
l?3 97 1
R -673

CHARLES STARK DRAPER LABORATORY
A Divis ion of Massachusetts Institute of Technology · Cambridge, Moass

JANUARY 1971

(NASA-CR 12239 7 ) DESIGN OF OPTICAL HiIRROR
STRUCTURES Final Report, May 1969 -Noov
1970 Ko Soosaar (Massachusetts Inst, of
Techo) JanD, .1971 148 p CSCL 20F

DESIGN OF OPTICAL MIRROR STRUCTURES
KETO SOOSAAR



DESIGN OF OPTICAL MIRROR STRUCTURES

by

Keto Soosaar

January 1971

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CHARLES STARK DRAPER LABORATORY

CAMBRIDGE, MASSACHUSETTS 02139

This report covers research conducted

between May 1969 and November 1970.

Approved:

Approved:

Associate Director

Deputy Director



ACKNOWLEDGMENT

The assistance of Mr. Kenneth Maser and Mrs. Eugenia

Freiburghouse in STRUDL programming and data interpretation in

this study is gratefully acknowledged.

This report was prepared under DSR Project 55-34900 spon-

sored by the Electronics Research Center of the National Aeronautics

and Space Administration through contract NAS5-21542.

The publication of this report does not constitute approval by

the National Aeronautics and Space Administration of the findings or

the conclusions contained therein. It is published only for the

exchange and stimulation of ideas.

Copyright by the Massachusetts Institute of Technology, 1971.
Published by the Charles Stark Draper Laboratory of the
Massachusetts Institute of Technology.
Printed in Cambridge, Massachusetts, U. S. Ao, 1971.

ii



R-673

DESIGN OF OPTICAL MIRROR STRUCTURES

ABSTRACT

The structural requirements for large optical telescope mirrors

have been studied in this report with a particular emphasis placed on

the three-meter Large Space Telescope primary mirror. Analysis

approaches through finite element methods have been evaluated with

the testing and verification of a number of element types suitable for

particular mirror loadings and configurations. The environmental

conditions that a mirror will experience have been defined and a can-

didate list of suitable mirror materials with their properties compiled.

The relation of the mirror mechanical behaviour to the optical per-

formance is discussed and a number of suitable design criteria are

proposed and implemented. A general outline of a systematic method

to obtain the best structure for the three-meter diffraction-limited

system is outlined. Finite element programs, using the STRUDL II

analysis system have been written for specific mirror structures

encompassing all types of active and passive mirror designs.

Parametric studies on support locations, effects of shear deformation,

diameter to thickness ratios, lightweight and sandwich mirror con-

figurations, and thin shell active mirror needs have been performed.

Suggestions for further studies are presented.
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CHAPTER 1

INTRODUCTION

The design objective of any measuring instrument is to reduce

the inherent systematic and random errors in that device to at least

an order of magnitude smaller than the random errors in the

measured phenomenon. This goal is no less true with the astronom-

ical telescope. Earth-based telescopes are generally bounded in

their resolving power by the disturbances experienced by the light in

passing through the atmosphere, but even with this generally lenient

design requirement, considerable engineering skill has been required.

An orbiting telescope, on the other hand, need not use this particular

environmental bound and could instead be designed to the limits of

diffraction.

A limiting characteristic in the behaviour of an optical telescope

stems from the elasticity of the mirror material. Gravity and heat

will distort the surface of any mirror, no matter how expertly pre-

pared, and can greatly degrade the image quality. In some cases

this degradation is small, but with large telescope optics some form

of active compensation or adjustment, even if not continually ad-

ministered, is quite vital,

While it is relatively easy to determine the mirror thermal and

elastic properties and to define the gravity and temperature loadings,

the prediction of their consequences through structural analysis has

been evasive for some time. The optical mirror does not, in its

normal configuration, belong to any group of elasticity problems that

can be adequately solved by a series of simplifying assumptions. As

a consequence, the structural design of mirrors has remained less a
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science than an art, often subject to dark superstitions and violent

disputes. While a full-scale or reduced-scale test could always be

performed to settle the issue, it was, to say the least, a very costly

and inadequate means.

Within the past few years a major breakthrough has occurred

in the analysis of elastic continua. By means of the finite element

method it is, in theory, possible to determine the stresses and dis-

placements of any elastic body under any type of loading environment.

Recent applications of this theory by means of large-scale digital

computers indicate that the objective is nearly at hand.

One of the goals of this study is to develop a bridge between the

information needs of the stress-deformation behaviour of optical

mirrors and the existing analytical capabilities in the elasto-

mechanics field. The other objective is to begin defining some of the

critical structural design parameters for a 3-meter diffraction-

limited orbiting optical telescope. This report represents an interim

summary of efforts to date and concerns itself primarily with a col-

lection and evaluation of appropriate criteria and methodology, and

with the development of all necessary computer programs, and less

with the solution of specific cases. In the final report on this study,

such emphasis will be reversed.

The basic approaches in structural analysis are outlined in

Chapter 2, with a discussion of the suitable elements for different

mirror types and loadings. Chapter 3 outlines the environmental con-

ditions an optical mirror must face in its journey from raw material

to orbit. Chapter 4 considers a number of suitable mirror materials

and presents criteria for selection of a suitable candidate. The rela-

tions of the structural performance to optical performance are dis-

cussed in Chapter 5. Chapter 6 outlines in detail the fundamental

structural problems that must be solved for the primary mirror of

the Large Orbiting Telescope, and presents a number of design

approaches with specific examples. Chapters 7 and 8 present con-

clusions and further necessary extensions of the research, respectively.
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CHAPTER 2

STRUCTURAL ANALYSIS METHODS

2. 1 Closed-Form Solutions - Classical Methods

Occasionally in technical elasticity, an ideal situation occurs;

a mathematical model for the physical world can be formulated, and

a closed-form solution is found. Whenever such a solution exists it

is, of course, the most accurate and should be used if available. Too

often, however, the problem at hand approximates the mathematically

soluble case in only some of its more superficial characteristics,

further assumptions must be made, and recourse to experimental

evidence may be needed. Generally this is the gray area of analysis,

where personal opinions carry weight, where disputes can easily

arise, and where the large errors are made. Many engineering

problems nevertheless lie in this area, and the designer should check

back constantly to the assumptions of the theory in order to retain

confidence in his results.

Most optical mirror structures lie in this gray area. The

structure is usually either a thick isotropic or sandwich slab, a shal-

low shell or plate with stiffeners that may or may not be orthogonal.

It is supported either continuously on rings or discretely at points,

and may be either symmetrically or unsymmetrically loaded. Closed-

form solutions for thick dished slabs are available for only one or two

very special cases, and these do not generally correspond to the real-

world physical mirrors. Thin plate theory, where a lot of closed-

form solutions exist, is generally not applicable for precision studies,

although it is moderately useful in order-of-magnitude and trade-off

studies. Orthotropic plate analysis can be used in some cases for
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rib-stiffened mirrors, but this too is not generally enough applicable

to form a fully reliable design tool.

At times it is possible to formulate the governing equations and

boundary conditions for an elasticity problem, although a closed-form

solution cannot be found. In some of these instances, finite-difference

methods can be validly applied, but with many cases error propagation

in computational algorithms has been fatal. Therefore, the structural

theoreticians have now abandoned the search for closed-form or finite-

difference approximation solutions, and virtually all progress in

elasticity has been concentrated on development of the finite element

technique. This method shows, at last, much promise in reducing

the gray area in mirror structural analysis.

2. 2 Finite Element Methods

The most important development in structural mechanics since

Hooke's Law, one which has really revolutionized civil and aero-

nautical engineering problem analysis, is the finite element

approach. (1)(2)(3) This purely computer-oriented method permits

the analyst to treat problems of continuum mechanics as well as

trusses and frames in a completely general way.

The method operates by dividing a two- or three-dimensional

continuum into small segments, triangles, rectangles, or cubes, over

each of which the analyst assumes that the strain is either uniform or

distributed according to some known variation. These segments are

usually assumed connected by nodes at the vertices or at mid-points

along the sides. The individual force-deformation response, that is the

element stiffness matrix, is known from simple elasticity using the

assumed strain function. To assure that all common joints between

elements deform equally, a number of equations of joint compatibility

must be formulated and solved. This leads to matrix operations and

to the absolute need for high-speed large-capacity computers.

References in Bibliography
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The absolute generality of the method and the ease of use makes

the finite element method an ideal tool for treating such complex elasto-

mechanics problems as will arise inthe design, manufacture, and opera-

tion of telescope mirror structures. (4) (5)

2. 2. 1 Matrix Structural Analysis

The following steps outline very broadly the procedure followed

in finite element (as well as general frame element) formulation. (2)

Assume a relationship between the internal displacements f and

the node displacements 6 of an element

(f)e [N] (6) e

Strains are obtained from displacements

(E) e = [B] (6)e (2.2)

introducing stress strain relationships

()e = [Dle () - (E o ) ) (2.3)

imposing virtual nodal displacements and using the principle of stationary

potential energy, the force-displacement relationships become

(F)e = [B]T [D] [B] d (vol)] (6)e - B] [ D] (Eo) d (vol)
(2.4)

- [N] T (p) d (vol)

The element stiffness matrix is defined by

[k]e = , [B]T [D] [B] d (vol) (2.5)

Nodal forces due to distributed loads are

(F)= - [N] T(p) d (vol) (2.6)
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Initial strain effects

(F)o0'
= [B]T

or

(F)e = [k]e (6)e + (F)e + (F)L
P EO

Node equilibrium at node i, p is external forces

n

Pi= z
m=l

F.
1

Replacing Fi

n

Pi= E
m=l

e em ()+ i + )e
[kim] (6)e + (Fi) + (F )

(F)E

Then the overall equations are summed over nodes .i
t- 

P= [K] * (6) + (F)p + (F)E

(2. 7)

(2.8)

(2.9)

(2. 10)

(2. 11)

6

[D] (E o ) d (vol)



As a specific example, consider a two-dimensional region

divided into triangular elements (Figure 2. 1).

Figure 2. 1 Planar region divided in triangular elements.

Then, taking an individual element of this assembly and formu-

lating its elastic behaviour (Figure 2. 2),

m

V
i

I J
I

Figure 2. 2 Element formulation.
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assuming a constant strain element, then the displacement function is,

u = al + a2 x + a3Y

(2. 12)

v = a4 + a5 x + a6 y

In terms of joints i, j, m

U.
1

U.

U
n

1 x. y.i

1 y1 11 x y yj

1 Xm Ymm rn

a1

a2

a3

(2. 13)

Inverting this to get all, 2 , a3 in terms of Ui, U., Um , the joint displace-
ments, a general expression of u is obtained. An expression for v is ob-
tained in the same manner.

Hence,

(f) e= () = [N] (6)e (2. 14)

This relationship is that expressed in Equation ( 2. 1 ). Thus,the formulation

and solution can proceed.

2.3 Finite Element Systems

A large number of finite element programs have been developed

by industry,but most of them are oriented towards special-purpose

applications and are not necessarily more efficient than general-purpose

systems.

A small number of general-purpose analyzers have also been
developed, primarily to collect the elements and to standardize the solution
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methodology. Even these vary enormously in their scope, capacity,

and limitations. Some typical systems are ASKA, (6) SAMIS, (7) ELAS, (8)

NASTRAN ( 9
) and STRUDL II. (10) The last of these, which was de-

veloped by the Civil Engineering Department at MIT is one of the most

comprehensive and powerful of these systems.

STRUDL II was developed to standardize and collect a large

number of existing element types and to organize them in a modular

way such that very complex problems involving intermixes of bar and

continuous elements can be handled with equal ease. All of this was

done within a problem-execution environment which has the following

general characteristics.

2. 3. 1 Problem-Oriented Language

The input-output language of STRUDL II is the language an

engineer uses in his everyday work. The structure is specified as to

geometry, topology, loadings, and types of behaviour element. All of

these commands are then translated into FORTRAN-like statements

and the execution proceeds from there.

2. 3.2 Dynamic Memory Allocator (DMA)

It is difficult to specify the primary/secondary computer storage

needed for a complex problem unless one is intimately familiar with

the basic operations performed. Then, too, for optimum storage use

the arrays should be shifted from primary to secondary when no

longer needed. This tends to make the analyst a computer systems

programmer. The STRUDL II (DMA) obviates both needs by allocating

the requisite amounts of storage completely automatically at execution

time and moves the arrays between secondary and primary storage

only when the need arises. A small problem may be solved entirely

in core.

2. 3. 3 Modularity

While the library of available elements is very extensive, the

user may find that the one he needs is still not available. He can add

this by specifying the general stiffness matrix for an element, the
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array needs for one such element and add it to the general library or

include this as part of the input at problem execution time. Completely

free intermix of bar, plate and solid elements is permitted, even if

elements have unequal degrees of freedom at connecting joints. Sub-

structure analysis exists, as well, as a user-specified option.

