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1. INTRODUCTION

The subject of this report is a modeling approach which utilizes a
matrix of transfer functions to describe the human pilot in multiple input,
multiple output control situations. It offers a theoretically consistent
technique for measuring pilot activity without a priori specifying a heirarchy
of sequential single (scalar) loop closures. That is, the approach is
theoretically capable of operating on the available data and generating
estimates of transfer functions that can be used to decide which of the pilot's
loop closures are most important.

It was our intent that this modeling technique should be versatile
enough to be applied to direct in-flight measurements. This requires that the
model should yield reasonable results given:

1. the pilot is simultaneously manipulating more than one
control in an active manner (e.g., elevator, rudder and
aileron in the landing task);

2. realistic in-flight disturbances (e.g., turbulence).
This dictates the use of stochastic input signals as
opposed to random appearing deterministic outputs
(which have no variability).

3. finite lengths of data (e.g., a landing approach may
be on the order of 2 minutes).

The approach used was to extend a well established scalar Wiener
Hopf minimization technique to the matrix case (a routine mathematical
exercise) and then study, via a series of experiments, the data requirements
when only finite record lengths are available. The experiments were four in
number:

1. Identify a known network in a single input-single
output task.

2. Identify a human pilot response in a single input-single
output task with the controlled element K/g2. The purpose
of this experiment is to check on the degree of correlation
with previous results (Reference 1).

3. Identify pilot responses in a series of experiments in which
the controlled element is representative of lateral
response of an aircraft. The roll response time constant
and the dutch roll mode characteristics were prescribed in
a manner that forced a two controller task involving both
the aileron and rudder. A fixed base simulator was used
to obtain the necessary data.

4. Identify pilot response in the six-degree-of-freedom
experiments performed under NASA Contract NAS1-8765.
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In the first experiment, an instrument rated pilot flew a single
controller (aileron) roll tracking experiment in which the controlled open
loop dynamics were defined by

In the second single controller experiment, the "pilot" was an
analog model consisting of a linear transfer function with an added "remnant"
term (the "remnant" term contained appreciable power relative to the power in
the disturbance input). The open loop control dynamics were K/g2. The
problem here is simply one of estimating the linear portion of the pilot
model when it is assumed that the remnant is an unmeasurable variable. This
experiment also afforded an excellent opportunity to study the problems
associated with estimating the K/g2 control dynamics when the input power
spectra varied over a dynamic range on the order of 60 dB on a power basis
(120 dB on a voltage ratio basis).

The third experiment presents the opportunity to work with finite
lengths of data which should, in some sense, be typical of multicontroller
data. It thus affords the opportunity to examine the practical problems
associated with the vector approach. As we shall see, the greatest problem
is one of acquiring power spectra estimates suitable for "factorizing" a
spectral matrix.

The controlled dynamics in this experiment were limited six degree-
of- freedom equations of motion which permit a limited variation in velocity
and altitude. The coefficients used represented a T-33 at 250 KIAS at 23000
feet while the information displayed was

1. bank angle (roll tracking error)

2. roll rate

3. pitch angle

4. pitch rate

5. sideslip angle

6. yaw rate

7. altitude

8. rate of climb

9. indicated airspeed

10. lateral acceleration without lateral "g" term

11. heading angle

This roll tracking experiment was designed to force the pilot to use rudder in
order to coordinate and reduce the effects of aileron yaw.

The reason for including the fourth experiment in the present
study was to use a large collation of data from a previous experiment (Refer-
ence 2) in order to estimate transfer functions for an ILS landing task.
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In this previous study, four pilots performed on ILS landing approach three
times for each of fifteen different aircraft configurations. However, as the
present study progressed and the necessity for ensemble averaging across a
"reasonable" number of estimates became clearer, it also became apparent that
false impressions could be created if the fourth experiment were carried out.
That is, the number of runs necessary for the ensemble averaging could only be
obtained by lumping different pilots and different configurations together.
For this reason, our efforts have been restricted to the first three experiments.

The report is organized in the following manner. In the second section,
a derivation of the matrix modeling approach is presented, together with some
illustrative examples to illustrate the type of data processing which is required.

A brief overview of the problems encountered in the estimation of
power spectra, using finite length of data, is given in Section 3. In partic-
ular, several anomalies we have observed to be present in our experimental
data are identified and defined by the descriptive terms "roll up", "break up"
and "roll down". In this section, a theoretical base is established for a set
of analytical analyses, later carried out in Appendix B, which conclusively
demonstrate the presence of the aforementioned anomalies. The experimental
evidence of their existence is presented in Section 4. It is shown that the
frequency band over which reliable estimates of power spectra can be achieved
is considerably less than predicted by the sampling theorem.

In addition, the fourth section applies the results of Section 3 to
Experiments 1 and 2. It is shown that a particular combination of time domain
filtering and frequency domain ensemble averaging produces an appreciable
improvement in the spectral estimates.

The fifth section is concerned with Experiment 3, the two controller
roll tracking task. The application of the matrix modeling approach to the
analysis of the data is discussed and estimates of pilot transfer functions are
presented. The dynamic ranges of the spectra encountered in the roll tracking
task are an order of magnitude greater than encountered in the scalar task and
consequently, there is a further reduction in the useful frequency band over
which reliable estimates can be achieved.

The main body of the report concludes with a summary and conclusions
section. In addition, much of the detailed material (e.g., proofs and examples)
tangential to the main thrust of the report, but still important enough to
document, are discussed in appendices.

This report serves two different classes of readers. The first class
are, of course, those members of the manual control community who would like
to overview this matrix approach to modeling in order to see what advantages
and disadvantages it has relative to other techniques (such as preordaining
the form of the pilot model and then estimating several parameters). The
second class of readers are those who are interested in the basic problem of
estimating auto and cross spectral densities using finite lengths of data.
This class of reader need focus their attention primarily on Sections 3 and 4.
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2. PILOT MODELING USING THE WIENER-HOPF METHOD

2. 1 Introduction

Before considering the application of the Wiener-Hopf (W-H) method to
the pilot modeling task, a brief overview of a variational method for deriving
W-H equations will first be given, together with an illustrative example to
demonstrate the approach .

After this, the variational method will be applied to the pilot
modeling task and some clarifying comments will be made. An illustrative
example demonstrates how the W-H equation can be solved using only experi-
mental data (e.g., data taken from Bode plots). This example will also make
it quite clear, that although the W-H technique is a "free minimization"
approach in theory, in practice one is forced into making assumptions about
the form and/or order of the model.

2. 2 A Variational Method for Deriving W-H Equations

Consider any performance index of a form which is readily translated
from the time domain to the frequency domain via the use of Parseval's theorem.
For example, using two-sided LaPlace notation,

Z(t) </ff) dt = 9 ,/.J /c TTf-a
X(-s) Y(s)

is a typical scalar relationship that extends naturally, in the vector case, to

where i£(t) is an m dimensional (column) vector and #' is an m dimensional
(row) vector (the transpose of % ) . More generally, let the performance in-
dex be represented by

J ' =

where
(a vector) (2.2)

.= M'(-S) ("conjugate" transpose of M )
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The Wiener-Hopf equation that defines the value of the vector M which
minimizes Equation (2.1) is the vector equation

dM* (2.3)

where $ is a scalar and 2 is a vector which is required to give rise to
functions of time which exist only for negative time.* In general, it is possi-
ble for A7 to be a matrix instead of a vector, in which case Equation (2.3) is
written as

(2.4)

where V represents the gradient of $ with respect to the matrix M* and
is now a matrix instead of a vector. In the event M* is a matrix, dif-
ferentiation with respect to a matrix is defined as follows. Suppose

= X* H*Y . (2.5)

Then

= X*Y'= X(-S) (2.6)

is a nxp matrix if X is a vector of dim n, V is a vector of dim -p, and H
is a matrix of dim n * -p .

Example 1 - Let X be of dimension 3 and Y of dimension 2

= X

H13(-s)

V/s) (2.7)

This result is a straightforward extension of the scalar result given in
Reference 3.
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so that

Y/s)

(2.8)

One more case is of interest. Suppose

(2.9)

then

(2.10)

Equations (2.9) and (2.10) usually represent the appropriate minimiza
tion condition in the pilot modeling task while Equations (2.3) and (2.4) are
typical of conditions frequently used in modern control theory. Before pro-
ceeding to the application of (2.9) and (2.10) (in the next subsection),
Equations (2.3) and (2.4) will be used to demonstrate the derivation of the
W-H equation for the optimal regulator problem.

Example 2 - Consider the optimal regulator problem for which the
performance index is

J = u'Ru.)dt =
(2.11)

and the state equation is

X - F G, u (2.12)

If, in addition, the equation Y = Hjc. is employed, Q —>H
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where £ is a vector of dimension n

u, is a vector of dimension p

Q is a n x /? matrix

# is a /j* p matrix

In this example, one wishes to find the optimal controller, so that

(2.13)

Before V^ g§ is found, X and X* must be eliminated from
Equation (2.13). This done by transforming Equation (2.12) and solving
for X C s ) :

X(s) = \IS-F[

More simply,

Equation (2.T3) becomes

(2.15)

(2.16)

Using Equation (2.4),

d(J*
RU= Z(s) (2.17)

or

(2.18)

Equation (2.18) is the correct W-H equation, the solution of which
defines the optimal control (j0(s) . In Equation (2.18), U0 is a px.l
vector and the spectral matrix [ / ? f W * < 2 W ] is a pxp matrix. Solving
Equation (2.18) is vastly more complex than solving a scalar W-H problem

2-4



because, in the classical approach, the spectral matrix must be factorized
into the product of two matrices, one which is analytic in the left hand plane,
the other analytic in the right half plane. Algebraic techniques for solving
Equation (2.18), without recourse to spectral factorization, are given in
Reference 4. More general approaches can be found in References 5 and 6.

2.3 Matrix Pilot Model

In order to identify the pilot's "primary loop closures" for a complex
piloting task such as an ILS Landing, it is proposed to model the pilot as a
matrix of transfer functions plus additive "remnant" terms. By doing this, we
expected to obtain analytical insight as to just how the pilot closes the feedback
loops on the state variables (e.g., Q , 9 , etc.) which define the physical
entities he senses and, hopefully, get some idea as to which tasks are most
important to him.

