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Section 1

INTRODUCTION

This report presents the results and. conclusions of an engineering study of

Space Station communications subsystem checkout performed for NASA-MSC

by the McDonnell Douglas Astronautics Company (MDAC), supported by the

Collins Radio Company (CRC) as its major subcontractor.

1. 1 OBJECTIVES

The achievement of extended-duration Space Station missions places new

emphasis on the necessity for an effective onboard checkout and maintenance

capability. Whereas high-reliability equipment design and redundancy con-

cepts have been used to assure system operation on previous short-duration

missions, maintainable systems must be achieved, and practical means of

checkout implementation must be provided on future extended missions.

This study is directed toward achieving these goals for the Space Station

communications subsystem. The primary purpose of the study is to recom-

mend specific guidelines and constraints for the design and utilization of the

communications subsystem leading to a practical and effective means of

onboard checkout implementation. Major study objectives are as follows:

A. Identify candidate communications subsystem checkout concepts.

B. Determine implementation impacts of feasible concepts.

C. Evaluate practicality and effectiveness of alternative concepts.

D. Propose baseline modifications to accommodate preferred concepts.

E. Recommend areas for additional investigation.

In addition, study results are interpreted, where appropriate, in terms of

their applicability to checkout of a Shuttle-Orbiter communications

subsystem.

1



1. 2 STUDY APPROACH

Using the information developed for NASA-MSFC in the MDAC Modular

Space Station studies as a baseline, the study effort involved conducting a

detailed analysis of subsystem checkout requirements, investigating and

evaluating alternative checkout concepts, and generating recommendations

for the design and use of the communications and onboard checkout sub-

systems that will lead to the desired Space Station checkout and mainte-

nance capabilities. An overall study flow diagram is provided in Figure 1-1.

1. 3 KEY ISSUES

Previous studies in the area of Space Station checkout have been concerned

primarily with developing maintenance and checkout requirements necessary

for the general definition of ground and onboard checkout support systems.

This study is more concerned with the detailed investigations and analyses

of techniques to satisfy the requirements for checkout of the communications

subsystem. Detailed checkout requirements for the Modular Space Station

communications subsystem, however, are established as a part of this

study and used in the development and evaluation of candidate checkout

techniques.

Key issues of the study, addressed in subsequent sections of this report,

are as follows:

A. Requirements

1. Performance/status tests

2. Redundancy switching

3. Measurement/stimulus parameters

B. Checkout techniques

1. Stimuli generation (methods, location)

2. Signal detection

3. Automatic monitoring/evaluation (methods, level, location)

C. Implementation impacts

1. Technology

2. Design and performance

3. Interface complexity

4. Operations

5. DMS loading

2
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6. Ground support

7. Relative cost

Alternative techniques associated with stimuli generation (using both arti-

ficial and normal operational signals), signal detection, and automatic

monitoring are explored in depth to determine the relative merits of their

application in communications subsystem checkout. Special emphasis is

also given to self-testing, redundancy switching, and the level of checkout

to be employed.

4



Section 2

SUMMARY OF RESULTS AND CONCLUSIONS

This section provides a summary of the significant results and conclusions

derived from the study. More detailed presentation and discussion of study

results may be found in subsequent sections of the report. Overall conclu-

sions related to checkout of the Space Station communications subsystem are:

A. Implement all test stimuli generation and signal detection

capabilities within basic communications subsystem design.

B. Utilize data management subsystem (DMS) for communications

subsystem monitoring, evaluation and control.

C. Monitor normalized sensor data instead of go-no/go status.

D. Relatively little need for continuous status monitoring, automatic

redundancy switching, and telemetry.

E. No special advancement in state-of-the-art components or

circuitry required for checkout.

F. Insignificant average data rates for communications subsystem

checkout.

G. Significant differences expected between Space Station and Shuttle-

Orbiter checkout concepts.

2. 1 STUDY BASELINE

The study is based upon the communications, data management, and onboard

checkout subsystems defined .for the MDAC/MSFC Modular Space Station

and described in Section 6. The communications subsystem provides radio-

frequency (RF) communications between the station and the ground, either

directly to the NASA ground network or through the NASA data relay satel-

lite system (DRSS). Communications are also provided between the Station

and the Space Shuttle during rendezvous and docking operations and for crew-

men engaged in extravehicular activity (EVA). An internal communications

system is also provided on the Station for voice communications between

crew quarters, equipment compartments, duty stations, and docked modules.

The VHF and S-band equipments utilized for communications with the DRSS,

Space Shuttle, NASA ground stations, and EVA are shown in Figure 2-1.

5
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The Ku-band and S-band equipments required to provide wideband data

transmission and reception with the DRSS are shown in Figure 2-2. Also

shown on these diagrams are the audio terminals and analog sync/test unit

of the internal communications system. Descriptions and lower-level block

diagrams of the high- and low-gain antenna systems, RF system, and inter-

nal communications system are provided in Section 6.

The major Modular Space Station checkout guidelines that are followed by

the study are:

A. Continuous monitoring to provide immediate indications of

out-of-tolerance conditions to the crew.

B. Periodic testing and trend analysis to assure system availability.

C. In-place fault isolation to replaceable unit level for long

life assurance.

D. Onboard checkout control except during quiescent mission phases.

E. Capability for selecting and transmitting checkout data to

the ground.

F. Automation techniques to the greatest practical extent.

G. Onboard checkout subsystem (OCS) self-check capability.

H. In-flight capability for restructuring checkout procedures.

I. Standard OCS interfaces.

J. Comprehensive ground test-program to minimize operational risks.

Onboard capabilities must be provided to determine whether or not sub-

systems are operating in an acceptable manner, to supply information for

repair and reconfiguration actions, and to verify subsystem operation fol-

lowing failure correction. The checkout functions required to implement

this capability include status monitoring, periodic testing, trend analysis,

and fault isolation. The level of fault isolation is keyed to the line replace-,

able unit (LRU) which is the smallest unit within the subsystem that is suit-

able.for onboard replacement. Communications subsystem LRU's are

listed and discussed in Section 6.

A summary of the performance/status tests required for the VHF, S-band

and Ku-band portions of the communications subsystem is presented in

Table 2-1. Also indicated is the applicability of these tests to the

7
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Shuttle-Orbiter, assuming similar equipment is used. The degree of

onboard testing necessary during its relatively short duration mission is

expected to be much less than that expected for the extended-duration Space

Station mission. Additional testing may be required for Orbiter equipment

not reflected in the communications subsystem baseline used in this study.

The checkout concepts identified and evaluated in the study are based on a

Space Station checkout philosophy of isolating to the faulty replaceable unit

while in-flight, and are evaluated assuming the existence of an extensive

DMS capability. The Orbiter philosophy, on the other hand, is expected to

be one of being mainly interested in the in-flight status of communications

subsystem equipment and switchover to redundant units in the event of fail-

ure or degradation in performance.

The Space Station OCS is a hybrid of (1) utilizing checkout functions built

into the subsystem or experiment under test; (2) sharing other onboard

capabilities, especially those of the DMS for data acquisition and distribu-

tion, computation, data storage, displays and controls, command generation,

and operating system software; and (3) implementing unique OCS design

required for stimuli generation, critical measurements, and checkout soft-

ware. An overall block diagram depicting OCS/DMS elements is provided

in Figure 2-3.

Stimuli generation, command generation, and data acquisition capabilities

are distributed throughout the Station as dictated by checkout data point

locations. Local caution and warning units are located in each habitable

compartment with overall status provided at primary and secondary station

control centers. Display, control, and data processing functions are pri-

marily centralized with separate capabilities provided for subsystem and

experiment support. Distribution of information between various elements

of the system is primarily by digital data bus.

Normal on-orbit operation of the OCS is automatic until a fault is detected

either by the limit checking capability of the remote data acquisition units

(RDAU's) or by a periodic monitoring routine executed by the DMS processor.

10
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Depending upon the response programmed for the particular fault, the OCS

may then proceed automatically to isolate the fault to the replaceable unit or

to notify the crew of the malfunction and await further instructions.

An important aspect of the data management/onboard checkout subsystems

baseline is that of minimizing the types of interfaces. This is particularly

important since it must interface with all other Space Station subsystems,

diversified integral experiments, and docked modules. Key features of the

onboard checkout capability are listed in Table 2-2.

2. 2 PREFERRED CHECKOUT CONCEPT

A variety of concepts for generating test stimuli, detecting signals, and

monitoring and evaluating subsystem outputs are defined and analyzed in the

study. This is done for the RF, antenna, and internal communications

equipment and integrated into a preferred concept for the communications

subsystem. Key checkout technique issues addressed in the selection of the

preferred concept are summarized in Table 2-3 and described in detail in

Sections 3 and 4.

The preferred concept consists of incorporating stimuli test generators and

detectors internal to operational RF system LRU's, using external signal

detectors within the low- and high-gain antenna systems, and taking advan-

tage of the already available capabilities of the DMS to determine the go-

no/go status of the communications subsystem through logical evaluation of

monitor signals from the LRU's and external antenna detectors. The pre-

ferred test signal format consists of utilizing simple analog test-tones and

digital signals as modulation sources. The monitor signals are all normal-

ized to standard voltage and impedance levels compatible with the DMS

remote data acquisition units (RDAU's). In general, no logic processing is

done within the communications subsystem.

The unmodulated RF signals provided by the subsystem transmitters in

conjunction with the analog and digital modulation test generators located

with the transmitters are used for checkout of transmit paths. For verifi-

cation of receive paths, RF and modulation signal generators located within

12
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operational RF system LRU's are utilized. Stimuli generators are not

incorporated in the S-band and Ku-band power amplifiers since the circuitry

necessary to develop the normal drive signal could approach the complexity

of the LRU itself. The preferred LRU test generator concept is illustrated

in Figure 2-4. Figure 2-5 shows the preferred RF system monitoring/

evaluation approach of providing normalized data from detectors internal to

the LRU's to the DMS for evaluation.

To facilitate checkout of the antenna system, bidirectional couplers are

incorporated in the multiplexer/switching and antenna assemblies. Special

envelope detectors are also located adjacent to these assemblies to detect

RF signals and to normalize the data for DMS evaluation and monitoring.

Detector input levels are set by a switched attenuator controlled by the DMS.

In addition, phase shifters and directional couplers are incorporated in the

main and acquisition feed/comparator assemblies to accommodate closed-

loop checkout of the high-gain antenna system.

The preferred concept for checkout of the low-gain antenna system is

illustrated in Figure 2-6 for the S-band triplexer and switching assembly.

Receive paths are verified by routing test stimuli from the transponder in

the reverse direction through the filters and switches to the antennas.

Transmit paths are verified using the normal operational RF signals.

The preferred concept for checkout of the high-gain antenna system is shown

in Figure 2-7. For. receive path checkout, the concept utilizes the RF sig-

nals generated within the low-noise receiver and fed through a separate RF

path to the phase shifters in the main comparator and feed assembly. The

phase shifters are set to a simulated off-axis pointing angle on command

from the DMS. This is repeated for left, right, and center offsets in both

the azimuth and elevation channels of the comparator. The same procedure

is also used to verify proper performance of the acquisition antenna. Trans-

mit paths are verified using the normal operational RF signals.
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The positioner assembly of the high-gain antenna system is checked out by

injecting position commands into the servo-control assembly from the DMS.

Actual position and rate readouts are monitored by the DMS from digital

resolvers driven by the gimbal ac position and rate sensors.

The checkout concept selected for verifying performance and proper opera-

tion of the internal communications system audio terminal units (ATU's) is

a combination of talk-back and self-test test-tone methods. Since this

method utilizes voice signals and test-tones which are called up and evalu-

ated by the user, there are no interfaces with the DMS except for power

control. The performance and availability of the analog sync/test unit is

determined by DMS monitoring of fault indications generated within the unit.

The preferred concept also includes automatic monitoring and redundancy

switching within the communications subsystem for the analog sync/test

unit and the S-band phase-modulated (PM) transponder. The analog sync/

test unit generates a 4-kHz reference signal which is required for proper

operation of the onboard telephone system. Loss of this reference signal

would cause a loss of normal voice communications throughout the Space

Station, as well as between the Space Station and the other program elements.

The S-band PM transponder is utilized for communications directly with the

ground stations and Shuttle-Orbiter. During Orbiter rendezvous and docking

operations, loss of communications could be very serious.

Further redundancy switching is required for the EVA transmitter/receivers.

The RF communications with crewmen engaged in EVA operations are

normally provided by two full-duplex transmitter/receiver pairs. A third

transmitter/receiver is used to provide simplex communications in the

event of a failure of either of the primary units. Since an EVA controller

is in the loop during these operations, redundancy switching for this essen-

tial function is best effected by manual control.

A final area of redundancy switching involves the communications subsystem

equipment located on the high-gain antenna masts. To minimize EVA oper-

ations for maintenance and replacement, redundancy switching is provided

20



for the Ku-band power amplifiers, exciters, low-noise receivers, and

S-band tracking receivers. Switchover time is not critical and the redun-

dancy is effected by the normal operational controls for these units.

The selection of the preferred checkout approach is strongly influenced by

the Space Station maintenance/replacement guidelines and the availability

of extensive DMS capabilities. Since the Shuttle-Orbiter is expected to

rely much more on redundancy switching to eliminate faulty LRU's and not

to have an extensive DMS capability, the preferred Shuttle-Orbiter checkout

approach is expected to differ from that selected for the Space Station. An

approach which ranked quite high in the evaluation of Space Station checkout

concepts appears quite attractive for checkout of the Shuttle-Orbiter com-

munications subsystem. This concept utilizes an antenna test generator

with built-in modulation capability to verify receive paths, and either built-

in LRU modulation test generators or a common modulation generator on

the data bus for verification of transmit paths. Transmit path RF and mod-

ulation detectors would also be required in either the LRU's or in the

antenna system.

With the added emphasis on quick fault detection for redundancy switching

purposes in the Orbiter, it is logical to assume that the individual LRU's

would provide go-no/go outputs which would be displayed directly. This

approach requires much less dependence on the DMS than the preferred

Space Station approach and, therefore, is much more applicable to systems

not having an extensive DMS capability.

The Orbiter low-gain antenna system also requires RF detectors located at

each antenna element to verify proper antenna switching. In-flight insertion

loss and voltage standing-wave ratio (VSWR) measurements are not necessary

on orbit, but could be performed during and immediately after reentry to

determine plasma effects and to verify antenna availability. Very limited,

if any, checkout of the Orbiter high-gain antenna system is expected to be

performed on-orbit due to the relatively short flight duration. The checkout

would be limited to that available during normal operation.
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2. 3 ONBOARD CHECKOUT SYSTEM SUPPORT REQUIREMENTS

On-orbit checkout activities required to insure the availability of the com-

munications subsystem include monitoring of its normal operational outputs,

performing periodic checks, conducting trend analysis, and selecting fault

isolation routines associated with the loss of a communications function.

Access to approximately 550 subsystem measurement points and application

of nearly 300 stimuli are required to perform checkout and fault isolation

of the baseline Space Station communications subsystem. An identification

of the type, quantity, and usage of these measurement and stimulus param-

eters, as well as those required to conduct normal subsystem operations,

is provided in Table 2-4. A detailed listing of these parameters, their

characteristics, and the required test interval, sample rate, and sample

size (in bits) for each is provided in Section 6. The listing is based upon the

study baseline and preferred checkout concepts previously described in

this section.

As indicated in Table 2-4, less than 5 percent of the parameters are moni-

tored almost continuously for out-of-tolerance conditions. Parameters

monitored in this manner include power amplifier temperature, transmitter

and power amplifier RF power output levels, and receiver automatic gain

control (AGC) output levels. In addition, a very limited number of parame-

ters are telemetered to the ground to support ground operational procedures.

These include the modulation mode, AGC output level, and static phase

error of the S-band PM transponder. The relative degree of status monitor-

ing associated with the communications subsystem is much less than that

anticipated for most other Space Station subsystems. An average of approxi-

mately one-third of all Space Station parameters are subjected to nearly

continuous monitoring.

Over 40 percent of the parameters are used to support normal communica-

tions subsystem operations. This percentage is about the same as that

required to support overall Space Station operations. Over 75 percent of

these operational parameters take the form of simple bilevel stimuli and

responses.
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The quantity of parameters indicated for testing reflects those necessary

for tests conducted periodically to verify the availability or proper operation

of on-line systems, redundant equipment, and alternate modes. Although

basic LRU operational controls have been excluded from the parameters

required for testing, it should be understood that most of these are actually

required to support this checkout function. Periodic checks of communica-

tions subsystem equipments are expected to be performed prior to opera-

tional usage or prior to a scheduled logistics resupply mission. The

applicability of the identified parameters to Shuttle-Orbiter tests, assuming

similar equipment is utilized, is also noted in Tables 2-4 and 6-11.

The function of fault isolation requires nearly all of the parameters, but

only 23 percent are required solely for this purpose. Fault isolation is

performed on a systematic basis on a group of LRU's associated with a par-

ticular function. Since it is reasonable that periodic checks of the subsys-

tem would be similarly configured, it is expected that software for both

periodic testing and fault isolation testing will be integrated into a

common package.

To detect graceful degradation in communications subsystem receivers,

power amplifiers, and transmitters, RF power outputs and receiver AGC

outputs are periodically sampled and subjected to trend analysis. The AGC

levels are only trended from periodic test to periodic test since known receive

RF stimuli are required.

As far as the Shuttle-Orbiter is concerned, the degree of onboard testing

for its relatively short duration mission is much less than that anticipated

for the extended-duration Space Station mission. Only 18 percent of the

measurement parameters identified for the Space Station are expected to be

applicable to Shuttle-Orbiter onboard testing. Additional parameters are

required for Orbiter equipments not reflected by the Space Station baseline

used in this study. Special tests, for example, may be required on the

Orbiter before return to the ground. The functions of fault isolation and

trending are expected to be performed nearly exclusively on the ground for

the Shuttle-Orbiter.
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2. 4 EVALUATION AND RANKING OF ALTERNATIVE CONCEPTS

The results of evaluating and ranking the viable alternative checkout con-

cepts are summarized in this subsection for the RF, antenna, and internal

communications systems. A more detailed discussion concerning the

evaluation of candidate concepts is presented in Section 5.

2. 4. 1 RF System

The rationale utilized in the evaluation, ranking, and selection of the alter-

native stimuli generation, signal detection, and monitoring concepts for the

RF system is discussed in the following paragraphs.

2. 4. 1. 1 Stimuli Generation

The candidate concepts considered as possible modulation signal sources for

the transmit paths include the use of operational signals and modulation

generators located either on the data bus, in a centralized test unit, or

within the transmitter LRU's themselves. These alternatives are ranked

utilizing the evaluation criteria and weighting factors shown in Table 2-5 and

discussed in Section 5. The selection of the LRU internal modulation test

generator approach is based primarily on the lack of operational restrictions

and interface simplicity. The data bus generator concept, however, also

ranks high in the evaluation and is an acceptable alternate checkout approach.

The use of operational data is limited by the characteristics and availability

of the signals. The centralized test unit approach requires parallel inter-

faces to all LRU's and careful design to minimize electromagnetic inter-

ference (EMI).

