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Abstract

A cylindrical one-dimensional model of the Apollo cyrogenic
oxygen storage tank has been developed to study the effect of strati-
fication in the tank. Zero gravity is assumed, and only the thermally
induced motions are considered. The governing equations are derived
from conservation laws and solved on a digital computer. Realistic
thermodynamic and transport properties are used. Calculations were
made for a wide range of conditions. The results show the fluid
behavior to be dependent on the quantity in the tank or equivalently
the bulk fluid temperature. For high quantities (low temperatures)
the tank pressure rises rapidly with heat addition, the heater
temperature remains low, and significant pressure drop potentials accrue
(over 100 psia in 2 hours). For low quantities the tank pressure
rises more slowly with heat addition and the heater temperature be-
comes high (as much as 5000 K (4400 F)). A high degree of stratifica-
tion resulted for all conditions; however, the stratified region ex-
tended appreciably into the tank only for the lowest tank quantity.
The calculations also indicate a significant flux of mass from the
heater tube for high tank quantities. The results have been compared
with Apollo 14 flight data. For attitude hold conditions (i.e. no
spacecraft motions) the calculations are in good agreement with the
data.
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Introduction

The removal of the mixing fans from the supercritical oxygen
storage tanks in the Apollo spacecraft introduces the possibility
that the fluid in the tank can become stratified. Stratification,
which results from the temperature gradients surrounding the heating
element used for pressurization of the tank, can have several possibly
serious effects. First it can cause erroneous quantity probe
measurements with the potential for precipitating a mission abort.
Second, if the low density fluid from the stratified layer enters the
oxygen supply lines, the potential exists for fuel cell shutdown.
Finally, if the stratified layer becomes too extensive, a perturbing
force of even extremely low magnitude can cause depressurization with
the potential for the existence of two phase fluid in the tank.

The purpose of this paper is to examine the extent of the strati-
fication and the potential for depressurization which might exist in
the supercritical oxygen storage tank. The worst case of no natural
convection, has been assumed for the stratification calculations. The
depressurization calculations are based on uniform (completely mixed)
conditions in the tank. Zero gravity has been assumed throughout
the analysis.

The approach which has been taken is to use a simple mathematical
model which facilitiates a solution but retains the essential features
of the actual cryogenic storage tank. For this purpose a one-dimen-
sional cylindrical tank model is used. The governing equations are
derived from the conservation laws and solved numerically on a digital
computer. Realistic thermodynamic properties based on information
from the National Bureau of Standards (ref. 1) and transport proper-
ties from ref. 2 are used throughout the analysis.
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Symbols

2A area, m

Cp specific heat, j/kg-°K

k thermal conductivity, j/m-sec-°K

K arbitrary constant

L length, m

m mass of fluid, kg

M mass of heater tube, kg

n unit normal to tank surface

p pressure, N/m2 or psia

q heat flux, watts/cm2

Q heat rate, watts

Qleak heat rate due to heat leak at tank wall, watts

Qinput heat rate input to heater tube, watts

Qstored heat stored by heater tube, watts

Qnet net heat rate to fluid (see equation 26), watts

r radius of point in tank, m

t time, sec.

T temperature, °K or °F

v radial velocity of fluid in tank, m/sec.

V volume of tank, m3

V velocity vector of fluid in tank, m/sec.

a arbitrary function of time and space
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V del operator

£ emissivity

non-dimensional Lagrange space-coordinate

function defined by equation (27)

P fluid density, kg/m3

0 Stephan-Boltzmann constant, 5.6697 x 10-8 watts/

m2 _OK4

8 function defined by equation (28)

Subscripts

o initial value

w value at tank wall

HTR value at heater

COND result of conductivity

RAD result of radiation

b value at a boundary

(') d( )
dt

D( )
Dt substantive derivative of ( )

A( ) increment in ( )
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Analysis

Model and Basic Equations

A simplified tank model which includes the essential features of
an actual storage tank is illustrated in figure 1. A cylindrical tank
with a radius of .305 meters (1 foot) is assumed with variations in
properties in the radial direction only (i.e., the model is one-
dimensional). To provide a specified heat input for maintaining tank
pressure a cylindrical heater tube with a radius of .025 meters (1
inch) is centered in the tank. A uniform heat leak is assumed to
exist over the wall of the tank since cyrogenic storage tanks always
experience such a heat leak. In order to retain the simplicity of
the model the effect of fluid withdrawal is included by assuming a
uniform mass flux through the tank wall.

