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ABSTRACT

A simple technique has been used to derive statistical
characterizations of the perturbations imposed upon a
wave (plane, spherical or beamed) propagating through
a random medium. The method is essentially physical
rather than mathematical, and is probably equivalent to
the Rytov method. The limitations of the method are
discussed in some detail; in general they are restrictive
only for optical paths longer than a few hundred meters,
and for paths at the lower microwave frequencies. Situ-
ations treated include arbitrary path geometries, finite
transmitting and receiving apertures, and anisotropic
media. Results include, in addition to the usual statis-
tical quantities, time-lagged functions, mixed functions
involving amplitude and phase fluctuations, angle-of-
arrival covariances, frequency covariances, and other
higher-order quantities.

1. INTRODUCTION

An increasing amount of interest has been focused in recent years upon the problem
of electromagnetic wave propagation in media whose properties are random functions
of space and time. The atmosphere of the earth is such a medium, and this interest has
been aroused both by technological pressure for more efficient utilization of the radio-
through-optical spectrum, and by the recognition that the effects produced by the atmo-
sphere upon waves propagating through it are useful measures of the nature of the atmo-
sphere. In order that perturbations observed on propagated waves may be interpreted in
terms of atmospheric parmnleters, it is necessary to evolve a sound theoretical framework,
based upon a realistic model of the atmosphere. The atmospheric model used must be
amenable to the necessary mathematical operations of the theoretical analysis, but must
at the same time possess sufficient degrees of freedom to represent adequately the actual
random medium.
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While this last requirement has not always been met in attempts to develop the theory
of propagation through random media, notable progress has been made. The work of
Tatarski (1961) is a satisfactory basis for plane-wave situations, and that of Schmeltzer
(1967) extends the work to spherical-wave, finite-aperture situations. Both authors use
the Rytov method, developed 30 years ago in connection with work on the diffraction of
light by ultrasonic beams. Considerable discussion has attended the use of this method,
primarily concerning the range of validity of the approximation. In particular, the suffi-
ciency conditions obtained in the mathematical approach (that the aggregate of the pertur-
bations on the wave be much less than the magnitude of the wave, and that all refractive
perturbations be large compared to a wavelength) have been considered by some to be
unnecessarily severe. If the requirement that all refractive perturbations be much larger
than a wavelength is taken at face value, application of these theories is restricted to
wavelengths of less than about 1 mm, since it is known that inhomogeneities at least as
small as a few mm are present in the atmosphere.

In the development that follows a very simple technique will be used to obtain a wide
variety of statistical characterizations of the perturbations produced by a random medium
upon a wave propagating through it. The method is basically physical and geometrical,
rather than mathematical; as a result, when approximations are made, they arise in a
physical context, making it possible to assess more easily the implications of the
approximations.

Briefly, the technique consists of resolving the 3-dimensional refractivity field of
the medium into thin slabs perpendicular to the propagation path, and further resolving
the 2-dimensional refractivity field within a slab into Fourier components of varying
wavenumber and angle in polar coordinates. The effect produced upon the wave by one
of these Fourier components is then determined, a simple matter because the com-
ponent acts exactly like a phase diffraction-grating. The resolution is then retraced,
and perturbations produced by Fourier components of differing wavenumber, angle and
position along the path are summed statistically.

The resulting solution is composed of three multiplicative terms: the power spec-
trum of the refractive irregularities, a term relating the fluctuations at one point in the
receiving plane to those at another point, and a term which is a measure of the relative
efficiency of an irregularity of a given size, located at a given position along the trans-
mission path, in producing perturbations at the receiver. This latter term is generally
referred to as a "filter function," serving as it does to weight selectively the spectrum
of refractive irregularities.

This method is used in Sections 2 and 3 to obtain spatial covariance- and structure-
functions for the plane- and spherical-wave situations; a discussion of the region of
validity of this development is given in Section 4. The theory is extended in succeeding
sections to include anisotropic media (Section 5), temporal quantities (Section 6), addi-
tional higher statistical functions (Section 7), finite transmitting and receiving apertures
(Section 8), and non-transparent media (Section 9). Section 10 is devoted to examples of
"filter functions," just described. These functions depend upon the path geometry and the
measurement being made, and are quite important factors in the interpretation of mea-
surements in terms of atmospheric parameters. Finally, Section 11 consists of a discus-

22



R. W. LEE AND J. C. HARP

sion of the techniques available for extracting from experimental measurements informa-
tion about the medium-information concerning not only quantities averaged over the
transmission path, but concerning the spatial distribution of such quantities as well.

2. PROPAGATION OF AN INFINITE PLANE-WAVE

A plane-wave propagating in the z-direction with wavenumber k exp(-ikz) is incident
upon an infinite slab bounded by the planes z = r and z = r + uz. The slab imposes upon the
wave a phase perturbation which is sinusoidal in x, and of peak magnitude kadz:

A = kadz cos (u(x+b)) (2.1)

where u is the wavenumber of the perturbation, and ub is the phase of the perturbation at
the z-axis. At this point we shall make the assumption that k >> lul for all wavenumbers
in the refractivity spectrum (see Figure 2.1).

Figure 2.1

Upon exiting from the slab the incident wave is then

exp (-ikr) · exp {-ika dz cos (u(x+b))}. (2.2)

Assuming that the perturbation is small (ka dz << 1), (1.2) may be written

exp (-ikr) 1-ika dz cos (u(x+b)) 

ika dz
exp (-ikr) - 2 exp (-ikr) exp (iu (x + b)) (2.3)2

ika dz
-ika dz exp (-ikr) exp (-iu(x+b)) .

The first term of (2.3) represents the original wave, undiminished in the weak-scattering
approximation. The second term represents another plane-wave, propagating at an angle
e with respect to the z-axis and an angle y with respect to the x-axis, where

y = arcos (u/k)

2 =arcos (2
= arcos (1-u/k)
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The projection of k on the z-axis is k cos e = Jk- u2 , the effective wavenumber k' of the
scattered wave. The wave is, of course, invariant in y. The third term of (2.3) represents
another plane-wave, the mirror image of the second wave as reflected in the plane x=b
(see Figure 2.2). At the plane z= L, these three become:

exp (-ikr) exp (ik(L-r)) (2.4)
exp (-ikr)(-ikadz/2) exp [-ik' (L-r)-iu(x+b) 
exp (-ikr) (-ikadz/2) exp [-ik' (L-r)+iu (x + b) j

The resulting field dEt at the plane z = L is the sum of these three waves.

x

-¥2

2V ~~~k

z

Figure 2.2

Dropping the common phase term exp (-ikr) and setting L -r =s, the sum becomes

dEt = exp (-iks) - (ikads/2) exp {-ik's-iu (x + b) } (2.5)
- (ikads/2) exp t-ik's+iu(x+b)]

= exp (-iks) - ikads · exp (-ik's) cos (u(x+b))

Factoring and dropping the phase term exp (-iks),

dE t = 1 -ika-ds-exp t-is(k'-k)) cos (u(x+b)). (2.6)

The observed perturbation of the field in the plane z = L is the difference of the magnitudes
of the perturbed and unperturbed fields.

dP = IdE 1 [2 (dEt)+ / 2 (dEt)] - 1 (2.7)

= ka-ds-cos [u (x+b)]- sin [s(k' - k)].

Terms in a2 are neglected. Note that the perturbation of the field is sinusoidal in x, dis-
placed in phase by ub, with period 2rf/u; that is, the field perturbation is a projection on
the plane z = L of the perturbing sinusoidal lens.

The perturbation of the phase front in the plane z= L is

dPp 
=

tanl
1

[ u (dEt)/_I (dEt) s (2.8)

= ka-ds-cos [u(x+b)] cos [s(k' -k)].
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The spatial-covariance function C(d) of the field perturbations is the ensemble average
of the products of all perturbations observed at a point x1 with all perturbations at another
point x2 . Assuming that the average product of perturbations of differing wavenumber u is
zero (since if the refractivity field is random, the Fourier components of that field are
uncorrelated) there remain the cross-products resulting from a given wavenumber u at
two points s 1 and s2 on the path. The sum of such cross-products for all sl and s2 is

L L

dCa(d) = k2 sin s(k'-k)) J sin(s2 (k'-k)). (2.9)
O O

(a(u,sl) cos (U(xl+bl))* a(u,s 2) cos (u(x2 +b2))) dslds
2

.

We see that the quantity within the () brackets is simply the correlation between parallel
slabs containing the same u and separated by sl- 1 ). This is just the average product of
two expressions

([dr (u,sl) exp (iuxl) + drP(-u,sl) exp (-iuxl)]. (2.10)

[d'
r

(u,s2 ) exp (iux2 ) + dTI(-u,s2 ) exp (-iux2 )]).

The integral (2.9) may be simplified to:

L L
dC a(d) = 2k2 sin (s (k' - k)) f sin (s(k' - k)) (2.11)

O O

cos (u(x1 - x 2 )) Fr(u,s
1

- s2) ds 1ds 2.

This integral has been handled by Tatarski (1961, Chapter 8) for the case k >> u,
with the result:

L 2

dCa(d) = 4rkf (u) sin ds cos (u(xl - X
2
) (2.12)

O
where s = (sl + s 2 /2) and '4(u) is the three-dimensional power spectrum of the turbulence,
4(u ,u ,u ), evaluated at u = 0.

x y z z

The total covariance Ca(d) is the integral of dC (d) over all wavenumbers u.