2. 3. 4 General Capability

At the present time the capability of the system extends to

trussed, framed, folded plate, shell, and solid elements under the

following conditions (Figure 2. 3):

(i) linear static analysis

(ii) non-linear and buckling analysis

(iii) dynamic analysis

(iv) optimization

A systems flowchart for the essential STRUDL II capabilities

is shown in Figure 2. 3. Optimization occurs as a larger loop which

includes Figure 2.3 as a component.

2. 4 Finite Element Types

At the present time the STRUDL II finite element system has a

library of approximately forty elements which can be broadly divided

into the line, surface and solid types. Line elements include primarily

the truss and frame members which are, however, seldom encountered

in mirror problems.

The surface elements include pure bending, plane stress/plane

strain, bending and stretching, and shell types. For many applica-

tions, these elements represent the types needed for optical mirror

analysis. For a sufficiently thin mirror supported with its optical

axis in line with the load direction, bending elements of various types

may be used. As the plate tends towards a slab, i. e., when its span

to thickness ratio drops to 8 or 10, the effects of shear deformation

must be included and a more sophisticated element used. For general

parametric or order of magnitude studies, however, the Kirchoff bend-

ing element is generally sufficient besides being enormously cheaper

to run.
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Figure 2. 3 STRUDL II analysis procedure.
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Occasionally it is of interest to determine the behavior of a

mirror with its optical axis perpendicular to the load direction. In this

case, plane stress elements can lead to a first-order approximation if the

mirror deflections are sufficiently small.

In recent years, ribbed or "light-weight" mirrors have become

quite popular and it is necessary to analyze these quite precisely as well.

It is a grievous mistake here to rely on a purely equivalent bending stiff-

ness approach as the shear deflections often dominate. These struc-

tures can be readily and accurately analyzed by subdividing the face and

rib plates into bending/stretching elements. The approach used here is

essentially identical to folded plate structural analysis. Bending/stretch-

ing elements can also be used for analysis of shell-type mirrors.

If available, shell and shallow shell elements are the most suit-

able for general-purpose analysis of thin mirrors, such as are encountered

in thin active systems. The obvious advantage here is, of course, having

the element properly curved to avoid angular intersections between adjacent

elements which may often lead to unconservative results.

With the use of any of the above elements, the elasticity problem

has to be defined as belonging to a particular class of problems, where

known behavior assumptions would reduce the complexity. Sometimes, in

elastic mechanics, and quite often in optical mirror structures, the problem

cannot be reduced from the general 3-dimensional elasticity problem to a

simpler, more tangible form. In such an instance, the only recourse is a

solid element. With such an element, a true picture of the stresses and

deformations can be obtained, though at the price of high computer running

times.

A recent addition to the STRUDL II library is the isoparametric

group of solids. Originally formulated by Irons( at the University of

Swansea, they permit the user to specify "solids" with straight, parabolic,

cubic or even higher order boundary curves. Intermediate nodes are re-

quired as well to satisy the high-order internal displacement functions.

12



These elements now permit the analyst to solve the completely

general three-dimensional elasticity problem.

Figure 2. 4 shows some of the typical elements that would be

encountered in an optical mirror study.

13



1) BENDING

2) STRETCHING 1

t
3) BENDING AND STRETCHING (1 AND 2)

4) SHALLOW SHELL

5) SHELL

6) SOLID ELEMENTS I

LOADS ALONG OPTICAL AXIS

LOADS NORMAL TO OPTICAL AXIS

GENERAL LOADS, "LIGHTWEIGHT" MIRRORS
THIN SHALLOW SHELL MIRRORS

LIGHTLY CURVED THIN MIRRORS

STRONGLY CURVED THIN MIRRORS

SOLID THICK MIRRORS WITH MAJOR SHEAR
AND TRACTION EFFECTS

Figure 2. 4 Finite element types for optical mirror problems.
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CHAPTER 3

MIRROR STRUCTURE ENVIRONMENTAL CONDITIONS

3. 1 Introduction

While the space telescope mirror structure is primarily designed

to operate in orbital conditions, it is subject to several other loading

environments under which it must meet either the performance or

survival specifications. In a chronological order these include manu-

facture, earth testing, launch and orbital operation.

Previous mirrors have been fabricated, tested, launched, and

now are operating in orbit with considerable success. In many of

these cases, an exhaustive analytical study was not necessary as the

performance specifications were less stringent. The diffraction-

limited requirements on the 120 ' ' Large Space Telescope mirror,

however, do not permit any a priori assumptions in this regard, and

the effects of all possible loading environments should be evaluated.

This chapter will outline a minimum number of loading conditions

which could serve to degrade or destroy the figure or structural

integrity of the mirror. It should be observed, however, that while

some of the conditions may be evaluated immediately with candidate

structures, a large majority are highly system-dependent and the

environment specification will evolve with the progressing design.

For this reason, the emphasis here is more on the qualitative than

the quantitative.

3.2 Manufacture

It is very difficult to cast a solid from a liquid melt without the

inclusion of some degree of residual internal stress. This occurs
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with all materials, but is of considerable importance with optical

glass. Low-expansion materials, minimal heats of fusion, carefully-

controlled cooling procedures followed by proper annealing will reduce,

but never eliminate, material and stress inhomogeneities.

A cooled mirror blank has basically achieved internal stress

equilibrium, with the faces in compression, the core in tension. The

process of grinding and polishing will, however, remove a finite sur-

face layer at the location of the greatest compressive stresses and

disturb this equilibrium. As a result, the mirror blank will distort.

Kumanin ( 1 2 ) gives a relationship between the deformation, the residual

stress, and thickness of layer removed

D2

f =K' * - 6 ' H (3. 1)
L

where f = magnitude of deformation

H = thickness layer removed

8 = internal stress parameter
D = diameter of disc

L = thickness of disc

K = proportionality factor

This relationship is approximate, as it assumes uniform internal

stresses and the removal of a uniform thickness of material. The

general case can be solved with finite elements if the internal stress

level and distribution prior to grinding can be defined.

Heat generation in grinding and the slight viscoelasticity of

glass will tend to give further distortions which will not be immedi-

ately apparent after surface figuring. These effects will be added

then to the distortions resulting from the release of gravity body

forces in the orbital environment.

With ribbed or honeycombed lightweight mirror structures,

new internal stresses or stress redistributions are produced by the

"welding" and coring procedures. These will be further changed by

the grinding and polishing action.
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Local mirror surface deviations at the ribs can be expected due

to nonuniform elastic deformations caused by the grinding tools. With

a solid mirror blank, the action of the tool contact is more of a point

effect on a uniform semi-infinite solid. With ribbed mirrors, the

elastic resistance of the mirror is considerably higher immediately

on the rib than in the plate action areas between. As a result, a rigid

tool removes more of the stiffer zone than of the flexible. Critical

here, also, are the supports of the mirror during the figuring process.

If these are similar to the operating mounts, and if the mirror is not

permitted to deform elastically during figuring, then the surface devi-

ations will be small. If not, then the ribs will be "seen" in the resulting

deformation pattern. Again, with the gravity loads removed in orbital

operation, these effects will be amplified.

It is possible to evaluate these manufacturing effects analytically

using finite element techniques, but some fundamental data is still

needed on the initially-stressed condition after cooling, and on the

nature of the loading intensities expected in the grinding and polishing

process. The knowledge of this data will determine the permissible

load levels for handling, testing, launch and, if necessary, active con-

trol actuators. A thorough analysis prior to manufacture may very

well be cheaper than a catastrophic mirror breakage.

3. 3 Earth Testing

Even though the mirror will eventually operate in a gravity-free

environment, the basic optical testing of the system must be performed

under gravity conditions. An important consideration here is whether

or not an attempt should be made to design the mirror to perform at

or close to the final specifications within the earth environment.

If the mirror deformations due to gravity effects are several

orders of magnitude greater than the desired orbital performance,

then special precautions must be taken to establish, on earth, that the

desired performance level in orbit will be met.

The orbital behaviour may be obtained by factoring out the
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gravity effects using the data from an adequately precise theoretical

model or by testing the mirror in a reversed gravity-field. Such an

evaluation will require the taking of differences of almost equal large

numbers. If the gravity effects are several orders of magnitude

larger than the orbital effects, then the noise to signal ratio of the net

results could be very poor. Contributors to such "noise" would be

minor shifts and alterations in the support locations or in support

friction, and even slight inhomogeneities in the mirror material

properties. It is highly desirable, therefore, for a reliable passive

system to obtain a design which comes close to satisfying the desired

performance even within the gravity environment.

For the active figure control system, it will be assumed that

the gravity effects will be completely removed by the actuators. The

critical structural parameters for earth testing of an active system

must then ensure that the actuators have sufficient movement and

strength to neutralize the gravity effect, and that the resultant mirror

stresses do not exceed the strength levels of the mirror material. It

should be kept in mind, however, that the stresses from the actuators

will be additive with the internal stresses remaining from the manu-

facturing.

3. 4 Launch Effects

The launch dynamics problem is especially severe for the tele-

scope structure. The mirror itself must survive the complex shock,

vibrational and acoustic environment without exceeding permissible

material stress levels. It is as important, however, to evaluate the

dynamic effects of the mirror on the rest of the telescope system.

In the passive configurations, the mirror system will be suf-

ficiently heavy and stiff to represent a considerable lumped mass

which must be restrained by the relatively flexible launch vehicle

structure. This mass will be of sufficient magnitude to be a major

contributor to the overall vehicle dynamics. With the active config-

uration, the stiffness and weight of the mirror is much less, although

because of actuators, backing-plates and control hardware the total
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system weight will probably remain high.

There is, moreover, a functional incompatibility between the

precision supports needed for the mirror in orbital operation and

the substantial restraints required for the launch phase. It is antic-

ipated that two independent support systems would be necessary with

the final telescope alignment occurring in orbit. It is difficult to

estimate, at this time, the nature of the launch support system re-

quired, as it will be strongly influenced by the nature of the launch

vehicle, and on the location of the mirror in that vehicle.

3. 5 Orbital Operation

The mirror in orbit will experience disturbances from a num-

ber of sources. Some of these may be minor, such as the inertial

effects during attitude change, the dynamics resulting from docking

with the space station (with the mirror on operational 'optical' sup-

ports), or from the slight but measurable accelerations resulting

from instrumentation actuators. The controlling disturbances pre-

sumably will be thermal.

Unless active thermal means are employed, the mean operating

temperature of the mirror structure in orbit will be considerably

below that experienced for earth assembly and testing. Low-expansion

mirror materials may be employed, but these are effective only within

a limited temperature range. Thus, deformations will occur and the

mirror figure will change. The magnitude of this change will be

primarily dependent on the entire telescope structural and thermal

configuration.

In addition to the change in the mean temperature, short-term

temperature fluctuations will be experienced. The primary source of

this is the radiative transfer from the sun, moon, earth, and the

space station impinging on the telescope. Some contributions will be

expected as well from the on-board instrumentation. Part of the

energy will reach the mirror directly, some of it will conduct through

the supports. Under these conditions, however, the mirror must

deliver the desired performance. Unless the disturbances are found
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to be very slight, the passive optics approach will require the solution

of a highly coupled heat transfer-thermoelasticity problem. For the
active optics concept, the material thermal and elastic properties are

much less critical, but it is necessary to provide sufficient actuator

strength and stroke, yet assure that mirror over-stressing does not
occur during a corrective phase.
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CHAPTER 4

MIRROR MATERIALS

4. 1 Introduction

The success of any engineering design depends highly on the

proper choice from available materials. When diffraction-limited

optical performance is desired for the space telescope, such a choice

becomes even more difficult since a number of equally important en-

vironmental criteria pull in opposite directions. Any one of the re-

quirements, taken individually, is relatively easy to fulfill; jointly, a

compromise must be attained.

The minimum material requirements are:

1. High-quality durable optical surface.

2. Minimum stresses and deformations under laboratory-
testing conditions.

3. Launch survival.

4. Minimum thermal distortions in operation.

5. Adequate long-term dimensional stability.

4. 2 Criteria and Candidates

The initial choice, obviously, must be narrowed to the can-

didates that can be manufactured to the desired optical figure. Major

considerations for acceptance will include material homogeneity,

isotropy, porosity, the ability to achieve a proper polish, or to

accept a necessary optical coating. Schroeder( 1 3 ) reports on per-

centages of scatter from a number of optical materials at two

different wavelengths (Table 4-1). While a certain trend is

evident, tending towards rejection of beryllium, considerably more

work is needed here with the other materials as well, especially if

the system is to be optimized for a more restricted band-width.

21



Table 4-1

Scatter Measurements (Schroeder)

Percent Scatter

Material X = 6328 A X = 1.9 A

CER-VIT 0.11 20

FUSED SILICA/ULE 0.05 9

SILICON 15

BERYLLIUM 0.5 30

Experience with the manufacture of large-diameter mirrors

(80" to 120") has been limited to fused silica and CER-VIT. Some doubts

have, however, been expressed by manufacturers that a homogenous iso-

tropic beryllium mirror of that size can be produced by present fabrication

techniques.