The candidate concepts considered as possible RF and modulation signal

sources for the receive paths include the use of operational signals, an

RF translator, and RF and modulation generators located either in the

antenna system, in a centraltest unit, or within the receiver LRU's them-

selves. Based on the evaluation in Table 2-6, the LRU internal RF and

modulation test generator approach has the highest ranking, but there is not

a clear-cut advantage over the antenna test generator approach. The use of

operational signals fares reasonably well, but suffers from the same short-

comings noted above. The EMI and isolation problems are much more
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severe for the receive path than for the transmit path in the centralized test

generator concept because parallel RF cabling to all LRU's is required.

The RF translator approach also has potential EMI and isolation problems

and may also impose difficulty in isolating transmitter/receiver failures.

The analog test-tone and digital modulation test signal format concept is

selected because of its ease of implementation and because the voltage levels

can be tailored to the modulation or demodulation sensitivity of each LRU.

The design complexity associated with implementing the other approaches

is considerably greater and is not warranted.

2. 4. 1. 2 Signal Detection

The three RF and modulation signal detection concepts considered for RF

system transmit paths are the RF translator concept, the concept of using

the pair receiver as the detector, and the location of detectors either within

the transmitter LRU's or in a centralized test unit. Based on the results

of the detector evaluations in Table 2-5, the choice is clearly the internal

LRU approach. There are no new interfaces created by utilizing this

approach and there are no known performance impacts.

2. 4. 1. 3 Monitoring and Evaluation

The evaluation and ranking of the candidate monitoring concepts is shown in

Table 2-7. Two basic monitoring and evaluation concepts are considered.

The first utilizes the DMS which either monitors LRU go-no/go status and

then evaluates normalized data, or only evaluates LRU normalized data.

The second method incorporates a communications subsystem multiplexer-

computer unit (MCU) which either monitors LRU go-no/go status and then

evaluates normalized LRU data, or determines LRU status by evaluating

the normalized LRU data. The results of the evaluation and ranking show

that the approaches which use the DMS to either monitor LRU go-no/go

status and evaluate the normalized data, or evaluate the LRU normalized

data are far superior to the other approaches. The selection of the prefer-

red monitoring and evaluation approach is based primarily on the availa-

bility of an extensive DMS capability.
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2. 4. 2 Antenna System

Results and rationale of the evaluation, ranking, and selection of alternative

antenna system stimuli generation, signal detection, and monitoring/

evaluation concepts are discussed in the following paragraphs.

2. 4. 2. 1 Stimuli Generation

For the high-gain antenna system receive paths, candidate open-loop stimuli

sources considered are far-field signals from the data relay satellite, near-

field signals from an onboard antenna, and far-field RF noise from solar

radiation. For closed-loop receive path checkout, both an internal LRU

stimuli generator and separate antenna stimuli generator are considered.

Closed-loop stimuli concepts are preferred to open-loop concepts because of

control limitations and because of design and technology impacts. Of the

closed-loop stimuli concepts, the use of stimuli generation capabilities

internal to the low-noise receiver LRU is preferred. This preference is

due to the commonality of stimuli generation requirements between the RF

and antenna system, and due to the simpler interface that results between

the stimuli source and the comparator feed assembly.

Candidate stimuli concepts for checkout of both the high- and low-gain

transmit paths involve the use of either a separate antenna generator or the

normal operational signals. Although detection problems are somewhat

simplified by use of a separate generator, the utilization of operational sig-

nals is preferred to designing a new stimuli generator.

For the low-gain antenna receive paths, the use of either a separate antenna

generator or an internal LRU stimuli generator is considered. The latter is

preferred with the receive RF signals injected into the normal antenna input

line in the reverse direction. The deciding factor is primarily the availa-

bility of RF stimuli generation capabilities within the low noise receiver.

2. 4. 2. 2 Signal Detection

Candidate detection concepts for monitoring RF signals are the preferred

diode envelope detector and a diode mixer detector. The diode envelope

detector includes a predetection tone modulator and postdetection signal
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conditioning amplifier. The alternate diode mixer detector approach utilizes

an RF mixer and intermediate frequency amplifier. A summary matrix

comparing the relative merits of the two methods is provided in Table 2-8.

The envelope detector is preferred primarily because of its simpler design

and lower potential EMI generation.

For the high-gain antenna system receive paths, two detection candidates

are considered for monitoring acquisition and tracking performance. These

include either using a diode mixer detector in conjunction with an impedance

analyzer, or using the operational tracking receiver. The selection of the

tracking receiver as the preferred candidate eliminates designing a separ-

ate checkout assembly and provides a capability for monitoring the perform-

ance of comparator modulator outputs. The availability of a redundant

tracking receiver adds to the attractiveness of using the operational tracking

receiver for monitoring acquisition and tracking performance.

2. 4. 2. 3 Monitoring and Evaluation

As for the RF system, DMS capabilities are utilized to support antenna sys-

tem monitoring and evaluation functions. This approach is preferred to

other concepts that require the design of an independent antenna system

evaluator.

Implementation of the reflectometer or impedance analyzer candidate con-

cepts, for example, does result in reduced dependence upon the DMS, but

this advantage is very much offset by the additional complex design required.

2. 4. 3 Internal Communications System

Three alternative concepts are identified for checkout of the onboard tele-

phone system. The first is a simple talk-back method which requires a

crewman at both the user and dialed ATU's. Another concept is the self-

test test-tone method which employs a test-tone that is manually called'up

and evaluated by the user. In an automatic test concept, each ATU is

sequentially interrogated by a test-tone generated within a dedicated test

unit. Since the duty cycle varies considerably between ATU's and the

reliability is expected to be high, it is unnecessary to implement a dedicated
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test unit for checkout of the ATU's. Both the talk-back and self-test test-

tone methods have some associated limitations; however, the limitations

of each are complemented by the other. Therefore, a combination of the

latter two has been selected as the preferred approach.

Each analog sync/test unit of the internal communications subsystem incor-

porates a self-monitor capability which provides reference generator

operational status as an output. These outputs are monitored continuously

by the DMS for fault indications. This information is then utilized to effect

redundancy switching if required.

The technique selected for 'verifying operation of the TV monitors is one

that utilizes known test patterns as the stimuli source and a crewman to

visually evaluate the pattern.

2. 5 RECOMMENDED BASELINE MODIFICATIONS

The study shows that the preferred checkout concept is one in which the RF

and modulation stimuli generators and signal detectors are located within

the operational LRU's of the system, and in which the DMS is assigned the

task of both determining the system go-no/go status and locating faults by

evaluating the normalized monitor data supplied by each of the LRU's.

The impact of this concept on the basic functional configuration is the added

design requirement for incorporating the stimuli sources within the LRU's,.

and for supplying the circuitry necessary both to detect all of the critical

signals at the LRU interfaces and to supply them at normalized signal levels

and impedances compatible with the RDAU's. Block diagrams depicting

the additional circuitry required to implement the preferred checkout

approach are provided in Section 3.

While the incorporation of the stimuli generators represents a major change

to the baseline communications subsystem configuration, most of the control

and monitor signals used in the checkout procedures are already included in

the subsystem for normal operational control and anticipated test signal

outputs. Furthermore, the normalization of tes,t signal outputs is considered

to be a baseline design consideration for all concepts.
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The preferred checkout concepts for verifying performance and operation of

the low- and high-gain antenna systems utilize the operational RF transmitter

signals and the receiver LRU internal test generator signals as stimuli

sources. The impact of this concept on both antenna systems is the added

design requirement of incorporating the bidirectional couplers within the

multiplexer and switching assemblies located in transmit paths and the

directional couplers in multiplexers located in receive paths. Phase shifters

and bidirectional couplers are required additions in the high-gain main and

acquisition comparator/feed assemblies to permit closed-loop checkout of

the RF tracking systems.

Bidirectional couplers must be incorporated in the design of the VHF and

S-band low-gain antenna feed elements. The design of separate RF power

detectors is also required. These detectors are collocated with the multi-

plexer and switching assemblies and low-gain antenna feed elements. The

design of all antenna system LRU's and power detectors must provide for

conditioned monitor signal outputs which are compatible with the DMS.

No modifications are necessary for the baseline internal communications

system to accommodate checkout.

2. 6 RECOMMENDED ADDITIONAL AREAS OF INVESTIGATION

As a result of the study, several areas are identified as worthy of further

investigation, especially those related to checkout of the Shuttle-Orbiter.

Further checkout analysis of the Space Station communications subsystem

should be deferred until an appropriate time prior to generating Space

Station equipment specifications. The results of any studies undertaken

to investigate Shuttle-Orbiter checkout concepts would be highly beneficial

to the eventual detailed definition of Space Station checkout concepts.

2. 6. 1 Antenna Detector Design

The special envelope detector concept defined in the study for checkout of

the antenna system should be further developed and designed. The design

could be of significant benefit to Shuttle-Orbiter prelaunch checkout.
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2. 6. 2 Broadband Signal Sources

Broadband signal sources such as noise or variable code length pseudo-

random noise (PRN) generation in conjunction with suitable filters could be

utilized as common modulation sources. A study to determine the feasibility

of utilizing these techniques should be performed. This would then be

followed by the development of a breadboard system to verify the concept(s).

2. 6. 3 Shuttle-Orbiter Communications Subsystem Checkout Study

It is recommended that a study similar to the Communications System

Checkout Study performed for the Space Station be undertaken for the

Shuttle-Orbiter. The proposed study would address the same key checkout

requirements, 'techniques, and implementation impact issues of the current

study, but place additional emphasis on areas more vital to the definition

of Shuttle-Orbiter checkout concepts. Redundancy switching, data manage-

ment subsystem loading, ground support requirements, and reentry/landing

systems, for example, are of much greater concern to the development of.

Shuttle-Orbiter checkout concepts than they are for the Space Station.

Methods and location of stimuli generation and monitoring/evaluation capa-

bilities are also extremely important considerations for the Shuttle-Orbiter,

as they are for the Space Station. These concepts must be established in a

timely manner to effect their implementation in the initial specification and

design of the communications subsystem equipment.
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Section 3

IMPLEMENTATION OF PREFERRED CHECKOUT CONCEPT

This section discusses the impacts of implementing the preferred checkout

concept for the Space Station communications subsystem described in

Subsection 2. 2. Other checkout techniques investigated in the study are

addressed in Section 4.

3.1 RF SYSTEM

One of the key advantages of locating the stimuli generators and detectors

within the RF transmitter and receiver LRU's is the elimination of design

interface problems between the checkout circuitry and the operational

circuitry because the LRU design is under the control of the same designer.

It also allows the monitor detectors to be loosely coupled. This prevents a

failure in the checkout circuitry from degrading the normal operational

channel. Potential EMI and isolation problems, such as would be present in

the centralized test generator concept, are also minimized. Another advan-

tage of this approach is that fault isolation is relatively straightforward when

several LRU's are operated in series since the checkout of each LRU is not

dependent upon signals from another LRU. The one exception, the power

amplifier, has been noted previously. The most serious drawback to this

approach is that a failure in the checkout circuitry of an LRU could require

LRU replacement, even though the operational circuitry has not failed.

However, since only simple modulation, low-power RF generators, and

relatively simple detectors are envisioned, the reliability of the checkout

circuitry can be made high enough to minimize this objection.

The additional circuitry required to implement the preferred checkout

approach for several representative LRU's is shown in Figures 3-1 through

3-5. The VHF voice transmitter/receiver shown in Figure 3-1 requires the
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addition of two crystal oscillators, a mixer, frequency modulator and

demodulator, directional couplers, and a test-tone generator. The bidirec-

tional coupler allows the receive channel RF test generator to be fed into the

VHF low-gain antenna system for checkout of receiver paths.

The additional circuitry required in the Ku-band exciter modem is relatively

minor and shown in Figure 3-2. It consists of an analog test-tone generator,

digital data generator, isolation amplifier, signal divider, and 1. 024- and

4. 5-MHz subcarrier detectors.

The changes required in the Ku-band exciter are shown in Figure 3-3. They

include variable test-tone and digital data modulation generators, RF carrier

detectors, 1. 024- and 4. 5-MHz subcarrier oscillators and detectors, and a

directional coupler and hybrid to couple the RF signals into the detection

circuitry.

The RF system LRU that is most significantly affected by the incorporation

of the internal test stimuli generation and detection capability is the S-band

transponder shown in Figure 3-4. The additional checkout circuitry includes

a phase modulator and carrier detector, 30- and 70-kHz subcarrier

oscillators, 1, 024- and 1. 25-MHz subcarrier detectors, test-tone and

digital data generators, and directional couplers. The bidirectional coupler

allows a signal at the normal receive frequency to be coupled into the antenna

system to allow checkout of the receiver channel filters in the S-band

multiplexer and switching assembly.

The Ku-band low-noise receiver (Figure 3-5) requires only the addition of a

low-power oscillator, frequency multiplexer, and directional coupler to

provide the built-in test capability. It should be noted that the capability

to provide a Ku-band RF signal output has also been incorporated in this

LRU. This signal is utilized for closed-loop checkout of the RF tracking

s ystem.

To minimize the impact on overall system weight, size, power consumption,

and interface complexity and to enhance reliability, it is mandatory that the

43



stimuli generators and detectors be incorporated inthe basic LRU design.

This approach has an advantage over the other concepts that use common test

generators in that redundant off-line units can be checked out while the

paired unit continues to be utilized in support of normal station operations.

The utilization of the DMS RDAU's for both checkout and operational control

of the communications subsystem should tend to minimize any priority con-

trol conflicts that may arise. Although this approach has the highest DMS

loading of all the concepts considered, the impact on the overall DMS loading

is relatively insignificant.

The only automatic monitoring and redundancy switching required for RF

system LRU's is that associated with the S-band PM transponder. This LRU

is utilized for communications directly with the ground stations and Shuttle-

Orbiter. During Orbiter rendezvous and docking, loss of communications

could jeopardize the accomplishment of critical mission operations. Imple-

menting the capability for automatic transponder switchover is complex.

This is due to the fact that a "loss-of-lock" indication from a transponder

could result from either a transponder front end failure or the lack of a

received signal from the Orbiter.

Other redundancy switching identified for the RF system is that required for

the EVA transmitter/receivers. The RF communications with crewmen

engaged in EVA operations are normally provided by two full-duplex

transmitter/receiver pairs. A third transmitter/receiver is utilized to

provide simplex communications in the event of a failure of either of the

primary units. Since an EVA controller is in the loop during these opera-

tions, redundancy switching for this essential function is best effected by

manual control.

3. 2 ANTENNA SYSTEM

To facilitate checkout of the antenna system, bidirectional couplers are

incorporated in the multiplexer/switching and antenna assemblies. Special

envelope detectors (Figure 3-6) are also located adjacent to these assemblies
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to detect RF signals and to normalize the data for DMS evaluation and

monitoring. Each detector includes a predetection tone modulator and post-

detection signal conditioning amplifier. Detector input levels are set by

a switchable attenuator controlled by the DMS. In addition, phase shifters

and directional couplers are incorporated in the main and acquisition feed/

comparator assemblies to accommodate closed-loop checkout of the high-

gain antenna system.

3. 2. 1 Low-Gain Antenna System

The preferred concept for checkout of the low-gain antenna system is

illustrated in Figure 2-6 for the S-band triplexer and switching assembly.

Receive paths are verified by routing test stimuli from the transponder in

the reverse direction through :the filters and switches to the antennas.

Transmit paths are verified using the normal operational RF signals with the

required amplitude modulation provided by the preferred detector concept.

Monitoring and evaluation functions are performed by the DMS.

Receive and transmit monitoring points are located in the multiplexer and

switching assembly to take advantage of the common internal line between

the filters and switches. Placement of a directional coupler and detector in

this assembly provides the capability of monitoring all signals passing

through the antenna system. The approach accommodates the "reverse-

direction" receive path checks as well as the performance monitoring of all

filters in the multiplexer and switching assembly. Detector signal level

requirements are discussed in subsequent paragraphs of this subsection.

Both RF arid dc talk-back are utilized for switch position monitoring. The

RF talk-back couplers are located at the input of the antenna terminals

rather than in the multiplexer and switching assembly output terminals

because of the need to monitor the output power indications at the antenna

terminals.

Detector attenuation levels are set to correspond with the db difference

between the strongest and weakest stimuli of the system. In the VHF system,

the difference between the 20-watt transceiver and the EVA transmitter
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power levels is 43 db (20, 000 to 1). Thus, the attenuator levels required are

zero and 40 db. For receive stimuli monitoring, the power level of the

receive test stimuli is chosen to be in the same order of magnitude as the

EVA operational carrier. This is approximately 1 milliwatt at the multi-

plexer input.

The test stimuli required for checkout of the low-gain antenna system receive

paths originate from signal generators located within the receivers inter-

facing the respective antennas. On the other hand, transmitter operational

signals provide the required transmit path test stimuli.

The stimuli have a wide range of power levels when considering both transmit

and receive signals. The S-band transponder has a power output of 1 watt,

whereas the outputs of the power amplifiers and VHF transmitters are each

20 watts. The EVA transmitter has a power output of only 1 milliwatt.

Fortunately, it is not necessary for the internal receive stimuli to match the

output power of the transmitters. It is thus feasible to specify a stimuli

power level compatible with both the sensitivity range of the detectors and

still not seriously impact the design requirements of the receiver LRU which

must generate the stimuli. To minimize the design impact, a 1-milliwatt

level is proposed as the receiver RF stimuli level to be utilized for antenna

system checkout.

Coupling factors for the test couplers must be carefully chosen to provide a

minimum insertion loss in the system, but still remain within the sensitivity

range of the detectors and signal conditioning amplifiers. The forward power

couplers are 10 db lower than the reflected channel couplers in order to

provide a match between the forward and reflected power levels.' The pre-

detection levels for low-gain antenna stimuli are shown in Table 3-1.

Table 3-2 provides similar information for the high-gain antenna stimuli. It

is evident from these tables that the envelope detector, with a sensitivity of

approximately 10 - 5 milliwatts, is adequate for both low- and high-gain

antenna power monitoring. The detector has a linear range of 30 db above

this level. Thus, with the switchable input attenuator, the detector operates

within its linear range for all signal levels.
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3. 2. 2 High-Gain Antenna System

The preferred concept for checkout of the high-gain antenna system is shown

in Figure 2-7. As for the low-gain antenna system, transmit paths are

verified using the normal operational RF signals. For receive path checkout,

the concept utilizes the RF signals generated within the low-noise receivers

and fed through a separate RF path to phase shifters in the main comparator

and feed assembly. The phase shifters are set to a simulated off-axis

pointing angle on command from the DMS. This is repeated for left, right,

and center offsets in both the azimuth and elevation channels of the compara-

tor. The S-band tracking receiver is used to detect the output of the

comparator/feed assembly and provides output error signals to the DMS for

evaluation. The same procedure is also used to verify proper performance

of the acquisition antenna.

The power divider and phase shifters are located internal to the comparator

rather than adjacent or internal to the low-noise receiver. Since only one

RF signal path to the comparator is used, the concept is not sensitive to

phase shift errors induced by environmental and physical changes. The phase

balance occurring after power division is essential to the stability of the

phase shifters. Driving signals for the phase shifters are provided by a

function generator located within the assembly and interfacing the DMS. On

a word command from the DMS, the desired bias combination is transmitted

to the phase shifters. The phase shift offset required is a design parameter

which depends upon the characteristics of the precomparator and post-

comparator asymmetries. The function generator is therefore an integral

part of the comparator and feed assembly to be defined by the assembly

designer.