Suppose, for illustrative purposes, that an aircraft is performing an
ILS approach, and its motion is restricted to that localizer plane for which
Ay = 0. That is, consider only the longitudinal dynamics of the aircraft
with "outer" position loops in altitude and distance covered along a line
centered on the runway, ( AZ ) and ( AX ) respectively. In this .case, the
state vector, Z , can be represented as a vector with six components

•X' = [AX \AX\A8\ A6\A'z\AZj (2.19)

Further, suppose that the use of two controllers is considered, so that the
control vector has two components,

'U = |_4SelASTJ (2 .20)

where A 8e represents the elevator deflections and A8T represents the throttle
variation. Let the aircraft dynamics be described in first order form as

Z = F % - i - C , u . - h n(t]

(2.21)
\/ — \ I f

where n(t} is an n dimensional vector which represents the noise input to
the system (e.g. , turbulence).

The operation Y= IA/X can be thought of as selecting and/or combining
those states which are either displayed or sensed by the pilot. As an example,
consider single axis compensatory tracking task in which the controlled element
is K/s z and there is a reference input R .
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5

1X-/C2
IN/O

0

Figure 1.1 SCALAR TASK

Here the only physical entity displayed to the pilot is the error, the
difference between the reference input and the output & . This problem is
easily reformulated in terms of Equation (2.21) by setting up the system

0 0

u +
n(t)

(2.22)

Here the Y = W X operator would select only one component of the £ vector
and one component of the r vector to display to the pilot.

Returning to the ILS approach problem, the Y= Wx operator would be
used to convert A* , AX , AZ and AH to a glideslope and localizer input
for the pilot.

The entire pilot/aircraft combination can now be represented by
the combination depicted in Figure 1.2 (in Figure 1.2, N(s) is \a£ r\(t}\ ,
the disturbance input; X (s) is the aircraft state vector, U(s) is the control
vector, Y f s ) is the pilot excitation vector).

PILOT
LHs) $>

MS)

U
AIRCRAFT

Figure 1.2 CLOSED-LOOP PILOT-AIRCRAFT COMBINATION
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To employ the matrix model technique, replace the pilot in Figure 2
by a matrix of physically realizable transfer functions, H(*s) , and an additive
"remnant" vector r(t) ; r(t) must have the property that when it is added
to the output of the matrix of transfer functions, the total output continues
to be the same as the pilot output, namely, u.(t) .

AIRCRAFT

Figure 1.3 PILOT REPLACED BY MATRIX AND A "REMNANT"

It is now reasonable to ask that the matrix of transfer functions be
selected in such a manner that the smallest remnant vector possible will have
to be added in order that the output of the pilot model agrees with the pilot's
true output. To be specific, it is required that the vector R be as small as
possible in a mean square sense. The performance index is

T _ mm
J ~ h(t) E {r'w mm

H(s) (2.23)

(2.24)

where r(t) e eif

(2.25)

and where
that

R~ R(s~) and = R'(-S) From Figure 1.3 it is clear
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R ~ U - H Y

Assume, for simplicity of presentation, that V= X (i.e., all the
states are displayed to the pilot) . Then the integrand of the performance
index, call it $ , can be written as

W(s) - 4>Yu' - Z where Y = IVX"

E - (2.26)
/-><» 2. 1

To find the matrix of transfer functions which minimizes the performance
index, take the gradient of $ with respect to H* , take the expectation
and set the result equal to the matrix Z(s) . (Refer to the previous section
for a summary of the technique).

VHtl $ = Zrs) (2 .27)

lim
i—

\E |X(- s) X (s)} H fsj - E JXC-5) U V-s) j
Z7r ' - ' " -1 (2.28)

n * n * n x •£> n x p n x -p

(2.29)

The meaning of £ fsj is the same as in other Wiener-Hopf minimization
problems -- it is a matrix such that d€~1 HZ(s)~] = 0 for t 2: 0 . The
solution to Equation (2.29) is standard, if we set 0^' = &* &

[ *
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At this point an illustrative example will be used to emphasize the
fact that several options are available in setting up equations such as
(2.29) (i.e., depending on which states and which control outputs are measure-
able). For example, suppose that two control outputs (u, , U2~) are measurable,
but that only one signal is to be displayed to the pilot. Let X be of dimen-
sion 3 and let

Y = (2.31)

That is, the variable displayed to the pilot is a linear combination of X.
and X3 , the Xz variable being excluded. In this event

R = u* U - U* H Y - Y# + Y* H * H Y (2.32)

so that VHtt $ gives

(2.33)

namely
This problem reduces to the solution of two scalar W-H equations,

'YY

<t>YY H2 - &YU,

(2.34)

Here, the transfer function Hi is indicative of the pilot's activity
with controller #1 when Y is displayed to him while Hz is indicative of
his control activity with controller #2.

In contrast, if all three states were displayed, as in the previous
analysis (with \V being the identity matrix), then Equation (2.29) is applicable
and takes the form

6(3X3 H31 H32

r u r * .
(2.35)
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The transfer functions now represent more complex entities; the
equations are coupled by the cross spectra terms and must be solved using
factorization techniques. H2i , for example, represents the pilots number
one control activity in response to the second input signal, given that he
must also watch the first and third input signals.

In conclusion, we state the general result when Y - WX. is the vector
displayed to the pilot. It is

(2.36)

where the dimensions of //'(and 2 ) are commensurate with the dimensions of
v/« x* u ' .

2.4 One Method for Solving Wiener-Hopf Equations

In this section a particular method for solving vector W-H equations
will be discussed. The details of the analysis will make it clear that one,
in practice, is forced into making assumptions concerning the form and/or
order of the model.

In order to demonstrate the method, a particular (analytic) example
of a W-H equation will be given. The reader will be asked to pretend the
entries of the spectral matrix and the cross-spectral vector are available
only as raw data (either as Bode plots or a readout of computer data).
Specifically, the intent is to demonstrate that a vector W-H equation can
be solved.

(1) without factorizing the spectral matrix

(2) without explicitly knowing all of the entries in the
spectral matrix

(3) the known entries .need only be identified by experi-
mental data. That is, analytic equations of the
entries of the spectral matrix are not required.

To begin, suppose that a problem of interest (for example, consider
a roll mode tracking task where <x, = 0 , X2 - <p , U - 5A ) leads to the
system configuration of Figure 1.4.
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Figure 1.4 TWO-OUTPUT EXAMPLE

Since this particular illustrative problem involves two states ( < t > , < f > )
and one controller ( 5A ), the vector approach suggests that Figure 1.4 be
replaced with Figure 1.5.

PILOT

u

Figure 1.5 TWO-OUTPUT EXAMPLE WITH PILOT MODEL

That is, we wish to find the //,(s) and f-tz(s) which will , in a mean
square sense, make the remnant (/?) a minimum.

Suppose that an experiment has been run for which the signals X^ ,
£z , and U were recorded. Suppose further that the various auto and cross-

spectral densities have been computed, giving the W-H equation of Equation (2.36)
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- 105
S +- 55

s¥-

105 -Z

5S- 5

(2.36)

The essense of the technique is to realize that, in the linear case,
determinant of the spectral matrix is a rational polynominal in -52 and that
there are particular (finite) values of S for which the spectral matrix is
either identically equal to zero or equal to infinity. For this particular
example, the values of S which force an infinite determinant are -1, -2, 1,
2 while the zero determinant values are -3, -4, 3, 4. However, suppose
these values were not known and that only experimental frequency response
data, which describe <px ̂  , <f> ^ , etc. is given. A reasonable procedure
would be to guess at the order of the rational polynominal and then generate,
using the experimental data, n + 1 equations in terms of r\ + 1 unknown coefficients.
If the initial guess is too low, then results which are inconsistent with
the next higher order guess will be obtained. If the guess is too high,
then precise pole-zero cancellation will occur, reducing the order to the
correct level. This procedure is, of course, valid only if the true under-
lying spectra are describable by rational polynomials in S . A discussion of
the difficulties that can be expected when there is error in measuring the experi-
mental data and/or nonlinear pilot behavior is reflected in the spectra, will
be deferred until section 5, where two controller experimental data is
analyzed.

To illustrate this procedure, the determinant of the spectral matrix
in Equation 2.36 is

S* 2S' „* t 9
ffZ t1Z 7oLet -= (2.37)s

¥
<-t- 1

Let
a.

(2.38)

or
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Using the experimental data, let 5 take on five values and
generate five equations in five unknowns. For example, let

- 0 "I
, 17

aJ - / det <f> = —

u)-2

/7

28
a

13

17
28

¥(73)

a.2 - —zs

t3

det
13(28) ' f3 (28)

ft(fO)

119

(2.40)

The solution to the set 2.40 gives Hquation 2.37. A higher order initial
guess would result in some pole-zero cancelation whereas a lower order initial
pel/nominal would, of course, give a totally different result.

Once the poles and zeroes of the spectral determinant are known, one
may proceed to solve for Ht(s) and /î fe) by avoiding these values of 5 . To
demonstrate this, consider in the example the second row of Equation 2.36.

105
" H. S «•-

(2.41)

Recall now that the procedure is to assume that ^^ , ̂ 2^
 and

(fig u are only available in the form of experimental Bode plots. For
example, if one were to consider the frequency a) = 1 (s = O + ̂  1) , from the
experimental Bode plot, we could read
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= 1 L <?0° = 0 + j.

= .75 L 0° = .75 v- x

The task is now to solve for A/, (s,) and (̂s) using only the experimental
results. Knowing that the poles and zeroes of the spectral determinant
are = -1, -2, 1, 2, -3, -4, 3, 4, it is possible to specify the form of
Hf,/-/2,Z1 and Zz - Equation (2.36) becomes

a

(S+f)(-S+Z)

(2.42)

That is, the physical fact that //^ and HZ must have left half plane
poles while Z1 and Zz must have all right half plane poles lead to the formula-
tion given in Equation (2.42). //^ , tf2 , ?t and 2Z are characterized by
numerators which are at least one order less than their denominators (if
this were not so, the performance index would "blow up"). The poles of
///- and f-f2 are the left half plane zeroes of the spectral determinant while
the poles of Zi (and £2 ) are the right half plane poles of the spectral
determinant.