Under laboratory testing conditions the thermal environment

may be controlled, but gravity deformation effects cannot be eliminated.

A high elastic modulus to material density ratio (E/p) is necessary here.

Also of importance is the microyield level of the material to avoid excessive

permanent straining caused by testing procedures. This level is generally

defined as that stress producing a permanent strain of 1 micro in/in.

Launch survival, too, is a function of the stiffness to density

ratios although it is anticipated that the launch supports will be provided to

minimize the response of the mirror both in stress and deformation. Of

some importance here is the damping capacity of the various materials,

although very little published data on this exists.

For an active flexible system, the value of the elastic modulus is

of considerable importance, as the force in the actuators is limited and a

stiff mirror will require a large number of these devices.

In orbital operation it is desirable to minimize the thermal

distortions of the mirror. A measure of this, known as the Thermal

Distortion Index,indicates the capacity of the material to resist distortions
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caused by thermal gradients. This index is the ratio of the coefficient of

thermal expansion to the thermal diffusivity and is independent of the mirror

geometry. A desirable material will have a low numerical value of this

index.

Thermal Distortion Index = = K (4. 1)

pCp

where

a = coefficient of linear expansion

K = thermal conductivity

Cp = specific heat

p = material density

Additional material considerations for orbital operations can be

included under "creep" and ionizing radiation. The former includes a

number of effects which can be related to activation-type effects and are

thus influenced by time, temperature and internal stress considerations.

Some data has been gathered by various investigations, (14) but conclusive
information on sufficiently large samples is yet unavailable. In an active

system the creep, as well as the thermal distortion errors, can be

almost entirely corrected.

Ionizing radiation has a measurable effect on the mechanical

and thermal properties of the mirror material and coatings. Elastic and

thermal constants will change and, in an active system, alter the coefficients

of the control matrix. The coatings are subject to degradation and contam-

ination with accompanying reflectance charges. (15)

Mechanical and thermal data for a number of materials has been

summarized in Table 4-2. The listing is made in the order of decreasing

stiffness to density ratio. Microyield data is presented for the materials

where this is available and finally the values for the Thermal Distortion

Index (0) are presented and a desirability ranking of materials on the latter

basis is also shown.

Stainless steel and titanium have both mediocre performance

thermally and from the point of view of relative stiffness, and can then be
eliminated from further consideration. Super Invar is the top choice
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thermally, though the worst mechanically, and has never been reportedly

used as an optical mirror. It is therefore, at this time, difficult to

recommend it as a candidate. Aluminum falls short of middle in both the

thermal and stiffness performance groups and it appears difficult to

manufacture a figure to the tolerances needed.

Of the remaining group, beryllium has the best stiffness

properties, but is only moderately good thermally. At the present time

(1970) it is not possible to fabricate a 120" mirror of this material with the

requisite figure. This technology may change by the time the mirror is

prepared for launching and it will be retained as a final candidate. Fused

silica is poor thermally, but a large field of experience exists with large-

diameter mirrors and it will be used in the analysis for comparative purposes.

CER-VIT and ULE are the remaining candidates and the most likely to be

actually launched. The mirror preliminary design should then keep comparing

the virtues and disadvantages of these four.

An important consideration to remember with low-expansion

materials such as CER-VIT and ULE is that the thermal properties are,

nevertheless, a function of the absolute temperature. Low expansions can

be maintained only if the range of temperature variation is limited. Problems

can be anticipated if it is desired that the mirror perform as adequately

under laboratory room conditions as in the actual cryogenic space operating

environment.

There are materials which have not been considered here at all,

some of which have good thermal and/or mechanical properties. Scarcity,

lack of optical experience with these, or fabrication difficulties have forced

their omission at this time. The large group of material composites which

have become available in recent years for air and spacecraft skins should

be investigated at some time as potential sources for mirror materials. It

is at present too early to speculate on their usefulness.
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CHAPTER 5

DESIGN EVALUATION CRITERIA

5. 1 General Performance Criteria

A design objective of the Large Space Telescope is to achieve

diffraction-limited optical performance with the three-meter system.

In the structural evaluations of the candidate mirrors, the mechanical

deformations of the mirror optical surface must be related to this

desired criterion for optical performance.

A diffraction-limited optical system produces a nearly perfectly

spherical wave-front to form the image of a point source in a limited

region of object space. The inclusion of "nearly" is due to the fact

that diffraction theory sets a predictable unsharpness of the image of

a point source. If an optical device produces so nearly spherical a

wave-front that the realized image is indistinguishable from that pre-

dicted by diffraction theory, it is said to be diffraction limited. These

departures from true spherical wave form may not exceed the upper

bound of one quarter the wave-length of light.

Analytical relation of diffraction theory to generalized mechanical

deformations of a telescope mirror is at present tremendously com-

plicated, if not impossible. A multi-staged series of approximating

but substantiable discrete criteria is therefore proposed.

The wave-front may be distorted by two types of surface error:

large-scale systematic surface deformations, and the locally-

occurring random effects. In the first category, the gravity, thermal

and large-scale manufacturing defects may be included. For a passive

mirror system, these form the major sources of error and they will
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be directly measured against the fundamental design goals. The use

of active optics will readily reduce the large-scale systematic dis-

tortions, but the residual effects of local actuator loads or localized

random thermal, material or manufacturing inhomogenieties will re-

main. In active optics it is these residuals that must then be evaluated

against the desired optical criteria.

For the purposes of this discussion, it will be assumed that all

of the distortions of the wave-front originate from elastic deforma-

tions of the primary mirror. It follows then that errors due to de-

centering, tilt and separation, which are really rigid-body movements,

should be adjustable by some active means during the operation of the

telescope. Alterations in the focal length, caused by elastic deforma-

tions can then also be corrected by simple realignments of the secondary

mirror.

The simplest structural performance criterion compares the

maximum mirror surface distortions to some previously defined

fraction of the operating wavelength. This is of some value in cases

where the separation of the primary and secondary must remain

fixed or in situations where a speedy comparison between different

mirror thicknesses, materials, and support parameters is desired.

For precision evaluations it is, however, inadequate.

5. 2 Optical Path Difference

A more realistic evaluation of the gross deformation effects is

based on the resulting optical path difference. This criterion measures

the difference between the wave reflected by the mechanically distorted

mirror and a wave reflected by a perfect mirror represented by a

best-fit paraboloid to the distorted mirror (Fig. 5-1). As the incident

light ray has to reflect from the imperfect segment and return, a

double pass is needed and thus the optical path difference is twice

the total surface deviation. This total may be based on the sum of

the absolute values of maximum positive and maximum negative
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deviations from the best-fit surface, or it may also be based on a

surface-wide rms definition. The design criterion then specifies that

half the optical path difference must not exceed a given fraction of the

operating wavelength.

The actual tolerance permitted for the surface distortions of

the primary mirror will be some fraction of the total error budget

permitted to the system. Classically the Rayleigh criterion of X/4

has been the "diffraction limited" condition, but in this case that will

not be adequate if the passive optics concept is used. The primary de-

formations, it will be recalled, are large-scale and systematic, and

it is very unlikely that the distorted surface forms a new paraboloid.

The residuals, or the optical path differences, i.e., the difference

between the distorted surface and the best-fit reference surface, will

still be systematic and will result in considerable reduction of the

intensity at the diffraction focus.

The specific degradation level in the central Airy disc caused

by the optical path difference must be defined by the designers of the

entire optical system. It is clear that approaching too close to the

Rayleigh limit of X /4 will lead to a very poor design. Once a per-

missible optical path difference limit is imposed, a clear analytic

constraint can be obtained for the mirror structural design.

5. 3 Strehl Ratio

An active optical system should be able to remove the systematic

surface distortions to well below the Rayleigh limit. If an adequate

number of actuators are used, the residual deformations will then be

distributed randomly in magnitude and location. The non-systematic

errors in a passive optics system should also be constrained to at

least below this limit. A possible means to evaluate the diffraction

quality of the mirror figures in these instances is the Strehl intensity

ratio.
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The Strehl ratio is defined as "the ratio of the light intensity at

the peak of the diffraction pattern of an aberrated image to that at the

peak of an aberration-free image. "(17) (Fig. 5-2). If previous correc-

tions have reduced the peak to valley distortions below X/4, the

diameter of the central Airy disc and the intensity will change. Thus,

the Strehl ratio permits a measure of the amount of energy going into

the central disc of the diffraction pattern, but now resulting from

random mirror surface errors.

Analytically, Marechal( 1 8 ) has shown that starting from the

fundamental definition of the Strehl ratio, and in view of the studies

of Rayleigh (1879),

2

SR = 1 : exp (ikW)dA (5. 1)

where for a perfect lens SR = 1. If the value of kW is small, i. e.,
errors less than X/4,

where

k = 21T/X

and

W = W(x, y), the wave-aberration referred to the sphere

centered at the focal point

the expression in (5. 1) may be simplified to

SR= 1 - () Ej (5. 2)

where E is the variance of the wave-aberration

E= W2 - (W) 2 (5. 3)
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where from an integral definition

v = ffS A W2dA (5. 4a)

and

W = X lff WdA (5.4b)

or for large discrete sums of equal weight

T N WN2 (5. 5a)

W N WN (50 5b)

that is, the variance (E) of the surface distortions may be obtained in

(5. 3) and a measure of the image quality can be obtained from (5. 1).

For random statistical errors in the mirror surface, a limiting

value for E has been imposed by Marechal and Francon(l8) to

E < 2/180 (5. 6)

this value, substituted in (5. 2) then gives a lower bound to the Strehl

ratio

SR > 0.79 (5.7)

which is approximately equivalent to a systematic surface error of

X/8 (Table 5. 1). Recalling the definition of the variance

E =2 (5.8)
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the standard deviation of the wave-front error must be

<X I (5.9)

or

o 3<
- 13.4

since this is the tolerance in the wave-front standard deviation, the

actual value of the mirror surface deviations from the "best-fit"

surface must not exceed half of this or X/26. 8 to achieve diffraction-

limited performance. In general, this error represents the total

error budget of the optical systems. Until the remainder of the optical

system is adequately defined, however, this will be used as the design

criterion for the random errors in the primary mirror. Ultimately,

the primary mirror surface deviations may be limited to the range

of X/50 rms.
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CHAPTER 6

MIRROR ANALYSIS AND DESIGN

6. 1 Outline of General Problem

The ultimate objective of this structural study is to contribute

towards defining the specifications for the manufacture, testing and

operation of the 3-meter diffraction-limited Large Space Telescope.

In previous chapters the methodology of structural analysis, the types

of environmental conditions expected, the available mirror materials,

and optical performance criteria were discussed and summarized.

This chapter will attempt to bring these altogether to formulate a

strategy for the design.

It is safe to say at this time that given a mirror configuration

with the material properties defined and the static, dynamic or

thermal conditions specified, the computation of the structural re-

sponse, for any type of mirror, can be performed by finite elements

with reasonable ease and sufficient accuracy. The objective of en-

gineering is, however, not analysis, but design. It is necessary not

only to test, by computer simulation, a candidate structure for

adequacy, but also to find the best solution amongst a large number

of alternatives.

There is at this time no unique mirror configuration that is

immediately and obviously much superior to any of the other can-

didates. The number of major families of mirrors, their genera and

species are so immense that a design approach by a strictly exhaustive

search is truly an enormous open-ended task. The large minority of

these solution candidates will, in time, be rejected for optical reasons,

for material or fabrication limitations or because of telescope system

constraints. The remaining possibilities must be evaluated but without
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resort to a brute force approach.

The approach at this time has, therefore, deliberately avoided

choosing one type of mirror configuration and then analyzing it in

great depth. The philosophy has been, rather, to consider all family

types, to produce the necessary finite element programs, check their

validity, and only then to present some beginning examples of the

design process. This appears as the only rational means for

optimizing the limited resources.

6. 2 Candidate Structural Form Considerations

Three fundamental approaches have been suggested for the

primary mirror for the three-meter telescope:

1. passive

2. active segmented

3. active flexible

Each of these may be subdivided into further categories based

on the structural configuration and analysis methodology:

1. thin isotropic plate or shell

2. ribbed ("lightweight")

3. thick monolithic plate

In the first case the span to thickness ratio is sufficiently great

so as to have pure bending or shallow shell behaviour. The ribbed

mirror may be analyzed as an assembly of folded plates. The thick

plate is such where the span length to thickness ratio is small, and

shear deflections are equal in magnitude to the bending displacements.

Table 6-1 illustrates the possibilities available at this level and

their relative desirability. A very thin passive mirror would deflect

excessively in the earth's gravity field under laboratory testing. The use

of ribbed or thick plates for the active flexible approach will demand

actuator strength out of concert with the desired resolution accuracies.

As bending-action span lengths in the active segmented approach are

rather small, and thickness to span ratios may be quite substantial

without excessive weight increases, the use of thin isotropic or
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ribbed mirror structures is somewhat less likely than the conventional,

easier-to-fabricate thick mirror configuration.

