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The performance of single-phase storage and expulsion sys-

tems is strongly affected by temperature variations within
the stored cryogen which are generated during heat trans-

fer. Peculiar operating responses are indicated by spon-

taneous changes in fluid pressure which accompany "g" level

changes, increased heater surface temperature, and dura-

tions of pressure cycles which differ considerably from

that which is computed for an isothermal cryogen. The non-

isothermal characteristics are predicted with a numerical

model which includes the simultaneous solution of the time

dependent conservation equations of mass, energy, and mo-

mentum in two space dimensions of Cartesian coordinates for

boundary conditions which approximate those of the flight

cryogenic system. The methodology of the numerical method

and some comparisons between the predictions and the Apollo

12 flight data are included.
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Nomenclature

Pg Time derivative of the global pressure

Pg Global pressure

P Pressure

P Mass density

Pc Average mass density of the fluid in the container

Pp Mass density of fluid in the external plumbing

h Enthalpy

e Specific internal energy

T Temperature

k Thermal conductivity

1*. Kinematic viscosity

gx x- direction acceleration component

u x- direction velocity

Ax Cross sectional area of a cell face normal to the
x- direction

Ax x-direction discrete distance

X x- direction mass rate

HX Discrete stress tensor, momentum convection and
body force terms of the x-momentum equation

gy y- direction acceleration component

v y- direction velocity
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Y y- direction mass rate

A y y- direction discrete distance

A Cross sectional area of a cell face normal to the
y- direction

HY Discrete stress tensor, momentum convection, and
body force terms of the y- momentum equation

8 -(- pbh/ p )Ip

(O _(1/p b p / be )p

V Cell volume

Vc Container volume

Vp Volume of the external plumbing

A t Time increment

6 A fraction of a time increment

EF Container elastic factor

HCX Thermal capacitance of a material located at a
cell face

TWX Temperature of a cell face

QX The prescribed cell face heating rate

g The magnitude of g acceleration vector

QDA The adiabatic heat deficiency of a nonisothermal
fluid system

QDT The heat deficiency of a process in which a dis-
crete amount of heat is added during the process
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A Pmax The pressure decay potential of a nonisothermal
fluid system

Z Compressibility

M Mass

m Mass rate

n The inverse of the polytropic exponent
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PRESSURIZED EXPULSION OF NONISOTHERMAL

SINGLE-PHASE CRYOGEN

Clifford K. Forester
Research Engineer
The Boeing Company
Seattle, Washington

The single-phase storage concept has been employed in the
design of the Gemini and Apollo atmosphere and fuel cell
supply equipment. In the course of using these systems,
some peculiar performance characteristics have been ob-
served during flight operations. For example, shortly
after the launch of Gemini II and Apollo 12, abrupt de-
creases in the oxygen storage pressure in excess of 100 psi
have been noted. Additionally, the observed time required
to complete a pressurization cycle has been both substan-
tially shorter and longer than the duration predicted from
calculations which assume the stored cryogen is isothermal.

In this paper, the methodology of a numerical model is pre-
sented which, for the comparisons this far made with Apollo
12 and 14 flight data, appears to predict the observed pe-
culiarities. Several considerations comprise the numerical
model:

1) the methodology of the General Elliptic Method - GEM

2) the 1/2 box model in which the GEM is applied

3) the method of accounting for the cryogenic container
elasticity

4) the method of treating the gas trapped in the external
volume

The first two of these are discussed in order after the
introduction. The mathematical derivation of the last two
are provided in Appendix A. These considerations are fol-
lowed by a discussion of the physical characteristics of
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the Apollo oxygen system and a brief discussion of the
flight data reduction considerations. Finally, a discus-
sion is provided in which the comparison between Apollo 12
flight data and the 1/2 box model predictions for two pro-
blems is presented.

The Methodology of the General Elliptic Method (GEM)

Because of the length, no attempt is provided here to docu-
ment the literature now available on numerical algorithms
which model the conservation equations of mass, energy, and

momentum in time and space. A review of this literature
at the end of 1967 showed that the methods generally ap-
plied either to incompressible flow or high speed compres-
sible flow. These algorithms are restrictive enough so
that they eliminate from practical analysis one of the
most intriging aspects of the problems at hand which is to
compute the cryogen pressure history. As a result, a new
algorithm, the General Elliptic Method (GEM), was developed
by the author as a part-time effort and was documented in
reference (1). Reference (2) includes a literature survey
of those algorithms which depend upon an elliptical equa-
tion and some refinements of the GEM which was presented
in reference (1). However, the GEM had to be modified to
suit the special requirements which the problems at hand
establish. Since these modifications are an intricate
part of the computational method, a complete description
of the methodology is necessary and is illustrated subse-
quently.



The conservation equations of mass, energy, and momentum
for a Newtonian fluid may be written in the x- and y-
directions of Cartesian coordinates respectively as

at b x -a =°
a(pe) a(Pu.h) Pv' h b (k) b y

at ?a)Lx IA ax 6\b4 '

ab(u) b+ (P 2 ) + b(eU) _+ , +. Xa 

bDe~- + + +Ax/
° -

where

orX-U-L[/L , - 1 bJ b aL .,.

I.t ZA u A(bL+ )] + b(bL P] (1)

and where p is the mass density, u is the x-direction
velocity, v is the y- direction velocity, e is the speci-
fic internal energy, h is the enthalpy, k is the thermal
conductivity, T is the temperature, P is the pressure, gx
is the x- direction acceleration component, gy is the y-
direction acceleration component, and A is the kinematic
viscosity.

Since
e = (P,P) and h c + P/p

i= b be ((he) eA (2)

where

and
ah

_ _ap IP

and the product of 4 and 8 (( ) is the speed of sound
squared of the fluid.
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Because the Mach number is less than about 10- 3 for the
problems to be considered, only pressure waves of the
acoustic variety will dominate during the various flow pro-
cesses of interest. But since, for the purposes here,
modeling acoustic waves is unnecessary, and since each
acoustic wave only subtly modifies the density field as it
passes by any point of interest, the local time derivative
of pressure (bP/bt) may be replaced with the time deriva-
tive of the global pressure (Pg ) or ( b Pg/ b t) - Pg. (Note

however that this simplification does not eliminate spatial
gradients of pressure from the momentum equations.) Thus
equation (2) may be simplified to read

=(ee (h -) i

Now the mass rates which pass normal to and through the
center of the sides of a cell are defined as

X = PuAX and y - tvAJ (4)

where Ax and Ay are the areas of the cell faces perpendi-
cular to the x and y axes respectively. Equations (1, 3
and 4) can be combined as

tP ,t a X + ~ , o (5a)

aX IjIP [Ax: a+][[A 1 a kdA +[I (a A LI (5b)

+X D at + k byou + Ae bp o A;kX P = AskX (5c)

Now a') b(Vd) are trafm int a = sp of
+ _Y__ A X + bp P = Aqar (5d)

Now (5a) - (5d) are transformed into a discrete set of
simultaneous algebraic equations with the use of a discrete
grid network.

