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ABSTRACT

A study of the niobium hyperfine structﬁre in single crystal
calcium tungstéte has been made by the combination of the technique
of electron paramagnetic resonance and electron nuclear double reson-
ance (EPR/ENDOR). The microwave frequency was about 9.4 GHz and the

radio frequency from 20 MH; to 70 MHz;. The rare earth ions Nd3+,

U3+, or Tm3+ were added as the chargé compensator for Nb5+.
To create niobium paramagnetic centers, the sample was

irradiated at 77°K with av10 thousand curie Co~60 gamma source
for 1 to 2 hours at a dose rate of 200 K rads per hour.ahd then
transferred quickly into the cavity.

| In a general direction of magnetic field, the spectra showed
4 sets of 10 main lines corresponding to 4 non-eguivalent sites of
niobium with I = 9/2. These 4 sets of lines coalesced into 2 sets
of_lO in the ab-plane and into a single set of 10 along the c-axis.
This symmetry suggested that the tungsten ions are substituted by
the niobium ions in the crysfal. Secondary lines arising from
- forbidden transitions were also observed. The variation of the
intensities of the allowed and forbidden spectra revealed the
dominance of the quadrupole interaction. The vanishing of the
forbidden doublets along particular directions suggested the
_principai axes of quadrupole interactibn. The separations of the

forbidden doublets indicate that the hyperfine structure constant

A and the'quadrupole coupling constant Q, have the same sign. The



magnitude and direction of the principal values of g-, A-, g-

and Iy~ tensors were evaluated to be

s

. 0 0

9y = 2.0133 =z ,0028 : 28° -208°

gy = 2.0077 = .0002 | 90° -62°

g, = 2.0534 * 0010 | 62° - 28°

A, = 81.0 £ 0.9 MHz | 27.5° 225°

A, = 75.2 * 1,2 MHz 90° ~45°
A, =88.4 t 1.4 MHz | 62.5° 45°

Qx'= -0.561 + ,023 MHz 57° . 225°

0, = -0.835 + ,025 MHz 90° ~45¢
0, = +1.392 ¢ .050 MHz 33° , 45°

g, = 1.366 + .036 . - _—

Froﬁ these experimental results, arguments lead to the
tentative charge compensation scheme of a Nb5+ ion‘substituting
for a w®" ion at the center of the unit cell of Ca%0, coupled

to an impurity located at one of these corners of the same unit

cell.
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Chapter I
Introduction

The purpose of this study is to present the details of the
Niobium-93 hyperfine structure reported briefly in an earlier

(1)

note. As is now well known, the interest in Nb (Niobium) stems
from the fact that its use as the charge compensator in Cawo4 for
the trivalent Nd3+ ions results in the simplification of the

fluorescent spectrum and also in lowering the threshold for laser

action.(z' 3)

Niobium(4’ >) was first discovered by C. Hatchett, an
English chemist, in 1801 when he examined a heavy blaék stone
which formed part of a collection presented to the British
Museum; This stone was said to be discovered somewhere near
Connecticut and was named columbium. In 1844, another chemist,
Rose, announced the discovery of what he considered to be a new
.element énd named it niobium, derived from the name of the
goddess Niobe, the daughter of Tantalus. Eventually it was
established that columbium and niobium were the same element.

In 1949 niobiuﬁ was chosen as the international name, however,

a number of American scientists still prefer the name columbium.
Niobiumialmost always occurs together with tantalum in nature
because of their chemical similarity. The interest in niobium
as an industrial element was stimulated by its low neutron adsorb-

tion cross section and high-temperature strength which led to

its use as a cladding material for reactor fuel elements. This

\'~.



interest was further extended to niobium-base alloys for high-
teﬁperature applications in ﬁissiles. |

A portion of the periodic table near Nb is shown below.
The elements under column VB are V, Nb and Ta. The normal valence
state of these elements is 5+, with the closed electron shell
structure of Ar-, Kr- and Hf4+ - core respectively. The notation
to the right of the table indicates the orbit of the paramagnetic.

. . +
electron. Thus the electron configurations of V4+, Nb4+ and 'I‘a4

are expected to be Ar 3dl, Kr 4dl, and Hf4+ Sdl respectively.

This table makes clear the logic for first studying V4+ in CaWo, ,

as was done by N. Mahootian in his doctoral thesis(6’ 7).

Electron
IIA IIIB IVB VB VIB Shell
ca - Sc Ti \Y Cr (3d)
Sr Y Zr Nb Mo (44)
Ba - Hf Ta W (54)

In the periodic table, niobium is the 41st element belong-
ing to the second series of transition elements with the 4d shell
only partially filled. It contains 41 protons and 52 neutrons

with a natural-abundance'of 100% of Nb-93. As a free atom, Nb-93

has the following characteristics:(s’ 67)
electron configuration = (Kr)4d455
nuclear spin, I _ = 9/2

nuclear magnetic moment, u 6.1435, 9= 1.3652

quadrupole moment, Q . 0.2 barn



If during crystal growth, a small amount of Nb is added
to-the melt (in concentrations of the order of 1% or less)} Nb

is known to enter the W-site, forming the diamagnetic radical,

3-
A
tetrahedron (bisphenoid) and the Nb is located near the center

NbO The four oxygens about the Nb ion form a sguashed

of the bisphenoid. The Nb can then be thought of as being
Nb5+, with the closed electron shell structure of Kr.

Upon gamma-irradiation, the niobate radicals become
paramagnetic. The properties of paramagnetic niobium bty are
in manyvfespects similar to those of the orthovanadate radical

3 (6, 7, 10)
4

(VO4—) in Cawo . One difference, however, is the

stability. Whereas V4+ in Cawo, is stable at room temperature,

Nb4+ requires dry ice temperature (195°K) or lower for stabiliza-

(1, 6, 7) It was indicated that the Nb ion is near the

tion.

center of the oxygen bisphenoid. The evidence that the Nb is ﬁot

at the center is provided by the EPR (electron paramagnetic reson-

ance) spectrum at 77°K or lower. The nuclear spin I of Nb-93 is

9/2, so that the EPR spectrum of Nb4+ is expected to consist of

10 lines of nearly equal intensity and spacing, if all Nb ions

are equivalent. Observation shows that there are 4 groups of

10 lines, for a general direction of the magnetic field, indicating,

therefore that the Nb ions are locked in positions éway from the

bisphenoid center. At a higher temperature, say at 195°K, the

Nb ion is able to "hop" from one displaced site to another, as A

evidenced by the fact that a single groﬁp of 10 lines is observed.(l)
Several other factors contribute to the complexity of the

Nb4+ EPR spectrum. One is the forbidden structure, i.e. the doublets



at approximately midway between the principai allowed lines (see
Fig. 11). It turns out that the nuclear quadrupole moment is
responsible for the presence of these lineé. Another factor is
the non-coincidence of the g-, A-, and Q-tensor prinéipal axes.
The relation among these axes is rather cpmplex and will be
discussed in later chaptérs.

| The analysis of the spectrum'is'therefore extremely
diffiéult. This problem is, howevef, solved by the combination
of the ENDOR and EPR technique; In the following chapters, we
will develop a theory for this ﬁeéhnique. Since the experimental
results are described, as usuél, by a phenomenoloéical spin
Hamiltonian, we will, first of all, ine an explanation of how
the spin Hamiltonian is obtained. Then the épin Hamiltonian is
diagonalizéd to give the energy level formula which, in turn,
leads £o the formula of EPR signal. The ENDOR technique is next
introduced and followed by the formulation of EﬁDOR‘signal. These
formulas, being functions of the parameters of spin Hamiltonian,
“are the basis for the explahation of the spectrum. These spin
Hamiltonian constants, including g, A, Q, and 9, obtained from
the EPR and ENDOR measurements are tabulated in Tables 1 and 5.
These experimental results are investigated and discussed together
with the symmetry properties of the CaWO4 cfystal. Finally, the
conclusion leads to a tentative chargelcompensétion scheme as
shown in Fig. 57, that is, a Nb ion substitutes;the W ion at the
center of the unit cell while a.charge compensator ion, e.g. Nd,

might substitute for the W ion at the corner of the same cell.



Chapter II
SPIN HAMILTONIAN

Since the'discovéry of the‘electron spin resonance pheno-
menon in paramaghetic ions by Zavoisky in 1945, the theory of

paramaénetic resonance has been treated in detail by many

authors.(ll-zz)

(77)

There are the review papers by Kikuchi and

Spence, Bleaney and Stevens,(23) and Bowers and Owens.(24y
However, for the sake of completeness and convenience, a brief

discussion of the spin Hamiltonian will be given.

A. Derivation of Spin Hamiltonian‘
' 'The interaction energy of an ion in a crystal field,

having n electrons with nuclear spin I, nuclear magnetic moment

Un,_and guadrupole moment Q, can be described by the Hamiltoniaﬁr(;3)
W,= W o+ v.c Vg b Wo F Wy b W+ Wy - g B HT (1)
where B
n n '
2 2 2 -
W, = S (B - 28y & S . 10%cm”! (Free ion)
F [, am I Iy 4
, k 3 J
ligands _
Vo = S ' V(rk) | (Crystal field)
o 7 .
-k
Wig = Sn ' 1S ;Fb 1.1, + c;,.8.+8, =----- ~10%cm™!
1s ~ G k3K 3k75 Tk jk°3 "k

(Electron spin-
orbit coupling) -



/] = - - -
W =g 82 E Sg-’Sk 3(r3k’81) (r-]k‘Sk) _____ ~ 1 cm 1
S . re rs
Ik ik Jk (Electron dipole-
dipole coupling)
unpaired
Ww. = ¢&lectrons = - —
H Be (Zk + g.85,) + H (Interaction with
external magnetic
k field)
n - -— —— - -— —
_ E (I = S)) * I | 3(ry+Sy) (ri+I)
Wy = 9eBeInby { 3 * rSs
k k k
4 8m 8lry) (§k-f)J ————— nv 107 %em™t (Hyperfine coupling)
n ' | |
2 ' oT) 2 - - -
Wy = o1 elg E I(I:l) _ 3(r§ 19 I N 10 3em™t
k Tk Tk (Electric gquadrupole
coupling)

k and j refer to the electrons in the ion. The last term of Eq. (1)
is the direct interaction of nucleus with the external magnetic

field H. Here P, is the linear momentum and r, is the radius vector

k

extending from the nucleus to the electron; ajk’ bjk’ cjk are cons-

the orbital momentum and spin of the kth electron,

‘tants; lk’ Sk ‘
respectively; Ior Be refer to the electron spectroscopic splitting

factor and Bohr magneton; g B, the nuclear spectroscopic splitting

n’ "n
factor, and nuclear magneton; and e and m are the electronic charge
and mass, respectively.

For.the convenience of perturbation calculations, tﬁe
crystalline field V. is classified ihto three ranges, namely:

the strong (10" cm™!), the medium 10° cm~!) and the weak (10? cm™')

approximately according to



n n
2 2
strong: ( ef— <V < ;_‘Ze
/ ' rkj c /., Ty
kj
n_, o2
Medium: W <V <
1ls c rk.
X3 J
Weak : V. < W
c 1ls

The weak field case applies, for example, to rare earth salts; the
medium field to the 3d group hydrated salts, and the strong field

to the 4d and 5d group complex where some degree of covalent |
bonding exists béfween the paramagnetic electron and the surrdunding

negative ions.

Setting
v - . - HeT
W wls + wSS + wH + WN + wQ gnen HeI (2)
equation (1) can be written as
. = 1
W WF + vV, o+ W (3)

The spin Hamiltonian is derived from the actual Hamiltonian,
Eq. (3) by carrying out the perturbation calculations term by term

under the assumption of a medium crystalline field. A detailed

description is long and has been treated in references.(lB’ 23, 24,

47, 48) We shall therefore confine ourselves to a brief sketch.

Assuming the terms W' and Vc are negligible compared to the

ez
——, the term W

n_ .,
coulomb energy E 7
. k3

k3J

p in Eq. (3) is treated by the

self consistent field method in which the coulomb interactions of



electrons are assumed to move independently of each other within

the restriction of exclusion principle. The eigenstates which this
gives are the "configurations" in which the individual electron
orbits are specified, e.g; 3@® “F. The next perturbation is that
which comes from the crystalline pqtential Vo The problem is then
one of finding how the field perturbs the orbital levels. This is
accomplished by first assuming that the crystalline potential
satisfies the Laplace's equation V? Vo = O‘and expanding the
potential in spherical harmonics. Advantage is then taken of the
érystal symmetry to simplify the terms in the expansion of V-

The eigenvalue problem for WF + Vi is solved by means of the seqular
equations involving the matrix elements of Ve cdnneéfihg the |

various eigenstates of W_ corresponding to the lowest level. 1In

F

+ V_ and
c )

this way one arrives at a manifold of eigenstates of We

the corresponding eigenvalues. These constitute the various orbital
levels split by the crystal field. Further splitting may be caused

by the spin-orbit interaction W + W If we were to diagonalize

1ls s

the Hamiltonian W taking into account the term Vc + W + Ws we

1ls s

could find that the energy levels are very ¢omplicated mixture of

" the various orbital and spin wave functions of the free ion. This

proéedure is complicated but has been used by Van Vleck,(49)

Schlapp
(50) '

and Penney, and others. We do not follow this procedure.
Instead, the matrix elements of W' in Eg. (3) are determined within
the ground manifold of the field splittings by the operator eqgui-

valent method of stevens,(51—53y

In this method, the position
coordinates in the various terms of W' are transformed into the

" angular momentum operators L, S which are considered non-commuting



constants within the manifold. Contributions from closed shells
vanish leaving only terms from the 3d electrons. The results of

the transformations is to produce a total perturbation Hamiltonian

represented by(48)
W'= (A - 1/2P)(L+S) - P(L*S)? + BH (L +ggS)
4+ P { (L-I) + gL(L +1) -k ] (s 2]
- 3 E(L-5) (L°T) - 3 E(L+T) (L-5)
+8 (@D s 7aen | - geaten (4)
where A = a spin-orbit constant for the given ion.
(in ergqg) N

a proportionality constant of the W ss term,
(in erqg)

\-D
It

K = a proportionality constant of the delta-function term

% (dimensionless)
P=g gnBeBn/r (in erqg) ' (5)
- _ 3ne?Q .
Q= xI-Dr (in erg) (6)
r = the effective radius of the 3d shell
Q = the usual quadrupole moment(68' 70)
£ = (22+1) - 45 for & = 2, (dimensionless).

S(22+1) (20+3) (2L-1)

n.= t 28g (dimensionless)

The shell is less than half full, ——— yn
The shell is more than half full, — "o
The further development of the derivation debeﬁds on whether or not

the lowest level of the crystal splittings is degenerate. -The
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following treatment assumes the lowest orbital level to be a singlef,
i.e., the only degeneracy is that arising from the electronic and
nuclear spins. The change in energy of the orbital singlet ground
state due to W' in Eq. (4) is calculated to the second order pertur-
bation theory using only the orbital part of wave function. The
result is that, instead of obtaining the perturbed energy as usual,

an expression is obtained which eliminates the orbital operator
| (13)

leaving a Hamiltonian with only spin operators, S and I, i.e.
= (=)2 - | s c=AA:2VH:Sa
W' = (-X Aij fzij)sisj + geBe (815-AN;4) HiS
- P(K§j§ + 38234 + M5 - 3EAM15)S;515
R l . . -
where
My = a3i= V0 colnimeanlnglor (g gt
I PR ' . .
uij = - 7 ejxg E%o; <olLg|n><n|LiLy + Lijlo>_ (in erg~ )
En - Eo
Hii = O
/- 1 : ' 1 ' :
2ij = 3 <o|LjLy+LjLilo> = 3 L(L+1) 654 + 2ij (8)
£i1 = 0

Rij = PAij geBe

i'j=x' Y, 2
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E E, being the energy levels due to field splitting, the index 0

OI
referring to the lowest level.

lo> = the ground orbital state with energy E,
In> = the excited orbital state with energy E+n =1, 2, 3, ...