TABLE 6-1 TYPE VS. STRUCTURE

THIN PLATE

RIBBED

THICK

TYPE

PASSIVE

POOR

LIMITED

ACTIVE
SEGMENTED

LIMITED

LIMITED

LIMITED

ACTIVE
FLEXIBLE

GOOD

POOR

POOR

For the final design the basic optical system has not yet been

fully established. In this view it is necessary to consider both a

solid mirror and one with a central opening (e. g., cassagrain).

The objectives of the Large Space Telescope program have

included the testing of an 80" laboratory model as well as the 120"

(3-meter) flight model. Both mirror sizes are therefore considered

as basic design goals. Presumably the type and structure will be

identical, but the design for one cannot necessarily be scaled for the

other unless complete dimensional homology is maintained. Scaling

in non-homologous cases is successful only if a single structural action,

such as pure bending, predominates in both the model and prototype.
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Without going into the mirror details, there exist now 6

basic structure-type candidates, with 2 optical approaches and at 2

sizes. These 24 cases are subject to the 4 separate loading environ-

ments and should be evaluated for at least 4 available materials. A

number of further design variables must be determined for each case.

The optimum mirror thickness must be obtained,and whether or not

this thickness will be constant or varies across the mirror face.

Optimum number and location of supports must be determined. If a

ribbed mirror structure is used, then the grid type, rib spacing, rib

thickness and the thicknesses of the face and back plate must be estab-

lished. With the active flexible mirror, the location and the number of

segments, and the relative proportions of each must be found. (Table 6-2)

If an exhaustive systematic study is truly required, the amount

of separate finite element studies can run into the tens of thousands.

This does not include studies of element layout. Clearly all this is far out

of the question, so major efforts must be made to reduce the structural

study to a tangible format.
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MIRROR DESIGN VARIABLES

38

TYPES OF MIRRORS PARAMETERS

1) PASSIVE ISOTROPIC a) MATERIALS

b) THICKNESS

c) SUPPORT LOCATIONS
AND TYPE

2) PASSIVE RIBBED a) MATERIALS

b) GRID TYPE

c) GRID SPACING

d) PLATE THICKNESS

e) SUPPORT LOCATIONS
AND TYPE

3) ACTIVE FLEXIBLE a) MATERIALS

b) THICKNESS

c) ACTUATORS, SUPPORTS,
LOCATION, NUMBER, AND
TYPE

4) ACTIVE SEGMENTED a) MATERIALS

b) THICKNESS

c) SEGMENT PROPORTIONS

d) SUPPORT LOCATIONS

TABLE 6-2



It is obvious, however, that while certain mirror-structure

combinations are more suitable than others, similar criteria can as

well be postulated in the structure-material-environment conditions. The

relationships here, however, are much more complex in that the elasto-

mechanics and thermal problems are highly coupled. 'For example,

if the transverse stiffness for the mirror were the only design objective,

then a deep and probably "lightweight" structure would be the optimum

solution. The ribs in such a structure would, however, be relatively

thin, permitting little conduction of heat between the top and bottom faces,

with resulting large thermal distortions. This design then, is clearly

non-optimal thermally. Alternately, if in the active flexible case the

design were to aim towards optimum thermo-elastic behaviour, a

relatively solid, thick and hence stiff mirror would result which then

would require high-strength actuators.

A simplified material-loading-mirror type tradeoff matrix is

shown in Table 6-3. It is evident here how certain material charac-

teristics are desirable for one type of mirror configuration under a

particular loading, but are of little consequence in another, and may be

undesirable in a third. Many of the necessary matrix elements are,

however, highly system-dependent, so that until further data is

gathered, it makes little sense to assign merit values to the elements.

For the final design decision, a multi-dimensional matrix including

material, loading, mirror type and structure type must be generated.
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MIRROR MATERIAL-LOADING-TYPE TRADEOFF

FAVOURABLE EFFECT

ADVERSE EFFECT

RELATIVELY INSENSITIVE

STRONGLY SYSTEM DEPENDENT

40

MIRROR MATERIAL CHARACTERISTIC

LOADING ENVIRONMENT HIGH HIGH LOW HIGH HIGH

AND MIRROR TYPE E E/p 0 a STABILITY

MANUFACTURE + + + + 0

TEST

PASSIVE + + + 0 +

ACTIVE SEGMENTED + + + 0 +

ACTIVE FLEXIBLE - + + + (s) 0

LAUNCH 0 + (s) 0 + () 0

OPERATION

PASSIVE 0 0 + (s) 0 +

ACTIVE SEGMENTED 0 0 + 0 +

ACTIVE FLEXIBLE - 0 0 (s) + (s) 0
I

+

0

(s)

TABLE 6-3



In order to converge to such a decision matrix, a strategy for the

design evaluations must be formulated.

When analysis studies are made, the computational tools used

for this purpose should be the most exact that are available. For

preliminary design, that is the choosing of one amongst many differing

but feasible alternates, it is generally unnecessary as well as uneconomical

to start with the most rigorous method. Where, however, are the limits of

either approach? Several levels of solution hierarchy can be recognized in

the design process.

1. Topology:

2. Geometry:

3. Elastic variables:

the basic connectedness of the elastic

system. Parameters such as a con-

tinuous active or a segmented active

mirror; 3, 6 or "n" supports for the

mirror; a ribbed or a solid mirror;

how many ribs; how many actuators,etc.

length quantities related to the topo-

logical variables. Parameters such

as support or actuator locations;

proportions of the various active

mirror segments; rib spacings, etc.

cross-sectional properties on a local

scale. Parameters such as mirror-

thickness, and the function with which

it varies; top-plate and rib thicknesses

in "lightweight'" mirrors, etc.

For a large majority of structures, the hierarchies are

relatively independent. If a design is optimal at the topology level,

the optimum solution of the joint topology-geometry problem will still

preserve the original topology. This postulate generally extends to the

elastic variables level as well.

It is a generally observed fact also that the topology level

solution, and to some degree also the geometry level, is not too sen-

sitive to the accuracy of the behaviour analysis model used. Often,
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a fully adequate preliminary design may be obtained from very

approximate models. The elastic variables level, which requires a

very precise analyzer, will refine the design to some degree but

basically retain the same topology and geometry. The advantages of

using an approximate method of analysis are, however, very great in

that considerably quicker convergence to the best solution is achieved

at a much lower expenditure of manpower and computer rental.

Sometimes an approximate approach cannot be found for a

given structure. In these cases there is little choice but to use the

exact method, but it is very important then to make those studies that

can be used to obtain bounds for the possible solution. It should be

noted here that in the present context the finite element method is

considered exact, although forces and displacements are defined only

at the nodal points.

The mirror loadings, for example, will be primarily parallel

to the optical axis, and hence flexural behaviour will predominante in

the design of the mirror configuration. If the thickness/diameter ratio

is less than one in ten with edge supports, then a pure bending model

may be adequate. Most of the cases here, because of various support

types, will require an exact finite element model, but as only one form

of behaviour predominates, these results can be scaled, both homolo-

gously and otherwise. If a deeper mirror seems inevitable, then

shear deflections begin to predominate and the new model must include

this. If the distance between the mirror supports is reduced, even

though the depth to diameter ratio for the mirror as a whole is high,

localized shear deflection behaviour should be expected near the

supports. Again, exact methods are needed here as well, but the

use of a generalized enough model will allow the designer to obtain

approximate data on design of "sandwich" and "lightweight" con-

figurations.

The strategy that is proposed for the mirror design includes

the following phases:
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1. Establish that exact analysis methods exist for all neces-

sary types of structural action that are expected. While

all of these capabilities will not be needed immediately,

they are "long lead time" items, which can be used later

for exact analysis studies. These will be formulated to

include gravity, thermal and dynamic capabilities.

2. Begin to develop the mirror design at the topology and

geometry levels with existing approximate methods. New

approximations would be developed wherever need and

cost would justify. Exact analysis tests would be performed

to establish benchmarks.

3. When sufficient preliminary design information exists at

the topology and geometry levels, then very exact methods

would be used to converge to a design. If justified by

weight savings or required by tight specifications, formal

optimization procedures may be further adopted.

This report marks the completion of the first phase. Examples

will be presented in the following sections that include all of the

necessary techniques to analyze the various mirror types. Work

has progressed to an intermediate stage with the second phase, al-

though much remains to be done.
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6. 3 Mirror Behavior - Bending Deformations

To test out some of the finite element routines, and to begin

gathering design data for the monolithic mirror type, a series of

support configuration studies were performed. The objective was to

find, for the solid mirror, as well as the one with the central opening,

the optimum number and location of the supports under a gravity

load parallel to the optical axis.

For these initial studies, the pure bending element was

used, as the mirror structure could then be analyzed in a generalized

non-dimensional form, and the results could be scaled non-homologously

throughout the limits of the behaviour assumptions. If the loading type

and boundary conditions are retained, then the geometry, density

and elastic properties can be varied freely to obtain much data from

a limited amount of computer studies. Fundamentally, data was

desired at the 80" and 120" diameters with the 4 material choices

listed earlier in Chapter 4.

It is noted that as the thickness/diameter ratio of the mirror

increases, the importance of the shear deflections does as well. It

is intended to modify the results presented here, at a later date,

with shear deflection corrections wherever necessary.

The element layout for the solid mirror is shown on Fig. 6-1.

An equilateral triangle was used wherever possible to obtain best

element accuracy and to make optimal use of the 3 point (statically

determined) supports. The grid size was chosen as a compromise

between computer running times and accuracy of results. Tripling

the number of elements was found to improve the deformation accuracy

only by 3% at the cost of 5 times the normal running times. While
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A

NOTE: POINTS 'A' USED FOR
3-SUPPORT STUDIES
POINTS 'A' AND 'B' USED

iB FOR 6-SUPPORT STUDIES

Fig. 6-1 Finite element subdivision used for solid plate and
thin shell mirror studies - both 80"O and 120"P -
transverse loading.
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these methods do not consume excessive computer time, a consider-

able cost is still involved, and considering the fundamental accuracies

demanded for this type of preliminary study, it was felt that the least

number of elements giving a reasonably good answer should be used.

All studies were performed with a general "model" structure

80" in diameter, elastic modulus of 10, 000 psi, an equivalent surface

loading of 1 psi, and a mirror thickness of 1". These parameters

were chosen to give best numerical significance. The scaling law for

bending behaviour under surface forces is:

(.O;( p ) * ( m) (yj (6. 1)

where

A = deflections

p = prototype

m = "model"

E = elastic modulus

D = diameter of mirror

W = surface load intensities

t = mirror thickness

With the constants used for the model case, this law gives the relation-

ship between the deflections in the prototype and model:

Ap = 6m 2.44 104 * (D pP (6.2)

P
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Thus, deformations for all mirrors with similar loadings

and boundary conditions can be obtained from this. The location

where Am is obtained must obviously be analogous to the location

where Ap is desired.

This expression is generally valid for surface forces. The

self-weight forces per unit area can be obtained from D' Alembert' s

law which allows the interchange of statically equivalent loads located

in close proximity.

WP = t p (6. 3)

where

p = density of prototype
P

Therefore, the expression (6. 2) becomes

2.44 0
- 4

P p ( 6. 4)

Once the data is scaled to the prototype desired, the deformation

Once the data is scaled to the prototype desired, the deformation

results are interpreted to evaluate the mirror behaviour optically.

At this early stage of design, a best-fit plane was passed through

the deformed surface, and the RMS deviation from that surface of

the element deflection points was determined. As the RMS deflection is

a linear deflection quantity, it scales in the same manner as the

other deflection quantities and it may be obtained once for the "model"

case, and then employed afterward in expressions (6. 2) or (6. 4).
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For the final design process, a curved mirror surface will be

used, and a best-fit sphere or parabola is necessary. As the computer

programs for doing this were not yet ready at the time these studies

were completed, the best-fit plane, which can be calculated by hand quite

readily was used for the interpretation.

The design objective of "diffraction limited"shall, at this

stage, be considered (see Section 5. 3):

(Ap) RMS x /27 (6. 5)

Assuming that the working wavelength is 5000 A, this results in a

(AP) of 0. 73 x 10 in. Using this as a criterion stemming fromRMS
the Strehl ratio makes more sense at this time than comparing on the

basis of the optical path difference,which in this (flat) case would be

merely the sum of the absolute value of the largest positive and negative

deflections. The RMS, on the other hand, gives the "area-weighted"

deflections which are much more significant in determining optical

quality. It should be noted that to do this properly, a uniform finite

element size is desirable.

The following sections outline some of the data gathered

for the solid mirror as well as the mirror with the center opening

(Cassagrain type).
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6. 3. 1 Solid Plate Mirrors

Based on the finite element layout in Fig. 6-1, a number of

studies were performed. The only variables at this stage were the

locations and number of the supports. The 3-support configuration

is located at 120° from each other, the 6-support at 600. These then

are moved inwards along radial lines.

The raw results for some of these studies can be seen in Figs.