It should be noted that two types of grid networks are in
general use:
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1) a mathematical grid in which all dependent variables
are defined at common points and

2) a physical grid in which the state and transport
properties are defined in the centers of control
volumes and the velocities are defined normal to and
in the center of the faces which bound the volumes.

The physical grid possesses three important advantages:

1) a unique definition of local mass conservation is
specified.

2) The resolution of thermal and velocity boundary
layers are improved for the same grid density since
the temperature and velocity points are Ax/2 orAy/2
from solid boundaries rather than the usual a x or
A y for the mathematical grid. This is achieved
without the usual complication that nonlinear grid
spacings involve.

3) The procedures for treating mathematical singulari-
ties (e.g., the center of a polar coordinate system)
are not ambiguous.

For these reasons the physical grid is employed in the fol-
lowing discrete formulation. Figure (1) shows a typical
computational cell which is imbedded in an array of such
cells which altogether comprise the volume of the entire
region of interest. For identification purposes, the sub-
scripts i and j are used with the cell center variables
P, p, T, h, e, k, and A to denote their relative location
in the complete cellular array. The whole integers, i and
j, are counted with the increasing x- and y- directions,
respectively. The velocities and mass rates which are de-
fined at the cell sides are denoted by half integers and
are counted similarly to the cell center values. Both the
integer and half integer nodal points are defined to be
separated by a cell width ( a x) and a cell height ( A y).
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The difference approximations of equations (5a) - (5d) for
a uniform two dimensional rectangular grid with an arbitra-
ry depth in the third dimension, are

t+1 t t+4 at
Pi! Pij + IV (6a)

t t+6 t +b Dl) At (6b)%

energy equation
P+t + At (6c)

X l X. i+AC xt(Pit+) jt]t0 At (6d)

Wt iYt q +Ap AP-ij+l +Hytit A t (6e)

where

t+tl t+1
D,; -(i-aj-Xiij + Yij-jYij)

and V = AxA= A Ay(the cell volume) and the superscripts
t + 1 and t + 6 indicate an evaluation at the time t + A t
and t + 6 (At) respectively ( 6 = 1/2, 0). For 6 = 1/2,
¢ ij, ij, Pg and the terms of the convection of heat
are nearly time centered. Such an alternative has certain
advantages which are provided together with the methodology
for implementation in reference (2).

Dii is the net added mass rate to an i' cell,Eij is the net
added heat rate to an ij cell by conduction and convection.

HXi+l/2j and HYij+l/2 are the viscous, body force and the
convection terms of momentum in the x- and y- directions
respectively. The difference expressions for these terms
are given in references (1) and (2) and are omitted be-
cause they are not essential to the illustration of the
methodology of the GEM.
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(6b) may be revised as

Dtfl V gt _ (7)

t+l
Since D, summed over the total volume is equal to net mass

rate inflow at the boundaries, and since Pg is a constant
over the total volume, (7) may be integrated over the total
volume to yield

.E(E)t -(net mass rate outflow%
j at the boundaries (8)

.0 t(8)

where E is the sum over all active cells.

Now (6a) and (7) may be combined to form

Pt+1 1t Ft[ _ Et 1
1j Pij - [ (e p)ij ( G ij (9)

Equations (6c, 8, and 9) apply only to a container whose
walls are rigid. These equations may be modified in two
ways to accomodate the elasticity effect of the container
wall and the external volume. The first method involves
simply the multiplication of (8) by (EF) where

EF a I + (P 4 9)c (F)

where

L 3 =[r( -cr) VPe (10 )

which is the elastic factor derived in Appendix A. (p09 )c
is evaluated at the average stored fluid density. ( p V)p
is the product of the external plumbing volume and the
density of the fluid in the volume. n is the inverse of
the polytropic coefficient and is unity for an isothermal
process. This method of modifying P for the elastic
effect is valid provided the ratio of the volume occupied
by the thermal boundary layer to the total volume is small.
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A general method of incorporating the elastic factor in-
volves modifying (8) as

__)t (net mass rate outflow

(11)

s =72 U B ij at the boundaries

and (9) may be modified as

t t At
Pj = P - Hij (12)

where

Lj _ r + Pij(1 )q

For convenience, equation (6c) is renumbered as

Pl =TP+t At () (13)

Equations (11, 12, and 13) are the discrete conservation
equations of mass and energy which must be solved simul-
taneously with the momentum balances (6d) and (6e). To
implement this, equations (6d and 6e) are discretely dif-
ferentiated with respect to x and y respectively and com-
bine to form

t+1 t ti4
l= Dt + At(PI2tI - H12 (14)

where

t.-0 Ax (tPt-W t+1
L x _(Pljj-PijPl) +a (Pij-l -?-Pij+Pt-i)

and

H2ij z Hx ̂i+2j HYt--t . - 4j§
t+1

The Dij term is eliminated from (14) with the aid of (6a)
and (12) to yield

= t t tt (t+0 = Dii + 1iJ + Zij -C1\ i) (15)
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Equation (15) is an elliptic difference equation which may
be solved by direct inversion, direct Fourier methods (see

reference 3), and iterative methods. For generality and

simplicity, the Liebmann iterative method is employed

which is used in the MAC method of Harlow and Welch

(reference 4). NIP is defined as the number of iterations

used to solve equation (15). The pressures which result

from the approximate solution of (15) are used in the mo-

mentum balances to obtain updated x- and y- direction mass
rates in the active cells. With the use of the thermo-

dynamic relations, the updated values of density and global

pressure from equations (12 and 13) are used to find up-
dated values of temperature, enthalpy, thermal conductivity,

viscosity, a and 4 for all active cells.

The sequence of computations for the General Elliptic
Method (GEM) is summarized as:

1) Prescribe the initial values of the mass rates

(Xi+l/2j, Yij+l/2), the global pressure (Pg), and
the density (Pij) for all active cells including
the border values. Compute the velocities (ui) and

vij) for all the field and border locations using the
mass rate definitions. Evaluate the exterior velo-

cities for the no-slip and free-slip conditions. Find

Tij, hij, kij,,ij, (8~)ij, and Oij with Pg and pij
from the thermodynamic and transport relations.

