
NASA TECHNICAL NOTE

!

Z
l=-

Z

NASA TN D-6792

CAG E:: F_LE
COPY

THE AEROTHERMODYNAMIC ENVIRONMENT

OF THE APOLLO COMMAND MODULE

DURING SUPERORBITAL ENTRY

by Dorothy B. Lee and Winston

Manned Spacecraft Center

. Houston, Texas 77058

D. Goodrich

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • APRIL 1972



/

?

/ .



1. Reoort No. _ 2. Government Accession No.
NASA TN D-6792

4. Title and Subtitle

THE AEROTHERMODYNAMIC ENVIRONMENT OF THE APOLLO
COMMAND MODULE DURING SUPERORBITAL ENTRY

7. Author(s)

Dorothy B. Lee and Winston D. Goodrich, MSC

9. Performing Organization Name and Address

Manned Spacecraft Center
Houston, Texas 77058

_. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

3. Recipient's Catalog No.

5. Report Date

April 1972

6. Performing Organization Code

8. Performing Organization Report No.

MSC S-267

-_. Work Unit No.

914-11-20-10-q2 . _

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Note

-_. Sponsoring Agency Code

Washington, D.C. 20546

Supplementary Notes The MSC Director waived the use of the International System of Units (SI) for

_this Note, because, in his judgment, use of SI Units would impair the usefulness
Technical

of the report or result in excessive cost.

atmospheric
Abstract

Aerothermodynamic measurements were obtained on two Apollo spacecraft during
entry at near-lunar-return velocities. Histories of measured pressure and of convective and
radiative heating rates are compared with theoretical predictions and with wind-tunnel results.
The comparisons show that pressures measured in the wind tunnel correspond to those meas-
ured in the flight environment of the entry face. Unexplained low pressures were obtainedheatingon
the conical section. Measured radiative heating rateSwasagreefoundWithbetweenPredicti°nscalculated for
both visible and infrared radiation. Good agreement convective
rates measured in flight and predictions obtained by using cold wall theory adjusted for mass

injection from the ablator.

ribution Statement

Key Words (Suggested by Author(s))

Aerothermodynamics
Convective Heating Pate

' Pressure

Apollo Flight Data _ice

I 19' Security Classif' (°f this rep°rt) _ Security Classif' (°f thi_ page)None 1 87 I _;3 *00
None

L

• For sale by the National Technical information Service, Springfield, Virginia 22151



• r • _ r_._

rr r

_ r

I



CONTENTS

Section

SUMMARY .....................................

INTRODUCTION ..................................

SYMBOLS .....................................

CONFIGURATION AND FLIGHT TEST .....................

Entry Vehicle ..................................

Instrumentation .................................

Entry Trajectory ................................

RESULTS AND DISCUSSION ...........................

Pressure ....................................

Radiative Heating Rates ............................

Convective Heating Rates ...........................

CONC LUDING REMARKS ............................

REFERENCES ...................................

Page

1

1

2

3

3

3

3

5

5

6

7

10

11

iii



Table

I

TABLE

LOCATIONSANDRANGESOF PRESSURETRANSDUCERS,
CALORIMETERS, AND RADIOMETERS..............

Page

FIGURES

Figure

1

2

7

Apollo Block I entry vehicle .....................

Sketchof Apollo commandmodule, showinginstrumentation
locations ..............................

Schematicof the aerothermodynamic instruments. Dimensions
are in inches

(a) Pressure transducer .......................
(b) Radiometer ...........................
(c) Wafer calorimeter. (Seeref. 4.) ................
(d) Asymptotic calorimeter. (Seeref. 3.) .............

Comparison of flight entry trajectories with heat shield design
trajectories .............................

Entry conditions of spacecraft 017 and 020

(a) Spacecraft 017 ..........................
(b) Spacecraft 020 ..........................

Distribution of local to total pressure ratio around Apollo
commandmodule for o_ = 25 ° . ..................

Histories of pressures measured on spacecraft 017

(a) Y =-2.0in., Z =-2.0in.,
c C

(b) Y = 2.74 in., Z = 39.10in.,
c C

(c) Y = 1.50in., Z = 55.02 in.,
C c

(d) Y = 1.82in., Z = 64.99 in.,
C c

(e) Y = 1.50in., Z = 71.82in.,
c C

(f) Y =-l. 15in., Z = 74.98 in.,
c c

(g) Yc = -10"59 in., Z c

S/R = 0. 004 ..........