6-2 to 6-7. The contours have been plotted automatically from the

finite element output. The contours represent quantities of A m from

Equation (6. 2). Actual values of the contour intervals could be then

determined for any dimensionally consistent set of D, P, E and t

variables. Their straight-line segments obviously reflect the element

size and, in spite of the cubic displacement functions in the element,

a necessity to simplify the plotting routines with the use of non-

uniform grid sizes. The contour interval was chosen to have no

more than 6 separate contour levels per plot.

This data is interpreted, along with similar information from

a closed-form solution to the continuous support in Fig. 6-8, and

replaces the coefficient (Am * 2. 44 * 10 - 4 ) in Equation (6. 4).

Fig. 6-9 shows a plot of this data, summarizing other data as well

which is not included in Figs. 6-2 to 6-8, in terms of the (Am)RMS

for each of the cases. The best support from this interpretation is

evidently the six-point support. It is recalled here that the deflected

points are being corrected to a best-fit plane. With a spherical or

parabolic best-fit surface, presumably another of these supports

would perform best.
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Fig. 6-4 Solid Mirror 3 Supports 50% in from Edge
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Using as a basis the 3-point support at 0. 5 of the radius, the

implication of these results on the mirror design are shown in Fig.

6-10. An 80" beryllium mirror is diffraction-limited under gravity

effects when it has a 16" thickness. The other materials are grouped

quite closely together but do not approach this level within the limits

of the bending theory. At this range shear deflections are beginning

to contribute an additional 10-20% to the total and for accurate later

studies, an exact model should be used.

For the 120" mirror (Fig. 6-11) beryllium gives diffraction-

limited performance at about 36" depth, whereas the others again

fail to reach this limit.

Some measure of the weight versus deflection tradeoffs can be

seen from Fig. 6-12 and Fig. 6-13 for beryllium. It is evident that

the curves are very strongly asymptotic in the region of the diffraction

limit, and small changes in the design variables have a large influence

on the weight of the mirror. This also implies the need for a very

accurate analyzer if a good design is desired.
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6. 3. 2 Mirrors with Central Opening

The basic element layout is altered slightly for the mirror

as shown in Fig. 6-14. The actual size of the central opening will

not be known until further optical data is obtained, but a statistical

average of some Cassagrain mirror openings was taken and found to

be 5/16 of the main diameter. The opening was left hexagonal and

not rounded,as the differences would be small and to avoid many small

and odd-shaped elements in the interior. The same loading type

is used and the supports are altered in a similar manner.

Fig. 6-15 to 6-20 are plots of the deformations (i. e., Am)

taken directly from the STRUDL output. Comparison with Fig. 6-2

to 6-7 shows the effects of the opening on the deformations.

The results are again summarized in Fig. 6-21 for a number

of cases. Again the surface deviations are connected to the best-fit

plane and RMS deflections are computed. Again under these criteria

the 6-point support appears the best at 0. 7 radius. Further inter-

pretation of these results is continuing.
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6. 4 Mirror Behaviour - Bending and Shear Deformations

The data obtained in Section 6. 3 on optical mirror behaviour

was based on the thin plate linear bending theory. It is assumed by

this theory that the transverse deflections are small relative to the

plate thickness and that the deflections result from strictly bending

behaviour. In optical mirror structures, the first requirement is

always assured, but the second is not necessarily true in most cases.

When the plate is truly thin, that is, the spanlength is approximately two

orders of magnitude greater than the plate thickness, then the shear

deflection component is really small in comparison to the bending com-

ponent.

The typical solid mirror will have a span to depth ratio ranging

from 5:1 to 10:1 and shear deflections will form a large component of

the total. If "order-of-magnitude" results are desired for mirror de-

flections, then the thin plate theory may be quite adequate, but for pre-

cision evaluations, shear deflections must be included. These have not

always been obtained in practise, as closed-form solutions for thick

plates are relatively limited. It is only recently that finite difference

and finite element methods have brought the general case nearer to

solution.

6. 4.1 Thick Plate Behaviour - A Classical Solution

A classical closed-form solution that is very useful for thick

plate parametric studies is that of Love. (19) Assuming a rigid continuous

boundary for the circular plate, the transverse deformations (W) under a

uniform pressure loading (P) can be expressed by the following equation.

P ( R 2 2) t1 (5 +or R1 2 +2) 88 + 2 )21
W = - 8 R - r2) ( 1 + - r) 2 h (6-6)

where R is the circumferential and support radius, r is the radius at

which W is calculated, ra is the poisson ratio, t is the plate depth, and

C is the plate stiffness expressed by
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Et 3

C =Et (6-7)
12 (1 - )

where E is the elastic modulus. The pressure P can represent the

selfweight loading intensity ( Y t) where y is the material density.

The first part of (6-6) within the braces expresses the bending

deflections, the second part of the shear deformations. The relative

importance of the shear term increases, obviously, with the increase

of t relative to R. For example, the behaviour of a 120" diameter

plate, loaded by its own weight and with a Poisson ratio of 0. 18 is

shown in Fig. 6-22 with percent shear deformation plotted against the

mirror depth. At a span to depth ratio of 24:1, the shear deformation

is less than one percent of the total deformation. At 10:1, it is 3%; at

6:1, 8%; and at 4:1, it is 16%.

Under ideal boundary conditions such as these, the amount of

shear deflection is not excessive, and the approximate thin plate theory

is probably quite adequate. Shear deflections, however, are very sen-

sitive to load and support concentrations and if a three-point support

were used, the percentage of shear deflection would on the average,

double.

It has been assumed, moreover, that the mirror is perfectly

isotropic. If the shear-supporting material, in the web, is removed to

some degree by "lightweighting" or is replaced by an "egg-crate", the

shear deflection component will increase very strongly. This, too, will

happen when the core material is a low-density foamed glass or silica.

In effect, the curves on Fig. 6-22 represent the most favorable

conditions for use of the thin plate approach; in all other cases the

shear deflection is much larger.

In optical mirror literature, the classification of mirrors by

stiffness with respect to gravity effects has occasionally been discussed.

Oral tradition for a long time has held that the stiffness of the blank is

73



0

Ur

c)
m

\oo

\ X

z
\0 0

\m o

NOlIVW8OA30 8V3HS IN3l3l3d

74



related to the diameter to depth (D/t) ratio and the best value for this
(20)

was 6:1. Couder , observing a number of mirrors in practise and

comparing his results to thin plate theory, felt that the proper measure

of mirror stiffness was a (R4/t2
) relation of radius and thickness.

Rule( 2 1 ) has recently quoted a (D2/t) empirical relation as an occasion-

ally suitable design tool. These all are rules of thumb that may be

valid for a limited range of mirror blank radius to depth proportions,

but they cannot be entirely justified on the basis of exact elasticity

theory.

A comparison of the approximations with a rigorous closed-form

elasticity solution for a deep mirror can be made through Love's

equation (6-6). If this equation is simplified to represent the maximum

central deflection in a mirror under gravity loads parallel to the optical

axis, the following is obtained:

R4

W = K1 -+ K2 (6-8)
t

where K1 and K2 are terms representing products of material

density and elasticity constants. The first term represents the bending

deformations and the second the shear contributions in this case.

The Couder relation can be expressed as:

R4

WC K 3 2 (6-9)
t

and Rule's "empirical" relation by

D 2

WE = K4 t (6-10)

It is clear that Couder's expression relates only to the bending

deflections in the mirror. This is to be expected, as the major veri-

fication of his hypothesis was performed with a relatively thin mirror

(74. 6 cm. in diameter and 3. 44 cm. thick), although he extended the
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range of its validity to much thicker mirrors. The "empirical" ex-

pression does not appear to be related to the rigorous theory at all,

being probably a "best-fit" relationship.

To establish the value of (6-9) and (6-10) as design tools, a com-

parison of these with the exact solution (6-8) can be made. If it is

assumed that they are valid at the one point in their range where most

mirrors have been fabricated; i. e., where D/t ratio is 6, then the

coefficients K3 and K4 can be determined so that all three cases

coincide at that point. Assuming that the mirror diameter desired is

120", the deflections, and hence stiffnesses, for various mirror thick-

nesses can be computed. The three cases are shown, plotted semi-

logarithmically, in Fig. 6-23.

As would be expected, the deflections from the Couder approxi-

mation are about 9% too high at a D/t of 24 and about 27% too low at

D/t of 3. The "empirical" relation predicts only one quarter of the

actual deflection at D/t of 24 and is high by about a factor of 2 for the

D/t of 3. The empirical relation may well be better suited for mirrors

with concentrated point supports than for the continuous support case.

With either approximation the errors can be significantly high, and

their use should be minimized since exact analysis techniques are now

available.

Recent work by Selke 2 4 2 5 ,2
6 using the Reissner( extension

to Kirchhoff's assumptions including now the transverse shear deforma-

tion energy, has resulted in a Bessel function solution for thick circular

plates on concentric rings. Selke's shear corrections terms differ from

Love's by about 3% for most mirror materials, with the total deforma-

tions then differing from Love's by 0. 5 and 0. 1% for D/t ratios of 4:1 and

10:1 respectively.

Additional current work comes from Malvick and Pearson(29 ' 30, 31)

Using a tensor formulation in nonorthogonal curvilinear coordinates and

difference elements for the dished mirror with a central hole, and employ-

ing a propagation type numerical solution for the resulting equilibrium

problem, a number of specific cases have been analyzed. No common

reference point with Selke's or Love's solutions is, however, available.
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6. 4. 2 Thick Plate Mirror Behaviour - Finite Element Solution

While closed-form solutions such as A. E. H. Love's are ab-

solutely accurate if the analyst does not deviate from the initial

assumptions of the theory, most practical problems in mirror design,

however, differ enough in support characteristics to limit the value of

this solution. The use of finite element methods reduces dilemma

considerably as there are few practical limitations to the approach,

and with care, good results are obtainable.

It is possible, in the finite element analysis of thick mirrors, to

formulate a plate element that includes finite shear deformations. It

is questionable that the elements would resemble plates or even slabs

in any way if the span to depth ratio of the mirror is 4:1. It is for this

reason that the solid isoparametrics have been used in the following

studies. Because there are no limiting assumptions, these elements

will give good results if properly implemented. Obviously, the com-

putational costs with 3-D elements are very much higher than with the

simple plate or the plate with shear elements.

A study was performed on six curved face solid mirrors 120" in

diameter. Two surface radii were considered, with three thicknesses

for each (Fig. 6-24). Each mirror was evaluated with both continuous

edge supports and 3 point edge supports, and the actual (3-dimensional)

deflections were compared with deflections resulting from an equivalent

pure bending (but also finite element) analysis. Symmetry sections

were analyzed as per Fig. 6-25 and 6-26. The elements were divided

in such a manner that later studies for support radius variation could

be implemented with small modifications.

The results of this study are summarized in Table 6-4. With

continuous supports, the differences between the 3-D and bending

studies, which are due to shear deflections, are relatively low and

predictable from the A. E. H. Love solution results as shown in Fig.

6-22. The slight differences between Fig. 6-22 and the percentages in

Table 6-4 can be attributed to the fact that these mirrors are not flat
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FIG. 6-25 FINITE ELEMENT ALLOCATION FOR 3-D ELEMENTS FOR
120" SOLID MIRROR
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FIG. 6-26 FINITE ELEMENT ALLOCATION FOR BENDING ELEMENTS FOR
120" SOLID MIRROR

81



TABLE 6-4

120" SOLID MIRROR, SILICA PROPERTIES

MAXIMUM DEFLECTIONS x 106 IN.

R = 960"

82

MIRROR THICKNESS CONTINUOUS SUPPORTS 3 POINT SUPPORTS

3-D BENDING ERROR 3-D BENDING ERROR

12 500 480 4% 970 760 22%

15 340 310 9% 730 490 33%

20 210 180 14% 560 290 48%

R = 480"

12 460 440 4% 880 670 24%

15 310 290 6% 680 450 34%

20 200 170 15% 530 260 51%



like the theoretical closed-form solution assumes.

With the three-point supports, the difference between the 3-D

and bending approach is highly evident. For the thickest case, a 20"

mirror with a span to depth ratio of 6, the bending theory predicts one

half of the actual deflections. With the thinner mirrors this error level

is expectedly smaller, but still significant.

An additional difference between the bending theory and the 3-D

behaviour should be noted here. According to the bending theory, the

total deformation field is defined by the displacements and rotations of

a hypothetical middle surface, infinitesimally thin, but with finite stiff-

ness. The transverse deformations of the actual top and bottom surfaces

in the mirror can be obtained directly from the deformations of the

middle surface, and with a properly thin mirror all three should differ

by second-order magnitudes only.

In the three-dimensional model for the mirror, no such behaviour

assumptions are made, and the top and bottom of the mirror surfaces

can have quite different deformation patterns, especially if load or

support concentrations occur. An example of this can be seen in Fig.

