af
aT

9]
€

I
IR

Ia gl

r(l—ez)

0

Z sin @

Z COs Q

Yy €Oos @ - X sin @

—y }
| x
0

[T] g

-

(c-7)

(C-8)

(C-9)

(C-10)

(C-11)

(C-12)
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where: t1l = - ¢cos Q sin w - sin Q cos
t12 = - cos Q cos w + sin Q cos
€13 = ty3 = £33 =0
t21 = - sin Q sin w + cos Q cos
t22 = - s5in 9 COS w — COS § Ccos
t31 = sin I cos w
t32 = - sin I sin w
or _ 9q
w = (Rl oy
[ "% |
where:
r»’l-e2
3 _ a »/l—e2 (ql + ae)
M r
0
- y
W oV
2a 2a
v _ 3q
e [R] de
- |
i
rh2r 2
° i
G fal T2 (), e (%)
\r/ L a } 1-c2 | a )

L] 2 2
39 _ A2 S I 92
Je r 2

r2 ﬁ_eZ a(l-e™)
0

cos

sin

coSs

I sin

o — ittt

(C-13)

(C-14)

(C-15)

(C-16)

(Cc-17)

(C-18)
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r -
z sin Q
%% - z cos @ (C-19)
y cos @ - x sin @
g _ ,
-y
%: % (C-20)
i 0
v = [T] g (c-21)
W
- 3
v /a) -
= = - n |{= r (C-22)
aM \r
u
where 0= Y
3
a
II1I.

PARTIAL DERIVATIVES OF THE ORBITAL ELEMENTS WITH RESPECT
TO THE KEPLERIAN PARAMETERS

A typical orbital element, eccentricity for example,
is represented in the following way:

2
e(t) = ey + elt + e2t + Ge0 + Gee + AeSR (C-23)

Although the variations arising from. the earth, sun,

and solar radiation are functions of the Kepler state variables,
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analysis has shown this dependence to be extremely weak. As

a result the partial derivatives of the Kepler elements with
respect to the solution parameters do not include the third

body and solar radiation effects. It should be noted that the
omission of these small parts (on the order of one ten thousandth
the smallest existing term) does not affect convergence. Hence

the necessary partial derivatives are:

*\
de  _
je. - 1
o
de _ ¢ ) (C-24)
e
1
e _ ,2
e, ~ F




APPENDIX D

MEAN VALUE SEMI-MAJOR AXIS EQUATION FOR

EARTH PERTURBATIONS

The mean value calculation for the semi-major axis
of a lunar satellite under earth perturbations is carried out
using a procedure following Danby's41 for the sun perturbations
on the moon's orbit about the earth. Essentially this method
finds an equivalent mass for the three body system and using
this mass value and the Kepler motion equation, deduces an
adjusted semi-major axis value (mean value). The accuracy
to which this derivation is valid is of order e. Hence all
terms that are eccentricity dependent are assumed zero. This
assumption introduces only small errors for the purposes of
this investigation since all orbits used have an eccentricity
of e = .3 or less.

The radial perturbing force experienced by the satellite,
averaged over the satellite and earth periods is given as

follows:

[1 - 3/2 sin® I (D-1)
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The total averaged radial force exerted on the

lunar satellite is as follows:

- F (D-2)

o)} =
NS

If an equivalent mass, ﬁ, is defined this radial force can then

be obtained from an equivalent central force law. Hence

H = - ™ -
a a
2
~ ne . 2
or N Y 1 + — (3/2 sin® I - 1) (D-4)
2n

The mean value of the mean motion for third body perturbations

is given by Anderson42 and is as follows:

2
A=n 1-%—3 (1 - 3/2 sin® 1) (D-5)
n

=]

o]

where ng =ﬂvL£%' and a, is the average value (constant in this
a
o

case) of the semi-major axis. Using equations D-4 and D-5 an
equivalent Kepler motion law can be written for the perturbed

motion.
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adn =3 (D-6)

where a is the desired mean value of the semi-major axis.