These relations may be defined in terms of equations
of state or tabular data. For the simulations re-
ported, the thermodynamic properties are tabulated

at three pressure levels; 850 psia, 900 psia, and

950 psia. Linear interpolation with density and

pressure are used to find the other desired thermo-

dynamic properties. The transport properties are

determined from a linear interpolation with tempera-

ture in single arrays of thermal conductivity and

viscosity at 900 psia.

2) Evaluate HXi+l/2 j, HYij+l/2, Eij, Dij, (EF), Pg and

HHij for all active cells from the existing field
values.
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3) Compute pt+ and P t+l from (12) and (13). With
1 3 and

these values find T131, h k ttl, /A t+i, (e )
t+l and e t+l from the lineart~ible searches.
ij' ij rt+l

Compute the border values of Xi+l/ 2j and Yij+l/2
from the expulsion rate function.

4) Solve (15) approximately with NIP iterations for
pt+l for all cells inside the border and immediatelyij
outside the border. The pressure Pij in cells out-
side and adjoining the border are obtained directly
from the momentum balances (6d) and (6e) and are
recomputed each sweep of the field for new tentative
values. Note that the border values of HXi+l/2j
and HYij+l/2 used in (15), (6d), and (6e) must be
the same but may be any desired value. It is best
to set these to zero.

5) Use the values of pressure (Pij) from step 4 in
(6d) Elf (6e) to ob~tin the remaining unknown values

of Xi+l/2 j and Yij+l/2 respectively.

6) The updated values then become the current values at
time (t) and step 2 through step 5 may be repeated
until the time (t) has been advanced to some value
of interest.

Some discussion is now devoted to the various boundary con-
ditions which are required to define all derivatives and
quantities normal to the boundary. All mass rates normal
to the border must be set to zero except where expulsion
is specified. The velocities are computed from the mass
rates, the normal cross sectional area through which the
mass flows, and the average density of respective adjoining
cells. Where mass rates are nonzero at the border, the
velocity calculation requires a prescription of the density
in the external receiver cell and is set equal to that in
the supplier cell. This velocity enters into two viscous
terms. Two other viscous terms require the prescription
of velocities parallel to the boundary in all external
cells. Where no-slip boundaries are required, the external
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velocity is set equal and opposite to the values in the ac-
tive adjoining cell. Where free-slip boundary velocities
are required, the external velocity is set equal to the
values in the active adjoining cell. These velocities in
external cells are computed after all the velocities have
been computed which reside inside and on the border. The

HXi+l/2j and HYij+l/2 terms required by the momentum
balances on the border may be set to any value but for con-
venience are set to zero. This follows from the fact that
since the mass rates at t+l and t are prescribed on the
border, the momentum balances are not required to generate
these values at the border . For these to balance then it
is only necessary that the values of HXi+l/2j and HYij+l/2
defined on the border which are used in the elliptic
equation (15) be the same as those used in the border mom-
entum balances to find the unknown external cell pressure
which is required by equation (15) during the iterative
solution.

The heat conduction terms involve gradients of temperature
normal to the sides of a cell. Cell sides at which the
heat rate is prescribed may be used to calculate these
gradients. For generality, it is assumed that any cell
face at which the heating rate is prescribed has an arbi-
trary thermal capacitance. The cell face temperature is
determined with an implicit energy balance on a cell face
of interest and for a left cell face is

t4' r~t

* (TWA j- t)(k- Xi +tIk)t Ax (16)

where OXi+l/2j is the prescribed cell face heat rate,
HCXi=1/2j is the cell face thermal capacitance, TWXi_-l/2j
is the face temperature, ki-1_l/2j is the thermal conduc-
tivity at temperature TWXi1l/2j and Ti. is the cell tem-
perature. Equation (6) may be solved for the unknown
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t+l
TWXi_-/2j by algebraic manipulation and yields

Tiwx Z ta2 t (17)
1JCXXi- +(ki- Ij * (P)

-Er 2. 2

Similar expressions to equation (17) may be written for any
other of the remaining cell faces. It should be noted that
if (16) were not implicit in the heat conduction term, the
time step would be restricted to

at HC j (18)
Ax(ki +ij)

which could be substantially more restrictive than that
required by GEM. (A discussion of GEM stability conditions
is given below). Since the computational efficiency of
the algorithm is directly related to A t, equation (18)
could impose severe increases in computing time. This is
especially important since practical problems frequently
require hours of computer time. For this reason, equation
(17) is a preferred form over the explicit alternatives.
This situation offers a fine example of the reason why
implicit schemes are preferred or essential compared to
explicit schemes whether the model of the boundary condi-
tions or the field conservation equations are concerned.
Reference (2) has some additional details with regard to
explicit modeling of the conservation equations.

Note that for HCXi-1 /2 j ang+ Xi-1/2j equal to zero, equa-
tion (17) reduces to TWXi-1/2j = Tij which is the
boundary condition for an ideally insulated cell face.
Where the biased differences for the convective terms,
reference (2), are employed, the fundamental stability
conditions for GEM are:

I_ bi( C r-2 g (19)

where

A = (k/ pCP)max

B = 0, 1, 2 for the x- direction, and



C = 0, 1, 2 for the y-direction
and

A )[P(-s)_ M (go+ v ) 1 (2, )AX] (20)

B and C depend upon the number of cell faces which have
prescribed heat rates in equation (19). For "g" spikes,

At 3 4 ( )4)mIN (21)

is used to insure that equations (19) and (20) are nearly

satisfied during a "g" spike. For time integration accur-

acy, equation (21) is modified to read

At4 o.o i (22)

In the calculations, equations (19) and (20) multiplied by

about a factor of 1.5 in order to ensure small truncation

errors in time while the "g" level is constant. Equations

(19) and (20) are additionally superceded by the conditions

If Pg > 0

then

At = Min. ( Atl, At 2 , 30) (23a)

If At > 1.3 At t-l1/2

then

A t = 1.3 Att-1/2 (23b)

where

Attl/2 is the previous time step in seconds.

Equation (23a) has a thirty second value shown. It is used

to minimize the truncation errors in time for pressuriza-

tion strokes which are about four minutes long and which

are simulated with coarse meshes.

Equation (23b) is used to limit the rate change of time

step increases in order to promote time integration accur-

acy especially after "gO spikes or abrupt changes in the

heating rate.
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If there is a "g" spike, then

A t = Min ( At, At4) (23c)

is imposed for ten time steps.