For the model shown in figure 1 fluid exists inside the heater
tube as it does in the actual tank. The heater tube in the actual
tank is provided with numerous holes so that fluid may move in or
out the tube. In the model two approaches were used to calculate
the thermally induced flow in and out the heater tube. In one approach
the tube was considered to be a separate tank. By assuming that the
pressure in the tube is the same as that in the main tank, the mass
flux from the heater tube can be calculated directly. In this
approach no attempt was made to include the effect of the fluid
leaving or entering the tube on the behavior of the fluid in the tank.
In the other approach the tube and tank were considered to be one
system. Since the heater tube mass flux can not be calculated
directly in this method, the mass of fluid in the tube was computed
at each time by integrating the fluid density over the volume of the
tube. The mass flux for the tube was then calculated by differentiating
the mass of fluid with time.

In this analysis a one-dimensional model of a supercritical cyro-
genic oxygen storage tank in zero gravity is considered. For a zero
gravity environment fluid velocities are generated only by thermal
expansion and mass removal effects and thus are expected to be small.
Therefore, viscous effects and inertial forces are neglected. An
examination of the thermodynamic data for cyrogenic oxygen in reference
1 shows that for the pressure (700-900 psia) and temperatures (100-
3000 K) of interest the speed of sound varies from approximately 150
to approximately 900 meters per second. The speed of sound is there-
fore considerably larger than any expected fluid velocities. Thus
pressure variations across the tank are negligible with respect to the
mean pressure. The analysis is therefore based on the equations which
follow:
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continuity: Dp + pV'V = o (1)
Dt

momentum: Vp = o (2)

energy: PCp DT = _() DP +V(kVT) _ Vq (3)
Dt \Tp Dt

If pressure gradients are retained then the equations are hyperbolic
and describe sound waves so that small characteristic times result.
Neglecting the pressure gradients reduces the system to parabolic
equations with considerably larger characteristic times and consequent
savings in computer time.

To obtain a solution to the basic equations (1)-(3) an equation
of state (i.e., p = f(p,T)), various thermodynamic properties

(C p-)T (9 p) and transport properties (k) are required. For
P , T)

this.work the equation of state and required thermodynamic properties
were obtained from the data in reference 1. The thermal conductivities
were obtained from the data in reference 2. The data from the
references has been arranged in the form of a table from which desired
values are found using a table look-up scheme with first order inter-
polation.

The radiation transport term has been included in the energy equa-
tion since the work of reference 3 has indicated the possible importance
of this mechanism. The absorption coefficient data used in that work
however, is questionable. At the present time work is being done at
the National Bureau of Standards, Boulder, Colorado to generate more
meaningful data. When that data is available the effect of radiation
energy transport can be evaluated with more confidence. The radiation
effect has not been included in this analysis.

Stratified Tank Analysis

Development of equation. - As previously mentioned the tank
characteristics of primary interest in this study are the tank
pressure fluctuations and thermal stratification resulting from with-
drawing fluid and cycling a heater to maintain the pressure in a
specified range. The basic equations will therefore be utilized to
develop an equation giving the tank pressure as a function of time and
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an equation giving the temperatures in the tank as a function of space
and time. With pressure and temperatures the density as a function
of space and time can then be computed from the equation of state
(data of ref. 1).

In the development of the pressure and temperature equations the
use of the momentum equation is avoided by using a Lagrangian view-
point for the substantive derivatives. That is, the substantive
derivative is written as

RL) =F-i )i (4)
Dt Lat I particle

so that particles (small volume elements) are followed in the solution.
In the one-dimensional analysis being used the particles or small
volume elements can be followed by using the condition that the parti-
cle mass is constant. Thus

podV = pdV

where the subscript "o" denotes values at the initial time and the
unsubscripted quantities are values at a subsequent time. For one-
dimensional cylindrical coordinates

Porodro = prdr (5)

where r
o

and r represent the initial and subsequent position of a
particle. The simplicity of-using the Lagrangian viewpoint is ob-
tained by transforming to the initial (ro) coordinates for the com-
putation and transforming back to the actual coordinates (r) to
analyse the results.