C ( =(2.13)L

C a(d)= 4rk2 f f c(u) . sin2 cos (U(X-X)) dsd. (2.13)

0O O

Taking du = u du-db, noting that the projection of the receiver separation d upon u,
d-cos , is the difference (x1 - x2 ) of the x-coordinates of the two receivers, and limiting
the integration in u such that lu| I k,
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2 k L 22
C (d) = 4!7k du / ds f do u4(u) cos (du-cos0)sin [u s/2k] (2.14)

O O O

Performing the integration in 0, assuming 4 (u) to be independent of 0:

C (d) = 4r 2 k2 du f ds uP(u) J (du) sin (u s/2k). (2.15)

O O

This is the form given by Tatarski (1961, p. 168). If 0(u) is independent of s, (2.13)
reduces to

C (d) = 22k2 Lf du ui(u) Jo(du) [1 2 sin k ]L (2.16)

Amplitude variance is obtained by setting d = O.

k L
Ca(O) = 42k2L du f dsuo(u) sin (u2s/2k). (2.17)

O O

Phase covariance follows from (2.8) by simply replacing the sin [s(k'- k)] term by
cos [s(k' - k)] in the foregoing development. For example,

k L
C(d) 42k2 du du / dsu(u) Jo(du)cos [u s/2k]. (2.18)

O O

Again, if q (u) is independent of s, this reduces to

Cp(d) = 2 2 k2 L /f du u0(u) Jo(du) 2+ sin u L (2.19)

O

The latter is the form given by Tatarski (1961, p. 143). Structure-functions follow from
the definition

Di (d) = 2(Ci(O) - Ci(d)).

Thus,

2 k L 2
D (d) = 8Tr k f du f ds uq(u) [1-Jo(du)] sin (u s/2k). (2.20)

O O

k L
(d) = 82 k2 du f ds u (u) [1-Jo(du)] cos (u2s/2k). (2.21)

0 0
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and the wave structure-function,

k
D(d) = Da(d)+Dp(d) = 8 2k 2 J du

= 8r2k2L

LI ds uqc (u) [1-Jo(du) 

O

kJf du u) (u) [1-Jo(du) ],(u) f (s).

0

3. PROPAGATION OF A SPHERICAL-WAVE

The development of the spherical-wave case closely follows that of the preceding
section. A spherical-wave expanding from the origin at (0,0,0), with wavenumber k,
has near the z-axis at z = s the magnitude

L 2 2 2
Lexp (-iks 2 +x +y ).

The magnitude is normalized to unity at z = L, the plane of the receiving points. This
wave is incident upon an infinite slab in the plane z = s, of thickness dz. As in the plane
wave case, the slab imposes upon the wave a perturbation in phase, sinusoidal in x (cf.
(2.1) and Figure 2.1), of peak magnitude k a dz:

d =k a dz cos (u (x + b))phase
(3.1)

where u is the wavenumber of the perturbation, and b is the phase of the perturbation at
the z-axis. Upon exiting from the slab the incident wave becomes

L J2 +2 2-exp (-ik s +x +y ) exp(-ikadzcos (u (x+b))).

Since the perturbation is assumed to be small (k a dz<< 1), (3.2) may be written

L J2 2 2
Lexp (-ik/ s + x + y )(1 - ik a dz cos (u (x + b) ) )

L s2 2 2 ikaLdz s 2 2 2
Lexp (-ik s +x +y )- 2s exp (-ik s +x +y ) exp

- ikaLdz 2 2 2
2s exp (-ik s +x +y ) exp (-iu(x+b))

Near the z-axis (x,y << s), (3.3) may be written

L /2 2 2 idaLdz x y 2
-exp (-ik s +x +y) 2 exp -ik s +- + exp [-iu(x + b)]
s 2s 2s 2s

ikaLdz x2 y_+ l2-ikal sexp[ik(s + exp [-iu(x + b)]
[2s es + +-2s

L x2p 2 ikaLdz 2 2x ux+
=exp -iks +X +2 ikaLd exp(iub) exp -ik S+ y + _ Uxs 2s 2s 2s k

(3.2)

(3.3)

(3.4)

ika exp (iub) exp [-ik s + Y-- 2 + k 
2s 2s 2s k27

27

(2.22)



WAVE PROPAGATION IN A RANDOM MEDIUM

Completing the square of the x-terms, and factoring the remainder:

Lexp [-ik s +x +y I
s

ikaLdz r i 2
2s- k exp (iub) exp u exp

-ikadz exp (iub)exp[ iu2s ]exp
2s 2k~-~

(ik [I

(-ik [s

+2 [x-us/klj2 I )
2s 2s

+ y [x = us/ki 
2s 2s J

The first term of (3.5) is the original spherical-wave, undiminished in the weak-scattering
approximation. The next two terms represent two additional spherical waves, originating
from the points [us/k, O, 0] and [-us/k, O, O], differing in amplitude from the original
wave by the factor

dz
ka

and in phase by the factor exp ± (iub) exp [iu2 s/2k]. Note that it is required that

2s2 >>( + ) 2

This is satisfied if x is small and k >> u. In the plane z = L the sum of these three
spherical-waves is

dEt= exp (-ik (L 2L (3.6)

ikadz ius
- exp (iub) exp ( 2k ) exp [-ik L+Y + (xs/k) ) ]

2 F 
idadz ius y
- 2 exp (-iub) exp (-s) exp ik + 2K_ [I (L 2L2

(x+us/k2L ) 

Factoring and dropping the common phase term exp I -ik (L + y2 /2L)],

dEt= exp [k 2L 
ikadz expiu2 s

2 exp 2 K ( exp (iub) exp
( -ik us 2

2L x

+ exp (-iub) exp (2L [x + k]2) )

Dropping another common phase factor exp [-ikx2/2L] and combining terms,

ikadz
dE = 1 - exp

t 2

iu 2 22

[2Kl exp [-2sL ] (exp (iub) exp [L +[ ~_ L~ -K I(IL]+

exp (-iub) exp [-s ] )

=1 - ikadz exp [ L -s [ u ( ) ]
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The observed field perturbation at (x,y,L) is the difference of the magnitudes of the per-
turbed and unperturbed fields

dPa = IdEtl - 1 = [ 2 (dEt) (3.9)

= kadz sin[ u s(L)] cos ( + b )]

Terms in a2 are neglected. As in the plane-wave case, the perturbation of the field is
sinusoidal in x (and independent of the y-coordinate of the receiver), but the period is
27rL/su (rather than 27r/u). That is, the period of the perturbation of the field in the
plane z = L is the projection of the period of the perturber in the plane z = s.

The perturbation of the phasefront in the plane z = L is

dP = tan
p

-1 dE t -
i? dEt

= kadz cos [' 2 (kL )] cos [u( +b) ].

The spatial-covariance'function of amplitude dC (d) becomes (cf. (2.9)):

2
sin I S1 (L- 1 ) 1

I[ t2kL

2
L [u s2k(L-s2)

/W sin 2L 
f 2L 

(3.11)dC (d) = k
a

'{a(u,s cos) [(4 , 1 + * a(us2) cos[u(- L b2 )3

(3.10)

Once again, as in Section 2, the () term is identifiable with equation (I.6) of Appendix
I. Following the development in Section 2, with the one additional assumption that L >>X,
we obtain an expression for (3.11):

L 
dCa(d) = 4Tk2 S (u) sin

2
[ su(2kL - s) cos u - ] Lds.2kL ICOS L

Integrating this expression over all u as was done in Section 2, we obtain:

Ca(d) = 47T k
a

o

0

L

f uc' (u) Jo ( -s) sin2 [u 2 -s] dsdu.

This is the form given by Schmeltzer (1967, p. 354) as used by Fried (1966, p. 1381). In
the case of d = 0 (variance), (3.13) was first derived by Tatarski (1961, p. 183).
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WAVE PROPAGATION IN A RANDOM MEDIUM

If the refractive fluctuations are finite only over the range L - H < s < L, the
covariance becomes

C (d) = 47r k
a

k
I du

0

r dsu 1 2 ru s (L[-s) 1

f ds uD(u) Jo L- sin2 2kL 

L-H

Making L arbitrarily large (removing the transmitter to infinity), 1
of integration, and

k

C (d) = 47 k du

0

L

L-H

(3.14)

over the range

ds uD(u) Jo(du) sin2 u (Ls) (3.15)

Making the substitution h = L - s, dh = -ds,

2 k H 2
Ca(d) = 417 k J du f dh u4 (u) Jo(du) sin2 [ 2 h

O O

(3.16)

which is the plane-wave result (2.13).

Phase-covariance follows from (3.10), simply by replacing the sin () term in (3.13)
by cos2 ():

2 k L

C (d) = 4k2 / du ds u(u) Jo [ L os

0 0

[u 2s (L-s)2k
Structure functions (cf. (2.18), (2.19), and (2.20)) are:

22 2 k L
D (d) =82k2 / du f dsu4(u)

O O

k L

Dp(d) =8
2

k
2

du f ds u(u)
O O

22 2 k L

D(d) =87Tk / du f ds u(u)

O O

( 1-Jo

( 1-Jo

(1 -Jo

[L]) 2[ u 2(L-s)]sin2 L 2-L I

[dsu]) 2 u2s(Ls)
L Cos I·

[dsu])
IL ]!

The amplitude covariance function (3.13), evaluated for several cases, is shown in
Figure 3.1. The refractivity spectrum 4(u) assumed in the evaluations was a simple
power-law spectrum, with an exponent of -11/3 (Kolmogorov) or -4. Other parameters
used were L = 28 km, k = 716 (35 GHz). The covariance functions are normalized by
dividing by Ca(O). The central pair of curves in Figure 3.1 is for the normal spherical-
wave situation, a single transmitter and two spaced receivers separated by d (0 to 20 m).
A similar curve for the Kolmogorov spectrum has been published by Fried (1967, p. 178).
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Figure 3.1. Amplitude covariance as a function of path separation p, for three path

geometries.

The other two pairs of curves in Figure 3.1 are for crossed- and parallel-path

geometries; that is, the two receivers are coupled to two separated transmitters, each
transmitter-receiver system being independent of the other. To treat such geometries
theoretically, it is only necessary to recognize that the quantity ds/L in (3.13) repre-
sents the separation between the two paths connecting the transmitter to the receivers.
In the parallel-path situation (viz. the plane-wave case) this separation is constant along
s, and the Bessel function in (3.13) becomes Jo(du). In the crossed-path case, it becomes

Jo du(L-2s)

Another family of theoretical evaluations of (3.13) is shown in Figure 3.2. The same
path parameters are used, with additional curves for other refractivity spectra plotted.
Also shown in the figure are experimental results obtained over a path described by Lee

and Waterman (1966, pp. 454-458). The data represent 32-hour means, with 10th and 90th
percentiles of 100-sec measurements. The mean values follow the theoretical curves

well as to form, although the Kolmogorov spectrum does not give the best fit.