S/R = 0. 513

S/R = 0. 732

S/R = 0. 872

S/R = 0.969

S/R = 1. 038 .........

=-48.90in., S/R=-0.663 .......

o.o,°o.oo

°°°°o°°o°

,°oo,o°°°

ooo,°,°oo

Page

13

13

14
14
14
14

15

16
17

18

19

19

20

20

21

21

22

iv



I r r

Figure

8

9

i0

ii

12

13

14

(h) Conical section ..........................

(i) Toroid ...............................

Comparison of spacecraft 017 flight measurement with wind-tunnel
data for a = 25 ° ..........................

Histories of pressure measured on spacecraft 020

(a) Aft compartment .........................
(b) Windward conical section ..................
(c) Yaw toroid and conical section ..................
(d) Toroid ..............................

Radiative heating rates measured at the stagnation point of

spacecraft 017 compared with theoretical predictions .......

Comparison of measured radiative heating rates on
spacecraft 020 with theoretical predictions

(a) Yc = -0" 48 in" Zc=55.0in.,

= = -48.75 in.,(b) Yc 1.02 in., Zc

S/R = 0.727 .' .........

S/R = -0.643 .........

Wind-tunnel distribution of local heating rate for a = 25 °

divided by zero angle-of-attack stagnation-point heating
rate .................................

Histories of high-range calorimeter wafer temperatures
measured on spacecraft 017

(a) Aft compartment .........................
= 4.23 in. Z = 55.16 in.,(b) Top four wafers of Yc ' c

S/R = 0. 732 ...........................
=-4.74in. Z =-50.0in.

(c) Top three wafers of Yc ' c '
S/R = -0.663 ..........................

=50.0in., Z =-l. 5in.,(d) Top three wafers of Yc c
S/R = 0. 666 ...........................

Heating rates calculated from wafer calorimeter temperature
measurements on spacecraft 017

(a) Yc = -0.48in., Z c 0.48in., S/R= 0.004

(b) Yc = 0in., Z c= 39.0in., S/R= 0.512 ...........

(c) Yc = 4.23 in., Z c= 55.16 in., S/R= 0.732 ..........

=4.01in., Z =71.72in., S/R= 0.969 ..........(d) Yc c

(e) Yc 1.31in., Z c 74.98 in., S/R= 1.038

Page

22

23

24

25
28
29
30

31

32

32

33

34

36

37

38

39

40

41

42

43



Figure

15

16

Page

(f) Y =-4.74in., Z =-50.0in., S/R=-0.663 ......... 44
C C

(g) Yc = 50.0in., Z c=-l.5in., S/R= 0.666, 8 = 0 ° ...... 45

(h) Yc = 12.73in., Z c=-49.47in., S/R= 0.671, 8 = 284 ° . • . 46

High-range calorimeter wafer temperature measured on
spacecraft 020

(a) Y =-0.48in., Z = 0.48in., S/R= 0.004 .......... 47
c C

(b) Y = 0in., Z = 39.0in., S/R= 0.512 ............ 47
e c

(e) Top wafer of Y = 4.23 in., Z = 55.16 in.,
S/R= 0.732 c c 48• • • • • • • • • • • • • • • • • • • • • • • • • •

(d) Second wafer of Y = 4.23 in., Z = 55.16in.,
C C

S/R = 0. 732 .......................... 48
(e) Third wafer of Y = 4.23 in., Z = 55.16 in.,

C C
S/R -- 0. 732 .......................... 48

(f) Fourth wafer of Y =4.23in., Z = 55.16in.,
S/R = 0.732 c c 49• • • • • • • • • • • • • • • • • • • • • • • • • •

(g) Yc = 0in., Z c= 65.0in., S/R= 0.865 ............ 49

(h) Y =4.01in., Z = 71.72in., S/R= 0.969 .......... 50
C C

(i) Yc = 1.31in., Z c= 74.98 in., S/R= 1.038 .......... 50

(j) Top wafer of Yc = -4.74 in. Z = -50.0 in.

S/R = -0. 663 ..........................