Although test stimuli originate as an unmodulated Ku-band carrier generated

internal to the low-noise receiver, the approach is extended to test up to

three LRU's in a chain. Each LRU receives its stimuli from the preceding

link in the chain. The simuli are used for checkout of the low-noise

receiver itself by means of internal switching circuits and a directional

coupler. When the stimuli are switched to the antenna system for checkout,
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internal leakage would jam the receiver and prevent use of that generator

for stimulating its own channel. Thus, as shown in Figure 2-7, themain

antenna channel is stimulated by the generator in the acquisition channel

now noise receiver and, conversely, the acquisition antenna channel is

stimulated by the generator in the main channel low noise receiver. To

minimize failure effects, redundant generators may be required in each

receiver.

The positioner assembly of the high-gain antenna system is checked out by

injecting position commands into the servo control assembly from the DMS.

Actual position and rate readouts are then monitored by the DMS from

digital resolvers driven by the gimbal ac position and rate sensors.

The preferred concept also includes a redundancy switching capability for

the communications subsystem equipment located on the high-gain antenna

masts. To minimize EVA operations for maintenance and replacement, this

capability is provided for the Ku-band power amplifiers, exciters, low-noise

receivers, and S-band tracking receivers. Switchover time is not critical

and the redundancy switching is effected by the normal LRU operational

controls.

3. 3 INTERNAL COMMUNICATIONS

The impact of incorporating the capability to transmit or receive and

retransmit the audio test-tone required in conjunction with the normal voice

signals for checkout of the ATU's has already been incorporated in the basic

design of the unit. Automatic checkout of the ATU's could easily be imple-

mented under the control of the analog/sync test unit which would interrogate

each ATU in sequence. Since normal operation of the onboard telephone

system is under control of the user and does not interface with the DMS

except for remote power on/off control, the incorporation of automatic

checkout would require the addition of a nonoperational interface with the

DMS. Other factors which influence the selection of the preferred checkout

concept are the low duty cycle of the ATU's, some of which are located in

remote compartments, and the high-reliability of the units. The increase in

weight, size, and power is negligible.

51



The impact of including the amplitude detectors and limit comparators

within the analog/sync test unit is also minimal in terms of the additional

weight, size, and power required. The circuitry required to generate the

TV test patterns has been incorporated with the baseline unit.

The preferred concept also includes automatic monitoring and redundancy

switching for the analog sync/test unit. The unit generates a 4-kHz reference

signal which is required for proper operation of the onboard telephone system.

Loss of this reference signal would cause a loss of normal voice communica-

tions throughout the Space Station as well as between the Space Station and

other program elements.
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Section 4

OTHER CHECKOUT CONCEPTS INVESTIGATED

The preferred concepts for generating test stimuli, detecting the signals,

and monitoring and evaluating their outputs have been described in the pre-

vious section. This section describes the other RF, antenna, and internal

communications checkout concepts identified and evaluated during the study.

4. 1 RF SYSTEM

The checkout of the RF system is required to determine the proper operation

and performance of the transmitting and receiving channels. To validate

performance and availability of these channels it is necessary to measure

parameters such as transmit power output, receiving system sensitivity, and

the quality of the transmitted and received modulation.

Concepts for generating the modulation and RF test stimuli, detecting the

signals, and monitoring and evaluating the outputs are described in the

following paragraphs.

4. 1. 1 Stimuli Generation

The stimuli generation concepts can be separated into two general categories

which include both internally and externally generated operational stimuli

and artificially generated or dedicated checkout stimuli. The transmit and

receive paths are treated separately because the transmit channel LRU's,

with the exception of the power amplifiers, require only a modulation stimuli

source; whereas receive channel LRU's require both RF and modulation test

stimuli. Discussion concerning the format of the stimuli test signals is also

presented below.

4. 1. 1. 1 Transmit Paths

One concept for providing the required modulation test signals is to utilize

the operationally available audio, video, and digital signals. This concept
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does not require any changes to the basic LRU design, but the checkout

capability would be limited to qualitative go-no/go type indications of signal

presence or absence due to variations in signal levels. Checkout might also

be limited by the nonavailability of the operational signals. The use of oper-

ational signals is more applicable to a gross talk-through test during pre-

launch checkout than for on-orbit checkout.

Another concept, shown in Figure 4-1, utilizes a variable-frequency test-

tone generator which is coupled to the analog data bus and digital data termi-

nals to provide the modulation test signals. The outstanding advantage of

modulation test generators located on the data bus is that there are many

LRU's having common modulation characteristics and can therefore be

served by one test signal. In terms of design flexibility, redesign requiring

a change of modulation test signal formats may only involve the modulation

test generator. A disadvantage inherent to the bus generator concept is that

it could cause certain operational restrictions. Since the bus is a transmis-

sion line for all data, there are interference problems that would have to be

solved if wideband test signal formats were utilized.

In the centralized self-test concept, shown in Figure 4-2, the transmit path

modulation test generators and RF and modulation detectors are incorporated

within a central test unit which interfaces directly with the transmit LRU's.

This could eliminate the potential operational limitations associated with the

use of common bus generators.

4. 1. 1. 2 Receive Paths

One receive path concept for providing the required modulated RF test sig-

nals is to use operationally available signals. As in the case of the transmit

paths, the use of operational signals does not require LRU design changes

and the checkout capability is limited by the availability of the signals. It

would be difficult to make a quantitative measurement of receiving system

sensitivity because of the variations in RF signal strength caused by differ-

ences in antenna gain and changes in communications range. The concept is

not acceptable for checking out EVA transmitters and receiverssince the

EVA crewmen would be required to leave the Space Station without knowing

that their communications equipments were operable.
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Another concept, shown in Figure 4-3, utilizes the transmitter-generated

RF carrier signals as test signal sources for the receivers. The RF trans-

lator concept is implemented by introducing couplers into the transmit and

receive paths of two RF circuits such that the modulated transmitted car-

rier can be translated to the receiver frequency and coupled back to the

receiver input for demodulation. Test modulation of the transmitter may be

provided either from the analog test unit or from a digital data terminal.

In another approach, the test modulation signals could be incorporated in

the transmitter LRU. Another variation of this approach would be to couple

the signals in and out of the antenna system to provide a more complete end-

to-end test. The technique allows the use of much of the internal circuitry

for test purposes, but does suffer from certain disadvantages. In addition

to the translator circuitry, the need for providing a complete fault isolation

capability would still require modulation stimuli and detectors at all LRU

interfaces. Implementation of the RF translator concept would also result

in a transmitter-receiver pair to be inoperative while isolating a fault in the

other LRU. In addition, end-to-end checks require that the transmitter and

receiver have a compatible modulation and demodulation capability, which is

not always the case. The S-band transponder is a good example of this.

Care would.have to be taken so that the introduction of the translator does

not change the transmit-receive channel isolation when not being utilized.

Otherwise, normal channel performance could be degraded.

Another concept for checkout of the receiving system utilizes RF test gener-

ators located within the communications subsystem and controlled by the

DMS. The signals used to modulate these RF test generators can be derived

from the same modulation sources used to stimulate the transmitters. The

RF test generators are coupled directly into the antenna system as shown in

Figure 4-1. The insertion of the test signals into a common port in the

antenna system, such as the S-band triplexer and switching assembly, would

permit simultaneous checkout of redundant receivers connected in parallel.

In addition, the signals could be coupled directly into the receivers for fault

isolation or periodic checkout.

A final concept involves incorporating the required modulation and RF test

signals within a central test unit having a multiple frequency generation
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capability. This central unit, shown in Figure 4-2, could be used as a com-

mon stimuli source for both the transmit and receive paths. The approach

could create some potentially serious EMI problems, and extreme care

would have to be taken to maintain isolation between the various systems.

4. 1. 1. 3 Stimuli Format

In addition to being concerned over the location of stimuli signal sources,

checkout system capabilities are dependent upon the format of the signals

which are to be used for stimuli. The formats in turn are dependent upon

the level of testing or monitoring required, the characteristics of the chan-

riel, and whether or not the testing is performed while operational signals

are also present. The modulation test signal format concepts include the

use of "edge-of-band, " in-channel wideband, suppressed tracker, and broad-

band noise signals.

One possibility is to use an "edge-of-band" signal which is outside the spec-,

trum range of the operational data. This signal would be used for monitoring

regardless of the presence or absence of operational data. In a linear sys-

tem, such a signal could provide a continuous check on channel integrity and

gain. Care must be taken, however, that the test signal does not exceed the

linear range of the system or degrade channel performance.

Another concept utilizes a wideband signal such as PRN which could

share the channel with operational data, but at a noninterfering level. While

such a technique offers the ability to obtain more information about the chan-

nel performance than could be obtained with a narrow-band signal, the pre-

cision is dependent upon the characteristics of the operational data, and it

requires a wideband feedback channel to enable the output to be correlated

with the input.

The use of an out-of-band tracer signal as shown in Figure 4-4 can be utilized

in a nonlinear system to monitor both channel integrity and the presence of

data. While not directly applicable to a linear system, the technique of auto-

matically supplying a test signal could be achieved with an input data sensor

which automatically enables a test signalgenerator if the input data are absent.
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Another concept which is particularly applicable to a centralized test unit

is a broadband noise source which is utilized in conjunction with shaped

filters to simulate signal spectrums. If intermodulation distortion measure-

ments were required, a test setup similar to that shown in Figure 4-5 could

be utilized. It consists of placing noise loading on all channels except one

and measuring the noise power ratio (NPR). This concept is probably more

applicable to development testing and may be difficult to automate.

4. 1. 2 Signal Detection

Other concepts for detecting transmitter LRU signals include utilizing a

functional receiver LRU or utilizing RF and modulation detectors located in

a central test unit.

The previously described RF translator concept (Figure 4-3) can also be

used to detect modulated RF signals. In this case, the transmitter and

receiver roles are reversed. In the previous description, the transmitter

LRU provided a test stimulus for the receiver LRU and here the receiver

LRU serves as the detector for the transmitter LRU signals. The limitations

and constraints discussed previously also apply here.

Transmitter-modulated RF checkout signals could also be detected by RF

and modulation detectors incorporated external to the LRU's in the central

test unit shown in Figure 4-2. If all stimuli generation and signal detection

capability were incorporated in a common unit, considerable redundancy

would have to be built into the unit to minimize the loss of all test capability.

In addition, parallel interfaces with each LRU would be required. The com-

plexities of subsystem integration, however, could be minimized if the

design of the central test unit were under control of the communications sub-

system designer.

4. 1. 3 Monitoring and Evaluation

Other monitoring and evaluation concepts identified range from those which

require considerable crew involvement to those which are essentially auto-

matic and require little or no crew involvement. The capability of the DMS,

the level of checkout required, and the response time strongly influence the

selection of the preferred monitoring technique.
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4. 1. 3. 1 User Monitoring and Evaluation

Two concepts are identified which require monitoring and evaluation by the

crew. In the first concept the crew must attempt to recognize malfunctions

and system performance degradation by monitoring the operational data.

The accuracy and response time associated with this technique is very poor

for the RF system LRU's. On the other hand, the concept is very applicable

to the internal communications system which is more user-oriented. In the

second concept, the LRU's provide go-no/go status outputs to the DMS and

faults are isolated through manual examination of LRU test points by the

crew. This concept provides quick fault detection, but slow fault isolation.

Both concepts require the use of portable test equipment and-extensive spe-

cialized crew training. Since it is considered extremely wasteful of a highly

trained crewman's time to perform this kind of task, the concepts are not

explored to any significant depth in the study. The concepts are also obvi-

ously rLot desirable for checkout of communications subsystem equipment

located external to habitable station compartments.

4. 1. 3. 2 Data Management Subsystem Monitoring and Evaluation

Provided that signals are conditioned to standardized analog or digital voltage

levels and impedances, the centralized monitoring and evaluation concepts

described below apply to both the RF and antenna systems.

The simplest concept is one in which the LRU's provide only go-no/go status

data to the DMS. In this concept shown in Figure 4-6, the DMS monitors

go-no/go status data only provided by the LRU's. The LRU's must provide

the required mode and sensor level logic circuitry. Since the go-no/go

decisions are made internal to the LRU's, sufficient data for trend analysis

are not available. The flexibility and growth are fixed by the LRU design.

The increase in LRU weight, size, and power is small. Since this approach

requires much less dependence on the DMS, it is much more applicable to

the Shuttle-Orbiter which is not expected to have an extensive DMS capability.

The concept shown in Figure 4-7 utilizes the DMS to monitor go-no/go status

data provided by the LRU's. The DMS RDAU's can then request detailed data

for evaluation if required. Both internal mode and sensor level logic and
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data driver circuitry must be incorporated in the LRU's. The flexibility to

accommodate level changes is limited. This concept requires small

increases in LRU weight, size, and power. The checkout procedure is con-

trolled by the DMS. It also eliminates the basic limitations of the previous

concept and lends itself to the checkout of a system requiring fast fault iso-

lation capability.

4. 1. 3. 3 Centralized Multiplexer-Computer Unit Monitoring
and Evaluation

The following concepts incorporate a multiplexer-computer unit (MCU) dedi-

cated to communications subsystem checkout. The MCU performs basically

the same functions as the DMS RDAU. It collects and evaluates LRU

go-no/go status or normalized data and then provides subsystem status

information to the DMS. The MCU operation is controlled by commands from

a RDAU.

A conceptual block diagram of the MCU is shown in Figure 4-8. It consists

of analog and digital input gates, an analog-to-digital (A/D) converter, digi-

tal data multplexer, an arithmetic logic unit, and a programmable memory.

An analog signal is also generated internally to provide for calibration of

the A/D converter.

In one MCU concept, shown in Figure 4-9, each LRU provides go-no/go

information as well as normalized test point data in parallel to the MCU.

The normalized data are used by the MCU in performing more detailed fault

isolation. In this concept, the DMS configures the LRU's for checkout. A

variation of this approach is shown in Figure 4-10 which utilizes the MCU

instead of the DMS to configure the LRU's for checkout.

In another concept, shown in Figure 4-11, the MCU is responsible for making

the go-no/go decision for each LRU through continuous evaluation of normal-

ized test point signals. In this concept, the DMS configures the LRU's for

checkout. A variation of this approach, shown in Figure 4-12, utilizes the

MCU to configure the LRU's for checkout.
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In the above MCU concepts, in which the communications subsystem is

checked out on a system basis rather than on a "black-box" basis, it is

assumed that the MCU communicates with the LRU's via dedicated circuits

rather than via the DMS digital data bus.

4. 2 ANTENNA SYSTEM

Checkout concepts investigated for the antenna system include techniques

common to both the low- and high-gain systems, methods for low-level signal

detection in the low-gain system, and techniques unique to the high-gain sys-

tem. The concepts with common applicability are concerned with verifying

the performance of antenna feeds, RF switches, transmission lines, multi-

plexers, and power dividers. Concepts unique to the high-gain system are

concerned primarily with verification of antenna acquisition and pointing

capabilities. As noted previously, the alternative concepts identified in

Subsection 4. 1. 3 for RF system monitoring and evaluation are also appli-

cable to antenna system checkout. The concepts preferred for checkout of

the antenna system are described in Section 3. Other antenna system check-

out concepts investigated during the study are presented in the following

paragraphs.

4. 2. 1 Concepts Common to Low- and High-Gain Antenna Systems

Other checkout techniques investigated which are common to both the low-

and high-gain antenna systems include the reflectometer analyzer and

impedance analyzer concepts described below.

4. 2. 1. 1 Reflectometer Analyzer Concept

The reflectometer analyzer concept contains all the elements needed for

independently monitoring the status and verifying the performance of

RF components in the. antenna system. The approach for the low-gain

antenna system is shown in Figure 4-13. It includes an external stimuli

generator, analyzer, bidirectional couplers, detectors, switches for test

signal control, and logic circuits for selection of measurements on command

from the DMS.

In addition to the bidirectional couplers and detectors required in the multi-

plexer and switching assembly for the preferred approach, additional
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couplers and detectors are required in each of the input lines between the

multiplexer and the other communications subsystem LRU's. These are

used for measuring input reflection coefficients and for injecting transponder

receive stimuli. Operational carriers from the transmitters are utilized as

transmit stimuli while receive stimuli are generated externally and injected

into either the antenna coupler for end-to-end checks or into the input coupler

for transponder checks.

The reflectometer analyzer approach for the high-gain system is shown in

Figure 4-14. As in the low-gain concept, appropriate stimuli and monitoring

capabilities are provided. Operational signals are again used as transmit

stimuli, but special provisions are made for generating receive stimuli.

These signals are injected either through open-loop probes located in quad-

rants around the reflector or through closed-loop directional couplers in the

precomparator circuits.

The high-gain analyzer detects and monitors the sum channel carrier trans-

mission loss and the RF boresight offset of the comparator and feed assem-

bly as indicated at the output of the difference channels. This is done by

inducing an offset in the stimuli and computing the slope of the difference

channel as a sequence of commands are executed by the analyzer. The

analyzer data are supplemented by the error signal data from the tracking

receiver to correlate the RF boresight performance of the comparator and

feed assembly with the electronic boresight of the entire system. To do this,

DMS software programs are required for evaluation of error data to differ-

entiate between comparator/feed and receiver malfunctions.

The reflectometer analyzer provides direct measurements of reflection

coefficient and insertion loss to the DMS for comparison with stored criteria.

A variation of this concept is where the comparisons are made within the

analyzer itself and a go-no/go status indication is provided to the DMS.

4. 2. 1. 2 Impedance Analyzer Concept

The impedance analyzer concept is similar to the reflectometer analyzer

concept, but also provides a capability for measuring the phase of the reflec-

tion and transmission coefficients as well as the insertion phase shift between
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the measurement sensors as outputs. This capability is required when

phase shift is an important performance parameter. This occurs primarily

in the high-gain comparator and feed assemblies and the tracking receivers.

This concept is basically the same as described above, except that a differ-

ent type of analyzer is required.

4. 2. 2 Antenna System Signal Detection

In addition to the preferred concept of using an envelope detector to monitor

low-level RF signals in the low-gain antenna system, an alternate approach

investigated is the mixer detector concept shown in Figure 4-15. This con-

cept is in essence a receiver with. a local oscillator, mixer, and intermedi-

ate frequency amplifier.

4. 2. 3 High-Gain Antenna System Checkout Concepts

Other checkout techniques investigated which are unique to the high-gain

antenna system include the user operational, solar radiometer open loop,

near-field open loop, optical, and visual inspection concepts described below.

4. 2. 3. 1 User Operational Concept

The operational concept uses the RF stimuli provided by the DRSS to verify

the acquisition and pointing performance of the high-gain antennas. The

DMS is used to monitor and correlate the acquisition lock indication from the

tracking receiver and the rms tracking error from the tracking receiver

angle detectors in consonance with DMS navigation computations and pre-

dicted DRSS/station position information.

The concept involves slaving the antenna under test to an on-line operational

antenna for preacquisition checkout. This is accomplished in the same man-

ner as the preacquisition procedure during handover.