6-27 and Fig. 6-28. Fig. 6-27 represents the deflection contours for

a bending model of the 120" diameter, 20" thick, mirror supported on

three points at the edge. As the supports are rigid, the zero deflection

contour is located at the support. Fig. 6-28 represents the deforma-

tions of the top (optical) surface of the same mirror but analyzed with

the 3-D method. It is obvious that while the contours here cluster

around the support area, the least deflection contour is not the zero

level, but the 275A" level. Apart from this initial offset, the contour

patterns of the two cases are quite similar in appearance.

Fig. 6-29 develops this similarity even further. It is evident

from the exaggerated deformation-scale drawing that the top and bottom

surface deformations of the solid mirror differ considerably. The

graph directly below plots these surface deformations again but using

the vertical deflection at the center of the mirror (which incidentally

is almost the same at that point for the top and bottom surfaces) as the
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FIG. 6-27 TOP SURFACE TRANSVERSE DEFLECTIONS - 3-D MIRROR

(Intervals @ 25 x 10 - 6 in. )
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FIG. 6-28 TOP SURFACE DEFORMATIONS - BENDING MIRROR

(Intervals @ 25 x 10
-

6 in)
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origin of the figure. The bending theory results for the same mirror

are plotted on the same basis and scale. The results are plotted for the

3-point supported mirror through a radius line connecting a support

and the mirror center. Fig. 6-30 is analogous to Fig. 6-29, but de-

flections are plotted along a radius halfway between the supports.

It is evident that if the mirror deflection evaluation is based on

relative displacements from an immovable point of reference, i. e.,

the supports, then the bending approach is truly inadequate as a design

tool. If, however, the "rigid-body" component is removed from the

optical surface deformations, as was done with the graphs in Fig.

6-29 and Fig. 6-30, then the top-surface 3-D and bending approaches

appear to correspond quite closely.

If continuous edge supports are used, then the deformation

patterns can be seen from Fig. 6-31. The top and bottom surfaces in

the 3-D model have essentially identical deformation patterns across

most of the mirror, departing somewhat near the supports. Again the

3-D top surface pattern resembles the bending results, and the differ-

ences are even less than with 3-point support case. The deformation

profiles for other thick mirrors, which were summarized in Table 6-4

but are not presented here, point towards the same conclusions, but

with lesser emphasis as the mirrors are thinner and the bending model

is more valid in any case.

It is very evident from the data at hand, that when the mirror is

supported at the back, then the bending theory can be used to compute

the optical surface deformations. From the graphs in Figs. 6-29,

6-30, and 6-31, it is not certain, however, that this correspondence

will be true under the more severe criteria based on the optical path

difference and the Strehl ratio. A more detailed study of this data

sometime in the future would be highly fruitful.

It is tempting to speculate that the thin plate bending approach,

and hence Couder's approximation might be a completely appropriate

general design tool for mirrors with a wide range of depth the diameter

ratios. Couder observed it to be adequate for various sizes of
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ring-supported solid mirrors, and verified it accurately for a very thin

mirror. The results here confirm this to some degree, and further

indicate that it may be suitable for the three-point edge supports as

well, provided the mirror supports are at the back. Possibly other

types of support will be found where agreement is good.

Some caveats are in order, however. It is clear from the

present study that the location of the supports, whether at the optical

surface, the bottom surface, or between, will have considerable effect

on the deformation pattern. Whether the effect of many, evenly dis-

tributed supports under the mirror can be predicted from Couder's

approximation is not known, nor is there any such information on the

behaviour of mirrors with a large central opening. In general, there

is sufficient disagreement between the bending and 3-D results as to

make the use of an accurate 3-D analysis mandatory wherever pre-

cision results are needed. For order of magnitude design studies,

the Couder approach is probably adequate.
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Deep Mirror with Soft Core

Often to minimize the weight of a deep bending plate, the

low-stressed core material around the neutral surface is replaced by a

low-density, low-stiffness component which, by reducing the weight,

increases the inherent efficiency of the whole. While such sandwich

structures for optical mirrors are relatively uncommon, they occur often

enough to pose some demands for adequate analysis capabilities. Sandwich

mirrors are nearly always deep mirrors and must be analyzed by solid

finite elements, but additionally the elastic, strength and density pecu-

liarities of the face and core must be included in the study.

In order to test the deep sandwich mirror capabilities, the

following example was analyzed. This is an idealization of an actual

sandwich mirror proposed by NASA/MSFC Manufacturing Research and

Technology Division. It is 21" in diameter, 3" deep with 0.38" front

plate and 0. 25" back plate. In this test example, the mirror has been

assumed flat and of uniform thickness. The faces are solid fused silica

and the core is silica foam with 85% voids. Four separate studies were

performed - two types of supports and two configurations - with and without

a rim plate. The loading was assumed to be ig acting in the direction of

the optical axis (Fig. 6-32).

A 6 00 segment was divided into 5 solid elements, with iso-

parametric plate elements above and below each solid element. As the

elements are conforming and of a very high order, this number was

probably sufficient. Rim plates, also isoparametric, were added wherever

needed. Symmetry conditions were imposed along the 600 radial lines.

Deflection results are shown in Fig. 6-33, for points on the top

surface in the direction of the optical axis. The mirror was assumed

supported at the bottom surface on the rim, where the deflections then

were zero. At the top surface, however, points immediately above the

supports experienced some movements. This is again a contrast to the

pure flexure case where the behavior is totally characterized by the

middle surface, and a parallel of the behavior noted in Section 6. 4. 2.

The rimless case is contrasted with the pure flexure dis-

placements using an equivalent bending stiffness for the latter. The
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FUSED SILICA

FOAMED SILICA

I - 21" $
L- OPTIONAL 1/4" RIM

PLATES

SECTION 'A-A'
TOP VIEW MIRROR

3 POINT RIM
SUPPORT

Fig. 6-32

"CONT INUOUS" RIM
SUPPORT

Sandwich mirror.
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results obtained clearly indicate the inadequacy of bending theory to deal

with this problem. For continuous supports, the bending results differed

by a factor of 2. 5; with three discrete supports, by a factor of about 6.

The results also indicate the enormous sensitivities of this type

of structure to concentrated supports (as well as loads). While the three

support bending deflections differ from the continuous support deflections

by a factor of 1. 6, the sandwich structure has an analogous factor of 3. 7.

The difference is obviously the shear deformations. The effect of the rim

on the sandwich is an indication of this behavior mode as well.

It should be noted here that factoring out the "rigid body"

component of the optical surface deformations will not reduce the total

deflections sufficiently to compare with the bending theory, as was

possible in the solid mirrors considered in Section 6.4.2. It is evident

that the shear deformations control the behavior here to such a degree

that the bending approach to sandwiches of this type is not even a rough

approximation to the actual mechanisms.
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3 POINT
SUPPORT

HERE

7

ELEMENT LAYOUT

DISPLACEMENTS ON TOP SURFACE ALONG OPTICAL AXIS (x 10 IN)

JOINT CONTINUOUS SUPPORTS 3 SUPPORTS

PURE PURE
NO RIM 0.25 RIM BENDING NO RIM 0.25 RIM BENDING

1 3.7 3.4 1.5 13.9 9.6 2.4

2 3.4 3.2 13.5 9.2

3 2.9 2.7 12.6 8.3

4' 2.4 2.1 11.5 7.3

5 1.8 1.5 10.1 5.9

6 1.0 0.8 7.6 3.8

7 0.7 0.1 0.0 6.8 2.0 1.6

Fig. 6-33 Results - sandwich mirror analysis.
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6. 5 Lightweight Mirrors

The stiffness to weight characteristics of mirror structures

are often improved by a "lightweighting" technique. This approach

generally acts to minimize the material at the neutral surface of the

mirror where it contributes relatively little to the bending stiffness. The

total mirror weight then decreases more rapidly than the bending stiffness,

and flexural displacements are reduced. The shear deflections, however,

will increase and sometimes offset the improved bending behavior. As

the mirror weight has been reduced, however, the net stiffness to weight

ratio generally increases.

Lightweight mirrors may be assembled by fusing flange-plates

to either a grid or a light-weighted core, or by machining from a solid

blank. The fusing process is considerably more economical, but potential

sources of trouble can arise with stress concentrations at the joints and

lack of absolute uniformity in the degree of fusion at all points in the mirror.

The machining process is much more costly, but good fillet radii can be

achieved between joining surfaces and better dimensional control is possible.

The mechanisms of internal stress relief by fabrication will probably be

quite different in the two types. A direct comparison of this in two mirrors

of equal stiffness but of differing fabrication techniques would be most valuable.

Until recently, the lightweight structure type has been quite diffi-

cult to solve analytically. Some approaches can be made using orthotropic

plate theory, but these can become very complex with non-orthogonal grids,

circular mirror structures and arbitrary support configurations. Equiva-

lent stiffness approaches are not too illuminating either since these

generally neglect the considerable shear deformations.

Finite element techniques make the analysis of lightweight

mirrors relatively easy. As most of the components are plates, or can

be idealized as plates, the bending and stretching elements can be used

for both the ribs and the cover plates. Appendix A describes the formulation

of such an element from uncoupled bending and plane stress behavior. This

element was implemented early in this study, and has been tested exten-

sively for speed and convergence. If only a part of the mirror blank has

been lightweighted, then the solid isoparametric elements can be used

wherever necessary in conjunction with the plate elements.
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A number of candidate lightweight structures are analyzed here,

first to demonstrate the capabilities of the approach utilized, to compare

with results obtained by approximate means, and to study the sensitivity

of the mirror behavior to parameter changes in the mirror lightweighting

properties. The configurations are based on those given by Simmons(22)

for 64" diameter lightweighted mirrors. While these mirrors were pre-

sumably lightweighted by machining, the analytical approach used is no

less valid for the fused mirror structures. To simplify the analysis, the

fillets and the backplate holes are ignored, although for a detailed study

they could be included. As the supports are continuous along the edge

and the loading comes from gravity along the optical axis, symmetry

assumptions can be used and 300 sectors are analyzed for the triangular

and hexagonal configurations, and a 450 sector for the square cavity case.

(Fig. 6-34). As this is a deflection study, only a minimum number of

elements is necessary to achieve adequate precision. A single element is

used for the top and bottom plates for each triangle and rectangle, while

each of the hexagons must be subdivided into at least six triangles. Single-

rectangle elements are used for the ribs between the intersection nodes.

If concentrated loadings and stress effects are desired, it is advisable to

subdivide these elements further.

Table 6-5 shows a comparison of the relative maximum deflections

of the various configurations in fused silica, ULE and CER-VIT. The

triangular configuration deflects a shade less than the hexagonal, although

its weight is considerably higher. The weights have been calculated

assuming no fillets, backplate holes or the additional lightweighting holes

found in triangular mirrors.

If the lightweighted mirror deflection is computed by assuming

an equivalent bending stiffness, then that result will be in error by about

50%. This stems from neglecting the shear deformation, which in this

structure type is quite substantial.

Even if the mirror were 12" thick and solid, the shear deflections

would account for approximately 10% of the total. It is evident here too,

that lightweighting does not necessarily reduce the total deflections in

comparison to a solid mirror of the same outside dimensions. The weight

of the mirror is however, substantially reduced, and improved dynamic

behavior should be expected.
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Fig. 6-35 shows the distribution of the mirror deformation

contours under lg loading for a lightweighted triangular mirror, a solid

mirror of the same outside dimensions and a pure bending "equivalent

bending stiffness" representation of the lightweighted triangular mirror.

It is evident that the lightweight mirror surface deflections differ from its

pure bending and solid counterparts by both magnitude and distribution of

deformations.

While it is evident from these studies that there is some advantage

to using a triangular or hexagonal core over a square one, considerable

optimization is also possible within each configuration. As the computer

running times on the triangular core mirror were much lower than the

other cases, a number of parameter tests were performed using it.

Keeping all other properties constant, web and/or flange thicknesses were

doubled or halved, the total depth of the mirror was changed, keeping the

webs and flange thicknesses constant, and finally the 1 1/2" back plate was

removed from the mirror.

Certain significant trends can be observed in the data presented

in Table 6-6. Deflections could be improved over the basic configuration

by doubling the depth of the mirror, doubling the thickness of the web and

halving the thickness of the flanges. Doubling the depth obtained the least

deforming configuration, though obviously a large part of the advantage

gained from increasing the depth for flexure resulted in a concurrent

increase in the shear deformations.

The top or bottom plate (or flange) thicknesses seem to be at an

upper limit of effectiveness in the original configuration. An increase in

the plate thickness adds to both the bending stiffness and the total weight

but results as well in an increase of the shear deformations so that the

total benefit to the deflection behavior is slight.

The original web thicknesses could, however, be increased

somewhat to reduce the shear deformations with relatively small penalty

in weight.

It is recognized here that definite side constraints

must be imposed on the sizes of the flange and plate members. Making the

web or flange plates too thin can invite breakage or even buckling. If the
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flange plate becomes too thin relative to the web stiffness and cell

size, then the likelihood of the cell "imprinting" on the mirror figure

becomes higher.