Writing in the abbreviated form, with B=8g¢,
H = Dj45i55 + SginiSj + Aj45iS5
+ Qi4IiIj - (Bngn + Rij)H;iIj (9)

Eg. (9) is the general spin Hamiltonian, where the tensors are

defined as

Dij = - A5 + £2i5) (in erg)

gij = ge(6ij -AAij) '~ (dimensionless)

Aij = -P(K8ij + 38233 + 2Mjij - 38iuij)  (in erg) | (10)
. = &g, = 3ne’g ' . '

Qlj = Q‘Q'l] = mTB lij (in erg) _ (11)

. (13)
Note that along Z-axis we have

0 = ,3¢290 ‘ | (11')

zz  4I(2I-1)

which is the conventional form of guadrupole coupling constant,

and where the parameter g is defined as the field gradient at the

nucleus:
_ 3%v
€d = 37

B. General Discussion of the Spin Hamiltonian

The tensor Dij comes from the second order effects of the
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crystal field Ajj, the spin-orbit coupling X, and the spin-spin
interaction f’. Djy describes how the level s?lits in the zero
magnetic field in the absence of nuclear interaction and contri-
butes to the fine structute. dij is called the spectroscopic
splittihg factor. The term BgjjHiSy represents the Zeeman energy.
The tensor dij indicates that the spin is no longer completely free.
The change is dﬁe to the spin—orbit coupling A of the paramagnetic
ion and the second order effects of the crystal field Aijy. The
magnetic interaction between the electrons and the nucleus is
described by the hyperfine coupling tensor Ajj. Its anisotropy
comes from the second order effects of crystal fields Aj4 and

uij incorporated with spin-orbit coupling A and the electronic
cbnfiguration constant £ of the paramagnetic electrons. The dipolar
hyperfine interaction affects Aij thrdugh the constant £ as well as
the effective radius r of the 3d.shell contained in P. The Fermi
contact hyperfine interaction originate from unpaired S electrons
is taken care of by the constant K. The guadrupole interaction

- enters the spin Hamiltonian through the tensor Qij of which the
anisotropy is due to the orbital contribution x;j. The electronic
configuration effects theAQii through r-3 and n. The direct inter-
~action between the magnetic field and the nuclear moment is taken
into account by the factor -(gpBn + Rj4). The second term, Rij is
anisotropic and is equal to PgeBelij or Ajj(geBe) *gnBn/r® which
depends on the cryétal field splitting due to Aij. Rii is conven-
tionally referred as the "pseudo field" term. It is usually small
compared to gpB, when the field splitting Ep~Es is large, but Rjj

and gpBn can be of the same order of magnitude if the field splitting
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is small (p. 72-73 of ref. 13). 1In this case it becomes hard to
estimate the g, from the measured value of the quantity -(gan+Rij)
without a detailed knowledge of the field splittings and the ionic
radius r. It will be noticéd that the term gquadratic in magnetic .
field B&AjsHjH4, has been neglected for it contains no spin
variables and is unimportant for spin resonance.

The spin Hamiltonian has been deduced for the case of iron
group under the assumption of a medium field (see p. 7 ).‘ The
question arises whether there is a similar spin Hamiltonian for cases
in which the crystal field splittings are (1) small comparéd with
the spin-orbif couplings (as in rare-earth salts), or (2) large
(as in the covalent bonding complex). Eliott and Stevens(sz’ >4-58)
have considered the first problem and concluded that eguation (9)
can explain most of the experimenﬁal results. Eduation (9) also
keeps its forms in the covalent bonding case with only the following
guantitative modification:(l3)

a) The covalent bond modifies the orbital contribution
“to the g-factor. ‘ |

b) There i; a change in the second order contribution
of the spin-orbit coupling to the g-factor.

c) The hypeffine coefficient A is reduced.

d) There may be a superhyperfine interaction between the
magnetic electron and . the surrounding nuclei. Consequently, in all
the cases the spin Hamiltonian Eq. (9) is éhenomeﬁologically correct.
There are.only guantitative corrections made to coefficients D, g,

A, etc., but no changes on the qualitative nature of the represen-

. A\. :
-tation.



14

Another property of the spin Hamiltonian is that its
coefficiénts must conform to the local symmetry about the ion in
the crystal. If the symmetry is high, the spin-Hamiltonian takes
a simpler form. The beauty of the spin-Hamiltonian lies in the
fact that its employment makes it possible to give a shorthand
description of the resonance properties of an ion in terms of a
relatively small number of coefficients which can be determined
experimentally. Since the EPR spectrum reflects the symmetry of
each magnetic complex, it is.often possible to guess the form of the
spin-Hamiltonian from the symmetry properties with practically no
detailed knowledge of the crystal field. From the observed para-
meters one then forms a model ofvthe crystal field to explain the
spin-Hamiltonian.

In the following we wish to rewrite the Spin—Hamiltonian,

Egq. (9) in a more convenient form.

H=§- ..§. + BHeg*S + S*A-I

+ 1+Q°I - BpgpH'I - H-R'I (12)

where D, g, A, Q, and R are tensors to be determined experimentally.
For the case of S = 1/2 the fine structure term vanishes. We also
combine the "pseudo" field R term with the nuclear direct interaction
term and write the modified g, as gy. | |

Then Eq. (12) simplifies to .

H = B_Pl'g'g + §°A°_f_[_ + I+Q°I - Bnﬂ'grll';[_ (13)

Eq. (13) will be used as the starting point for the calculation

'_ofﬁénérgyblevels and EPR and ENDOR signals of the paramagnetic



Nb
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ion in the CawWo, crystal..
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Chapter III
, FORMULATION OF EPR AND ENDOR MEASUREMENTS

The formulas needed to interpret the EPR and ENDOR measure-
ments are obtained after making a few minor modifications of the

(59, 60) We start

results given in the thesis by R. H. Borcherts.
with the spin Hamiltonian, Eq. (14), in which the principal axes

of the g-, A-, Q- and gn—-tensors are assumed to be coincident.

The electron Zeeman term is diagonalized first by the coordinate
transformation technique. The remaining terms; namely the'hyper-
fine, the nuclear quadrupole, and the direct interaction terms,
being at least one order of magnitude smaller are calculated to

the second order. The angular dependence of the allowed EPR

lines are obtained by making use of the selection rule>AM=tl,

Am = 0. The formulas for the ENDOR signal are obtained by consider-
ing AM = 0, Am = %1, ihe main results are outlined in the follow-
ing sections. The details of the derivation are given in Appendix

A.

"A. Energy Levels

l. Hamiltonian Expressed in the g-Tensor Principal Axis
System

For rhombic symmetry, the spin Hamiltonian takes the form

16



H =

17
B(gZHZSZ + gXHXSX + ngySy)

+ AzIzsz + AXIXSX + AnySy

1

+ Q'[Ié -3 I(I+1)) + Q"(Ii - 1;)

- Bn(ghzHzIz + gnxHxIx + gnyHyly)

We define

= A242 2 2.2 qio2
= a,9, Cos § + Aygy Sin“$

Zg
H
1
|
®/
[
|
|
T
\\ !
\ i
SN
v
XB J
Hx = H Sin @ cosAcS
Hy = H Sin @ Sin § (15)
Hz = H Cos ()
g; Cos?6§ + g;'sin26 | (16)
g;'Cos2 C> + gi Sin? C). (17)

<

(18)

(14) -
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K?g? = A2 g Cos? (:) + A%g’ sin? <:>

(19)

where C)and § are the spherical coordinate angles of the d.c.

magnetic field H in the principal coordinate system.

‘'With these

- definitions the diagonalization of Eq.'(l4) gives the following

expression for the angular variation of energy level:

Eypm = 9BHM —-—----mmmm oo oo e o m e e e

S
+ [m°- §I(I+l)]fu-—__

KII(I+1)-m(m+1)]) [T(I+1)-(m+1l) (m+2)] f
-2MK- 4f (m+1)

K{I(I+1l)-m(m=-1)] [I(I+1)-(m~-1) (m~2)] f
2MK +4f (m-1)

K(2m+l)2[I(I+l)—m(m+l)]
-MK- (2m+1) £ s

K(2m—l)2[I(I+l)—m(m—l)]f

MK+(2m-1) £ s
- mBan7 -------------------------------------
m 2112
+-2—N1~ BDH f
’ 1l 1
where S = 5 M= i7 ;
9 1l 3 9
\ I = '2—, m = i‘?“' i‘j, . . .t-z— 7

Zeeman term

l1st order H.F.

2nd order H.F.
2nd order H.F.
2nd order H.F.

lst order quad-
rupole -

2nd order quad-
rupole

2nd order quad-
rupole

2nd order quad—v
rupole

2nd order quad-
rupole

Nuclear direct
interaction lst
order

Nuclear direét
interaction 2nd
order

(20)
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and

2 2 2.2
£, = — Kgg,.sinZ(:) [(A;—Ai) %§ cosz<:> + (Ai—A§) §¥2¥ Sin?8cos?§]

..L

2
£ o= = (a2 (—Z—T—)+(A +Ay+2 Bz AxAy) - iéxr —rg¥81n <:>Sln26cos 8]

‘ ., 2
— l 2 A.-K 2 2 AZ (A A ) .2 )
£, = gEE Ho[AL(—Z—z—K )+(AL+A-27ER A ) Y i;ig_sln @ sin?8cos?6]

2 2
3 A w 3 Sin 2 2 a2
£, = Q' (1-3 ptdy sin® @) +0 ——,—szg (ajg} Cos®é-ajg} sin®é)

. ) 2 .
_ 1 A g, ) o" A2qg2 2 2 2 20
f = 'R' { [Q' wgrz- Sin @ + ﬁi—af (l + -K;%% [efe}} @) (Axgxcos o)

27272 2 .22 '
Ajg$Sin?8)1?% + Q"2 éiéﬁgi . J29xJy coszé> sinzécoszd}
K A-L g gL _

l 2 2 Sln2 COS 1 2 n g
£ = K% 4Kujg9 * (@) [0'A’g2-0" (Akg%6Cos?8-Afgysin?6)]?

. 292 2 2
+ o JRERy . 29y sin? (B SinZGCoszé}
4 o

£ = %-é‘- [Slnz @ (Anggr'lX COSZG + Aygygﬁy Sinzé) + AZngl’lZ Cosz@]

S : '
R - () 12?7@ (Az2xgz9xghx COS”8+AzAygzgyghy Sin’é-3 g 347)°
8 gJ_ . ) . 474
+ SinZGCOSZG(AnggﬁX - Axgxgﬁy)zlf (21)

We have taken the perturbation denominator in the second order
hyperfine terms as (gBHO). The significance of the field Hy is

. that in the absence of the hyperfine splitting all the EPR lines
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would coincide and occur at this field. The resonant condition
satisfies the relation hv = gBHO. In case f~<< k, Eg. (20) can be
simplified to Eq. (20') by neglecting the terms containing fH in

the denominators

E, = gBHM + MmK + % Mm? £

Mm 1

+ % (-s(s+1im + T(I+1)M + MmO-m)] £
+ % [s(s+1)m + T(I+1)M = Mm(M+m)] £

+ [m? - % I(I+1)] f
4

2m[2I(I+1) - 2m?%- 1)
M

f
5

2m[-4I(I+1) + 8m? + 1]
M

£
6

- R 2y 2 ' '
MBnHE  + SufAHE (207)

We will use Eq. (20') to derive an expression for the values of

g- and A- tensors.

2. Quadrupole Dominated Hamiltonian

The formulas of energy level, Eg. (20) and Eq. (20'), can
be valid only if all thévtensors,g, A, Q and 9’ have coincident
principal axes. If, on the other hand, the principal axes do not
coincide, Eq. (14)‘will contain additional off-diagonal eléments
and the resulting formula for energy levéls Qill be much more
complicated. However, in a special case as we are treating here,
the previous formulas can still be used with only a small modifi-

cation. This special case has two prominent features, namely:
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l) The contribution of the quadrupole coupling term I:Q-I
is much smaller than that of S*A*I term and/or §'2'§ term,

2) The anisotropy of the tensors g, A and g, are all small.
Only Q is strongly anisotropic.

Under these conditions, the Hamiltonian, Egq. (14) can be

written as
H=8g HS + A S°I - B, g H'T
2 _ 1. " 2 _y2
+ Q! [Iz 3 I(I+1l)] + @ (Ix Iy) (22)

where X, Y, Z denote the principal axes of Q-tensor and

) 1,
Q' = QZ -3 (QX + Qy)
Q" :_:_L_ (Q ...Q) . (23)
-2 X y | o
Zg
, B
|
®/
. |
' |
|
: Y
I
{
AN}

The result of diagonalization of Eqg. (22) to the second order of

perturbation can be obtained directly from Eq. (20) or (20') by
putting gx=gyzgz=g,_Ax=Ay=Az=A and Inx = gny =95, = 95° Thus Eg.

'_(ZOX becomes
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Eyn = gﬁHM +AMm - 8 g Hm

~s(s+1)m + I(I+1)M + M?%m - Mm?

A2
2 hve

+

+ [m? —:}Itxu)] £
4y

+ A[I(I+1) - m{m+1))[I(I+1) - (m+l) (m+2)] £
=2MA - 4 (m+1) f“ 5
4 ALI(I+1) - m(m+1)] [T(I+1) - (M-1) (m-2)] £
2MA + 4 (m=1) f“ 5
v A(2m+1) 2 [I(I+1) - m(m+l)) £
-MA - (2m+1) f“ 6
+ A(2m-1) 2 [I(I+1) - m(m-1)] £ _
MA + (zm-1) f, 6 | (24)

where
£, =0'(1 - 3sin®@) + 0" 3 sin*@ (Cos?s - Sin?é)
£, = & { 1@'sin? @ + § (1 + cos? (@ (cos?s - sin?8))2

+ Q"2 cos? (i) Sin?s coszé}

Hh
f
o L o

{Sin2® cos? @ [0' - Q" (cos?§ - sin25)1%

\

+ Q"% sin? @ sin?$ coszd}- (25)

Note that fl=f3=f8=0 and we have written out K, £, and £, explicitly
in terms of A, A? and 9, respectively in Eq. (24). Again if we make
the assumption, f“ << A, to simplify the denominators of Eq. (24),

we obtain Eq. (24'):
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EMm = BgHM + AMm - BngnHm

-s(s+1)m + I(I+1)M + M%m -Mm?
2 hv
e

+ A?

+ [m? - %-1(1+1)] £
A

2Zm{2I(I+1) - 2m? - 1] £
A M s

2 . ' .
2m({-41(I+1) + 8m“+ 1] fe ) (24')
M : _ . :

We will use the simpler equation (24') to derive an expres-
sion for the values of Q-, A-, and g,~ tensors. 1In general, Eqg.
(24) will give us more accurate values for these ténédrs tﬁan Eq;
(24'). However, in certain cases, as will be seern later, Eq; (24")
offers the same accuracy as does Eq. (24).

| Béfore concluding this section, it is to be noted that

had we written Eq. (22) as (22')

H = BgH'S + A 8°I - 8,g, HI

n%n
+0 I2+0Q I2+Q I°+Q (I I +1IT1)
11 1 22 2 33 3 12 1 2 2 1
+Q (I I +II)+0Q (II +I1I) (22")
23 2 3 3 2 31 3 1 1 3
its diagonaliiation would give us the same expression as Eqg. (24").

But in this case, fh, fs’ and f6 would take the following form:

- -1 =3
'fu - Q33 2 (Qll + sz) ._2 Qsa
£F = (Q;1 - Q22)% - 4Q$2
5 leAa
02. + Q2 - ' (25")




24

where the guadrupole coupling constant 033 is taken along the
direction of the external d.c. magneﬁic field, and we have made

use of . the relation Qxx + Q2 + Q3 = 0,

2 3

B. EPR Signal
The EPR signal hve is related to the d.c. field H according
to Eq. (26) which is derived from Eq;4(20') using the selection

rule Am

= 0 and f?r a general direction of the d.c. magnetic field.
hv = E - E
e 1 1
2™ W
= gRH_ + maA + 1 n2e
m 2 1

+ % [I(I+1) - m2](f + £ )
2 3
b+ 8w [2I(I+4D) - 2 - 1) £
+ 8m [-4I(I+1) + 8m? + 1) f6
2¢42
+2m BIH2E (26)

where we have written A in place of K.

l., g-value

From Eg. (26) we obtain

hv, = g8 Bt B 4 1 114 £

I(I+l) - m?

Yoy - [y P Eo ey T (B Y E ) 9B

(27)

If we neglect the second term containing £ and define

_ hv .
H, = EEQ , we will have
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1 CI(I+l) - m*
Hy = 7 Uy + H_ )+ =1y
T, H-(m+l))__ (Hp + H_)] | (28)
_fh \Y
and g=g ﬁ? (29?

