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ABSTRACT

A procedure for determining the optical strength of tur-
bulence of the atmosphere and the wind velocity at various
altitudes by measuring the spatial and temporal covariance
of scintillation is developed. Emphasis is placed on the
development of the formal relationships that have to be
inverted to obtain the desired results. For determina-
tion of optical strength of turbulence, it is a linear integral
equation that is developed. However, for determination
of remote wind velocity, a nonlinear integral equation is
obtained. A computer approach for solving each of the
equations is suggested. The configuration and perform-
ance requirements of the measurement apparatus are
discussed.

1. INTRODUCTION

It is the objective of this paper to explore analytic techniques for utilizing
measurements of turbulence-induced effects on optical propagation as a basis for
remote probing of the atmosphere. Our attention is centered on the problem of
vertical rather than horizontal probing, although the analytic techniques are suf-
ficiently general that they might be applied with certain changes to either case.

In the interest of establishing the basis for an economical and a truly remote
probing technique, we have eschewed the possible use of a balloon terminal
either as an optical target or as one end of an optical propagation link. We have
restricted our attention to the use of a stellar source, and have placed heavy
reliance on the potential of a sophisticated computer-signal-processing oriented
ground station. With this approach, we have not only been able to establish the
basis for remote measurement of the optical strength of atmospheric turbulence--
a quantity of great interest to those of us concerned with optical propagation in
the atmosphere, but have also been able to lay the conceptual and analytic ground-
work for remote measurement of wind velocities aloft -- a matter of very real
interest in a variety of fields of endeavor. Our work on the remote measurement

133



PROBING OPTICAL TURBULENCE AND WIND VELOCITY

of wind velocity is, in a sense, an attempt to formalize and extend the earlier work
of Barnhart, Keller, and Mitchell (1959), and to lift the requirement for their assump-
tion that all stellar scintillation is generated by turbulence in a fairly narrow altitude
range with a single characteristic wind velocity.

We have approached our problem in two steps: first, by studying the relationship
between the spatial covariance of scintillation, as measured by the conventional log-
amplitude covariance, and the distribution along the propagation path of the optical
strength of turbulence, as measured by the refractive-index structure constant.
From this examination, we have found that we can obtain a linear integral equation
relating the two functions. This considers the log-amplitude covariance as the known
function -- it is a quantity we plan to measure -- and treats the refractive-index
structure constant as an unknown function of position along the path of propagation.
By inverting this integral equation, we are able to solve directly for the optical
strength of turbulence along the propagation path. When the propagation path is
that for star light, we have, in effect, a vertical probe of the atmosphere.

In the second part of our approach to the remote probing problem, to obtain in-
formation on the wind velocities in the atmosphere, we have generalized our interest
in the log-amplitude covariance function to include its temporal as well as spatial
dependence. The temporal dependence provides us with a "handle" on the wind
velocities. (It is an interesting feature of a computer-oriented signal processing
set-up that obtaining the temporal as well as the spatial dependence of the log-
amplitude covariance, as compared with obtaining only the spatial dependence,
requires only a change in the computer program and no additional hardware or
data-taking time.) In this case again, an integral equation is obtained relating the
spatial and temporal dependence of the log-amplitude covariance function to the
wind velocity function. In this treatment, the wind velocity function is a vector
function with functional dependence on position along the propagation path. (The
vector function is the two-dimensional vector projection of the actual wind velocity
vector on a plane perpendicular to the propagation direction. A correction for the
projection of the actual wind feature can be introduced after the vector function has
been obtained, by assuming that the true winds are horizontal, or nearly so.) It
is an awkward aspect of this part of the work that the integral equation from which
we expect to obtain the wind velocity function is very nonlinear. As a consequence,
the task of inverting the equation, even approximately, on a computer is expected
to be formidable. However, we see no reason in principle that the integral equa-
tion can not be adequately approximated by a set of nonlinear simultaneous equa-
tions and these solved by the use of relaxation techniques. With a modern, high
speed computer, this should be quite economical.