From the deflections and weights in Table 6-6 certain trends can

be observed on the direction for optimizing the design of the lightweight

mirror. If it is assumed that the structure with the least absolute de-

flection is optimal, then the solid unlightweighted configuration is a good

candidate. Conversely, if a strictly minimum weight criterion is

applied, then the least deforming mirrors may not be a good choice.

If a minimum flexibility structure is proposed, i. e., least deflection

to load (weight) ratio, then the solid mirror, and other heavier can-

didates will be acceptable. In effect, for a lightweight mirror, both

weight and deflection must be reduced simultaneously. It is still not

certain how this criterion should be analytically expressed.

If it is assumed, however, that both weight and deformation have

equal significance, then a merit comparison could be implemented. In

Table 6-7, the rank of the various mirror configurations with respect

to weight and deformation are presented, and a composite ranking made

on the average of both. The trends still very strongly point towards

decreasing the flange, increasing the web and depth. Different mirror

materials, incidentally, have little effect on this rank, unless perhaps

beryllium or magnesium are considered.
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TABLE 6-7

MERIT COMPARISONS

64" DIAMETER

103

RANK

STRUCTURE

WEIGHT A TOTAL

TRIANGLE 8 7 7

SQUARE 7 10 11.5

HEXAGON 6 8.5 6

SOLID 12" MIRROR 13 3 9. 5

TRIANGLE VARIATIONS

0.5 x WEB 5 11 9.5

2.0 x WEB 9 3 4

0. 5 x FLANGE 2 3 1

2.0 x FLANGE 10 5. 5 8

0. 5 x (WEB, FLANGE) 1 8. 5 2

2.0 x (WEB, FLANGE) 12 5. 5 13

0.5 x DEPTH 4 13 11. 5

2.0 x DEPTH 10 1 3

1 1/2" BACK PLATE 2 12 5
REMOVED



6. 6 Segmented Mirror-Support Study

In the general case the active segmented mirror concept can

include untold possible combinations of individual segments. If these

are constrained to being geometrically compatible, repeatable and

easy in manufacture, and to form a multiply symmetrical whole, then

the possibilities drop significantly. One configuration that has been

proposed is the hexagon surrounded by parts of other hexagons (Fig.

6-36). The structural design objective here is to find that combination

of segments which deforms least under the environmental conditions.

It should be recognized that while the system is an active one, it is

nevertheless based on the assumption that the segments have,

individually, small surface deviations.

It is assumed that the major design loadings result from testing

in a lg environment with a vertical optical axis. The design objective

is to minimize the deformations over the sum of the segments. The

system is assumed to consist of originally plane mirrors, and deforma-

tions will be obtained through finite element analysis with bending ele-

ments. A new, best-fit plane will then be determined, and the root

mean square (rms) deviation from that plane computed. The com-

bination that has the least rms error will be considered optimal.

Optimal support locations are determined for each segment so

as to minimize the individual rms displacement. As the opening in

the central hexagon remains constant, the support locations are dif-

ferently proportioned at each size, This is true of the outer segments

as well. Assuming that all segments have the same thickness, the

rms of the entire system can then be computed at the various segment

proportions.

A definite optimum range can be observed in the graph on Fig.

6-36. In the limit where A approaches B, the outer segments dis-

appear and the mirror center experiences large deformations caused

by long spanlengths. As A tends smaller, the opening in the inner

104



segment limits further decrease while the outer segments have

acquired considerable spanlengths. This effect is, of course, not

so intense as when A = B, since the supports total 18 versus 3.

Using existing programs this study can be extended to other

geometrical combinations, to curved mirrors and other loading

conditions.
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Fig. 6-36 Segmented mirror proportions.
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6. 7 Active Flexible Mirror

The active flexible mirror is analyzed as a thin, shallow shell.

The same element plan-view layouts as in Fig. 6-1 and 6-14 are used,

but each element node has a Z component as well. At this preliminary

stage, the mirror is considered to be assembled from a series of flat

triangular plates with the nodes on a sphere with each element acting

in both bending and stretching. The mirrors studied here are 120" in

diameter, of uniform thickness and with a 480" radius of curvature.

Mirror material properties used were for silica, although other

material effects can be obtained by simple scaling.

The objectives here are to determine the range of validity of

the shallow shell, as opposed to a pure bending approach for the

mirror, to establish the effect of mounting the mirror horizontally,

to test some of the automatic interpretation routines and to evaluate

some necessary parameters for the actuator designs.

As no attempt is to be made here to determine the optimum loca-

tion for the fixed supports for the flexible mirrors, the three-point

edge support will be used throughout the analysis.

Table 6-8 summarizes a number of finite element studies for

the gravity loading case parallel to the optical axis. Three different

mirror thicknesses were analyzed both in the shallow shell and flat

plate cases and the mirrors were assumed to be solid. It is evident

upon comparing the maximum deflections for the six cases that sig-

nificant differences occur when the shells and plates are both thin,

but minimal differences can be observed when both are 10" thick.

The data thus demonstrates the much greater efficiency of the shell

action for load carrying purposes, as opposed to the pure bending

action.

The distribution of the deflections differs considerably between

the two cases in the 1" thickness. Fig. 6-37, which represents the

shell deformations, has the maximum deformations at the edge, while

the plate deforms maximally at the center (Fig. 6-38). This is to

some degree evident in the 2" thick mirrors, Fig. 6-39 and 6-40, but
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CURVED VS FLAT MIRROR - SOLID

108

MIRROR THICKNESS

1" 2" 10"

MAXIMUM DEFLECTION CURVED 0.093 0.023 0.0013
(inches) FLAT 0 134 0.034 0.0013

ACTUATOR D/F CURVED 2.4 x 10 - 4 3.5 x 10 ' 5 3.5 x 10 7

(inches/lb.) FLAT 2.4 x 10 4.5 x 10
- 5

3.5 x 10
- 7

CURVED CORRECTED TO SPHERE, FLAT TO PLANE

SPHERE RADIUS CURVED 478.75 479.18 479.87
(inches)

OPT. PATH DIFF. CURVED 0.092 0.023 0.0046
(maximum in inches)

FLAT 0.134 0.034 0.0013

RMS DEFLECTION CURVED 0.023 0.0068 0.0039

(inches) j FLAT 0.035 0.0086 0.00034

TABLE 6-8



the distribution and magnitudes are almost identical for both 10"

cases. These can be seen in Figs. 6-41 and 6-42.

When the mirrors have a center opening, as in a Cassegrain

system, similar observations can be made. Table 6-9 summarizes

this data for 1" and 10 " mirrors. Again the differences are significant

for the thin mirrors, but are minimized as the thickness increases.
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Fig. 6-37 Curved mirror 1" thick - optical axis vertical.

(scale x 10 3 inches)
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Fig. 6-38 Flat mirror 1" thick - optical axis vertical.

(scale x 10
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Fig. 6-39 Curved mirror 2" thick - optical axis vertical.

(scale x 10 -
3 inches)

[E SUPPORTS.
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Fig. 6-41 Curved mirror 10" thick - optical axis vertical.
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Fig. 6-42 Flat mirror 10" thick -optical axis vertical.
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CURVED VS FLAT MIRROR - OPEN

MAXIMUM DEFLECTION
(inches)

ACTUATOR D/F
(inches/lb. )

CURVED

FLAT

CURVED

FLAT

MIRROR THICKNESS

1 "

0. 088

0.1367

2. 6x 10- 4

4.0 x 104

CURVED CORRECTED TO SPHERE, FLAT TO PLANE

SPHERE RADIUS CURVED 478.79 479.86
(inches)

OPT. PATH DIFF. CURVED 0.088 0. 005
(inches maximum)

FLAT 0. 1367 0. 0014

RMS DEFLECTION CURVED 0. 021' 0. 0044
(inches)

FLAT 0.036 0. 00036

116

10"

0. 0013

0. 0014

3.9 x 10
-

7

4.0 x 10
- 7

TABLE 6-9



If the mirrors are so mounted that the optical axis is normal to

the gravity direction, then a reduction in the deformation field is

observed. This test is obviously meaningless with a flat mirror, as

a plane stress condition would produce uniform out-of-plane deforma-

tions unless very precise solid elements were used.

With the shell structure it is a very meaningful test and the

surface deformations are reduced by almost an order of magnitude

(Table 6. 10), though relatively less in the thicker shells as the local

bending of the shell is diminished. The figures 6-43, 6-44, and 6-45

demonstrate this effect. The mirrors, incidentally, are supported

at three equidistant points on the rim, in a statically determinate

manner.

The automatic interpretation routines were tested on the de-

formation results of these mirrors. A best-fit sphere was determined

for the curved mirrors and a best-fit plane for the flat ones. Maxi-

mum optical path difference, and the RMS deviation from the best-fit

surface for each case. It is evident that fitting a sphere to deformation

results produced by three-point supports does not necessarily improve

the results. Curve-fitting with continuous edge supports would cer-

tainly have decreased the residuals. Because of time and funding

constraints, this unfortunately could not be done. Essentially these

comments cover all of the Tables 6-8, 6-9, and 6-10, where all

results are interpreted in this manner. Programs have been written,

but not tested, to fit parabolas and hyperbolas as well. Figs. 6-46

and 6-47 show plots of the residual deformations resulting after a

best-fitting sphere has been passed through the displacements

originally plotted in Figs. 6-37 and 6-43.
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TABLE 6-10 EFFECT OF OPTICAL AXIS ORIENTATION

118

MIRROR THICKNESS

1" 2" 10"

MAXIMUM DEFLECTION V 0.093 0.023 0.0013
(inches)

H 0.013 0.003 0.00013

ACTUATOR D/F 2.4 x 10
-

4 3.5 x 10- 5 2.4 x 10- 7

(inches/lb. )

RESULTS CORRECTED TO BEST-FIT SPHERE

SPHERE RADIUS V 478. 75 479.18 479. 87
(inches)

H 479.89 479.91 479.96

OPTICAL PATH DIFFERENCE V 0. 092 0. 023 0. 0046
(inches, maximum)

H 0.019 0.007 0.0045

RMS DEFLECTION V 0. 023 0. 007 0. 0039
(inches)

H 0. 006 0.005 0.0042



Fig. 6-43 Curved mirror 1" thick - optical axis horizontal.

(scale x 10
-

3 inches)
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Fig. 6-44 Curved mirror 2" thick - optical axis horizontal.

-3
(scale x 10 inches)
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Fig. 6-45 Curved mirror 10" thick - optical axis horizontal.

(scale x 10 6 inches)
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Fig. 6-46 Curved mirror residuals of best-fit sphere, to Fig. 6-37.
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Fig. 6-47 Curved mirror residuals of best-fit sphere, to Fig. 6-43.

(scale x 10 inches)
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The effects of actuators on the mirror can be determined in

several ways. The simplest criterion is to evaluate the mirror on the

basis of deformation under a unit load at a given point in all mirrors.

This data is shown in Tables 6-8, 6-9, 6-10, and this data simply

compares the relative stiffnesses of the mirrors to load concentrations.

It is evident here that the curved mirror is much stiffer than the flat,

if both are thin, but the difference disappears quite rapidly with increasing

thickness.

A more meaningful comparison is based on using a number of

symmetrically placed actuators and using these to cancel out a given

mirror disturbance, such as the gravity effect. From such a study the

required actuator strength and stroke length can be obtained. It is

assumed here that the actuators will move to cancel out the disturbances

at their own locations only. This is identical to the simplified linear

control algorithm as defined by MacKinnon, et al. (23)

An influence surface study is performed on the structure in

Fig. 6-14. A unit load is placed at each element node in turn and the

resulting deflections at all nodes are obtained. Therefore to eliminate

the deflection at a node

Z (deflection contributions) = disturbance actuators

or

[A] * (R) = (D) (6-11)

where

A.. influence matrix of deflections at actuator
1J

location i due to unit force by actuator at

location j (reduced flexibility matrix)

R. = vector of participation coefficients of

actuators j (actuator forces)

D. disturbance at actuator location i (deflection)
1

Matrix A is inverted, and values of R can be obtained for

each set of D.
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Distributing the actuators over approximately equal tributary

areas, configurations of 3, 6 and 9 actuators are considered. The re-

sults of this study can be seen in Figs. 6-48, 6-49, 6-50 and Table 6-11.

Four types of disturbance are considered. First, the mirror is

assumed mounted with its optical axis vertically and the deformation

pattern as shown in Figs. 6-37 through 6-42 can be observed. Then

the optical axis is turned horizontally (Figs. 6-43 through 6-45) and

the disturbing deformations recorded. Finally, it is assumed that

thermal errors of a maximum amplitude of 10X and 1X occur on the

mirror and have a distribution similar to the gravity deformations.

From this an estimate can be made of the in-orbit needs of the

active mirror.

Table 6-11 summarizes these results for the 1" curved-shell

mirror. It is evident that with an increase in the number of actuators,

the load and stroke requirements of the actuators are reduced. It is

also evident that to cancel the full gravity effects, very powerful

actuators are needed if only a few will be used.

The mounting of the mirror on a horizontal axis reduces the

actuator requirements for gravity loads by about an order of mag-

nitude (Fig. 6-48). The value of the thermal disturbance used is a

purely arbitrary number, as the actual disturbance is still unknown.