One possible complication does arise with the use of the Lagrangian

viewpoint because with mass removal occurring particles are leaving the
system. At each time the initial coordinate of the particle at the
tank wall must be determined and particles with larger initial coordi-
nates must be considered to have left the system. To avoid the problem
resulting from this continuous change in the coordinate system, a set
of non-dimensional initial coordinates can be defined. The non-
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dimensional coordinates are given by

n .- r O

(6)

where ro w is a function of time and can be obtained by considering
the loss of mass from the system in time dt

dro,w m

r, dt 2T2Lpwro,w

ro,w = ro, wdt

To transform partial differential equations from ro,t coordinates
to n,t coordinates the required relations are

[rO J r o,wL t

(10)
rorll I alCat JrO ~~~~~ L a~tIJ

The pressure equation development is begun by dividing the con-
tinuity equation (equation 1) by p and integrating over the tank
volume

1DO 2dV +fV.V =o
V

(11)

The Gauss Theorem can be applied to the second integral to obtain

240

(7)

(8)

(9)

- n r°'w D( )
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f DP dV + f Vn dA = o
pDt A

V

Since uniform mass flux over the tank surface has been assumed then

f ;tdA = vwAw =

A . Pw

where the convention is taken that a positive velocity will produce
a negative mass flux. Thus,

1 Do =

P Dt PVV

If the density is considered to be
ture then

D apT Dp +
Dt :(. Dt

a function of pressure and tempera-

TUps DT
(2T)pDt

and since Vp = o then Dp = Up which
Dt at

these conditions in equation (12) it

1M f 1 ( )DT
p = P= V (T)p D't dV

Vat ()T dV

is uniform in the volume. Using

follows that

(13)

is the equation governing the pressure changes. Equation (13) and the
energy equation (equation (3) without the radiation term) both contain
Up DT so they are solved simultaneously to give
at and Dt
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ap f-= Pw v I17 ({ p V.(kVT) dV

Jv P`andap T p2 3 2

and

DT =- T)
p

2T (Tp) p+ 1 V.(kVT)
Dt T p2 at p (kVT)

O-Cp p

(14)

(15)

where equation (14) can be used first to obtain Dp which appears in
equation (15). at

For one-dimensional cylindrical coordinates

dV = 2'rLrdr

where L is an arbitrary length chosen to produce a desired tank
volume and

V'(kVT) = 1 a (kr DT)
r Dr r 

Since it is desired to work in the Lagrangian viewpoint the transfor-
mations defined by equations (5-10) are used so that equations (14)
and (15) become

m

2~rLpw
_fl 1 1TT) 3 (k r

2
p aT) dr

T1l rowpop2Cp T P 3 rowr

1

'1l

Pnrroro.w {

p2
pT p2 2c

(16)
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= _ p T P + 1 2 a , kr p
9T p2Cp at po2Cp r~rO an 3 ro W r0

Tparticle
art ) particle

UT\
anI 

(17)
-n ow aT

r ,Wa
O,W

where n,r and r w are defined by equations (6), (7), and (8)
respectively. To finR'the location of particles equation (5) is
used to obtain

]rl= rl rodr,
(18)

Boundary conditions.- Since equation (17) is a second order partial
differential equation, two boundary conditions are required. For the
fluid in the heater tube a symmetry condition is applied at the center
of the tube

I raT
F~ r=o

= 0 (19)

and the temperature of the fluid at the heater tube wall is equated
with the heater temperature.

T = THTR (20)

For the fluid outside the heater tube, the temperature of the fluid
at the heater tube wall is equated to the heater temperature

T = THTR

and at the tank wall a heat flux (heat leak is imposed)

Qleak =
'

(ar ) Aw
( r /w

(21)

(22)



For two of the boundary conditions the heater temperature is required.
To determine its temperature the heater tube is considered to be a
lumped mass and a heat balance is computed. The elements shown on
figure 1, are considered to obtain

Qstored = Qinput - Z QCOND - Z QRAD

HTHTR = QINPUTMHTRCp'HTR at kr) inside
HTR WALL - (k 3T) outside Ix

HTR WALL

AHTR - EHTR (THTR - Tw) AHTR

which is the equation used to find the heater temperature.