One may now pick two values of frequency (for example, S=j , 2j
which is equivalent to«J=l,2) and obtain eight equations in the eight unknown
coefficients. Recall that each value of 5 will give two equations in terms
of the eight unknowns when real is equated to real and imaginary is equated
to imaginary. For example, let S =j in the first of the equations of the
set 2.42 and equate real to real, imaginary to imaginary:

(2.43)

a, +-r> (2.44)
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Solving eight equations in eight unknowns, one finds

,7S --2.8 ,~ ._,t2-45)

- 2.2S - 2.¥ ,, .,,(2'46)

C2'47)

To summarize, by means of an illustrative example, it has been
demonstrated that a vector W-H equation can be solved without recourse to
factorizing the spectral matrix and in addition, requires only experimentally
derived data for the entries of the spectral matrix. Thus it is not necessary
to fit analytical expressions to the entries of the spectral matrix. However,
it is also clear that the determinant of the spectral matrices must be a
rational polynominal in ~SZ for this technique to work and therefore the
form of model has, in some sense, been preordained. The deviations from
this linear model due to the use of experimental data, obtained with a pilot
in the loop, are largely unknown entities for the multi controller case.
This facet of the problem will be explored in section 5, where the factoriza-
tion algorithm will be applied to two controller roll tracking data.
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3. ESTIMATION OF POWER SPECTRA USING FINITE RECORD LENGTHS

3.1 Introduction

The theory of the previous section was based on ideal conditions
in that record lengths were assumed to be of infinite length and, moreover,
it was assumed that an infinite number were available to ensemble across. In
this section, the realities of having only a finite number of runs, each of
finite length, is reviewed.

3.2 Constraints of Finite Data

The first obvious constraint when working with finite lengths of
data is that the lowest Fourier Component which can be computed, given a
record of length 2T seconds, is fr/T rad/sec. The high frequency limit is
generally accepted as being the "folding frequency", which is one half of the
frequency associated with the sampling rate (aJs = Zrr sampling rate, e.g.,
if one samples at 125 S/S, the folding frequency is on the order of 390 rad/sec
while the sampling frequency is « 780 rad/sec).

Generally speaking, with the human pilot data, frequency information
from about 0.1 rad/sec to approximately 100 rad/sec is desirable. The
spectral densities themselves can be expected to have a dynamic range on the
order of 60 to 70 dB (power basis) for scalar tracking experiments.

The useful frequency range will, in practice, be further restricted
by anomalies associated with the sharpness of the spectral filter used, how
fast the power spectra is dropping along the frequency axis, and the basic
length of the data available. A discussion concerning the nature of these
anomalies will be deferred until Section 4 where the results of the first
two experiments will be discussed. At that point, tangible examples of the
anomalies we have termed "roll up", "break up" and "roll down" will be
presented. In this section, the underlying theory, which can be used to
explain the phenomena, will be set down.

3.3 Direct Computation of Power Spectra Using the Fast Fourier Transform

First it is important to realize that several approaches are possible
for the computation of power spectra. One may first use the time signals in
the computation of the auto-correlation function, followed by a Fourier
transform to arrive at an estimate of the power spectra. This is an
attractive way to proceed in those cases where an estimate of the power
spectra is desired at only a few discrete frequencies. An alternate approach,
which is preferable when the power is being estimated at a very large number
of frequencies, is to estimate the auto or cross spectra directly from the
time signals themselves, using, for example, the equation

_ / /
Zr A/
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That is, compute the truncated transform of %.(t) and y(t) using the equations

rr

X. T ( f«>) - I £(£) e * dt
J-r (3.2)

I~ i 0 t dt
(3.3)

Theoretically, one does this for a very large number of realizations
of the random variables X and y and ensemble averages (across frequency)
to arrive at a smooth estimate. In the limit, the true cross power spectrum

(3.4)

is attained as the number ensembled across and the length of each record
approaches infinity. The advantage (a considerable one) in using Equation (3.1)
to approximate Equation (3.4) is that the Fast Fourier Transform can be used to
compute the (truncated) Fourier Transforms. That is, one proceeds directly
from the time to the frequency domain without the intermediate stop in the
correlation ( r ) domain.

3.4 Time Windows and Their Relationship to Lag and Spectral Windows

Since the literature which discusses the "Lag" and "Spectral" windows
is concerned with the relationships which exist between the correlation and
frequency domains, and since our interest is with relationships which exist
between time and frequency, it wil l next be necessary to present a slight
clarification of the relationships which exist between all three of these
domains (i.e., t , r and &J ).

Basically, the process of working with finite lengths of data can
be visualized as multiplying the infinite record length by a signal such as

- T + 11 T

\ f \ - f

This f(t) is called a time window, and has a corresponding spectral window
of the form (5/%, T T) * • ^h® Dasi-c relationships associated with the square
time window are given in Equation (3.6)
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A f

Q>~v = IT- E
s =

s/n I
T

u)
1 (3.6)

•XY
In Equation (3.6), 0xy is the estimate of the power spectra while

is the true underlying correlation function and ^fo>) is the true under-
lying power spectra. From Equation (3.6) it can be seen that the estimate of
the power spectra obtained from many records, each of length 2T, is equivalent
to the convolution of the true power spectra with a spectral window of the form
(5/^, x) * . This window has an envelope that falls off at -20 dB/decade on

a power basis. We hypothesize that the spectral estimate, 0xy , will be
distorted at those frequencies for which the true power spectrum is falling off
at a rate exceeding that of the spectral window. However, just what form this
distortion will take is not clear and one must therefore resort to analytical
examples and experimental setups typical of pilot/aircraft estimation problems
in order to gain insight into the implications of Equation (3.6). This will
be done in Section 4 with the experimental data and in Appendix B with the
analytical examples.

Equation (3.6) will now be extended to a more general case, which will
permit the use of temporal windows other than the usually used square one.
This is most important, because the use of the Fast Fourier Transform (FFT)
requires direct computation of the Fourier Transform of the signals. Thus
we are not at liberty to work with the correlation function and filter the
data in the T domain -- we must know what the temporal windows look like in
order to filter directly in the time domain.

Let

f(t) =

even

0 \t\ > T

- T < t * T

(3.7)

then Equation (3.6) becomes

dr

{f< (3.8)

Refer to Appendix C for a derivation.
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Using Equation (3.8), one may look at the problems encountered in
estimating transfer functions using a variety of temporal windows. The windows
considered in this report are tabulated, along with their more important
characteristics, in Table I.

This list is obviously not all inclusive, however the three time
windows presented do represent a good cross section of typical filter charac-
teristics. In particular, the reader will recognize, from an inspection
of Table I, that placing a triangular window on the data in time leads to a
relationship between the lag window and spectral window which is known as
a Parzen window. The square window in time leads to a triangular window in
the r domain and a (s'£ *)2 window in the frequency domain. This window
is called a "Bartlett" window. The three windows shown are relatively simple
ones in that the relationship between the t , r and *-> domains are easy to
set down. Other "classical" filters (or windows), defined in the f domain
are more difficult to describe in time. For example, the time domain window that
corresponds to the Tuckey window is the inverse Fourier transform of

In general, as one proceeds from the \s"^ / window to the
window, a tradeoff is made between the sharpness of the main lobe and suppression
of the side lobes. The side lobes in the t3'"*/?*)8 filter are of no practical
concern while the main lobe is broader than, for example, the main lobe of the
(*"**) 2 sPectral window. These filters will be applied to the data of the
first two experiments. The results are discussed in the next section. Before
proceeding to Section 4, the conditions under which Equation (3.8) is valid are
emphasized:

1. The records are of finite length (for our work, typically
on the order of 2T = 2 minutes).

2. A sufficient number of records of length 2T are available
so that the ensemble average of an infinite number is
approximately true.

3. A noise free environment.

4. The sampling frequency is high enough so that folded power
is of no concern.

In the next section (and in Appendix B) it will be shown that even
under these relatively ideal conditions, the finite length of record, coupled
with the "sharpness" of the spectral filter, lead to anomalies in the power
estimates that one must learn to recognize in order to avoid false conclusions.
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4. EXPERIMENTAL RESULTS AND CONCLUSIONS FOR THE TWO SCALAR EXPERIMENTS

4.1 Introduction

The first experiment, a scalar, pilot-in-the-loop roll tracking task
was set up in order to

1. check on the accuracy of spectral estimation techniques
in identifying the fixed dynamics of the system.

2. help finalize the data taking requirements.

The experimental setup is depicted in Figure 4.1

WHITE

NOISE

K,
S+1

N K,

S + 1

-x E

I

PILOT
S K

S(S+2)

t

Figure 4.1 EXPERIMENT #1

Analog data was recorded and, simultaneously converted to digital
form through the use of analog to digital recording equipment. The various
power spectras were then computed on the CAL IBM 370 Model 165 computer
(refer to Appendix D for a more detailed analysis).

The final sampling rate used was 125 S/S, given a sampling frequency
of approximately 785 rad/sec and a folding frequency of about 392 rad/sec. In
that experiment, the CAL fixed base simulator was flown by an instrument rated
pilot. The disturbance source was derived from a gaussian white noise source
passed through two cascaded first order filters.
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The second scalar roll tracking task is described in Figure 4.2.

i

Figure 4.2 EXPERIMENT #2

This experiment is an analog simulation of the "Subject M" run described in
Table III of Reference 1, the case where Disturbance (Volts2) = 5.61.

The disturbance input in Figure 4.2 is obtained by feeding white noise
through the transfer function K/(S+I)* while the noise (remnant) is obtained by
feeding white noise through the transfer function K/(s+io~)2. For the mean
square value given in Reference 1, the following spectral densities were cal-
culated:

ruu

12. f-

(4.1)

(4.2)

The given transfer functions are

H =

G =

Zf-5 + 52
(S+13)2

10

(4.3)

(4.4)

recorded.
In the analog simulation, the signals D N , S and Q were

The main task in this experiment is to estimate the given vv of Figure
4.2 , given that the noise source A/ cannot be measured (i.e., /V is internal
pilot noise). In addition, it was felt that estimates of K/S2 should also be
made since the dynamic range of the input power spectra, was quite large (on the
order of 60 dB) .
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4.2 Overview of Computational Efforts

At this point, it is reasonable to review the computational efforts on
these two experiments in order to make it quite clear that the spectral estimates
presented in this report represent the net effort of following several alternate
options. First, the matter of data rate was explored. In each experiment
we observed a "roll up" and "breakup" phenomenon (to be defined shortly) which
was first attributed to folded power (the sampling rate was initially 20 S/S).
However, increasing the sampling rate to 125 S/S did not improve matters.