Solving
this equation using the expressions for n and ﬁ, the mean
value expression for the semi-major axis is as follows:
= ( nez 2 i
a = aj 1+ — (1 - 3/2 sin” 1I) (D-7)

| ——



APPENDIX E

WEIGHTED LEAST-SQUARES DATA REDUCTION

The covariance matrix for the Doppler data weighted
least-squares process, assuming zero mean errors in the

estimates, is found by forming the expected value of <Eﬁ KKT>

using eguation (3.31);

EXp <KK A—IZT>= (HwH] ! B w Exp {ZF ET} wH [H wH] T (E-1)
If it is now assumed that the residuals are serially uncorrelated

and are normally distributed random variables such that

Exp <A6 A5T> = %% (E-2)

(where 02 is the variance of the Doppler measurements and T is
the identity matrix) and the weight used in the least-squares
processing is the inverse variance of the Doppler,

W= [o2¥ 71 (E-3)

then

Exp <Zf1? KET> = (aiwm) "t (E-4)
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1

It is only under these conditions that the [HTWH]— matrix is

the true covariance matrix of the process.

If conditions (E-2) and (E-3) are not satisfied, the
[HTWH]--l matrix is not the covariance matrix. For the case of
the empirical orbit determination processor neither of these
conditions can be met since the residuals are systematic and
are also serially correlated. Hence no interpretation of

T 1

variance is made of the diagonal terms in the [H WH]_ matrix.



10.

BIBLIOGRAPHY

Lorell, J., "Lunar Orbiter Gravity Analysis," The Moon,
Vol. 1, 190-231, 1970.

Michael, W. H., "Physical Properties of the Moon as
Determined From Lunar Orbiter Data," Presented at the
Fourteenth General Assembly of the International Union
of Geodesy and Geophysics Meeting, Lucerne, Switzerland,
Sept. 1967.

Tolson, R. H. and Gapcynski, J. P., "An Analysis of the
Lunar Gravitational Field as Obtained from Lunar
Orbiter Tracking Data," Presented at the IQSY/COSPAR
Assemblies, London, England, July, 1967.

Gapcynski, J. P., Blackshear, T. W. and Compton, H. R.,
"The Lunar Gravitational Field as Determined from the
Tracking Data of the Lunar Orbiter Series of Spacecraft,"”
Presented at the AIAA-AAS Astrodynamics Specialists
Conference, Grand Teton National Park, Wyoming, Sept. 1968.

Blackshear, T. W., Compton, H. R., and Schiess, J. R.,
"Preliminary Results on the Lunar Gravitational Field
from Analysis of Long-period and Secular Effects of
Lunar Orbiter I," Presented at NASA Seminar on Guidance
Theory and Trajectory Analysis, Electronics Research
Center, Cambridge, Mass., May 1967.

Lorell, J. and Sjogren, W. L., "Lunar Gravity: Preliminary
Estimates from Lunar Orbiter," Science, Vol. 159, 3815, 1968.

Risdal, R. E., "Development of a Simple Lunar Model for
Apollo," Contract Report D2-100819-1, The Boeing Company,
Seattle, Washington, 1968.

McCuskey, S. W., Introduction to Celestial Mechanics, Addison-
Wesley Publishing Company, Inc., Reading, Mass., 1963.

Caputo, M., The Gravity Field of the Earth from Classical
and Modern Methods, Academic Press, New York, 1967.

"Transactions of the International Astronautical Union,"
Vol. XIB, Proceedings of the 11lth General Assembly,
Berkeley, 1961, D. H. Sadler ed., Academic Press, New York,
1962.




11.

12.

13.

14.

15.

le.

17.

18.

19.

20.

21.

22.

23.

24,

- 144 -

Kaula, W. M., Theory of Satellite Geodesy, Blaisdell
Publishing Co., Waltham, Mass., 1966.

Pollard, H., Mathematical Introduction to Celestial Mechanics,

Prentice-~Hall, Inc., Englewood Cliffs, New Jersey, 1966.

Bullock, M. V. and Ferrari, A. J., "Orbit Determination
For Lunar Parking Orbits Using Time-~Varying Orbital
Elements," NASA Contractor Report 110008, May 1970.

