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ABSTRACT

A modulo-M counter (of clock pulses) is decomposed into parallel

modulo-m. counters, where each m. is a prime power divisor of M. Each
1 1 a.

m. is a cascade of a.
i

identical modulo-pi counters, where m i pi The

modulo-pi counters are feedback shift registers which cycle through Pi

distinct states. By this organization, every possible nontrivial data frame

subperiod (in terms of clock pulse intervals) and delayed subperiod may be

de rived.

The number of clock pulses required to bring every (or a subset of all)

modulo-pi counter to a respective designated state or count is determined by

The Chinese Remainder Theorem. This corresponds to the solution of simul-

taneous congruences over relatively prime moduli.

JPL Technical Memorandum 33-539vi



I. INTRODUCTION

Each clock pulse interval (CPI) of a fixed-length serial data frame

which is repetitive may be put into a one-to-one correspondence with the

integers 0, 1, ... M - 1, where M is the frame length in terms of CPIs.

Thus, a sequential network capable of assuming M distinct states can be

used to time-tag each CPI. In effect, the sequential network is autonomous

(i.e., has no inputs except clock pulses) and serves as a modulo-M counter

(of clock pulses). When synthesizing synchronous sequential logic, the

logical designer avoids races and hazards (Ref. 1) if loading and clocking

frequency limitations of the digital elements are respected.

When M is not prime, every possible proper divisor (where divisors 1

and M are excluded) corresponds to a non-trivial subperiod of the periodic

data frame. In effect, the finite-state machine (i. e. , modulo-M counter) is

decomposed into k submachines, where k is the number of proper divisors of

M (Ref. 2).

Decomposition introduces flexibility which would be costly to achieve

in a large modulo-M counter. The combinational logic required to translate

a state to a count is comparable for the modulo-M counter and the decom-

posed machine. However, decomposition allows for subperiod and delayed

subperi6d generation with a modest amount of decoding logic. In a single

machine (i. e. , modulo-M counter), the decoding logic is prohibitive for sub-

period and delayed subperiod generation unless the count code is fixed-

weighted. Fixed-weighted code generation in a synchronous mode, however,

requires interstage gating (combinational logic), which grows with the

capacity of the counter.

Minimum overall complexity is realized with feedback shift registers

forming submachines which operate synchronously and in series-parallel.

FSR codes are nonweighted for every modulo (except 2).

JPL Technical Memorandum 33-539 1



II. MATHEMATICAL BACKGROUND

A. Fundamental Theorem of Arithmetic

A prime number is an integer p > 1 that is divisible by 1 and p only.

Every integer M > 1 may be uniquely expressed (except for order) as

a prime or a product of two or more primes. The unique factorization of M

into primes is known as the fundamental theorem of arithmetic (Ref. 3).

That is,

a1 a 2 an
M pI p 2 .. ·P (1

where the primes Pi are distinct and the exponents cai are positive integers.

B. Greatest Common Divisor

The greatest common divisor (gcd) of two integers a and b is the

largest integer d which divides a and b. This is denoted as

d = (a,b)

where d is the largest integer, such that

dIa and dib

The expression dia (d divides

Let

a) means a = dq, where a, d and q are integers.

a1 a 2 an
a =pp P2 Pn

b =p 1 P 2 . . . Pn

JPL Technical Memorandum 33-539
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where ai > 0 and pi 0. Then,
1- 1

in(a n ,o n )

P. .. n
min( 1 ) min(a 2, Z)

d = (a,b) = p P2

Example 1

For

a = 588 = 22 . 3 · 7

b = 15,435 = 32 5 73

d
d = (a,b) = 3 · 7 = 147

Generally a and b are not in factored form. The Euclidean algorithm

(Appendix I) provides an efficient means for determining (a, b) without

employing factorization.

A very important relationship exists between the integers a, b and

d = (a,b), as stated in the following theorem (Ref. 3).

