N72-23788

THERMOPHYSICAL PROPERTY DATA AND SAFETY INFORMATION

R. H. Kropschot Cryogenics Division NBS-Institute for Basic Standards Boulder, Colorado 80302

The accuracy of any calculation is usually dependent upon the quality of the input data. The National Bureau of Standards is the largest source of reliable data on the properties of materials and on bibliographic information at cryotemperatures. Precision measurements of the properties of oxygen over a wide range of temperature and pressure are complete. The primary remaining effort, which is in progress, is the representation of these data in the most usable format such as tables, equations, diagrams, and computer programs. In addition, safety data are essential to proper design, operation, and failure analysis. All of the available information on oxygen safety is being reviewed, evaluated and indexed for quick retrieval through the NASA Aerospace Safety Research and Data Institute program. This paper discusses the availability of data, where the major gaps in data occur, and retrieval of bibliographic information.

A prime function of the NBS-Cryogenic Division is to supply data for low temperature design and analysis. Table 1 shows the Functional Activities of the division and is intended to illustrate some of the resources available to the cryogenic engineer. The Cryogenics Division is the largest source of data on the properties of materials and bibliographic information at cryotemperatures. The Division is also the source of information on other areas of cryogenics such as safety, metrology, and process equipment. The primary objective of this paper, in relation to the Apollo program is to; a) summarize the sources of available data, b) discuss deficiencies in available data, c) review ongoing programs to alleviate these deficiencies, and d) discuss requirements for future space applications.

TABLE 1. Functional Activities of the NBS-Cryogenics Division

Cryogenic Data Center

Documentation Compilation and Critical Evaluation

Cryogenic Properties of Solids

Electrical Properties Thermal Properties Mechanical/Metallurgical Properties

Properties of Cryogenic Fluids

Pure Fluids Mixtures

Cryogenic Systems

Systems Evaluation Consultation Slush Cryogens

Metrology

Flowmetering Pressure/Temperature/Density/State

Fluid Transport Processes

Heat Transfer Infrared Properties

Cryoelectronics

Data for Analysis and Design

A complete review of the information service provided by the Cryogenic Data Center for the field of cryogenics has recently been published by Olien.¹ A thorough and continuous search of current published literature is conducted. We review over 300 journals cover-to-cover, search other abstracting services, patents, conference proceedings, and report literature. Dissemination is made each week through the Current Awareness Service as illustrated in Figure 1. In addition, two specialized bibliographies are published quarterly, The Superconducting Devices and Materials Quarterly and the Liquefied Natural Gas Quarterly. Documents from these lists are then selected for entry into the information retrieval system. Punched cards in machine-readable form containing title, author, byline, reference, abstract reference, and indexing terms are prepared for each of the selected documents. Over 7500 new documents are added each year and our total file contains over 70,000 documents.

The availability of these data on magnetic tape permits rapid access to a vast amount of information. For example, Table 2 shows a list of bibliographies prepared for NASA and NASA contractors immediately after the Apollo 13 incident. Selected data from these references were scanned by the NBS staff and transmitted over the telephone. The entire bibliography was then forwarded, usually within hours after being requested. The rapid availability of these data saved many laborious manhours in conducting literature searches for creditable data and tended to assure the investigators that all pertinent sources of data had been utilized.

Thermophysical Properties of Oxygen

Data on the thermodynamic and transport properties of oxygen have been measured by NBS over a wide range of temperature and pressure.² These measurements were made at the request of NASA-OART.³ Available tables, charts, graphs, and computer programs were supplied in copious quantities to assist in the Apollo investigation. The diverse nature of subsequent calculations (as illustrated by today's program) reemphasized the fact that the data, although available, were not always in the most usable format. In response to this need, NBS has undertaken a program for NASA-MSC to compile the thermophysical data in a format which is more readily usable by the design engineer.⁴ The first of these documents is in final form for editorial

TABLE 2.Prepared Bibliographies Relatedto the Apollo 13 Incident

Compatibility of Oxygen with Various Materials and Contamination, Hazards and Safety with Liquid Oxygen