Kozai, Y., " The Motion of a Close Earth Satellite," Astro.J.,

vol. 64, 378-397, 1959.

Kozai, Y., "Second Order Solution of Artificial Satellite
Theory Without Drag." Astro. J., Vol. 67, 446-61, 1962.

Brouwer, D. and Clemence, G. M., Methods of Celestial
Mechanics, Academic Press, New York, 1961.

Lorell, J. and Liu, A., "Method of Averages Expansion for
Artificial Satellite Application," Jet Propulsion Lab.
Report 32-1513, April 1971.

Ferrari, A. J. and Heffron, W. G., "Effects of Physical
Librations of the Moon on the Orbital FElements of a
Lunar Satellite," Presented at AIAA-AAS Astrodynamics
Conference, Ft. Lauderdale, Fla., August 1971.

Kozai, Y., "Effects of Solar Radiation Pressure on the
Motion of an Artificial Satellite," Smithsonian
Institution, Special Report No. 56, January 1961.

Gaposchkin, E. M., "Differential Orbit Improvement,"
Smithsonian Institution, Special Report No. 161, 1964.

de Vezin, H. G., "Doppler Observable Modeling for Apollo
Real-Time Orbit Determination Program," Presented at
Astrodynamics Conference, Manned Spacecraft Center,
Houston, Texas, Dec. 1967.

Sage, A. P., Optimum Systems Control, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1968.

Izsak, I. G., "Differential Orbit Improvement with the
Use of Rotated Residuals,” Smithsonian Institution,
Special Report No. 73, 1961.

Wollenhaupt, W. R., "Apollo Orbit Determination and
Navigation," Presented at AIAA 8th Aerospace Sciences
Meeting, New York, N. Y., January 1970.



25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

- 145 -

Kozai, Y., op. cit., 1959.
Kozai, Y., Smithsonian Astrophysical Observatory, Private
Communication, February 1971.

Anderson, J. D., "Long Term Perturbations of a Moon Satellite
by the Earth and Sun," Jet Propulsion Laboratory
Technical Memorandum 312-162, February 1962.

Durbin, J., "The Fitting of Time - Series Models," Revue
Inst. Int. De Stat., 233-243, 1960.

Battin, R. H., Astronautical Guidance, McGraw-Hill Book Co.,
New York, 1964.

Melbourne, W. G. et al, "Constants and Related Information
for Astrodynamic Calculations, 1968," Jet Propulsion Lab.
Technical Report 32-1306, July 1968.

"Natural Environment and Physical Standards for the
Apollo Program and the Apollo Applications Program,"
NASA M-DE-8020.00C, SE -15-001-1B, July 1969.

Peabody, P. R., Scott, J. F., and Orozco, E. G.,"Users
Description of JPL Ephemeris Tapes," Jet Propulsion
Laboratory Report No. 32-580, March, 1964.

Muller, P. M., and Sjogren, W. L., "Lunar Mass Concentrations,’
Science, Vol. 161, 3842, 1968.

Kaula, W. M., op. cit., 1966.

Koziel, K., "The Constants of the Moon's Physical Libration
Derived on the Basis of Four Series of Heliometric
Observations from the Years 1877 to 1915," Icarus,

Vol. 7, 1-28, 1967.

Michael, W. M., et al, "Results on the Mass and Gravitational
Field of the Moon as Determined from Dynamics of Lunar
Satellites," Dynamics of Satellites 1969, Bruno Morando
ed., Springer-Verlag, Berlin, 1970.

Koziel, K., op. cit., 1967.

Liu, A. S. and Laing, P. A., "Lunar Gravity Field as Deter-
mined by Orbiters," Presented at 14th Plenary Meeting
of COSPAR, Seattle, Washington, June 1971.



39.
40.

41.

42.

de Vezin, H.
de Vezin, H.

Danby, J. M.

Macmillan Company, New York, 1962.

Anderson, J.

G.,
G.,

A.,

D.,

B I8

Fundamentals of Celestjial Mechanics,

- 146 -

. cit., 1967.

cit., 1967.

op

. cit., 1962.