If d = (a,b), there exist integers x and y, such that

ax + by = d

An important consequence of the foregoing theorem is that if a and b

are relatively prime, where (a,b) = 1, there exist integers x and y, such

that

ax + by = 1

Conversely, if a representation such as (3) exists for 1, then (a,b) = 1.

C. Linear Diophantine Equations and Congruences

Diophantine equations, named in honor of the Greek mathematician

Diophantos, are equations in one or more variables whose solutions are

JPL Technical Memorandum 33-539
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integers (or in some cases rational numbers). Equations (2) and (3) are

examples of linear Diophantine equations. The solution to

ax + by = c

where a, b, and c are given integers and x and y are integers to be deter-

mined, involves finding an x such that ax and c yield the same remainder

when divided by b. If a solution exists, then

b I (c - ax)

and y can be chosen as

C- ax

Y= b

Suppose two integers s and t leave the same remainder r when divided by a

third integer m. Then,

s = ql m + r

t = qZm + r

where 0 < r < m and s - t = (ql - q2 ) m. It follows that

ml(s - t)

Gauss, the 19th century German mathematician, suggested the

following "congruence" notation:

s _ t mod m

meaning s is congruent to t modulo m if m I (s - t). The linear Diophantine

equation

ax + by = c (4)

JPL Technical Memorandum 33-5394



can be expressed as a linear congruence, namely

ax - c mod b (5)

Before considering the conditions for the existence of a solution or

solutions to (4), or equivalently (5), let us state some additional properties

of congruences.

If a - c mod b and d - e mod b. Then,

(1) a + d - c ± e mod b

(2) ad - ce mod b

also

(3) ka -- kc mod b for every integer k

If ka - kc mod b and (k,b) = d, then

(4) a - c mod (b/d)

Note that when (k,b) = 1, then (4) becomes

a - c mod b

That is, the divisor k must be relatively prime to the modulo b in order to

perform cancellation without altering the modulus.

Returning to (4), or equivalently (5), a necessary and sufficient

condition for a solution or solutions to exist is that

(a,b)Ic

The number of solutions which are incongruent modulo m (hence, distinct) is

exactly (a, b).

When a and b are relatively prime, one and only one solution exists

regardless of the integer value of c.

Example 2

1485x - 15 mod 2795

JPL Technical Memorandum 33-539 5



First, (1485, 2795) is determined by the Euclidean algorithm shown in

Appendix A.

2795 = 1485 1 + 1310

1485 = 1310 1 + 175

1310 = 175 · 7 + 85

175 = 85 2 + 15

85 = 15 6 + 5

15 = 5 3 + 0

Thus, (1485, 2795) = 5 and 5115. This indicates that there are five solutions

for example 2.

From property (4) of congruences

1485 15 2,79515 x 5 mod \(5,2795)

297x -3 mod 559

The foregoing congruence has one solution, since (297, 559) = 1.

From the definition of congruences

297x - 559y = 3

559y + 3 262y + 3
297 297

2622y + 3= s (an integer)
297

2 6 2 y = 297s - 3

35s - 3
y = s + 262

JPL Technical Memorandum 33-5396



35s - 3
262 = t, 35s = 262t + 3

7t + 17t + 3
35

17t + 3
3 u, 17t = 35u - 3

t = 2u + u - 3
17

u -3
7 = w, u = 17w + 3

The smallest positive value of u occurs for w = 0. It follows from w = 0,

u = 3, t = 6, s = 45, y = 51

and x = 96 is the solution to

297x- 3 mod 559

whereas

1485x - 15 mod 2795

has five distinct (i.e. , incongruent modulo-279 5) solutions, namely,

96, 96 + 559, 96 + 2 · 559, 96 + 3 * 559, 96 + 4 · 559

or 96, 655, 1214, 1773, and 2332. Given the general form

ax - c mod b, where (a,b) = d

JPL Technical Memorandum 33-539 7



A solution for x, say xO, yields all d solutions, as follows:

b 2b (d - 1)b
x 0' x0 +d' x0 + ''' x + d

Corresponding to each solution for x is a solution for y in the linear

Diophantine form

ax - by = c

However, as in example 2, values of y are often not required.