In the next section, we shall define the quantities of interest with sufficient
detail to provide a basis for planning their measurements. We will follow this
with a pair of sections that develop the formal relationships of interest. Finally,
we shall devote several sections to problems related to consideration of the actual
implementation of the necessary measurement processes.

2. DEFINITIONS

Basically, the measurements we intend to make are of the irradiance produced
by star light from some star at a variety of points with various separations. The
measurements are to be continuous in time so that we have data on the temporal as
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well as the spatial aspects of the star light irradiance. Although we will get into
more detail on the measurement equipment configuration in a subsequent section,
for the present it is sufficient to- consider that we are dealing with a pair of photo-
electric detection telescopes, each of whose signals is recorded on magnetic tape
for subsequent computer data processing. Each telescope has a very restricted
field-of-view, which is guided by the telescope mount to keep the star of interest
in the field-of-view. The two telescopes are placed on the same mount in such a
manner that the separation of their collection apertures can be adjusted. The
collection apertures are intended to be of zero dimension, although for practical
reasons a one-millimeter aperture is contemplated. The optical train in each
telescope contains an interference filter which permits only radiation in a narrow
spectral band to be observed. Ideally, the band should be of zero width, but for
practical reasons we plan to use a 10% bandwidth. It can be shown (Fried (1967))
that the effect of using a non-zero spectral bandwidth is virtually negligible as far
as scintillation effects are concerned, although it may be desirable at some later
date to incorporate any slight changes in theory that go with the non-monochromatic
signal. For this paper we shall use a monochromatic theory without reservation.
We denote the center of the wavelength band by X , with an associated wavenumber,
k = 2rr/X

We shall use the notation p to denote the vector separation between the pair of
miniature telescope collection apertures. We will let z denote a distance from the
telescope along the path of propagation. Working with a stellar source at a zenith
angle e , the height of a point at z is approximately h = z cos 0 .

We denote the photocurrent out of each of the telescopes by il(t) and i 2 (t), t
being the time at which the photocurrent is observed. The logarithmic quantities
L1(t) and 2 (t) , called the log-amplitudes, are computed from the relationships

t1l(t) = 1/2 O [il(t)/(il) ], (la)

t2(t) = 1/22/n [i 2 (t)/( i 2 )> ], (lb)

where (i 1 ) and (i 2 ) are the average values of ii(t) and i (t), respectively.
(The angle brackets ( ) are used here and hereafter to denote an ensemble
average, although in practice we shall feel free to invoke the ergodic hypothesis
and consider the brackets to denote a time average.) From t 1jt) and t2(t) we
calculate the spatial-temporal log-amplitude covariance, Ct. ( p, T), according
to the equation

C (p , T) = ([ tl(t) -.tl
]

[ 2(t + T) - 2) ] > (2)

For convenience in dealing with the spatial dependence of log-amplitude covariance
for zero time delay, we shall use the notation Cd P) rather than Ct (P , 0).
Because of the isotropy of the statistics of turbulence, we are able to suppress the
dependence on the vector aspect of P and merely show a dependence on the scalar
value P . (For a non-zero value of T the vector wind velocity becomes signifi-
cant and it is the interaction of this vector with + that required the dependence
on the vector nature of ~ .)

The optical strength of turbulence is measured by the refractive-index structure
constant. The refractive-index structure constant is defined in relation to the
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Kolmogorov theory of turbulence in the inertial subrange. According to this theory,
the difference of two turbulently varying quantities has a mean square value which
varies in proportion to the two-thirds power of their separation. The refractive-
index structure constant is the constant of proportionality when the turbulently
varying quantity is the refractive index. We denote the refractive-index structure
constant at the position z along the propagation path by C2 (z) . At present there
is very little data on the value of C2 as a function of altitiade and effectively no data
on how it varies with time of day and year, and with geographic location, or even
how and if it varies statistically under apparently similar conditions. It is the first
objective of the suggested measurements to permit compilation of data on C2 at
various altitudes.