Uniform Tank Analysis

For a uniform tank the temperature and density are constant over
the tank volume. Equations (14) and (15) can be simplified for this
case by performing the volume integrals in equation (14) and by
integrating equation (15) over the tank volume. The results are

(24)
· 1

Up = E (T) Qnet
at (l_ I _ , I

ILapiT -p L(p4 2 pJV
and

aT |p T Up + 1 Qnet
at T P 2p 2 t pcp v

where the Gauss Theorem has been used to write

fvV'(kVT)dV =fA(kVT) '-dA

= Z QCOND + QRAD 
=
Qnet

(25)

(26)
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If one defines

f= 1

- E(p2Cp[(p]21 (27)

and

PCp = p (28)

then (25) and (26) can be written in the simpler form

aR = L m + O8 Q (29)
at v v 

aT _ 8T SP + Qnet
at p at pCpV (30)

Numerical Method

The stratified tank calculations are performed by solving the
partial differential equations given by (16) and (17) with boundary
conditions given by equations (19) - (23). Equations (6) - (8)
and (18) are used to convert the normalized Lagrangian space coor-
dinate n to the physical coordinates r. For the uniform tank
calculations the ordinary differential equations given by (29)
and (30) are solved. The numerical method employed is to replace
the derivaties in each equation by appropriate finite difference
approximations and advance the solution in time. The integrals in
equation (16) are evaluated using the trapezoidal rule.

Finite difference expressions. - For purposes of illustration

an arbitrary function of time and space a(t,r) is considered. The
difference expressions are:

aa = a(t + At,r)- a(t,r)
at At (31)
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Da = a(t,r + Ar) - a(t,r - Ar)
Tr 2Ar (32)

32a = a(t,r + Ar) - 2a(t,r) + a(t,r - Ar)
Dr2 Ar 2 (33)

For functions of time only an expression like equation (31) is used.
At the boundary points the difference expression used for Da is

Dar

_ a(t,rb) - aC(t,rh + Ar)
Ob -Ar (34)

where the signs (+) are selected depending on whether the boundary
is a right hand or left hand boundary.

If a boundary condition of the form

3rb (35)

is specified then D2 a) is written as

\72'/b

K-_ [-(t,rb) - c(t,rb + Ar) ]
a2cL= $Ar (36)

Ar

Stability. - In a finite difference approach such as that used
the stability of the computing scheme must be considered. The
equations of interest as far as stability is concerned are equations
(16) and (17). A linear stability analysis applied to equation (17)
yields

At < 1

2kr2 p + 1 {Up 3p (37)

ro 2 p2CP (Ar)2 p2Cl O/p atJ

)i
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as a restriction on the time step size. However, the integral nature

of equation (16) precludes any simple stability analysis of that

equation. Therefore it was decided to use equation (37) to define

the time steps for both equations. Because of the uncertainty with

regard to the stability of equation (16) the results must be checked

by making calculations for a range of time step sizes and noting

the changes in the solutions. The results of such a procedure are

discussed in the section which follows:

Results and Discussion

Calculated Results

Calculations for a uniform tank have been made and the results

are presented in figure 2. The calculations give the time rate of

change of pressure as a function of temperature for a range of mass

flux rates both for heat addition (Qnet = 125 watts) and for no

heat addition. The results indicate that for temperatures up to near

critical values (i.e., near critical temperatures are between 155

and 1650 K) the magnitude of the pressure derivative is relatively

high and varies significantly with temperature whereas at higher

temperatures the magnitude is relatively low and the variations are

only slight. The unusual variations in the pressure derivative in

the near-critical region reflects the rapid changes in thermodynamic

properties in this region. These results also show that the mass flux

rate has a strong influence at temperatures below the near critical

region but has only a weak influence at higher temperatures.

Stratified tank calculations for four typical tank operating

conditions have been made. The tank and heater physical properties

which were used for all the computations are given in Table I. Input

values for each of the four cases computed are given in Table II.

Because of the questionable stability of equation (16) each of the

cases was calculated with the time step size determined by 1/3 of

the expression in equation (37) and for values successively smaller

until the solution became stationary with respect to step size

changes. The time step sizes determined for stability of cases 1

and 2 were about an order of magnitude lower than the initially

computed values whereas the initially computed values were found

to be adequate for cases 3 and 4. The results for cases 1-4 are

presented in figures 3-14. The quantities shown are the time histories

of heater temperature, tank pressure, and heater tube mass flux and

profiles of temperature and density across the tank for pertinent

simulated times. The pressure change potentials are indicated in the

results by the differences between the stratified tank pressure and
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the associated uniform tank pressure. The degree and extent of strati-
fication in the tank is assessed by examining the temperature and
density profiles.