A more efficient method for finding a solution for x is given in

Appendix I.

D. The Chinese Remainder Theorem for Integers

The Chinese Remainder Theorem guarantees a unique solution for

simultaneous congruences over moduli which are relatively prime by pairs.

The theorem may be stated as follows (Ref. 3):

Every system of linear congruences in which the moduli are relatively

prime in pairs is solvable, the solution being unique modulo, the product of

the moduli.

Given the simultaneous congruences

x _ a1 mod m 1

x _ a
2

mod m
2

x - a mod m (6)n n

JPL Technical Memorandum 33-5398



where (mi.,m) = 1 for all i,j, where ig j and a 1, a
2
, *... an are any set of

integers, let

M = mlm2 ... mn

and

MM. = M
1 m.

1

Since (Mi,mi) = 1, a unique solution exists for Yi in the linear congruence

Miy -- 1 mod m. for all i
1

There is one and only one solution for x, which is determined as

follows:

n

x -EaiYiMi mod M

i=l

(7)

Note that, as expressed in (7), x is a solution of each congruence in (6).

aiyiM
i

= ai mod mi

-O mod mj, where j • i
J

The latter

0 < x < M.

results since m. is a factor of M..
J 1

The value of x is such that

Example 3

x - 1 mod 3

x - 2 mod 4

x -3 mod 5

a =1 m
1

= 3

a
2

= 2 m
2

=4

a 3 =3 m
3

= 5

JPL Technical Memorandum 33-539 9



Unique solutions for

M = 3 * 4 5 = 60

M 1 = 20, M
2

= 15, M
3

= 12

20yl - 1 mod 3

15y2 - 1 mod 4

12y
3

- 1 mod 5

Y1'Y2 and Y3 are 2, 3 and 3, respectively.

x = (40a1 + 45a 2 + 36a 3 ) mod 60

x - (40 1 + 45 - 2 + 36- 3) mod 60

x - 58 mod 60

Check

58 - 1 mod 3

58 - 2 mod 4

58 -3 mod 5

A modulo-3, a modulo-4, and a modulo-5 counter would be in state 1 2 3

(i.e., a 1 = 1, a 2 = 2 and a 3 = 3) for n = 58 + k60 CPI, where k = 0, 1, 2, -

(State 1 2 3 repeats every 60 CPIs; see Table 1.)

JPL Technical Memorandum 33-53910



III. APPLICATION OF THE CHINESE REMAINDER THEOREM
TO TIMING AND CONTROL SIGNAL GENERATION

The following data frame length has been proposed for the Mariner

Venus-Mercury 1973 spacecraft:

M = 14,817,600

Unique factorization (except for order) gives

M = 2 6 33 52 73

Let

M = m
1

m
2

m 3 m 4

where

= 26 = 64

m 22
33 27

m 3 = 5 = 25

3
m 4 = 7 = 343

The arrangement of m. factors is arbitrary as long as pairwise relative
1

primeness holds. The unique factorization into products of powers of

distinct primes, where each distinct prime power corresponds to an m.,

guarantees pairwise relative primeness. Furthermore, prime power factori-

zation enables one to enumerate all the divisors of M. Let

P1 = 2, P 2 = 3, P 3 = 5 and p 4 = 7

JPL Technical Memorandum 33-539 11



The following polynomial factors, when multiplied, yield terms which

correspond to every divisor of M:

(1 + + P 1 + P p 1 p1 + p5 + p6)

2 3 2
X (+ + P2 + P2 + P2 ) ( 1 + 3 + 3)

2 3
X(l + P1 + P4+ P 4 )

The number of terms in the resulting polynomial is

(6 + 1)(3 + 1)(2 + 1)(3 + 1) = 336

Thus, there are 336 divisors of M, 334 of which are proper (1 and M are

improper).