Egs. (28) and (29) indicate that the g-value can be calculated simply‘
from tbevmeasurement of the‘EPR field. Aloﬁg the g- tensor principal
axes, f1 is zero, hence its omission does ﬁot ihtroduce an error in
Eg. (28). Along other directions,'f1 is not zero, but according to
ﬁeasurements, it has a value of about only 0.1 gauss due to the
A-tensor anisotropy. Thus the omission of the fl—term introduces

an error of at most .04% in the g-value. For a'rough.éstimate ofv

the g-value, Eq. (28) can be approximated by
\ _
H =5 (H + H_ ) | o (30)

which gives an error of * .3% in the g-value. The second term in
Eg. (28) enters as a correction from the second order perturbation
of the hyperfine interaction. This term remains even if the A-

tensor were assumed isotropic.

2., A-value

From Eg. (26) we have
gp T Hm - a4 8 [21(141) - 2w - 1) £,
+ 8 [-4I(I+1l) + 8m? + 1] f6

2 2 2 S '
+ B, (Hp + HZ ) £ _ (31)

The last term, containing.f8 in Eq. (31), comes from the second
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order perturbation of the gn-tensor. Measurements reveal that the
anisotropies of g, gy and A are 3, 5, and lO%lrespectively. There-
fore f8 is mainly determiqed by the anisotropy of A-tensor. Taking‘
g = 2.02, g = 1.35 and A = 75 to 89 MHz, we estimate from £ of

Eq. (21) that

2 2 2 ,

'Bn'(Hm + H_m) f8 < 0.01. MHz
/

which is much smaller than A. Hence we neglect the last term of

Eq. (31) and obtain

A=gpBm=Hn_ g [21(141) - 202 - 1] £
- 8 [-4I(I+1) + 8m? + 1] f6 - | (32)

E.The values of f5 and f6 needed to evaluate A in Eq. (32),
were eétimated from the results of Eqg. (25)._ Thése.results, to

- be sure, apply to the case of isotropic g and A, but thé use of
the results is justified because the g- and A- tensor anisotropies

are only 5% or less. The values for Q' and Q" were taken from

ENDOR measurements. Thus from Eq. (25) we estimate that

A

£ and £ < 0.01 MH,

. C. Forbidden EPR Spedtfd

A characteristic of the Nb4+ EPR spectrum is its forbidden
structure, i.e. the occurrence of doublets midway between the more
intense allowed (AM = 1, Am = 0) HFS lines. Consequently a theory

for the positions of the first forbidden lines (AM = #1, Am = +1), and

. the relative intensities of the allowed and the forbidden lines
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will be developed.

From perturbation theory, it follows that for

HY = EY . (34)
where

Ho= N+ ' (35)
and

Ho¥k = EoxMk | (36)
then

<
n

e + E;; EB&ELLEZ_ (37)
) o

E = E + <K|a'|k>

’
l<n|x'|k>|2
n#k Eox ~ Eon

(38)

and
‘\

P(k+n) « |<n|q"|k>|? - (39)

where P (k-»n) is the probability of transition from state k to n,
and " is the "amplitude" of the harmonic time dependent perturba-
tion.

For the specific problem of concern here, we have from Eq.

(35")

|
<
[

+
L
IHC.)
[
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with
M, = BH-g-S
such that
= 1
Ko ¥y = gB HM ¥ (36')

We note first of all that

[, 1%2) = [1%, s?] =0 (40)

~
77
-
0n
N
[
I

so that the unperturbed basis functions can be built up by taking
linear combinations of the electron spin functions BQM and nuclear

spin functions Xm which satisfy
2
8% Py
2 .
sszM

s(s+l)$0M

M,

]

i(I+1)xm

H
~
>
It

mx,, ~ (41)

For the linear combination of the 99M'é, we take wM's which are the
eigenfunctions of , o

BH-g*S ¥y = MgBH ¥, - (42)
For the linear combination of the xm's, we take ¢m's such that

<M=+ %lélM =+ %>;é'£ O = AEq0n, (43)

Thus the eigenfunctions y or |Mm> of the operator Egqg. (51') are
Mm | P
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to be expanded in terms of

vy ¢, and ¥v_;0

7 3 (44)

In the above, because of the discussions to follow, we have taken
the electron spin S to be 1/2. The first order eigenfunctions and
the eigenvalues to the second-order,_then, are given by

vyt )

" <m’|1°Q°I - BnHegs I|m>

by

- , N .l (45)
5m +5 , m - AEm AEm’ m .
El = % gpRH + AEm +'<m|£‘2-£ - Bng.gn.llm>
2m _
[4 .
+§ : |<m1|£.9.1 - Bn E.gﬁ.£|m>|2
m, AEm - AEm& v . . (46)
' 1l
and for M = - > |
. ’
vy =v 00 4y  @IIoI- spHgieln
1 =V B Ly = = b - (4
E 1 = -% gBH - AE_ + <m|I-Q'£ - Bn§~gﬁ'2|m>
Zm . , o
+ E |em?|1Q1 - BpH gA I[m>|?
Y -éEm + BE . | | - (48)

In Egqs. (46) and (48), we have not included the second order
contributions comiﬁg from the off-diagonal elements of HFS inter-
action, S+A-I. We shall consider these corrections when a quanti-
tative treatment is to be méde. .However, experimental result tells
' 4+

us that such contributions appear to be small for Nb

The transitions among the several levels in the EPR spectrum’
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are indicated by the electron magnetic dipole interaction
Hll =gB Hll.s - (49)

where H'' is the amplitude of the oscillating microwave magnetic
field. This field is assumed to be perpendicular to the axis of .
quantization. Then from Egs. (39), (45), (47), and (49) we find

that the transition probability, and therefore the intensity, is

4

'<m’|I-Q-I - BpHegpIlm> |2 |2
1 - 191 ni*gn°L
A

P E "AE P
m m m
!
x 1-2 <m”|I+Q°I - BpHegp I|m> |2
' m” AEm - AE . (50)

The above expression applies to the allowed, Am = 0 HFS lines. For

the first forbidden transition (Am = *1),

1 1 1 1
P(-zm > 5m + 1) « | <5 m+l|S+|---2-m>|2
= g| <m+lI-Q°I - B H-gn-Ilm> |°
' T Tm+l m

If the nuclear Zeeman term B8 H-gp+I is dominant in (51) we will

have
' 2
P'(—% m -+ % m+l) « <m+1|I+Im>
'AEm+l - AEm
_ , . )
« [I(I+l) - m(m+l)] Bn (H-gp) (52)
L = BE_]|*?
m+1 m
\

If the quadrupole coupling term, I<Q+I is dominant in Eq. (51), we
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will have

<m+1|I:Q+I|m>

AEy1 ~ BEp

P(-zm > 2 m+l) (53)

Since the guadrupole interaction term can be written in the form

2
(Q11 + Q“)]Iz

N =

1= 1 2 -
I.geI=31( +9 JI°+ 10,

-
=

1 .
+ 7'(Q13 -1 Qza)(I+IZ + IZI+)

(54)

1 .

+3 , +1i Q“)(I_Iz + I,I)

+1@ -0 -2i0 )I2+i(Q -9 +2iQ )12
T 11 22 12 + 7 11 22 12 -

we get
<m+l|£‘9-1]m> = % (Q13 -iQ23)<m+1|IZI+ + I+Iz|m>
=2 (@ - iQ ) (2m#l) YITTFD) = m(mrD) (55)
. 13 23

Putting Eg. (55) into Egq. (53) and assuming

AE
m

. A .
+1 " AEm = 5 we find

2 2 .
P(-zm > 2 mil) « 2 : Q,, (2m+1)?[I(I+1) - m(m+l)]
—RT

e (2m+1l) 2 [I(I+l) - m(m+l)] . (56)
For 93Nb, (I = 9/2), we have, from (52),-the relative intensity of

the forbidden lines:

9 : 16 : 21 : 24 : 25 : 24 : 21 : 16 : 9
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From Eq. (56), the relative intensity of the forbidden lines is

24 : 24 : 14 : 4 : 0 : 4 i 14 : 24 : 24
I Lt i
l: l! :: I ::
{ (I ’ L
|| 0 P ' N ' n
[ | || || " il Vo [ 1)
b ) r ' Y :: I V! !
i . 1 | 1 L L L) 1
(a) BnH'gn*I - term dominant
‘ | b 1!
¥ | ) K
|
A |= I b N ::
|' | ‘l l| [ |
| p | 1 |y ‘ll
Ll | 'l 3 | i ] ) X
\
(b) I-0'I - term dominant

The relative intensities are plotted in Figs. (a), and (b), in which
the doublet is due to the transitions P (-%, m -+ + %, m + 1) and
P (—%, m - %, m - 1). The experimental evidence is that Fig. (b)
matches the structure of the.Nb4+ forbidden EPR spectrum. It is
~noted that, from Eg. (56), the line intensity of the forbidden
transitions is a function of the‘off-diagonél quaarupole coupling
elements, (-Qf3 + Qza), and that if the magnetic field is aligned
~with one of the principal axes of quadrupole, the off-diagonal
elements Qill be zero. Therefore, the forbidden EPR lines will
disappear if the spectrum is takeh along one of the quadrupolel
,principal.axes (see Figs. 14 and 15). This is, in fact, the

way by which these principal axes are experimentally found.



1. Position of EPR Forbidden Lines

In order to understand the EPR spectrum of Nb4+, two more

pbints should be noted: (1) the position of the forbidden lines
and (2) the relative line intensity of the allowed EPR lines. 1In
the following, we will discuss the position of forbidden lines
first.

Using the selection rule AM = 1 and Am = *1, we obtain Eq.

(57) from Eq. (20'):

hvg = ElW - E_lmil~

2 2

* 1 - *
gfH + (mfz)A + (+ 2m - 1) £, BpH £

- F(m2m-2) (£,+ £)

- 4{2(m*1)® + 2m® - %l (2m+1)] £,

+ 4[8(m*1)? +8m® -98(2m+1)] f6
' % ety 2 : .
+ (2m£l) BA(HZ) f8 - (57)

wheré we have used the reiation I = 9/2 and have written the resonant
) d;c;‘field‘as'H;'corresponding to the forbidden -transitions (%-m)f >
(-% m + l)} Eg. (57) leads to the line separation of the forbidden
doubleﬁs: '

m+1l

gB(H;‘ - H_,.)

1 2(2m+1) £ - By(H

+ H) £
m 7
_%(f - £f) ' (58)
2 3 _

33
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where we have assumed that the second order term of the nuclear
interaction B;(H;)zf8 is negligible compared to the first order
term BnH;f7. Assuming again that A and g, are isétropic, and that
the Hamiltonian Eqg. (22) has been diagonalized along-the magnetic

field, then

_ 3
fu T2 Qsa
f7 =9,
: _ 4a?
fz_ fa ~ hv ' (59)

Thus
gy - BH-..) = 3(2m+1)Q -B.g (H ., + HY)
g m m+1l : 33 ngn m+1l m
\ _
- 2h | (60)

e

It is worth to point out a fact that if the sign of A is +, then
the position of EPR lines of the + m is at the low field side, while
that of the - m at the high field side. Thus, from Egq. (60), if
Qés is also +, the line separation of the forbidden doublet will
be larger at the high field side. In bther words, if A and Q are
of the same sign, the larger line separétion of the forbidden
doublet will occur af the high field side; if A and>Q are opposite
in sign, the larger separation occurs at the low field side. Experi-
mental results have confirmed this statement.

The relative position of the fofbidden doublets with respect
to the position of the allowed lines can be estimated by considering

the first order terms of Egs. (26) and (57):
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Allowed: hv, = gBH_+ mA
. R 1 e -
Forbidden: hv, = gBH + (m->) A+ (2m 1)f“ BnHmf7
Forbidden: hv = g8EY +m-Lya-(em-1)f + g ut . f
’ e 9% m-1 2 " n

m~1 ?

In the x-band operaﬁion the magnitudes of the last two terms of

the forbidden spectrum are of the same order, but they are one

!
i

order of magnitude smaller than that of the second term containing

A. Therefore the spectrum of the forbidden lines is expected to

look like Fig. (c) below:

! | i
i | |
| l | |
| | : . al
t ‘ ’

|
| |
1

: ; ' l i f i
; ! : !
1 I ' |

S —
——
 adt—

—

rmane L ; ;
H.,.- +7n—s+e>-snx : Hm : Hin-)

— Freld Increa=es

(c) The Position of Forbidden Lines

In this figure, the dotted and solid vertical lines indicate the

allowed and first forbidden lines respectively.

2. Relative Intensity of Allowed EPR Lines

The intensities of the allowed lines can be explained from

the result of Eq. (50). If we assume that thelterm'Bng‘gﬁ'l is

negligible compared to the term I-Q+<I then Eq. (50) becomes
- - .



2 2
= l-— —iE . |<m+1!I-Q~I!m> I + |<m=1]T.Q*T|Im> | l
| n m+l| I| - = = | I - = = |’;
2 2 (
=1-9," Qza , 3(2m+1)2[I(I+l) - m(m+l)]
2IAE AR, 17
+ (2m-1) 2[I(I+1) - m(m-1)1! (61)

where we have made use of Eq. (54) and have neglected the contribu-
tion of the second forbidden transitions. The last step should not
be taken for the explanation of the spectrum along one of the priﬁ-

. ) . . A o
cipal axes of quadrupole. Assuming AEm AEm+l e and I = 9/2
-we obtain A

2 2
P(-pmo>2m o1 - 20003 0:0) | (ons1)2(2) - m(med)]

+ (2m-1) 2 (2 - m(m-l)]} (62)

Consequently, the reduction in intensities of the lines m = 9/2,
-7/2, . . ., +7/2, + 9/2, from unity is proportional to
12 : 24 : 19 : 9 : 2 = 2 : 9 : 19 : 24 : 12,
Along one of the principal axes of qguadrupole, Eg. (61)

becomes

2
[AE =8B 4]

P(—% m - % m) « i— ?]<m+2|£-g-£lm>]2-

+ !<m+2|£-9-£|m>|2}
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(0,,-0;202 ' (99 ' 99
=1 - 8|AE$iAE;izll ‘[—z - m(m+l) ] [=7 - (m+1) (m+2)]
+ [2% - m(m-l)][g% - (m-1) (m=-2)]" | (63)

~ = A, we have

Making the approximation AEm - AEm+2

P(m%lﬁ»%—m) « 1 -

- 2/
©1p 7 022)" (22 _ (i) 112 - (m+l) (me2))

+ [57 - mm-1)] [=7 - (m-1) (m-2)] . (64)
) .

for m = - 9/2, - 71/2 . . . + 2?. Consequently, the reduction
intensities of linesm=-9/2 . . . , to + 9/2 from unity, along

the principal axes of quadrupole is proportional to
6 : 14 : 27 : 39 : 46 : 46 : 39 : 27 : 14 : 6

Combining the result of Eq. (62) with Fig. (c) we arrive
at the conclusion that at a general angle the spectrum looks like
Fig. 1 which can be compared with the spectrum of Fig. 11 taken

at the c-axis of the CaWo, crystal.
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Chapter IV
ELECTRON NUCLEAR DOUBLE RESONANCE

A. OQualitative Description

The electron nuclear double resonance technique, known as

(25, 26, 27)

ENDOR was introduced by Feher in 1956. Originally the

ENDOR technique was applied with great success to the study of the

(28)

electronic structure of F centers in KC1l and of donors (Sb, P

(29, 31, 32) More recently this technique has

(30, 33-45)

and As) in silocon.
been used in a variety of fields especially where the
EPR lines are inhomogeneously broadened by hyperfihe or superhyper-
fine interactions. The experiment consisés of mohitoring the change
in intensity of a partially saturated EPR signal induced by the app-
lication of a radio frequency field to the sample at the appropriate
_nﬁclear resonance frequency. The change in intensity of the EPR
signal is. caused by the alteration of the spin population when
transition occur between the hyperfiﬁe levels. The particulaf
advantage of the ENDOR teéhnique is the accﬁracy with which hyperfine
separations, the quadrupole.coupling, and the nuclear gyromagnetic
ratib can be measured and hence the possible observation of second
ordér perturbationé on the energy levels of the system.