The time histories in figure 3 show that cases 1 and 2 have the
same characteristic feature, that is many heater cycles occurred
during the two-hour simulated time of the calculations. In contrast
less than one heater cycle was obtained for cases 3 and 4. This
difference in characteristic behavior is probably due to the fact
that the initial temperatures of cases 1 and 2 are in the sensitive
range below the near critical region whereas the initial temperature
of case 3 is in the near critical region and that for case 4 is
considerably higher. It should be noted that the relative insensi-
tivity of the tank pressure to heat input for the lowest density cases
(cases 3 and 4) causes the heater temperature to reach quite high
values (THTR > 5000 K for case 4). The very high frequency heater
cycling for case 1 apparently results when the heater temperature
becomes stationary ("locked" or "trapped") in the near critical
temperature region. In this regard it is noted that when the
heater temperature for case 2 is in the near critical region the
heater cycles at a relatively high rate but the rate diminishes as
the heater temperature rises above the near critical region.

Results for the possibility of a pressure change caused by
mixing indicate significant pressure drop potentials for cases 1
and 2 (100 and 120 psia respectively at t = 120 min), initially a
pressure drop potential and later a pressure rise potential for
case 3, and significant pressure rise potentials for case 4 (60
psia at t = 120 min). These pressure rise potentials are in dis-
agreement with analyses of other investigators (see for example
reference 4) and require further study.

The heater mass flux rates obtained are presented in figure 4.
The results presented are for the separate heater tube and tank model
only. These results show that the heater mass flux rates for cases
1 and 2 are relatively high compared to the mass flux rate of the
tank whereas the rates for cases 3 and 4 are relatively low. The
calculations indicate that fluid leaves the heater tube when the
heater is on and enters the tube when the heater is off. Thus for
some tank operating conditions this mechanism may be important as
far as inducing convective motions-of the fluid.

Heater mass flux rate results considering the tank as one system
are not available because of excessive computer time required. In
this approach the heater location moves from node to node because of
the Lagrangian coordinate system used. As a consequence a fine nodal
spacing and hence very large computational times were required to
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avoid numerical difficulties. However, a limited number of calcula-
tions using this approach have been made. They indicate that the
heater tube mass fluxes may be as much as a factor of 2 lower than
those calculated by the separate heater tube approach. The gross
tank behavior however is not significantly effected.

Profiles of temperature and density in the tank are presented in
figure 5 for simulated times which were judged to be pertinent as far
as illustrating the stratifications obtained. It is seen that the
degree of stratification is significant in all the cases. For
example, the density in the area next to the heater is 1/2 to 1/4
of the density in the outer portion of the tank. However, except
for case 4, the extent of the stratification is confined to a
region very close (within about .025 m (1 in.)) to the heater. For
case 4 the density (and temperature) stratification is significant
and extends far into the tank. For cases 3 and 4 the increase in
density in the unstratified portion of the tank over the initial value
is a result of the work done on that portion of the fluid by the
expansion of the stratified fluid near the heater.

Comparison With Flight Data.

The calculations just described have been compared with Apollo 14
flight data. The comparisons are of the heater temperature and tank
pressure and are presented in figures 6-9. Cases 1 and 2 are high quan-
tity cases (95% and 75% respectively) for times when the spacecraft is
in an attitude hold condition. Cases 3 and 4 are moderate to low quan-
tity cases (52% and 12% respectively) for times when the spacecraft is
spinning for passive thermal control (PTC). Since the calculation
method presented here considers only thermally induced motions, then it
should be expected that a better agreement between calculated and flight
data would be obtained for cases 1 and 2 than for cases 3 and 4. An
examination of figures 6-9 shows this to be true.

For cases 1 and 2 the calculations correctly predict the general
characteristics of the heater cycling and the maximum heater tempera-
ture. The flight data in figure 6 show the existance of the condition
previously discussed in the calculated data where the heater tempera-
ture becomes nearly stationary in the near-critical region and the
heater begins cycling at a high frequency. The comparison in figure 7
indicates that for early simulation times the calculations do not agree
well with the flight data. For latter simulation times when stratifica-
tions have accrued the calculations agree well with the data.

For cases 3 and 4 the calculations are seen to over predict both
the time for the heater cycle and the maximum heater temperature.
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In figure 8 note that after the heater is shut-off the pressure does
not decay as rapidly in the calculations as in the data. Also the
heater temperature is higher in the calculation than in the data for
the entire heater cycle. These differences are attributed to the
fact that the present calculation method neglects the convective
transport mechanisms resulting from the spacecraft motions. The
differences in the pressure cycle in figure 9 are not adequately
understood. However the differences in the heater temperature
again indicate an effect due to convective energy transport.