There are a number of integral relations which provide
checks on the accuracy or correctness of the various
local calculations and these are now discussed. The sum
over the volume of the local heat conduction terms should
equal the prescribed boundary heating rate. The sum over
the volume of the local convection of energy or momentum
terms should equal the boundary values. The sum of the
cell densities divided by the total number of cells should
equal the average density computed from the initial den-
sity and the time integral of the mass density loss due to
fluid expulsion. The change in global fluid pressure
should equal the potential pressure decay when the non-
isothermal cryogen is adiabatically restored to an iso-
thermal state. The adiabatic potential pressure decay is
defined algebraically as

APIMA, , QD , (EF) (24)

QDP, - ,v [( c),p, - (pe),j]

where p is 4 at the average density and initial pressure,
V is the cell volume, Vc is the container volume, (EF) is
the elastic factor of the system, QDA is the adiabatic heat
deficiency, (pe)p , is the product of the average
density and the specihic internal energy which is evaluated
at the average density and initial global pressure, and
( p e)ij is the product of the cell density and specific
internal energy. The validity of equation (24) is pre-
dicated upon the invariance of P over the pressure change

( A Pimax ) '

Single-phase helium, parahydrogen, nitrogen, and oxygen in
the density region from about the solid density through the
low gas density exhibit a very weak or no dependency of Q

upon Pg at any given density. Thus, equation (24) is a
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simple means of computing the adiabatic potential pressure
decay. Where tank wall or heater tube, thermal capacitance
is involved, and/or where boundary heating is prescribed, a
pressure decay however abrupt may not be adiabatic. If the
end state temperatures of the metal are known, the energy
added to the system can be computed and for such a condi-
tion equation (24) may be modified as

I APWOA QDT (CF)

QDT ' -LV[(pe)p (ei]- (pe -Qb -QM (25)

where QB is the total boundary heating and QM is the
total energy from the metal for any short interval of
time. Short here is taken to mean a time period in which
the change of p5 is small enough so that the desired ac-
curacy of equation (25) is maintained during the event.

If the GEM is properly coded, all of the integral relations
are satisfied exactly except for the energy convection
terms which have a small nonconservative error. There is
also a time dependent truncation error. In spite of these
errors, the integral equation (24) and (25) are very nearly
satisfied during time dependent calculations which is shown
in an example in the results section.

The 1/2 Box Model

In order to simulate a physical problem with the GEM cer-
tain boundary and initial conditions must be established.
Figure (2a) shows a sketch of the cross section of a flight
oxygen tank in the plane of the "g" vector which is taken
to be perpendicular to the heater tube. Figure (2b) shows
a sketch of the geometry used for the numerical model. The
region shown has a depth dimension so that the walls of the
model form a box. The left wall is assumed to be a plane
of symmetry in order to reduce the total volume of region
of interest by two. (This reduces the computer time by
a factor of two). For this reason, the model is called
the 1/2 box model. Only one half the values of the con-
tainer volume, heat input, expulsion rate, the heater tube
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thermal capacitance (HTC), and plumbing volume are used in
the calculations. The boundary conditions for the 1/2 box
model are

1) freeslip left wall except where the heater element is

2) no-slip right, top, bottom and heater surfaces

3) uniform heat flux at the top, right and bottom wall
for the heat leak simulation

4) insulated left wall except where the heater surface is

5) a flat plate heater surface midway up to the left
wall, parallel to the left wall and extending the
distance of the depth dimension

The initial conditions for the velocity and temperature
fields, the global pressure, and the initial density, are
chosen to be as consistent as possible with the conditions
in the flight hardware for each simulation. All but the
first two conditions are usually known accurately. Special
measures must be taken to estimate these two initial con-
ditions and these are discussed in the results section.

The Physical Description of the Apollo

Single-Phase Oxygen System

Figure (3) shows a schematic of an Apollo single-phase
oxygen storage and supply system. The oxygen storage con-
tainer is essentially a thin wall pressure vessel covered
by a super insulation system. The container is vented and
filled through pipes which are imbedded inside the super
insulation for some distance before penetrating either
the inner or outer container shells. On leaving the con-
tainer, these pipes pass to the space craft surface. They
are only active during the preflight oxygen loading pro-
cedures and then are sealed off shortly before the flight.
A third line is attached to the tank and supplies oxygen
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to the fuel cell regulator and the surge tank. The func-
tion of the surge tank is to separate the crew compartment
from the low temperature cryogen and provide a. large source
of ambient gas ready for use at any time.

Inside the oxygen container are mounted two perforated
tubes. One tube is a quantity gauge. The other tube is
an extended surface for heat transfer. Several electrical
resistance heater elements are helically wound around and
welded to the heater tube. The control of the electrical
power to the heating elements is accomplished by switches
which are activated by fluid pressure, If the pressure
falls below about 860 psia, the electrical power is engaged.
If the pressure rises above about 900 psia, the electrical
power is disengaged. Prior to Apollo 14, two fans were
installed in the heater tube, one in each end. When oper-
ating, these fans draw oxygen through holes in the center
of the heater tube assembly and ejected it radially at the
ends, thereby stimulating circulating of the bulk of the
stored cryogen. These fluid motions are potent enough to
eliminate significant fluid temperature variations which :
are induced by heat transfer. As a result, the pressure
history of the stored cryogen may be predicted by equa-
tions (A10) and All). If the fans are not operated, the
detail fluid motions in the container oxygen must be
modelled in order to predict the pressure history. Success-
ful modeling however, depends upon the prediction of the

time variant "g" level, expulsion rate, and heat input.
The method of determining each of these is now presented.

Reduction of Apollo Flight Data

It is the purpose of this discussion to provide some under-
standing of the considerations which are made in deter-
mining the "g" level, oxygen flow rate, and heat input
histories as a function of the average stored oxygen
density.

Figure (4a) shows a sketch of the space craft in relation

to the roll, pitch and yaw axis and the earth. For simpli-
city the moon is not shown. Also shown in Figure (4b) is
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a cross section of the space craft perpendicular to the
roll axis and through the two Apollo 12 oxygen tanks. The
heater tube in each tank is parallel to the roll axis. The
"g" level and direction is defined if the inertial space
acceleration vector can be evaluated. The method of rigid
body dynamics is used to calculate the history of this
vector. The angular rotation rates are taken directly from
the Digital Auto Pilot (DAP) data. The angular accelera-
tion is obtained by numerical differentiation of the
rotation rates. When DAP data are not available, rotation
and acceleration vectors are obtained by successive dif-
ferentiation of the gyroscopic gimbal angles. The cal-
culations showed that the accelerations induced by the
solar pressure and the solar wind are orders of magnitude
less than the accelerations induced by the thrust of noz-
zles and rotations of the space craft about the three
axes. (The Coriolis force is sometimes the same order of
magnitude as the centripetal acceleration but for simpli-
city this component is neglected for the 1/2 box model
simulation. Variations of the acceleration magnitude with
position in the stored fluid is also neglected for simpli-
city in the 1/2 box model simulation.)