4. 2. 3. 2 Solar Radiometer Open-Loop Concept

The solar radiometer open-loop concept utilizes the solar spectral energy at

Ku-band radiated directly from the sun as the test stimulus. The monitoring

and detection is done by a microwave radiometer that measures the noise

power output in the post comparator channels of the comparator. A block
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diagram of the concept is shown in Figure 4-16. The technique is based

on the application of microwave radiometers in radar monopulse antennas

to track bright stars, the sun, and moon in radio astronomy experiments.

Directional couplers are inserted in the sum channel line and in each of the

difference channel lines, thus isolating instrumentation from the operational

channels and reducing degradation of performance. The noise spectra sig-

nals from each difference channel are recombined with the sum channel

spectra in a 180-degree hybrid. The two output signals then appear as

coherent sum and difference currents that are fed to the radiometer. The

radiometer acts as a square law detector and an integrator circuit that

detects the difference in power level from the two combined signals. In

essence, the radiometer is a slope detector monitoring the difference chan-

nel slope.

The crossover or boresight crossover location is determined by statistical

processing of the data by the computational system. The approach measures

the far-field RF boresight performance of the high-gain antenna and feed,

but does not provide electronic boresight performance evaluation of the com-

plete antenna system which includes the monopulse modulator and receiver

subsystems.

4. 2. 3. 3 Near-Field Open-Loop Concept

The near-field open-loop concept, shown in Figure 4-17, involves a bore-

sight RF test of the high-gain antenna using a target horn fixed to the Station.

The test may be performed automatically or on command from the DMS.

The stimuli generator is located near the horn and is energized on command

from the DMS.

The antenna is pointed initially by position commands from the DMS. A

short scanning routine is then implemented causing the antenna to scan in

two planes about the target. Data monitored during the test includes track-

ing receiver error channel outputs which show the electronic boresight posi-

tion and readouts of the actual gimbal position.
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This technique is especially applicable to ground testing following antenna

installation. A variation to the described concept for ground testing involves

locking the gimbals and switching stimuli between sources oriented in hori-

zontal and vertical lines.

4. 2. 3. 4 Optical Verification Concept

This concept utilizes optical stimuli and sensors for performing a distortion

analysis on the reflectors, feeds and other elements of the high-gain antenna

for fault isolation and verification of the physical shape of the antenna/feed

structure. Extensive DMS computational support is required for this

concept.

4. 2. 3. 5 Visual Inspection Concept

The visual inspection concept is relatively unsophisticated. It provides a

capability for ascertaining the general condition of the antennas and feeds,

and for making a qualitative assessment of azimuth and elevation positioners.

The assessment includes a visual verification of track speed, slewing, stop

at slewing speed, and stop functions. This technique requires crew observa-

tion of positioner displays and controls and visually noting the respective

position and rate displays.

4. 3 INTERNAL COMMUNICATIONS SYSTEMS

In addition to the preferred concept which consists of a combination of the

talk-back and self-test test-tone methods, an automatic test method was

considered as an alternative.

In the automatic test method, each ATU is sequentially interrogated by a

test-tone generated within a dedicated test modem. The retransmitted

response from each ATU is then evaluated to determine proper performance.

Since the duty cycle varies considerably between ATU's and the reliability is

expected to be high, it appears unnecessary to implement a dedicated test

unit for checkout of the ATU's.

An alternative to monitoring only the analog sync/test unit self-monitored

fault indications is to monitor the output of each reference generator
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individually. This approach, however, increases the number of interfaces

required with the DMS and increases the DMS loading.

It does not appear that there are any acceptable alternates for checkout of

television cameras and monitors other than visually observing test patterns.
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Section 5

CONCEPT EVALUATION

The selection of the preferred checkout concepts for the RF, antenna, and

internal communications systems is based, on an evaluation of the most

promising candidate concepts. This section discusses the impacts of the

various candidate concepts on LRU and communications subsystem design,

performance, interface complexity, data management subsystem loading,

and technology utilization. Also addressed are the gross effects of the con-

cepts in terms of ground support requirements, and estimated schedule and

cost impacts.

5. 1 OVERALL EVALUATION AND RANKING

An overall evaluation and ranking of stimuli generation, signal detection, and

monitoring concepts are presented in Subsection 2. 4. The ranking matrices

shown in Tables 2-5, 2-6, 2-7, and 2-8 utilize the following criteria:

A. Impacts on LRU design-Tlhis factor considers the effect of the

proposed concept, in terms of design complexity, on the basic LRU

design.

B. Impact on communications subsystem design-This factor considers

the impact of the proposed concept on the design of the communica-

tions subsystem.

C. Impact on interface complexity-This factor considers the impact of

new interfaces required to provide the checkout capability.

D. Operational restrictions-This factor considers the extent to which

the proposed concept interferes with the normal operation of the

communications sub system.

E. Physical impact-This factor considers the gross impact on weight,

size, and power.

F. Performance and effectivity-This factor considers the effect on

performance and the effectiveness of the concept in performing the

required checkout functions.
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G. Cost-This factor considers the gross impact on overall communi-

cations subsystem cost.

H. Flexibility-This factor considers the ease with which the proposed

concept can respond to system or LRU design changes which occur

late in the design, implementation, or operational periods of the

system.

I. Reliability/failure effects-This factor considers the effect of

failures in the checkout circuitry on the communications subsystem.

J. GSE considerations-This factor considers the GSE requirements

for prelaunch testing.

K. Impact on DMS design-This factor considers the effect of the pro-

posed concept on the DMS in terms of hardware, software, and

execution time.

To obtain at least a gross quantitative indication of the relative merits of

alternate concepts, weighting factors are assigned to each of the criteria

and the concepts are ranked according to the degree of compliance with the

criteria as noted below.

Rank Criteria

9-10 A characteristic which provides total or nearly total

compliance with the criteria (e. g., no impact on design,

no weight increase, no operational restrictions).

6-8 A characteristic which satisfies the criteria in an accept-

able but not ideal manner (minor weight increase, some

LRU design impact, etc. ).

3-5 A characteristic which indicates a major impact if the

proposed concept is used (significant LRU redesign

required, important operational restrictions imposed,

etc. ).
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1-2 A characteristic which indicates an extreme penalty if the

proposed concept is adopted (e. g. , failure of checkout

system propagates to checked function, failure to effec-

tively check parameters).

5.2 DESIGN AND PERFORMANCE

This subsection discusses the impacts of the candidate checkout concepts on

the design, performance, and operation of the RF, antenna, and internal

communication s systems.

5. 2. 1 RF System

Candidate RF system concepts include those required for stimuli generation,

signal detection, and monitoring and evaluation.

5. 2. 1. 1 Stimuli Generation

Because of the unique considerations involved, separate discussions of

stimuli generation concepts for transmit and receive paths are provided in

the following paragraphs.

Transmit Paths

The concepts identified to provide the modulation test signals required for

checkout of transmit paths include the use of operational signals, a test

generator located within the transmitter LRU's, a centralized test generator,

and a modulation generator coupled to the data bus. In general, the impacts

of providing transmit stimuli on design, performance, and operations are

minor compared.to those associated with receive stimuli.

The use of operational signals does not impact LRU design and performance

since additional circuitry is not required for checkout purposes. Although

the ability to fault-isolate is limited by the signal characteristics, gross

indications of signal presence or absence could be made available. The

checkout capabilities are limited by the availability of the operational signals.

The concept also causes a significant impact upon crew time. Fault isola-

tion of voice transmitters, for instance, requires direct crew involvement.
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Furthermore, it is incongruous to use operational signals for test stimuli

in a concept employing automated monitoring and evaluation methods.

Locating a modulation test generator within a transmit LRU does impact the

design because of the additional circuitry required. This impact, however,

is minimized if the design of the checkout circuitry is under control of the

LRU designer. Performance impacts are also minimal if the design includes

an operational override capability. No operational limitations are envisioned

with this approach. In fact, off-line or redundant units could be checked out

during normal operations.

Incorporating a centralized test generator impacts the design of the LRU's by

requiring new external interfaces. The design of a new LRU is also required.

Redundant design of the centralized test unit is necessary to minimize the

effect of failures which could cause the loss of all test capability. The

impact on operations is negligible; however, the question of control priority

must be considered.

The use of a modulation test generator coupled to the data bus does not

impact the design of the transmit LRU's, but requires the design of a new

unit. There is also the possibility of interference on the bus if the test signal

frequencies and formats are not carefully chosen.

Receive Paths

The concepts identified to provide the RF and modulation test signals required

for checkout of receive paths include the use of operational signals generated

external to the Space Station, a test generator located within the receiver

LRU's, a centralized test generator, a test generator coupled into the

antenna system, and transmitter signals that are translated to the receive

frequencies.

The use of externally generated signals does not impact the LRU design, but

the checkout capability may be severely limited by the availability and

characteristics of the signals. It is not possible to check out off-line

receivers during periods when data are being received.
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The location of test generators within the receive LRU's increases the design

complexity of these units. The test generators must be loosely coupled to

the functional channel to minimize performance impacts. Since the design of

this additional circuitry is under control of the LRU designer, the impacts

on design and performance can be minimized. This approach also allows

checkout of off-line LRU's during normal operations.

The antenna test generator approach does not impact the design of the

receiver LRU's, but design of a new unit is required. As in the previous

concept, the test generator must be loosely coupled to the antenna system to

minimize the impact on functional channel performance. Checkout is limited

to nonoperational periods, however, since the test signal would probably

jam the operating channel.

The central test generator and translator approaches could impact overall

subsystem and vehicle design because of the potentially serious EMI problems

that could be created. Transmit/receive path isolation is another potential

design impact. Both approaches require the design of new units. The design

complexity of the central test generator is especially significant if a multiple

frequency and modulation generation capability is incorporated. Checkout

is again limited to nonoperational periods because of the possibility of jam-

ming the operational signal. New interfaces with the LRU's are also created.

5. 2. 1. 2 Signal Detection

The signal detection concepts considered include incorporating RF and mod-

ulation detectors within the transmit LRU's or within a central test unit.

Another concept utilizes receiver LRU's to detect translated transmitter

signals.

There is a moderate design impact associated with the addition of the detector

circuitry within the LRU's. As before, the detectors must be loosely

coupled to minimize performance degradation in the function channel and

failures in the checkout circuitry. The impact on operations is negligible.
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The design, performance, and operations impacts previously discussed for

the centralized test unit as a stimuli source are also applicable to the con-

cept incorporating signal detection capabilities within the unit.

The LRU design impact is minor when the receiver LRU's are utilized as the

detectors; however, the design of new translator units are required. Check-

out is limited to those paths where paired transmitters and receivers having

compatible modulation/demodulation characteristics are available. This

approach has the added disadvantage that it is difficult to isolate failures to

the transmit or receive path. Checkout is also limited to nonoperational

periods since the paired units must be utilized off-line.

5. 2. 1. 3 Monitoring and Evaluation

Monitoring and evaluation concepts range from those which require consider-

able crew involvement to those which are essentially automatic and require

little or no crew participation. Table 5-1 provides a summary of the design

impacts associated with these concepts. For purposes of discussion, the

concepts are separated into those that utilize primarily the crew, the DMS,

or a dedicated MCU.

User Monitoring and Evaluation

Two concepts are identified which require monitoring and evaluation by the

crew. The first is where the crew performs the operational data monitoring

and fault isolation directly. In the second concept, the LRU's provide

go-no/go status outputs to the DMS and faults are isolated through manual

examination of LRU test points by the crew.

In the concept where the crew monitors the operational data, there is no

impact on LRU design, performance, or operations. However, the design of

portable test equipment is required. The impact on crew time is significant

and could impact overall station operations. The concept also requires EVA

operations for monitoring test points associated with the high-gain antenna

system. This is in conflict with the baseline operational philosophy. The

same crew and operational impacts also apply to the second concept. In addi-

tion, parameter comparison and mode logic circuitry are required design

changes to the LRU's to provide the go-no/go status outputs.
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Table 5-1

DESIGN IMPACTS (Page 1 of 2)

CANDIDATE CONCEPTS

1. Operator evaluation of per-
formance. Portable test
equipment and LRU test points
used for fault Isolation.

a. DMS bus and RF signal
generators.

b. LRU internal signal
generators.

c. Operational data only

d. RF translator

e. Centralized Signal
Generators

2. Go-No/Go data provided by
LRU's. Portable test equip-
ment and LRU test points
used for fault isolation.

a. DMS bus and RF signal
generators.

b. LRU internal signal
generators

c. Operational data only

d. RF translator

e. Centralized signal
generators

3. Go-No/Go data provided by
LRU's. Fault isolation
performed by DMS evaluation
of LRU sensor data.

a. DMS bus and RF signal
generators.

NEW EQUIPMENT DESIGN

1. Portable test equipment
2. DMS bus test generator
3. RF test generator (3)

1. Portable test equipment

DELTA DESIGN EFFORT
FOR EXISTING LRU'S

LRU test signal generators added.

1. Portable test equipment

1. Portable test equipment
2. RF translators

1. Portable test equipment
2. RF and modulation test

generators.

I. Portable test equipment
2. DMS bus test generator
3. RF test generator (3)

1. Portable test equipment

1. Portable test equipment

1. Portable test equipment

1. Portable test equipment
2. RF and modulation test

generators

1. DMS bus test generator
2. RF test generators (3)

b. LRU internal signal
generators.

c. Operational data only

d. RF translator

e. Centralized signal
generators

4. All Go-No/Go logic and fault
isolation provided by DMS.
a. DMS bus and RF signal

generators

b. LRU internal signal
generators

c. Operational data only

d. RF translator

e. Centralized signal
generators

1. RF translators

1. RF and modulation test
generators.

1. Mode logic and sensor level
logic required in LRU's to
generate Go-No/Go signals.

1. Same as a.
2. LRU test signal generator

added.

1. Same as a.

1. Same as a.

1. Same as a.

1. Mode logic and sensor level
logic required to generate
Go-No/Go signal.

1. Same as a.
2. LRU test signal generators

added.

1. Same as a.

1. Same as a.

1. Same as a.

1. DMS bus generator
2. RF signal generators (3)

1. LRU test signal generators
added.

1. RF translators

1. RF and modulation test
generators
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Table 5-1

DESIGN IMPACTS (Page 2 of 2)

CANDIDATE CONCEPTS NEW EQUIPMENT DESIGN
DELTA DESIGN EFFORT
FOR EXISTING LRU'S

5. Go-No/Go data provided by
LRU's. Fault isolation
performed by MCU evaluation
of LRU sensor data.

a. DMS bus and RF signal
generators

b. LRU internal signal
generators

c. Operational data only

d. RF translator

e. Centralized signal
generators

6. All Go-No/Go logic and
fault isolation provided by
MCU

a. DMS bus and RF signal
generators.

b. LRU internal signal
generators

c. Operational data only

d. RF translator

e. Centralized signal
generators

1. Multiplexer-computer unit
2. DMS bus test generator
3. RF test generators (3)

1. Multiplexer-computer unit

1. Multiplexer-computer unit

1. Multiplexer-computer unit
2. RF translators

1. Multiplexer-computer unit
2. RF and modulation test

generators

1. Multiplexer-computer unit
2. DMS bus generator
3. RF signal generators (3)

1. Multiplexer-computer unit

1. Mode logic and sensor level
logic required to generate
Go-No/Go signal.

1. Mode logic and sensor level
logic required to generate
Go-No/Go signal.

2. LRU test signal generators
added.

1. Same as a.

1. Same as a.

1. Same as a.

1. LRU test signal generators
added.

1. Multiplexer-computer unit

1. Multiplexer-computer unit
2. RF translators

1. Multiplexer-computer unit
2. RF and modulation test

generators
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Data Management Subsystem Monitoring and Evaluation

The concepts which utilize the DMS include one in which the LRU' s provide

go-no/go status and normalized data on request, and another in which the

LRU's provide only normalized data which are evaluated by the DMS. The

first concept impacts the LRU design by requiring the addition of parameter

comparison and mode logic circuitry.

The increase in weight, size, and power is small. In all cases where the

LRU's output normalized data, the levels and impedances are standardized.

The LRU go-no/go data only concept is limited to fault-detection and fault-

isolation checkout functions. Insufficient data are available for trend analysis

and quantitative evaluation.

The second concept eliminatesthe limitations of the first, but the impact on

the DMS design in terms of storage and program requirements increases

as the level of evaluation increases. However, the overall impact on the

DMS is small when compared to that required to support the Space Station

experiment program. The impact on the crew and operations is negligible.

Centralized Multiplexer-Computer Unit Monitoring and Evaluation

Variations in concepts that incorporate an MCU dedicated to communications

subsystem checkout involve a combination of two checkout system control

philosophies and two implementations of the multiplexer-computer evaluation

procedure.

The question of control revolves about whether it is feasible and desirable to

let the MCU be responsible for configuring the LRU operational controls when

a test has been requested, or whether it is preferable for control integrity

or other reasons to operate in a hybrid control mode where the DMS control

system is responsible for configuring the LRU operational control for the

test modes.

The two variations in MCU implementation are similar to the concepts

previously considered for DMS-aided evaluation. In one concept, the LRU
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go-no/go signals are evaluated and a detailed readout of internal test point

data from an LRU is made only when that LRU indicates a no-go condition.

In a second approach, the raw data from the LRU's is examined continuously

by the MCU which then determines the go-no/go condition of the LRU's. The

impacts of these concepts on the crew and upon the operational requirements

are essentially identical to those previously considered for the concepts in

which the same evaluation tasks were to be performed by the DMS. In either

case, it is an automated process and it makes no difference which black box

performs the task.

The transfer of the LRU evaluation function to the MCU represents a signifi-

cant reduction in DMS requirements. This is particularly true in the case

where evaluation of raw LRU data is to be performed on a continuous basis

and where the MCU is allowed direct access to the LRU controls. Whether

or not the reduction is really of any significance is dependent upon the sizing

of the DMS and upon the ease with which its software can be changed. If the

DMS must still be charged with the task of configuring the LRU controls to

establish the test configuration, and if the LRU's themselves make the

go-no/go decision, the actual reduction in DMS loading in any reasonably

sized system would be very small. In such a case, it is most feasible to use

the capabilities of the DMS, including the comparison circuitry available in

the RDAU's themselves.

In terms of basic LRU complexity and reliability, there is no difference

between the concepts employing DMS evaluation and those in which the task

is performed by the dedicated MCU. The addition of the MCU to the system,

however, obviously adds some complexity and another source of potential

failures. In the event that the MCU itself malfunctions, the crew require-

ments may be somewhat increased due to the commonality of functions within

that unit and the difficulty of sorting out the effects that could be caused by

the cross-coupling in certain failure modes.

Because the MCU becomes the common evaluator and combines signals from

all of the LRU' s at one location, particular attention must be given to its
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design to achieve the necessary protection against EMI and failure propaga-

tion. These concepts have the disadvantage of losing all system checkout

functions if a catastrophic failure occurs in the common unit.

5. 2. 2 Antenna System

Checkout concepts investigated common to both the high-gain and low-gain

antenna systems are concerned with verifying the performance of antenna

feeds, RF switches, transmission lines, multiplexers, and power dividers.