As shown in Figure 1, there are four counters, which count in modulo

ml, modulo m2, modulo m 3 , and modulo m 4 . Each is composed of identical

cascaded feedback shift registers (FSRs), where the number of states a

particular FSR cycles through is a prime factor of M. Each FSR is designed

to operate synchronously. Furthermore, the successive states through which

a modulo-pi FSR cycles (except for P1 = 2) is not in binary order. Unused

states are always driven into the major cycle (see Ref. 2). An output cor-

responding to a scale of Pi is clocked to the next modulo-pi counter to realize

a modulo-p. count, etc.

As shown in Fig. 1, all m. states associated with the modulo-m.

counter may be decoded. In practice, however, only those states corre-

sponding to a count of interest are decoded.

Example 4

Assume that CPI 10, 942 must be identified.

10,942 62 mod 64

= 7 mod 27

= 17 mod 25

309 mod 343

JPL Technical Memorandum 33-53912



CPI 10,942 occurs when al, a2, a3, and a4 are 62,7, 17, and 309, respectively.

The occurrence is once per frame. That is,

CPI x = 10,942 + kM for k = 0, 1, 

Example 5

CPI x = 0 + k400 for k = 0, 1, * is to be generated. That is, M is

to be divided into equal subframes of length 400.

4 2
400 = 2 5

Let

4 4
ml = 2 P,

2 2
2 =m 3 = 5 P3

M = mlm
2

= 400

The content of the leftmost four stages of m
1

and all six stages of m 3 must be

detected, so that when all zeros are stored, an output x is generated. The

first output may be delayed up through M - 1 CPIs (up to 399) by detecting an

appropriate nonzero a a2 combination. Assume that the first output is to be

delayed 72 CPIs.

72 = 8 mod 16

- 22 mod 25

The combination ala
2

of 8 22 will appear at CPI x = 72 + k400, where

k = 0, 1,

JPL Technical Memorandum 33-539 13



Example 6

In example 5, assume that a1 = 15 and a2 = 20. The number of CPIs

designated by x required for this ala2 combination to appear can be deter-

mined by the Chinese Remainder Theorem.

x 15 mod 16

x - 20 mod 25

M 400M -= z5-M1 m 1

M = M = 16
2 - 2

Z5 y= 1 mod 16

16y2 1 mod 25

Unique solutions for Y1 and y2 are 9 and 11, respectively.

x _ (255a 1 + 1762) mod 400

x 95 + k400 for k = 0, 1,

Note that

95 - 15 mod 16

- 20 mod 25

Thus, the ai 2 combination (i. e., count) of 15 20 will appear for the first

time at CPI 95 and will reappear every 400 CPIs thereafter.

Example 7

Given

M = 26 33 52 73 = 14, 817,600

JPL Technical Memorandum 33-53914



whe re

= 26 = 64

= 33 = 27

= 52 = 25

= 73 = 343

and

= M
1 ml

M =M
2 m-

M =
3 m

3

MM = M
m 4

= 231,525

= 548,800

= 592,704

= 43,200

The minimum number of clock pulses required to realize the counts

a
1

= 37, a2 = 17, a
3

= 2, a
4

= 341

is determined as follows:

A unique solution for each Yi is

231,525 Yl

guaranteed, where

1- mod 64

548, 800 Y2 - 1 mod 27

592,704 y3 - 1 mod 25

43, 200 y4 - 1 mod 343

JPL Technical Memorandum 33-539 15



The solutions are

Y1 = 45, Y2 = 13, Y3 = Y4 = 19

and

x - (M 1Yla 1 + M 2 Y2 a 2 + M 3 Y
3

a 3 + M 4y 4 a 4 ) mod M

x = 9,039,077 + k14, 817,600 for k = 0, 1, 2, .