To explain the technique, consider an ion which has a two

fold electron spin degeneracy of the ground state so that in a

magnetic field there are two energy levels that can be labeled

A\

\

39
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M=% %. Let us assume for simplicity, that the nuclear spin of

the ion is I = 3/2 which will cause a splitting of each of the .
electron spin levels into four with m = 3/2, + % ,.— % , - 3/2.
The eight ground state levels can thus be described by using the
notation (M, m). In thermal equilibrium the electron popuiatioﬁs'
of these levels in ascending order of energy can be reéresented
by Ny, Nyp o0 0, Ng, (see Figure 2). The relationship of the
population with the energy level is described by the Boltzmann

equation

N _ o~ (Eqe = Ey) /KT
N

Let us assume that a d.c. magnetic fieid of the appropriate

intensity is applied to the sample such that the EPR transition is

observed between the levels ( - % , + %) and (+ %

microwave frequency v, is 9,300 MEz. Let us also assume that the

. + %) when the

frequency vn'for all the hyperfine transitions is about 45 MHz
and the sample temperature T is 4.2°K. Then when the system is

in the thermal equilibrium

N N
—1 = -3 =
N, 0.9045, N, 0.9995

Thus there is a relativeiy'large population difference between the
levels for the EPR signal and a small difference for neighboring
hyperfine transitions. Through the exchange of the spin energy

with the lattice the increased population in the upper state due to

- the applied microwave field will attempt to return to thermal

equilibrium. If the rate of promotion of the spins from the lower

state is greater than the retﬁrn to the ground state through the
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spin lattice interaction, the population difference will gradually
decrease. This phenomenon is called.saturatioﬁ and is said to beA
"complete” when the population difference is zero. Using the

Boltzmann equatidn an effective spin tempefature T, can be defined

which describes the population difference n between the two

(46) (14)

levels. The'ratio n/nolis called the saturation factor,
whererno is the populatioh difference in thermal equilibrium and

T
S

T/ (n/no). For illustration,.let us suppose that the
microwave power is adjusfed so that the saturation factor is 40%
cofreéponding to a spin temperature of Ts = 10.5°K for the EPR

line. Fig. 2 shows the population of the various levels relative

to the ground state when the system is in thermal equiiibrium énd
with a 40% saturation factor. It is obvious that £hé population of
the level (%-, %) is now larger than its neighboring levels (% - %)
and (% » 3/2) whilst the-level (- % , %) has a lower population than
ifs neighbors. The rate of energy absorption P is proportional.to

.the population difference for levels separated by energy hvg:
P = nwhvg

‘where w is the transition probability and n is the population
difference} The strength of EPR signal is proportional to P.
Thus upon satufation the EPR signal is reduced in intensity.

The applicétion of a radio frequency signal v, can cause
transitions between levels with Am = *1 and Am = 0. Since the
populatioﬁ of the spin state (- %‘, %) is substantially less than

that of (- % . - %) and (- % , 3/2) transitions are induced from the

1

latter levels to the (- va %) state. Thus the population of the
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POPULATION

Thermal 40%
Equilibrium Saturation
(Mm) 9040 . 9040
(+112, . 9045 L9330
+112, . 9050 . 9050
(+1/2, 9055 . 9055
(+1/2, |
(-1/2, |
(-112, 9985 9985
(112, . 9990 .9990
(-1/2, .9995 .9710
1, 0000 1. 0000
n=N, - N, =.0950 .0380

Fig. 2. Spin population for thermal equilibrium and
partially saturated cases.
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state (- % ’ %) is increased by the ENDOR signal. On the other
hand the same signal will cause the population of the

% , + %) state to decrease. Hence the application of the

(+
RF signal causes the poﬁulation difference for the EPR transi- -
tion to’increase, thus the degree of saturation decreases

and the EPR signal intensity increases. If the d.c. magnetic
field and the microwave frequency are kept fixed at the peak

of the EPR line while the RF signal generator sweeps through
the range of the nuclear resonance the result will be an

ENDOR spectrum corresponding to a resonant nuclear transition
(see Fig. 16 on page _86). This is sometimes called the

"ENDOR-induced EPR spectrum".(4l)

Since, in general, the
hyperfine splittings do not have exactly equal spacings,
four ENDOR lines are obtained but only two when the EPR

transition is between an outer hyperfine pair of levels.

B. ENDOR Signal

In ENDOR experiments,'transitions between adjacent
nuelear magnetic states are induced. Hence the observed
frequencies are obtained from Egs. (24') and (65) keeping
in mind the selection rules A M =0 and A m = ¢t 1. These

ENDOR frequencies are given by Eqg. (66).
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. hye A >0
M=-3
1
h\)i (+) = E - E;.
1
2
hv“(-) = E - E
%—m %-m-l
1
- (65)
hv 7(—) = E, - E
"f’“’l -5 m
_l -
hv 2(4)=E, -E,
-3 m -3 m+1l
A m+l

B H

- - 2 - 2
Z 7 90°n"m T Zhvg A% + (2m+l)f + W(3m2+3m+1)

2

A v - 2 _
5~ gdnBnHm - 2h\)e a? + (2m—l)f + 5 = W(3m‘ 3m+1)
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v - 3+ 9By §§§i A - (2m-1)f, + ¥ - W(3m-3m+l)

A % . B.H =~ m_ a2 - (2m+l)f, + v . W{(3m%+3m+1) (66)
InPnm Zﬁve 4 7 fSme+Im

o
I

2

where §1, §., 0: and ¢, are the ENDOR frequencies measured at the
d.c. magnetic field Hm corresponding to the quantum number m, and

V and W are defined as

v

8 [2I(I+1)-11f; + [-4I(I+1)+1])f, (67)

W=28 (f, - 4f,) | | (68)

When Eg. (66) is plottea as ENDOR frequencies versus m, there will
be four curves. Since the term ganHm (v 3.3 MHZ) is very much
smaller than A and to the first approximation Ho is lihear to.m
_(see Eq.(26», this term will have only minor effect on the shape
of these curves. /Thué‘if W is small, these curvesvbecome four |
straight lines, while if W is big, they are four parabolas.

 From Eq. (66) we derive the following relations between the
measured quantities of ENDOR experiment and the parameters f,, V,
"W and A. These relations ére important because through them we
can calculate the quadrupoie coupling constant Q, nuclear g-factor

9, and hyperfine céupling constant ‘A.

¢1—¢2+¢3—¢4 = 4f, ' (69)

¢1—¢z ¢3+¢»- - Hé‘ - 12mW | (70)
e .
o , i |
d1+02-0s-Qu= - 4g B H - K%g‘ + 8mf, (71)
: 2m . :
01402+03+0, = 2(a+v) - Ro, A? - 4(3m%+1)W (72)

Th?fe equations are valid form= - 7/2, - 5/2 . . .+ 5/2, + 7/2.
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A plot of the left hand side (thé various algebraic sums of
frequencies) of Egs. (69) to (72) versus m reveals the correct-

ness of the method wé employed to attack the probiem. For example,
the plot of the left hand side of Eg. (69) against m.should be a
horizontal line since f“ is independent of m. If the plot does |
not appear as a horizontal line, then we have to go béck to the
original Eq. (24') from which the {'s are derived. The fact is that
this plot is a parabola instead of a stfaight line. To explain.
this phenomenon we note that had we started from Eq. (24) instead

of Eq. (24') we would obtain the result:
-0 +¢ -9 = 4f + + £ K (m | 69"
,-0,+0 -0, = 4f + (£K (m) + £ K (m) (69")
in which

8 (£4) 2 (m+2)

K m) = 127 - (m+d) me2) 112 - (me2) (me3) ) R
() 2
£
-8 &) (m+1)
1-16 (5) 2 (m+1) 2

#2022 - nmeD) 118 - (mel) (me2) ]

f .
8(KA)(m-l)
1-16 (}%a) 2 (m-1) 2

#2123 - nm-1)1 (23 - (m-1) (m-2)]

£
-85 m-2)

1-16 (£4) 2(m-27

+ 12 - (@-1) (m-2)1 25 - (m-2) (m-3)]

~ 24 (- 22. + 5m ) (§-§-—“)
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£
-8 (Xi)(2m+3)
1-4(Eey 2 (2me3) 2

K (m) = (2m+3) 2123 - (W) (m+2) )

£
-8 (&% (2m+1)
1-4 (%»)2(2m+1)2

3(2m+1) 2 (22 - 1
+ (m?-) [—-4— m{(m+1)]

|

g
B(Xi)(Zm-l)
1-4(E4) 2 (2m-1) 2

+ 3(2m-1) 2 (2} - m(n-1)]

{

.
' \ (%)
+ @m-3)212 - (m-1) (m-2)] =22 (2m-3)

1-4(£2) 2 (2m-3) 2

14

2y 8f | ,

where we have written I(I+l) = 99/4 so that

f £, .
- -0 = 4 - (4 =5 - Lg
¢1\¢2+¢3 ¢“ fu (4368 Y 8640 x )f“
2 f V f . "
+ m* (960 Xi - 3840 =8)f . . (69")
A Y _ -

We will use this equation to find the more accurate value of f“.
Summing up the expressions of "-m" and "+m", Egs. (70)

to.(72) become:
(4 ~b -0 +0 )y + (b =0 -0 +0 ) =- 2B
1 T2 T3 T4'M 1 T2 T3 T _@ hve (74)

(4 +0. -0 -0 )p + (8 +0_ -0 -0 )

} 2
= -4gnBn(Hyy + H_p) - %%g . S (75)

(¢1+¢2+¢3+¢»)m + (¢1+¢2f¢3+¢“)-m
= 4(a+V) - 8(3m2+1)W o | (76)

These equations give more accurate results for A and gp
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because of the cancellation of the odd-order errors. The magnitude
of A is found in the following manner: Q' and Q" are first
calculated from the £, of Eg. (69"). Then £ and £ are calculated
from Eg. (25) by using a value of A from the first approximation.
The parameters V and W are calculated from Egs. (67) and (68). .The
final value of A is then found by the help of Eq. (76). For

example, along the principal axes X”, Y. and 2. of the Q-tensor,

Q Q
we have
(£); = 50; (77)
(£); = (legA?k)z | ~ . (78)
(fs)i =0 : (79)
(V) = 388(f,), - (80)
(W), = 8(£5); , and (81)
A, = %(£¢ri¢} +206n2+DW, - (V) (82)

3
1

where i, j, k take XQ' YQ and ZQ cyclically and £¢ denotes the

summation of ENDOR frequéncies measured at the niobium hyperfine
line of quantum number m. Thus if we know the principal axes XQJ
YQ and ZQ'we can measure the ENDOR frequencies along these direc-
tions and calculate (f“)i or Qi by Egq. (69"). Once the parameters
Q; are known, we can find f“, f5 and f6 along any difection throughr
Egs. (23) and (25). Then the A—vélue.of a general direction can be

- found easily either by ENDOR technique, Eq. (76) or even‘by EPR

\
technique, Eg. (32).



C. The Assumption of Negative A~Value

In order to see the conseguence of a "-A" assumption we first
have to obtain a formulation of ENDOR experiment for "-A". Since
n_mn

A and f“ should have the same sign, we also assume f; to be

Under this assumption'EqL'(GS) and Eq. (66) becomes

L)Q '}v 2\ <‘C)

-
it
9
1
1

V' + (3m?-3m+l) w!

Al mAl2 )
¢; = -5 +BpgpHy + - (en-1) ! -

2hvg 2.

__A' n+l 2 : _ 1 2 '
8y =5+ Baoniy + Ghyo A'Y - mel)f] - 3 V' 4 Gnfidmel) W
¢' =20 B Hy, + = A'2 +v(2m+1ff' -1 V' + (Gm%+3m+l) W'
3 3 n9n¥m, 2hv 4 2
o= Rl g + Loz gy (2m-l)f"— Lyt 4 (3m2-3m+l) W
« = 72 7 Pndnfm * 7R , W T2
where
A' = -2
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V' =
W' = -w
£' = -f,
Let
b=
AR
07 = ~;
07 = -0;
Tpen,
%) =x%' = Bnnly -
¢; = %' - BngnHm
¢; = %' + BnInHy
.¢; =.%' + Bn9nHpy
whiqh leads to
R
N MR R
¢: + ¢: - ¢: - ¢:
AR HE

Let
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v .l W and V being « 1
| g A

m r2 - '
__Zhve A + (2m l)f“ +
m+l 1 2 ‘ '
EHVE A + (2m+l)f5 +
m ,¢2 _ i
535; A (2m+l)f; +
m-1 v2 _ V
2—1'W; A (2m l)f“ +
-4f!
N

A'?

— + 12mw'

hve

~-4B. g H - éli + 8mf;
nnm hve 4

A ‘2m .2
2(A'+V') -~ —— A"

hvg

N =

N =

N} =

N}

V'

Vv

vl

Vl

(3m?-3m+1)
(3m2+3m+1)
(3m2+3m+1)

(3m?-3m+1)

- 4(3m3+1) W

w'
Wl
Wl

Wl



o L -,
or L -0,
o - - b,
¢u B ¢1
m - m
Al - A
f! -f
Y Y
9n + 9p
v! -V
W' - W
Then we obtain
- ¢u + 0 - ¢2 + ¢1 = 4f
0 b =
l..§.¢+¢2—1—h\)e+12mw
b - - - _ A’
_ ¢“ ¢__+ ¢)_2 + ¢_1> = _4Bn9'nHm Fvg + Bmfh o
- ¢ - - - = =2(A+V) + 2m _ A? + 4(3m2+l)w.
4 f q)2 ¢1 hvg » _
or
b, -0, + 0 -0 =4f,
- _ A?_
@l ¢2 ¢)3 + ¢“ hvg 12mw
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A2
¢l+¢2-¢3-¢“=-4ganHm-m+8mf“

0, + 6. + ¢3 + Qu

2 (A+V) - H\z—)-"l A? - 4(3m +1)¥
e

which are just Egs. (69) to (72). Therefore the 95 value will be
the same for the assumption of either +A and +Q (i.e.'fq), or -A
and "'Q (i-eo -f“).

;
/




Chapter V
EXPERIMENTAL SETUP

A. EPR Spectrometer System j

The entire instrumentation is shown in the biock diagram,
Fig. 10. Functionally it may be grouped into four parts, namely,
the x-band microwave circuitry, the low frequency equipment (the
console), the DC electromagnet, and the low £emperature dehar
system (not included in the figure). Although the diagram is
self-explanatory, a few qualitative comments will be made to
"clarify a few points that are not immediately obvious.

The microwave power is provided by a type VA-153»/ 6315
mechanically tunable klystron, 8.5-10.0 GHz, rated at 300 mw
maximum power output. The klystron power is taken out through
the terminals marked "high" and "low" indicated by the letters
A' and A in Fig. 10. The power from the "low" outlet flows along
the path A, B, and‘c, back into B, and then into D. The letter C
designates the cavity, containing the sample under investigation.
The power absorption of the sample gives rise to an amplitude
modulated wave containing information about the magnetic suscepti-
bility X (w) of the sample.

The wave from the "high" outlet flows along A' B' C', then
into D',.which is port #2 of the balancedvdetector. At C', the

30 MHz signal on the 1N23 diode giveé rise to a reference signal

[¥,]
w
I
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30 MHz‘away from the klystron oufput frequency.

Tﬁe circuits associated with the hybrid tee and the crystal
mount work as a substitute for a local osc1llator of a super-
heterodyne detector. In a conventional heterodyne detectlon

technique,(63’ 64)

the local oscillator microwave power is

generated by a separate klystron operated at a frequency of fo +

30 MHz (or fo - 30 MHz) and incorporated with an additional

frequency stabilization network. The electronic circuit required

is more complicated and the dynamic range of frequency operation

is limited. 1In the present setup the local oscillator klystron

‘and its associated components are all eliminated. Only one

klystron supplies the power to the whole system. The freQuency

is stabilized by an automatic frequency control (AFC) circuit with
the sample cavity as the frequency reference. This circuit resembles

(65)

the homodyne balanced mixer introduced by Henning ,with the

modification of an addition of IF signal circuit Wthh helps to

(64) The IF generator has a sbatlllty

eliminate the crystal noise.
of better than * 200 Hz per hour when operated in the 30 MHz range.
Hence, there is no drift problem. The operation is simple, and once
the IF signal generator is aliéned to the IF amplifier no more
adjustment_is_required,'eThe_superheterodynenis_always in optimum
condition no matter how the klystron frequency is changed.

The electromagnet system contains a Varian 1l2-inch magnet
of 3" gap, a Varian 2100 B regulated magnet power supply and a
V-4280 Precession Fleld Scanning Unit. The regulated power supply

can produce a current of 20 ma to 2 amperes to the magnet. The

corresponding maximum magnetic field obtainable is more than 11,000
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gauss. The regulation is one part per 100,000 with 10% line

voltage fluctuation. Field scanning is obtained by rotating

the arm of a precision potentiometer with a constant speed motor

and gear train in the Precession Field Scanning Unit. A scanning
speed of from 1 gauss/min to 500 gauss/min is available in the range
of magnetic field 0 to 10,000 by selecting a proper resistance

in series with the precision poténtiometer.