(k) Second wafer of Y =-4.74in., Z = -50.0in.,
S/R = -0. 663 c c• • • • • • • • • • • • • • • • • • • • • • , • • °

(1) Third wafer of Y =-4.74in., Z =-50.0in.,
S/R = -0.663 c c• • • • • • • • • • • • • • • • • • . • • • • • • •

(m) Top wafer of Yc = 50.0in., Z c=-l.5in.,

S/R= 0.666, 8 = 0 ° ......................
Second wafer of Y = 50.0in., Z =-l. 5in.,

C c
(n)

S/R = 0. 666,
(o) Third wafer of

S/R = 0.666,
(p) Y = 13.23 in.,

C

(q) Yc = 12.73 in.,

8 __. 0 ° , • ° • • • • • • • , • • , • • , • ° o ° .

Y =50.0in., Z =-l. 5in.,
C C

8_-0 ° ......................

Z =-65.18in., S/R= 0.893 .........
C

Z =-49•47in., S/R=-0.673 ........
C

Heating rates calculated from wafer calorimeter temperature
measurements on spacecraft 020

(a) Yc =-0"48in'' Z c= 0.48in., S/R= 0.004 ..........

(b) Y = 0in., Z = 39.0in., S/R= 0.512 ............
c C

(c) Y =4.23in., Z = 55.16in., S/R= 0.732 ..........
C C

51

51

52

52

53

53
54

54

55

56

57

vi



Figure

17

18

19

20

21

Page

(d) Y = 0in., Z = 65.0in., S/R= 0.865 ............. 58
C C

(e) Yc = 4.01in., Zc= 71.72 in., S/R= 0.969 .......... 59

(f) Yc =-4"74{n'' Zc=-50.0in., S/R---0.663 .......... 60

(g) Yc = 50.0in., Z c=-l.5in., S/R= 0.666, 0 = 0° ...... 61

= =-49.47in. S/R=-0.673, 0 = 284 ° . . . 62(h) Yc 12.73 in., Z c

Asymptotic calorimeter measurements on spacecraft 017
compared with theoretical predictions

(a) Windward conical section ..................... 63
(b) Toroid ............................... 65
(c) Leeward conical section ..................... 67

Asymptotic calorimeter measurements on spacecraft 020
compared with theoretical predictions

(a) Windward conical section ..................... 69

(b) Toroid ............................... 71
(c) Leeward conical section ................. . . . . 73

Photograph of dummy umbilical on spacecraft 017 .......... 77

Photograph of recovered spacecraft 020 showing umbilical
and astrosextant ...........................

Heating-rate measurements on singularities of
spacecraft 017

78

(a) Umbilical cavity .......................... 79
(b) Umbilical frame .......................... 79
(c) Hatch gap ............................. 80

vii





THE AEROTHERMODYNAMIC ENVI RONMENTOF THE APOLLO

COMMAND MODULE DURING SUPERORBITAL ENTRY

By Dorothy B. Lee and Winston D. Goodrich
Manned Spacecraft Center

SUMMARY

Aerothermodynamic measurements were obtained on two Apollo spacecraft dur-

ing atmospheric entry at near-lunar-return velocities. Histories of measured pres-
sure and of convective and radiative heating rates are compared with theoretical

predictions and with wind-tunnel results. The comparisons show that pressures meas-
ured in the wind tunnel correspond to those measured in the flight environment of the

entry face. Unexplained low pressures were obtained on the conical section. Meas-
ured radiative heating rates agree with predictions calculated for both visible and in-
frared radiation. Good agreement was found between convective heating rates

measured in flight and predictions obtained by using cold wall theory adjusted for mass

injection from the ablator.

INTRODUCTION

The aerothermodynamic environment used in the design of the Apollo thermal

protection system was based on theory and on wind-tunnel data. This predicted envi-
ronment compared favorably with data obtained from four flight tests of Apollo unmanned
vehicles. These tests were conducted for the purpose of evaluating the thermal protec-

tion system in flight. Aerothermodynamic measurements were made to assist in the
thermal protection system evaluation. Because of the opportunity to obtain aerother-

modynamic information on full-scale vehicles at orbital and superorbital velocities, an
effort was made to analyze the measurements. Analysis of aerothermodynamic data
obtained during the Apollo 1 and 3 missions, which attained orbital velocities, is re-

ported in reference 1. Analysis of the aerothermodynamic data from the two instru-
mented spacecraft which entered the atmosphere at velocities equal to or near lunar
return conditions is reported herein.