Handling and Safety with Liquid Oxygen

Liquid Oxygen Storage, Transfer, Loading, etc., Procedures and Equipment

Flow, Temperature and Pressure Measurement of Liquid and Supercritical Oxygen

Heat Transfer to Supercritical Oxygen at Zero Gravity

Properties of Thermal Insulation for Use at Cryogenic Temperatures

Critical Properties of Oxygen

Thermal Conductivity and Specific Heat of Inconel

Thermodynamic Diagrams of Oxygen

Thermodynamic Properties of Oxygen

Thermodynamic and Transport Properties of Teflon

review and printing. R. D. McCarty and L. A. Weber⁵ have compiled and critically evaluated the "Thermophysical Properties of Oxygen from the Freezing Liquid Line to 600 R for Pressures to 5000 psia." The tables include, entropy, enthalphy, internal energy, density, volume, speed of sound, specific heat, thermal conductivity, viscosity, $(\partial P/\partial V)_T$, $(\partial P/\partial T)_\rho$, $V(\partial H/\partial V)_P$, $V(\partial P/\partial U)_V$, $-V(\partial P/\partial V)_T$, $1/V(\partial V/\partial T)_P$, thermal diffusivity, Prandtl number and the dielectric constant for 79 isobars. In addition to the isobaric tables, tables for the saturated vapor and liquid are given which include all of the above properties, plus the surface tension. Tables for the pressure-temperature relationship of the freezing liquid and the derived Joule-Thomson inversion curve are also presented. The specific heat at constant saturation and the index of refraction are given in graphical form. Figures 2 and 3 show a representative table of data and a temperature entropy chart.

Thermodynamic Property Diagrams

Thermodynamic and phase diagrams permit the properties of a fluid to be visualized in a familiar frame of reference. They are often used for preliminary design and occasionally for final design, even though greater accuracy can be obtained from tables, computer routines or greatly enlarged charts. Diagrams are also useful in the analysis of malfunctions because they provide rapid access to property values without the difficulty of two-dimensional interpolation. Table 3 outlines the types of charts in most common use. Each chart has its adherents and, in general, each serves a slightly different purpose. Preparation of all of these charts for a given fluid would be very expensive. To be complete, all eight charts (in three, four and five variables) in SI, British, and modified units would require at least 30 different diagrams. In order to cover all ranges of temperature and pressure to adequate accuracy, some diagrams must be prepared in sections. Selected diagrams are currently in preparation by McCarty and Weber.

TABLE 3. Thermodynamic Diagrams

	3 variable charts	4 variable charts	5 variable charts
Variables	P, Vorρ, T	P, V or p, T, Z	P, V or ρ, Τ, H or U, S
Coordinate axes (the other vari- ables are shown as constant prop- erty lines)	Ρ vs T Ρ vs V or ρ ρ vs T	Z vs log P	H vs S T vs S Por log P vs H Por log P vs U

Computer Programs for Thermophysical Properties of Oxygen

Several approaches to the development of computer programs for thermophysical properties of oxygen have been taken. The equation of state approach is very useful because it allows the direct calculation of the thermodynamic properties from an easily programmable mathematical function. The equation of state for oxygen developed by Stewart⁶ has been used extensively, and although it does not give the best representation of existing experimental data, the accuracy is sufficient for many purposes. However, it is necessary to proceed with caution since equations of state often give erroneous results in the critical region and should not be used for extrapolation beyond the limits of experimental data.

Another method of computerizing thermodynamic properties is the socalled "Tab Code" method, which allows rapid calculations by interpolations of tables stored in the computer. This method was used for hydrogen,⁷ but to this authors' knowledge no such program is available for oxygen. The primary problem with this method is interpolation error. If accurate calculations are required, the size of the tables to be stored in the computer becomes prohibitively large.

A third method of computerizing thermodynamic properties is by programming a series of independently derived mathematical functions (multifunction) such as isochores or isotherms or both. These functions are then joined together in the computer program by various means. Although this approach gives the most accurate results, it

usually produces a program which allows very little, if any, versatility and the program is relatively slow on the computer. Because it is the most accurate way to present data, we have prepared the oxygen data in this manner for NASA-MSC under our present contract.⁴ The problem of determining which calculational approach is best has no single answer but depends upon the individual user's requirements. The following table can be used as a guide. In addition, the National Bureau of Standards is constantly striving to fulfill the needs of the scientific and engineering community for computerized property data.