We shall use the notation V(z) to denote the projection of the actual wind velocity
vector at a distance z along the propagation path upon a plane perpendicular to the
propagation direction. We shall speak of this as the wind velocity, although in all
cases we shall eventually want to know what the vector in a horizontal plane is whose
projection is V (z) , for that vector is the true wind velocity. It is the second objec-
tive of the stellar scintillation measurements that we recommend, to provide data
from which V (z), and ultimately the true w;nd velocity, can be determined.

3. DETERMINATION OF THE REFRACTIVE-INDEX STRUCTURE CONSTANT

In this section, we will establish the basic mathematical relationship between
the refractive-index structure constant and the log-amplitude covariance for zero
time delay, i.e., for T = 0. This will eventually permit determination of C2 from
stellar scintillation data. We start with the basic relationship obtainable from
Tatarski (1961), that

0.52 .d 2 -8/3 2z)
Ct (p ) = 0.652 k dz CN (z) d J () - k(3)

o o

which applies for propagation of an infinite plane wave of wavenumber k = 2TT/X
traveling a distance L . (The z-integration is from collector to source.) For a
stellar source we replace L by infinity, but keep carefully in mind the fact that
CN falls to zero about as rapidly as the square of the atmospheric density, so
there is no problem of convergence of the integral.

It is a surprising fact that the double integral in Eq. (3) has never been evaluated
by doing the a-integration first. (For some reason an assumption about the
z-dependence of CN has always been made and the z-integration performed first.)
This time we wish to perform the o-integration first. This will yield some function
of k, z, and P , which will appear as the 1Yernel in the z-integration side of an
integral equation connecting CLt(P) and CN (z) .

* It should be carefully noted that most ground-to-ground propagation paths involve
a source quite different from an infinite plane wave source and that the results
developed here from Eq. (3) will be grossly inadequate for interpretation of such
measurements. Often the theory for a spherical wave source will be applicable.
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To perform the C-integration, we use the two integral formulas that

u J (3ul/2)du = (-)-/
(a_ + !1 I

r (-a) I

ucos1uJ(ul/2 2( i ] 2
0 Cos 1 (Fy ) du =r(a) Re [exp (-i 2 ) 1F1 ( 4

O

(4a)

(4b)

Eq. (4b), which apparently does not exist in any of the tables of definite integrals,
can be obtained by a slight modification of.the application of Ramanujan's formula
presented in Appendix A of the paper by Fried and Cloud (1966). In fact, it can be
recognized as the conjugate result to that developed in the reference. Eq. (4a)
comes directly from that reference.

By making the transformation of u = a 2 z/k in Eq (3), and replacing L by o
to restrict Our attention to propagation of star light, we get

7/6 5/6k 262C ,( P ) = 0. 326 k76 d z 5/6 C(z) du u 11/6 O- u)

X (1 - cos u) .

With the aid of Eq. 's (4a) and (4b), we perform the u-integration, thus obtaining

(5)

C (P) = 0.326 k7/6

O

o

dz z5/6

(6)

; 2 (Z P2 ) r(-5/6)
N (4 z) I (11/6)

F1 (-5/6; 1; i k P- ) ]

We recognize that everything in the curly brackets in Eq. (6) may simply be
considered as some function of k p 2 /4z. Thus we can rewrite Eq. (6) in the
desired integral equation form, namely

C,(p) = k7/6
0

d z z / CN (z)
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where the function a(x) is defined in terms of the power series

5/6
3(x) = -- + (a + b x 2 n/(2n) ! (8)I (11/6) n=o

The power series coefficients are defined by the recurrence relationships

a = -a [(2n - 17/6) (2n - 11/6) (9a)
n -n-1 (2n - 1) (2n)

b = - bn [ (2n - 11/6) (2n - 5/6) (2n - 1) (9b)
(2n)(2n + 1)2

and the initial values

a = (-0.326) cos (5n/12) r (-5/6) (10a)

bo = (11/6) (-0.326) sin (5TT/12) (-5/6). (10b)

The first few values of a and b are listed in Table I.
n n

TABLE I

Coefficients for the Power Series Determination of

3(x) According to Eq. (8)