In the 3" pole gap a double glass dewar system is installed'
for low temperature operation, consisting of an outer and an inner
dewai. The cavity system is housed in the inner dewar. (Seé the
drawing, Fig. 3).‘ The liquid nifrogen fills the space between
the outer and inner dewars. This is a capacity of 1.5 liter of
ligquid nitrogen which can maintain the temperature for 15 hours
after reaching equilibrium. Liquid Helium is transferred into
the inner dewar for ENDOR experiments. It can take 0.9 liter
~of liquid helium which will last for about 4 to 5 hours.

The magnetic field was measured by using a Varian Nuclear
Fluxmeter Model F-8 with a protron probe located outside the
' dewar vessel. The NMR frequency of the fiuxﬁeter was first
beat against a Beckman Transfer Oscillator Model 7580, and then
-mdnitored by a Beckman -Universal EPUT .and Timer Model 7370. The
~ inaccuracy of the fluxmeter is t 0.04 gauss at 3000 gauss maiﬁly
due to the proton line width. The frequency stability of the
transfer oscillator is 10_6 per min. and the accuracy is
* 1 kHz,

The microwave frequency of the klystfon is monitored by

an hp-X532 B frequency meter, which can be reéd to + 1 MHz with
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good reproducibility. A higher éccuracy is obtained by using
the transfer oscillator and EPUT equipment. When the klystron
oscillates in the 9200 to 9700 MHz range, the 66£h harmonics of
the transfer oscillator frequency (75-150 MHz) beaté strongly.
with the microwave, and the EPUT counter gives the frequéncy

in six figures, e.g., 9297.55 MHz * .05 MHz,

B. The ENDOR Arrangement.

The ENDOR instrumentation includes the signal generator
the wide band voltage amplifiers and the power amplifiers in
addition to the whole EPR.arrangement. (See Fig. 10). There
is also a modification in the cavity design as will be seen

later.

l. The Signal Generator

The radio frequency (RF) 'signal is generated by an FM-AM
Standard Signal Generator of Type MSZ7.made by Radiometer, Denmark.
This instrument covers a frequency band from 0.3 up to 240 MHz
in five ranges. It has a véltage output adjustable from 0.1 u
Volt to 0.1 volt across a 50-ohm loéd; with a frequency stability
of 5 x 10_5 per hour for frequencies from 15 MHz to 240 MHz. for
external FM, a source of approximate1y 3 volts into a 200 Kohm
load is required. The maximum fregquency deviation obtainéble
is 600 KHz. For this measurement, a 400 Hz external modulating
frequency is used and the déviation frequency is ébéut 80 KHz.
The 400 Hz modulating éignal is generated by the low frequency

oscillator amplifier in the console for EPR use and is switched

to the signal generator when ENDOR measurement starts. Frequency
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modulation is used rather than amplitude modulation because FM
is found to be more effective for the observétion of ENDOR
signal in this experiment. A low speed drive unit has been
installed on the frequency tuning dial for ENDOR field scanning.
In the range of 30 MHz to 60 MHz the scanning rate is about

1.4 MHz per minute. The frequency of the signal generator

is accurately measured by an hp-5246L Electronic Counter with

an hp-5251A Frequency Converter as a plug-in unit.

2., The Voltage Amplifiér

The output of the signal generator is bopéted by two (or
three) hp-460 AR wide band amplifiers connected in cascade. Each
amplifier has a band pass from 100 KHz to 120 MHz and a voltage gain
of 20 db. These amplifiers can be substituted by twoA(or three)
solid‘state distributea amplifiers of Model.3007 from C-COR Elec-
tronics, Inc., State College, Pa. The latter proVides a wider
band pass of 100 KHz to 225 MHz with at least 36 db total gain.
However, neither type of amplifiers gives sufficient power

output to drive the ENDOR coil.

3. The Power Amplifier

The ENDOR coil is powered by two Model ifi 500 wide band

- amplifiers vié a few feet of coaxiai cable. These‘amplifiers'are
connected for series operation following the voltage ampiifiers.‘
Each poWer amplifier has a band pass of 200 KHz to 220 MHz, a gain
of 10 db, input impedance of 90 ohms, output impedance of 180 ohﬁs

and a power output capability of 3 watts cw: It was found hard

to match the ENDOR coil with the output of the ampiifier for the
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whole working frequency band. However, since the power of the
amplifiei was high enough, the mismatch did not constitute a

problem in this experiment.

4. The Cavity

The cylindrical cavity has dimensions of 40 mm ID x 50 mﬁ
length with 3mm wall thickness. The mode of the standing.wave
inside the cavity is TEOll' The resonant £frequency fr can be

estimated from the formula (83)(66):

(£D)? = A + B(3)® . (83)

where fr is in MHz

D = inside diameter in inches
| L = inside length in inches
A = (crl/n)2 = 2.0707 x 10°®
B = (c/2)2 = 0.34799 x 10°
¢ = Velocity of light = 1.17981 x 10'° inches/sec.
r. = the lst non-zero root of the cylindrical Bessel

Function J;A(r)

= 3,83171

The raw material for the cavity is Lava, grade A, made by
American Lava Corporation. Chemically it is an hydrous aluminum
silicate. It is machinable; but there is a 1.5% shfinkage under
‘heat treatment. Hente just after machining, the cavity size .
shquld be proportionally larger than that specified in Fig. 4._ It

. \ ' :
~ is'then fired up to 2000°F, the furnace is shut off and left to
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cool doWn_to room temperature by itself, The inside wall of the
cavity is painted with Du Pont Silver #4731 and fired up to
1100°F. This makes the silver adhere to the wall. The painting
and firing can be repeated for two or three times if the silverv
coating appears uneven at first.

A schematic of the cavity is given in Fig. 4 and the
assembly drawiug of cavity and weve guide is shown in Fig. 5. A
hole of 8mm diameter at the center of the.cevity cap is previded'
for the insertion of samples and another hole of 4mm diemeter
‘inside the waveguide for microwave coupling. For optimal opera—
.tion, the coupling hole is positioned at about half the cavity

radius from the center.(66)

The coupling is achleved by a small
loop of copper wire in a figure of 8 embedded in a piece of teflon
fixed: at the end of a long quartz_tubing. This tubing passes
tﬁrough the center of the stainiess sﬁeel (8.8) waveguide and
_protrudes out of the waveguide bend. Thus the degree of coupling
can be adjusted on top of the dewar vessel during the experiment.

(See Fig. 3).

' The ENDOR coil is formed by two turns of enamel wire about

SWG #30 paSsed through four small holes on the cavity top and

-

_bottom The area of the c011 1s llmm X 59mm The center of the

coil coincides approx1mately with that of the cavity, where the
sample is positioned. One terminal of the coil is grounded on
»thevwavegUide surface while the other is soldered to the central
wire of the S.S. eoaxial cable. The coaxial cable, approximately
29“ in length, is clamped at the surface of the S.S. waveguide,

and after passing through the dewar cap, the outer end of the
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cable is terminated with a BNC connector.

The RF magnetic field generated at the center of the coil
was checked by a search coil before the sample was placed in the
cavity. The voltage induced in the search coil was measured by
the Tektronix Oscilloscope 545 with type 181 Sampling Unit‘and a
cathode follower probe. Alternately, the RF field can be calcu-
lated from the ENDOR coil area and the current paésing through
the coil. The current is measured by a Tektronix current probe
P6020. Its output, in milliampere, is then directly read from
the 1S1 Sampling Unit and Scope. The latter method can monitor
the field when the sample is in position. The results from both
methods agree well, the RF field is found to be about 1 gauss peak
to peak in the 15-60 MHz frequency range.

When the dc magnet is set at zero degree, the piane of
ENDOR coil is parallel with the dc magnetic field; Since this.
field is located horizontally and the cavity with dewar stands
.vertiéally, the three field, i.e., the dc magnetic field, the

microwave field, and the ENDOR field are mutually perpendicular.

C. The Sample
Calcium tungstate has the scheelite structure. It contains

four molecules per unit cell and is characterized by the space

. _
group(ﬁh symmetry.(g) The size of the unit cell is
o

c =11.376 + .003 A
o o
a=Db=5,243 £ ,002 A

Tﬁe crystal CaWO, can be considered as a composition of WO, ions
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and ca*t ions bonded together iohically. The radical WOZ— is
formed by a tungsten ion W6+ covalently bonded to four oxygen
jons O . These four oxygens form a squashed tetrahedron
(bisphenoid) with the tungsten ion at the center. The dimension
of the squashed tetrahedron is 2.11& X 2.113 X 1.963 with shott
side along the c-axis. The W-O distance is 1.782 . The diagonal
plane of the tetrahedron makes an angle of 31°54' with the a-axis.
A schematic diagram of the unit cell is given in Figs. 6 and 7.7

_The orientation of the crystal was determined by an GE XRD -
5D/F x-ray diffraction unit. The Laue pattern of the crystal was
'taken by using a Polaroid XR-7 system. Two pictures showing the
Laue image along crystal c-axis and a- (or b-) axis are given in
Figs. 8 and 9, respectively. |

All the crystals were obtained from the Harry Diamond
Laboratories. The orientation of the boule of crystal was first
checked by the x-ray Laue picture. Small pieces (about 5mm x Smm
x 5mm) were cut off the boule by a diamond saw. After cutting, |
the orientation of the sample was checked again using the x-ray
Laue technique, and then glued to the end of a 6émm diameter VYCOR
quartz tube with Pliobond cement and left to dry. The orienté—
tion of the sample was'éd-chosen that the dc magnetic field would
move in either the ab-plane, or the ac-plane, or the (110) -plane,
or the diagonal (d-) plane defined by the two diagonal oxygens
and the c-axis of the tetrahedron.

Before putting into the cavity, thé sample was irradiated
ét‘77°K with a 10 thousand curie Co-60 gamma source for 1 to 2

hours. The dose rate was about 200 Krads per hour. At the end
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of irradiation the sample was transferred into the cavity as fast

as possible.
D. Operating Procedure

l. EPR measurements

The measurements of ﬁhe g-tensor and A-tensor of Nb4+rin
Cawo, single crystals héve been madé at 77°K using the apparatus
described in Section A. The sam§le cavity is housed in a dry
_inner dewar with the oﬁter dewar filled with liguid nitrogen.
The gamma-irradiated sample is transferred into the cavity after
precooling to 77°K.

The EPR absorption spectrum is very complex. The nuclear

spin I of the 100% abundant Nb>>

is 9/2. Conseqﬁenﬁly the hyper-
fine Etrﬁbture consists of 10 cbmponents.‘ There are 4 inequiva-
lent Nb sites, corresponding to the 4 oxygens to which the Nb is
bonded. The spectrum is complicated further by the.presence of
"forbidden" transitions. Consequently, extreme care is needed
in identifying the different components with the proper groups.

Measurements, therefore, were made by rotating the magnetic field

about 5° each time.

2. ENDOR.measureﬁentr

ENDOR measurements were carried out at liguid helium tempera-
ture (4.2°K). As the liquid helium is‘inside’the’inner dewar, the
cavity resonant_frequency,'fr drpps to a lower value than the one
at-liquid nitrogen temperature. The.cavity.Q»is usually better

at 4.2°K.
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The spectrum is observed at a very low power level (more
than 70 db attenuation) so that'the line shape does not show any
saturation effect. The beginning of‘saturation can be recognized»
as the line starts to broaden and its amplitude tends to decrease.
Further saturation makes fhe line shape asymmetric. The line
appears one-sided as the saturation increases.

After identification of the line sets, the magnetic field
is set on one of the line peaks. The power level is increased a
few dbs above the value at which saturation commences. Too much
saturation will.reduce'the s/n ratio of the ENDOR signal.. The
optimal degree of saturation is found by trial and error. The
400 Hz magnet field modﬁlation is switched to the input of the
"Ext. Mod." of the RF signal generator. The power level of the
source of 400 cycle is increased to give a propér frequéncy
deviation of FM signal. The gains of the signal generator and
its following amplifiers are controlled to obtain an adequate
RF field in the ENDOR coil. The ffequency of the signal generator
is scanned over an.appropriate range, in the present experiment
from 20 MHz to 70 &Hz. When the ENDOﬁ signal has been initially
located, the following readjustments are made to optimize the
s/n ratio: |

1. The exact position of the magnetic field around
the péak of the EPR line.
2. The degree of saturation
3. The deviation frequency (~ 80 kHz)
4. The RF field strength (~ 1 gauss)

There will be 4 ENDOR lines corresponding to Am = * 1 and
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-A_M = 0 for each of the EPR line of all allowable quantum numbers,
except m = * 9/2 which represent the end lines of a line set. For
each of these end lines only two ENDOR lines corfesponding to
Am=2+1and AM= 0 can be observed. For each ENDOR line the
following data were taken: the microwave frequency, theAmagnetié

field at which the EPR line occurred, and the RF frequency.
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Chapter VI
EXPERIMENTAL RESULTS
A, EPR

1. Samples
All the Samples utilized in this study were obtained from
the Harry Diamond Laboratories, Washington, D.C. These samples

include: #A-11, CaWO,: 0.5% U,0,, and 1% Nb,O; in melt (Mar. 31,

3’ 275

1967), #A-12, CaWo 12 Tm and 1% Nb in melt (June 6, 1967);

4t
#A-17, CaWo, : 0.1% Nd and 0.1% Nb in melt, polished platelet
(Sept. 6, 1967); and #A-18, CaWO,: 0.1% Nd and 0.1% Nb in melt
(Sept. 13, 1967). The last two samples have the same impurity
contents but were grown at different times. The daté in the
brackets indicates the time the sample was received. Different
samples cut from the same boule were marked by the same number

but with different‘greek subgcripts, e.g. #A-18_, #A-l86, #A-18.,

etc.

2. Spectra - B ' ‘ ' - o
A typical EPR speétrum when the magnetic field is along
the c-axis is sho@n in Fig. 11. This spectrum shows several |
striking features. One is the spacing of the allowed (A M = 1,
A ﬁ = 0) HFS lines. The spacing is the narrowest at the central

portion and widest in the wings of the spectrum. (See Fig. 28).

)

N+

Also the intensities of the lines near the center, (m = #

72
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are the greatest, least for the lines m = ¢ 7/2, while the end
lines m = * 9/2 have some intermediate intensities. For the
forbidden lines (A M =1, Am= % 1), the doublet separation is
the greatest at the ends, and decreases tbward the center of the
spectrum. The'greatest'doublet separation is at the high field
end. See Fig. 17. The intensities of these doublets are |
greatest in the wings and drops steedily to zero at the center.
Another point is the slight shoulder on each of the HFS iines;

(76) indicate that the'structure.may be

due to nearby tungstens, W183. However, definitive studies have

some tentative studies

not been carried out.

When the magnetic field is off from the c-axis, the spec-
trum is complex consieting of 4 groups of lines,.as shown in
Fig.113. However, in the ab-plane, the EPR spectrum consists
of only 2 groups instead of 4. (See Fig. 12). These symmetry
- properties of the EPR spectrum suggest that the Nb ion is bonded
preferentially to one of the 4 nearest neighbor oxygens.

In Figs. 14 and 15 it is noted that the forbidden lines
are conspicuously absent. ,These.directions correspond to the
direction of the QO-tensor axes, as will be discussed later.

In the’plot of the A-values along the-c-axis,-Fig. 30, it -
~is seen that for the sample of #A-18, at 4;2°K, the A-value at
m= % % is given es 83.97 MHz which is about 0.6% higher_than
the other values. This sudden jump is an error introduced

144

because of the even isotope Nd which gives a strong line at

g = 2. This line happens to be broad and close to the niobium

HFS of m = + %.
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The values of A and A"along ZO

T = 4,2°K of Fig. 36 are much too higher than normal due to the

~axis at m = * 3/2 and

interference of an adjacent line belonging to line set #4.
3. Data Analysis

a) Determination of g- and A- Tensor Principal Axes.

The angular variations of the A'- and g'- values for
several magnetic field planes are shown in Figs. 18 to 25, in which

g' and A' are defined by

_hwv
g' = gz g7
8 Ho
where
H'zl(H + H ) m=.1I
-2 m - '
and
A Z .2 (M - H) m=1
' = 2m ‘V-m m '

The quantities g' and A' represent the first approximation to
‘the correct g- ané A- Values, as will be'discussed later.