Type of Program	Speed	Versatility	Accuracy
Equation of State	medium	best	medium
Tab Code	best	very little	medium
Multifunction	slow	none	best

Radiation Properties of Oxygen

Measurement of the spectral transmission of infrared radiation in oxygen has been reported by several experimenters. These data are being compiled, critically evaluated and used to calculate total hemispherical radiation properties necessary for heat transfer calculations.⁸

Safety of Oxygen

An extensive program is underway to provide data for the safe handling of cryogenic fluid oxygen. Under the sponsorship of NASA Aerospace Safety Research and Data Institute (ASRDI) information on oxygen is being synthesized for quick retrieval through the NASA automated data processing system.⁹ The technical objectives of the program are to:

(1) develop a thesaurus (dictionary) for information retrieval of safety related information,

(2) conduct an exhaustive literature search and acquire the documents,

١

- (3) index and abstract these documents using the thesaurus,
- (4) enter these documents into the NASA data bank for retrieval, and
- (5) prepare a summary report on the properties of oxygen, giving "best values" for design.

An exhaustive search by our laboratory of both formal and informal sources of information is about 90 percent complete and has yielded over 3500 documents. Over half of these articles concern properties data and at least 400 are being evaluated in detail for the preparation of "best values."

The indexing thesaurus has been developed by the NBS and ASRDI staff and used to code a large number of cryogenic fluid safety papers. Coding is performed by members of the NBS senior staff which permits a critical evaluation by specialists in a particular field. The final input contains an abstract, major subject(s), minor subject(s), and links. The links are sequences of key words which permit retrieval (and sorting) of papers by a combination or words rather than single isolated words, i.e., a link is a set of indexing terms connected together to represent a detailed subject discussed in the report or paper.

Summary

Many of the thermophysical properties of oxygen below 5000 psi are extremely well known (relative to other fluids) and the development of "best values" along with tables, charts and computer programs should suffice for nearly all requirements. Future demands will require additional specialized data, data near the critical point, and most importantly, data above 5000 psi. The most severe and immediate problem to be solved is the criteria for compatibility as a function of temperature, pressure, density, etc., and the development of correlations between test procedures and service failure. The Cryogenics Division is engaged in a program for NASA-MSC to compile the thermophysical properties of H₂, He, and N₂ in a format similar to the oxygen properties work of McCarty and Weber mentioned above.⁴ Gaps in the data and uncertainties will, in many cases, limit the accuracy of calculations which can be made using these fluids. Details of these uncertainties will be given in the individual reports, but two potential problems should be outlined to this group. First, there exists a complete lack of data on helium in certain regions of the thermodynamic diagram, and in other regions, major discrepencies exist which can only be resolved by additional measurements. Secondly, no data on hydrogen exist at low temperatures above 5000 psi. This lack of data could be a severe problem for the shuttle engine design and, in collaboration with NASA-OART, we are planning on; (1) extrapolating existing data and estimating the uncertainties, and (2) evaluating the need for new measurements.

The author wishes to gratefully acknowledge the assistance of Dudley B. Chelton and Robert D. McCarty in the preparation of this manuscript.

References

- ¹ N. A. Olien, "The Cryogenic Data Center, an Information Service in the Field of Cryogenics," CRYOGENICS <u>11</u>, 11 (1971).
- ² A synthesis of the oxygen properties data from all sources is given in Ref. 5.
- ³ V. J. Johnson and D. E. Diller, "Thermodynamic and Transport Properties of Fluids and Selected Solids for Cryogenic Applications," Summary Report of work performed on NASA Contracts R-06-006-046 and W-12,745, unpublished.
- ⁴ "Properties of Oxygen, Hydrogen, Helium and Nitrogen," NASA-MSC Contract T-1813A.
- ⁵ Robert D. McCarty and Lloyd A. Weber, "Thermophysical Properties of Oxygen from the Freezing Liquid Line to 600 R for Pressures to 5000 PSIA." NBS Tech. Note (in press).
- ⁶ R. B. Stewart, "The Thermodynamic Properties of Oxygen," University of Iowa, Iowa City, Ph.D. Thesis (1966).
- ⁷ W. J. Hall, R. D. McCarty, and H. M. Roder, "Computer Programs for Thermodynamic and Transport Properties of Hydrogen," unpublished report.
- ⁸ "Absorption Coefficients," NASA-Langley Research Center, Contract No. L-62,510.
- ⁹ "Oxygen Safety and Cryogenic Fluids Safety Grid." NASA-Lewis Research Center Contract C-81608-B.