Next, averaging "around" a frequency point was tried. That is, the
hypothesis that frequency estimates in the immediate neighborhood of a given
frequency were (in some sense) "close" estimates of what was occurring at the
given frequency, gave impetus to the idea of averaging adjacent points in the
frequency domain. This procedure was also unsuccessful in improving the
estimates.

Next, the correlation (lag) method was tried, even though the compu-
tations were considerably more costly to carry out. The results were essen-
tially identical with the estimates obtained directly in the frequency domain.

Increasing record length from 20 sec. to 60 sec. to two minutes did
enlarge the range of frequencies over which the estimates were better, however,
it did not eliminate the basic phenomenon observed ("roll up" and "breakup")
at the end points of the estimates.

Next, the number of estimates ensembled across was carried to a very
high number ( « 134) but even this did not eliminate the "roll up" in the
spectral estimates.

To investigate the possibility that the problem was noise generated
by the analog-to-digital recording process, the experiment was run in an all
digital manner (using a state space approach) on the IBM 370 digital computer.
However, the problem still persisted.

These long series of experiments convinced us that the experimental
anomalies were not due to noise, that ensemble averaging did not eliminate
them and neither did filtering alone seem to have a great effect.

Finally a combination of ensemble averaging (in the frequency domain)
and filtering (in the time domain) was hit upon that produced a significant
improvement in the estimates of the power spectra. Moreover, even with this
significant improvement, the deviation from the true values of the system dynamics
at high and low frequencies was significant. This finally led to the conclu-
sion that the observed anomalies were truly the result of the computational
algorithm that worked with finite pieces of data. With this hypothesis, it
was possible, by applying Equation 3.8 of Section 3 to several illustrative
examples (Appendix B), to conclusively demonstrate the presence of three
anomalies in the spectral estimates. We identify these as:

4-3



(1) "Roll Up" at high frequency
A

(2) "Breakup" at high frequency

(3) "Roll Down" at low frequency

4.3 Roll Up, Break Up and Roll Down

These terms are best understood with the aid of Figure 4.3 (from
Experiment #2). "Roll Up" is defined to be an increase in the power magnitude
for a) > 50 rad/sec, "Break Up" is the term we ascribe to the large divergence
(oscillations) in both the phase and magnitude plots for to > 50 rad/sec, while
"Roll Down" is the term used to describe a magnitude plot which has decreased
to about - 2 dB at u) = .048 rad/sec when it should read around +22 dB.

The theoretical analysis given in Appendix B demonstrates that all
three of these phenomena are fundamentally tied to the finite length of the
data available. That is, even when the signals are well above the digital
noise level, the sampling rate is extremely high, and an infinite number of
the fixed length records are available, we can still observe roll up, break
up and roll down!

4.4 Results of Experiment #1

The spectral estimate of the dynamics s ̂ ^ is given in Figure 4.4.
The sampling rate was 125 S/S giving a folding frequency of approximately 360
rad/sec (only data out to 100 rad/sec was plotted). The case shown is for
ensemble average across 28 estimates of the various auto and cross spectral
densities. The time window used was the "square" window of Table I. Observe
that "break up" (and roll up) occur in Figure 4.4 at about 20 rad/sec, more than
a decade away from the folding frequency. It was this plot which first convinced
us that the break up was truly built into the algorithm used for computing the
estimates and further, that some combination of direct filtering on the temporal
data, as well as ensemble averaging, were required to reduce the bias in the high
frequency region. It should be noted that in previous runs of this experiment
(and Experiment #2), filtering appeared to be ineffective in reducing the variances
in the spectral estimates. Thus our idea was to employ the triangular data window
of Table 1 in the hope of decreasing the bias while at the same time depending on
ensemble averaging to keep the variance at in acceptance level. The results of
this approach are shown in Figure 4.5, where it is seen that a dramatic improvement
has been achieved. Specifically, the frequency at which break up starts has been
moved out on the order of two octaves and, more importantly, the dynamic range
has been extended by approximately 10 dB (in power).

These results show that the filter is extremely effective in reducing
the bias. However, it must not be presumed that filtering is the entire story.
In order to demonstrate that ensemble averaging is also required, a plot of the

s / s* 2) dynamics, without ensemble averaging, is shown in Figure 4.6.
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In Figure 4.5, the estimate of g ,£^ ̂  is quite good for the frequency
range of 0.1 <<*>•£ 60 rad/sec.

4.5 Cross Power Between Two Independent Signals

Before enumerating the results for the second experiment an important
result, associated with the finite length of data (one not too well appreciated
by the manual control community) must be clarified. The intent of the subject
"M" experiment is to identify the W transfer function of Figure 4.2 in the
presence of the unmeasurable noise /V . It is hypothesized that the remnant
( A/ ) is uncorrelated with the disturbance input D . This says, for the ideal
situation of infinite record length that the exact equation for estimating w,

*&S *DH
W= 0 (4.5)

can be reduced to

(4.6)

because d> = 0 .TDM

While this is true for infinite record lengths, it is a fact of life
that the estimate of <f>Df/ will have, for finite data length, appreciable power.
In Appendix C, it is shown that the magnitude of the estimate of cross power
between two independent signals (call them X and Y) is, when no ensemble
averaging is employed , is

(4.7)

Furthermore, the employment of ensemble averaging diminishes this estimate of
the cross power only by f//7T t n being the number of estimates ensembled
across.

In addition to the theoretical analysis of Appendix C, experimental
verification is given in the subject "M" results that follow (see Figures 4.9
and 4.13).

4.6 Results of Experiment #2

In the running of the Subject "M" experiment (Experiment #2), two time
windows were used. They are the triangular window of Table 1 (the (~̂ĵ)¥

spectral window) and a time window arrived at by convolving a triangular window
with a triangular window (a (̂ '̂ /̂}8 spectral window). The majority of the
results presented are for the triangular window with supplementary results to show
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what sort of improvements can be expected with the higher order window. The
results are presented in Figures 4.7 through 4.28. A detailed description of the
information contained in these plots follows. Figures 4.7 through 4.25 were
computed using the triangular time window while Figures 4.26 through 4.28 were
computed using the (Sln */0* spectral window.

Figures 4.7, 4.8, 4.9: Plots of $„„ , $OD and $ON with filtering but
no ensemble averaging. Note that the power in <jf>
is appreciable compared to $OD and, more importantly,
the power in <f>^ is high.

Figure 4.10: Figure 4.10 is the same as Figure 4.9 except that the
phase plot of jz!̂  has been included. Notice the
violent "break up" in the phase plot.

Figures 4.11, 4.12, 4.13 0^ , <j>DD , <j>Dfj with filtering and ensemble
averaging across one hundred estimates. Note the
smoothness of <f>NN and <pB while <pDN is still
quite rough. Also note that ^ averaged across
100 has dropped by approximately 10 dB (power basis)
indicating that D and fJ are independent. That is,
if D and Af are independent then their cross power
would go down as f//7T of the number n of estimates
averaged across. Since this truly does occur, then we
must conclude that D and A/ are independent, thus
satisfying the postulates of the subject M experiment.
Also note that <f> is unequal to zero, for finite
data lengths, even though D and A/ are independent.

Figure 4.14: Same as Figure 4.13 except that the phase information
has been included. The breakup in the phase is quite
severe.

Figures 4.15-4.19: K/g2 dynamics are shown for ensemble averages of 1,
5, 10, 50, 100. The phase plots are also included.
The estimate of K/g2 is quite acceptable at 10, very
good at 50 and excellent for 100. Note that the phase
is read off as zero degrees, since the analog set up
really gave -K/g2 rather than K/S2?

Figure 4.20: K/g2 dynamics from a previous run of the subject "M"
experiment are shown. These runs were made with ensemble
averaging but without filtering. It can be seen that
the estimate of K/~2 is unacceptable even when 134 averages
are used. Compare this figure with Figures 4.15-4.19.

Figure 4.21: Estimate of the pilot using the equation

^y\/ :r < OS

toe

The K/g2 plots are 15 dB low because of a miscalculation in the scale factors
of the various cross spectra. This does not effect the estimates for W since
only ratios of cross spectra are involved.
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This estimate is based on the hypothesis that D and
A/ are uncorrelated and therefore $DN = 0. Of course,
the power in the estimate of <fia/Y is finite even when
D and N are independent. Thus the use of <fios/ tf>j>£

must give a biased estimate which will approach )V only
when the number of estimates averaged over is large
and/or the power in jzf^ is small compared to the power
in <psj> (i.e., a "large" signal-to-noise ratio).

Figure 4 .22 : Same as Figure 4.21 except that the phase plot has been
included.

Figure 4.23: Since the power in <$DN is finite even when D and
N are independent, this plot gives the estimate of
the pilot when N is assumed to be measurable. As can
be seen from the figure, the estimate of W is extremely
good. Compare Figure 4.23 with Figure 4.21.

Figure 4.24: Same as Figure 4.23, except the phase plot is included.

Figure 4.25: The estimate of the pilot from an early running of the
subject M experiment which employed no filtering (only
ensemble averaging). As can be seen, the ensemble
average alone estimates, even across 134 estimates, are
poor. Compare with Figure 4.23.

Figures 4.26-4.28: Estimates of K/ 2 using (S'S/*̂ )8 window. Observe
that there is no further increase in the frequency at
which roll up and break up occur. However, the ensemble
across 5 is not noticeably superior to the ensemble
across 10 with the triangular window. (Compare with
Figure 4.17). Thus a point of diminishing returns
appears to have been arrived at somewhere between
the fourth and eighth order filter.