The first test at lunar return velocities (36 628 ft/sec) was conducted with space-

craft 017 on the Apollo 4 mission, which was the first to use the Saturn V launch vehi-
cle. The spacecraft was launched from NASA Kennedy Space Center, Florida, on
November 9, 1967, and was recovered in the Pacific Ocean near Hawaii after an
8-1/2-hour flight. The second test flight, launched on April 4, 1968, was conducted
with spacecraft 020 on the Apollo 6 mission. The planned entry inertial velocity of
36 500 ft/sec was not achieved by spacecraft 020 because of the unsuccessful attempt
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to reignite the Saturn IV engine. However, heat shield performance data and aero-
thermodynamic data were obtained at the entry velocity of 32 830 ft/sec.

Measurements of pressure and heating rates were obtained on spacecraft 017 and

020 with pressure transducers, radiometers, and surface-mounted calorimeters. The
data were obtained at free-stream relative velocities between 35 300 and 3000 ft/sec on

spacecraft 017 and between 31 600 and 2700 ft/sec on spacecraft 020. This report pre-
sents histories of the measured pressures and heating rates obtained at these lunar re-

turn conditions. The flight data are compared with theoretical predictions and with
wind-tunnel results.

SYMBOLS

M
oO

P

Pt

q

qt, a=O

qWB

R

R

Rl ,x

S

Voo

Xc' Yc' Zc

c_

0

free-stream Mach number

pressure, psia

stagnation pressure, psia

heating rate, Btu/ft2-sec

stagnation-point heating rate at zero angle of attack, Btu/ft2-sec

heating rate adjusted for blowing, Btu/ft2-sec

constant equal to one-half the maximum diameter, 6.417 feet

free-stream Reynolds number based on body diameter

local Reynolds number based on length from flight stagnation point

surface distance from center of aft compartment, feet

free-stream velocity, ft/sec

command module body coordinates, inches

angle of attack, degrees

angle about the command module Xc-axis , degrees

2

.......... .... = : ,17̧̀ `¸¸.,



CONFIGURATION AND FLIGHT TEST

Entry Vehicle

The heat shield qualification flight tests were conducted with a Block I spacecraft

configuration a predecessor of the lunar mission spacecraft. A sketch of the entry
vehicle is shown in figure 1. The heat shield or thermal protection system covers the
entire command module and is divided into three parts: the aft compartment that is

the blunt entry face, the crew and forward compartments that comprise the conical
section, and a toroidal fairing between the aft compartment and the conical section.

Modifications made to the Block I design resulted in a Block II configuration de-

signed for the lunar orbital rendezvous phase of the mission. The changes included
(1) truncating the apex of the forward compartment to accommodate the docking capa-
bility and (2) removing the scimitar antennas and leeward umbilical housing. A com-
prehensive discussion of the Apollo design is given in reference 2. Some of the
Block II singularities, such as the recessed umbilical and the astrosextant/telescope
located on the windward conical section, were tested on spacecraft 017 and 020.

Instrumentation

Pressure transducers, radiometers, and surface-mounted calorimeters were
installed on spacecraft 017 and 020 to measure the aerothermodynamic environment
during atmospheric entry. The locations of these sensors, which were the same for
both vehicles, are shown in figure 2. The sensor ranges and location identifications
are given in table I. Schematic diagrams of the various sensors are shown in figure 3.
Local pressures were measured through a small hole in the ablator that led to a strain-
gage diaphragm pressure transducer located under the substructure. Radiometers,
used to measure radiative heating rates, consisted of a thermopile behind a quartz win-
dow located at the bottom of a stepped hole in the ablator. Two types of calorimeters
were used to measure total heat transfer rates. Asymptotic calorimeters, designed to

measure heating rates below 50 Btu/ft2-sec, were located on the toroid and the conical

section. The design of these instruments is shown schematically in figure 3, and the

principle of operation is discussed in reference 3. High-range slug calorimeters, de-
veloped specifically for the Apollo Program, were located on the aft compartment to

measure heating rates greater than 50 Btu/ft2-sec. The slug calorimeters consist of

several graphite wafers that are stacked to allow continuous heating measurements
during recession of the surrounding ablator. The detail of one such wafer unit is shown
schematically in figure 3. The wafer temperature and the rate of change of tempera-
ture are used to determine the heat flux to the surface. Operation and design of the
calorimeters are discussed in reference 4.

Entry Trajectory

Design of the Apollo thermal protection system was based on two design trajec-
tories: an overshoot, long-range trajectory for the maximum heat load to the vehicle



TABLE I.- LOCATIONS AND RANGES OF PRESSURE TRANSDUCERS, CALORIMETERS. AND RADIOMETERS

Pressure transducer

Vc'

in.