Figure 1. Three Subscription Services of the Cryogenic Data Center

5000 PSIA ISOBAR

TEMPERA TURE	VOLUME	ISOTHERM	ISOCHORE	INTERNAL	ENTHALPY	ENTROPY	C.	G,	VELOCITY OF SOUND
DEG. R	CU FT/LB	CU FT-PSIA/LI	B PSIA/R	BTU/LB	BTU/LB	BTU/LB-R	8TU /	L8 -R	FT/SEC
					•				
+ 104.777	0.01208	2390.44	320.1	- 82.324	-71.151	0.50834	0.268	0.389	4010
105	0.01208	2386.51	319.5	-82.241	-71.664	0.50917	0.268	0.389	4.6
110	0.01218	2299.59	307.6	- 30.386	-69.120	0.52726	0.264	J.388	3958
115	0.01228	2215.35	296.1	-78.541	-67.180	0.24451	0.261	0.366	3907
120	0.01238	2133.71	285.0	-76.698	-65.243	6.56099	0.257	0.387	3855
125	0.01248	2054.63	274.3	-74.861	-63.310	6.5/6//	0.254	3.300	3003
130	0.01259	1978.03	254.0	-73.029	-61.361	0.29191	0.271	0.365	3697
135	0.01269 0.01280	1903.88	244.4	-69.38ú	-57.533	0.62342	0.246	ū.384	3643
				- 67 667	-66 616	0 - 3768	0 267	1.143	15 A Q
145	6.01291	1/62.65	235+1	-67.752	-53.699	0.64687	0.240	J.363	3535
155	6.01305	1637.68	217.7	-63.445	-51.787	0.05941	0.238	0.382	3481
160	0.01326	1567.66	209.4	-02.144	-49.878	0.07153	J.236	J.381	3427
165	0.01337	1506.93	231.5	-63.348	-47.973	0.08326	0.234	381 . ل	3374
170	0.01350	1448.24	193.9	-58.557	-46.670	0.69462	0.231	0.380	3320
175	0.01362	1391.54	186.6	-56.771	-44.173	0./0563	0.229	0.380	3267
180	0.01374	1336.78	179.6	-54.990	-42.273	0.71632	0.227	u.379	3214
185	0.01347	1283.88	1/2.9	-53.214	-40.379	0.72570	0.225	1.379	3163
190	0.01400	1232.82	156.5	-51.444	-38.487	0./36/9	0.223	J.3/8	3111
195	0.01414	1183.52	150.3	-43.679	-36.598	4.74061	0.221	u.378	3061
200	0.01427	1135.95	154.5	-47.919	-34.711	0.75616	0.219	0.377	3112
205	0.01441	1090.64	146.8	-40.164	-32.827	ú.76547	3.216		2964
210	0.01456	1045.76	143.4	-44.416	-3(.945	0.77454	J.214	1.376	2910
215	0.01471	1003.45	136.3	-42.672	-29.066	9.49233	0.211	1.375	2373
220	0.01486	961.87	133.4	-40.935	-27.189	0.79202	3 204	1 375	2330
225	0.01501	922.17	128.7	-39.264	-23.642	0.00044	3.2.12	0.374	2750
233	0.01917	663.92	124.3	- 37 . 40	-21.552	0.00000	0.206	4.377	2004
240	0.01551	820.75	120.4	-33.982	-19.635	0.82497	0.205	0.392	2718
246	0 01568	744.36	110.8	-12.239	-17.733	1.03271	3.234	3.378	2549
250	0.01585	750.71	107.1	-34.495	-15.829	0.04040	0.203	0.381	2254
255	0.01604	719.26	105.0	-24.747	-13.908	4.84531	0.212	J.388	2529