Concepts unique to the high-gain system are concerned primarily with veri-

fying the performance of the acquisition and tracking elements, the antenna

comparator and feed of the main and acquisition antennas, and the positioners

and servo systems. Design and performance impacts associated with can-

didate open-loop and closed-loop stimuli sources, compatible detection

methods, andmethods of monitoring and evaluation of antenna performance

are described below.

5. 2. 2. 1 Stimuli Generation

Because of the unique considerations involved, separate discussions of

stimuli generation concepts for low-gain receive paths, high- and low-gain

transmit paths, and high-gain receive paths are provided in the following

paragraphs.

Low-Gain Receive Paths

For the low-gain receive paths, the use of either a separate antenna genera-

tor or an internal LRU stimuli generator is considered for stimulation of

multiplexers, switches, transmission lines, and antennas.

Through the use of an external generator, as illustrated for the low-gain

reflectometer analyzer concept in Figure 4-13, signals may be injected

either in the antenna feed coupler so as to travel in the normal receive

direction, or in the input to the multiplexer so as to travel in the reverse

direction through the system.. Either direction is satisfactory as far as

checkout is concerned because all of the system elements are reciprocal in

the forward and reverse sense of transmission. The approach requires the
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incorporation of bidirectional couplers, control switches, and logic circuitry

within the antenna and multiplexer/switching assemblies, as well as new

design for the external stimuli generator. Couplers and detectors are also

required in each of the input lines between the multiplexer and other sub-

system LRU's. These are necessary for measuring input reflection coeffi-

cients and for injecting transponder receive stimuli. The receive stimuli

are injected into either the antenna coupler for end-to-end checks or into the

input coupler for transponder checks.

The alternate concept, shown in Figure 2-6, utilizes the approach of routing

test stimuli in the reverse direction through the filters and switches to the

low-gain antennas. Receiver stimuli are conveniently injected into the

incoming transmission lines using the stimuli generation capabilities located

internal to receiver LRU's. Although the concept eliminates the need for

the external generator and the multiplexer input couplers and detectors of

the first concept, the design complexity of receiver LRU's is increased to

accommodate the stimuli generation capability.

High- and Low-Gain Transmit Paths

Candidate stimuli concepts for checkout of both the high- and low-gain trans-

mit paths involve the use of either a separate antenna generator or the

normal operational carriers from subsystem transmitters.

For the low-gain transmit paths, the primary concern is whether to use

unmodulated operational stimuli or modulated externally generated stimuli.

An external generator can easily provide the necessary amplitude modula-

tion, but this concept requires the design of a new generator, incorporation

of directional couplers for injection, and design modifications to receiver

LRU's to provide compatible modulation. Although the concept of using the

normal operational carriers does not provide the amplitude modulation

required for the low-gain antenna system, the concept is practical because

the modulation capability can be accomplished in the detector circuits.

Checkout of the high-gain transmit paths does not require modulated stimuli.
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High-Gain Receive Paths

For the high-gain receive paths, candidate open-loop stimuli sources con-

sidered are far-field signals from the data relay satellite, near-field signals

from an onboard antenna, and far-field RF noise from solar radiation. The

major disadvantage of utilizing the data relay satellite is that it is not under

control of the Space Station. Its use is limited to operational periods by

either interruption or when the antenna under test is off-line. The near-field

generator concept, shown in Figure 4-17, provides a much stronger signal

than the data relay satellite and is under Space Station control. Use of

either source, however, is heavily plagued by operational interference

problems. Occultation of the signal path by vehicle structures can impede

either the near-field or the far-field stimuli. Furthermore, the prevention

of this interference places constraints on Space Station activities. The final

concept using solar stimuli cannot be used for acquisition and tracking veri-

fication because this part of the system requires a coherent signal. Its

possible use as a stimulus for antenna boresight is considered below.

Closed-loop stimuli concepts are preferred to open-loop concepts because

of the control limitations associated with open-loop concepts, and the com-

patibility of the closed-loop stimuli signal characteristics with the candidate

detection concepts considered. For closed-loop receive path checkout, both

an internal LRU stimuli generator (Figure 2-7) and separate stimuli genera-

tor (Figure 4-14) are considered. In both closed-loop concepts, the stimuli

are made to appear as receive signals arriving at the antenna from various

small offset angles of arrival by injecting four signals of equal amplitude,

but slightly different in phase, into the antenna feed via directional couplers.

The stimulation of the tracking circuits is thus similar to actual circuit

operation and appropriate for subsystem checkout. Both approaches provide

the various stimuli required for the comparator feed assembly, the low-noise

receiver, and the tracking receiver.

Using the concept of locating stimuli generation capabilities internal to the

low-noise receivers has the advantage of serving both RF and antenna system

receive stimuli requirements. Relative to the separate stimulator approach,
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the internal generator concept eliminates the need for developing a separate

generator, and results in a simpler interface between the stimuli source and

the comparator feed assembly. Design of the low-noise receiver must

include a directional coupler and switching circuits to accommodate the

application of stimuli for its own checkout as well as the checkout of other

LRU's in the receive path chain. The stimuli are normally generated in the

low-noise receiver not being used for subsystem operation, thus eliminating

the possibility of jamming the receiver by signals leaking through the switch

and directional coupler. Failure effects of the stimuli generator on the

receiver reliability may be reduced by using redundant generators in the

receivers. This is considered essential because it is also used for receiver

checkout.

The location of the power dividers and phase shifters is also important to

the checkout of the high-gain receive paths. Less design and performance

impact results if these elements are located internal to the comparator

rather than adjacent or internal to the low-noise receiver. Since only one

RF transmission path between the receive stimuli source and the phase

shifters is used, the approach is not sensitive to phase shift errors that

could be caused by using multiple paths. Because the incorporation of the

power dividers and phase shifters within the comparator is under the control

of the comparator designers, the impacts on design and performance can be

minimized.

5. 2. 2. 2 Signal Detection

Signal detection concepts investigated include those used for monitoring

forward and reflected power of the high- and low-gain antenna systems, and

those used for monitoring acquisition and tracking performance of the high-

gain receive paths.

Forward and Reflected Power Monitoring

The design impact of monitoring forward and reflected power in transmit and

receive paths depends upon the method of detection used. Candidate detection

concepts considered are the envelope detector shown in Figure 3-6 and the
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mixer detector shown in Figure 4-15. The relative merits of the two

concepts are indicated in the comparison matrix of Table 2-8. The envelope

detector generates considerably less EMI during its monitoring operation,

and thus causes less impact on communications subsystem operation and

performance. Its design is also less complex than the mixer detector.

Detector design is separate from other LRU's. Although this requires the

development of an additional antenna system component, detector failure

does not result in the replacement of an interfacing LRU. The use of active

elements in the detector makes it more susceptible to failure than the pas-

sive multiplexers and antenna elements into which the detectors would other-

wise be incorporated. Another factor is that use of the same detector

throughout the antenna system offers the convenience of having a common set

of design and performance characteristics for response monitoring.

The choice of coupling values for the directional couplers must be carefully

chosen to provide a minimum insertion loss in the interfacing LRU, but still

remain within the sensitivity range of the detectors and signal conditioning

amplifiers. The forward power couplers are 10 db greater than the reflected

in the low-gain paths and 20 db in the high-gain paths. The preferred

coupling values do not result in LRU or system degradation for either detec-

tor candidate. The lowest signal levels considered for this approach are

well within the sensitivity of either detector candidate. The stimuli levels

in the receive and transmit paths for the low- and high-gain systems are

shown in Tables 3-1 and 3-2.

Acquisition and Tracking Performance Monitoring

For the high-gain antenna system receive paths, two detection candidates

are considered for checkout of acquisition and tracking performance. These

include either using the mixer detector in conjunction with the impedance

analyzer, or using the operational tracking receiver. The envelope detector

does not have, sufficient sensitivity to be used with the analyzer because at

least 30-db couplers are required in the difference channel output to keep

insertion losses andphase errors from degrading performance. The result
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is a null signal on the order of 10 - 7 milliwatts (-70 dbm) or less. The

mixer detector, on the other hand, operates with a Ku-band local oscillator

frequency with the analyzer.

In comparison to the relatively simple concept of using an operational track-

ing receiver, the mixer/analyzer approach results in significant impact

because of the complexity and additional maintenance associated with the

design and operation of an automatic analyzer. In addition, the capability of

the mixer/analyzer approach is limited by not being able to monitor the

performance of comparator modulator outputs. The tracking receiver can

be used to perform this function. The availability of a redundant tracking

receiver adds to the attractiveness of using the operational tracking receiver

for monitoring acquisition and tracking performance.

5. Z. 2. 3 Monitoring and Evaluation

The design and performance impacts associated with the various monitoring

and evaluation concepts discussed for the RF system in Subsection 5. 2. 1. 3

are also applicable to the antenna system. The design and performance

impacts of utilizing DMS capabilities for monitoring and evaluation functions

are considerably less than those associated with designing an independent

antenna system evaluator. The reflectometer and impedance analyzer con-

cept, for example, reduce dependence upon the DMS, but this advantage is

very much offset by the additional complex design required.

5.3 INTERFACE COMPLEXITY

The impacts of the various candidate concepts in terms of interface com-

plexity are examined in this subsection. Of concern are the operational,

electrical, and mechanical interfaces between the communications subsys-

tem equipment, other Space Station subsystems, and the OCS/DMS.

The basic mechanical interfaces established for the Space Station communi-

cations subsystem design and the selected electrical interface levels of 0 to

5 volts (with a 0 to 40 millivolt range available) are compatible with all of

the candidate checkout concepts. Standardization of electrical interfaces is

desirable whether the monitoring/checkout is manual or automatic.
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5. 3. 1 RF System

While a variety of RF system checkout concepts are considered, they are

divisible into those in which the LRU's of the communications subsystem are

treated basically as black boxes and evaluated on that basis by their own

internal circuitry or externally by the DMS, and those concepts in which the

checkout functions are handled on a more integrated subsystem basis through

a combination of external LRU test circuitry and an MCU dedicated to the

checkout of the communications subsystem. There is some interfacing with

the DMS in all concepts, since it represents the ultimate control and display

system for all communications subsystem functions. The interface complex-

ities associated with the various concepts are presented in Table 5-2 and

further discussed below.

The use of a local MCU to assess the status of the communications subsys-

tem LRU's and control test functions has the potential for simplifying the

OCS/DMS interface by reducing the DMS data rate requirements and permit-

ting design (and later modification) of the checkout system hardware and

software to have minimum effect on the DMS hardware and software. On the

other hand, disadvantages of the MCU concept include the EMI hazard of

bringing signals from all units into close proximity, the increase in wiring

runs between the LRU's and the MCU, and the increased potential of total

checkout system failure due to the common unit.

Another major consideration is control of the communications subsystem

during checkout. While the DMS workload is reduced by letting the MCU

configure the subsystem controls for testing purposes, permitting this out-

side of the normal control circuits requires very careful design to establish

fail-safe override capability for the normal controls. Allowing the MCU to

control the LRU's via the DMS bus, however, greatly increases the design

requirements of the MCU's, increases the DMS data bus load, and requires

that the MCU be capable of controlling external data sources. While the

MCU approach needs further investigation for use in other programs, it

appears most desirable to retain control of the operational functions within

the DMS as far as the baseline Space Station is concerned.
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In the case of the stimuli generators, whether located within the LRU's or

externally, there is less hazard in allowing the MCU to control them since

the stimuli signals could be eliminated by removing power from the MCU or

from the external generator. This could also be done in the case of LRU

internal stimuli generators if they were configured to be powered from a

source independent of the source powering the operational circuitry.

If, as has been suggested, the DMS is used to configure the operational

controls for test purposes, the control of stimuli sources should also be

assigned to the DMS since only a minor increase in DMS loading is involved.

Several control concepts can be envisioned. One would be initiated by

requesting checkout of a given function which, in turn, would result in the

necessary instruction set being called into action from DMS memory.

Execution of the instructions would suppress entry of operational data into

LRU's which might cause interference with test signals, and would operate

all controls necessary to configure the LRU's to establish the function to

be tested. Stimuli generators would be energized and test point evaluation

executed either by continued instructions (in the case of DMS evaluation) or

by requesting that some or all of these functions be executed by an MCU

from its own stored programs.

5. 3. 2 Antenna System

Unique interface complexity considerations for the antenna system are con-

cerned with (1) the difference in DMS monitoring loads between the complex

antenna analyzer concepts and the preferred antenna checkout concepts, and

(2) the interface impacts within the antenna system resulting from the com-

plexity of utilizing the analyzer network design.

The number of DMS interfaces is much higher for the preferred concept

where each detector is controlled and monitored by the DMS, than for the

analyzer concepts where the DMS controls and monitors only the outputs of

the central analyzer. For the high-gain system, the DMS monitors and

controls the analyzer and the tracking receiver for the analyzer approach as
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compared to the receiver only in the preferred approach. Although there is

less capability for isolating a fault to the comparator without the analyzer

interface, this fault isolation is accommodated by the DMS controlling the

redundant modulators and RF paths internal to the comparator.

The internal interface complexity that the analyzer network design imposes

includes an intricate network of detectors, switches, transmission lines,

multiplexers and control lines for its sampling and control of test signals.

In the area of multiplexers and switches which are centrally located, the

analyzer network is fairly compact. Where the required data are widely

dispersed, such as at remote antenna locations, a complex RF data bus is

necessary to collect and combine the data from each remote location onto a

common transmission line leading to and from the central area. The

analyzer approach, therefore, creates EMI problems throughout the com-

munications system. The envelope detector/DMS monitoring approach

involves the transmission of dc signals which eliminates the potential EMI.

In the high-gain antenna concepts, the network of the impedance analyzer is

not as complex as in the low gain. In comparison to utilizing the tracking

receiver, however, it is considerably more complex.

5.4 DATA MANAGEMENT SUBSYSTEM LOADING

Relative to the DMS loading imposed by other Space Station subsystems and

experiments, the impact upon the DMS by any of the communications subsys-

tem checkout concepts considered in this study is insignificant. Based on the

sample sizes, rates, and intervals noted for checkout data parameters in

Table 6-11, an average data rate of only 100 bits per second is anticipated

at the interface between the subsystem and the DMS RDAU's for checkout.

With the RDAU's limit checking capabilities, the data are normally trans-

mitted to the centralized DMS computer only on a periodic basis which

results in very low data bus loading. Peak data rates of up to 1 kbps might

be reached during periodic testing. Since the baseline capacity and speed of

the DMS are so large compared to any assessment task presented by the

communications subsystem checkout data, it is difficult to envision any

problems in the area of DMS loading.
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The impact for various candidate checkout concepts in terms of addresses

and transactions required on the DMS bus for RF system LRU's is shown in

Table 5-3. Although quantities are listed in the table, they must be used

with caution (particularly if the results are to be extrapolated to different

size systems and concepts) because of the many assumptions involved as

discussed below.

While it would certainly be expected that some of the LRU test parameters

in Table 6-11 would change in a given system implementation, they are felt

to be quite representative for the baseline subsystem and the level of check-

out and maintenance planned. It is doubtful that the list would grow signifi-

cantly unless there is a new requirement for extensive fault isolation within

the circuitry of the LRU's. The minimum list would consist of go-no/go

signals only from the LRU's, and that case is one of the candidate concepts

considered. A shift to an all digital system would, of course, significantly

impact the parameter lists.

The impact of "addresses" is dependent upon control and computer organi-

zation and upon how much information is located in a given core location or

word. It is assumed that one address is associated with each RDAU and the

LRU it services, the total of which is the summation of the LRU quantities

and test generators except for the audio terminal units. These units are

assumed to be controlled remotely only to the extent of some primary power

control to isolate unused groups of units.

The number of bus transactions required to check out the subsystem is

dependent upon the number of locations which must be controlled to set up

and execute the test, required sampling rates, and the amount of information

which the DMS bus can accommodate in a given transaction. The latter may

be limited by the necessity of giving up the bus periodically to allow other

terminals to use it, or as may be the case with limited capacity RDAU's, to

permit a new set of parameter limits to be read into local memory to support

a new test mode or to permit a different set of input signals to be checked.

Table 5-3 lists separately the write and read sequences necessary to execute

a complete system checkout for the candidate concepts.
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Table 5-3

DMS LOADING

Transactions Per

No. of [ System Check
Concept Addresses Write Read

1. LRU go-no/go signals only.

A. External test generators 40 162
B. LRU test generators 36 135

2. LRU go-no/go signals, plus detailed
LRU data for fault isolation.

A. External test generators 40 163 2
B. LRU test generators 36 136 2

3. DMS evaluation of LRU signals.

A. External test generators 40 230 42
B. LRU test generators 36 185 38

4. MCU evaluation of go-no/go
signals, plus detailed fault
isolation (DMS LRU control)

A. External test generators 41 164 42
B. LRU test generators 37 137 38

5. MCU evaluation (DMS LRU
c ontr ol)

A. External test generators 41 164 42
B. LRU test generators 37 137 38

6. MCU evaluation of go-no/go
signals, plus detailed fault
is olation.

A. External test generators 1 3 2
B. LRU test generators 1 3 2

7. MCU evaluation of LRU signals
(MCU LRU control)

A. External test generators 1 3 2
B. LRU test generators 1 3 2

1
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In the case of detailed fault isolation, it is assumed that all of the detailed

LRU data is input to the RDAU, along with a go-no/go discrete. In the event

that a no/go is signalled, the DMS conducts a write sequence to load the

RDAU limit memory with the proper values for the mode being tested. Two

read sequences are then conducted first to identify the out-of-specification

channel and then to read the parameter value.

In the case of DMS evaluation, where the RDAU is doing the comparisons,

the number of write sequences increases because of the need to load new

sets of limits into the RDAU memory as the test modes change.

In terms of DMS loading, the table makes a strong case for letting an off-line

computer do as much of the task as possible. There are other system

impacts to consider, however, and the use of the RDAU's does not represent

a hardware impact because they are present as part of the baseline systems

for LRU control. This latter item represents a major assumption, and the

results could be greatly changed if the DMS characteristics are modified

from those of the baseline.

In the baseline DMS system, the total time required for a device on the digi-

tal bus to conduct a read sequence with an RDAU does not exceed 710 micro-

seconds, and the time for a write sequence is less than 680 microseconds.

Even with the worst transaction load shown in Table 5-3, the system test

time is less than 200 milliseconds. In practice, this time would be negligible

compared to the delays required to let AGC circuits, phase-lock loops, and

other circuits with long time constants to stabilize prior to measurement;

and to the time required to manually evaluate such equipment as micro-

phones, headphones, television, monitors, or hardcopy printers.

5.5 TECHNOLOGY'

This subsection presents the results of reviewing candidate checkout concepts

to determine if any requirements exist for special sensor or test equipment

design and development, or for advanced research and development.
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5. 5. 1 RF and Internal Communications System

None of the candidate checkout concepts considered for the RF and internal

communications systems require any special advancement in state-of-the-art

components or circuitry. The technology necessary to design the communi-

cations subsystem itself will suffice for the development of the checkout

system. The requirements for signal sensors and generators, while encom-

passing a wide range of frequencies and amplitudes, also do not appear to

place any unusual demands upon the technology.