Aft compartment

Wafer calorimeter

Zc, Range, Yc' Zc, Range, Yc' Zc'
o F

in. psia in. in. in. in.

-2.0 -2.0

2.7 39.1

1.5 55.0

1.8 65.0

1.5 71.8

-1.2 75.0

-I0.6 -48.9

Conical section

Radiometer Pressure transducer Calorimeter

Range, X c, e, Range, X c, _, Range,

Btu./ft2-sec in. deg psia in. deg Btu/ft2_sec

1200

1200

26.5 91.6 2

50.0 88.5 2

83.4 86.9 2

104.0 94.8 2

26.3 135.8 2

18.2 176.6 2

18.5 229.5 2

18.5 272.3 2

78.9 185.0 2

78.9 263.9 2

10 -0.5 0.5 5000

10 0 39.0 5000

10 4.2 55.2 5000 -0.5 55.0

10 0 65.0 5000

10 4.0 71.7 5000

5 1.3 75.0 5000

5 -4.7 -50.0 5000 1.0 -48.8

12.7 -49.5 5000

13.2 -65.2 5000

50.0 -1.5 5000

-59.6 31.9 5000

Radiometer

Xc, e, Range,

in. deg Btu/ft2_sec

26.5 93.7 150

50.0 85.3 100 52.3 88.5 50

83.4 82.6 100

104.0 101.5 75

26.3 137.9 100

78.9 37.0 75

18.2 179.4 75

18.5 225.1 75

18.5 264.0 75

52.5 179.0 50

78.9 189.0 50

104.0 191.5 50

50.0 228.8 50

78.9 226.2 50

50.0 272.0 50 45.0 270.1 50

78.9 267.8 50

104.0 274.8 50

60.0 268.0 10

65.0 278.0 10

35.0 90 150

43.0 90 150



and an undershoot, high-acceleration trajectory for maximum convective and radiative
heat transfer rates to the ablator. Heat shield qualification tests of spacecraft 017 and
020 were conducted in the middle of the design entry corridor to subject the command
module to heat loads and heat rates sufficiently high to qualify the heat shield with one

mission. (Spacecraft 020 was originally scheduled as a backup mission.) Figure 4
shows both the qualification trajectories and the design trajectories. The theoretical
heat load, calculated for a reference location (S/R = 0.9875) on spacecraft 017, is
93 percent of the overshoot trajectory heat load, and the maximum heat rate is 62 per-
cent of that calculated for the undershoot trajectory. Histories of the entry parameters

of spacecraft 017 and 020 are shown in figure 5. Although spacecraft 020 entered at a
velocity 3700 ft//sec less than planned, the test provided valuable heat shield perform-
ance data.

RESULTSAND DISCUSSION

Pressure

The two spacecraft were balanced with a center-of-gravity offset such that they
entered the atmosphere at a 25° angle of attack (ref. 5). Because an angle-of-attack
attitude results in a nonaxisymmetric flow field that is difficult to analyze, wind-tunnel

data were necessary for a preflight definition of the local environment around the vehi-
cle. The wind-tunnel pressure values, presented in reference 6 as a ratio of the local

pressure to the stagnation pressure behind a normal shock, are given in figure 6 for the
Apollo command module at 25 ° angle of attack. Estimates of the flight pressures were
made by using these ratios and normal-shock calculations of total pressure for the ac-

tual flight conditions.

Spacecraft 017. - Histories of the pressures measured on spacecraft 017 during

entry are compared in figure 7 with those calculated from wind-tunnel measurements.
Good agreement can be seen between the flight data and the estimates for the aft com-

partment measurements (figs. 7(a) to 7(g)). The data obtained on the conical section
(figs. 7(h) and 7(i)), however, are considerably lower (about one-third) than the wind-
tunnel values during the first peak. The first peak corresponds to the time of maxi-
mum heating and thus may be influenced by mass injection into the boundary layer from

the aft compartment ablator.

The pressure distribution measured on the aft compartment is compared in

figure 8 with the 25 ° angle-of-attack wind-tunnel distribution. The flight data,
shown as bars, were normalized by the maximum pressure measurement obtained at
S/R = 0.732. The bars indicate the range of pressure ratios when the measured values
were at least 50 percent of the full-scale instrument reading. The good agreement be-

tween the flight data and the wind-tunnel results supports the use of wind-tunnel data to

define the flight pressure environment.