The minimum number of clock pulses required is

x = 9,039,077 clock pulses

Check:

9,039,077 = 37 mod 64

17 mod 27

2 mod 25

341 mod 343

JPL Technical Memorandum 33-53916



IV. RECURRENCE RELATIONSHIPS FOR THE MODULO-pi COUNTERS

An r-stage feedback shift register which provides a count modulo-pi

may be characterized by an rth-order recurrence relation (i. e. , an rth-order

difference equation).

bk = f(bk_l'bk_-2,'' b k r ) (8)

The bit fed back at CPI k is denoted by bk. The content of the ith stage at

CPI k becomes the content of the (i + I)th stage at CPI k + 1. That is,

bk_i = b(k+l)-(i+l ) (9)

Expression (9) accounts for the shifting in the register. From (8), the bit

being fed back is a Boolean function of the contents of the register. The

initial state of stage i is b_i, where CPI k = 0. The number of stages

required for a modulo-pi counter is r, where r satisfies the following

inequalities:

2r- 1 < Pi 2 r

The recurrence relationships for the proposed modulo-pi counters in

example 7 and Fig. 1, where P1 = 2, P2 = 3, p 3 = 5, and p4 = 7, are:

P1 = 2 bk= 1 (ibk-l b~_l

p2 = 3 b
k

= blb k-2

p 3 = 5 bk = b 2 bk-3

7 b = b_2bk_3 + b (10)P4 = k k-i k k-3 k-i k-3

JPL Technical Memorandum 33-539 17



The symbols ), ', and + denote exclusive--or complementation and

inclusive-or (logical summation), respectively. Juxtaposition denotes

logical multiplication. The initial state of each stage is assumed to be 0

(i.e., b_ = 0 for all i).

State diagrams of each of the four FSRs appear in Fig. 2. Note that

unused states are always driven into the desired cycle of states.

The FSRs appearing in Fig. 1 are not shown in detail. In particular,

the feedback networks are not explicitly drawn. See Fig. 3 for a generalized

FSR (without a decoding network). The state of the ith stage at clock pulse

interval (CPI) is denoted by bki. The binary digit being fed back at CPI k

is denoted by bk.

The content of the first or leftmost stage is replenished by bk after

shifting, where b
k

is a Boolean function of bk_l,bk_2, · b· ·, bkr+lbk
r.

The

right-hand side of the recurrence relations in (10) corresponds to Boolean

feedback functions.

FSR implementations for (10) appear in Fig. 4. The shift register

stages are 1-enable JK flip-flops, whose characteristic equation is

Q = Jq' + K'q

where J and K are 1-enable inputs and q and Q are the present and next state,

respectively.

Symbolism in Fig. 4 has been simplified, using the following

correspondences:

bk.i f b. and b
k
- b

Jk-i Ji

Kki -K.

JPL Technical Memorandum 33-53918



Table 1. A modulo-60 counter decomposed into
modulo m

2
= 4, and modulo m

3
=

parallel modulo m
1

= 3,
5 counter s

Count state Count state
CPI CPI
n I 1 m I 3 n

m i mg2 m 3 m 1 m2 m3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4
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1ttt
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t
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1 3 CASCADED
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Fig. 1. Proposed spacecraft timing and control signal
Mariner Venus-Mercury 1973

generation for
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bk-i bk-2bk-i

PlI=2 2 1 P2 =3

1 b' 1b
bk = i k b -k-i k-2

k bk bk-2 bk-3 bk-l + bk bk-

1Fig. 2. State diagrams for modo -3 -5 and -7 S counters

511 5
2

115 P4 = 7

bk = k:-2 b-3 bk = b -~ bk-2 bk-3 + ek-l 4k-3

Fig. 2. State diagrams for modulo-Z, -3, -5, and -7 FSR counters
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Fig. 3. A generalized FSR
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J1