Evaluation of the phase structure function (3.19) has been performed by Fried (1967,
p. 179). For a Kolmogorov refractivity spectrum, over the region in separation d of

interest here the structure function follows a power-law with a slope of 5/3. Experi-
mental measurements of the phase structure function, over the path just mentioned,
are plotted in Figure 3.3. The data represent 100-sec samples, taken at random over

a two day period. Differences in magnitude among the curves reflect variations in the

magnitude of the refractivity spectrum (that is, changes in Cn 2 ). The curves shown in
Figure 3.3 approximate a 5/3 slope.
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Figure 3.2. Amplitude covariance functions for different spectra cP(u), with experimental
data.

4. ON THE LIMITATIONS OF THE THEORY

Whether or not this theoretical framework (or any theory, for that matter) is suitable
for application to a given experimental situation depends upon the validity of two classes
of assumptions. The first class involves the accuracy of the assumptions made concern-
ing the parameters of the physical world as introduced into the theory-in this case, the
nature of the refractivity field as approximated by a three-dimensional spectrum and
associated statistical characterizations. The second class consists of those assumptions
(usually called approximations) which arise out of the mathematical necessity, in the
process of obtaining mathematically simple (if physically unrealistic) solutions. The
preceding theoretical development possesses considerable advantage over more abstract
mathematical approaches in this respect, in that approximations of the sort just men-
tioned arise in a clear physical context, making evaluation of the implications of the
approximations relatively simple. An analysis of both classes of assumptions follows,
for the development of Sections 2 and 3, with the intent being to obtain not only suffi-
ciency conditions, but necessary conditions for the application of the results.

Without doubt the most important assumption made in the development of the theory
is that the scattered energy is small compared with the incident wave. The necessity for
this assumption arises for two reasons. Taking the plane-wave development of Section 2
(the same argument holds equally well for the spherical- or beamed-wave cases), this
assumption allows the exponential of (2.2) to be expanded into (2.3); this not only makes
possible the rest of the development, but carries an important implication as well. That
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Figure 3.3. Phase structure-functions measured.
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is, the expansion used results in the original wave propagating without the loss of energy,
while finite energy appears as a scattered component. Clearly energy is not conserved;
in actual practice the incident unperturbed wave will decay with distance. The assumption
of weak scattering allows two other phenomena to be ignored: multiple scattering (wherein
a scattered wave of the type noted in (2.4) can itself be scattered from another slab), and
higher order scattering (corresponding to the higher grating orders). The second occa-
sion wherein weak scattering is invoked occurs at the end of the development, when
variance is obtained. It is implicit in (2.7) that since the unperturbed field is normalized
to unity, the perturbations calculated are ratios of perturbed to unperturbed fields. When
the sum of many such perturbations is identified with the covariance, as in (2.15), this
identification rests upon the assumption that the sum of the perturbations is less than
the unperturbed field. That is, not only must the individual perturbations be small, but
their sum must be small. There can be no doubt that the theory breaks down when the
variance of the received field approaches unity in terms of the mean field.

It is appropriate to note here that the theory as developed here treats the received
field (as normalized by the mean field) rather than the logarithm of the field, as used
by Tatarski (1961) and others using the approach of Rytov. Nonetheless, the results
obtained here agree in general with the results of log-amplitude treatments. This agree-
ment can be attributed to the weak-scattering assumption for as long as the variance of
the received field is appreciably less than unity, there is no significant difference be-
tween the logarithm of the field and the departure of the field from unity.

The nature of the limitation imposed by this basic assumption upon application of
the theory depends upon the intensity of the refractivity spectrum, as well as upon wave-
length and path length. For the lower atmosphere, pathlengths are limited to (typically)
hundreds of meters at optical wavelengths, and to hundreds of km at centimeter wavelengths.

It is generally assumed during use of the Rytov method that the wavelength 27r/k is
much smaller than the smallest dielectric irregularity; that is, k >> umax . (4.1)

It is generally agreed that a lower limit on irregularity size exists in the atmosphere
(1lo the "inner scale" of turbulence), and is of the order of millimeters. Taken at face
value this assumption limits the use of the theory to wavelengths shorter than a millimeter
or so. In order to extend the validity of the theory to longer wavelenghs, it is necessary
to consider the effect of wavenumbers u ranging from about k/10 (where k can be con-
sidered much greater than u) to infinity. First consider the region u greater than k.

It can be seen from (2.3) that the sinusoidal phase-perturber of Figure 2.1 is equiva-
lent to a sinusoidal amplitude-perturber lagging 900 in phase. The perturbation emerges
from the equivalent of a transmission grating, with adjacent "slits" differing in phase by
1800 due to the cosine term. The angles defined in Figure 2.2 are simply the grating-
lobe angles. With this background, the effect of reducing the grating spacing is evident.
As the spacing decreases (corresponding to higher wavenumber u) the grating angles
become larger (corresponding to the perturbing wave arriving from farther off path)
until, for k = u, they are ± 1800. When u exceeds k there are no longer solutions which
result in constructive interference for any angle, and, in fact, the effective wavenumber
of the emerging perturbation k' becomes imaginary, as can bee seen from the definition.
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k =k (4.2)

In this situation'the additional waves caused by the perturbation (the so-called evanescent
waves) do not propagate more than a few wavelengths. Hence the integration in u (cf.
(2.15)) may be safely terminated at k, rather than infinity, and no limitation need be im-
posed upon k. We are left with the region k = u to k >> u. This is the region of wide-angle
scattering, scattering which is usually ignored, being removed from mathematical develop-
ments by the use of a "cone of integration." There are at least three reasons for conclud-
ing that this region of the refractivity spectrum can be safely ignored. In the first place,
in practical experiments, finite antenna aperture provides a physical "cone of integration."
Narrow beamwidths are not required; tens of degrees suffice (equivalent to an aperture
of a few wavelengths). Secondly, in the case of a spherical wave the divergence of the
wavefront reduces the effect of wide-angle scattering both through an effective increase
in the scatter angle, and through increased attenuation of waves scattered at large angles
(since the scattered waves are themselves spherical waves, and hence undergo 1/r decay,
unlike infinite plane waves). Finally, in the case of the plane wave, solutions can be ob-
tained for the scattering in the region of the spectrum, including the effects of depolariza-
tion (Lee and Harp, 1969, and Strohbehn and Clifford). These solutions show that, provided
the propagation path is reasonably lossy (this condition is met at all wavelengths from the
microwave to the optical regions), contributions from this portion of the refractivity spec-
trum will be negligible.

A final point concerns an assumption implicit in Sections 2 and 3-that Fourier com-
ponents along the axis of the path (as opposed to transverse components making up the
slab) have no effect upon the wave. This is clearly the case as far as the amplitude of
the wave is concerned; a wave propagating through a uniform slab emerges with its wave-
front unperturbed. However, the wavefront will suffer delay (or advancement) in phase.
If the period of the Fourier component (or series of slabs, alternately retarding and
advancing the wave) is small compared with the path length, the net phase perturbation
will be near zero (it is at most that caused by a half-cycle of the Fourier component).
If on the other hand the period is comparable to or greater than the path length, and the
amplitude of the Fourier component is large enough, significant phase changes can occur.
Such phase changes will affect all points in the plane of the receiver, and can be thought
of as changes in the average refractive index of the atmosphere in the vicinity of the path.
As such, they can be excluded from analysis concerned with scattering, and included
simply as a slowly changing correction to phase-path, resulting from air-mass changes, etc.

5. PROPAGATION IN ANISOTROPIC MEDIA

In the preceding sections it has been assumed that the refractivity spectrum P (u)
was independent of 0, the angle between u (the Fourier component of the refractivity
field in a slab perpendicular to the path) and the plane containing the transmitter and
the two receiving points. This assumption-that 4 (u) is isotropic-is not strictly valid
in the atmosphere, particularly for small values of u. In this section we will consider
two approaches to the treatment of anisotropic refractivity spectra P (u,f).
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In the simplest case, 0(u,4) is a separable function of the two variables u and 0:

(u,0) = f (0) A' (u) (5.1)
In this case the spectral shape of 4(u,0) is constant for all values of 0, and only the over-
all magnitude changes with angle. The function f(0) may be resolved into its Fourier com-
ponents in harmonics of 20 over the range 0 < 0<iT, giving the general form for the
spectrum

(u,,0) = 0(u) {1 + al cos(20+2bl) + a2 cos(40+4b2 ) ... + an cos(2n0+ 2nb )} (5.2)

where an are the Fourier coefficients of f(0) and bn are the phases of the components (the
angles between the axes of the components and the plane containing the transmitter and
the receiving points). The Fourier coefficient a is absorbed into the spectrum ~c(u).

Taking the case of elliptical anisotropy (a ,b
n = O for n > 1) and performing the

integration of (2.14)

ITI (P (u,0) cos (du coso) do (5.3)

c c us 

= (u) f {1 + al cos(20 +2bl)] cos(ducos0) dO

O

= E(u) cos(ducos0) do+a 1 (u) f (cos20 cos2bl -sin20sin2bl)cos(ducos0)d0

O O

The integral of the term involving sin20 being zero, we are left with

ir (u) {Jo(du) + alcos(2blJ2(du)} (5.4)

The nth term in the case of general anisotropy gives rise to a similar term, of the form

7r P (u) a cos (2nbn) J2n(du) (5.5)

and the general result for amplitude covariance is:

2 2 k L
Ca(d) = 4 T 2k2 f du f ds uA(u) {Jo(du) = al cos(2bl)J2(du) + ..