The principal axes of the g-tensor were determined from
the extremum values in the angular variation plots. “According
to'Fig.‘lé, the egtremum occurs near ¢.= 30°; in the ab-piane,
and from Fig. 20, the angles © =_3d° and 60° were suggested.
Consequently the angular variations of the g'-value were compared
for several azimuthal planes. '(¢ = 22°, 26°, 28°, 32°, 45°) and
vthg one for § = 28° was found to yield the largest g-value, at

-e‘— 62°, See—Fig.-22.— These_values are to_be compared to




75

® = 56.7° and § = 31.9° for the W-0 bond direction. (Fig. 7).
Repeating similar procedures for the other directions and
also for the A-tensor, the following directions and values were

obtained:

g- tensor
0 ¢ g
zg 62° 28° 2.0534
xg 28° 208° | 2.0133
Y, 90° -62° 2.0077
, A- tensor
o o  A(MHz)
Zy - 62.5° 46°  88.388
i » ;'
\ X . 27.5°. 225 | 80.979
A B _ i . 1 L
4 - . —+
Y 90° -45° y 75.159
A _ _ y

b) g- and A- values

Measurements indicate that the principal axes of the g—;

A- and Q- tensors do not coincide so that the evaluation of the
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~ Spin-Hamiltonian parameters is difficult and also tedious. Fortuna-

tely good estimates of the g- and A- values can be obtained by

using the first order perturbation calculation results:

N G
Hl = 5 (H + H-m?'
g' = %%} (30)
Ko}
and
A' = =1 (- HL') ' ' ' (33)
2m -m m '

where vg and Hj are the EPR resonant frequency and magnetic field
respectively. The angular variation of g' and A' for variéus
planes are plotted in Figs. 18, 19, 20, 21, 22, 23, 24, and 25.
The errors introduced By using Eq. (30) and (33) are estimated
té about * 0.3% and * 5% for the g— and A~ vaiues respectively.
For the principal values of A and g presented in Table 1,
the results from the second order pefturbation calculation have

been used. The g-values obtained by using Eq. (28)
99 |

2
_1 "
Ho = 7 (i + Hp) *oomery Bnen * Hogmeny — Bntig)!
9SBHE o esy

"o
-are plotted in Figs. 26 and 27, for various orientations of the
_ magnetic field at both liguid nitrogen and liquid helium tempera-

tures. Also, A-values calculated by Eq. (32)

A ='%E(H-m—Hm)gB - 8[21(I+15 - (2m2+1)lf;

-8[-41(I+1) + 8m’+1]f | | (32)
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are plotted in Figs. 30 to 36. For these plots the H 's were
taken from the EPR measurements and the f5 and fG computed from
ENDOR measurements.

These corrections reducé the error in the g-values to
about 0.04% and the A-values to less than 1%. The gquantities
fs and f6 (see Eq. (21) or (25)) are calculated from the constants
appearing in f“, which in turn is estimated from the positions
of the forbidden lines or measured accurately by ENDOR. Note
that there is a difference of A-value existing between 4.2°K
and 77°K. This difference is about 1%. This temperature depen-

dence will be explained later on.

c) Adijacent HF Line Separation

As indicated earlier, the separation between the adjacent
HFS lines is smallest at the center and largest in the wings of
the spectrum (Fig. 11). This phenomenon can be explainea easily
~if the quadrupole coupling term is the dominant perturbation in
the Spin Hamiltonian. Eq, (24') leads to the adjacent HFS separa-

tion as K

AH = gB(H__,-H )"
' 2m%-1 . 2 T 1y
= A+ V - A% - 2W(3m“-3m+1) (84)
2hve .

where W and V are as defined by Egs. (67) and (68), and are
independent of m. Eg. (84) is an equation of parabola. The experi-
‘mental results for the c-axis are ploﬁted in Fig. 28. The bold
cgrve represents the average value obtained from 7 measurements

in the range of temperature from 77°K to 4.2°K, The range mark
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at each point indicates the data spread.

d) Fit of the g? - Equation

Eq. (17) can be written in the form
g = g? + (g2 - g?) cos® (H) oar

This'representé a straight line equation if g? is plotted against
cos? C) , where @D is the aximuthal angle between the applied‘
field H and the Z-axis of the g-tensor. g¢_is the g-value in the
direction perpendicular to the Zg-axis. The result of measure-
"ments made in the d-plane is given in Table 2 and plotted in Fig.
29 in which the g? has been calculated by using the first'order
perturbation result, Eq. (30). In the d-plane, the point where
cos? (:) = 0, gives g = g, and cos? (:) = 1 giyes g, From the
plot, we obtain g; = 2.0129 and gé = 2,0527 which should be
compared with the exact values: g, = 2.0137 and g, = 2.0534,.

respectively.

e)

933 and dy from Forbidden Doublets

The first forbidden doublets, érising from the transitions
AM=+%1, Am=¢%1], can be used to obfain estimates of the
quadrupole coupling constant (Qaa) and the nuciear-é—value (gn).

According to Eqg. (60), the doublet separation is given by

+ - - + a2
gB (Hm - Hm+l) =. 3(2m+1)Q33 - gan(Hm+l+Hm) - EF\)-; (60)

Measurements were made for both H // Yg and H // c-axis (See Figqg.

17). The results obtained are
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Qsa‘MHz) 9n
Yg-axis -.68 .J1.28 - 1.33
c-axis +.72 1.38 - 1.42

These values are to be compared to Q,, (Yq)

= -.835 MHz and Q33

(o) = + .748 MHz obtained from ENDOR measurements, as will be

discussed presently.

Also the ENDOR measurements of 9, give

1.357 and 1.398 along the Y4 - and c-axes respectively. (See

Table 5).
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Fig. 22. g-value, Angular Variation in d-plane (28°).
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Table 2

g? vs. Cos? H

g’ - (922— gf) cos’® + gf

® cos’® ¢’
z-axis 0.5° . 99992 4,21333
2.5 . 99810 4, 21370
1.5 . 98295 4, 21095
12,5 . 95316 4, 20357
17.5 . 90958 4,19938
22.5 . 95459 4,19037
2.5 . 78679 4, 17957
32,5 .71131 4, 16731
36,5 . 64619 4, 15695
3.5 . 62940 4,15348
42,5 . 54358 4, 14033
41,5 . 85642 4 12585
52,5 . 37059 41177
57,5 . 28869 4, 08896
c-axis 62.5 .21321 4,08671
67.5 . 14644 4, 07604
2.5 . 09043 4, 06643
7.5 . 04685 4, 06023
82.5 .01704 4, 05446
- 87.5 . 00190 4,05197
x-axis 88,5 . 00069 405177
92.5 . 00190 4,05189
97,5 .01704 4,05454
102.5 . 04685 405910
107, 5 .09043 406510
12,5 . 14644 4,07467
17,5 .21321 4, 08493
122.5 . 28869 409755
125, 5 .33721 4, 10500
1215 - . 37059 4, 11080
132.5 . 45642 4, 12419
137.5 . 54358 4,13895
142.5 . 62940 4, 15365
1415 L1131 4, 16666
on ab-plane 1525 . 78679 4 17957
15,5 . 85459 419013
162.5 . 90958 4, 19971
1615 .95316 4, 20544
172,5 . 98295 4, 21066
171.5 . 99810 4, 21358
179,5 . 99992 4,21333
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Fig. 32. A-value vs. m, Yg-axis
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B. -ENDOR

1. ENDOR Frequency Idenﬁification

The ENDOR frequencies were measured from spectra, such as
shown in Fig. 16. These spectra are obtained by applying satur-
ating microwave power atﬁthe resonance magnetic field of each
of the 2I + 1 HFS lines and then scehniﬁg with an RF generator
from ebout 20 to about 70 MHz. 1In general, there are four
frequencies for each value of m, excepting for m = + I, for
which»there.are only two. .

We shall show how the partialvidentification of the ENDOR
frequencies given in Eqg. (66) is correlated with the experimental
curves given in Figs. 38 to 44. Two characteristics of the plots
are thet (1) they occur in pairs, i.e. two of the 4 branches
have a positive slope, the other two have a negative one, and
(2) thet the curvature of the 4 branches are all positive, zero
er negative.

These features can be readily understood from Eg. (66)
in which, if we assume the terms containing f“ to be the dominant
_ones in determining the slope of the plots. We note that the
- first two equations giving-(b1 and ¢, have the same, or nearly
the same slope, and the remaining two have also-neaéif the
same slope but with a sign opposite to that of the former pair.
The first two frequencies ¢. and ¢; are associated with the
nuclear spin transition for M = + %. See Fig. 37a.

From the fact that the nuclearepectroseopic splitting factorgn is
93

'positive for Nb”~, it is deduced from bhoth EPR and ENDOR measurements

108
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that A and f“ have the same sign.

2; ENDOR Freguency Plots

The ENDOR frequencies meésured along several directions
(Xg, Yg, Zg’ XQ,vYQ, ZQ and c-axis) are presented in Figs. 38 to
44, These frequency plots show clearly the importance of the
quadrupole interaction term of the spin Hamiltonian. Ordinarily,
the dominant nuclear interaction terms such as the HFS and the
nuclear Zeeman terms in therspin Hamiltonian are linear in the
nuclear spin operator i, so that the second order contributions

to the nuclear energy levels are proportional to matrix elements

of the form
|<mz1|1#|m>]|?

and therefore are quadratic functions of m. The ENDOR frequencies'
then, being given by the separatioh of adjacent nuclear spin
magnetic levels, are linear in m, and hence the ENDOR frequencies
plots are expected to be straight lines. On the other hand,_if an
interaction term qgadratié in the operator I is dominant, such as
the nuclear guadrupole interaction, then relevant matrix elements

are of the form
|<m'|I.1.|m>]|2
1]

~ so that the second order contributions to the energy levels will
be quartic in m. Consequently, the expressions for the ENDOR
frequencies are expected to depend upon m? and m®. The freguency

p%?ts,‘Figs. 38 to 44 reveal that the behavior of Nb4+ ion in

CaWO,1 favours the latter case, that is the gquadrupole interaction
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deinates. Equations of ENDOR frequencies derived under the
assumption of dominant quadrupole interaction are given by Eq.

(66). The curvatures of the plots depend upon W, given by

W=28 (fs - 4fs) ~ (68)
where
2
£ = 011 - 022)2 - 407,
5 16A
Q%a + Q%a

R e

‘As indicated earlier, the cbmponents of the guadrupole tensor,
Qij’ are measured in a coordinate system for which the 3-axis
is the direction of magnetic field.

Consider the ENDOR plots in Fig. 40. For this case, the

magnetic field is along the quadrupole principal axis, ZQ, SO
that
£ =LQ11 - 022) 2
s 16A
fs = 0
and
W= 8fs = (011 - Q22)2

ZA

The fact that the plots are straight lines, or nearly so, indicates

that .
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4 and

Q11 = Q22

The value of W can also be obtained direcfly from the plot of
Eq. (70), namely

A . __A? o :

¢l - ¢2 - ¢3 + ¢“ = -B—\)—— - lZmW (70)

e

When the left-hand-side of Eq. (70) is plotted against
m, the slope of the plo% gives W. The result of fitting the
ENDOR frequencies to the expressions of Eq. (66), using the W

found in the preceding manner, is shown in Table 4.

3. OQuadrupole Principal Axes and Values

The inadequacy of the usual perturbation calculation is
1. .

revealed by Eq. (69). Combining this with Eq. (25') we find

(Q33)approx. = % (0, - b2 + 05 - ¢u) . 85)

which should be a constant (independént of m). The plots of this
quantity versus m are given in Figs. 45 to 51. These plots show
appreciable deviation from horizontal straight lines,” although

axis, the (Qs3s3) for different m values is

~along the 2 approx.

Q
almost a constant. To account for these deviations, we use the

more nearly correct expression Eg. (69"), which indicates that

the plot of ¢, - §, + ¢s - ¢, is a parabola:

_ 8 _ ., 160
= 0,,[1-3 (91 -180£¢) + m

(Qas3) = (fs5-4f6)] (86)

appfox.
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or

(Q3a)approx. = Qaa[l—% (v-16w) + mz(ggﬂ)] (86")

where use has been made of the relations of Egs. (67) and (68).
The curvatures of these plots depend upon the sign of the
'quantity Q33 l%g (fs - 4fs) of Eg. (86), or the gquantity Q33(3%E)
of Eé. (86'). Fitting the ENDOR frequencies to Eg. (86') leads
to the results given in Table 4, in which fs and f¢ have been
calculated by using the average-value of (Q33)approx. andvthe
Egs. (23) and (25); W is calculated from Eq; (68) and A is taken
as a positive. Using the values of fs and f¢ given in Table 4,.
Q33 is calculated according to Eq. (86). The principal values
of the quadrupole tensor given in Table 5 were obtained after
correcting for this m? dependence. |

The principal axis of qguadrupole tensor can be readily
obtained by noting that the intensities of the first forbidden
.1ines are proportional to

1 _ e Qf3v+ 033
forbidden. A

whére the 3-axis aenotes the direction of the magnetic field.
Conséquently, if'fhe-magnetic_fie;d direction coincides With{bne
of the principal axes, then both Q:3; and Q.3 are zero, and soO

is fs (Sée Eq. (25')), so that the forbidden lines disappear as

shown in Figs. 14 and 15.
N

\
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4., Nuclear g-vValue
Use was made of the positive sign of g, to show that Asy
and Qii have the same sign. The numerical value of g, can be

estimated from the ENDOR frequencies according to the formula:

g B H =2 (bu - §1) + m(2£, + 31 (87)

This equation is.obtained by combining Egq. (70) with Eq. (71).
When 3/2 (Qss) o o is substituted into Eq. (87) for f.,

the values of 95 calculated from this equation for different

m's are plotted as the first approximation of 9 (See Fig. 52

" to Fig. 55). More accurate values of g, are found from Eq. (75).
The latter gives the horizontal straight line shown in thé same
figures. Note that the difference between the gn's of various
axes is less than 5% and that the quantity ganHm is small

(v 3.3 MHz in the x-band), so that the assumption of an
isotropic 95 in the spin Hamiltonian is plausible. The average
value of 9, determined by ENDOR is 1.366 + ,036 compared to 1.3652

obtained by nuclear magnetic resonance.(67)

5. The A-Values

The hyperfine structure tensor A is obtained through Eqg.
(72) or‘Eq. (76) or Eg. (82) in thch the quantitiés‘w and V are
calculated from Egs. (67) and (68) by using the fs and f¢; presented
in Table 4. Along the principal axes of quadrupoie, the values
of A calculated for different &alues of m are plotted in Fig. 56.
The near independence of A upon m provides considerable confidence

to the precision of the A-values. For other directions, A-values
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have been computed by Eq. (76) and plotted in Fiag. 30 to Fig.

33 (labeled ENDOR) along with the A-values obtained by EPR
technique. The ENDOR result should be comparable to the EPR
result measured at 4.,2°K. This is true for all the directions
except the c—axis, Xg—axis and Yg—axis,.Fig. 30 to Fig. 32.

For these directions the A-values obtained by ENDOR technique

are about 2% smaller than by EPR»technique. The reason behind
this is not well understood. Howéver, an interpretation is given

as following. First of all we note that the EPR results for the

. hyperfine coupling constant A have been calculated from the Eqg.