' K1 J 1=K 1
=

pK1 = b=

CLOCK

Pi = 2 b = bb

bb

P3 =5 b=bb Kb b 2 + 3

~~b3g~~~~~2 

b2

CLOCK b J1 =b b

P =5 b =b b b K1 b2+b3

Fig.;3J 2

b~~~~2 b 1fI' b2 L b3

3bp n w a 13'7

Fig. 4. Implementation of FSRs whose state diagrams appear in Fig. 2
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APPENDIX A. ALGORITHMS FOR FINDING THE GREATEST
COMMON DIVISOR

I. THE EUCLIDEAN ALGORITHM

The greatest common divisor of two integers may be computed by means

of the Euclidean Algorithm (Refs. 3 and 4).

Let r 2 and rl denote two positive integers, where

r_ 2 >r 1 > 0

r 2 = r_lh0 + r 0

r_ = r 0 hl + r1

r k = rk+lhk+2 + rk+2

r3 = r 2hn-1 + rn-l

r =r lhn +0n-?2 n-l n

Note that successive values of r are

some integer n. Also

0 r0< r_-1

0 < r < r0O

O < rk+2 < rk+l

0<r rn-2n-i n-2

0 = r < r (11)n n-i s

decreasing integers, so that r = 0 for

(r 2 , r_) = (r 1 ,r 0 ) = (r 0 ,rl) = *. = (rn-2,rn-l) = (rn1 0) =rn-l

Linear Diophantine equations, and hence linear congruences, can be

solved by means of the Euclidean Algorithm. This can best be illustrated by

an example.
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Example 8

The linear congruence in example 7,

231, 5 25 1 - 1 mod 64

was asserted to have the solution Y1 = 45. The congruence may be expressed

as a linear Diophantine equation as follows:

231,525 Y1 - 64z = 1

where Y1 and z are integers. First,

determine (231525, 64).

the Euclidean Algorithm is employed to

231,525 = 64 3617 + 37

64 = 37 · 1 + 27

37 = 27 ·1 + 10

27 = 10 2 + 7

10= 7 1 + 3

7 = 3 2+1

3 = 1 3

and (231525, 64) = 1. Note that h 0 = 3617, h1 = 1, h 2 = 1, h 3 = 2, h4 = 1, and

h 5 =h n = 2. Also, r 5 = r = 1 =(231525, 64). Using successive partial

results of the Euclidean Algorithm in reverse yields

1 = 7 -3 2

= 7 -(10- 7 · 1)2 = 7 · 3- 10 · 2

= (27 - 10 · 2)3 - 10 · 2 = 27 · 3 - 10 · 8

= 27 3 - (37 - 27 . 1)8 = 27 · 11 - 37 8

= (64 - 37 · 1)11 - 37 · 8 = 64 · 11 - 37 · 19

= 64 · 11 - (231,525 - 64 3617)19

= 64 · 68,734 - 231,525 · 19

= 231,525 (-19) + 64 · 68,734
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Thus,

Y1 = -19 _ 45 mod 64

and

z = 68,734

The foregoing method is inefficient, since all the partial results of the

Euclidean Algorithm must be stored in order to solve Y1 and z. Further-

more, in solving a linear congruence, the value of z (i. e. , the multiple of

the modulo) is not required.

II. SUCCESSIVE CONVERGENTS

The Euclidean Algorithm, together with two additional recurrence

relationships, may be used to solve linear Diophantine equations. This

method does not require the storage of all the partial results in the Euclidean

Algorithm. Given

r_2 > r1 >°0-2 -l

p_2 = 0 P_-

q_2= 1

= 1

q = 0

These integer values are the initial conditions of the following respective

recurrence relationships, where k = 0:

rk_2 = rklh k + r kk- =k-l k k r
k

< r
k

-l 1

Pk = Pk-lhk + Pk-2

qk= qk-lhk + qk-2
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The first expression is the Euclidean Algorithm, from which successive

values of h k are determined. In turn, successive values of Pk and qk are
determined; the process is terminated at n, where r = 0. The final values

are hn 1, Pn-l' and qn-'1 and the linear Diophantine equation has the form

rlpn_ 1- r qn = (1)n ( r 2 ,r 1 ) (14)

The quotients Pk/q
k

are known as successive convergents of the continued

fraction form of the Euclidean Algorithm (Refs. 3 and 4).