O O

+ a cos(2nb )J2n (du) sin [u2s/2k] (5.6)

The form of this result is applicable to phase covariance, the spherical-wave case, and
higher-order functions. (5.6) has been evaluated for elliptical anisotropy in the spherical-
wave geometry, and the results are shown in Figure 5.1. The parameters used were:
path length L = 28 km, wavenumber k = 716 (35 GHz). The spatial covariance function is
plotted for al = 0 (central curve; isotropic case), a1 = 1 with b

I = 0 (upper curve), and
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Figure 5.1. Amplitude covariance functions for three anisotropic spectra.

and a1 = 1, bl = 7r/2. In an experimental situation the two curves for a1 = 1 correspond

to aligning the separation between the receivers parallel to and perpendicular to the
major axis of the anisotropy. The resulting changes in covariance are quite marked,
and affect the basic shape of the function as well as the magnitude. Note that the two
curves for the anisotropic case are symmetrically displaced from the isotropic curve.

A second approach to anisotropy is to consider D(u,0) to be composed of two or-
thogonal components, each of which is separable in u and 0:

C(u,) = Ch(u) sin
2

( +b) + cv (u)cos ( + b) (5.7)

4)h(u) and )v(u) might be the spectrum as measured in the atmosphere in the horizontal
and vertical planes, and b the angle between u and the plane containing the transmitter

and receiving points. This relationship is quite appropriate to the situation in the free
atmosphere, where in general there are only three unique axes, defined by the vertical,

the horizontal and the direction of the wind. Note that only two degrees of freedom are

necessary for the calculations here, since longitudinal components of the refractivity
field are assumed to have negligible effect. Expanding (5.7):

2 2 2 2 1
o (u,0) = h(u) (sin cos b + cos 2sin b + 2 sin20sin 2b (5.8)

+ 4 (u)(cos cos 2b + sin 2sin 2b - sin2osin 2bv 2
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Performing the integrations as in (5.3):

y asinq 0cos (d u cos0)d0 =- [Jo(du) + J2 (du)] (5.9)

0

f Cosq 0cos (d u cos0)d0 = 2 [Jo(du) - J2(du)] (5.10)

As before, the terms involving sin20 do not contribute to the integral. Using (5.9) and
(5.10) in conjunction with (5.8):

fS cP(u,0) cos (du cosq) d0 =

2 [Jo(du) + J (du)] [cos bh(u) + sin 2b (u)]
2 2

+ 2 [Jo(du) -J 2 (du)] [sin 2bh(u) + cos 2b( (U)]
2 2 - v

= Jo(du) [Dh(U) + 0v(U)] + 2J 2 (du)cos(2b) [Ph(U) - 0v(U)] (5.11)

The amplitude covariance (plane-wave) becomes:

k L
C (d) = 2r 2 k2 J du f ds u[Jo(du)( h + ) + J 2 (d u ) co s ( 2 b) ( h - ) s i n [ u2 s /2 k ]

(5.12)

The same remarks as to generality apply here as to (5.6). If the spectra Oh and Dv differ
only by a multiplicative constant, (5.12) reduces to (5.6), with 4c(u) = (h + cPv and al =

-h - (Dv/'h + ~v. Both Oh and 4v of (5.7) can be anisotropic spectra in the sense of (5.2).
Integration over 0 is still straightforward, the result being quite general. The spectrum
can then be elliptically anisotropic as far as changes in the behavior of CD(u,4) in u with
0 are concerned, and arbitrarily anisotropic in 0 for each of the components. Completely
general anisotropy can be treated by allowing the coefficients a and b in (5.6) to functions
of u.

6. TIME-LAGGED FUNCTIONS

Temporal variation of the field at a point in the receiving plane is the result of two
distinct processes. The dielectric field over the region between the transmitter(s) and
receivers is changing with time through various mechanisms-advection, convection,
turbulent motions, and so on-resulting in corresponding changes in the field. Such
changes take place on the time scale of the meteorological processes involved, typi-
cally from seconds (turbulent motions) to very large time scales (air mass changes).
It is reasonable to expect that the fine scale structure of the dielectric field is more
susceptible to rapid variation than large-scale structure. Such changes in the dielectric
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field (and the resulting changes in received field) are in general anisotropic, inhomoge-
neous and non-stationary, and are therefore very difficult to treat both experimentally
and theoretically.

The second process resulting in temporal variations of the dielectric field is simply
motion of the atmosphere itself, either real (wind) or apparent (as due to the motion of a
source). If, to take an example, the atmosphere between a transmitter and a receiver was
unchanging except for a simple translation in a direction perpendicular to the transmission
path, then the field at the receiver would change in exactly the same manner as if the re-
ceiver and transmitter had themselves translated, the atmosphere remaining stationary.
This transformation of spatial functions to temporal functions, or Taylor's hypothesis
(Taylor, (1938)), is quite convenient from both a theoretical and experimental point of
view. It allows (approximately) the equivalent of measurements at many points in space
to be made (expensive to do directly), simply by observing the time behavior of a quantity,
providing that the velocity of the atmosphere is known.

In general, however, wind velocity in the atmosphere is not sufficiently uniform over
the experimental path for a simple "frozen atmosphere" approach to yield accurate re-
sults. The next higher approximation is to consider the velocity to be a known function
over the path, if this is possible in the appropriate theory.

Approaches based upon Taylor's hypothesis are approximations in two senses. First,
wind velocity is assumed to be uniform at all points in a plane transverse to the path-a
relatively safe assumption, since only a limited region surrounding the axis of the path
itself is important. In addition, temporal variations arising from causes other than wind
are neglected. The validity of this assumption depends upon the particular measurement
being made. In general, measurements are sensitive only to a limited region of the spec-
trum of refractivity fluctuations (see Section 10), and as a result temporal variations
caused by a given windspeed will lie in a given frequency range. Whether Taylor's hy-
pothesis is appropriate will then depend upon whether significant changes occur in the
appropriate region of the spectrum of refractivity fluctuations, in a time scale similar
to that expected for changes due to wind. It is sufficient to note there that this condition
is often satisfied to the extent that useful measurements can be made.

The extension of the theoretical development of Sections 2 through 5 to include tem-
poral functions involving windspeed is quite straightforward. In (2.14) the quantity d
represents the spatial separation of the paths to the two receivers (in this case the source
is at infinity, and d is independent of path position). Since time-lagged covariance is by
definition the covariance of the fluctuations at one point with the fluctuations at another
point at a different time, the quantity d can be identified as the apparent spatial separa-
tion between the two paths, including both the physical separation and the apparent separa-
tion caused by drift with the wind of one of the points. That is, d = do + V(s)t, where V(s)
is the velocity at position s in the path, and t is the time-lag for which covariance is to
be obtained. This substitution is quite general, and may be applied wherever d appears
(usually in the argument of a Bessel function). For instance, in the spherical-wave case,
a typical argument is (cf. (3.13)):

Jo [u (- + V(s)t) (6.1)
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Note that V(s) is the component of the wind velocity transverse to the transmission path,
the effects of longitudinal winds being quite small. In the case where d and V(s) are not
parallel, the appropriate vector addition is necessary.

As an example, a family of theoretical time-lagged amplitude covariance functions
is shown in Figure 6.1. The curves were calculated from the results of Section 3 (cf.
(3.13)), using for 4)(u) the Kolmogorov spectrum c(u)-xu-11/3. Path length is 28 km,
k = 716, and V(s) = 5 m/s. Covariance functions are shown for 8 values of d from 0
(highest curve) to 24 m. The variation of covariance with separation d at t = 0 follows
the curve in Figure 3.1 for the diverging-path geometry (with n = 11). In addition, the
peaks of the covariance functions in Figure 6.1 follow the curve in Figure 3.1 for the
crossed-path geometry, for separations half as great. That is, maximum time-lagged
covariance is obtained when the uniform drift due to the wind has effectively moved
one of the transmission paths across the other, such that they cross in the center. In
this situation, the separation at the ends of the path is half the separation at t = 0.
Figure 6.2 shows a typical family of curves identical in formal and path geometry to
that of 6.1, but experimentally obtained rather than theoretical.

The peak-covariances of many families of the type shown in Figure 6.2 were mea-
sured over a two day period, on the path already described. The results are shown in
Figure 6.3, plotted together with three theoretical curves of the type shown in Figure 3.1
(crossed-path geometry). The figures on the three curves represent the exponent of the
refractivity spectrum assumed. The mean data points agree well with the theoretical
curves, but individual data points differ greatly, as can be seen from the 10th and 90th
percentiles. This is perhaps reasonable, for while the average wind velocity may be
uniform along the path, the wind at any time may be highly non-uniform. As will be
seen from the theoretical examples to follow, the first effect of a linear variation of
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Figure 6.1. Covariance vs. time lag for uniform wind field.
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Figure 6.3. Peak time-lagged covariance vs. receiver separation, theoretical and
experimental.
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wind velocity along the path is to increase or decrease the peak covariances, depending
upon whether the variation tends to rotate the air mass about the transmitter, or receiver,
respectively.

In general the wind velocity is not uniform along the path, and in addition the refrac-
tivity spectrum may also vary along the path. As an example, Figure 6.4 shows another
family of experimentally-obtained covariance functions, taken when the path was far from
uniform. The curves are much more complex than those of Figure 6.2, and in fact exhibit
double-peaks.

To give an indication of the effect of non-uniform wind velocity upon amplitude co-
variance functions, a few specific cases for which the covariance functions have been
evaluated are included here. They differ from Figure 6.1 only in that different assump-
tions have been made concerning the wind field.

As an example of a double-peaked family of functions, Figure 6.5 was obtained for a
wind field uniform at 5 m/s over the path from the transmitter to mid-path, and 7/8 of
this value for the remainder of the path. Figure 6.6 was obtained for a wind field uniform
at 5 m/s over the first half of the path, as is Figure 6.5, but in this case the velocity was
-5 m/s over the last half of the path; that is, the windspeed was uniform, but the direction
reversed at mid-path. Contributions from the two regions of the path are clearly evident
in the figure. A more subtle change in the windfield was used to obtain Figure 6.7-the
windspeed increased linearly from 4 m/s at the transmitter to 6 m/s at the receiver. As
a result, the covariance peak value is increased, since the wind field tended to rotate the
air mass about the transmitter. If the wind field were zero at the transmitter and in-
creased linearly with distance from it, then (in the "frozen medium" approximation) the
peaks of the covariance functions would all be unity, since rotation would bring a given
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Figure 6.4. Measured covariance functions for non-uniform wind field.
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region of the atmosphere successively between the transmitter and the several receiving
points. Finally, Figure 6.8 was obtained for a wind field effectively rotated around mid-
path-the velocity at the transmitter was 8 m/s, decreasing linearly to zero at mid-path,
and further decreasing to -8 m/s at the receiver. As can be seen from the figure, the
result is quite complex.