(32) :
_ H_m - H
EPR: A = gB ——m—iﬁ—m
- 8[2I(I+l1l) - 2m%-1] £
‘ _
- 8[-4I(I+1) + 8m2+1])f, ' (32)

Using the definitions given pieviously:
Vv =8 {[2I(I+1)-1]fs + [-4I(I+l)+l]fe} (67)
W= 8(fs - 4f) ' (68)

Egq. (32) becomes

EPR  a=gglm = Am v oy oom2y (32')

The ENDOR results have been obtained by using Eq. (82):

ENDOR: A= (20 +20) - v+ 203m2+1)w (82)
m -1

The second and third terms in Eags. (32') and (82) are the
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correction terms due to quadrupole coupling. We expect A (EPR)
and A (ENDOR) to be the same because both Eg. (32') and Eq. (82)
are derived from the same energy level formula Eg. (24'). The
question is then why for c-axis, Xg—axis and Yg—axis, the
experimental values of A (EPR) and A (ENDOR) are different.
Suppose we imagine an'ideal case without the quadrupole inter-
action, nuclear Zeeman interaction, or the second order HF

effect. Then we would'have instead of Egs. (32') and (82),

EPR: A =gB H—‘IIZ;;—Hm 4 (32a)
1

ENDOR: A= h-+ : 82
7 (Z0+ IO (82a)

'The idealized energy levels are depicted as shown in Fig. 37b,

in which hv, is the EPR frequency and ¢,, §., ¢3.and b, are

the ENDOR frequencies. The energy levels are two sets of parallel
lines, M = + % and M = - %, with equal spacing, §1=0.=03:=0.=

% £¢.' The HF lines hve are vertical lines which are also parallel
| to each other and with equal spacing given by E:mjé_gm . Therefore
the A-values measufed by EPR and ENDOR methods can be represented
by a tetragonal like abcd which is, in this case, a parallelogram
and has a constant area «,% A?. In the EPR method, what we

measured is the diagonal distance bd, while in the ENDOR method,

the sum of sides ab and cd, that is

bd = g 20— T
ab + ;g =1 (20 + £ 0)
Z— m -Mm

anQ —

bd «(ab + cd) = A? = 2 x area of abcd
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When the effects of nuclear Zeeman interaction or/ and
the second order HF interaction are taken into consideration,
the energy levels become non-parallel lines for éach set of
M=t %. However these terms are cancelled out and.have no
influence on the calculation of A. 1In our case, the guadrupole
coupling effect is important. When this effect is included,
the spacing between the energy levels at a given magnetic field
become unequal, and the area of the parallelogram abcd is no
longer proportional to % A%, 1In order to keep this proportionality,
correction factors are to be introduced into the linear dimen-
"sions of the parallelogram abcd. The correction on the diagonal
appears on the second and third terms of Eq. (32') and thét on the
sides, ab+cd, appears on the second and third terms of Eq. (82{.
Thus any error introduced in the estimation of these correction |
terms would show up as the difference in A (EPR) and A (ENDOR).
Since both Eq. (32') and Eq. (82) contain the same V, this term
does not lead to different values in A. However, the third term
of Eq. (32'), 2m*W and that of Eq. (82), 2(3m*+1)W are important.
They carry the same factor W but the coefficients 2m? and
2(3m?+1) are different. Thus along the c-axis, since W has a
negative sign, an over'eétimated.magnitude of W.leads to an
: A(ENDOR)smaller than A(EPR). The same situation occurs on ngaxis.
Along Yg—axis, W is found to havg a positive sign. Hence an
under estimation of the magnitude of W leads to an A(ENDOR) too
smaller than it should.be. Note that from Eq. (68), the magni-
tude of W is in turn determined by fs and fs. A small error in

the estimation of fs and/or f¢ can produce an error 10 times as
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bit in W. This argument indicates that the difference in the
two A values obtained by EPR and ENDOR methods could come from

errors introduced in the estimation of £s.

The final result of ENDOR experiment, including Q, g énd

n

A is summerized in Table 5. For comparison purposes, the data

of EPR experiment are also ihcluded_if possible.

¢
J
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Table 5

Constants of Spin Hamiltonian

-Sphericat co- A (MHz)
ordinates refer- 033 gn EgR
Axis red to oxygen # 1 (MHz) {ENDOR) EPR
o © | ENDOR |Calculated ENDOR ™0 2% | 7% | a2 | 7%
Xq 57° 225" | 0561 | ----- | L3ads | 84008 | 83.930 | 8284 | 2023 | 20222
Yo 90° -45° | -085 | ----- 13568 | 75.734 | 76,147 | 74997 | 20121 | 20108
0 o°
Zq | ® 1392 | ----- 13657 | 87.442 | 87.83 | s6.485 | 20428 | 20409
Xy 28° 208° | -0.09 | -0.084 | L34 | 8L208 | 8L1%0 | 80.300 | 20104 | 20025
Yy 9%0° 6° | -0m9 | -0.762 | L3497 | 76.934 | 17.252 | 6.014 | 2.0017 | 20069
Z, 62° . 28° | 085 | 0846 | L4019 | 89.234 | 89.274 | 87.844 | 20534 | 20531
Xo | 25" | 25° -0.069 80,979 2.0136
(1] 0 -
Y, | % -85 -0.835 75. 159 2.0113
z, | 62 50 &° 0.904 83,388 2. 0492
a 90° 0° -0. 408 82132 | sL121 2. 0366
b 90° 90° -0, 408 82.848 | 81506 2.0145
c ® | - 0.748 | 0816 | L3983 | .15 | 83.686 | s2507 | 20240 | 20217
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M=-1/2
CASE (1)

A>0
f, > 0

M= +1/2

CASE (2)

A<O

fa <0

Fig. 37a. ENDOR Frequency Identification
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ENDOR FREQUENCY, MHz
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Chapter VII
DISCUSSION AND CONCLUSION

A. Various Charge Compensators

The hyperfine structures of Nb-93 in crystal Cawo, of
different charge compensators Nd, U, and Tm have been measured
and analyzed with spin resonance technique. The results are
presented in Tab}es 1 and 5. No significant'difference in.the
magnitudes of g or A for Nb with different charge compensators
has been found from the.EPR measurements of Nb spectra. Neverthe-
"less, sufficient ENDOR data are not available to show whether

differences in Q or 95 exist for these different compenéators.

B. Temperature Effect

When the sample temperature varies from 77°K down to

© 4.2°K, a change of 1-2% in HFS line éeparation is observed. This
implies, from Eq. (32), that a corresponding change must exist

in the A-value. That this is the case can be seen from the plots
of A-value versus m shown in Fig. 30 to Fig. 36. The reason why
the A-value should change with temperatufe is not well under-
stood, Experiments have only been performed at two tempera-
tures, 77°K and 4.2°K. Thus, it.isbhard to. assert a model to.
explaiﬁ this effect. However, a similar change of A-value due

to temperature variation has been observed for V3+, Cr3+, Mn2+

N 142
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and Fe3+ ions in cubic crystals like MgO, ZnS, Ca0O, SrO and CaF2

l.(78) and others.(so’ 81, 82)

by Walsh et a Wahsh's experiment
indicated an almost linear decrease of A-value in the range of
temperature from 77°K up to 800°K. He also predicted a small
increase of A-value as the temperature range extended from 77°K
to 4.2°K. To explain this behavior, Sim;nek and Orbach(79)
proposed a mechanism in which s-like configurations were admixed
into the 3d5 configuration by the orbit-lattice interaction.
Using a Debye model for the thermal vibrations of crystal, these
authors obtained for Mn2+ and V2+ in cubic hosts a temperaturé
dependence of A-value in good agreement with the experimental
values of Walsh et al. Since the local symmetry of Nb4+ ion

in crystal Cawo, is not a cubic one and the experiments-have Been
carried out at only two points (77°K and 4.2°K) in the tempera-
ture scale, we are not sure whether or not the above theory can
bé applied to our case, although the observed temperature

dependence of A-value is qualitatively in agreement with Walsh's

‘result.

C. Sign of A and Q
ENDOR measurements show that 9 is almost isotropic and
has a magnitude of 1.366 * .036 which is close to the published

value + 1.3652.(67)

Taking the nuclear g-value to be positive,
the relative sign of A and Q can be determined from the experi-
mental result. 1In this work we have assumed A to be positive.

-Then ENDOR measurements (Table 5) reveal that along the directions

of ZO—, Zg— and c-axis, QO has positive valuesand Q0 and A are of
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the same sign. A check of the correctness of the ENDOR result

has been made by measuring the sebaration of the doublets of EPR
forbidden spectrum along c-axis and y-axis. The result is given
in Table 6. With the argument on page 34, the measured separatioh
of forbidden doublets indicates that aiong c~axis, A and Q have
the same sign, while along y—axis_, an opposite one. Thus both the
ENDOR and the EPR measurements givé a consistent result, that is,
A and Q are of the same.sign. ﬁowever, they can be both positive.
or both negative. (Seé Chapter IV. . C). The absolute sign can

not be determined by the experimental technique used here.

D. Field Gradient of Nb4+ site

The niobium quadrupole coupling constant Q,, (Abbreviated
as Qz), has been measured_by the ENDOR technique. Literature(68-7l)
and Eq. (l11') show that the meaéurement of this constant sheds
some light on the nuclear quadrupole moment and the crystalline
field gradient. To be sure, the interpretation of the result is
not an easy matter. The difficulty is aé following: The guadru-
pole coupling constant evaluated directly from the experiment
is

382 0] _ 1 2 :
Q, =71(21-1) ~ 48 e“qQ . (84)

where we have put I = 9/2; and Q is the scaler quadrupole

moment of the nucleus defined as
_ 2 _ 2y .33
eQ = ffDII(X) (32 r?) -da%x. , (85)

in which/E}I(X) denotes the expectation value of the nuclear
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charge density in the state where M = I, The quantity
g in Eg. (84) is proportional to the field gradient in the

~crystal (see page 15) and is approximated by:(70)

qg= (1 + R) q,, + (1 + Ym)qi (86)
_where

eq§ = the field gradient due to the valence electrons, especi-
ally the p electrons. 1In our case, this is an unknown
factor. |
R = the core correction factor. This factor comes because
the quadrupolar field of the nucleus distorts £he
electron charge density of ﬁbs—'ion core. This is another'
unknown. However, the value is always smaller than unity.
For W, this factor is O.Sl.(7l)
Y, = the Sternheimer antishielding factor due to the radial
shift of the electron charges. This "radial excitation”
gives rise to a positive electronic quadrupole moment,

that is, to antishielding of Q. For heavy ions y_ is

always large and positive, e.g., 18,2 for K+, 70.7 for

Rb+ and 143.5 for Cs+.(70) But no such estimation is
available for Nb4+.
eq; = the local field gradient of crystal CaWo, at the nucleus

of Nb, arising from all other atoms by regarding the

latter as point charges.

Probably the data most welcome to solid state physicists are the

dhadrupole moment Q and the local field gradient eq; in the
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crystal. But in view of the above complexity, it is.hard to
predict either of them here. Howéver, if only the effective
field gradient eq, instead of the local crystalline field
gradient eq; , is sought for, a rough estimation is ready to be
obtained from the result of our measurements. The approximate
value of the nucleaf quadrupole»moment 0 of Nb has been given by

(73, 74) The most up to date value was given by

(67)

many authors.
Arnold L. Bloom of Varian Associates using NMR technique.
It reads Q = -0.2 barn. Putting this value of O into Eg. (84)

we get

eq = ~3.32 x 10!'°®* g9, esu/cm® ' - (87)

Z

where Q, is the guadrupole coupling constant measured in MHz.
_ .

Table 5 gives QZ = 1.3924 MHz, or
(8299, = 66.835 MHz
h CaWO4 N ‘

from which we find eq = -4.51x10'° esu/cm®. Using the nuclear

resonance method, Cotts and Knight obtained for Nb in the ortho-

rhombic phase of KNbO3:
) .
e?q0 _
( i )KNbO3 23.120 MHz,
Thus
(e?qQ/h) A ..
CaW0y = 2.89

(e 90/h) gypo

Cotts and Knight assumed a Q of the order of 0.1 x 10" %?* cm?, and
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estimated the field gradient eq at the Nb nucleus of crystal

KNbO to be 3 x 10'%° esu/cm?.

"E. Orientation of Zg’ ZA and ZQ—Axes

Experimental results indicate that the principal axes of
g-, A-, and Q- tensors are not coincident. Nevertheless, all
the Z-axes, (Zg, Zyr and ZQ) and the Nb-O bond lie within a cone
of 29° having the Nb nucleusvas its vertex. Thus the principal
axes form three cones_desigﬁated by X, Y and Z as shown in Fig.
57. Note that instead of pointing to the oxygen ion #1, the ZQ
axié is pointing to the tungsten ion at the corner of the recf—
angle on the (110)-plane of the crystalline unit cell. See Fig.
58. The Y, axis is pointing to the Ca-ion at the <110> -axis
on ab-plane.

The fact that the Zn—axis points to <11l1l> direction, that
is to the W ion at one of the corners of the unit cell, is diffi-‘
. cult to explain. According to the preceding discussion, the orien-
tation of the ZQ—axis means that there exists a strong field
gradient directing from the Nb ion toward the W ion at the corner
of the unit cell; Since there are 8 equivalent W ions at the
corners of the unit cell plus 4 other W ions inside the unit
cell, which are even closer to the Nb-ion than those at the
corners, there is no obvious reason to suppose that this particu—.
lar W ion should préduce'a stronger field gradient at the Nb site.
One possibility is'that a foreign ion iike Nd3+ might have sub-

o.
stitutionally occupied this W site. The ion radius of Nd3+ (1.08a)

6+

(]
i§ much larger than that of W (0.62 A). The substitution thus
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stirs up a big perturbation to the crystal field around this ion)

extending to the Nb nucleus site. There is evidence to support

6+

that ions with a valence of 3+ can take the W site. Kedzie et

al. have found that Fe3+ and Nd

(72, 75)

3+ do occupy the W site substitu-

tionally in CawWo, . Thus the EPR and ENDOR resuits can

be interpreted in the following way: Aésume that afﬁer the
crystal growing the Nb-ion and the Nd-ion have already substi-
tuted the W-ions at the center and the corner of the unit cell;
respectively. After y-irradiation the Nb-ion picks up an elect-
ron and becomes paramagnetic. According to Chu's model,(l) 4
equally probable potential traps at § = w/4, 3n/4, 51/4 and 71/4
exist in the NbO4 bisphenoid corresponding to the 4 oxygéns
because of the Jahn-Teller effect. This paramagnetic electron is
caught by the trap at § = n/4 which is also the direction of high
field/gradient produced by the Nd3+ ion. This is why all the
z-axes -are directed around the oxygen #1l and <11l1> axis. In.
order to clarify this situation more studies should be made.

(76) that there are superhyperfine

It has been observed
structure (SHFS) due to W-183 around each niobium HF line. This
implies that the paramagnetic electron produced by the y—ifradia-,
t@bn not only is covaléntly bonded to the oxygen ion but also

rspréads far out into the space of other cations. The SHFS can

be studied by the ENDOR technigue.

F. Conclusion
To conclude this work, we review that the orientation, sign

and magnitude of the following qﬁantities have been determined by
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the EPR/ENDOR technique:

g, = 2.0133  .0028 28° | 208°
g, = 2.0077 * .0002 | 90° ~62°
g, = 2.0534 £ 0010 o os2° 280
A, = 81.0 * 0.9 MHz 27.5¢° 225°
A, = 75.2 * 1.2 MHz - 900 ~450
A, = 88.4 1.4 MHz 62,50 45°
o, = 0.561 + .023 MHz 570 7 225°
‘Qy = -0.835 * .025 MHz 90° - -45°
0, = +1.392 * ,050 MHz 33° 450
g, = 1.366 t 036 - | -

From these experimental results, arguments lead to the tentative
chérge compensation scheme as shown in Fig. 57, i.e., a Nb-ion

substitutes the W-ion at the center of the unit cell while a |
chérge compensator ion might substitute the W ion at the corner

of the same cell.
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C-axis .

.......

B Nd Substituﬁon

oG

AL I I Ry AR AP e e

......

Fig. 57. Three cones confining the x, y and z axes of
g-, A- and Q- tensors. :
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C -axis \\

5.69 A

Fig. 58. (110) plane of crystal CaWO, showing the principal axes
of 0 in relation tg the W ion fo be substituted by the
comPensator ion Nd°*.




APPENDICES

A. Derivation‘of Energy Level Formula
B. Relation between the Principal Coordinates and the
;Crystal Symmetry Coordinates. |

A. Derivation of Enérgy Level Formula

In deriving the energy level formula from the generai spin =
Hamiltonian.(l3) we make three assumptions to simplify the mathe-1'
matics, ﬁamely: 1) the locél symmetry of crystal is rhombic,
2) the axes of tensors, g, A, Q and g, are in parallel,_3)v the
principal axes of these.tensoré are taken as the coordinate

system, X, Y, and Z. Under these assumptions Eqg. (13) becomes
)d.= B(g H,S, + g S + ngysy)

+ AzIzSz + AxIxSx + A I S

YYY
2 2 2
+0, I, + Qx;x + Qny
- T [ v .
' B (900, T, + Ipyty Iy + gnyHny) (13")
Defining
- e - ] o ) _
't = - —
Q —QZ Z(QX+OY)
and
S
©" 2 7 00y
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Egq. (13') can be put into the conventional form:

Jd = Blg,H,S, + g HS + ngysy) ceeeeeses Zeeman
+ AZIZSZ + AXIXSX + AnySy weeosssass HF
+ 0 [1;- %-1(1+1)] + Q" (I} - 1;) «eees.... Quadrupole
- Bn(gﬁszIz + gﬁQHxIx + g;yHny) ceeeseean ggz;iir

(14)
where use has been made of the fact that .