If the actual thermal errors lie in this range, then the in-orbit

actuator requirements appear not as severe.

It is strongly evident, however, that in order to test such a

mirror with actuators in the earth's gravity field, the test actuators

will have to be different from the in-orbit devices, or some other

means be found to support the weight of the mirror.

In the limit, assuming that each actuator is to carry two lbs. of

the mirror weight, the actuators will be spaced closely enough so that

the actuator surface force is statically equivalent to the gravity force

(by Saint Venant' s Principle) and the weight of the mirror is approxi-

mately 800 lbs. per inch of thickness; then a total of 400 actuators

(per inch of mirror thickness) will be required. It is not known

whether a 1" thick, 120" diameter mirror can be fabricated satisfac-

torily. Alternately, the other limit will come from crowding the actuators.
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* Actuators

[] Supports

Actuator forces in lbs., displacements in inches.

MIRROR TYPE

LOADING CURVED 1" CURVED 10" FLAT 1" FLAT 10"

Gravity 11 Axis

Act Force 247 2160 216 2160
(lbs.)

Act. Disp. 0.059 0.00076 0.078 0.00078
inch)

Gravityl Axis

Act. Force 25.3 361 - -

-6
Act. Disp. 0. 0061 126 x 10 - -

Thermal 100 X

Act. Force 7.75 3030 3.76 3760

Act. Disp. 0.0018 0.0013 0.00134 0.00134

Thermal 1 X

Act. Force 0. 078 30.3 0. 038 37.6

Act. Disp. 18 x 10- 6 13 x 10
-

6 13.4 x 10
-

6 13.4 x 10
-
6

I A __. _ i s p _ _

FIGURE 6-48 3 SYMMETRICAL ACTUATORS
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* Actuators

[3 Supports

Actuator forces in lbs., displacements in inches.

LOADING MIRROR TYPE

CURVED 1" CURVED 10" FLAT 1" FLAT 10"

Gravity -L Axis

Act. Force 154 1710 171 1710

Act. Disp. 0.038 0.00048 0.048 0.00048

Thermal of 100 X

Act. Force 4.10 2730 2.73 2730

Act. Disp. 0.0014 0.00122 0.00122 0.00122

Thermal of 1 X

Act. Force 0.041 27.3 0. 0273 27.3

Act. Disp. 14 x 10 - 6 12.2 x 10 - 6 12.2 x 10-6 12.2 x 10
-

6

FIGURE 6-49 6 SYMMETRICAL ACTUATORS

i27.



* Actuators

13 Supports

Actuator forces in lbs., displacements in inches.
LOADING MIRROR TYPE

CURVED 1" CURVED 10" FLAT 1" FLAT 10"

Gravity 11 Axis

Act. Force 92 1280 128 1280

Act. Disp. 0.0313 0.000296 0.0296 0.000296

Thermal of 100 X

Act. Force 2.87# 2560# 2.56# 2560#

Act. Disp. 0.00097 0.000105 0.000106 0.000106

Thermal of 1 X

Act. Force 0. 0029 25.6 0. 0025 25.6

Act. Disp. 9.7 x 6 0.6 x 6 6 x Act. Disp. 9.7 x 10 -
6 10.5 x 106 10.6 x 10 6 10.6 x 10 - 6

FIGURE 6-50 9 SYMMETRICAL ACTUATORS
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TABLE 6-11

CURVED 1" MIRROR -- ACTUATOR EFFECTS

Actuator forces in lbs., movement in ins.

129

GRAVITY LOADING PARALLEL TO OPTICAL AXIS

ACTUATOR ARRANGEMENT ACTUATOR FORCE ACTUATOR MOVEMENT

3 Symm. 247 0. 059

6 Symm. 154 0. 038

9 Symm. 92 0. 031

THERMAL DISTORTION OF 100 X

3 Symm. 7.75 0. 0018

6 Symm. 4.10 0. 0014

9 Symm. 2.87 0. 00097



These calculations have assumed, of course, that the actuators

are infinitely stiff and are supported by an absolutely rigid reaction-plate.

To refine the calculations further,the actuator influence matrix should be

obtained using the designed stiffnesses of the actuator and supporting

mechanisms.

While it is possible to obtain a perfect mirror figure measured

at the actuator locations only, some amount of residual "ripple" will

remain in the mirror. This can be evaluated using the Strehl ratio tech-

nique described in Chapter 5 to determine the effect on diffraction.

Assuming that approximately 200 actuators will eventually be used, a

finite element study must be performed to study this ripple effect, using

at least 3 elements between actuators. With a triangular grid, this would

require a minimum of 1400 nodes, each with 6 degrees of freedom with a

fairly ill-conditioned structural system. This task will be attempted only

at the very last stages of such a structural study, as the preparation time

and running times will be quite astronomical. Until this is really needed,

approximate approaches will be employed.

Further studies on the active mirror should include the extension

of the influence matrix approach to many actuators and to more anti-

symmetrical and asymmetrical disturbances. When actuator and support

stiffness data becomes available these, too, will be included in the

influence matrix.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

1. Finite element structural analysis methods have been

developed and implemented for all types of optical mirror

structures undergoing all types of loading.

2. Necessary computer graphics and interpretation aids have

been developed. A plotting routine to verify geometric com-

patibility of the finite element input for complex structures

has been developed. Other routines to determine best-fit

surfaces for deformed mirror data, to automatically com-

pute the optical path difference, Strehl ratio, and to plot

deformation and best-fit residuals data have been developed,

and to the most part, debugged.

3. The environmental conditions that the mirror will experience

have been outlined. Information is still lacking on systems-

dependent conditions, such as launch environment and thermal

distributions. When these become available, they will be

used in the existing programs for detailed design studies.

4. An evaluation of candidate mirror materials has been con-

ducted, and the present study has included as possible

candidates fused silica, ULE, CER-VIT and beryllium.

Due to manufacturing reasons it seems likely that beryllium

will not be available at the 120" size.

5. Using the finite element approach, a large amount of data

has been collected onthe behaviour of plate, slab, "lightweight, "
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shell and other mirror types. Good correspondence has

been obtained with the closed-form solutions, where these

are available, and considerable confidence is expressed in

the validity of the results.

6. There is at this time insufficient evidence to favor any one

structural configuration over any other for the 3 -meter

mirror of the Large Space Telescope. The necessary

structural analysis tools are now available, and further

data must be sought on environments and material

properties.
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CHAPTER 8

SUGGESTIONS FOR FURTHER DESIGN STUDIES

While the initial period in this study has concentrated primarily

on the compilation of material, environmental, and design criteria,

and on the formulation, production and verification of analysis

methods, the next stage should be aimed towards producing a pre-

liminary design for the 3-meter mirror structure. Some of the

areas that must be covered during this phase include:

1. Inclusion of real mirror supports into the analysis phase.

While idealized support conditions are very valuable for

parametric studies, the actual operating deflections of the

mirrors can only be obtained by a joint mirror-support

study.

2. While there is considerable consistency in the finite element

results, within themselves and also with closed-form solu-

tions, the comparison of theory and laboratory experiment

is very necessary for absolute confidence. Since the level

of accuracy can be controlled in the finite element approach

by increasing the number of finite elements, some

experimentally-derived guide-lines are most desirable for

both monolithic and lightweighted mirrors.

3. As the mirror is manufactured under earth gravity condi-

tions, orbital operation would tend to relieve some of the

internal stresses. It should be determined whether the

level of internal stress could be near the failure level and

whether the resulting deformations tend to degrade the

mirror figure.
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4. Further parametric studies should be performed on the

lightweight and deep slab mirrors in order to establish

definitely the detailed optical surface deformation patterns

with respect to the mirror support types and locations.

5. Some tradeoff studies should be performed on the cell type,

mirror depth and plate thicknesses in lightweight mirrors.

Existing configurations do not appear to be especially

optimal.

6. Further support studies should be performed on the shallow

shell flexible mirror. The location of the supports or

actuators; the stiffnesses necessary in the mirror to avoid

local "dimpling" by the actuators, the strength and stroke

of the actuators should be defined in a manner including

both the control system and structure optimization.

7. When the (elastic) support conditions for the various mirrors

have been defined, dynamic studies including both mirrors

and the supports must be performed. Individually per-

formed, the tests might be quite meaningless.
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A PPENDIX A

A GENERAL STRETCHING AND BENDING PLATE ELEMENT

For the analysis of problems where both stretching and bending

are relevant, a pair of new elements was added to the STRUDL II

system.

The addition of these new elements, called "GSBPE" and

"GSBTE, " permits the analysis of any continuous system composed

by a series of planes, normal to each other and subjected to external

loads producing a stretching and bending behavior; a typical example

is the folded plate problem that arises in the analysis of "lightweight"

or ribbed mirror structures.

"GSBPE' is rectangular in shape and "GSBTE" is triangular

and with the characteristics described in Reference (3), Chapters 3

and 7. The element stiffness matrix includes a stretching part and a

bending part, which are uncoupled. The stiffness matrix is first

assembled in the local reference frame which is related to the plane

in which the element lies, and then rotated to a unique global reference

frame. During the assembly of the total stiffness matrix, the inter-

action among different planes is brought into evidence. Two different

types of nodal points must be established (Fig. A-l). The first type,

to be called intersection node, includes the nodes connecting elements

lying in different planes. The second kind, to be called simple node,

includes nodes connecting elements lying in the same plane. For

simple nodes the number of degrees of freedom to be considered is

equal to 5:3 displacement components and 2 rotations. The normal

rotation, negligible for problems of this type, is not included. For

intersection nodes six degrees of freedom are considered, including
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. intersection nodes

+ simple nodes

E generalized bending and stretching elements

Fig. A-1. Intersection and simple nodes
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three displacement components and three rotations, thus taking into

account the proper interaction between the different planes.

The type of external loads which can be processed are nodal

loads. Distributed loads are simulated by lumping the equivalent

nodal loads. The material properties are represented by Young's

modulus and poisson's ratio. The material is assumed to be homo-

geneous and isotropic, but the material properties may vary from

element to element.

The results produced yield the nodal displacements and rotations,

and element stresses, stress resultants, stress couples, and principal

stresses. The element results are given at the center of gravity of

each element.

The basic steps to be developed for the general stretching and

bending elements are the computation of the element stiffness matrix,

the computation of stresses from displacement and rotation components

and the output program. As mentioned earlier, the element stiffness

matrix, in the local coordinate system, contains stretching and bend-

ing parts, which result in five degrees of freedom per joint. The

basic arrangement is represented schematically as follows:

-X X O 0 0
X X O O O

O 0 X X X (A. 1)
O O X X X

O0 X X X

This matrix is expanded to allow six degrees of freedom per joint,

including the rotation not taken into account in the stretching part,

and becomes:

X X O O O O

O O X X X O (A.2)
O O X X X O

O O X X X O

O O O O O E_
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where E is equal to 1, for simple nodes, and equal to 0 for inter-

section nodes. This distribution is made to avoid obtaining structural

instabilities in relation to the simple nodes. At the intersection nodes,

since there will be a contribution to the stiffness matrix from elements

lying in different planes, the zero row and column will become non-

zero, once all the contributions are taken into account. That is not

the case for simple nodes, where all connecting elements are in the

same plane. Therefore, for the matrix to be regular, E must be

equal to 1 for that type of node.

Once the element stiffness matrix is computed in the local

frame, it is then rotated to the global frame. This rotation will be

explained in two steps. First, consider an element with an arbitrary

orientation with regard to its own plane:

B b

a

A

The element stiffness matrix is first generated in the a, b

frame. Rotation to the A, B frame requires the use of the following

rotation matrix:

cosa - sina 0

Rab, AB sin a cos a 0 (A. 3)

_ °0 1
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The plane where the element lies may be XY, XZ, or YZ.

Therefore, there is an additional rotation required, involving a different

rotation matrix in each case. When the element lies in the XY plane, the

second rotation matrix is simply a unit matrix, so that no further manipu-

lations are needed. For the other two cases the rotation matrices are:

XZR

R

1

O

0

0

1

0

0

1

0

0

1

0

-1

oj

1

0
sO

(A.4)

(A. 5)

Although the procedure of the rotation of the stiffness matrices has been

divided into two steps for simplicity, it will actually be performed using

a unique rotation matrix for each element, which is:

R*' XY =Rx

for elements lying in the XY plane, or

*, XZ
R

cos a

sin a

O
[m

-sin a

cos a

0

0

0

1

(A. 6)

cos a

0

sin a

-sin a

0

Cos a

0

-1

sO

(A. 7)
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for elements lying in the XZ plane, or

0 0 1

R YZ = cos - sin a 0 (A. 8)

sin a cos a 0_

for elements lying in the YZ plane.

The displacement results will be obtained in the global frame

after the solution procedure is completed. They will be first rotated

to the local element frame using matrices (6), (7) or (8), according

to the case, and from these stresses will be computed following the

finite element analysis.
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