The notation a(b) denotes a x 10b

n a b
n n

0 5.403 (-1) 3.696 (0)

1 3.752 (-2) -3 .993 (-2)

2 -7.903 (-3) 8.219 (-3)

3 3.476 (-3) -3.009 (-3)

4 -1.978 (-3) 1.437 (-4)

5 1.286 (-3) -7.999 (-4)

6 -9.080 (-4) 4.926 (-4)

7 6.778 (-4) -3.257 (-4)

8 -5.268 (-4) 2.270 (-4)
9 4.221 (-4) -1.648 (-4)

10 -3.464 (-4) 1.236 (-4)
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From this point on, we may consider 3(x) to be a known and tabulated function,
which makes Eq. (7) a very straightforward lnear integral equation connecting the
measured function, Ct,(p) to the function CN (z) , which is to be determined. As
an integral equation, we have somewhat of a problem in obtaining CN (z) . However,
by replacing the integration in Eq. (7) with a summation over a set of finite ranges
of z , and by replacing the functions C ( P) and CN (z) with a finite set of values,
known or to be determined, we convert Eq. (7) to a set of linear simultaneous
equations. This is an easy matter for a computer to handle and we can expect data
on C4 (z) whose quality is limited only by how well we have chosen the set of P's
for measurement of Ct (P) , by how high our signal-to-noise ratio is for determina-
tion of Ct (P) , and by how effectively we designate the ranges of z in replacing
the integration by a summation. The choice of ranges will depend on our a priori
estimate of how C2 (z) varies with altitude. This should be nearly proportional
to the variation of the square of the density of the atmosphere -- with allowance
for a possible anomaly in the vicinity of the tropopause, as has recently been sug-
gested by Hufnagel (1966). It will also depend on how 3(x) varies and on our
choice of values of P . Optimally, the choice of the set of P's will be governed
by the values of z for which CN(z) is desired. For initial work, however, we
expect that almost any choice of values for p for the measurement of Ct(P) and
any reasonable separation of the range of z to replace the integral with a sum will
yield a reasonably representative set of results. The really important matter will
be the signal-to-noise ratio achieved in measuring Ct,(P) . Of all of the adjustable
features of the data-taking and data reduction procedure, this will have the most
pronounced effect on the quality of the set of C2 that we obtain. The signal-to-
noise ratio can be changed by varying the length' of the data-taking. We shall have
to be careful in the design of the actual experiment that we have enough equipment
to take all the data we need in a short enough total period, and yet allow enough
time for each measurement.

4. DETERMINATION OF WIND VELOCITY

For this section, let us assume that the procedure suggested in the previous
section has been successfully implemented -- that measurements of the log-amplitude
covariance, Ct,(P) have been obtained and that the appropriate linear simultaneous
equations have been solved so that we now have accurate results for the refractive-
index structure constant, C2 (z) . We now wish to consider what we could do with
measurements oJf the temporal dependence of the 'refractive-index structure constant,
i.e., with Ct,(P, T) to compute the projected wind velocity, 1(z) . The key
equation to carry this out is the time-dependent version of Eq. (3), which has the
form

ca~ X~~co

Ct(p, T) 0.652 k dz CN -V(z) d)

0 2 0
Uz

x (1 -cos ) . (11)

This equation does not appear in any of the published literature. Although the most
straightforward way to obtain it is to derive it in detail from the stochastic propa-
gation equations for log-amplitude at points 1 and 2 and times t and t + T

139



PROBING OPTICAL TURBULENCE AND WIND VELOCITY

utilizing the hypothesis of frozen turbulence (i.e., that the wind transports the
turbulent structure across the propagation path more rapidly than the structure
breaks up and reforms), for the purpose of this presentation we shall argue that
Eq. (11) follows as an obvious extension of Eq. (3) when we consider the contribu-
tion to the log-amplitude of the turbulence at any particular value of z . With the
hypothesis of frozen turbulence, we note the equivalence of the contribution to the
scintillation pattern at~timq (t) and position (R) , to the contribution at time
(t + T) and position (R + VT) . With this in mind, the Eq. (11) follows directly
from Eq. (3).