7. HIGHER STATISTICAL FUNCTIONS

Simple covariances and structure-functions are by no means the only quantities
characterizing the wave perturbations which are of interest. The number of possibilities
is limitless, and this section is devoted to some important examples, which may serve
as guides for generalization.

Hitherto the quantities calculated have involved the relationship between perturba-
tions of the wave at two points in the receiving plane. A natural extension is to consider
more than two points, an extension which will be seen to have considerable experimental
application. Consider the covariance of difference-pairs-that is, the covariance of the
difference of amplitude at two points with the difference between two other points. If the
four points are co-linear, the pairs are separated by d, and members of a pair separated
by e, it is easily shown that

C(d,e) = 2C(d) - C(d+e) - C(d-e) . (7.1)

When applied to amplitude or phase covariance, the Bessel term of (3.18) and (3.22)
becomes

Jo (dsu - 2Jo (dsu) _ JO ((d+e)su Jo ((d-e)su (7.2)

The same result may of course be obtained directly by starting with the magnitude of the
perturbation, taking differences, and proceeding as before. As an example of the utility
of (7.2), combined with (3.17), several computed phase-covariance functions are shown
in Figure 7.1. The upper four curves show the normal (2 point) covariance function; for
all cases a Kolmogorov spectrum was assumed-the cases differ only in the value of u
at which the power-law spectrum was terminated at the lower end (the "outer-scale" Lo).
Such termination is of course required in order that the phase-covariance be finite. Path
parameters were L = 2.8 x 104, k = 716. The values chosen correspond to values of Lo

from 50 to 100 m. The lower four curves represent 4-point covariance functions of the
type just described. The same values of Lo were used, the relative narrowness of the
function reflecting the emphasis that the differential-process places upon small-scale
perturbations. The value of e used was 3.5 m. The two points on the plot represent
averages of experimental data obtained on the path already described. The particular
utility of such difference-pair covariances in this case is evident, since phase-difference
between two points on the wavefront is much easier to measure experimentally than
absolute phase.

In the event that the four points in such a measurement are not co-linear, or equally-
spaced, the results may be expressed as four terms involving the four separations; an
important situation involves the four points in a rectangular situation:
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Figure 7.1. Phase and phase-difference covariance functions, for different values of the
"outer scale."

Jo dsu) -2Jo (dsu 2Jo( su d (7.3)

If the separation e in (7.2) and (7.3) is made arbitrarily small, and the resulting
covariance is normalized by 1/e, the result is the covariance of the slope of the quantity.
Performing this operation on (7.2), the result is

s2u ( ( ) 2 dsu (7.4)
-- L - J2

2L

Using (7.4) with (3.17), covariance of the slope of the phasefront is obtained; that is,
covariance of that component of angle-of-arrival parallel to the separation d. When the
operation is performed on (7.3), the result differs only in that the minus sign of (7.4)
becomes a plus sign, and covariance of the perpendicular component of the slope is
obtained.

With the exception of the wave structure-function, all quantities calculated thus far
have involved either the amplitude or phase perturbations on the wavefront, but not both.
This separation is somewhat artificial; mixed quantities are easily obtained. As an
example, the covariance of the amplitude fluctuations at one point in the receiving plane
with the phase fluctuations at another point is

Cap(d)= 27r2 k
2

du / ds ud(u) Jo dsu sin ( (L-) (7.5)

0 O
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Similarly, the covariance between the amplitude at one point and the difference between
the phases at two other points differs from (7.5) in that

Jo +(deu) Jo -2 Jo ( 2 ) (7.6)

Where the amplitude is measured at (0), and the phase at d + e/2 and d - e/2. A plot of
this function, calculated for a Kolmogorov spectrum (with e = 3.5 m, other parameters
as before), is shown in Figure 7.2. An experimentally obtained function of a similar
nature is shown in Figure 7.3. It shows the covariance between the amplitude and the
phase difference at two points separated by 3.5 m, as a function of time-lag.

The covariance between the amplitude and angle-of-arrival may be similarly
obtained. It differs from (7.5) in that

Jo (dsu us J d (7.7)
L 2\ L

As might be expected, this is also an odd-function.

As a final example, the amplitude covariance between waves with different wave-
numbers kl and k

2
is

Cf(d) 47T klk2 f ds J 1 2du u (u) Jo( S) i s(Ls)2k )
O O

.1 2k Ls) (7.8)·sin 2k2L )
2

An evaluation of this integral for a Kolmogorov spectrum is shown in Figure 7.4. Note
that the covariance (for d = O) is quite high over several octaves.
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8. FINITE TRANSMITTING AND RECEIVING APERTURES

In the previous sections receiving apertures have been considered to be points; in
the development which follows finite apertures are equated with assemblages of such
points, with some weighting factor. In the geometry of the figure power is radiated from
an aperture in the plane z = 0, through a perturbing slab of the kind already discussed
(located at z = s), to a point receiver located at (xo , y, L). The weighting factor at the
aperture will be taken to be Gaussian.

1 exp x2 + y2
W-2 21 e (8.1)

21ra t
2

2a

1 1 ik
where 2 F

2t

The physical size of the aperture is cr (the standard deviation of the Gaussian), and the
t

focal length is F (i.e., if F = %, the phase illumination across the aperture is uniform).
The differential field dE t at P from a point at (xt, yt, O) on the aperture is (cf. (3.8)):
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exp 2-ik (xo +
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Figure 8.1.

(o - t) 2 ]

xus + xt(L-s)Cos \L L

As in the spherical-wave case, the perturbation at s lies along the x-axis. The total
differential field dEt at p is simply the integral of (8.2) over all points xt and Yt on the
transmitting aperture

2
dEt _ exp(-ikL)

rt t 2(L+ikly2 )

ik(xo2 + yo2 )exp
2(L + ika 

2
)

1 + ikadz (iu 2
[1+ ikadz exp kiu s(L-s)~

- u 2(L- s ) 2 )2(
2L(L iko c )

x s+iko
x u +

L+iku2

Since a is a small quantity, terms in a2 can be neglected, and the field perturbation at
P is (cf. (2.7)),

dPa JX' [ikadz exp (iu s(L-s))d a = ~iazx 2kL /
exp -u(L-s) o

2L(L + ik ) 
2

)

co s x° + ika 2

cos ux ik 2

L + ikor
+ bu)] (8.4)

The phase perturbation is of course the imaginary part of the quantity in (8.4). The
amplitude covariance is obtained by summing the products of the perturbations at two
points. Choosing one point at (x , yo, L) and the other at (O, O, L), and proceeding as
in (3.11),
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1
dC (xo) = -. R {k2 /

L

I

(a(u,s1 ) cos (ux 1

s 1 + ih

L + iko

(iu2sl(L-sl) )

i * exp 2kL exp

(iu2s2 (L-s 2 )
i' exp e-2kL

2

(-u
2

( L - s )
2 a

2
)

2L (L+ik 2 )

2 22
-u (L-s)2 ) or

2L (L+iko2
)

ux2

s 2 +ik 2
2

L+iko 2

+ b2)) dSlds
2

L L
+ k f (sl terms) 

O O

(S2 terms)*

(a(u,s1 ) cos (... +b u) a*(u,s2 ) cos (b2 u)) dslds2 J} (8.5)

where * denotes the complex conjugate. In expression (8.5) we have used the relation:

(8.6)

where A and B are complex quantities.

As in the spherical-wave case, we may perform the cross product integration in (8.5)
under the conditions, k >> u and L >> X , with the result:

2 L iuas(Lis)

dC (X ) = 24T R u( (u) [Pa 0 2kL
Iu2(L-S)2 2o

exp 2
2L(L+ika )

([...]- [*])cos s+ikao2 ds ,L+ iko 2
(8.7)

where [*] denotes the complex conjugate of the previous quantity in similar brackets.

The total covariance is the integral of (8.7) over all wavenumbers u. Proceeding as
in the sperical-wave case (cf. (3.13)), where du = ududo, and recognizing the x-coordinate
separation of the receiving points (x ), as dcos(0),

2 2 k Ldu(s+ikr2 )C a(d)= 2 Jr k-? f du f ds u(u) Jo +iko exp (Q) (exp (Q*) - exp (Q))

0 0
(8.8)

where Q = 2 (L +iku2)

2ik (L + ik )i

Phase-covariance is obtained similarly.
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k
C (d) = 2 r2k2 f du

L
('du(s+ika2))f ds u(u) Jo L i exp (Q) ( exp (Q*) + exp (Q) )

(8.9)

These results are essentially identical to those of Schmeltzer (1967). They differ only in
the assumption of exp (-ikr) for the form of a propagating wave, rather than exp (+ikr),
with the result that the solutions are conjugate to those of Schmeltzer.

2
If a is real-that is, if the transmitting aperture is focused at infinity--(8.8) and

(8.9) may be written

ca (d) = 2r2k2 j fdu J ds u (u) J o +ik

2 24

P O L+0ik

iu (L-s)(sL+k a

L- t k(L +k2 4 ) 

+k

2 2 2
-u (L-s) 22

2 24
L +k a 

(8.10)

A logical extension of these results is to consider the receiving as well as the transmitting
apertures to be finite. The result of similar development for Gaussian receiving and
transmitting apertures is

2 2 L k du(s+ik)t')
C (d) = 22r k J du f ds u(U) Jt 2 (RR*T RR)

O O0ep 0 (Olt r

{iu s(L-s)\ i 2 (L-s) a 2 L: (s+ikct2)2l = expiu2 ~l-s) piuOt 2 )
R = exp 2kL L 2 _ 2 2 22

2L ex(L+ikt (L+ikat ) (L+ik(at +(
r

))

where rt and or refer to the transmitting and receiving apertures.
r

(8.11)

The plane-wave situation can be obtained from (8.11) by allowing a to approach
infinity, a being real:

t

C (d) = 2 2k 2

P

k
f du

0

L 2 [22L
IJ ds u4 (u) Jo(du) exp (-u or ) 1 cos

-fr 

This expression differs from the plane-wave, point-receiving-aperture result by the term

exp(-u2ar2), which has the effect of reducing contributions from high wavenumbers u.