There are five predominate types of flight modes which
each have a typical "g" level and direction. They include

1) engine burns

2) attitude control maneuvers

3) passive thermal control (PTC)

4) attitude hold in translunar or transearth orbit

5) attitude hold in lunar orbit

The acceleration vector is parallel to the heater tube for
type 1) operation. For the last three types of operation,
the acceleration vector is predominantly perpendicular to
the heater tube. Typical "g" levels in the last three are
respectively 3 x 10- "g", 7 x 10-8 "g", and 5 x 10- 7 "g".
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Abrupt increases in "g" level ("g" spikes) can accompany
the use of the attitude control system. Then these "g"
directions are not necessarily perpendicular or parallel
to the heater tube.

The certainty with which the "g" level is known is esti-
mated to be better than a factor of 2 at 7 x 10-8 "g" and
better than a factor of 1.2 at 3 x 10-6 "g".

The energy input to the oxygen tank is composed of the
heater power and insulation heat leak. The latter never
exceeds about ten percent of the former. The estimation
of the heat leak is no more accurate than the estimate of
the oxygen flow rate but because it is a small fraction
of the total energy input and because the heater power is
known to about two percent, the overall energy input is
believed to be known to better than three percent.

The average cryogen density is obtained from the quantity
gauge and time integrals of the expulsion rate, initial
density, and container volume. The quantity is believed
to be known to about two percent.

The oxygen pressure is measured by a sensor whose output
is digitized in four psi intervals at the rate of about
one per second. The absolute value of pressure is known
to about 20 psi at 900 psia. The differences in pressure
are known to better than about four psi out of forty. A
similar situation exists in the absolute pressure measure-
ment of the surge tank.

If the difference of the container and surge tank pressure
depended only on the difference in these absolute pressure
measurements, considerable error would be possible. How-
ever, with normal crew compartment oxygen consumption
rates and no use of surge tank gas for other purposes,
the surge tank pressure must be the mean of the limit cycle
values of the container.

Thus a reference value of pressure is known and the surge
tank pressure gauge can be scaled accordingly. The flow
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through the restrictor depends upon the pressure differ-
ential between the container and the surge tank. Since
there is a flow meter between the crew compartment and
the surge tank, a flow calibration of the restrictor is
possible. The only time that the measurement of the flow
to the surge tank requires the use of the restrictor cal-
culation is when the surge tank pressure is different than
the mean of the limit cycle values for the container. The
estimate of the flow measurement accuracy is about 30 per-
cent for the restrictor calculations. The mass flow rate
to the fuel cells is known to about three percent which
frequently is over half of the flow demand. The precision
of the flow measurements then can be anything between
three and thirty percent accurate depending upon the
steadiness of the pressure in the surge tank and the crew
compartment consumption rate.

The only other way to predict the average flow to the surge
tank is with equations (A10) and(All). The heat input,
cryogen density, and changes in cryogen pressure can be
used to estimate the average flow rate to the surge tank.
However this procedure only is adequate when the stored
cryogen is very recently stirred by the fans so that it
is spatially isothermal.

It is hoped that the previous comments give some idea of
the difficulty in obtaining accurate data which may be used
to make predictions with the 1/2 box model. In spite of
this situation, the predicted oxygen tank pressure history
agrees very favorably with the flight data. Because
of the data uncertainty in some cases, good agreement may
just be fortuitous. Some reduction of the ambiguity can
be made by parametrically varying various of the data
which are most suspect (e.g., "g" level and flow rate).
The trends of such analysis can be used to gain confidence
in the results and thus reduce the uncertainty.
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The Comparison of Predictions and Flight Data

Two sets of data from the Apollo 12 flight have been re-
duced and summarized. Predictions for these cases have
been made with the 1/2 box model. The comparisons are
presented after some introductory discussion.

Ps/Pe is defined as the ratio of the time derivative of the
global pressure in cryogen which has a nonuniform and uni-
form time dependent temperature field respectively. For an
ideal gas in which the compressibility and specific heats
are constant, Ps/Pe is unity whether or not temperature
variations exist. In nonisothermal cryogen, at a density
of about twice the critical, Ps/ie can approach a maximum
value of about 16. As the density is reduced, Ps/P
approaches a value of unity. (Note that if Ps/Pe is not
unity, APlmax can acquire nonzero values.) The actual value
that Ps/Pe acquires in finite difference calculations de-
pends upon the resolution of the thermal boundary layer.
With increasing acceleration level, natural convective mass
rates increase near the heater surface and the heater sur-
face temperature decreases. PS/Pe tends to unity for such
heater temperature variation irrespective of the density of
the cryogen. Coarse grid calculations of a thermal boun-
dary layer with the 1/2 box model provide less boundary
layer temperature variation and thus PS/Pe tends to be less
than if fine grid calculations are used. Accordingly, pre-
diction of the pressure history is very sensitive to ther-
mal boundary layer resolution where Ps/Pe potentially can
deviate from unity which is the situation near and above
the critical density.

At cryogen densities below and above the critical density,
the accuracy of the predicted pressure history is sensi-
tive to thermal boundary layer resolution but for another
reason. The heater tube has significant thermal capaci-
tanceo The coarse grid calculations always predict exces-
sive heater surface temperatures and as a result of the
heater thermal capacitance excessively long pressurization
cycles are predicted. Convergence studies are employed to
estimate the effects of coarse grid calculations. This
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means that the same problem is repeated for a number of
different grid sizes.

For example, a 10 x 10, 20 x 10, 30 x 10, 40 x 10, 60 x 10,
80 x 10, 20 x 20 (the first and second integers are the
number of computational cells in the x- and y- directions
respectively), etc., grids may be used to predict a pro-
blem. By appropriately plotting the data, the convergence
characteristics of some parameter of interest can be
determined. If this procedure is used in a careful way
beginning with the coarse grids first, estimates can be
made as to how fine the grid must be to get the desired
accuracy. This will be illustrated later.