These runs of the subject "M" experiment utilized basic record lengths
which were 131 seconds long. Thus the lowest frequency which can be estimated is
approximately .048 rad/sec, which means that there are only two or three data
points in the immediate vicinity of W = .1 rad/sec.

4.7 Summary of Theoretical Conclusions and Experimental Observations

In closing, it is convenient to summarize the theoretical analysis as
well as the experimental observations:

(1) When working with finite lengths of data, the roll up, break
up and roll down phenomena are to be expected.

(2) Knowing that they exist, Equation (3.8) can theoretically be used to
predict the frequency band for which relatively undistorted
estimates can be anticipated.
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(3) In general, one may anticipate distortion at a given
frequency when the spectral window, which corresponds
to a time domain filtering algorithm, is falling off more
slowly than the true underlying spectral density.

(4) Previously we used ensemble averaging with no overt
filtering (i.e., the square time window). The estimate
obtained by ensemble averaging over as many as 134
estimates was considered unsatisfactory. For example,
had we not known the underlying dynamics were K/g2,
it is doubtful that we would approximate it as K/s2.

(5) The triangular filtering algorithm in time, which corresponds
to a (s'2/z/2) spectral window, produced results which
were an order of magnitude better when used in conjunction
with ensemble averaging.

(6) Filtering alone, without ensemble averaging, also produced
unsatisfactory results. However, with filtering, the
number of ensembles necessary to produce acceptable results,
is reduced.)

(7) Break up occurs if any of the cross and auto power
spectra being estimated contain lightly damped modes.

(8) In general, the experimental variability in the estimation
of cross spectral densities is greater than the variability
observed in the estimation of auto spectra. For example,
a typical observation is that ensemble averages across 5 or
10 on auto spectra have less variability than cross spectral
averages across 100. Thus the estimation of dynamics and
pilots via ratios of cross/cross, as opposed to ratios of
cross/auto, are very likely to display more distortion (see Appendix B)

(9) Regardless of what time domain filtering algorithm is
invoked, the estimate of the cross power between two
independent random variables goes down only as ~
n being the number ensembled across.
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5. TWO CONTROLLER ROLL TRACKING EXPERIMENT

5.1 Introduction

This section discusses the application of the matrix modeling approach
to the analysis of the data collected on a two controller roll tracking experv
ment. The experiment, which was carried out on the CAL fixed base flight
simulator, was carefully designed to force an instrument rated pilot to use
rudder (in a continuous fashion) to overcome the adverse yaw introduced by his
roll tracking efforts wj.th the aileron.

The experimental setup is described in the first section (Section
5.2). This is followed by a theoretical discussion of the difficulties
encountered in multi-controller modeling (Section 5.3). In particular, it is
shown that the determinant of the spectral matrix is always identically equal
to zero if no ensemble averaging is used. Furthermore, it is shown that care
must be exercised in the experiment formulation in order to insure the unique-
ness of the matrix model. That is, for a particular experimental setup, there
may well be more than one way of realizing the transfer functions which make
up the entries of the matrix model - yet each realization gives the same mean
square error between the outputs of the model and the pilots' recorded outputs.

In Section 5.4, an analysis made on the spectral matrices associated
with the roll tracking experiment demonstrates that it is reasonable to expect
that the experimental data will yield unique models.

In Section 5.5 the W-H conditions are given for the roll tracking
while the experimental results are presented in Section 5.6, together with
a discussion of the results. The reader is reminded that these efforts
represent a preliminary excursion into defining the data requirements for
a more detailed pilot model and therefore the preliminary nature of the pilot
model estimates given in Section 5.6 should be kept clearly in mind.

5.2 Description of Experiment

The equations used in the simulation are limited six degree-of-
freedom equations. They are limited in magnitude of permissible velocity
and altitude variations. The present set of coefficients represent a T-33
at 250 KIAS at 23,000 feet. There is adverse aileron yaw.

The task requires the pilot to track in a situation in which adverse
aileron yaw is sufficient to force the use of rudder in order to coordinate
and reduce the effects of the aileron yaw.
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The information available for display was:

(8) pitch rate
(9) heading

(10) rate of climb

(1) bank angle (roll tracking error)
(2) roll rate
(3) pitch angle
(4) sideslip angle
(5) yaw rate
(6) altitude
(7) indicated airspeed

For the experiment, the configuration AB and BA of the Meeker, Hall report
(Reference 7) was used as a guide to initially determine the amount of adverse
aileron yaw.* Because the cited configurations represent actual in-flight situa-
tions in which side acceleration is naturally felt, and whereas side acceleration
is not felt in the ground based simulator, then some differences in pilot
reactions may occur. However, since the main purpose of the experiment is
to determine the requirements for the data analysis of a multi-controller
task, it is necessary that both aileron and rudder be actively used by the
pilot. Some "tailoring", on a trial and error basis, of the simulator
configuration was done before the data runs were recorded, to ensure that
this requirement was satisfied.

The development of a model which precisely takes into account the
information displays on which the pilot views the various signals (e.g., an
attitude indicator) is beyond the scope of the present study. In this
exploratory effort, we will restrict ourselves to two hypothetical situations.
In the first, it will be assumed that only two input signals can be measured
(the error and yaw angle) but that both the aileron and rudder signals can
be measured. The error is defined to be the difference between a noise input
and the roll angle.

In the second case, it will be assumed that the measurable states
are error and roll angle. The error is again defined as the difference
between a noise input and roll angle.

The block diagram of the experimental configuration is given in
Figure 5-1.

Figure 5.1 TWO CONTROLLER CONFIGURATION

Refer to page 152 of Reference 7 for the aircraft equations of motion.
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It was deemed wise to initially restrict the problem to one in
which the spectral matrix was a 2x2 (the number of signals displayed to the
pilot are restricted to two) since this experiment represents an exploratory
effort in the two controller modeling area. In the next section, it will be
shown that there is another good reason to restrict the spectral matrix to a
2x2. That is, it is desirable that the solution be unique.

5.3 The Spectral Matrix

The limited experience gained to date in the multi-controller modeling
effort has identified two fundamental points that are critical to the vector
approach (points which are of no particular concern in scalar modeling efforts)
These points are:

(1) With no ensemble averaging, the determinant of the
spectral matrix is identically equal to zero. This
result is not affected by the type of time domain
window placed on the data.

(2) Even with perfect estimates of the auto and cross
spectra that make up the spectral matrix, it is
possible to formulate a multi-controller experiment
in a manner which theoretically gives a spectral
matrix with a zero determinant.

The proof of (1) above is quite simple and can better be demonstrated
with an example rather than a proof. Suppose the underlying (true) spectral
matrix has the form

6rx.

so that an ensemble of 1 would give

(5.1)

X/-s) Xz(s)

X2(-s) X/s>
(5.2)

A

The determinant of <f> is therefore

det
~i
; I = 0 (5.3)

Thus, when there is ensemble averaging, the Fourier coefficients computed for
the truncated transforms will always yield a zero determinant, indicating
that ensemble averaging is a necessity in the vector approach.
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We turn now to the more difficult topic associated with (2) above -
namely, under what conditions will the determinant of the spectral matrix be
identically equal to zero? At this point in time, we are unable to furnish a
general answer to that question. However, a limited result, one which is
applicable to the pilot modeling task, is in hand. This result can best be
demonstrated by means of an example. The approach used will then be applied,
in the next section, to the roll tracking experiment.

Suppost that the aircraft equations of motion are given in the first
order form

= F u. -f- n (t)
(5.4)

In equation (5.4), X is the state vector, u. is the control vector and n is
the noise and/or disturbance vector. Taking the LaPlace transform of Equation
(5.4) gives

- \TS -
(5.5)

Therefore

= X( -F']
'

(5.6)

Suppose now that all of the states are displayed to the pilot. That is

wJ X ' X V = X(-s; X'(s)
(5.7)

so that

-1

(5.8)

= [-T5 -
''

] [_IS-F'~\
~1

(5.9)
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The determinant of the spectral matrix is identically equal to
zero if det «-e- = O since the determinant of \ T 5 - F ' ~ \ ~ 1 £ 0 for all
values of u) .

The matrix of transfer functions which represent the linear portion
of the pilot's output will be unique if

det '0
(5.10)

example: two output, single controller

"0 / '

-a. -b

0

1
1

92

0

$**>-

0

1
[d>Tu. 0r^

0 1

0 <t>
IU.U.

o o

<t>Tii

[o

^z"! '

-e- =
rn.n.

C5. l l )

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
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The det v-e-" would equal zero if the noise signal nt were equal
to zero -- no matter what kind of noise was introduced on the *: 2 component
of the state vector! That is. if we had let

+ R (5.17)

there would be an infinity of combinations of Htf*s and ^̂ 's that would
satisfy the vector Wiener-Hopf equations if the noise on the ^1 component
were omitted.

The example cited above is apparently typical of what can occur in
the matrix model when it is assumed that all of the states are available for
display to the pilots and when there is not a sufficient number of inputs to
perturb the situation. That is, in a poorly designed experiment, the matrix
of transfer functions might be much larger than is really necessary to account
for the power in a limited number of disturbances and hence there are many
ways in which the power can be split up within the model and still satisfy
the mean square error criteria. In the two controller roll tracking experiment,
for reasons of both economy and prudence, only one disturbance noise source
was introduced.

5.4 The Spectral Matrix for the Roll Tracking Task

Even though the input spectral matrix has been restricted to a 2x2
(only one noise source is being used), it is still prudent to check, as much
as possible, on the characteristics of the spectral matrix. Two cases will
be considered. First, the signals displayed to the pilot will be error and
yaw, where the error is defined to be the difference between the noise input
and bank angle. That is,

e. ~ n - (5.18)

The spectral matrix is

ee

0 = (5.19)

fit*
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In terms of n , <f> and y , the determinant of Equation (5.19) is

= <j>nn

"~ Q) u) ~h Cn (n + (D, (n ~~ (u . w re 90"\
' n if/ P?) n $> ' p<p bit1 rn P^ ~r(0 ^ " ^^J

There is no reason in particular to suspect that Equation (5.20) is
identically zero for all values of to , hence the experimental formulation
seems sound enough.