If the transmitting aperture is not infinite, but the receiver is nevertheless well
within the near-field of the transmitter aperture (a common situation in optical experi-
ments), then kat2 >> L, and (8.11) may be approximated (at2 real).
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kL-r 2 222
22dua -uat CT

Ca(d)= 2 k du f ds u*z(u) Jo 2 expI 2 r-

o 0o r t r

[ os(u2L )) ] (8.13)

In obtaining (8.5) it was assumed that one of the receiving points lay on the z-axis; if this
is not the case, (8.5) may be rewritten

1 2 L (Lu s1 (L-s
1

) 2(L-s )2
dC

a(x-x2 ) _ [k2 f i.exp 2kL exp
dCa(xlX2) 2kL 2L(L+iko /

L slc+ ik 12 2

/ (s
2

terms) · (a(u,s ) cos L+iku 
1 L+ ika 1

a(u,s2) cos ( (x2 ,s2 terms) + b2 u ) ds ds2

L L
+ k2 f (s1 terms (s2 terms) '

O O

(a(u,s1 ) cos (...) ' a*(u,s2 ) cos (*)) dSlds 2 3. (8.14)

As before, we may reduce this integral under the one additional assumption x1,x2 << L
(cf. (8.7)).

If d1 and d2 are the vectors from (O,O,L) to the two receiving points, and 0 and
(0 + 9) are the angles between these vectors and the axis of the perturbation, then,

x1 = l cos (0), (8.15)

x2 = I d2 cos (+ o).

Expressing the total covariance C(d) as the integral of (8.14) over all u, and per-
forming the 0 integration (cf. (8.8)):

Ca ( d )
= 27k2 2 X f du f ds u)(u) (k expQJ 2 [uadlR-2R* I ] (expQ) Jo

p 0 0P O

[uRI 1-d2l ] )(8.16)

s+ika -u (L-s) Rwhere R +i2 and Q2 s) R2 2ikL+ikc~
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This result is essentially that of Ishimaru (1968). It may be extended to include finite
receiving as well as transmitting apertures:

22 kL 2 2 -- 1

C a(d) = 2 X k J duf ds u(u) (P) 2J0 [u 1 S- 2s*1] FpJo [uSI 1 2i ])
p 0 0

(8.17)
where

2 2 (L-s) 22 La (s+ika ) ~u s (L-s) u t r t
P-= exp _ 2 2 2

Pexp 2kL / ~2L~ ~L+ikut 2 (L+iko t )(L+ik(a+t +r ))

2
s+ikor

S= t2 2
L+ik(at +ar )

The development of expressions for anisotropic spectra 45(u) of Section 5 may be
applied readily to the finite aperture treatment of this section. The anisotropic spec-
trum (5.7) can be included in the 0-integration preceding (8.5) or (8.16), with results of
the form of (5.12) obtaining.

9. PROPAGATION IN A RANDOM LOSSY MEDIUM

Thus far the propagation medium has been considered to be transparent-that is, the
refractive index has been assumed to be real. Strictly speaking this is not the case in
the atmosphere, although it is a good approximation in the microwave and optical portions
of the spectrum. For other regions of the spectrum, particularly the millimeter-wave and
infrared regions, moderate to very severe attenuation occurs, primarily resulting from
molecular absorption lines (especially those of the water molecule).

Extension of the techniques used in Sections 2 and 3 to a medium with a complex
refractive index is straightforward, and indeed the results may be simply guessed at
the start. Considering a single Fourier component of the refractivity field as acting
as a diffraction grating, we have noted that an additional pair of waves is generated
by the grating, and that these waves lag the original wave by 900 at the grating. The sum
of the three waves varies in amplitude as the sine of a function depending upon the dis-
tance from the grating (2.7). If the refractive perturbation a (cf. (2.3)) is now made com-
plex, an additional pair of waves is created, propagating at the same angles as those
caused by the real portion of the refractive index, but in phase with the original wave at
the grating. Since these waves lack the 900 phase shift at the grating, their sum with the
original wave is a cosine function of the distance from the grating. Note that this cosine
relationship is that appropriate for the phase fluctuations due to the real part of the re-
fractive index. In the final result, the relationships between amplitude and phase pertur-
bations resulting from the imaginary portion of the refractive index, are identical to those
for the phase and amplitude, respectively, resulting from the real part; that is, the role of
a given scatterer is reversed in the two cases.
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Derivation of results for the spherical-wave geometry follows. Naturally the same
approach is valid for the plane-wave situation. From (3.8),

dE = 2kL u s(L-s cos + b)

If a (the magnitude of the phase perturbation) is complex,

a = u)+ ?(u) = R + iI
r I

(9.1)

(9.2)

and c is the correlation coefficient between the real and imaginary parts of a, then the
perturbation of amplitude in the plane z = L is

dP = ka dz cos u (s + b))
a )

u2 s(L-s)
Rsin 2kL + Icos u s(L-s)

2kL
(9.3)

Performing the cross-product integration of (3.11),

dC (x -x2) = 4Tk
a 1X-2)

2 L

O

ds cos( 

2 2 u s(L-s)
+ I cos 2kL

F 1-2
(s-x 2 )). [R2sin u s(L-s)

1 2 ~~2kL

2 
+ cRsin u s(L-s)

2kL

and the total covariance is:

C (d) =' 4r2k2

a

k L

du 

0

dsu
ds J d u -

o L [r (u)

+ (u) cos
2

( 2 kLu )s+oC (u) 4(u) sin

sin2 (u 2 s (L-s)

u s(L-s) 
kL kL

If the real and imaginary spectra are related by a multiplicative constant such that

4i (u) = m24r(U), then

C (d) = 412k 2
a

k

f du
0

L

0

ds u4> (u) J ) n u2 s(L-s)2kL )

+ cm sin ( skLs))

Phase covariance is obtained by simply interchanging sin2 () and cos2 () terms:

C (d) = 42k2

p
O

k L

du f ds ur (u)

0

2 sin2/u2 s(L-s)
\ 2kL !

+u2s(L-s) ]
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+2 cos ( 2 (Ls))
\ 2kL J ]

2
cos

(9.6)

(u2 s(L-s)~2kL |

(9.7)
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Other quantities are similarly obtained. For example, the wave structure function:

D(d) = 8r2 k2 f du )f ds uu (u ) -Jo ( [l+m +2cmsin u s(L-s))]

O O (9.8)
In the likely case where either 4r(u) or Pi(u) dominates, the cross-term 2 cm · sin()

will not be important (as it is oscillatory about zero in both u and s).

In order to estimate the value of m, the ratio of the magnitudes of the real and
imaginary fluctuating components of the refractive index, consider the following argument:

A plane-wave propagating along the z-axis in a medium of refractive index n, exp(-iknz),
where n = A + iB, experiences an excess phase-path over free-space of z(A-1), and a trans-
mittance of exp(-kzB). If the predominant mechanism for refractivity variations is local
density change (as by temperature fluctuations), then changes in excess phase path will
occur in proportion to the logarithm of changes in transmittance. That is, the fluctuating
component of (A-1) will be of approximately the same ratio to the average excess phase
path (Ao-1), as the fluctuating component of exp(-kzB) is to the average transmittance
exp(-kzBo). Thus

B loge (Transmittance)
m = - (9.9)

(A -1) kL(Ao -1)

At the surface of the earth A - 1 = .0003; thus
0

loge (Transmittance) (9.10)
m = - .0 L =.06 X (attenuation).0003kL

where A is the wavelength in meters, and the attenuation is measured in db/km.

It appears unlikely that m can approach unity in practical situations, for (9.10) implies
that losses of 16 db/1000 wavelengths would be required. To give some more realistic ex-
amples, for X = 10- 2 m and a loss of 0.3 db/km, m would be about 2 x 10- 4 ; for )X= 10-6 and
a loss of 30 db/km, m would be about 2 x 10- 6. Thus, in these cases, the lossy portion of
the refractive index could be safely ignored as far as the wave structure function or phase
covariances are concerned.

This is not necessarily the case, however, for amplitude covariances, even with such
low values of m, due to the nature of the "filter functions" present in the integral (9.6).
While the contribution of the real part of the refractive index to amplitude covariance is
zero at u = 0 and rises to a peak at blob sizes of about a Fresnel zone (because of the
sin2 term in (9.6), the filter function for the imaginary part is quite different. In the
latter case the weighting is maximum at u = 0, and is minimum at the peak of the con-
tribution from the real part. As a result, amplitude fluctuations originating from varia-
tions of the imaginary part of the refractive index, at low values of u, are emphasized by
the spectrum 5(u), which rises steeply for low u. Thus, while m2 may be only 10 - 6 , the
spectrum may be stronger by a factor of 104 or more at the lower u. When such contribu-
tions to amplitude covariance are appreciable, they will tend to broaden the covariance
function, as well as increase the variance. The data points in Figure 3.2, for example,
may be slightly affected.
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10. "FILTER FUNCTIONS" FOR VARIOUS QUANTITIES

It is instructive to consider the integrands of the expressions derived in the preceding
sections as composed of three types of multiplicative terms. The first term is simply the
power spectrum of the refractive irregularities, the energy input to the scattering process.
This term is the only connection between the integrand and the medium-the other portions
of the integrand are dependent only upon the geometry of the situation (with some excep-
tions to be noted presently). In this section, 4(u) is taken to be u times the spectrum
appearing in previous sections. Hence, for a Kolmogorov turbulence, this section takes

(u) = u-8/3 rather than u-11/3.