The potential pressure decay (APlmax) may be defined as
the amount the global pressure should decay when a
cryogen is adiabatically restored to an isothermal state
during which the fluid expulsion rate is zero. Trunca-
tion and conservation of.energy errors can be delineated
if the time integral of Pg is compared to the difference
in the state of APimax for the boundary conditions of no
boundary heating, no fluid expulsion, and no heater thermal
capacitance. To illustrate such a comparison, two problems
have been chosen and they differ only in the grid sizes
which are a 6 x 6 and 12 x 12 and in the time step used
after the "g" spike is initiated. The box has the dimen-
sions of 2 x 2 x 1.187 feet for the height, width, and
depth respectively. The initial density is about twice the
critical density. Figure (5) shows the history of Pg and

A Pimax of the 12 x 12 grid problem in which the fluid
expulsion, wall heating, heater input, and acceleration
level are nonzero for a period of time. The wall heating
and heater input are chosen in order to generate an oscil-
lating pressure history. The heater tube thermal capa-
citance is zero during the entire duration of the problem.
The "g" level is chosen at 2 x 10-8 "g" so that the buoy-
antly driven mass rates are of the same order as the expul-
sion rate. At some later time, the "g" level is increased
to 2 x 10- 3 "g" in a time step and at the same time the
expulsion rate and the boundary heating are set to zero.
The "g" level increase causes a substantial increase in
the buoyantly driven fluid velocity. As a result, the
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high energy fluid which is concentrated in a glob near the
heater surface is rapidly stretched which substantially
enlarges it's surface area. This in turn enhances the
heat conduction and results in a rapid decrease in fluid
temperature differences. The sharp reduction in nonuniform
temperature field causes the global pressure to sharply
decay. The pressure decay rate is an order of magnitude
sharper than that which would have occurred had the "g"
level been unchanged during the course of the problem.
The time step is 30 seconds prior to the "g" spike and it
is reduced by

At = 0.4 i

when the "g" spike occurs which yields a A t = 0.6977 se-
conds and At = 0.4933 seconds for the respective problems.
The change in Pg of 41.0 and 49.3 corresponds to a change
in APjmax of 42.5 and 49.6 respectively for the 6 x 6
and 12 x 12 grid problems. This yields respective differ-
ences in the actual and ideal decay changes of 2.8 and
0.3 psi for the respective problems. The reduction in
the error is entirely due to the time step reduction. Fur-
ther reduction in the time step after the "g" spike will
not significantly improve the result. This is due to the
fact that there is a small time dependent nonconservative
error in the energy convection terms. This error can be
virtually eliminated in the manner outlined in reference

(2).

Finally, the GEM has one other time related truncation
error which for the problems considered is trivial. The
algorithm exhibits a slight damping of kinetic energy and
this error may be eliminated with a nontrivial increase
in computer time. This consideration will be left to a
future paper.

As a rule, the truncation errors in time are well control-
led as the grid is refined. The significant errors for
fine grid calculations reduce to the definition of the
initial and boundary conditions. As has been mentioned
previously the mass expulsion rate is probably the most

75



inexactly known quantity, There are some other significant
ones which are now discussed.

The elasticity factor (EF) for which a derivation is provi-
ded in the Appendix can be evaluated precisely except for
term ( p v n/ c V P ) which accounts for the exter-
nal volume effect. Since there is no temperature sensor
anywhere on the external plumbing, estimates of Pp and n
(which is the reciprocal of the polytropic coefficient)
must be mrde. (It is believed that Pp should be about
5 lbm /ft and n about 1.0. In this case, the magnitude
of the effect of the external plumbing upon the elasticity
factor is nearly negligible.) The elasticity factor is
about one half at the high densities and rapidly approaches
unity as the density is reduced to the critical value. It
is unity for densities less than the critical value as well.
Another difficulty in using the 1/2 box model arises in
choosing the initial conditions for a given problem. As a
rule, a uniform initial temperature field with a zero velo-
city field are the chosen initial conditions. The problems
selected for analysis always have a fan cycle prior. Be-
cause the pressure response of the system appears to satis-
fy equations (A10) and (All) of the Appendix, the isothermal
assumptions appear to be warranted. But the zero velocity
field prescription is certainly wrong except after the fluiU
motions from the fan cycle have decayed below those gener-
ated by the buoyant forces. Estimates of this decay time
are made with fine grid calculations in which the initial
field values of velocity are large. It has been found
that less than about two hours are required to meet this
condition at all fluid densities.

The treatment of the heater tube as a vertical flat plate
in the 1/2 box model is believed to be wrong in one res-
pecto Since the heater tube has only a few square inches
of hole area through which high and low density fluid may
flow, at low enough "g" levels some heated fluid can be
trapped inside. This has the net effect of reducing the
effective surface area for heat transfer. The "g" level
at which the effective surface area is significantly re-
duced is at about 10- 7 "g" or less.
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The extremes of the surface area possible are

1) the total of the outside and the inside of the heater
tube (about 1.1 ft2 )

2) the exterior of the portion of the tube which is
wrapped with the heating elements (about 0.475 ft2 )

For the calculations presented, the value of 0.95 ft2 is
used and is twice the value of 2). This area certainly is
a bit too large after some time period because of the
restraint which the tube holes impose on the buoyantly
driven flow and because the heater tube is not exactly
isothermal along its length. (Evaluation of these two
effects is currently under study.)

With these various reservations in mind, the two problems
are now considered.

Two problems from Apollo 12 flight data were chosen for
analysis because initial and boundary conditions could
be reasonably assessed and because these problems exhibit
the peculiar effects that the nonisothermal cryogen has
upon the pressure history.

The 1/2 box model is assumed to be one foot wide, two feet
high, and the depth is computed so that the volume is that
of 1/2 of the oxygen tank which is 4.75 cubic feet.

The first flight problem of interest involves the predic-
tion of the time required to raise the oxygen pressure
about 33.5 psi in twelve minutes and forty seconds. The
fan cycle occurred about eight hours prior to the time of
interest. The pressure decayed steadily and the expulsion
rate history could be found from equations (A10) and (All).
These values agreed well with those predicted from crew
compartment and fuel cell flows. For this reason and since
only heat leak was involved during the decay cycle, the
system was believed to be essentially isothermal when the
heater was activated, which is the beginning of the pro-
blem. The eight hour period was more than enough time for
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the fluid velocity field to decay adequately so that the
zero field velocity prescription could be used at the be-
ginning of the prediction with the 1/2 box model. The
elasticity factor is about 0.97 so that the question of
how to evaluate the external volume effect is trivial.
Figure (6) shows the results of the 1/2 box model predic-
tions as a function of the grid size with and without the
heat tube capacitance of 0.07 BTU per degree Rankine. It
may be noted that the 60 x 10 and the 80 x 10 grid results
are nearly identical. Comparison of the velocity profiles
show that the boundary layer is well resolved by the 80 x
10 grid.