The circuitry and components necessary to accommodate serial and parallel

digital data at the relatively low speeds required should be available now

and, in any case, would become available as a result of any development

effort necessary to meet the much higher speed demands of the onboard

computer system. The same is true of the requirements for analog-to-

digital conversions. The demands of the proposed concepts are well within

the accuracy and speed capabilities of elements already developed.

The candidate concepts are assumed to be implemented with discrete com-

ponents or standard linear and digital "building blocks" such as operational

amplifiers and logic elements. By this assumption, it is not intended that

the problems of actually designing reliable and environmentally rugged

checkout circuitry, or of developing efficient software programs to utilize

the data, be minimized. The problems, however, are those of a normal

development program and do not appear to present any unique technology

impact.

5. 5. 2 Antenna System

Although technology impacts do not result from using the preferred antenna

system checkout concepts, certain alternate concepts do require special

sensors and/or special test equipment. These include the optical and solar

radiometer concepts that could be used for boresight alignment, as well as

other concepts identified for measuring insertion loss and VSWR.
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5. 5. 2. 1 Special Sensor Development

Special sensors are required only in the candidate optical verification con-

cept which uses special photometrical techniques for geometric boresight

alignment of the high-gain antenna.

The development status of these techniques is well advanced for use in the

laboratory. They are currently able to provide surface distortion data for

reflector antennas like those on the Space Station with a measurement

accuracy of ±0. 001 inch. These tests have been performed with special

equipment inside high-vacuum space chambers equipped with solar simula-

tors. The antenna is photometrically tested at required solar incident

angles by rotating the assembly to the respective angle.

The techniques are not space qualified, however, and presently require

trained personnel to adjust and calibrate the instrumentation as well as other

personnel and computer programs to evaluate the data.

5. 5. Z. 2 Special Test Equipment

Special test equipment is required for the candidate optical verification,

solar radiometer, reflectometer analyzer, and impedance analyzer concepts.

The optical verification concept requires the development of special space-

qualified equipment with the long-term stability and reliability required on

the Station. Requirements for the special test equipment would be determined

from the precision necessary for the antenna positioner and controls and the

allowable surface distortion of the high-gain antenna structure. The equip-

ment should also have a capability for self-testing and for performing any

occasional maintenance from within the Station.

The special test equipment development required for the reflectometer

analyzer concept consists of a space-qualified ratio meter or resolver. This

type of test equipment has a long history of successful operation in labor-

atories by trained personnel for measuring VSWR, reflection and transmis-

sion coefficients, and insertion loss. One system in wide laboratory use
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today involves providing RF signals modulated or chopped at an audio

frequency to the forward and reflected terminals of the analyzer. Another

system in wide use only provides continuous-wave signals. The second

approach is more suitable for this concept because of greater simplicity,

sensitivity, and accuracy.

For the impedance analyzer concept, a resolver is required that measures

phase as well as amplitude of the reflection or transmission coefficient.

This is used only for performance verification and fault isolation of the

comparator/feed assemblies on the high-gain antenna.

For the solar radiometer concept used for high-gain antenna boresight

alignment, a special space-qualified radiometer is required for Ku-band

operation. The current state of development of Ku-band radiometers is

promising. Airborne-qualified units are available that are similar to those

required to implement the concept, but are not suitable in this application

because of the long-term stability, reliability, and the automatic self-test

requirements imposed by Space Station missions.

5.6 GROUND SUPPORT

Although very little operational ground support is anticipated for any of the

candidate communications subsystem checkout concepts, prelaunch ground

support is required. Prelaunch support for the RF and antenna systems is

considered in the following paragraphs.

5. 6. 1 RF System

The type and quantity of ground support equipment (GSE) required for check-

out of the RF system is directly dependent on the level of testing employed.

All checkout concepts identified in the study are based upon the assumption

that parameters normally measured during LRU acceptance testing, such as

harmonic distortion, frequency and spurious response, and bandwidth are

not remeasured during prelaunch checkout. Measurements of this type

require the use of sweep generators, spectrum analyzers, and distortion

analyzers. Incorporation of sweep generators and analyzers within the
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operational LRU's could pose a serious design impact and is not recom-

mended. If, however, it is deemed necessary to perform LRU-level

acceptance testing, the design impact could be minimized by incorporating

the sweep generators and analyzers in common modulation signal generators,

or by providing a coupler on the data bus to which portable carry-on test

equipment could be connected.

The use of operational signals for ground checkout requires the addition of

RF transmitters and receivers to the GSE which are compatible with the

onboard equipment. The amo'unt of open-loop testing on the ground should

be minimized because of RFI considerations. In addition, closed-loop

checkout via an umbilical cable would be difficult at Ku-band frequencies

because of the high cable attenuation.

The requirements of RF system prelaunch GSE are minimal. Except for the

operational data and translator approaches, all of the candidate RF system

checkout concepts include the capability to fault-isolate to the LRU level

and to provide the necessary status data required for the level of checkout

defined in this study.

5. 6. 2 Antenna System

The testing of antenna systems, as considered in this study, is primarily

concerned with on-orbit requirements that can be satisfied with closed-loop

stimuli and monitoring capabilities contained within the Space Station. Open-

loop testing is confined to prelaunch ground testing where external stimuli

for receive tests and external monitoring of transmit tests are more easily

controlled.

It is anticipated that a series of high-gain antenna subassembly tests will be

conducted during ground checkout. This will include tests that cannot be

performed on a completely assembled antenna in an Earth gravity environ-

ment because the antenna gear drive is designed for a zero-g environment.

The first test consists of demonstrating performance of the drive system
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before mating the reflector, feed, and RF electronics assemblies. The

boresight performance is then checked by utilizing a large anechoic chamber

with a phased-array antenna to provide simulated offset stimuli signals.

The high-gain antennas are checked with their gimbals locked and are

physically supported to remove the load from the bearings. Thus, the

ground support impact from high-gain antenna testing is significant in terms

of the equipment, trained personnel, and time required. This is true

regardless of the onboard checkout concepts adopted.

The testing of low-gain antenna elements can be accomplished by coupling

hats that provide essentially an isolated transmission path for stimuli.

These do alter the radiation characteristics of the antenna, but for close-

quarters checkout it provides usable data for go-no/go decisions.

5.7 GROSS SCHEDULE AND COST

Gross estimates of the schedule and cost impacts associated with implement-

ing the candidate checkout concepts are described below.

5. 7. 1 Schedule

It is difficult to estimate the schedule impact on any of the concepts except

in general terms. It is assumed that the preferred onboard checkout

concept is defined at the time the LRU design is initiated. A concept which

requires the design of additional LRU's or increases the complexity of an

existing LRU presents an additional schedule risk. For the Space Station,

however, this involves a parallel design effort, not a serial one. Further-

more, if it is not to present more problems than advantages, the checkout

portion of the design should be less complex than the basic LRU. There is

no clear-cut reason to expect a schedule slip due to the incorporation of the

checkout circuitry if it is part of the initial design effort and is not added at

a later time. For this reason, the schedule impact data consist of only

identifying those areas where an increased schedule risk might be incurred

if the proposed concept is adopted.
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A concept in which the checkout circuitry is not contained within the basic

LRU's would have a potential schedule risk advantage in that delivery of

initial operational equipment could not be delayed by checkout circuitry

problems, and preliminary communications subsystem tests could be made

without checkout capability. Assuming that checkout concepts are completely

defined at the time of LRU design, minimal, if any, schedule risk is

expected as a result of incorporating the concepts.

5. 7. 2 Cost Estimates

Relative nonrecurring (NR) and recurring (R) costs for the hardware portions

of the concepts are estimated in Table 5-4. Each combination of stimuli

generation/detection and monitoring concept is rated in terms of its relative

cost increase over the baseline case which utilizes operational data as the

test stimuli and the DMS for evaluation. The design and hardware estimates

are based on the communications subsystem cost estimates prepared for the

33-ft Space Station. Costs have not been prepared for the DMS hardware or

software. While care has been taken in the preparation of the cost data, it

should be recognized that they are only estimates.

The cost estimates are based on the following assumptions:

A. Costs are stated in 1971 dollars.

B. The checkout concept is completely defined at the start of LRU

design.

C. Recurring costs are on a per system basis.

The LRU modification costs due to the incorporation of internal generators

are based upon the inclusion of such generators in each LRU which interfaces

either the DMS bus (or RDAU) or the antenna subsystem. In the case of

antenna interfaces, the generator is assumed to provide a single carrier

frequency and either selectable thresholds or strong signal levels. Base-

band and subcarrier modulation is provided to exercise each path back to

the DMS bus. Only single frequency (or data rate) and single level signals

are assumed. In the case of antenna interfaces, single-frequency and single-

level modification inputs are provided to exercise each path to the antenna

subsystem interface.
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The LRU modification costs necessary to provide raw data signals to the

DMS for evaluation of inputs and internal process monitoring are included

but are minimal since many of these sensors are included in the previous

LRU costs for the 33-ft Space Station.

The LRU modification costs necessary to provide go-no/go signals include:

(1) control mode logic sensors; (2) input signal level sensors; (3) internal

monitor sensors keyed to (1) and (2); and (4) logic to combine the results of

(1), (2), and (3) to provide the go-no/go output.

Referring to Table 5-4, it can be seen that the increase in NR costs range

from a minimum of 2 percent to a maximum of 14 percent. The increase in

recurring costs range from 2 to 5 percent. It is felt that the relative

increase in costs are accurate within plus or minus 2 percent.

A cost comparison for the implementation of antenna system detectors

(Table 5-5) indicates the relative savings in both the high- and low-gain

antenna systems of using LRU internally generated stimuli in lieu of a

separate antenna stimuli generator. Also shown is the relative cost savings

in using a self-modulating envelope detector instead of a mixer detector for

RF power monitoring. To provide a more realistic comparison, the refer-

ence cost used as the normalizing factor includes the cost of the LRU

generators.
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Section 6

BASELINE DATA AND REQUIREMENTS ANALYSIS

This section presents the baseline data and maintenance guidelines used in

the study. The section also presents the results of analyses conducted to

establish communications subsystem line replaceable units (LRU's) and the

detailed requirements for subsystem checkout and fault isolation. This

basic information is derived primarily from the MSFC/MDAC Modular Space

Station studies performed under Contract NAS8-25140.

6. 1 BASELINE DATA

Baselines for the communications, data management, and onboard checkout

subsystems are described in Reference 1 and summarized in the following

paragraphs. Prelaunch and flight operations defined for the Modular Space

Station are presented in References 2 and 3 and also briefly discussed below.

These baselines are those defined for the Initial Space Station (ISS) depicted

in Figure 6-1. The ISS is delivered to orbit by three Space Shuttle launches

and assembled in space. The Power/Subsystems Module is launched first,

followed at 30-day intervals by the Crew/Operations Module and General

Purpose Laboratory (GPL) Module. The ISS provides for a crew of six.

Resupply and crew rotation are carried out via round-trip Space Shuttle

flights using Logistics Modules for transport and on-orbit storage of cargo.

A second group consisting of a Power/Subsystems Module and Crew/

Operations Module that may be launched 5 years later would provide for

growth to a full 12-man capability or Growth Space Station (GSS). The ISS

configuration is the only one considered in this study since a Phase B level

definition of the GSS is not available.
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6. 1.1 Communications Subsystem

The communications subsystem provides RF communications between the

ISS and the ground, either directly to the NASA ground network or through

the NASA data relay satellite system (DRSS). Communications are also

provided between the ISS and Space Shuttle during rendezvous and docking

operations and for crewmen engaged in extravehicular activity (EVA). The

ISS RF communications channel requirements and frequency allocations are

summarized in Figure 6-2.

The internal communications system provides nominal voice communications

between crew quarters, equipment compartments, duty stations, and docked

modules. Emergency voice communications, public address, and entertain-

ment audio reception capabilities are also provided.

6. 1. 1. 1 Summary

Direct communications with the ground stations are provided by an S-band

transponder which receives voice, commands, and ranging information at

approximately 2. 1 GHz and transmits voice, telemetry, and ranging data at

a frequency between 2. 2 and 2. 3 GHz. An S-band FM exciter and power

amplifier having a power output of 20 watts operating between 2. 2 and 2. 3 GHz

is also provided for the transmission of video and digital experiment data.

Two-way voice, low-rate-data, and ranging communications with the Shuttle

are also provided by the same S-band transponder used for direct ground

communications. However, a power amplifier operating in conjunction with

the transponder is required to provide simultaneous voice, data, and ranging

at ranges up to 200 km. A common, low-gain S-band antenna system is

utilized for communications with both the ground and the Shuttle.

Communications with the DRSS are provided by Ku-band transmitting and

receiving systems operating in the 14.4 to 15. 35 GHz and 13.4 to 14. 2 GHz

frequency bands, respectively. A power output of 20 watts operating in

conjunction with an 8-ft-diameter high-gain antenna is required to provide for

commercial-quality television or up to 10-Mbps digital data transmissions
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through the DRSS. Multiple voice channels, medium data rates up to

100 Kbps, and turned-around ranging transmissions are provided

simultaneously with the wideband transmission on a separate carrier. A

receiving system noise temperature of approximately 1, 000°K is required

for the reception of television from the relay satellite. Simultaneous

reception of multiple-voice, medium-rate-data, and ranging information is

also provided.

Two-way voice and up to 10-kbps low-data range communications between

the ISS and DRSS are also provided in the VHF band at frequencies between

126 and 130 MHz and 136 to 144 MHz. These links utilize a low-gain antenna

system which provides nearly omnidirectional coverage.

Full-duplex voice communications with crewmen engaged in EVA and the

reception of crew biomedical telemetry are provided. These channels

utilize frequencies in the 250 to 300 MHz band. The VHF links are multi-

plexed into a common VHF low-gain antenna system.

6. 1. 1. 2 Description

The VHF and S-band equipments utilized for communications with the DRSS,

Space Shuttle, NASA ground stations, and EVA are located in the Power/

Subsystems Module. A block diagram showing the VHF and S-band equipment,

including low-gain (omni) antennas, transmitters, receivers, modems, and

audio terminals is shown in Figure 6-3.

The Ku-band and S-band equipments required to provide wideband data

transmission and reception with the DRSS are located in the Crew/Operations

Module. A block diagram depicting the high-gain antenna system, power

amplifiers, exciters, receivers, and modems is 'shown in Figure 6-4. The

analog sync/test unit which generates the reference signals required for

operation of the onboard telephone system and audio terminals located in this

module is also shown. The total complement of RF equipmentsis contained

within the Power/Subsystem and Crew/Operations Modules. However,

additional audio terminals are required in the GPL and docked modules.
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ERN | SELECT TRACKING SERVO if
IING SWITCH RECEIVER CONTROL 
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Figure 6-4. Crew/Operations Module Communications
Equipment Complement
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Descriptions and lower-level block diagrams of the high- and low-gain

antenna systems, RF system, and internal communications system are

provided below.

Antenna System Description

Descriptions of the Ku-band high-gain and VHF and S-band low-gain antenna

assembly groups are presented in the following paragraphs.

High-Gain Antenna Assembly Group-The high-gain antenna assembly group

consists of three independently controlled 8-ft parabolic reflectors which are

located on the Crew/Operations Module and are separated by 120 degrees.

They are located at 60, 180, and 300 degrees referenced to the +Z axis as

shown in Figure 6-5. This assembly group includes main and acquisition aid

antennas, multiplexer and switching assemblies, main and acquisition

comparator/feed assemblies as shown in Figures 6-6 and 6-7, S-band

tracking receivers as shown in Figure 6-8, antenna positioner and positioner

servo controls as shown in Figures 6-9 and 6-10, and low-noise Ku-band

receivers as shown in Figure 6-11. The high-gain antenna assembly group

design is based on the performance requirements shown in Table 6-1.

As shown in Figure 6-6, the RF signals received by the four horns are

combined in the RF comparator network of the main comparator and feed

assembly. The resulting azimuth and elevation difference channel outputs

are chopped by the timing switch and then combined with the sum channel

output in the coupler. The amplitude-modulated RF carrier is subsequently

detected in the S-band tracking receiver to provide steering error signals.

A separate horn is utilized to illuminate the subreflector on transmit. The

acquisition comparator and feed assembly is very similar except that only

four horns are used.

The high-gain antenna system acquisition and tracking procedure requires

initial pointing information generated by the onboard DMS computer. Upon

acquisition and lock of an RF signal transmitted by the DRSS-by the high-gain
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Table 6-1

HIGH-GAIN ANTENNA PERFORMANCE CHARACTERISTICS

Nominal transmit frequency

Nominal receive frequency

Minimum G/T (including all losses)

Minimum EIRP (including all losses)

Minimum antenna RF bandwidth

14. 5

13.5

15.0

60. 0

20. 0

Mast-mounted equipment:

Transmit

Power amplifier output (20 watts)

System loss (maximum)

Antenna gain (minimum)

EIRP (minimum)

GHz

GHz

db / K

dbw

MHz

13 dbw

1. 5 db

50.0 db

61. 5 dbw

Receive

Antenna gain (minimum)

System loss (maximum)

System temperature (maximum)
(6. 5 db noise figure)

G/T
S

(minimum)

Acquisition

Antenna gain (minimum)

Insertion loss (maximum)

49. 4

2. 0

30. 0

db

db

db/°K

17.4 db'/ K

29 db

1.7 db

antenna pseudo-monopulse tracking system, the drive information from the

computer is terminated. In the event that the RF tracking signal "drops out"

during a communications pass, the computer is called upon to drive the

antenna until the RF signal is reacquired.

Prior to an anticipated communications contact with a relay satellite, the

computer runs a prepass simulation to determine the look angles to the DRSS.

It is estimated that the look-angle predictions should be performed in 30-sec
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to 1-min increments. Each look angle is then tested to determine which

antennas are blocked by the docked modules and solar arrays as a function of

time. The optimum antenna for providing communications during the next

pass is then selected. In the event that the prepass simulation shows that

switchover from one antenna to another is required during a communications

pass to eliminate blockage due to the docked modules, the second antenna is

slewed into position and acquires the DRSS RF signal before the blockage

occurs. Since overlapping coverage is provided for the docked modules, it

is anticipated that the switchover procedure will cause little or no loss of

communications.

Low-Gain Antenna Assembly Group-The low- gain antenna assembly group

consists of separate VHF and S-band antenna systems. Both of these systems

consist of flush-mounted, slot-type antenna elements located on the Power/

Subsystems Module and separated by 120 degrees. They are located approxi-

mately at 60, 180, and 300 degrees referenced to the +Z axis. The perfor-

mance characteristics of the low-gain antenna system are summarized in

Table 6- 2.

The VHF system consists of three "dumbbell" circumferential slot antennas,

diplexers, a multiplexer and power divider assembly, and a multiplexer and

switching assembly. The multiplexer and power divider assembly allows the

three antennas to be fed simultaneously, thus eliminating any requirement

for antenna switching during EVA operations. However, during normal

voice and low-data-rate communications with the DRSS, the multiplexer and

switching assembly allows the optimum antenna to be selected. All three

antennas are capable of being fed simultaneoulsy during contingency opera-

tions. A block diagram of the VHF multiplexer and switching assembly is

shown in Figure 6-12.