In the second case studied, error and bank angles were used as inputs
so that the spectral matrix becomes

ee

(5.21)

In terms of n and <j> , the spectral matrix is

(5.22)

For this case, there is cancellation of terms in the determinant,
giving

def (5.23)

Equation (5.23) could be identically zero if bank angle were
related to the noise input by means of a linear transfer function. That is,
if

n (5.24)
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then

det = O (5.25)

This seems unlikely and therefore we feel that this case is also a
reasonable one to pursue.

5.5 Wiener-Hopf Equation for the Two Controller Roll Task

The two cases are defined by the following Wiener Hops equations:

5 1 A

i
j
I

6 ! ^w
i _

- I
>' ^2

j_

^Z1 ^2

yfee

V ! V

êS.

•̂ 2Z

*1Z

z
'21

(5.26)

(5.27)

The matrix H which models the pilot will have four entries, since
two inputs are assumed and there are two active controllers available.

For comparative purposes, it is desirable to present results using
three different approaches. In the first two approaches, solutions "without
regard to physical realizibility" are found (i.e., the z matrix in Equations
(5.26) and (5.27) are set equal to zero). In order to produce a reference set
of transfer functions, the first approach will set the off-diagonal terms
in the spectral matrix equal to zero. That is, produce a decoupled result
suitable for comparison purposes. The second approach will retain the off
diagonal terms in the spectral matrix and therefore will give a "coupled" result,
The third, more desirable approach is to implement the technique illustrated in
Section 2.4 in which the factorization was carried through using experimental
data.

The factorization algorithm described in Section 2.4 was programmed
for the digital computer and checked out on relatively low order, precise
analytical examples. By low order, we mean that the root finding algorithms
and standard matrix inversions routines required at various points in the
program were able to handle reasonable polynomials (on the order of 5*6) when
the "nice" numbers associated with the analytical examples were used. However,
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the extreme dynamic range of the signals encountered in the two controller
experiment (on the order of 120 dB) results in ill conditioned data that lead
to poor checks on inversion routines and root finding algorithms. That is
when roots of a polynomial are multiplied together they do not yield the
original polynomial and multiplying the calculated inverse of a matrix by
the matrix itself does not give a very good approximation to the identity
matrix. For these reasons, the estimates of the matrix model presented in
this section should be regarded only as preliminary and perhaps as indicative
of some underlying trend. That is, there is a noticeable difference between
the factorized results and the results obtained when physical realizability
is ignored.

At any rate, it appears that the theoretical approach to obtaining
the factorized model is a sound one and that the quality of the estimates is
basically limited by factors which are associated with the wide dynamic range
data obtained when the six degree of freedom aircraft equations are used.

5.6 Two Controller Roll Tracking Task Experimental Results

As discussed in the previous section, the following solutions will
be presented.

Approach 1:

Case 1:

matrix = 0 0 = O • (decoupled solution)

(5.28)

(5.29)

Case 2: matrix = O =0 (decoupled solution)

// (same as Case 1) H 1Z
(same as Case 1)

(5.30)

Approach 2: 2 matrix a 0 ; (f> , <J> , * O

Tee

Case 1: (5.31)
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& -1 r

Case 2: (5.32)

Approach 3: Factorized results are given which employ a digital computational
algorithm patterned after the illustrative example of Section 2.4,

The experimental results are presented in Figures 5.2 through 5.28.
Figures 5.2 through 5.4 are representative of the auto and cross spectra used
in the computation of the transfer functions. The remainder of the figures
present the transfer function computed according to either Equation (5.31)
( e , JP input data) or Equation (5.32) ( e , (A input data, refer to Table 2),

Figures

5.5 - 5.8

5.9 - 5.12

5.13-5.16
5.17-5.20
5.21-5-24
5.25-5.28

Input Signals

e, p

e, </>

e, IP
e, <f)
e, f
e, 0

Coupling

coupled and
decoupled

coupled and
decoupled

decoupled
decoupled
coupled
coupled

Phase Information
Included

No

No

Yes
Yes
Yes
Yes

TABLE 2. INFORMATION CONTENT OF FIGURES 5.5 THROUGH 5.28

Figure 5.2 shows the error signal autospectra for ensemble averaging
across 1, 5, 10 and 20 estimates using the (s'"̂ f̂ )e spectral window. It is
seen that the convergence is quite rapid and there is no reason to expect that
the average 20 results will be noticeably superior to, say, the average 10
results. The estimates of transfer function presented later will all use
the ensemble 20 data. The data for an average of one was checked and it was
verified that the determinant of the spectral matrix was identically equal to
zero. It was non zero for all the other averages (5, 10, 20).

The cross spectra between roll and aileron as well as roll and
rudder are given in Figure 5.3. It is seen that cross power are approximately
of equal order of magnitude, with slightly more power in the roll, aileron
cross spectra. Notice also how stable the $<?>$ phase plot is compared to
the phase plot for 0, .

Basic data is presented in Figure 5.4 which can be checked against
Figure 5.3 to compare the pilots' aileron effort against both roll and yaw.
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In addition the break up in phase occurs much lower in frequency indicating
that signals related to P are dropping off at a much faster rate than are
those connected with 0 . The $## spectral plots verify this, giving
evidence of a true dynamic range on the order of 90 to 120 dB ( $fy not shown).

Figures 5.5 through 5.12 show the transfer functions for both the
coupled and decoupled case. Recall that the decoupled case was set up as a-
reference and is computed by setting the off diagonal terms in the spectral
matrix identically equal to zero. In each of these plots, a smooth line has
been faired in on the "decoupled" transfer function. This smooth line is
then superimposed on the coupled transfer function in order that the reader may
more readily evaluate the differences in spectral content. It is emphasized
that this line was merely "eyeballed" in and therefore does not represent a
smoothed, rational polynomial model of the transfer function.

Figures 5.13 through 5.28 present the transfer functions for the
various cases along with the associated phase information. In general, the
break up in phase seems to be the most serious source of error. The factorized
results, using only the e , y> data are presented in Figures 5.29 through 5.32,
From an inspection of these figures, the following conclusions are drawn:

(1) Using the s"*/** window, a useful frequency range of
.2 ^ co ̂  20 rad/sec. was achieved in the vector roll
tracking task when the input variables were error and
roll angles. This was reduced to .2 *- u) *- 7 when the
input variables were error and yaw. That is, the
dynamic range of ^ seems to be far greater than that of
roll.

(2) In general, the coupled models displayed more power at
lower frequency than did the decoupled models. The
decoupled models are computed by setting the off-diagonal
terms in the spectral matrix equal to zero, resulting in
a set of scalar definitions.

(3) In general, the coupled models which were generated using
error and bank angle to specify the spectral matrix dis-
played far less power at low frequency that did the
coupled models generated using error and yaw angle.

(4) The power in the transfer functions, making up the pilot
model, are comparable in magnitude. In the case of the
coupled models whose spectral matrix depends on error and
yaw angle, the diagonal term (Ĥ , \\22) are slightly higher
in power (5-10 dB) than are the off-diagonal terms (H^2»

(5) Along the lines of (4) above, there is less that can be
said about the models which use error and bank angle as
the input signals for the differences appear to be
smaller. In fact, \\2\ produces a higher peak than any
observed in the other three transfer functions.
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(6) The differences between the various models appear to be
quite significant. That is, it does make a difference
whether one sets up decoupled or coupled models or
whether the model was generated using e ,p as opposed
to e , $£ . The factorized results exhibit marked
differences when compared with the non-factorized answers.
However, the preliminary nature of these estimates, due to
the ill-conditional inputs (120 dB dynamic range) and
the poor checks obtained on the root finding and matrix
inversion routine must be kept in mind.
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FIGURE 5.2. FOR ENSEMBLES OF 1, 5, 10 and 20
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FIGURE 5.8. H22; COUPLED AND DECOUPLED; Q tf
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6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Introduction

The purpose of this program was to establish the practical usefulness
of a matrix model of the human pilot. The ultimate objective was to run many
variations on a two-controller roll tracking task in order to assess the effect,
on the pilot model, of increasingly complex tasks. It was our intent that the
degree of complexity attained would be governed by the success achieved as more
and more complex situations were studied. The fundamental problems which
surfaced in the early stages of the study ultimately restricted the effort,
to only one configuration. However, the indications are that this particular
roll tracking task is an excellent experiment for studying the two-controller
task, since pilot activity with both the rudder and aileron was very significant,

The primary problem, which prevented a deeper penetration into the
vector model, was the initial poor quality of the spectral estimates obtained
in the scalar experiments. With time, we were successful in refining our
algorithms to the point where high quality estimates were obtained over a
limited frequency range. It was established that the limited frequency range
was attributable to the presence of certain anomalies (roll up, break up, and
roll down) in the estimates. It was theoretically demonstrated that these
anomalies were due to the finite data length (coupled with the spectral
properties of the (time domain) filtering algorithm) and not due to "noise",
as was first suspected.

The useful frequency range achieved in the scalar cases was approxi-
mately . 2 <. u> t- 60 rad/sec. The power spectra used to compute the various
transfer functions had a dynamic range on the order of 60 dB (power basis).
However, when working with the higher-order aircraft equations of motion, the
dynamic range was more on the order of 90 to 120 dB (power basis), resulting
in a significant reduction in the useful frequency range. In the case of the
pilot estimates generated using error and bank angle as the primary signals,
the frequency range was approximately .2 *-td <- 20 rad/sec while the estimates
for which error and yaw were the primary signals had a range of .2 < cO *- 7
rad/sec. It is apparent that even scalar tracking experiments, which work with
realistic aircraft equations, will require improved computational algorithms
if false results are to be avoided.

Preliminary estimates of the vector pilot model were generated for
the two-controller experiment using assumptions which lead to a "decoupled"
as well as a "coupled" model. These results were described in detail in
Section 5. A primary result is that the coupled models had, in general, more
power at lower frequencies than did the decoupled models. This was especially
true in the case where the spectral matrix was generated using the error and
yaw signals. Alternatively, in the case where the error and bank angles were
used, one may take the position that there were no significant differences
between the coupled and decoupled models.
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There is a marked difference between the spectral factorized model and
the non-factorized results. However, bear in mind that internal program checks
on the factorization algorithm showed that the computer was having great diffi-
culty in coping with the wide dynamic range of the input data. The explicit set
of conclusions, drawn from the analytical analysis as well as the experimental
results, are listed below. This is followed by a list of recommendations.