Spacecraft 020.-Histories of the pressures measured on spacecraft 020 are
shown in figure 9 and compared with wind-tunnel measurements. As observed with

spacecraft 017 flight data, good agreement exists between spacecraft 020 pressure data



andwind-tunnel-based predictions for the aft compartment. However, the flight data
are as low as one-half the predictions for the conical section during the time of peak
heating.

The pressure deviations on spacecraft 017 and 020were observed to be directly
proportional to the heatingassociated with their respective trajectories; the higher ve-
locity entry of 017 producedthe greater deviation from prediction. This deviation in-
dicates, qualitatively at least, the influence of boundary-layer mass injection on the
aerothermodynamic environment of the vehicle.

Radiative Heating Rates

Four radiometers were mounted in each spacecraft one at the stagnation point,
one at the mid lee side of the entry face (S/R = -0.663), and two on the conical section
(one on the windward side and one on the lee side). Those on the conical section showed

no discernible response, which confirmed the prediction of negligible air and ablation
product radiation to the conical section. Radiative measurements are presented in this
report for completeness of data presentation only.

Spacecraft 017.- The radiometer, located on the lee side of the aft compartment
on spacecraft 017, was inoperative at the time of launch, and no data were obtained.
However, the radiometer at the stagnation point functioned properly. The stagnation-
point radiometer, which had a view angle of 9 °, measured only the visible and infrared
radiation intensities, including the nonequilibrium intensities. The measured intensi-
ties were converted to surface heating rates, by using the ratios of theoretical heating
rates and theoretical intensities. A history of the stagnation-point radiative flight
measurement is compared with predicted values in figure 10. The analysis assumes
that the stagnation-point standoff distance varies like that of a sphere whose radius is

10 feet$ which corresponds to the normal shock conditions on the command module at
= 25 . Except for a discrepancy at peak heating and after 30 050 seconds, the flight

data are in good agreement with predictions. The calculations of equilibrium radiation
characteristics of air are based on the theory of reference 7 and include nonadiabatic
or radiation cooling effects. The nonequilibrium radiation predictions are based on
(1) empirical fits to ground data, falling approximately midway between the data of Allen
(ref. 8) and Page et al. (ref. 7), and (2) the first data period of the fire I (ref. 9) and
fire II (ref. 10) flight measurements. The nonequilibrium radiation calculations include
both binary scaling and consideration of collision limiting.

The discrepancy between the spacecraft 017 flight data and predictions is attrib-
uted to the performance characteristics of the radiometer. While a preflight calibra-
tion of the radiometer was used for data reduction, an experimental program was
conducted in the NASA Manned Spacecraft Center Entry Materials Evaluation Facility

to investigate the effects of the ablator material on the sensor, as well as to gage the
performance characteristics of the sensor. Two-inch-diameter radiometer models
were mounted in Apollo ablator material and subjected to heat pulses simulating a por-
tion of the flight environment. The models were exposed to radiative heating emitted
from the end of a constricted arc column. A prominent dip similar to that measured
in flight during peak heating was observed in the postflight test. This decrease in in-
tensity is attributed to the attenuation of the infrared wavelengths during the temporary

6



formation of relatively cool ablation products within the radiometer cavity. Whenthe
cavity was heated, the attenuationdecreased andthe radiometer measured the expected
intensity level. The arc jet models exhibited a drift behavior similar to that observed
in flight after 30 050seconds. This phenomenonwas also attributed to the temperature
excursion of the ablator material that occurred whena changein the radiometer body
temperature causeda changein the thermopile heat flux.

Spacecraft 020.- The low entry velocity of spacecraft 020 resulted in radiative
heating predictions that were an order of magnitude lower than those for a lunar return
velocity. Likewise, the level of the measurements obtained on the aft compartment was
low. The data_ which are shown in figure 11, had a noise level that was as large as the
magnitude of the measurements. A postflight inspection of the radiometer located at
the stagnation point revealed a small obstruction in the radiometer port. The obstruc-
tion influenced the measurement and may have been the cause of an inconsistent trend
between the measured and the predicted heating rates seen in figure ll(a).