It is curious that the resolution is only weakly dependent
upon the number of cells in the y- direction. Figure (7)
shows the asymtotic estimate of the 1/2 box model predic-
tions. Figure (8) shows these asymtotic values replotted.
The agreement of the prediction and the flight data is
within about two percent which is better than would be
expected in view of the probable errors of the various
measurements. There are some interesting things to
note about the predictions.

The cryogenic oxygen density is slightly less than the
critical density. The average rate change of pressure is
about 15 percent larger than that which would occur for
isothermal cryogen. (Ps/Pe is about 1.15 average value.
As a result, the adiabatic potential pressure decay ac-
quires a value of about 4 psi during the pressurization
stroke.) Also, the heater tube thermal capacitance is
shown to be a significant factor in the length of the
pressurization stroke. Thus without accounting for the
transient heater tube and thermal boundary layer inter-
action, the flight data could not well be predicted.

The 1/2 box model is used to simulate this problem again
but it differs from that shown in Figure (6) only in the
"g" level which is set at 4 x 10- 7 "g". This lower "g"
level results in lower buoyantly driven mass rates by the
heater surface which results in a larger asymptotic
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heater surface temperature. The asymptotic temperature
differences between the heater surface and the bulk fluid
is 2300 R and 3400 R for the problems at 2 x 10- 6 "g" and
4 x 10-

7 "g" respectively. Had the Ps/Pe ratio remained
the same for each of these problems, the latter problem
would have had a pressurization stroke about a minute
longer than that found for the former problem. This time
increase is due entirely to the increased energy require-
ment of the heater tube. However, since the average value
of Ps/Pe for the latter problem is 1.23, the time increase
caused by the heater tube capacitance effect is almost
exactly offset and the resultant stroke length is only a
few seconds longer. Since the reduction of the heater
surface area to about a value of 0.7 ft2 in the former
problem would result in about the same asymptotic heater
surface temperature, the pressurization stroke length would
be almost exactly the same as that found in the latter pro-
blem. But since the latter and former problems yield al-
most identical stroke lengths, this problem is not suited
to determining with precision the effective heater tube
area. After examining the various errors and their effect
on the results of the simulation, it is concluded that the
heat tube thermal capacitance and the differential pres-
sure measurement during the stroke are the primary para-
meters upon which the accuracy of the simulation depends.
Since the agreement is excellent between the flight data
and the prediction, it is concluded that whatever errors
there are in these two parameters, they must be compen-
satory.

The second flight problem of interest examined in detail
involves a high density problem in which the initial den-
sity is about twice the critical density. The elasticity
factor is between 0.58 and 0.35 depending upon how the
external volume effect is accounted for. The latter value
assumes that the entire external plumbing volume is filled
with cryogen which is at the density of the average of that
of the stored fluid. From thermal studies of this plumbing
system, such a condition is unlikely and it is probably
the case that the entire volume contains near ambient
oxygen. Since the process in the plumbing during the
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pressure oscillations is probably isothermal, n is probably
unity. With these assumptions the elastic factor is about
0.55 which means that the contribution from the external
volume is only about five percent of the total.

The flow rate is time dependent and is modeled with the
expression

I = (0.755 + A + B)

where

A = 0.1 lbm/hr when the heater is on

A = 0 lbm/hr when the heater is off

B = 0.17 (Pg - Psurge) 0.488 if (Pg - Psurge ) > 0

B = 0 if (P - Psurge) 0

where B is the flow through the orifice which is upstream
of the surge tank. B is zero if the pressure difference
(Pg - Psurge) is negative because a check valve in the line
prevents reverse flow. Psurge is the surge tank pressure.
The "g" level is time dependent and the values used in the
simulation are shown in Figures (9, 10, and 11). Actually
there are many more "g" spikes than indicated but these
were deemed insignificant compared to those shown. Figures
(9, 10, and 11) also show the end points of the pressure
strokes for the flight data. The fan cycle occurred at
about a ground elapse time (GET) of 4 hours and 27 minutes
so the residual velocities should have been gone at the
most by the time GET = 6:27. However examination of the
length of the strokes show that within about 40 minutes the
predominate effects of the fan cycle had dissipated. Thus
the stroke length is then relatively fixed and is modified
predominantly by the "g" spikes. Note how sharp the pres-
sure change is with the "g" spikes but that no substantial
change in fluid pressure occurs until the "g" level in-
creased to 10- 3 "g". A dramatic decay of fluid pressure
then ensues and an enlarged view of this event is shown in
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Figure (11). The fans are turned on before the course of
the "g" spike induced pressure decay stroke is run. It
appears however from the slope of the decay curve prior to
the fan cycle, that virtually all of the potential for
pressure decay would have been absorbed. Thus properly
interspersed "g" spikes of sufficient magnitude could be
used to provide the same function as the fans, that of
stirring the stored cryogen so that it's temperature field
is for practical purposes isothermal.

Attempts to simulate the pressure history of this problem
have begun but are not yet complete. As a consequence,
only preliminary results from 1/2 box model studies are
presented. Between GET = 4:29 and 4:41, the decay cycle
as noted before, involves a cryogen whose temperature field
is isothermal, but time dependent. The end points of this
pressure cycle have been predicted to better than twenty
seconds in eleven minutes with the 1/2 box model. The same
result is obtained with the equations (A10 and All). So
that the remainder of the four hour simulation could be put
on one plot, this decay stroke is omitted from any display.
Figure (12) shows a pressure trace for a 60 x 10 grid in
which the previously given flow rate equation was not em-
ployed. (The pressure trace for the included flow equa-
tion could not be prepared in time for this publication.
With some exceptions the average flows are about the same
and for discussion purposes it will serve to illustrate
the important features of the simulation.) A convergence
study shows that the 60 x 10 grid almost adequately resolves
the thermal boundary layer during the periods between GET =
4:41 and 5:53 and between 6:40 and 8:33. During, and some
time after the "g" spikes, the thermal boundary layer is
not well resolved. It is estimated that about at least a
150 x 40 grid would be required during this period. (With
existing computers, this degree of resolution is impracti-
cal. However, a variable mesh grid system is being de-
veloped which hopefully will permit resolution which is
more nearly adequate.)

It should be noted that the length of the pressurization
stroke in Figure (12) is short sooner than shown in Figure
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(6). This is believed to be due to the difference in the
initial conditions which has been already noted. At GET
5:41, the stroke lengths are about the same and this may
be noted by examining Figure (13) which shows the plot of
the pressurization stroke length versus the number of grid
points. (The flight data is also shown.). The asymptotic
value is believed to be almost attained with the 80 x 10
grid. (The variable mesh program may provide the tool
necessary for the practical verification of this belief.)
If so, the agreement between the simulation and the flight
data is good.