6.2 Summary of Theoretical Conclusions and Experimental Observations

(1) When working with finite lengths of data, the roll up,
break up and roll down phenomena are to be expected.

(2) Ideally, knowing that the anomalies exist, one could use
Equation (3.8) to predict the frequency band for which
relatively undistorted estimates can be anticipated. In
practice, the high order of the system dynamics makes
this impractical.

(3) In general, one may anticipate distortion at a given
frequency when the spectral window, which corresponds
to a time domain filtering algorithm, is falling off
more slowly than the true underlying spectral density.

(4) When ensemble averaging was used with no overt filtering
(i.e., the square time window), the estimates obtained
over as many as 134 estimates were considered unsatisfactory.

(5) The triangular filtering algorithm in time, which corres-
ponds to a (3ll,/*̂ )* spect'ral window, produced results
which were an order of magnitude better when used in
conjunction with ensemble averaging.

(6) Filtering alone, without ensemble averaging, also produced
unsatisfactory results. However, with filtering, the
number of ensembles necessary to produce acceptable results,
was dramatically reduced. For example, the ensemble average
across 5 with filtering produced an estimate of the K/g2
dynamics which were noticeably superior to the ensemble
alone estimate which used 134.

(7) Break up occurs if any of the cross and auto power spectra
being estimated contain lightly damped modes.

(8) In general, the experimental variability in the estimation
of cross spectral densities is greater than the variability
observed in the estimation of auto spectra. For example,
a typical observation is that ensemble averages across 5
or 10 on auto spectra have less variability than cross
spectral averages across 100. Thus the estimation of
dynamics and pilots variations of cross/cross, as opposed to
ratios of cross/auto, are very likely to display more
distortion (see Appendix B).

6-2



(9) Regardless of which time domain filtering algorithm is
invoked, the estimate of the cross power between two
independent random variables goes down only as 1//7T ,
n being the number ensembled across.

(10) In the multi-controller case, a fundamental step is the
computation of the determinant of the spectral matrix.
It is imperative to recognize that all present compu-
tational algorithms automatically force a zero determinant
if no ensemble average is employed. Thus, the number of
ensembles necessary to reasonably approximate the deter-
minant of the spectral matrix is a decisive factor in
determining the utility of the vector approach for modeling
the pilot. There is strong evidence that a diligent
pursuit of the filtering - ensemble approach could get
this number down to something on the order of 5.

(11) Using the (s'nx/*/*) window, a useful frequency range of
approximately .2 * cj *- 60 rad/sec. was achieved for the
scalar tracking experiment. This range is not so much
related to the scalar nature of the problem as it is to
the dynamic range of the various spectra, which was as
high as 60 dB in experiment 2.

(12) Using the \'"?*</*) window, a useful frequency range of
.2 < & *~ 20 rad/sec. was achieved in the vector roll
tracking task when the input variables were error and
roll angles. This was reduced to 2 ̂  o ̂  7 when the
input variables were error and yaw. That is, the
dynamic range of ^ seems to be far greater than that
of roll.

(13) In general, the coupled models displayed more power at
lower frequency than did the decoupled models. The
decoupled models are computed by setting the off-diagonal
terms in the spectral matrix equal to zero, resulting in
a set of scalar definitions.

(14) In general, the coupled models which were generated using
error and bank angle to specify the spectral matrix dis-
played far less power at low frequency than did the
coupled models generated using error and yaw angle.

(15) The power in the transfer functions, making up the pilot
model, are comparable in magnitude. In the case of the
coupled models whose spectral matrix depends on error and
yaw angle, the diagonal term (Hjj, H22) are slightly higher
in power (5-10 dB) than are the off-diagonal terms (Ĥ , H21)

(16) Along the lines of (17) above, there is less that can be
said about the models which use error and bank angles as
the input signals for the differences appear to be
smaller. In fact, h^j produces a higher peak than
any observed in the other three transfer functions.
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(17) The differences between the various models appear to be
quite significant. That is, it does make a difference
whether one sets up decoupled or coupled models, spectral fac-
torizes,or whether the model was generated using e , p as
opposed to e , <j> data.

(18) Care must be used in the experimental design in order
to insure that the spectral matrix does not have a
determinant which is identically equal to zero (see
Section 5.3).

6.3 Recommendations

(1) The roll tracking experiment, as it was originally
conceived, should be pursued. Consideration should
be given to including turbulence inputs in the model
in order to more closely approximate true flight
conditions. Comparisons between the models produced
by this vector approach should be compared with the
results of other modeling approaches, using the roll
tracking data in order to provide a common base.

(2) The algorithms for computing power spectra must be
refined in order to cope with the increased dynamic
range encountered when dealing with six degrees of
freedom equations of motion. Ideally, we should
strive for a usable frequency range of . 1 *- t^> *- 100
rad/sec.

(3) The method for factorizing W-H equations given in Section
2.4 should be refined to the point where it can cope with
the ill conditioned data associated with the wide dynamic
ranges encountered using six degree of freedom aircraft
equations of motion.
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Appendix A

THE RELATIONSHIP BETWEEN THE TIME AND SPECTRAL WINDOW

A.I Introduction

This appendix gives a proof of Equation (3.8) of Section 3. The proof
is simple and we were admittedly surprised not to find it in the literature.
Since our search was not exhaustive we would not be surprised to find, at some
future time, that such a proof already exists. However, in the event that it
does not, the reason will probably be that most researchers have concentrated
on the relationship between the lag window and the spectral window, ignoring
the relationship between the time window and the spectral window.

As an introduction, the derivation is first given for the
time window, followed by the more general result.

square

A.2 Square Window

Given Z(t) and are of finite length 2T

s -»•

Let r =
below.

- 1 2 so that the domains of integration are as shown in the figure

T -2T

-T

Figure A.1 DOMAINS OF INTEGRATION
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/ /
-^ X(-5)Xrs) = ^p

-r-T

Z T = -±-1 (ZT+r)
•J- IT

ZT

/ - I r l )

2Tr-r+T

2T

(2T-r)

(A.2)

However, the "lag window"

f(r) =

' - & \ r \ * r

0 T i 7"

can be found by convolving the square time window with itself, and, of course
letting t—^-r . This suggests that a more direct relationship between the time
window and spectral window exists. This relationship will now be derived.

A.3 The General Time Window

Let

f(t) r

and form

1--

-r

-co -oo

even - T *• t <• T

o kl = r
(A. 3)

-T

^ e

CA.4)

ait.

value
Let T - tt - tg . Equation (A.4) becomes, after taking the expected
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since f(t) is an even function.

/
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(A. 5)

(A. 6)
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Appendix B

DEMONSTRATION OF ROLL UP, BREAK UP AND ROLL DOWN
IN SPECTRAL ESTIMATES

B. 1 Introduction

In Section 4, an experimental realization of the roll up, break up
and roll down was demonstrated, for both Experiments 1 and 2. In this appendix,
it will be demonstrated, via a series of illustrative examples that these phen-
omena are to be expected, and of course, can reduce considerably the frequency
band over which acceptable spectral estimates are obtained.

The basic equation used in carrying through the analytical details is
Equation 3.8 of Section 3. The examples are four in number. The first example
demonstrates "roll-up," the second example demonstrates roll up, break up and
roll down while the third example demonstrates the differences that can exist
between estimation procedures which use only cross spectral densities as opposed
to the more classic approach of a cross-to-an auto spectral density.

For convenience, the relationships which exist between the various
domains, from Section 3, are repeated below.

-T *• t
Let f(t) =

i r (B.I)

- 1 r f^ v 1 - 7
• Tr E\ x r <-3)Y r <s>[ - 2F

L J (B.2)

-*>,) d̂ > when

B.2 Example 1; Roll Up

Suppose we have the problem of estimating -ĝ - , given two different
input power spectra (Refer to Figure B-l). Let the input power spectra be

xx = --^ or 0 = _ s » a (B.3)
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Figure B-1 ESTIMATION OF S + 1

The estimate of ^j is computed using the equation

H - (B.4)

That is, it is assumed that an infinite number of records, each of length 27" ,
are available. The window used is the (5/^ *)* window of Table I (Section 3).
Carrying out the operation indicated in Equation B-4 after using Equation B-1
to compute the auto and cross power estimates, we obtain the Bode plots shown
in Figure B-2. Observe that the estimate H looks like a zero over a pole for
the -st + 1 input while looking like a notch filter for the (.s*+ ,ja input.
This distortion is to be expected, since the true cross power, 0 , is

**
,

dropping with a -3 slope at high frequencies while s"^ *) spectral filter^
has only a -2 slope. For the (s '"*%*) * window of Table I, the estimate of H
is quite precise for the 1/(-sl+l) input. This input rolls off at -2 for high
frequencies while (*"1$ZY rolls off as -4 C0xy rolls off as -3). When the
(--'-n^z} * spectral window is used with the i/^-sVO* input ( 0xy rolls off

as -5), the estimate// again contains a zero at about 200 rad/sec.*

This example clearly demonstrates the roll up phenomenon but does not
show any breakup. The breakup does not occur because the dynamic modes in
this particular example are associated with -£j- , a well damped mode which
leads to additional error terms like

-ZT
- cos T (B.S)

in the expression for H . These terms, while present, do not show up in
Figure B-2 since e~a1/6r««~" when 2T = 100 seconds. Thus the break up
phenomenon will not be apparent when all the modes of the system are well
damped (assuming reasonable record lengths like 100 seconds).

The next example will demonstrate the breakup in the estimator in
addition to roll up and roll down.

The results for the window are not plotted.
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B.3 Example 2; Break Up, Roll Up and Roll Down

Estimate 1/S for 0, = 1 , (see Figure B-3)
' * X "" 5 i i

Figure B-3 ESTIMATION OF 1/5

Again, using Equation B-l, the theoretical result for record lengths
of 2T = 100 seconds can be computed. The results are shown in the Bode plot
of Figure B-4. Note the roll down at low frequency, where the | H| plot
departs from the ^-| and approaches a constant as <o-»0. The breakup and
roll up is shown by the envelope curves at high frequency, since the sin-2&jT
and cos 2u>T terms cannot be conveniently plotted in the frequency range of
interest. The breakup is most violent in the phase plot.