260	0.01622	681.83	97.5	-27.023	-12.014	0.05537	3.201	3.377	2435
265	0.01642	651.ú7	97.3	-20.275	-10.005	6.86272	u.20ú	u.392	2432
270	0.01662	625.00	92.5	-23.527	-8.151	u.86445	0.199	J.388	2377
275	0.01683	598.70	89.5	-21.796	-6.223	i.877,3	3.197	J.390	2.144
280	C.01733	56ú.ð1	d1.9	-21.072	-4.312	0.04341	0+1 30	1.376	2232
285	C.01726	550.11	75.5	-15.331	-2.363	0.89331	0.195	J.358 J.491	2155
290	0.01/48	210.04	/0.0	-10.520	-01495	0.33145			
2 95	0.01771	490.88	75.7	-14.876	1.511	6.93417	3.196	1.393	2150
300	0.01795	479.62	73.2	-13.131	3.480	0.31379	0.135	3.395	2122
310	0.01846	444.22	57.7	-9.656	7.423	U-92372	0.194	0.396	2049
320	0.01899	407.72	51.6	-0.202	11.367	0.93624	0.193	1.392	1957
330	0.01956	380.41	58.1	-2.749	15.346	1.94549	J.142	1.4.1	1413
340	0.02016	354.16	53.6	0.072	19.321	1.12122	0+191	1.395	1/47
353	0.020/9	330.93	49.7	4.655	23+293	0.9/13/	0.139	1. 195	1773
300	0.02147	307.04	47.0	1.305	31.154	1	1.185		1 9 85
38:)	0.02289	277.37	42.2	13.912	35.095	19422	3.1.82	1.419	1710
10.0				14 103	70 00.4	1	0.140	0. 191	1055
390	0.02466	212+21	37.1	20 191	12.A13	1	0.179	1.372	1579
400	0.02525	200010	31.8	23.232	46.594	1	3.178	u. 376	1954
423	C.0760A	235.52	29.1	26.204	50.331	1	0.177	2.367	1526
430	6.02696	234.45	27.9	24.139	54.003	1.45114	0.176	0.371	1901
440	0.02786	236.33	27.6	32.057	57.831	1.65930	0.175	0.378	1540
450	C.02875	237.55	25.4	34.869	61.469	1.06798	3.174	1.361	1912
460	0.02962	233.99	23.5	37.588	64.998	1.67573	0.173	v.35C	1480
473	0.03051	231.83	25.22	6J.25d	00.401	1	3.172	u.344	1465
480	6.03141	230.04	21.1	42.851	71.912	1.09045	0.171	0.340	1458
490	0.03231	234.80	20.1	45.396	75.294	1. 19743	3.170	3.335	1451
503	0.03322	231.62	19.2	47.585	78.626	1	J.169	3.331	1449
51J	0.03416	235.52	18.9	51.337	81.941	1.11072	0.108	v.336	1476
520	0.03509	239.00	17.9	52.736	65.192	1.11703	0.107	0.325	1470
530	0.03599	240.90	16.9	55.060	88.362	1.2307	3.156		1450
540	0.03690	243.09	16.2	57.351	91.493	1.12192	0.157	0.313	1460
550	0.03780	245.38	15.4	54.594	94.504	1.13436	1.104	J • 3 2 4	1472
560	0.03869	248.24	14.9	61.799	97.598	1.1.4002	0.163	0.301	145/
570 58ú	0.03459 0.0416A	251.54	14.4	63.966 67.096	123.551	1+14533	J.102 J.101	J.294	1469
200			,	0.110.90					
593	0.04137	254.19	13.4	60.191	10t.469	1.13546	0.100	0.291	1475
640	0.04226	262.99	13.0	70.251	109.350	1.16030	0.159	1.287	1442