Conclusions

Calculations have been made of the behavior of supercritical
oxygen in a storage tank in zero gravity while fluid is withdrawn
and a heater is cycled to maintain the tank pressure in the range of
5.9295 x 106 N/m2 (860 psia) to 6.2116 x 106 N/m2 (900 psia). A one-
dimensional model was used and the thermally induced movemoment of
the fluid was the only motion considered. Four cases representing a
wide range of tank operating conditions were considered. Based on
the results obtained the following general conclusions are made:

1. For initial temperatures below near-critical, the tank
pressure oscillates at a relatively high rate and the heater tempera-
ture remains low whereas for initial temperatures above near critical
the tank pressure changes slowly and high heater temperatures result.

2. The results for pressure change potentials have indicated
that for initial temperatures below near-critical,significant pressure
drop potentials accrue (over 100 psia in 2 hours).

3. For initial conditions below the near-critical values
the flux of fluid mass into and out of the heater tube is significant
and may be important as far as inducing convective motion of the fluid.

4. A high degree of stratification was obtained for all
cases considered however the stratified region extended appreciably
into the tank only for the case with highest initial temperature,
1940K.

5. A comparison of the calculations with Apollo 14 flight
data has indicated that for attitude hold conditions the calculations
are in good agreement with the flight data but for conditions when
the spacecraft is spinning the calculations over predict the heater
temperature and the time for a heater cycle.
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TABLE I

Physical Properties Used in Calculations

Tank Radius

Tank Length

Tank Volume

= 0.305 m

= 0.463 m

= 0.135 m3

(1.0 ft)

(1.52 ft)

(4.75 ft3 )

Heater

Heater

Heater

Heater

Heater

Heater

on Pressure = 5.9295 x 106 N/m2 (860 psia)

off Pressure = 6.2116 x 106 N/m2 (900 psia)

Radius = 0.025 m (1. in.)

Mass = 1.13 kg (2.5 lbm)

Specific Heat = 460. j/kg-°K (0.11 Btu/lbm-°F)

Emissivity = 0.3

Computing Nodes inside Heater Tube = 6

Computing Nodes in Main Tank = 57
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TABLE II

Input Conditions for Stratified Tank Calculations

Case 1 - Attitude

T =

Po =

oQinput =

Qinput =

Qleak =

m =

Case 2 - Attitude

T O =

Po

0o =

Qinput =

Qleak

m =

hold, approximately 95% quantity

1100 K (1980 R)

5.9295 x 106 N/m2 (860 psia)

1054.5 kg/m3 (65.83 lbm/ft3)

123.03 watts (419.82 Btu/hr)

8.06 watts ( 27.5 Btu/hr)

-0.00011 kg/sec (0.87 lb/hr)

hold, approximately 75% quantity

1420 K (2550 R)

5.9295 x 106 N/m2 (860 psia)

837.76 kg/m3 (52.30 lbm/ft3)

123.24 watts (420.53 Btu/hr)

6.45 watts (22.0 Btu/hr)

-0.000116 kg/sec (0.92 lb/hr)
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TABLE II (concluded)

Case 3 - Passive thermal control (PTC)-approximately
52% quantity

T
o

= 1570 K (2830R)

PO = 5.925 x 106 N/m2 (860 psia)

PO = 536.4 kg/m3 (33.49 lbm/ft3)

Qinput = 111.45 watts (380.30 Btu/hr)

Qleak = 4.55 watts (15.5 Btu/hr)

n = -.000155 kg/sec (1.23 lb/hr)

Case 4 - Passive thermal control, approximately 12% quantity

T
o

= 1940 K (3500 R)o

PO = 5.9295 x 106 N/m2 (860 psia)

, O = 148.73 kg/m3 (9.28 lbm/ft3)

Qinput= 111.45 watts (380.30 Btu/hr)

Qleak = 4.25 watts (14.5 Btu/hr)

mn = -.000107 kg/sec (0.85 lb/hr)
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Figure 5. - Profiles of temperature and density in tank for cases 1-4.
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Apollo 14 Data

- - Calculations
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Comparison of calculations for Case 1 with Apollo 14 flight data.

Flight data begins at 10 hours 25 min. GET.
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