The second term is unique in being a function of the path-separation in (for example)
covariance functions. It serves to relate the perturbations present at one point in the re-
ceiving plane to those at another point, and in general goes to unity as the two points be-
come coincident (as in the case of variance). In the expressions derived in this paper this
term is always a Bessel function of the first kind. In two cases not considered in this
section (time-lagged functions and anisotropic media), atmospheric parameters also
enter into this term.

The third term, the subject of this section, is generally referred to as a "filter
function," since it weights selectively the first term. It is a measure of the effect pro-
duced by an irregularity of a given wavenumber u, at a given position s along the path;
that is, it measures the scattering efficiency of the perturber. The "filter function" is a
function of the geometrical factors s,u,L (path length), k (wavenumber of the electro-
magnetic wave), and C (the size of the transmitting aperture). In many of the examples
to follow, the second term mentioned above will be included in the "filter function," adding
the receiver separation d to the variables.

The importance of "filter functions" becomes clear when attempts are made to inter-
pret experimental measurements in terms of atmospheric parameters. A single measure-
ment obviously cannot uniquely determine a number of parameters, and it is necessary to
determine those parameters to which the measurement is most sensitive. If the more
sensitive parameters are well known, attention can be directed to less sensitive parame-
ters; if not, unique determination of the less sensitive parameters is not possible. As an
example, measured spatial amplitude-covariance functions readily yield values for a very
general parameter, the slope of the refractivity spectrum. However, the appropriate
"filter function" (Figure 10.17) shows that such a measurement is sensitive to only a
narrow range of wavenumber u. Thus the measured spectral slope is probably only
representative of that portion of the spectrum in the vicinity of the peak of the "filter
function. "

The remainder of this section is devoted to examples of "filter functions" of four
distinct types. The first type is the simple "filter function" as defined above. It is the
evaluation of the integral in question (less the refractivity spectrum ¢(u)) over all vari-
ables with the exception of u, and is plotted as a function of u, for several values of the
path separation d. The second type is similar to the first, but is plotted for several
values of the receiving or transmitting aperture a. The third type consists of either of
the first two types, multiplied by a Kolmogorov spectrum ¢(u) = u -8/3. While the first
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two types of "filter functions" serve to demonstrate the sensitivity of a given measure-
ment to perturbations of various sizes, the third type gives a more realistic idea of the
relative importance of various wavenumbers in a practical situation, where the refrac-
tivity spectrum is strongly biased toward large irregularities. The fourth type of "filter
function" consists of the evaluation of the integral in question over all variables (includ-
ing u) except s, position along the path. The result, plotted as a function of s, expresses
the relative importance of different portions of the transmission path in the production of
a given perturbation, assuming a uniformly random medium. A Kolmogorov spectrum is
assumed.

The simplest and most well known "filter function" is that for the plane-wave, ampli-
tude-covariance case, first given by Tatarski (1961, p. 149) for the case d = 0. It is shown
in Figure 10.1 for three values of d. The quantity plotted is the evaluation of (2.15) over
the variable s. The amplitude covariance is insensitive to small wavenumbers u, and the
effect of high wavenumbers is reduced by increasing receiver separation d. The correspond-
ing evaluation for phase-covariance is shown in Figure 10.2. It differs from the preceding
case in that small wavenumbers are important; in fact, it is easily shown that those ir-
regularities which are most effective in the production of amplitude fluctuations are least
effective in the production of phase perturbations.

Another pair of amplitude- and phase-covariance "filter functions" is shown in
Figures 10.3 and 10.4. In this case, the parameter is receiver aperture, and the rele-
vant integral is (8.12), evaluated over s. Increased aperture has an effect similar to that
of increased path separation, but is even more effective in reducing the importance of
high wavenumbers, due to the rapid falloff of the Gaussian. Figures 10.5 and 10.6 differ
from the preceding two only in that the results have been multiplied by u-8/3, to simulate
a typical spectrum 0P(u). The curve in Figure 10.5 for amplitude variance peaks at about
uJL-Tk = 1.6, or for a period of the perturbation of 1.6 X-L, in terms of the Fresnel zone
radius. Contributions from higher wavenumbers decrease rapidly.

The effect upon the variance of amplitude can be easily seen, since variance is simply
the area under the curves. Finite receiver aperture has less effect in the case of phase
covariance, since large perturbations are most important. The area under the curves of
Figure 10.6 is not finite for a u-8/3 spectrum; in the atmosphere the spectrum ceases to
increase with decreasing wavenumber at what is called the "outer scale," resulting in
finite phase variance.

Spatial "filter functions" for amplitude and phase covariance are shown in Figures
10.7 and 10.8, a Kolomogorov spectrum being assumed (with an "outer scale" assumed
in the case of phase covariance). Note that regions near the receiver (R in the figures)
contribute little to amplitude fluctuations, and a maximum amount to phase fluctuations.

The "filter-functions" of other quantities are of interest, since they are potentially
sensitive to different regions of the refractivity spectrum or different portions of the
transmission path. That for amplitude-phase covariance (cf. (7.5)) is shown in Figure
10.9, and in Figure 10.10 is shown multiplied by a u-8/3 spectrum. The "spatial filter
function" for this quantity is shown in Figure 10.11. The "filter function" for angle-of-
arrival covariance (cf. (7.4)) is shown alone in Figure 10.12, and with an assumed
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spectrum in Figure 10.13. The "spatial filter function" is shown in Figure 10.14, where
the case d = 0 is not shown. The variance is not finite for a u-8/3 spectrum, unless the
aperture or path separation is finite, or the spectrum terminates at some maximum
wavenumber. There is no convergence problem at the low end of the spectrum in this case.

Thus far, plane wave situations have been considered. As an introduction to the
spherical-wave geometry, attention is drawn to the basic amplitude -covariance integral
(3.13). The/"filter function" portion of this integral is the sin2 term, the zeroes of which
are plotted as solid lines in Figure 10.15. Zeroes of the Bessel function in (3.13) are
plotted as dashed lines. When a u -8/3 spectrum is mentally superimposed upon Figure
10.15, the relative contributions can be imagined in two dimensions-in s and in u. It
can be seen, for example, that the Bessel function serves to reduce the contribution of
high wavenumber perturbations near the receiver (s/z = 1), while having little effect
near the transmitter. Similarly, the sin2 term serves to emphasize large perturbations
near mid-path, and smaller-scale perturbations towards the ends of the path. In quantita-
tive terms, the sin2 term places major emphasis upon those perturbations which are
equal in size to the Fresnel ellipsoid, which of course is small near the ends of the path
and largest in the center. At high-wavenumbers the situation is very complex, some
wavenumbers contributing negatively to the covariance, others positively and some not
at all, since they are very poor scatterers.

Amplitude and phase-covariance "filter functions," as obtained from (3.13) by inte-
gration over s, are shown in Figure 10.16 for two values of d; they are rather similar to
those in the plane wave case (Figures 10.1 and 10.2); finite receiver separation is quite
effective in reducing the contribution of high-wavenumber perturbations. The same quan-
tities, multiplied by an assumed spectrum, are shown in Figure 10.17, and the "spatial
filter functions," obtained by integrating (3.13) in u (with an assumed spectrum), are shown
in Figures 10.18 and 10.19. The peak of the amplitude-variance curve in Figure 10.17
occurs at uV L/k= 3, or for a period of the perturbation of about 0.8 -i-L, in terms of the
Fresnel-zone radius (vis. 1.6 A/JI in the plane-wave case), and of course contribution
from high wavenumbers is greatly reduced due to the steep slope of the spectrum. Note
in Figure 10.18 that increasing receiver separation tends to emphasize that portion of
the path near the transmitter, and in any case the very ends of the path are unimportant.
In the case of phase variance (Figure 10.19, d = 0), the whole path is almost equally im-
portant (for the outer-scale chosen; a smaller outer-scale would reduce the importance
of mid-path).

As an example of another function, the "filter function" for amplitude-phase covari-
ance is shown alone in Figure 10.20, and multiplied by an assumed spectrum in Figure
10.21. The "spatial filter function" is shown in Figure 10.22; it is similar to the ampli-
tude-covariance case, but is less sensitive to increased receiver separation. The "filter
function" for spherical-wave angle-of-arrival variance is shown alone in Figure 10.23,
and multiplied by an assumed spectrum in Figure 10.24. As in the plane-wave case, this
integral is not convergent for a u-8/3 spectrum unless the aperture or separation is finite.
Thus, in the "spatial filter function" shown in Figure 10.25, the case d = 0 is not given.
Figure 10.25 is unique among the spherical-wave, "spatial filter functions" given here,
in its emphasis upon the region near the receiver, and lack of emphasis near the
transmitter.
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N U,

Figure 10.15. Zeroes of the function
Jo (dsu/L) sin2 (u2 s(L-s)/2kL), with L = 28000,
k = 716, d = 4.

10
u,/'7-

Figure 10.16. Spherical-wave amplitude and phase
covariance "filter functions" for two values of
receiver separation d.
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Figure 10.17. Spherical-wave amplitude and
phase covariance "filter functions" for two
values of receiver separation d.
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Figure 10.18. Spherical-wave amplitude covariance
"spatial filter function."
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These examples of "filter functions" demonstrate that, to some extent, the region of
the medium or the range of wavenumber of interest can be emphasized by proper choice
of the quantity measured. Perhaps more importantly, they also demonstrate that conclu-
sions based upon measurements are valid only over a certain range of wavenumbers, or
perhaps over a certain portion of the transmission path.

11. THE USE OF PROPAGATION MEASUREMENTS IN ATMOSPHERIC PROBING

Considerable interest exists in the application of microwave and optical propagation
measurements to the determination of various atmospheric parameters, both because such
measurements can be made without actually placing an instrument at the point of measure-
ment, and because the potential exists for measuring quantities otherwise very difficult to
measure at all. The basic problems involved in relating propagation measurements to
atmospheric parameters are three. First, a suitable analytical framework must be de-
veloped, expressing the relationship between the parameter of interest and the measure-
ments; this has been the subject of the preceding sections of this report. Secondly, mea-
surements of sufficient quality must be obtained. Finally, suitable mathematical techniques
must be used to obtain from the measurement the desired information about the atmosphere.
This latter problem is not trivial; the expressions derived in the preceding sections equate
the measured quantity with an integral over atmospheric parameters, and thus the prob-
lem is to solve an integral equation (and generally a family of such equations). In only a
few of the cases of interest is it possible to invert the integral analytically and we shall
generally be forced to use iterative, numerical techniques.