Figure 2a. Thermodynamic Properties of Oxygen

1

5000 PSIA ISOBAR

TEMPERATURE	DENSITY	V (DH/DV)	V(0>/DU)	-V(0P/DV)	-(07/07)/V	THERMAL	VISCOSITY	THERMAL	DIELECTRIC	PFANUTL NUMBER
DEG. P	LB/CH ET	BTUZEB	PSTA-CH FT/R	TH PSTA	DEG. P	ATU/FT-HP-P	IRVET-SE:	S0 FT/HR	CONSTRACT	NOTIBE (
0201	20,00	010723	1314 00 11/0		beet k		× 1.5	34		
* 104.777	82.80994	240.72	14.420	197952.53	0.0016169	0.11425	43.928	0.00354	1.5787.	6.00039
105	82.73009	240.62	14.410	197555.14	0.3616175	0.11420	48.738	0.00354	1.57350	5.5/70
110	82.11091	230+46	14.103	100321.79	C 3016293	0.11334	44.001	3.00334	1 56765	5.1186
120	81.44221	230.10	13.971	172448 67	0.0016639	0+11151	37.678	0.00354	1.5523	4.7496
125	80.1.1636	231.69	13.475	164548.53	1.0016667	0.:0917	34.652	3.00353	1.5569.	4.4139
130	79.43893	229.43	13.232	157132.81		6.19777	31.928	3.00352	1.55163	4.11.7
1 35	78.77175	227.14	12.988	144971.76	6.1016937	0.10633	24.449	0.00351	1.5463.	2.8358
140	78.10471	224.84	12.743	143095.78	0.0017080	0.10+46	21.202	0.00350	1.54100	3.5864
										7 74 1
145	77.43770	222.51	12.498	136495.47	0.0017228	0.1335	23.102	J.53340 3.06367	1.53:4	3.1545
150	76 4 17 76	220.10	12.612	130101.02	6 0617302	0.10121	23.512	0.00345	1.52515	2.9n7#
160	75.43554	215.36	11.773	118257.23	6.0017710	09866	20.106	0.00343	1.51980	2.7982
165	74.75725	212.96	11.538	112669-13	0.0017710	Sev 97.16	18.726	0.00341	1.5146.	2.6441
170	74.09822	210.41	11.307	107312.37	1.1018070	09544	11.400	0.00339	1.51937	2.5.4:
175	73.42823	207.87	11.082	1021/8.65	0.0018264	0.09352	16.315	0.00337	1.5041	2.3/06
180	72.75707	205.28	16.804	97259.86	0.0018468	C.u9219	15.2/2	3.30334	1.49887	2.2064
185	72.03448	202.63	10.654	92548.69	0.0018683	0.19156	14.324	0.30332	1.49365	2.1557
190	71.41020	199.92	16.452	88035.65	u.J018911	0.u8892	13.400	3.06329	1.4383c	2.0602
1.05	70 77707	107 17	1. 261	A7/15 07	0. 0010167	0	12 628	0.00327	1.48311	1.9/36
200	70.05516	104.38	10.081	79579.10	0.001.0700	0.00729	11-9-5	1.00324	1.47780	1.8+46
205	69.37616	191.33	9.916	75629.70	C. 1019681	G. 84.13	11.3.1	0.01322	1.47.66	1.823.
21.1	68.68991	188.30	9.760	71433.08	2.3(1997)	0. 8241	10.7.3	0.16319	1.45734	1.7541
215	68.01228	185-16	9.623	64219.64	5.30/0278	6.08080	10.157	0.00315	1.40210	1.6992
224	67.31082	191.92	9.502	64744.24	U.DU_0606	0.07919	9.658	0.00314	1.45670	1.6+51
225	66.61509	178.56	9.401	61430.68	U.J026957	07760	9.201	0.05311	1.45143	1.5974
230	65.91461	175.10	9.319	58203.22	v.JG21331	6/001	8.783	0.00304	1.44660	1.5,30
2 3 5	65.23898	175.51	8.895	55617.62	0.0021475	0.37444	6.379	0.00303	1.44071	1.5309
243	64.43079	173.09	9.116	53317.99	u.0022587	0.07287	9.944	0.00283	1.4352/	1.5>92
24.6	(7 74671	171 74		50/AL 57	1.000031	0 .7136	7.727	1.1.295	1.4299.	1.4/25
247	63 07665	1/1.30	8.362	67362.01	0.0022631	0.07135 06986	7.636	3.35291	1.42455	1.4.99
255	62.36220	165.79	A. 329	41372.01	0.0023606	06436	7.165	3-00243	1.4194-	1.4542
260	61.66795	162.78	7.863	42433.29	0.0023189	0.46694	0.925	0.00264	1.41379	1.4055
265	60.91420	159.42	7.986	39059.40	0.0024525	0.46548	0.595	0.00274	1.43829	1.4427