The stroke length of the pressurization cycle shown in
Figure (13) is about three times less than that predicted
for a cryogen whose temperatire field is isothermal, but
time dependent. If the heater tube thermal capacitance is
zero in the 1/2 box model, the stroke length is about
fifteen times less than that predicted for a cryogen whose
temperature field is isothermal, but time dependent. The
elasticity factor and expulsion mass rate inaccuracies
can, at most, only affect the pressurization stroke length
by about a factor of two. Thus accurate simulation of the
transient thermal boundary layer and heater tube tempera-
ture are the most important considerations in predicting
the pressurization stroke length.

With regard to the simulation of the "g" spikes, it may be
noted that there are several qualitative and quantitative
resemblences with the flight data. This is true of several
of the small "g" spikes and the large "g" spike event which
occurs at the end of the simulation. This latter event has
been enlarged and displayed in Figure (14). The magnitude
of the pressure decay is substantially attenuated by the
heat which is derived from the rapid cooling of the heater
tube. (Convergence studies are currently being performed
for this "g" spike event in order to attempt to gain quan-
titative data on the grid sizes required for adequate
resolution.) The obvious disagreements between the flight
data and the simulation are believed to be due to

1) since simulated strokes are not in phase with flight
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"g" data, the "g" spikes occur at different relative
positions in the stroke than is shown for the flight
data

2) the geometry of the heater tube probably plays some
part

3) the grid is certainly too coarse

Further studies of this problem will hopefully provide the
information which is necessary to delineate the importance
of each of these considerations.

In spite of the preliminary nature of the data thus far
acquired for this flight problem, the results to date are
very encouraging, enough so that further work is warranted.

Conclusions

The methodology of the General Elliptic Method for the simu-
lation of time dependent single-phase cryogenic flow has
been presented. A brief description of the Apollo 12 sin-
gle-phase oxygen storage system has been presented along
with some discussion of the elements which are considered
for the reduction of flight data. The 1/2 box model in
which the boundary conditions used to simulate the cryogenic
oxygen flow processes of the Apollo 12 oxygen tank has been
presented. Mention has been made of some of the difficul-
ties which have arisen in obtaining accurate quanitative
data from the 1/2 box model and the flight data. In spite
of these difficulties, the comparisons of the predictions
and the flight data are shown to be good.

It is recommended that further application of the 1/2 box
model be made to predict flight system response as the
flight data becomes available. Assessment of the deficien-
cies.and capabilities of the 1/2 box model would then be
possible for a wide range of flight conditions. If the
overall results are reasonably favorable, prediction of the
oxygen tank pressure history for future missions could then
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be undertaken with a confidence well beyond that pre-
viously available.
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Figure 8. APOLLO 12 OXYGEN TANK No. 1
PASSIVE THERMAL CONTROL MODE
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QUANTITY 95 PERCENT
ACCELERATION 7X10 -8G
GRID SIZE 60 X 10

ann- _ -

HEATER POWER 114 WATTS
HEATER AREA 0.95 FT. SO.
THERMAL MASS 0.07 BTU/DEG R
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Figure 12. APOLLO 12 SIMULATION
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1D

1

NOTE:
QUANTITY 95%
HEATER POWER 114 WATTS
HEAT LEAK 14.5 BTU/HR
FLOW SHOWN IN FIGURE 13
ACCELERATION 7 x 10- 8

CONTROL 860 TO 900 PSIA
ELASTIC FACTOR 0.397

- -___ _

2 

FLIGHT DATA

8

-I __ .__ _ _ _-

4 /

2I

0-… -..-....

20 40 60 80 100 120

x- DIRECTION CELLS

Figure 14. APOLLO PRESSURE STROKE RATE VS GRID SIZE
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Appendix A

The Derivation of the Elastic Factor (EF) for the
Spherical Container and the External Plumbing

Container Plumbing
Volume Volume

System Schematic

Assumptions:

1) The volume (Vc) is enclosed by a thin walled elas-
tic spherical container with a response of

dV 3r(i-6)(z ) , zbE
where

r = container radius

C = Poisson's ratio

b = container thickness

E = Young's modulus

2) The plumbing volumes (Vp) are rigid (dV/dP)Jp = 0 and
contain a compressible gas with a response P =
Z p RT in which the rate change of compressibility
(Z) with respect to the pressure (P) is zero
(dZ/dP = 0).

3) The time (t) derivative of pressure is a constant
for all the fluid in the system (dP/dt) c =
(dP/dt)/p.
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4) The enthalpy and temperature properties are only
functions of the pressure and the density for the
stored fluid.

Now define

h u e + F ,

dt -- d.p' d%

dP j
crt-

dP
dt 'E %c - (p I I

Pc V 

The result of time differentiation qfPc and pp after in-
voking assumption 2) and some appropriation definitions
are

PC = dM I M dv = _ C Vc, dt L t0 dA a-

The energy balance for Vc is

d(oev) Qc- C ciP dVcA edt

Pc dVc
Vc dt (Al)

(A2)

(A3)
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The subscript c is now dropped from (A3) until some inter-
mediate manipulations are complete. Since

pe = ,oe (p,p)

d (pe) p[ b(pe) 1 + a (pe) , 
dt Bp .P

[bp(h- ) P] + =9) (A4)

Now by substitution eliminate d -(pe)/dt from (A3) and
(A4) and combine the result with (Al) and an appropriate
definition to yield

PV . dV (PC) = (A5)
. dv (pe)t = . -A

Now by the chain rule

dv dV dP
dt- dP dt

and combined with (A5) with the subscript c restored is

Pc = ( C( -cmc eC)(fF) (A6)

where

(F) I (A7)

Invoking assumption (1), (A7) may be written as

101



*+i ) r O(, -a)

The state equation P = ZROT with the appropriate defini-
tion may be written as

P ( ze T

and may be differentiated with respect to Vp and after
some alegraic manipulation is

dP P VP dP VP dt dP U7 IP

and after assumptions (3) and (4) and the definition of
d pp/dt is employed, simplifies to

A = (ihr- eP) Pp
P ((pV) (A9)

(A6), (A8), and (A9) may be combined to yield

Pc = ( )C ° C - P C) (EF) (A10)

where

(tF)( _ __ *E (pV)p) ] (All)

I+ cpOe )c [3r (I--) (pV)p n
I b + (pv)c P)

where n = 1

It can additionally be shown that for a polytropic heating
1 > n >, Cv/C where n is unity for the isothermal case and
Cv/C

p
for thR isentropic limit.
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