Convective Heating Rates

As with the pressures, heating rates to the Apollo configuration also were obtained
in wind-tunnel tests (refs. 6 and 11). Figure 12 shows the distribution of the wind-
tunnel data measured at _ = 25 ° referenced to the measured zero-angle-of-attack

stagnation-point value. The wind-tunnel data were used with the stagnation-point theory
of reference 12 to predict the cold wall laminar heating rates to the command module

during entry. The stagnation-point theory of reference 12 is based on the Apollo com-
mand module radius of 6.417 feet and is adjusted for the spherical-segment shape of

the spacecraft according to reference 13. Turbulent heating to the aft compartment and
the t0roid was estimated by using the theory advanced in reference 14 where the ratio

of turbulent to laminar heating is expressed as

qturbulent _ 0.055(R/, x) 0. 301 (1)

Cllaminar

No turbulent flowwas predicted to occur onthe conical section of spacecraft 017 and 020
because of the relatively low local Reynolds number in this region. The local

Reynolds number was calculated with the assumption of an equilibrium isentropic expan-
sion from stagnation conditions behind the normal shock to the local pressures obtained
from figure 6. Transition from laminar to turbulent flow was originally predicted to
occur at a local Reynolds number of 150 000 in attached flow and at a local Reynolds
number of 20 000 in separated flow. Because the data of reference 1 suggested that

transition might occur at a Reynolds number lower than 150 000 in the attached flow re-

gions, a value of 80 000 was se.lected to predict the heating rates.

Aft compartment measurement. - Eleven wafer calorimeters were located on the
aft compartment of both spacecraft. Three of the calorimeters provided simultaneous

temperature measurements of the top three or four wafers. Only the top wafer temper-
ature was measured for the other calorimeters. The lack of meaningful data from the

.



_: ?_ i _ : _

_ i: _ - "

wafer calorimeters on the two orbital flights (ref. 1) necessitated a redesign of the

sensor. The redesign was completed in time sufficient only for installation and not for

preflight calibration. Therefore, heating rates were determined from the wafer tem-
perature measurements with the use of an empirical fit to postflight ground test
data. Calibration of the sensors involved ground tests in which the temperature

measured in flight was used to control the heat input. The heat flux to the wafer was
also monitored with a laboratory standard calorimeter. An energy balance was applied

to the wafer-thermocouple assembly that took into account conductive losses and prop-
erty uncertainties. The losses and uncertainties were as much as 70 percent of the
total measurements for the low heating rates and generally 40 to 50 percent of the total

for the high heating rates.

Histories of the wafer temperatures measured on spacecraft 017 are given in fig-
ure 13. Heating rates were determined from these temperatures until the data became
erratic (around 2000 ° F). The calculated heating rates are shown in figure 14. At
most measurement locations, there is good agreement between the flight data and the
theoretical radiative plus laminar convective rates adjusted for blowing. Figure 14
also shows the cold wall theoretical convective rates plus radiative rates. The cold
wall rates were used as an input to a charring and ablation computer program, desig-

nated STAB II (ref. 15), to calculate the amount of heat blockage caused by ablation
products injected into the boundary layer.

The wafer temperature measurements obtained on spacecraft 020 are given in
figure 15. The heating rates determined from these temperature measurements are
compared with theory in figure 16. Some of the wafer temperature measurements on
spacecraft 020 had a bias, as much as 200 ° F, which was corrected to an initial value
of 60 ° F before calculating the heating rates.

Conical section heating rate measurements. - Histories of the heating rates meas-
ured with the asymptotic calorimeters on the conical section of spacecraft 017 and 020
are shown in figures 17 and 18, respectively. The data have been corrected to account
for a nonablating sensor embedded in the ablating material as presented in reference 16
and for nonisothermal wall effects as discussed in reference 17. These corrections

were found to be between 6 to 12 percent of the measured value near the toroid and 2 to

4 percent of the measured value near the apex. Cold wall predictions and predictions
adjusted for blowing for the charred regions are included in figures 17 and 18 for com-
parison with the flight data. For most windward conical locations, the theory overpre-
dicts the measurements. Because flight heating rate and pressure measurements were

considerably lower than the predictions on the two spacecraft, the cold wall theoretical
heating rates were adjusted to account for the growth of a laminar boundary layer by

Pmeasured/Ppredicted . The adjustment lowered the cold wall heating predictions by

60 to 70 percent, which brought the qWB into agreement with the measured rates. It

must be noted that the phenomenon responsible for the disagreement between wind-tunnel

and flight-pressure distributions on the conical section has not been identified. How-
ever, the postulate of upstream blowing seems to be sound. The apparent importance
of this phenomenon on the accuracy of the heating predictions should make identification

and qualification a challenge to the analyst.