We can now use the same mathematical manipulations as in Section 3. This
time they yield the result, in analogy to Eq. (7), that

co
k7/6 z 5/6 2 (12-V )C(P, T) = k fdz z CN ( z ) k P-(Z) T(12)

_NC'' 3 4z
0

jRecognizing that now our problem is, given Ct.(P , T) and CN (z) -- solve
for V (z), we see that we are dealing with a rather formidable nonlinear integral
equation. If we had to solve this equation, in the formal sense, it is doubtful that
any further progress could be made on the problem. However, the use of numerical
techniques reduces the problem to one of approximation, and that we may expect to
be able to accomplish. By replacing the integration with a summation over a set of
ranges of z , we obtain a set of nonlinear simultaneous equations to solve. Al-
though there is no closed form solution possible for the set of general nonlinear
simultaneous equations, as there is for the linear simultaneous equations, (for which
matrix inversion produces a solution-generating operator), by the use of a relaxa-
tion procedure or some other iterative method, it should be possible to solve for
| P - V(z) TI as a function of z . How quickly the solution procedure will converge
will depend on the quality of the starting estimate for V (z).

2The calculations would start with data on CN (z) obtained fropn measurements
of Ctp) and would probably use the data for Ct,( , T) and Ct (p', T) where p
and P' have the same magnitude but are perpendicular. Values of T would range
from T = 0 to a value of T sufficiently large as to make Ct,( , T) vanish. This
will be sufficient to permit calculation of V(z) . Since data for other values of a

and p ' will be available, these measurements will also be processed to provide
a consistency check and to improve the accuracy of the solutions for V (z)

5. MEASUREMENT OF SIGNAL-TO-NOISE RATIO

At this point, it is appropriatesto examine the actual measurement and deter-
mine what kind of signal-to-noise ratio we can expect. Stellar scintillation meas-
urements have previously been done with optics of one or more inches diameter.
For order of magnitude evaluation of the intensity covariance, such a large
aperture might have been acceptable, and it certainly helped the signal-to-noise
ratio; but for the precision application which we have in mind for the data, we must
plan to use much smaller apertures. Our apertures must be small enough that
they do not average over the irradiance pattern. Examining the data in reference 1,
it appears that a one-millimeter diameter would be suitable. As we have indicated
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earlier, to avoid the complication in the theory of spectral spread, we plan to use a
fairly narrow spectral bandwidthd Basedoon the results in reference 2, we have
elected a 10% bandwidth at 5250 A ± 250 A . To be certain that we do not miss any
of the rapid scintillation fluctuations, we plan to use a 1 kHz electronic bandwidth.
These three quantities, the aperture diameter, the spectral bandwidth, and the
electronic bandwidth, virtually determine the signal-to-noise ratio we will have on
the photocurrent.

We plan to use an S-20 photocathode image dissector type photomultiplier, with
a quantum efficiency in this spectral range of rT = 4 x 10- 2 amps/watt. The use of
the image dissector is simply to provide a very small photocathode area and in that
way reduce the dark current to a negligible amount. By working with a very limited
field-of-view, we can keep the background photocurrent down to a negligible amount
even for daytime operation.

Since we are using a photomultiplier, there will be no significant amount of
noise generated after the photocathode, so we can identify the shot noise in the
average stellar current as the only noise. If the average stellar signal photocurrent
is I , then the signal-to-noise ratio in dB will be

S/N = 10 log1 0 (1/2 e Af) (13)

where e = 1.6 x 10-19 coulombs is the electron charge and Af = 103 Hz is the
electronics bandwidth. We consider as typical stellar sources the stars Vega or
Arcturus, both of nearly zero-magnitude. A zero-magnitude star produces an
irradiance of about

W = 10- 1 watts/m2 -A

in the spectral range of interest. With combined atmospheric and optics transmission
of T = .5, a collector diameter D = 10- 3 m, and a spectral bandwidth AX = 500 ,
we see that the stellar signal average photocurrent will be

I = 2 (--- D) AXT W, (14)

-17from which it follows that the photocurrent is I ; 7.9 x 10 amps. This yields
a signal-to-noise ratio of -6.1 dB.