27.	60.17397	157.60	7.737	370-8.52	L. 1024602	0	0.483	0.20275	1.43270	1.4128
275	59.43532	155.14	7.629	35533.75		0	0.296	3.9627 /	1.39724	1.4106
28)	58.71712	151.14	7.113	32923.64	0.0024882	0.00132	6.115	U.ú0278	1.3918.	1.3500
285	57.94593	150.93	6.700	31476.57	0.0023724	0.15996	5.958	9.03584	1.3561/	1.2009
290	57.22137	148.05	6.903	29574.41	Ú•û⊔∠6385	6.13370	5.843	0.30203	1.38.8.	1.3991
2.05	56.6.265	145.77	6. 843	28355.17	9.4026971	0. 15741	5.719	9.00259	1.3752.	1.4.97
2 99	56 63012	145.06	6.746	26716.60	0.0027404	6	5.513	0.00255	1.35450	1.4176
310	56.17576	160-64	6.641	24005-91	0.0028124	0.45377	5.309	3.06251	1.35441	1.4219
320	52.66463	136.69	6.446	21672.53	1.0628684	ú. 5155	2.153	0.00250	1.34731	1.4177
330	51.13449	133.80	5.905	19451.93	()029864	0.4945	4.943	0.30242	1.33629	1.4379
340	49.61541	130.57	5.600	17571.71	2.3030516	0.4750	4.745	0.00244	1.32534	1.4324
350	48.10370	127.50	5.466	15919.15	0.0031238	u.u4570	4.558	0.00234	1.31449	1.4351
360	46.62166	123.67	5.234	14314.75	ú.3631876	0.04406	4.344	9.00234	1.3)392	1.4140
370	45.15354	123.96	5.065	13016.44	L.J032454	J.u 4254	4.221	3.00243	1.2935.	1.4.23
380	43.67885	120.27	5.298	12115.04	0.JC34819	0.04112	4.155	0.00225	1.20310	1.4763
70	42.23714	119.34	4.951	11499.41	0.0032769	0.43382	3.924	6.00241	1.27294	1.3051
400	40.93227	117.14	4.596	10583.71	0.0031761	C 3872	3.795	1.16254	1.20360	1.3127
410	39.63409	115.41	4.516	9749.97	1.3632664	C. J 3771	3.679	J. J0253	1.25463	1.3215
4.20	38.35047	113 79	4.304	9:32.27	C.J032269	U.u.3580	3.573	J.Jú201	1.2459/	1:2033
430	37.12212	113.63	4.282	8554.64	0.0032622	0 3596	3.475	0.00201	1.23751	1.2392
440	35.89784	116.26	4.402	8483.62	0.0032517	0.03517	3.3#1	J.ÚÚ257	1.22914	1.3.82
450	34.78353	117.34	4.205	8262.91	0.0030759	0.J3450	3.301	3.33275	1.2215.	1.2.32
460	33.75686	117.41	4.629	7 698.62	0.0029792	0.03393	3.232	3.00267	1.21455	1.1997
473	32.77364	117.83	3.933	7548.00	0.0029203	Ú.U3341	3.170	0.00295	1.20789	1.1754
480	31.83830	118.51	3.869	7349.69	u.J0_8703	ú•u3294	3.114	J. JÚJ04	1.2)150	1.1575
4.03	70 06670	110 10	7	711.2 17	2.301 AC 94	1. 1252	3-063	3,26317	1.19554	1.1.(7.)
490	30.340/8	130 10	3.000	6971.12	0.0620091	1. 1. 1215	3.014	0.00322	1.1499	1.1197
509	20.27636	192 74	3.474	6805.16	0.0027469	0.03140	2.975	0.00324	1.1444	1.1.1.1
510	28.50920	124.27	3.757	6829.22	6.0626197	0.13149	2.939	1.036	1.17927	1.0431
510	27.74147	125.44	3.655	6643.27	.0025211	0.13123	2.9.7	0.00355	1.1745	1.0599
500	27.03969	126.89	3.626	6547-67	C. 0024644	0.03130	2.878	1.1305	1.15997	1.0452
550	26.45447	128.49	3.540	6442.35	V. UU23693	0.03479	2.854	0.00362	1.16574	1.0155
560	25.84578	130.04	3.521	6416.02	0.0023160	0.03362	2.331	0.00393	1.1517.	1.0030
570	25.26109	131.78	3.503	6354.12	0.1022632	C.J3046	2.812	3.10435	1.15780	(.9899
5 80	24.70351	133.56	3.485	6303.12	J.0C22038	0.03032	2.795	4.00417	1.13421	f.9766
				<pre>/</pre>					1.15.2	1 0/ 7:
590	24.17185	135.39	3.469	6260.33	0.0021477	0.03020	2.779	0.00450	1.15073	1.9634
600	23.00470	137.26	3.454	0663011	1.00020920	0.02010	5 . 1 0 0	443	1+14/42	しゅうフィッチ

Figure 2b. Thermodynamic Properties of Oxygen

43