The S-band system consists of three circumferential slot antennas which can

be selected individually or fed simultaneously. The S-band triplexer and

switching assembly, shown in Figure 6-13, allows for the simultaneous
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Table 6-2

LOW-GAIN ANTENNA PERFORMANCE CHA RACTERISTICS

VHF System

Gain

Individually

Simultaneously

Insertion loss

Individually

Simultaneously

Impedance

0 db minimum over a 120 deg beam-
width referenced to a right-hand
circularly polarized (RCP) source.

-10 db minimum over 90 percent of
sphere referenced to an RCP source.

2 db (maximum)

7 db (maximum)

50 ohm (nominal)

S-band System

Gain

Individually

Simultaneously

Insertion loss

Individually

Simultaneously

Impedance

-3 db minimum over a 120 deg beam-
width referenced to a RCP source.

-13 db minimum over 90 percent of a
sphere referenced to an RCP source.

2 db (maximum)

7 db (maximum)

50 ohms (nominal)
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reception of one carrier and the transmission of two carriers. It interfaces

between the S-band transponder and power amplifiers and the S-band low-

gain antenna elements. It consists of solid-state RF switches which select

the appropriate antenna, -filters which provide isolation between the transmit

and receive paths, and a bypass switch which allows the transponder to be

connected directly to the antennas or routed to a power amplifier.

RF Assembly Descriptions

The RF assemblies for the VHF, S-band, and Ku-band systems are described

in the following paragraphs.

EVA VHF Transmitter/Receiver-The EVA VHF voice transmitter/receivers

provide for the transmission and reception of voice communications between

personnel engaged in EVA and the ISS. It also provides for simultaneous

reception of biomedical data from the EVA units. The transmitter provides an

output of 1 milliwatt, frequency modulatedwith 6-kHz peak-to-peak baseband

voice signals from the EVA voice transmitter/receiver modem. The receiver

has a noise figure of 4 db and a predetection bandwidth of 50 kHz. A block

diagram of the LRU is shown in Figure 6-14.

The receiver demodulates the incoming frequency-modulated signals

consisting of baseband voice and biomedical data subcarriers, and provides

the composite signal as an output to the EVA voice transmitter/receiver

modem.

EVA Voice Transmitter/Receiver Modem-The EVA voice transmitter/

receiver modem provides an interface between a group of three transmitters

and receivers used to handle EVA voice and biomedical signals, and the

analog/digital data bus. A block diagram of the unit is shown in Figure 6-15.

The unit contains circuitry similar to that of the audio terminal units

discussed later, to enable the unit to be dialed up from any other audio

terminal unit in the -station, and to. provide the composite voice signals from

the three receivers as an output on that same circuit.
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Two of the receiver inputs contain biomedical data signals in the form of

modulated subcarriers, and circuitry is provided to separate them from the

voice signals, demodulate them, and provide the data as outputs to a digital

data terminal.

Conferencing is accomplished by routing the voice signal received from one

crew member to the audio output associated with the transmitter tuned to the

second crew member's receiver (through commands received via a digital

data terminal of the DMS). Squelch circuitry is provided to suppress noise

in the circuits when they are not in actual use; however, a capability to

override this feature is also provided.

Voice signals originating from the onboard controller can be used to modu-

late any or all of the audio outputs.

VHF Data Transmitter/Receiver-The VHF data transmitter/receiver

provides digital data communications between the ISS and a relay satellite in

the frequency band from 126 to 144 MHz. Frequency modulation is used on

both transmission and reception. A block diagram is shown in Figure 6-16.

The transmitter provides a 20-watt RF output, with data rates up to 10 kbps

and deviations of up to 10-kHz peak to peak. The receiver accepts inputs

having the same modulation characteristics and provides the detected signals

as an output to a DMS digital data terminal. The receiver has a noise figure

of 4 db and a 50-kHz predetection bandwidth.

VHF Voice Transmitter/Receiver-The VHF voice transmitter/receiver

provides voice communications between the ISS and a relay satellite in the

126 to 144 MHz frequency band. Frequency modulation is used on both

transmission and reception. A block diagram is shown in Figure 6-17. The

transmitter provides a 20-watt RF output, with baseband voice modulation

and a peak-to-peak deviation of 6 kHz. The receiver accepts an input having

the s .me modulation characteristics and provides the detected voice signal

as an output. The receiver has a noise figure of 4 db and a 50-kHz predetec-

tion bandwidth. Control of the unit is by means of an associated digital data
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terminal; however, the transmitter/receiver contains circuitry similar to

that in the ATU which interfaces directly with the analog data bus and enables

any ATU on the bus to access the RF channel by simply dialing its assigned

number.

S-Band PM Transponder-The S-band PM transponder provides for the

transmission and reception of voice, data, and ranging signals between the

ISS and Space Shuttle, and between the ISS and ground stations. The voice

and data subcarrier frequencies are identical to those used on the Apollo

Command Module.

A block diagram of the S-band PM transponder is shown in Figure 6-18. The

unit contains circuitry similar to the ATU's to select one of the voice

channels on the analog data bus for transmission and reception over the RF

circuits. The selection of the channel, as well as all other control functions

and the readout of monitor data, is done over the digital data bus via a DMS

RDAU. The digital data terminal interfaces between the bus and both the

incoming digital data on a 70-kHz subcarrier and the outgoing digital data

which are transmitted as biphase modulation on a 1. 024-MHz subcarrier.

The transponder also interfaces with the ranging unit to receive and trans-

mit baseband PRN ranging signals.

A summary of the unit's signal-handling capability is provided in Table 6-3.

All of the noted subcarriers are transmitted and received as PM of the

S-band carrier. The RF circuitry consists of a solid-state, phase-lock

transponder, with an output power of 1 watt and a receiver noise figure

of 7 db.
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Table 6- 3

SIGNAL-HANDLING CA PA BILITY

1. One voice channel input and output. Transmitted as FM modulation

on a 1.25 MHz subcarrier, received as FM modulation on a

30 kHz subcarrier.

2. One data channel output of 51.2 kbps. transmitted as biphase

modulation on a 1. 024 MHz subcarrier.

3. One data channel input of kbps, received as FM modulation on a

70 kHz subcarrier. The signal on the subcarrier consists of a

biphase modulated 2 kHz tone plus a 1 kHz reference tone.

4. PRN ranging signals transmitted and received as baseband PM

modulation of the S-band carrier.

S-Band FM Exciter-The S-band FM exciter generates a 40 to 100 milli-

watt RF signal to drive the S-band power amplifier, and frequency-modulates

it with either a wideband digital data signal or a television signal. A block

diagram of the unit is shown in Figure 6-19. The unit interfaces with a

digital data terminal for control and monitor functions, and for receiving

its digital data input. It also interfaces directly with the analog data bus to

obtain the television signal input. The exciter contains the channel selection

circuitry necessary to side-step the desired channel down to baseband for

transmission.
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S-Band Power Amplifier-The S-band power amplifier provides amplification

of the 40 to 100 milliwatt input from the S-band exciter to the 20-watt output

level necessary to support wideband data transmissions. The required power

level is generated through a hybrid arrangement of power transistors as

shown in the block diagram of Figure 6-20.

S-Band Wideband Receiver-The S-band wideband receivers provide for the

reception of relay satellite signals which have been down-converted from

Ku-band. The incoming signal is frequency modulated with a baseband video

signal plus a 4. 5-MHz subcarrier frequency-modulated with a voice signal,

or an FDM signal consisting of 36 SSB voice signals in the band from 60 to

204 kHz, plus entertainment channel subcarriers at 1. 0, 1. 35, and 1. 7 MHz.

A block diagram of the receiver is shown in Figure 6-21.

In the video mode, the incoming video signal is side-stepped to the desired

analog data bus channel and placed on the bus with the 4. 5-MHz subcarrier.

In the voice mode, the demodulated voice and entertainment channel spectrum

is placed on the analog data bus.

S-Band Narrow-Band Receiver-The S-band narrow-band receiver provides

for the reception of relay satellite signals which have been down-converted

from Ku-band. The incoming information is in the form of PCM/PSK modu-

lation of a subcarrier, multiple-voice channels, frequency modulated on a

4. 5-MHz subcarrier, and a baseband pseudorandom ranging code. A block

diagram of the receiver is shown in Figure 6-22.

The receiver phase locks to the incoming S-band signal and coherently detects

the ranging signal (which is provided to the K -band exciter for retransmis-
U

sion) and the modulated subcarriers. The PSK detector extracts the digital

data on a subcarrier and provides the information as an output to a digital

data terminal. An FM discriminator detects the multiple voice channels on

the 4. 5-MHz subcarrier and provides the voice as an output to the analog data

bus.
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Ku-Band Power Amplifier-The Ku-band power amplifier provides

amplification of a 20 to 50 milliwatt input from the Ku-band exciter to the

20-watt output level necessary to support wideband signal transmission to

Earth via a relay satellite. The unit contains a TWT amplifier and its

associated power supplies. The amplifier has a 0. 5-db bandwidth of 40 MHz.

A block diagram of the power amplifier is shown in Figure 6-23.

Ku-Band Exciter-The Ku-band exciter generates a 50-milliwatt Ku-band RF

signal to drive the Ku-band power amplifier, and incorporates provisions for

either phase or frequency modulating that carrier with digital or analog data.

Inputs are provided for digital signals from the ranging unit and a digital

data terminal, and for a wideband analog signal from a signal modem. It will

output digital data rates up to 10 Mbps and analog signals over the range from

10 Hz to 7. 75 MHz. The modulation level extends to 10 MHz peak-to-peak on

FM and 2 radians peak-to-peak on PM. A block diagram of the unit is shown

in Figure 6-24.

Ku-Band Exciter Modem-The Ku-band exciter modem provides an interface

between the analog/digital data bus and the Ku-band exciter for the control and

processing of analog signals. A block diagram of the unit is shown in Fig-

ure 6-25. Under direction of commands received from a digital data terminal,

the unit side-steps and inverts the selected television channel so that it

appears as a vestigial lower sideband signal with the carrier centered at

6. 5 MHz. The FDM voice spectrum, which was separated from the rest of

the signals on the bus by the 500-kHz low-pass filter, is then added back in to

form a composite signal consisting of all the voice channels but just the one

selected video channel. The composite signal is then provided as an output

to the Ku-band exciter.

Ranging Unit-The ranging unit operates in conjunction with the S-band PM

transponder (and a cooperative ranging system in the Space Shuttle) to deter-

mine the range to that vehicle. A block diagram of the unit is shown in

Figure 6-26. The ranging unit generates a pseudorandom coded NRZ signal

and provides it as an output to either one or two transmitters. It accepts the

returned PRN code from one of five receivers and from the delay as a function

of time determines range and range rate to the cooperating vehicle. The

range and range rate information is provided as an output to a digital data

terminal.
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Internal Communications System Description

Functionally, the internal communications system for the Modular Space

Station closely resembles a standard Bell Telephone system. Except for

special circuits which may be deliberately locked out of some terminals to

restrict operational access, each terminal unit can obtain private access to

any other terminal unit by simple "dialing" it. Conference capability is pro-

vided under control of the called terminal.

Communications between the various terminal units are carried on a common

analog/digital data bus in a frequency division multiplex (FDM) format.

Thirty-six 300 to 3, 000 Hz channels are provided. Each of the decks in the

ISS will have one of these channels assigned to it for two public address func-

tions unique to that deck. In addition, the baseband 300 to 3, 000 Hz channel

on the bus is common to all terminals on all decks for use as a public

address or emergency "all-stations" circuit.

As described previously, all the features of the intercom system are extended

to the ground when Ku-band DRSS communications are available, so that a

ground terminal can "dial" any terminal in the ISS and vice versa. The voice

bandwidth channels can also be used for data phone, facsimile, or teletype

service if so desired.

In addition to the voice channels, the ATU's are configured to receive any one

of three wideband (50 to 15, 000 Hz) channels assigned to entertainment use.

The intercommunications signals are distributed throughout the ISS on an ana-

log bus which also carries television information. The frequency allocation

of signals on the bus is shown in Figure 6-27. The voice signals are trans-

mitted in the form of single-sideband-suppressed carrier amplitude modula-

tion on channels spaced 4 kHz apart in the band from 60 to 204 kHz. The

entertainment signals are transmitted in the form of frequency modulation on

subcarriers of 1.0, 1.35, and 1.7 MHz.
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Audio Terminal Unit--A block diagram of the ATU is shown in Figure 6-28.

The heart of the voice channel system is the telephone LSB-SC-AM trans-

ceiver, which is tunable (by means of 10 pushbutton touch-tone matrix) in

4-kHz increments to any of the 36 channels located in the band from 60 to

204 kHz. The transmit and receive functions are tuned to the same frequency

source of their own. They are all normally referenced to a 4-kHz reference

tone on the analog data bus. The reference tone is provided by a separate

sync tone generator unit. Dialing another station number results in tuning

your station to the unique "home" frequency of the called station. If the

called station is off-hook, a busy signal would be received, and no connection

would be made unless the called station selects conference mode. All of the

supervisory signals are compatible with Bell-system practice.

Microphone input signals are normally blocked until a VOX threshold level is

reached. This prevents noise buildup in the channel when several terminals

are conferenced. The VOX switch may be overridden in the selectable PTT

mode of operation; however, a transmit side tone is also provided.

Automatic gain control (AGC) of received signals is provided to maintain

nearly constant audio output levels over a wide range of input signal levels.

Operation of the entertainment receiver is straightforward, consisting simply

of tuning of the receiver to the selected subcarrier frequency and demodula-

ting the FM signal present on that subcarrier.

The public address/emergency call/emergency alert transceiver provides for

transmission and reception of audio signals in the 300 to 3, 000 Hz baseband

channel on the analog/digital data bus. The microphone VOX/PTT operation

and receiver AGC functions described above also apply to this channel.

Actuation of the emergency call control at any station enables that station to

transmit to all other stations onthe bus. At the same time, a 5-kHz tone is

placed on the analog data bus which, when received by any station, causes a

visual indicator to be energized.
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Actuation of the emergency alert control at any station causes a 6-kHz tone

to be transmitted on the analog data bus which, when detected by any station

on the bus, causes them to emit an aural alert signal over the headphone/

speaker system.

Analog Sync/Test Unit-Provisions for automatic testing and generation of

synchronizing signals for the internal communications system are incorpora-

ted in the analog sync/test unit whose block diagram is shown in Figure 6-29.

The unit provides two synchronizing tones as outputs on the analog/digital

data bus, a 4-kHz reference for the ATU's, and a 4-MHz reference for the

television signals on the bus. Both of these reference signals on the bus are

continually monitored for amplitude and frequency stability, and an out-of-

tolerance condition will automatically result in replacing the faulty signal on

the bus with a signal from backup generators contained within the unit. The

status of the reference signals is provided as a monitor output.

In addition to the generation of synchronizing signals, the unit provides two

basic test functions. For the television receivers on the bus, it provides (on

a dedicated test channel as shown in Figure 6-28) a selection of test patterns

for alignment and checkout.

For checkout of the ATU's, a double-loop test is established, in which the

test unit transmits a test tone on the home channel frequency of a selected

ATU and in reply receives a test-tone bank on the baseband channel. A loop

is also established over the same channels in the other direction to verify the

operation of the other transmit and receive functions. Either manual selec-

tions of the channel to be tested or automatic sequencing through all channels

can be accomplished. The test unit automatically evaluates the status of the

channel and provides the data as an output.

6.1.2 Data Management/Onboard Checkout Subsystems

The ISS onboard checkout subsystem (OCS) is a hybrid of (1) utilizing check-

out functions built into the subsystem or experiment under test; (2) sharing

other onboard capabilities, especially those of the DMS for data acquisition
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and distribution, computation, data storage, displays and controls, command

generation, and operating system software; and (3) implementing unique OCS

design required for stimuli generation, critical measurements, and checkout

software.

An overall block diagram depicting OCS/DMS elements is provided in Fig-

ure 6-30. An OCS/DMS assembly group breakdown for checkout and fault

isolation is shown in Figure 6-31. Stimuli generation, command generation,

and data acquisition capabilities are distributed throughout the ISS as dictated

by checkout data point locations. Local caution and warning units are located

in each habitable compartment with overall status provided at both the pri-

mary and secondary ISS control centers. Display, control, and data pro-

cessing functions are primarily centralized with separate capabilities provided

for subsystem and experiment support. Distribution of information between

various elements of the system is primarily by digital data bus.

An important aspect of the OCS/DMS baseline is that of minimizing the types

of interfaces. This is particularly important since the OCS/DMS must inter-

face with all other ISS subsystems, diversified integral experiments, and

docked modules. Key features of ISS onboard checkout capability are listed

in Table 6-4. Detailed descriptions of OCS/DMS assemblies are provided in

Reference 1.

6. 1. 3 Prelaunch Operations

The prelaunch operations baseline for the study involves the launch site

activities necessary to process (receive, service, install in Orbiter, and

launch) ISS modules required to complete orbital buildup. These modules

are the Power/Subsystems, Crew/Operations, and General Purpose Labora-

tory Modules shown in Figures 6-32, 6-33, and 6-34. These three modules

launched comprise the ISS shown in Figure 6-1. A second group consisting

of a Power/Subsystems Module and Crew/Operations Module that may be

launched 5 years later would provide for growth to a full 12-man capability

or Growth Space Station (GSS) shown in Figure 6-35. An overall Space Station

launch schedule is shown in Figure 6-36. The ISS configuration is the only

one being considered in this study since a Phase B level definition of the GSS

is not available.
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SYSTEM COMMUNICATION

PROPELLANT TANKAGE

ELECTRICAL POWER SUPPLY

HORIZON SENSOR \ ' MAKEUP

GUIDANCE AND\ \ ATMOSPHERE SUPPLY
CONTROL CONTROL

MOMENT GYROS

Figure 6-32. Power/Subsystems Module

GALLEY AND WARDROOM

Figure 6-33. Crew/Operations Module
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Figure 6-35. Growth Space Station
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6. 1. 3. 1 Te st Philosophy

Although prelaunch and launch operations begin with the first module activity

at the launch site and end when the last ISS module has been launched, any

discussion of ISS test philosophy must also consider integration of the modules

performed before delivery to the launch site. The test philosophy developed

for the ISS embraces all aspects of testing in the categories of development

tests, qualification tests, acceptance tests, prelaunch and launch tests, and

on-going mission tests. Some of the most important guidelines of the test

philosopy are as follows:

A. Imposed environment testing, both development and qualification,

is at the assembly and subsystem hardware level.

B. Testing of assembled modules and/or assembled clusters is limited

to the following:

1. Design -Development tests utilizing a functional model (FM)

that is an electrical/electronic/data subsystem breadboard

of the ISS modules.

2. Design-Qualification demonstrations utilizing an integration

fixture that is a physical/functional replica of the ISS modules

(also used for sustaining support of mission operations).

3. Hardware -Acceptance tests of flight modules.

Implicit in this test philosophy is the intent to eliminate environ-

mental mission profile qualification testing at the module level or

above, and to minimize undue repetition of integrated systems tests,

whether performed at the factory or launch site.