At first one is inclined to say that this proves that the measurement can't be
made -- there isn't enough signal-to-noise ratio. However, we must remember that
we are trying to make an accurate determination of the log-amplitude covariance,
not of the instantaneously fluctuating signal! To see the difference, consider the
fact that every one of the two thousand samples per second that goes with Af = 103 Hz
contributed coherently to the final value of the log-amplitude covariance itself,
but the noise in each sample, being independent of the noise in each other sample,
contribute in quadrature to the error in the measured covariance.

After 300 seconds of operation, we may expect that the noise voltage will be
up above the instantaneous voltage by /300 x 2000 ; 800, while the covariance
voltage will accumulate about (800)2 for a net improvement in signal-to-noise ratio
of about 58.1 dB. Thus, after five minutes of operation we should have a value of
the log-amplitude covariance which has a signal-to-noise ratio of about 52 dB. This
should be entirely adequate.
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6. MEASUREMENT PROCEDURE

In the preceding sections, we have spoken of the measurement of the log-
amplitude covariance, Ct. (a, T) in terms of the use of a pair of one-millimeter
aperture photoelectric telescopes on a tracking mount and pointed at a star. The
implication was that the signals from the two telescopes were directly correlated
by some suitable electronic device. In practice, this would be much too slow and
inefficient a procedure. By the time a complete set of data was obtained, so much
time would have elapsed that it is doubtful that conditions would be the same for the
first and last part of the set. It is questionable whether or not there would be any
self-consistency within the data set. Instead of such a one-at-a-time type of
measurement, we visualize the entire set of data being obtained simultaneously in
about five minutes of running time.

There would be no real-time conversion of the scintillation signals to log-
amplitude covariances. Instead, all of the raw data would be stored on magnetic
tape and later entered into and reduced in a digital computer. This would, amongst
other things, permit a limited number of telescopes to provide data for calculation
of log-amplitude covariance for a much larger number of combinations of values
of ~ and T . The output from any one telescope can be paired in the computer
with several other telescopes to provide data for several values of p . For example,
a string of thirteen telescopes spaced 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7 units
between each would permit the computer to select pairs covering any separation
from one-unit to 48-units apart -- 48 values of ~ covered with thirteen telescopes.
Another string of thirteen crosswise to the first string (using a common element
so there is a total of only 25-telescopes) would provide all possible data of
interest. The computer, by shifting the data from any telescope, can simulate a
time delay T and in that way calculate all the time dependent features of the log-
amplitude covariance without increasing the equipment or measurement time re-
quirements above the requirements for determination of just Ct (P)

The tape recorder capacity to accommodate all of this data is not very exten-
sive. By using three twenty-channel multiplexers, we can record all of the data
on three 20 kHz FM tape recorder channels, with a blank space recorded between
each signal sample, just to insure the impossibility of data crosstalk between
telescopes.

Although we have spoken of the equipment as a collection of 25 one-millimeter
diameter telescopes on a common mount, with the implication that each unit
involved separate optics and separate boresighting, in practice it will probably
prove to be much more economical to use a single large telescope, perhaps twelve
inches in diameter, with a single narrow band filter and focal plane stop to define
the limited field-of-view. The light passing through the focal plane stop would be
allowed to diverge and when it had reached some suitably large diameter, would be
sampled by positioning the 25 photomultipliers (or by positioning 25 one-millimeter
diameter diagonal mirrors or fiber optics tubes to "tap-off" the light for the
photodetectors.) The balance of the light could be used to provide a signal for
tracking the star. The total configuration would be relatively simple and trouble-
free. There would be, for instance, no significant pointing problems for any of the
individual sensors.
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7. COMMENTS

All of this analysis is based on two assumptions which, while we believe they
are satisfied, should be pointed out here First, all of our analysis assumes that
the Kolmogorov spectrum for turbulence in the inertial subrange is the appropriate
spectrum. There is quite reliable evidence to support this for the high spatial
frequencies of interest in optical propagation, for regions near the ground. , For
much lower spatial frequencies, this has also been demonstrated for higher altitudes.
While it seems quite plausible to extend this information to higher altitudes with the
higher spatial frequencies associated with optical propagation, it must be recognized
that the applicability of the Kolmogorov spectrum is not demonstrated by any meas-
urements.