The measured heating rates on the toroid were the same level as the cold wall
predictions. Thus, whenthe predictions were adjusted for blowing, they were lower
than the measurements. (Seefigs. 17(b)and 18(b).) However, the ablator temperatures
that were predicted with the adjustedheating rates were higher than the thermocouple
measurements located in the vicinity of the calorimeters. The inconsistency is unre-
solved and requires further analysis for resolution. The ablator data analysis is pre-
sentedin reference 18.

The lee side of the conical section is in separated flow where the heating rate
measurements agree well with wind-tunnel data, which indicated that separated flow
heating rates were approximately 2 percent of the Apollo stagnation-point theoretical
heating rates. In some locations, measured rates were as low as 1percent of the
stagnation-point theory. Onepercent of the Apollo stagnation-point theory corresponds
to 0.27 percent for a 1-foot-radius-sphere stagnation-point theory. No effects of protu-
berances were observed, and only momentary responses to reaction control enginefir-
ings were observed. These firings resulted in negligible heat loads to the affected areas.

Block II singularities investigated on spacecraft 017and 020were the recessed
umbilical andthe hatch door slots, both of which were simulated. Heating rates in and
near these singularities were measuredwith asymptotic calorimeters. Two calorime-
ters were located on the umbilical frame andthe umbilical cavity as shownin figure 19.
Two calorimeters were installed in the gap of the hatchdoor, which is located on the
lee side of the conical section. The astrosextant,/telescopearea was instrumented only
with thermocouples; the data from this region are discussed in reference 18. Figure 20
showsthe dummy umbilical and astrosextant/telescope on the recovered spacecraft 020.

The heating rates measuredon the umbilical and hatch gap of spacecraft 017 are
compared in figure 21 with smooth-bodypredictions for the same locations. The um-
bilical cavity measurement is significantly less than the smooth-bodyprediction. The
umbilical frame measurement, located downstreamof the cavity, is as much as twice
the measurement located 7 inches downstream at Xc = 50 (fig. 17(a)). The predicted

laminar heating for the hatch gap is based on 1 percent of the stagnation-point theory,
and the measurements are approximately one-tenth of the predictions.

In general, wind-tunnel-based predictions for the aft compartment and leeward
conical sections adequately describe the corresponding spacecraft flight environments.
The radiative heating rate flight data are in good agreement with predictions calculated
for the visible and infrared radiation, and the convective heating rates meaz,,red on the

aft compartment and the windward conical section in flight agree with cold wall theory

adjusted for blowing. Heating rates measured in and around surface singularities are
not severe when compared to undisturbed values, and trends are as expected.

The pressure measurements made on the windward conical section, which is as-
sumed to be in attached flow_ are significantly lower than predicted and are presumed
to be influenced by mass injection into the boundary layer from the aft compartment.



CONCLUDING REMARKS

Measurements of pressure and heating rates were made on Apollo entry vehicles

in flight at near-lunar-return velocities. Comparisons of the flight measurements with
theoretical predictions and with wind-tunnel results yield the following observations.

1. Wind-tunnel measurements provide a good description of the pressure on the

entry face during hypersonic flight.

2. Measured radiative heating rates on the entry face agree with predictions cal-
culated for the visible and infrared radiation.

3. No radiative heating was experienced on the conical section.

4. Convective heating rates on the entry face agree with cold wall theory adjusted

for blowing.

5. Convective heating rates in the charred regions on the conical section agree

with the theoretical predictions lowered by __Pmeasured/Ppredicted and then ad-

justed for blowing. The phenomenon responsible for lower pressures and heating to
this region can be attributed to upstream blowing.

6. Heating rates measured in the separated regions of the conical section agree
with predictions based on 1 percent, and in some regions 2 percent, of the Apollo

stagnation-point theory.

Manned Spacecraft Center
National Aeronautics and Space Administration

Houston, Texas, January 28, 1972
914-11-20-10-72
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Figure 19.- Photograph of dummy umbil_cal on spacecraft 017.
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Figure 20.- Photograph of recovered spacecraft 020 showing
umbilical and astrosextant.
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Figure 21. - Heating-rate measurements on singularities of spacecraft 017.
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