Returning to example 8, h0 through h
5

= hn_l were computed in
accordance with (11). Concurrently, (12) and (13) can be applied to deter-

mine p
5 and q 5 , as follows:

P0 = P-lh0 + P_2 = 1 · 3617 + 0 = 3617

q0 = q_ h 0 + q-
2

= 0 3617 + 1 = 1

P1 = pohl + P 1 = 3617 1 + 1 = 3618pi =PghI _1

q1 = qoh l
+ q_1 = 1 1+0 = 1

P2 = Plh 2 + Po = 3618 - 1 + 3617 = 7235

q2 = qlh2 + q0

P 3 = P2h 3 + P1

q3 = q 2 h 3 + q1

p 4 = q
3

h 4 + q2

p 5 = p 4 h 5 + p 3

q5 = q 4 h 5 + q3

= 1 1+1 = 2

= 7235 · 2 + 3618 = 18,088

= 2 2+1 = 5

=5 1 + 2 = 7

= 25,323 · 2 + 18,088 = 68,734

= 7- 2+5 = 19
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Since n - 1 = 5, the process terminates and (14) can be evaluated.

r 1 P5 - r2 q5 (1)6 (r_ 2 , r_1 )

64 · 68,734 - 231,525 · 19 = 1

or

231, 525 (-19) + 64 . 68, 734 = 1

The results agree with those in example 8, where

Y1 = -19 - 45 mod 64, and z = 68,734

Note that only rk_2, rkl, hk, qk-Z' and qk-l need be stored (current values).

Values of Pk do not have to be computed, since Pn-1 = z, which is not needed

in evaluating y
l
.

Whenever the values of the m. are large (i. e., exceed several hundred),
1

the preceding method is most efficient in terms of iterations (time) and

storage required by a general-purpose computer.
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APPENDIX B. AN APL PROGRAM FOR THE CHINESE
REMAINDER THEOREM

I. AN APL PROGRAM FOR SOLVING SIMULTANEOUS CONGRUENCES
OVER PAIRWISE RELATIVELY PRIME MODULI

APL (A Programming Language) is an interactive programming lan-

guage created by K. E. Iverson. Complex sequential processes may be con-

cisely described in APL with a minimum amount of self-training. It is

particularly suited for testing feasibility of algorithms without extensive

programming experience. Manipulations on entire arrays of operands can

be efficiently performed in APL (Ref. 5).

An APL terminal at the Jet Propulsion Laboratory connects via

telephone data lines to a time-shared IBM 360 model 50 general-purpose

computer. The work-space capacity is 48K words.

The statements comprising an APL program entitled "PRIMECOUNT"

appear in Fig. B-1. Upon the request of the program, the user enters the

number of counters (i. e., number of congruences to be solved simultaneously),

each modulus, the count associated with each modulus (the ai associated with

the mi in Eq. 6, and the clock frequency. The program determines each Yi

needed in Eq. 7 to determine the number of clock pulses x in order to achieve

the desired count in eafch counter simultaneously, the minimum number of

clock pulses (x reduced modulo M), and the time in milliseconds required to

generate the minimum number of clock pulses. Time in seconds is computed

to eight significant digits.