The second assumption is that the theory for optical propagation in a randomly
inhomogeneous medium, as we have used it, is valid. Recently there has been
considerable controversy about this. However, it is almost universally agreed
that for small enough scintillation effects, the results of theory should be valid.
As Hulett (1967) has pointed out, measured values of scintillation for stars near
the zenith are quite small. For this reason, we believe there is no reason to
question the accuracy of propagation theory as we have applied it in this paper.

We believe that a firm foundation exists for exploiting our understanding of
optical propagation and the flexibility of modern data handling electronics to
develop an economical method of remote probing of the atmosphere. The expense
of development of this method will be fully justified by the cost reduction in obtain-
ing winds aloft data. We further believe that the reduced cost and the-ease with
which this data is obtained will result in expanded coverage of winds aloft measure-
ments and will thereby promote a better understanding of meteor6logical inter-
actions.
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R. E. Hufnagel

The Perkin-Elmer Corporation

Dr. Fried is to be congratulated for his skill and perserverence
in solving this difficult inversion problem. A few months before
this meeting, I learned of a similar work by Arthur Peskoff (1968)
who has independently solved the same,problem. It will be inter-
esting to compare these two methods. My comments below apply to
both methods.

I believe that it will be very difficult in practice to get ac-
curate and detailed inversions from real-life experimental data.
To explain why this might be so, we note, first, that all scin-
tillation experimental data tend to look somewhat alike (thus
implying that it can't contain much information of interest). To
illustrate this, we need only note that the autocorrelation func-
tion for scintillation as computed by Chernov (1960) using a
Gaussian shaped turbulence spectrum is very similar to the scin -
tillation autocorrelation function obtained by Tatarsky (1961)
who used a Kolmogoroff description of turbulence. A second
difficulty arises from the often observed nonstationarity of tur-
bulence statistics.* This means that one cannot reliably average
observations over long time periods to gain effective signal to
noise enhancement. On the other hand, since the theory in its pro-
posed form:requires the use of small diameter telescopes, and a
narrow spectral filter, the noise problem will be severe, and
accurate inversion will be difficult. Still another difficulty
is that present inversion theories assume, isotropic Kolmogoroff
turbulence statistics. It is very likely that above the atmos-
pheric boundary layer that these statistics are often not valid --
especially in thin turbulent strata, which do appear to exist
(Hufnagel, 1966).

On a constructive note, however, there are some ways in which we
can make this remote sensing method more accurate and reliable.
The first and foremost principle to employ is to make use of all
available aprtioi information. For example, it is relatively
easy to learn the wind velocity profileithrough standard radio-
sonde techniques. Rather than ask this proposed remote inversion
method to determine the wind velocity profile in addition to the
turbulence (as has been proposed), one should instead use an
independently measured wind profile as aptioki information to

If the turbulence is indeed nonstationary, it would be well
to inquire again about just what descriptors you are trying
to measure anyway.
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aid the inversion method. Secondly, we know something already of
the general distribution of turbulence with altitude and should
use this information. Also, since the ground layer turbulence
can be easily measured in situ, one could use this information to
subtract its known contribution from the total observed scintil-
lation statistics.

It is certainly apparent that an error analysis for this inversion
method is required. Also, I would strongly recommend that a
limited program of in situ measurements be made to learn more
about the true nature of the turbulence before we attempt to rely
on indirect remote sensing methods, such as proposed here.

On a different subject, we should note that in the discussions
today we have talked only about using intensity scintillation
measurements as an indicator of remote effects. Similar methods
have been developed for other types of optical disturbances, such
as, image blurring (Hufnagel, 1967). These alternate methods can
well complement the scintillation methods described here.
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