C. A policy of shipping an orbit-ready module from the factory is

followed with regard to launch site testing; however, should any

launch site testing be unavoidable, it will be no more rigorous than

acceptance testing performed at delivery of the module at the

factory. Tests performed are end-to-end. Major disassembly and

tests at lower levels of assembly are not permitted in the field

except when necessary to isolate malfunctions. Launch checkout

is accomplished using onboard checkout capabilities. (Although a

complete onboard checkout capability does not exist in single

modules, these capabilities are supplemented, as required, with

external GSE. )
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D. Tests are assembled into an overall test plan covering all aspects

of testing such that (1) tests conducted at lower hardware levels are

not repeated at higher levels unless inherent in hardware operation

and unavoidable, and (2) development testing is constructed so that

sensors and parameters which are ultimately used for acceptance

testing have a credible data base. Similarly, acceptance and pre-

launch testing is constrained to those sensors and parameters

properly explored, and previously developed in the development

qualification testing programs.

6. 1. 3.2 ISS Integration

The three ISS modules equipped with the integral experiment hardware

installed in the GPL are fully assembled and a complete integrated test per-

formed at the manufacturing site. The entire ISS is acceptance tested, the

three modules demated, and pre-established items off-loaded to bring the

module gross weight within the Orbiter cargo weight limit. The off-loaded

items are limited to those which do not impair ISS buildup or initial operation.

The concept baselined for ISS integration is illustrated in Figure 6-37. It is

a hybrid of flight module mating and the use of a physical/functional replica

or flight integration tool (FIT). A detailed description of the concept can be

found in Reference 2.

6. 1. 3.3 Prelaunch and Launch Operations

The launch of the ISS is essentially a one-time launch and as such does not

warrant the buildup of a field station crew to repeat testing that should be

performed at the manufacturing site where facilities, equipment, procedures,

and manpower already exist to perform this function.

Three basic types of modules are launched. The capabilities of each module

at the time of launch differ considerably as shown in Table 6-5. The overall

ground operational flow (Figure 6-38) for each type of module is identical,

nevertheless, differing only in details. This results from delivering to the

launch site fully checked and integrated modules that are orbit-ready except

for preflight servicing. Prelaunch operations for ISS modules are detailed

in Reference 2.
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6. 1.4 Flight Operations

Flight operations for the ISS are concerned with buildup and activation,

unmanned operation, normal on-orbit operations, and associated Space

Shuttle flight support (Figure 6-36). Baseline ISS flight operations are

detailed in Reference 3.

6. 1.4. 1 Buildup Operations

Communications subsystem VHF and S-band equipment are checked during

the on-orbit activation of the Power/Subsystems Module. This equipment

then provides for the transmission and reception of information during all

stages of ISS buildup. An OCS/DMS portable display and control unit is used

to initiate, monitor, and control checkout software routines used to verify

proper operation of subsystems activated within the module.

Before mating the Crew/Operations Module with the Power/Subsystems

Module, the high-gain antennas on the Crew/Operations Module are rotated

to a docking configuration to eliminate any interference with the docking

operation. This is shown in Figure 6-39. The antennas are then deployed

to their normal positions following mating of the two modules. The K -band

equipment is not required until after normal on-orbit ISS operations are

initiated. The operational readiness of the equipment is verified during sub-

systems tests of the first two modules conducted as a part of ISS buildup

operations. These tests are conducted from the primary control station in

the Crew/Operations Module. The portable display and control units, if

required, can be used as additional operating stations.

Voice communications are provided between crewmen in the ISS mdoule and

the Shuttle-Orbiter crew during buildup operations. The baseband voice

channel normally used for public address or emergency voice communications

provides this capability, and is available in all of the modules.
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6. 1. 4. 2 Normal Communications Subsystem On-Orbit Operations

During normal on-orbit operations the communications subsystem provides

for the transmission and reception of the following types of information:

A. Direct ground link

1. Command, voice, and ranging reception.

2. Telemetry, voice, and ranging transmission.

B. DRSS link

1. Television, multiple voice, entertainment audio, digital data,

and ranging reception.

2. Television, experiment data, multiple voice, digital data, and

ranging transmission.

C. Shuttle-Orbiter link

1. Voice, command, and ranging reception.

2. Voice, telemetry, and ranging transmission.

D. EVA link

1. Voice and biomedical data reception

Z. Voice transmission.

The direct ground link is used primarily for ISS tracking and position update

information. The capabilities for command, voice, telemetry, and experi-

ment data dump can be utilized during relay satellite system down periods or

outages.

The relay satellite link, using the high-gain antenna system shown in Fig-

ure 6-40, is primarily for experiment operations support and provides a

wideband uplink and downlink capability. The transmission of experiment

data is normally controlled on a scheduled basis, but can be called up on

short notice by the VHF voice link through the relay satellite. The establish-

ment of a solid wideband RF link with the DRSS requires that a cooperative

high-gain acquisition procedure be performed.

During manned operations the VHF link through the DRSS is primarily used

for administrative and procedural voice and low-data-rate traffic between the

ISS and ground mission operations support. A capability for simultaneous
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Figure 6-40. Data Relay Satellite Network
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voice, data, and ranging between the ISS and Shuttle-Orbiter can be provided

at ranges up to ZOO kilometers.

During EVA operations, duplex voice communications as well as biomedical

and pressure unit data are provided to the ISS. The data can be displayed on

the operations consoles in either the Crew/Operations Module or the GPL

Module.

The internal communications system provides voice communications within

the ISS and the docked modules. Normal voice communications are provided

by an onboard telephone which is compatible with and similar in operation to

the Bell Telephone system. A capability for public address and individual

module paging is also provided. A "direct dial" capability is also available

between personnel on the station and the ground when the high-gain antennas

are operating.

During contingency operations, the crew has the capability to communicate

with ground personnel on an intermittent basis with the S-band system, or on

a nearly continuous basis using VHF through the DRSS. The operation of

these systems can be controlled either by the portable display and control

units or by hardwired controls located at each docking port. Voice communi-

cations are available from any of the modules by the use of audio terminals

which access the transmitters and receivers through the analog data bus.

Additional hardwired voice capability to the VHF and S-band systems is

available at each docking interface.

6. 1.4.3 Normal OCS/DMS On-Orbit Operations

Normal on-orbit operation of the OCS is automatic until a fault is detected

either by the limit checking capability of the remote data acquisition units

(RDAU's) or by a periodic monitoring routine executed by the DMS processor.

Depending upon the response programmed for the particular fault, the OCS

may then proceed automatically to isolate the fault to the replaceable unit, or

to notify the crew of the malfunction and await further instructions. The

programmed response may also include the selection of alternate modes of
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operation or activation of redundant systems if desired. If crew action is

required to complete the isolation to the replaceable unit, the operator can

call up additional programmed diagnostic routines, call up and examine

selected test point measurements, or create special test routines "on line"

using the operating system language. He may also call up supplementary

documentation in the form of schematics, diagrams, or printed material

stored in the data processor memory or on microfilm. Still another source

of potential diagnostic data which may be called'up from the processor

memory is a continuously maintained record of the past hour's operation and

test results, analysis of which may reveal events leading up to the failure.

When the faulty unit has been isolated and replaced, the system is reverified

and the inventory status updated to reflect the parts used.

The OCS interface with ground facilities during normal operations is gener-

ally limited to the downlink transfer of summary status information and

selected data for long-term trend analysis. The capability exists for trans-

mitting selected or complete test point data to the ground if this becomes

necessary for any reason.

6. 2 MAINTENANCE AND CHECKOUT PHILOSOPHY

6. 2. 1 Maintenance Concepts

Providing an effective onboard repair capability is essential in supporting a

long-duration Space Station since complete reliance on redundancy to achieve

long life is not feasible. The need for repair, in turn, requires that a mal-

function be isolated to at least its in-place remove and replace level. The

level of fault isolation on the ISS is keyed to the line replaceable unit (LRU)

which is the smallest unit within a subsystem that is suitable for onboard

replacement. Redundant capabilities are provided where necessary to assure

adequate maintenance reaction time and are used as a means to reduce

requirements for EVA maintenance excursions. Entire modules are returned

only when major refurbishment is required.
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A detailed discussion of ISS maintenance concepts can be found in Section 7

of Reference 3. The distribution of maintenance man-hours between modules

and the relative contribution of each ISS subsystem to the total workload are

illustrated in Figure 6-41. As seen in the figure, the contribution of the

communications subsystem to total ISS maintenance workload is nearly

negligible. The total preventive and corrective maintenance workload is

estimated at 65 man-hours per month for the ISS. This represents the

replacement of 13 random failure items and 15 scheduled replacement items

on the average per month. For the communications subsystem, an average

of only 0.6 repair actions per month involving 0.7 maintenance man-hours is

anticipate d.

6. 2. 2 Checkout Guidelines

An onboard checkout capability is provided to determine whether or not ISS

subsystems and experiments are operating in an acceptable manner, to supply

information for repair and reconfiguration actions, and to verify subsystem

and experiment operation following failure correction. The checkout func-

tions required to implement this capability include status monitoring, periodic

testing, trend analysis, and fault isolation. Major ISS checkout guidelines

are shown in Figure 6-42 and further described in Section 4. 11 of Reference 1.

Communications subsystem checkout requirements are presented below in

Subsection 6. 3.

6. 2. 3 Communications Subsystem Criticality Analysis

To facilitate the identification of subsystem LRU's and redundancy switching

requirements, a reliability/criticality analysis was performed. Table 6-6

presents an ordered ranking of the five communications subsystem elements

having the highest criticality (or failure expectation) numbers. The criticality

number is the product of (1) the element's failure rate (or the reciprocal of

mean-time-between-failure), (2) its anticipated usage or duty cycle, and

(3) an orbital time period of 2 months (1,460 hours). Two months was chosen

as the time period of interest to allow one missed resupply on the basis of

normal resupply occurring at 1-month intervals. In other words, the criti-

cality number is the failure expectation for a particular subsystem element

over any 2-month time period.
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The most probable failure modes as well as their mission effect are indicated

in Table 6-7 for each major communications subsystem element. The failure

effects noted, however, are for the worst case and do not consider the off-

setting effects of redundant components, subsystem maintainability, and

alternate operational procedures available. There would be practically "no

effect" if these factors were considered.

In most cases, a double failure is required to lose totally the information on

a given RF link. Antenna RF switch failures, for example, may prevent

selection of the optimum antenna, but do not prevent transmission via alter-

nate antennas. If data transmissions to the ground via relay satellite are

lost, the ISS is capable of communicating directly with the ground or storing

the data for transmission at a later time. All failures identified for the

communications subsystem have the potential for causing the loss of some

mission objectives, but none have been identified that are life critical.

6. 2.4 Line Replaceable Units

In general, the definition of subsystem LRU's is dependent upon ISS mainte-

nance concepts, subsystem design (weight, volume, location, and inter-

changeability characteristics), component-level failure rates, crew time and

skills required for fault isolation and repair, and resultant checkout hardware

and software complexity. A listing of LRU's for the communications sub-

system is provided in Table 6-8.

The RF transmitter/receivers, receivers, exciters, power amplifiers, and

modems are selected as assembly-level LRU's largely because of packaging,

reliability, and electromagnetic interference (EMI) considerations. Initial

reliability estimates indicate that the power amplifiers are the most critical

of this group of assemblies. Lower-level modularization of the power ampli-

fiers is not practical because of restrictions caused by the physical dimen-

sions of the traveling wave tube (TWT), thermal cooling requirements, and

sensitivity to changes in power supply voltages. It is planned, therefore,

that the TWT and power supplies be mated and adjusted as a unit on the

ground. Furthermore, lower-level modularity would increase the number of
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connectors required, thereby decreasing overall reliability and creating

potential sources of EMI. Another problem encountered with a lower replace-

ment level is module-to-module tolerance buildup. This concept was attemp-

ted, for example, on an S-band transponder for another program and resulted

in modules not being interchangeable that were supposed to be

interchangeable.

The primary considerations used in the selection of LRU's for the high- and

low-gain antenna systems are somewhat different from those used for RF

subgroup equipment. Antenna system LRU's typically do not require thermal

cooling and are consequently located largely on the basis of minimizing RF

transmission line losses. The reliability of multiplexers, power dividers,

switching assemblies, and low-gain antenna elements is relatively high. The

majority of the problems associated with low-gain antenna (omnidirectional)

systems, if encountered, usually occur during initial installation and checkout.

The most difficult maintenance and replacement problems are posed by the

portion of the high-gain antenna system located at the end of the mast.

Redundant electronics are utilized wherever possible to minimize mainte-

nane downtime for the high-gain antenna system.

6.3 COMMUNICATIONS SUBSYSTEM CHECKOUT

On-orbit checkout activities required to insure the availability of the com-

munications subsystem include monitoring of its normal operational outputs,

performing periodic checks, conducting trend analysis, and selecting fault

isolation routines associated with the loss of a communications function. A

summary of the performance/status checks required for the VHF, S-band,

and Ku-band assembly groups are presented in Table 6-9. An identification

of the type, quantity, and usage of measurement and stimulus parameters

required to implement communications subsystem checkout and fault isolation

functions, as well as those required to conduct normal subsystem operations,

is provided in Table 6-10. A detailed listing of these parameters and their

characteristics is provided in Table 6-11.
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Access to approximately 550 subsystem measurement points and application

of nearly 300 stimuli (excluding RF signal's which are internal to the communi-

cations subsystem) are required to perform checkout and fault isolation of the

baseline ISS communications subsystem. The parameter listing is based upon

the preferred ISS concept of locating test stimuli within the communications

subsystem and of being dependent upon the DMS/OCS for monitoring and con-

trol of all testing.

As indicated in Table 6-10, less than 5 percent of the parameters are moni-

tored nearly continuously for out-of-tolerance conditions. Parameters

monitored in this manner include power amplifier temperature, transmitter

and power amplifier RF power output levels, and receiver AGC output levels.

In addition, a very limited number of parameters are telemetered to the

ground to support ground operational procedures. These include the modu-

lation mode, AGC output levql, and static phase error of the S-band PM

transponder. The relative degree of status monitoring associated with the

commincations subsystem is much less than that anticipated for most other

ISS subsystems. According to Reference 1, one-third of ISS parameters are

subjected to nearly continuous monitoring.

Over 40 percent of the parameters are used to support normal communica-

tions subsystem operations. This percentage is about the same as that noted

in Reference 1 as being required to support overall ISS operations. Over

75 percent of the operational parameters take the form of simple bilevel

stimuli and responses.

The quantity of parameters indicated for testing reflects those necessary for

tests conducted periodically to verify the availability or proper operation of

on-line systems, redundant equipment, and alternate modes. Although basic

LRU operational controls have been excluded from the parameters required

for testing, it should be understood that most of these are actually required

to support this checkout function. Periodic checks of communications sub-

system equipments are expected to be performed prior to operational usage

or prior to a scheduled logistics resupply mission. The applicability of the

identified tests and test parameters to the Shuttle-Orbiter, assuming similar

equipment is utilized, is also noted in Tables 6-9, 6-10, and 6-11.
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The function of fault isolation requires nearly all of the parameters, but only

23 percent are required solely for this purpose. Fault isolation is performed

on a systematic basis on a group of LRU's associated with a particular func-

tion. Since it is reasonable that periodic checks of the subsystem would be

similarly configured, it is expected that software for both periodic testing

and fault isolation testing will be integrated into a common package. This

conclusion is based on the comprehensive software requirements analysis

made in the checkout study of Reference 4.

To detect graceful degradation in communications subsystem receivers,

power amplifiers and transmitters, RF power outputs and receiver AGC out-

puts are periodically sampled and subjected to trend analysis. The AGC

levels are only trended from periodic test to periodic test since known

receive RF stimuli are required.

As far as the Shuttle-Orbiter is concerned, the degree of onboard testing for

its relatively short duration mission is much less than that anticipated for the

longer-duration ISS mission. Only 18 percent of the measurement parameters

identified for the ISS are expected to be applicable to Shuttle-Oribter onboard

testing. Additional parameters, of course, would be required for Orbiter

equipments not reflected by the ISS baseline used in this study. Special tests,

for example, may be required on the Orbiter prior to return to the ground.

The function of fault isolation and trending are expected to be performed

nearly exclusively on the ground for the Shuttle-Orbiter.
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Section 7

SUMMARY OF RELIABILITY AND SAFETY CONSIDERATIONS

This section presents a summary of reliability and safety considerations

addressed during the study.

7.1 RELIABILITY

Reliability considerations are evident both in the basic checkout requirement

analyses and in the identification and evaluations of candidate checkout con-

cepts performed during the study. Failure modes and effects on Space

Station performance, for example, are essential to the selection of subsys-

tem L2IU's. Reliability is also considered as a basic factor in the stimuli

and monitoring trade studies.

The design requirements for the Space Station communications subsystem

included a very high degree of equipment reliability. It follows then that the

checkout operation will normally indicate a good system and a case could be

made for conducting routine checkout operations only at very rare intervals.

This is not the case for operationally redundant systems where backup speed

is important. These redundant systems should certainly be checked prior

to any critical operation. In other cases, it could be argued that frequent

testing of a highly reliable system merely increases the probability of fail-

ures in both the operational and checkout systems through thermal or elec-

trical transients, mechanical wear, and similar factors.

It is very easy to monitor and test a system to the point that the checkout

system itself is the major subject of repair actions. However, there are

cases (e. g., an instrument landing system) where false fault indications

may be much more preferable than undetected faults, and a very high degree

of monitoring is needed. Such does not appear to be the case for the present

baseline Space Station communications subsystem.
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The reliability of the checkout system should be an order of magnitude

greater than that of the basic communications subsystem. This is even more

important in the concepts in which the bulk of the checkout system is incorpor-

ated within the LRU's, as a fault within the checkout circuitry requires

removal of the operational LRU as a repair action. The concepts employing

a dedicated MCU or external test signal generators have an advantage in this

respect, in that a failure within the external test unit does not require

removal of the operational LRU's. Being units in which the test functions for

many LRU's are concentrated, on the other hand, they have the disadvantage

that certain failure modes impair the testing of more than one LRU.

7. 2 SAFETY

The onboard checkout system can affect crew safety in several ways, and

whether or not the impact is good or bad is a function of the baseline com-

munications subsystem hardware configuration and functional requirements.

There do not appear to be any failure modes in the baseline system which

would directly endanger the crew, nor do any of the candidate checkout con-

cepts create such a situation. There are operational situations, such as

during EVA or docking maneuvers, in which a communications loss could

add to the inherent hazards of such maneuvers, but these have been met by

operational redundancy and would thus normally make no speed demands

upon the checkout system.

Despite the lack of a direct safety impact, secondary failure modes can be

hypothesized in both the communications subsystem and the checkout system.

One would be a case in which a failure has occurred in a nonredundant com-

munications circuit and the crew safety is indirectly affected by the speed of

the checkout system because it delays expeditious solution of a nonrelated

failure in a critical area via the communications channel. A case of more

direct impact of the checkout system on safety would be a false fault indica-

tion which led to an unnecessary EVA to replace a supposedly faulty assembly

located on an antenna. The self-test features of the onboard checkout system,

however, are designed to preclude this possibility. In addition, none of the
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status monitoring planned for the communications subsystem is classified

in a caution or warning category. Even if safety were not impaired, a slow

or unreliable checkout system would be undesirable from the standpoints of

possible experimental data loss and crew inconvenience.
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