B.4 Example 3: Roll Down, Bandpass Input Spectra

The next example (see Figure B-5) demonstrate the presence of roll
down without either the breakup or roll up phenomenon. The Bode plots are
shown in Figure B-6. Even though we are estimating 1/s , breakup is not
apparent because the true auto and cross spectra.

Figure B-5 ESTIMATION OF 1/5 WITH A BANDPASS INPUT SPECTRA

2-165
XX

&
- 16 S

(B.6)

do not have any lightly damped modes.

(5 '?/?/-)Note that the filter has decreased the roll down break
The extremely pronounced roll down demonstra-frequency by about two octaves.

ted in this example appear to be typical of what occurs when dealing with band
pass input spectra. This band pass power spectra is representative of what is
encountered at the various points of the block diagram which defines the
subject "M" experiment (Experiment #2).
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B.5 Estimation Using Ratios of Cross Spectra

The estimates given in these theoretical examples have been computed
using the ratio of a cross-to an auto-spectra. As a general rule, it is the
estimate of the cross spectra that introduces the greatest error into the
modeling process. Hence one may expect the distortion to be greater in those
estimators which are computed using only ratios of cross spectra, a fact which
has been verified experimentally in the single controller roll tracking task
(Experiment #1). In that experiment, the *" dynamics were estimated using

i t — rs<f,

rss
(B.7)

while the pilot was estimated using the equation

Pilot = (B.8)

The estimate of s^ 2) is shown in Figure B-7 while the pilot estimate is
shown in Figure B-8. Observe that break up and roll up occurs in the estimate
of the ilot at around <*J = 15 rad/sec, while it does not occur in the estimate

until about 60 rad/sec. Also observe that the break up and rolls (5» 2)
up are nowhere near as severe in the estimate of as it is in the
estimate of the pilot, which is computed using the ratio of two cross spectras.
Indeed, had we not known about the roll up and break up phenomenon, out fits
to the pilot would probably have been something like the dashed lines in
Figure B-8. That is, a zero at <^> = 20 rad/sec and/or an added + 2 break at
&j = 60 rad/sec. Being aware of the possibility of roll up and break up, a
more realistic estimate would be given by the solid line in Figure B-8.

B.6 Example #4; Estimation of 1/S In A Unity Feedback System

This difference in the estimation procedure, between ratio of cross/
auto and cross/cross can also be demonstrated with a simple theoretical
example. Consider the feedback system depicted in Figure B-9.

Figure B-9 ESTIMATION OF 1/S IN A FEEDBACK LOOP
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Suppose the task is to estimate 1/5 in two different ways, using either

"i = -£*- (B-9)7 /-A

or

Let

rW> - S

then
/ 16

cZ) ~ ~~, T~, o —̂ * . ^
(B. 12J

and

A Using the (s"̂  *) filter and Equation B-l, the theoretical estimates
forH can be computed. Very good approximations to these estimates are shown
in Figure B-10.

While the difference is not spectacular for this simple example, they
are, nevertheless significant, in that low frequency roll down occurs later for
H ̂  (a detriment) and, at the same time/v^ has a high frequency roll up where
// has none.
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Appendix C

THE MAGNITUDE OF THE CROSS SPECTRAL ESTIMATOR
FOR TOO INDEPENDENT SIGNALS USING FINITE

LENGTHS OF DATA

Reference has been made, in Section 4 of this report, to the fact that
the magnitude of the cross power spectral estimator will be non zero even when
the signals considered are independent. In this appendix, a relatively simple
proof of that statement will be given. A more complete proof requires the use
of vector notation and identities that would require a very lengthy develop-
ment, and for that reason, will not be presented here.

Suppose there are two independent time signals X (f> and y(t) for
which record lengths of reasonable lengths exist. Suppose further that the
data is taken in the following manner:

(1) Take a record of the signal £ which is 2T seconds long.

(2) After waiting a reasonable period of time, take another
record 2T seconds long. It will now be assumed that
record #1 and record #2 are decorrelated.

(3) Repeat the above procedure until n (essentially) decorrelated
records, each of length 2T seconds, have been taken.

(4) Repeat the above steps for the u(t) record.

(5) Using the Fast Fourier Transform, take the truncated Fourier
transform of each record piece.

Thus
>v f 1 _

(C.I)

For simplicity of presentation, the functional dependence on &_> will
be suppressed. Therefore a set of transformed signals of the form

(C.2)

are available.

By hypothesis, the mean of each signal is zero. Therefore the mean
values are

E{A-} = £{3] -- E{C- } = z{ot} =0 1C. 3)
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Further, the expressions for the variance are

(C.4)

Because X(r) and y (t) are independent

E (C.5)

$
First consider only X and Y. , find 0 and derive its statistics.

' ' J M

CC.6)

or

27- (C.7)

The magnitude of the cross spectral estimator is

yfr
(C.8)

Since

-o

(C.9)

and

(c.io)
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Cc.ii)

+ T- V(Ct) + V(B,)

Note that the expected value of the sum of the squares is easy to find. How-
ever, finding the expectation of the square root of the sum of the squares is
extremely difficult. In a like manner, the variance of the sum of square or
the square root of the sum of square are also difficult to find. We must be
content, for the present, with the one statistic readily available, namely,

(C.12)

Before proceeding to the statistics for an average across n, a short diversion,
in order to express

Consider

in terms of 0X x and (p is in order.

(C.13)

Jr r (C.14)

so that

(C.15)

Equation (C-15) says that, with no averaging, the magnitude of the
cross spectral estimator is simply the square root of the product of the auto
spectral estimators.
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Returning to the problem of averaging across n estimates, generate

and form
n n

* - 1 Y A- -J-Y A&- ~ n / <x ,• . p r> / fit (r '\7*\'I i • i ' ~ " £. r / ' (,(-,. 1/J

i=l i-1

Since X,(t) and y it) are independent, and if we assume that the "decorrelated"
pieces of X(t) (and u(t) ) are pairwise independent, then

(C.18)

" n (C.19)

Therefore, using Equation (C-18) and (C-19),

~̂7T (C.20)

The implication of Equation (C-20) is that the square of the magnitude
of the cross spectral estimator goes down as f/« , where n is the number of
estimates ensembled across. It is further implied that the magnitude of the
cross spectral estimator should go down as 1//7T , but this cannot be proven
(or disproved) without first finding the statistics for the magnitude of

r»£x,Y, • This is a difficult task involving higher order moments than the
second (a further complication is that the joint probability density function
of the x's and ft 'a is required and presently, the only density functions
available to us are the marginals).

At any rate, the important point is that the magnitude of the cross
spectral estimator will be non-zero for finite data lengths even when the
random signals are independent, going down roughly as 7//7T .

Using vector notation and identities, one can prove the ///7f result,
given that the sum of certain non gaussian variables approach a gaussian (a
reasonable assumption).
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Appendix D

DIGITAL SPECTRAL ANALYSIS PROCEDURE

D. 1 Introduction

In this study, digital algorithms which represent the following continuous
equations were used.

/v

/=;

/v

(D.I)

(D.2)

where
- jcjt

'-r
CD.3)

rr
I -jut

Y. <**>') - is (t) e ' dt
L a I <Ji

J-
(D.4)

That is, the discrete auto spectral estimator is given by

A
n-1

E (D.5)

where 2rr (there are 2 n-N samples) .

The cross spectral estimator is given by

~7T

n-1 n-1

(D.6)
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D.2 Vector Notation

Equation (D-5) and (D-6) can be expressed more compactly using vector
notation.

Let

cos

cos

Znf:

.*. T f /T f .
Sin ~77~ (-"+ 1) - oc.

cos 77 7 - n = A ,

* *

> (D.7)

Equation D-5 becomes

(D.8)

where

In a like manner, Equation (D-6) can be expressed as

(D.9)

where
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Equations (D-8) and (D-9) are computationally implemented through the
use of the Fast Fourier Transform.

D.3 Computation Procedure

The data was collected in both analog and digital form, being recorded
on BRUSH MARK 200 pen recorders and, simultaneously in digital format via the
CAL digital recording facility (COREC).

The hardware of COREC consists of 3 data acquisition units and 4 tape
transports.

The data acquisition units accept analog or digital inputs and produce
digital outputs suitable for recording on the digital tape transports. The
analog inputs are sampled sequentially and converted to digital signals by a
high speed A/D converter.

Various combinations of tape speeds and packing densities determine
the rates at which the transports can accept data from the data acquisition
units. These rates, combined with the number of variables determine the
permissible sampling rates for each variable. For 5 variables plus a digital
count channel, the choices of sampling rates near 100 samples/second are
58 S/S, 125 S/S and 350 S/S. The rate of 125 S/S was selected.

The steps in the data handling procedure are

(1) Record data on digital tape using COREC hardware.

(2) Use blocking program (part of COREC software) to break tape
into lengths that can be handled by normal computer I/O
subroutines (32,760 bytes is the maximum physical record
for normal tapes on IBM 370 computers, our data records
were around 203,000 bytes).

(3) Convert the data to normal floating point numbers while
checking for errors in the input data (missed bytes
because of bad spots on tape or hardware problems). This
step uses the general purpose COREC program.

(4) Special program to arrange data into arrays by variable,
for efficient I/O.

(5) Multiply each piece of record, of length 2Tseconds, by
the desired time window.

(6) Use Fast Fourier Transform.

(7) Sum real and imaginary parts of each spectral estimate with
values for these variables and frequency from previous
records (ensemble average).
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(8) Compute magnitude and phase for bode plots.

D.4 Amount of Data

A typical experiment No. 2 run produced the following amount of
data:

16,384 samples from each of 5 analog channels,
plus count for error detecting. --•;.

.'. 6(16,384) = 98304 data words recorded.

Since there are 2 bytes/word, this gives 196,608 bytes of data per
record or, since 27 records were recorded, 5,238,416 bytes recorded. Since
there are 6 bits/byte, the total number of bits is 31,430,496.
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