Figure B-2 is the APL program solution of example 7, with a clock

frequency of 20 MHz assumed. The boxlike symbols followed by a colon are

points in time where the user is requested to enter parameters. Note that

the solution of any number of simultaneous congruences over pairwise rela-

tively prime moduli may be determined by the APL program providing work-

space capacity is not exceeded and CPU time is acceptable (i. e., cost).

II. COMPUTATION OF Yi VALUES

Moduli whose values do not exceed several hundred are anticipated in

future timing and control designs. Therefore, the iterative relations given

in Appendix I were not used in the PRIMECOUNT APL program to determine
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the values of Yi. Instead, Yi, starting with a value of 0, is incremented and

tested to determine whether or not it satisfies

MiYi= 1 mod m.

That is, does

min MiY i - 1 (15)

where m i and Mi are given and Yi is set at 1? If not, Yi is incremented to 2,

and the test is repeated, etc. The loop may have to be traversed as many as

mi - 1 times before a Yi satisfying (15) is found. For large values of mi,

the Euclidean Algorithm for determining successive h values and the qk

recurrence relation for determining successive q values are recommended,

as shown in Appendix A. For example 7, the APL program performs

45 iterations to determine y
l
, whereas six iterations on hk (h0 through h5 )

and six on qk (qO through q5 ) are required to determine the same Y1 in

example 8.

Note that for a given timing and control system organization, the Yi

are calculated once. Any number of sets of a. may be entered. State-

ment [28] in the APL program in Fig. B-1 asks whether there are any

additional counts. The user types a yes or no. A yes causes a branch to

statement [20], preparing the program to accept a new set of a. (i. e., counts).

A no terminates the program, as shown in Fig. B-2.
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Fig. B-1. An APL program for solving simultaneous congruences over
pairwise relatively prime moduli (Chinese Remainder Theorem)

JPL Technical Memorandum 33-539

VPRIMECOUNT[U]V
V PRIMECOUNT;N;M;Y;R;L;J;I;A;F;T

[1] 'ENTER THE NUMBER OF COUNTERS'
[2] N+n
[3] 'ENTER EACH MODULUS'
[4] M+4
[5] +ERRORxNtpN,M
[6] Y+Npo
[7] R+NpO
[8] L-x/NM
[9] I+0O
[10] I+I+1
[11] R[I]+LaM[I]
[12] J+O
[13] J-J+1
[14] +13xi11M[I]]JxR[I]
[15] Y[I]+J
[16] +10xtNeI
[17] 'CORRESPONDING Y VALUES ';Y
[18] 'ENTER CLOCK FREQUENCY IN MEGAHERTZ'
[19] F+n
[20] BR1:'ENTER COUNT ASSOCIATED WITH EACH MODULUS'
[21] A-+
[22] +ERRORxtNfp,M
[23] X+LI+/LIAxLIYxR
[24] 'CLOCK PULSES REQUIRED X=';X;'+';L;'xK FOR K=0,1,2 .....
[25] 'MINIMUM U X=' ;X
[26] T+(LlOOOOOOOOx5E- 9+X.Fx1000000)10000 0
[27] 'MINIMUM X CORRESPONDS TO ';T;' MILLISECONDS'
[28] 'ADDITIONAL COUNTS?'
[29] -BRlxl'Y'Ec
[30] -0
[31] ERROR:'INVALID INPUT'

V
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PRIMECOUNT

ENTER THE NUMBER OF COUNTERS

0:

4

ENTER EACH MODULUS

0:

64 27 25 343

CORRESPONDING Y VALUES 45 13 19 19

ENTER CLOCK FREQUENCY IN MEGAHERTZ

0:

20

ENTER COUNT ASSOCIATED WITH EACH MODULUS

0:

37 17 2 341

CLOCK PULSES REQUIRED X=9039077+14817600xK FOR K=0,1,2,.....

MINIMUM X=9039077

MINIMUM X CORRESPONDS TO 451.95385 MILLISECONDS

ADDITIONAL COUNTS?

NO

Fig. B-2. APL solution of example 7
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