Atmospheric parameters of interest may be conveniently divided into two cate-
gories-quantities averaged over the transmission path, and quantities about which
spatial information is desired. The simplest quantity of the first type is the magnitude
of the refractivity spectrum, Cn2 . This quantity may be obtained simply by measuring
the variance of the amplitude of the received signal. It must be borne in mind, however,
that this quantity as measured is a weighted average-weighted along the path and weighted
in wavenumber u, as described by the "filter functions" plotted in Section 10. Thus, if the
refractivity spectrum is not uniform along the path, or is not of the form assumed (Kolmo-
gorov, for instance), the results will be difficult to interpret. A more sophisticated ap-
proach to measuring the magnitude of the refractivity spectrum is to consider the form
of the spectrum to be unknown, and solve for the form as well as the magnitude (assuming
spatial uniformity of the spectrum). To take a simple case, consider plane-wave ampli-
tude covariance, as governed by (2.13). Rewriting that expression,

k L
Ca(d)= f du u (u) J (du) f F (u,s) ds (11.1)

O 0

where ~ (u) is the unknown quantity, and Ca(d) the measured quantity. This expression can
be inverted explicitly as a Hankel transform.

co L
uID(u) f d' Jo(d'u)C a(d') dd/f F (u,s) ds (11.2)

O O
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Similar analytical inversions are possible in the spherical-wave case, but only for
parallel-path situations (where the variable s does not appear in the argument of the
Bessel function). Such a situation occurs in the case of time-covariances, when the
windfield is uniform. Covariance is then measured as a function of Vt, rather than d,
and the inversion proceeds in the same fashion as above. In the general spherical-wave
situation, analytic transformation is not possible, but simple numerical techniques are
available. For instance, the spectrum, ~ (u), can be assumed to have some form-as a
series of step functions in s with unknown amplitudes at each step. The covariance at
each separation d can then be written as a summation of integrals over the various steps
in s, the whole set then forming a family of linear simultaneous equations. This is easily
solved, and n measurements of covariance provide n degrees of freedom in the result.

Such measurements and subsequent transformations have proved to be of great value
at the upper limit of the refractivity spectrum where, with very short optical paths, it is
possible to measure the rather sharp cutoff of the spectrum. It should be equally valuable
to examine the lower end of the spectrum where the suitable technique would be (as can
be seen from the filter functions in Section 10) measurements of phase covariance over
parallel paths. It would also be of interest to investigate the "inertial subrange" for de-
partures from the expected Kolmogorov spectrum. Here the appropriate tool would be
millimeter-wave amplitude covariance measurements.

As an example of another more-or-less spatially averaged quantity, wind velocity
can be measured to a degree by correlation techniques. It can be seen from (6.2) that
the time-lag for which the time-autocorrelation function (d = 0) falls to a given value is
inversely proportional to the velocity V. In Figure 11.1 is plotted the reciprocal half-
width of the amplitude time-correlation function, vs. time, as observed on the array de-
scribed previously (Lee and Waterman, 1966). This quantity should thus be proportional
to the velocity, and that it is to a degree can be seen by comparison with Figure 11.2,
taken from measurements made 250 m under the propagation path.

We now consider the second category mentioned above, quantities whose spatial
distribution is to be studied. The simplest such quantity is the magnitude of the refrac-
tivity spectrum, Cn2 . In either the plane- or spherical-wave case we are faced with a
linear integral equation of the first kind. We proceed as before, and assume that Cn2

is a series of step functions in s, and the amplitude of the several steps is unknown. A
family of linear, simultaneous equations results, the solution of which furnishes the de-
sired dependence of Cn2 , with the resolution dependent upon the number of measurements
available.

The above examples are relatively simple, and present no mathematical problems,
but are nevertheless quite useful. As a final example, we will consider a much more
difficult problem, that of determining windspeed as a function of position s.

As can be seen from (6.2), velocity appears in the argument of the Bessel function
which is always present in the covariance integrals. Thus the problem is that of invert-
ing a family of non-linear integral equations, rather than linear integral equations. The
general techniques for solution remain the same-assuming a form for the solution, with
unknown parameters, and then solving a set of simultaneous equations for those parameters.
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Figure 11.1. Reciprocal half-width of amplitude time-correlation
function, as measured on April 27/28, 1967.
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Figure 11.2. Surface wind velocity measured
on April 27/28, 1967.
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In the general case of non-linear integral equations, however, these simultaneous equa-
tions are themselves non-linear, and therefore must be solved by iterative numerical
techniques. While such solutions are not difficult in principle, they are mathematically
messy, and certain techniques can be used to simplify the process, at the expense of
some detail in the results. One such technique is to linearize the integral involved by
differentiation. The time-derivative of the time-lagged amplitude covariance function
(plane-wave) is of the form

k 2 L
C'(d,O) = u p(u) J(du)du f V(s) F(u,s) ds (11.3)

O O

as evaluated at t = 0. Note that this is a linear equation of exactly the type considered
earlier, and the solution follows the same lines. V(s) may, for instance, be obtained as
a stepwise-linear function of s, with as many steps as measurements. Information is lost
in the process of differentiation-that information obtained at larger time-lags-and thus
resolution is reduced. This information may be utilized by considering higher derivatives
of the correlation function, still evaluated at t = 0. The set of simultaneous equations re-
sulting from measurements of the second derivative are equations in V(s)2 , for example;
that is, they are linear equations in V(s)2 . This process may be carried to still higher
derivatives, until the derivatives are no longer meaningful. In practice, the measured
time-lagged correlation functions would be fit to high-order polynomials, and the deriva-
tives of these polynomials taken, thus making use of large time-lag covariances. Other
techniques for solution exist, and may be exploited, but in general, simultaneous equations
of even higher complexity (including cross-terms between the unknowns) result.

There are other problems involved in the interpretation of measurements along the
lines suggested above, which deserve mention here. In the first place, such transforma-
tions are by nature sampled-data processes. Measurements are made at a finite number
of points, separated in time and distance by finite increments. Hence the results obtain-
able from such transformations are subject to inherent limitations of resolution and
region of validity. For example, in the determination of the spectrum Z (u) by measure-
ment of the spatial-covariance function and subsequent transformation, a lower-limit
upon the separation in u of the resulting independent estimates of the spectral density
is imposed by the maximum separation d available. This limit is easily derived, and is
of the order 2ir/dmax. Similarly, an upper limit is set upon u by the smallest separation,
of order 27r/dmin. Energy from higher wavenumbers will "fold over" and contaminate
estimates for lower wavenumbers. This process is exactly analogous to spectral analy-
sis of time-sampled data. The accuracy of the resulting spectral-density estimates is
also limited by the width of u included in the estimate ("bandwidth")--the narrower the
bandwidth, the greater the statistical fluctuation of the spectral density estimates.

The second problem concerns the sensitivity of the measurement to the atmospheric
parameter being estimated. Taking as an example the transformation (11.2), the quantity
in the denominator can be recognized as the "filter function" appropriate to the measure-
ment. If the measurement is relatively insensitive to the desired parameter (as very
large or very small u in the case of amplitude covariances), the filter function is quite
small, and its inverse quite large. Uncertainties in the measured quantity then become
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very important, and the process is quite "noisy." Thus care must be exercised in choosing
the range over which the unknown quantity is to be estimated.

A final problem concerns noise present in the measurements or generated in subse-
quent analysis. This noise can arise from several sources-finite signal-to-noise ratio,
lack of stationarity in the atmosphere, and round-off errors in the mathematical trans-
formation, to name a few. The effect of such noise sources can be estimated by propagat-
ing artificial errors through the transformation process.

Optimum solution of these problems is a difficult task, but general principles can be
stated. Clearly, as many spacings and time-lags as possible should be used. It is highly
desirable to over-constrain the unknowns, and obtain a least-squares solution, to reduce
the effects of noise. By the same token, it is desirable to allow as few unknowns as pos-
sible, to enhance their statistical significance. To achieve this to the highest degree
possible, full use should be made of all a priori knowledge concerning the medium, so
that the assumed form of the solution may be tailored so as to require a minimum num-
ber of degrees of freedom. For example, if it is known that a certain quantity varies
more rapidly near the termini of the path, the assumed step-function-series solution for
this quantity should have broader steps near mid-path than at the ends. Such tailoring
should not be carried too far, however, as there is danger of forcing a solution of the
desired type.

12. CONCLUSION

The theory of line-of-sight propagation in random media, to which much of this re-
port has been devoted, appears to be reasonably adequate for application to the determi-
nation of atmospheric parameters. It should be noted, however, that the theory cannot
handle such non-random atmospheric phenomena as sharp layers or refractivity gradi-
ents, nor can it handle other than weak-scattering situations (such as long optical paths).

Experimental techniques are advancing rapidly, and have reached the point where
the transformation techniques described above can be attempted. By far the most promis-
ing systems-and the only systems which provide the requisite number of separations
required in the transformations--are arrays of receivers, sampling the received wave
at several points in space simultaneously. Such arrays in the centimeter and millimeter
region exist at Stanford, measuring both the phase and amplitude of the wavefront, and
are contemplated or under construction elsewhere in both the microwave and optical
regions.

Mathematical techniques exist for the transformation of the measurements in terms
of atmospheric parameters. The quantities measured must be selected carefully, bearing
in mind their sensitivity to variations of the parameters of interest, as evidenced by
"filter functions." The statistical and other limitations inherent in the process must
be considered, and maximum use should be made of available information about the
medium, to reduce the number of unknowns in the problem. Finally, all assumptions
regarding the refractivity spectrum, stationarity, isotropy, etc., must be regarded as
suspect until and unless they can be justified by actual measurement.
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