I(I+1) » I* , the operator,

I? = I; + I; + I; , and

Q, + Qy +Q, =0
The last equation comes because Q is a symmetric“tensor with
zZero trace.(70)

Before the diagonalization of Eg. (14) we recognize that
the Zeeman term is about 9000 MHz, the HF term is around 100 MHz
and both the Quadfupole interactioh term and the nuclear Zeeman
term are of the same order of magnitude, about 10 MHz. Thus thev
perturbation treaties are gualified. 1In the following we will
diagonalize Eq. (14) term by term while the interaction between
the guadrupole and nuclear Zeeman terms is neglected. After the

diagonalization the corresponding energy level of Eg. (14)-tékéé

the form:

N ES= E, + Egp + E5 + E, - (a-1)
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The following relations are required and we will indicate their

origin at the proper time:
. Z

The Relation between the
field vector and. the

H, = H Sin (:) Cos $ \ 1 principal coordinates.

H = H Si Sin (a-2
Hy in (:) ) J )

Hz = H Cos (:)

Cos @ = - ¥ sin$

9.
sin @ = IX cos 9
g.
(A-3)

3
®

S8in &
‘The Generation of Fulerian

_Cos p = gz Cos <§> - ' Angles.(after Goldstein)
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i) g? = g2 cos’ GD + g2 sin?® C)

ii) g? = a2 cos?d +-g; sin?b

)

. s s 2 _ a2 2 4 2 s a2
iii) K?» = AZ cos*¥ + A Sin“ ¥

z
(r-4)
: 2 _ p2 min2p 2 2
iv) A = Ax sSin‘e 4+ Ay cos® ©
2 2 _ a2.2 2 ¢ 2.2 @i.2%
,V)  Algl = Acgl cos S +,quy Sin a.
. l ’ 2 .

vi) K?g?= Alg) co;f <:>-+ A%g? sgin? 6@

l. Zeeman Term

The Zeeman term can be written as

B(ngxSx + gHS +gHS ) = BH-g"S o (a-5)

YYY 2 2 2 -

where g is a diagonal matrix because we are using the principal
coordinate system. To diagonalize (A-5) the first_étep is to
rotate the existing coordinate system to a prime (') system such

that

Suppose such a prime system is related to the original system by

the Eulerian angle, (6, , ¥). Then according to Goldstein,(83y

the rotation operators are

[ cosO Sin® 0
Pg(®) =l.gine  coso 0
0 o 1

/1 0 0o

Px (3)) = ko cosg Siny

0 -Siny cosy
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and
cos ¥ Sin V¥ 0
Pz.(W) = | -Sin V¥ cos VY 0
0 0 1

After rotation the spin vector becomes

§' =P, (¥) Px1(§7) p_(6) 8
= P(Y,9,0) S
where
cos¥ sin¥ 0\ /1 0 0 cosd  Sing 0 \
P = siny cos¥ 0 0 cos¢@ Sin@ || -Sinb cosf 0
0 0 1/ \0 -Sinf cosg 0 0 1/
éochose—cosy Sinésiny¥ cos¥sinb+cos¢ Sin6Sin¥ Sin¥Sing)\
= |-SinYcos8-cosy SinbcosY ~-Sin¥Sinb+cos® cosbcosY cos¥Sin{p
Sin® sin® -SinY cos# cosy
| (A-7)
Note that P is orthogonal; p~1 = p. Also, det P = 1. From (aA-7),

it is easy to derive

p~t s,p'l (v, ¥,86) =D (vY,%,6)

_/cosY¥cosb~cos4¥SinbSinY¥Y -SinYcosO-cosySinbBcos¥  Sin@sSind
=| cos¥Sin6+cosy cos8Sin¥ -Sin¥Sinb+cos{ cosbcos¥ -SinPcoss
Sin¢ SinV Sin¢ cosY Cos(

A-8
\ (A-8)

Déinq,these relations and the. fact _that. a scalar product will not  _.
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change under a coordinate rotation, (A-5) becomes

BH*

—

8

]

hQ

Bl(a g p ) PeS

B[(ﬂ'g)'P"l'g'

~1 .
B(ngx Hygy Hzgz)P Sx

ngx(cochos 0 ngx(~Sancos® ngxsanDSan

-cos P Sin0sinY) -cos Y SinbcosY)

' +H cos¥sin0® +H (-sin¥sSinod +H -Sin cos0
=g| tHyIy ! yIy yJy (~Sinf cosd)

+cos%9cosOSinW) +cosg>cos@cos?)
+Hzgz(sln%>san) + Hzgzsln§DCosW + Hzgzcose
st

S'

S'

(@ ® O /g
. . ' .Sl

. y

Sl

) Z
Bt O 5. + @ N + @ sy o T (a-9)

where
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= H. g, (cos¥cosB-cos¥Sin6Sin¥) .

®

+ Hygy (cos¥Sinb+cos¥ cosbSinY)

+ H g, (Sin@ sinY)

®©

= H g, (-sin¥cosb-cos ¥ SinbcosY)

+ Hygy (-Sin¥Sinb6+cos¥ cosecés‘i’)

+ H,g Sin® cos‘{’i_

Hzgzsln%” Sin6+ Hygy(—81n‘~chse) + H, g, cos6

®

Using relations (2-2), (A-3) and i) and ii) of (A-4) we obtain

from @ :
B = H[g, Sin @cos% Sin¥ siné
—gySin @ Sind Sin& cosH

+g,Cos @ cos @]

= : L oas g

= Hlg,Sin @ cosd g—- Sin @ a—if cos §
-g,8in ® sind 2 sin (B (-2 sins )
+ gzcos.@ %Z cos @ ]

= H = [(g:{coszé +g;si_n2§ )Sin? @ +g;cos2 @ ]

1l
g
w1 2 o 2 2
= HZ (g7 Sin? @ +g_cos @ )
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From @ :

@ = H[gxsin @ cos %(cos‘l’cose—cos?sinesin‘{’)

+gySin @ Sin 6 (cos¥SinB+cos @cosHSinY)

+g_cos @ Sin¢sin¥]

= H[gXSin @cos r:) (cos‘f(— g—%)siné - g_z cos@ gf cos © SinV)
+gySi Sin® y dx 5+ 92 co. - I¥)sin &8inY
gySin @ in@ (cos 3. cos g cos @ ( g_,_) in inV)
+g,Cos @ ;L Sin @ SinVY]
A , 2 . A
= H[- géﬂli Sin @ cos & Siné cosY - Eé%z Sin @cos @ cos?6SinYi:
1. " >
2
+ X9y gin coséSinécos¥ - 929¥ gin (Hcos (H)Sin?6Siny
dzde o :
+ Sin co H) SinY
29 sin @ cos @ sin
V . . 2 2 .
= H[- C%C Sin @ cos @ Sln‘y(gxcoszé +gysln25 )

+ %‘L—L— Sin @ cos @ SinY]

- g . : 2 l dJzd, s 1
= H[- é-g: sin () cos (H) sinY¥(g?) + "=~ sin ® éos (@) sinv) 1

Similarly we can show - - - S - o
@ =0

'I'-;nus (A=9) becomes
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BH:g's = 8(3) S} = BgHS. (a-10)

which is what we claimed for. The diagonalization of the Zeeman

term is, therefore

E_ = <M|BH-g-S|M>

BgH <M|Sé|M>
= BgHM | (a-11)

‘2. Hyperfine Term
In order to diagonalize the HF, guadrupole and nuclear
Zeeman terms, we have to introduce a rotation operator PI_for

the nuclear spin vector I defined as

Pp = (¥, $,0) = Pry (¥) Pry () Pry(6) C (a-12)

I
where
= cos © B¢ sin o 0
AL AL
P1z(®) 4 a a |
8% sin @ 8Y cos 6 0 (see p. 60 of ref.
A, A,
0 0 1
1 0 0
Az AL 4
PIX, (%) 0 g Cos @ g Sing
0 . e%é.sin#2, - .%fcosq7J .
cos Y Sin Y 0
Prge(¥) = fsin ¥ cos Y ]

13)
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and (0,%,¥) is the Eulerian angle defined previously.
Each of the above rotation matrix shduld be an orthogonal
one and its determinant should be unity. In order to fulfill

these requirements we set

2 _ 2022 » 2 2
AS = AxSln 0 + Aycos S}

4
(A-13)
and ~ K? = Alcos?¥ + Alsin’¢
Upon using the relation (A-3), Eq. (A-13) becomes
2 2 22 2 2.2 q
algl= ny9y cos >+ A9y Sin$
K%g2= A;g; cosz(g) + Alg? Sin2(§> | (A-;4)_
Putting PIZ(O), PIXI(“P) and PIZ' (¥) into (A512) we obtain

P = PI(‘?I (?IO)

I
cosY %¥ cosYcos® cosw-%x Sin® Sin¥ %J'sian
" A A -LA A
-Sin¥Y 22 cos( =X Sin® +SinY ZZcos z¥cosO
K S?A+ X ¥
-Sin¥ 2¥ coso - -sin¥ 2X sino cos¥ 21 Sin¢
AL ‘ A, » K
-cosW%& cos‘f’%x Sin® +cos¥ 2Z cos@f§¥cose
» L K A
A, w:_ A . L L
=+ SinP =X Sin0O -A, .. A A -
K ‘PA_L g Sing Kéi cos0 g~ cos

pIt = P (¥, ¥,0)
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A _airy A AL oasooBx a;
cos‘PAJ- cos0O SinV ﬁ cos® % Sinfp A Sin 'G
. A Ay A A .
- A - =4 ox
sin¥ g COSFﬁSlne cos¥ g cos?AJ_ Sin®
A . . A . ‘ A . A
i 4 - =X - =l
cosY A, Sin® SinY¥ Ay Sin® g Sln‘j’A-éi
. A A A A
e’/ =% —h
+SinVY 7 cosp ﬁcos@ +cosY i cosY’ Ay cos®
SinY¥ %J- Siny - cosY %‘J— Sint %z- cos f
The hyperfine term can be written as
AxIxSx + AnySy + AZIZSz
= I'a'8
_ -1 -1
= I P P.A P PS
= 1'-ap'-S' (A-15)
where
I' and I are row vectors related by I' =1 P;l,
S' is a column vector defined by (a-6),
Ais a diagonal matrix, and
-1 . ; : - -
' =
A PAP |
. a: ai2 . ais

== aza az2 azs

 \‘ a3 ajsz . ass
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with

= (cos¥2L cos0-sin¥BZ cosy 2X Sine) a. coso- nosiny
a = (COS‘PAL cos0 Sln‘{/K cosyAL Sin0) Ay (cos¥cos® cos_t1981nQS} Y)

+ (cos¥2X 5in0O+sinYRZ cos¢ BY cos0) a
K AL

A (cos¥SinO+cos ¥ cosBOSinY)
1 .

Y

N VR : .
+ (Sin¥p™ Sin@) A_(SinySinY)

a = (cos\l’é-y- cosO-—SJ‘.n‘}"I—\-z cos‘fA—x Sin®) Ax(—Sin‘#cos@—cos‘)osinecos‘?)
12 A, K A, '

-+(cos.‘i’§3{- Sinwsinw%z cos¥ %X cos0') Ay (~8in¥Sin@+cos ¥ cosOcos¥)
‘ L

Y . W .
+(8in¥z" Sin®) Az (Sin¥ cosY)

- AY coso- SinvAZ AX o insi
a = (COSWAL CosO- Sin¥g— cos¥ z— Sin0) A Sin¥Sin ©

13 L

AX
+ (coswx—

4

Sino+sin‘¥§‘-z cos‘P%X- cos0) Ay (-Sin¢cos0)
4

. yA .
+(sin¥g* sinf) Az (cos6)

= (-5in®Y coso-cosyA? AX _ {nosi
a21 = ( Sln\PAL cos0 cos‘i’K COS(FAL SinB) Ay (cosYcosO-cosy SinOSinY)

+(—Sin‘l’§:—x— Sin@+cos“.’%z— costP%x cosO) Ay (cos¥SinO+cos P cosOSinY)
de 4

+(cos¥R*SinlP) Az(Sin§¢ Siny)

a = (-5in¥2Y coso-cosyh? cos‘-PA—X Sin®) Ax (-SinY¥cosO-cosY SinOcosY)
22 A, K A, .

+ (—Sin‘?%x—s in@+cos‘¥%zcos V2 %Xcose) Ay (-Sin¥Sin0G+ cos$ cosOcosY)
4 ’ £

+_(cos‘l’%“ sin{®) Az (Sin{PcosY)
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= (-8in¥AY cos0-cosyR? AX i) ax(Sin @ Si
a . = ( Sln‘PALCOSG cos‘{’K cos‘f’AJ_Slx\qG)) Ax(slnlfSLnO)

+(-Sin‘}‘%§ Sin@+cos‘i’%Z cos¥ %Y- cos@) Ay (-Sin{p cos0)

+(cos‘P%* Sin¥ ) Az CosO

a = %‘L Sin®@ :-—X Sin®) Ax(cosYcosO-cos ¥ SinOSinY¥)
. e

+ (—%’" Sin¥ FA;-XJ_ cos0) Ay (cos¥SinO+cos ¥ cosOSinY)

+2% cos®) Az(Singsin¥)

A, L. AxX . . .
= (3 = - - y
a,, g Sin® , Sin®) Ax(-SinYcosO-cos ‘P__Sancos_ )_
AL ci o Ay Ceinyal
+(-g* 8in® 3= cos0) Ay (-Sin¥SinO+cos ¥ cosOcosY)
~ Az .
| +('ﬁ cos ¥Y) Az(Sin@Pcos¥)
_ .é-‘- . Ax . . .
a . = (K Sln‘?A——J— Sin®) Ax(Sin¥’Sino)

.|.(_‘I!<_“L Sin(P%% cos0) Ay (-Sin%cos0)

+(i—:‘-z cos¥y) Az(cos@)_

Writing Eg. (A-15) out explicitly, the hyperfine term becomes

I-A*S = 1'-A'-S'
= (1I' 1' 1° a a a s!
(x y z) 11 12 13 X
« | a. a a « | S
21 22 .23 by
a s!

31 32 33 _ ]




= Il | ] a Sl
( y Iz) 1 5%
a ]

. lex

a 8!

31 X

a I's' +a I'Ss'
11 X X 12 Y Y

+ a I's' +a I's'
21 ¥ X 22 Y Y

+ 'g!' 4+ a I'gt
a“IzSx . zSy

Substituting into (A-16) ai:J

C o lipoe 1y
I, = 5(1} + 1)

] =i ' '
Iy — (1; - 10

and also writing Cos Y *

1reates’= 2, @ +a, (3 +2 (:)

where
i2y
NOSEIHE
+5: T
Ay , Az
(A4‘cose+ ig
iy

rar X
+ 118! 7

e _X . Az
+ 2 > (AJ_COSO+ ig

+
H

|'|l éz -3
_S+ T (AihcosO i
e-izw

z (—X cos@-~-1i

AX LAZ AxX
( - cos@+1K cosp A

g cos ?

Az cos%’x— San)(cosO i SinBcos¥)
4

Y coso-i AZ
(A_L cos0-i R

(%* Sin‘f’%i $in0) (cos®-i SinBcos )
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+ '+ !
-axzsy al SZ
+a S'+a st
22 Y 23 2
+a S' +a 8!
32 Y 33 2
t [}
+ a13Isz
ta! '
+ azstsz (A-16)
] ] ’
+ a“IzSz
and the following relation,
l
t . ] ]
SX = 7(S+ + S_),
| - -i [ '
sy = — (s} s')
i Sin ¥ = eilw, we have
(A-17)

Sin0®) (cos®+ i Sin® cosP)

cos‘(’i;*—\->£ Sin0) (cosO- i SinOcosp)
4 .

cos%’%E'SinG) Sin@Sin$>

San)(cosO+1 Sinbcos¥ )

cos‘f’A San)(Slnesln%’)

e A o Ax . . .
5 (z Sln%’xr SinB) (cosO+i Sinbcos$P)
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rer (R oay AX . . .
+1.8, (% Sln‘fA_L $in06) (Sin6Sin¥)
tat e12‘{/ (53{- Sin0-i B2 c0s e‘XcosO) (5ind-i cosOcos )
)= 18! A, K $
1 AX .. . . AZ Ay . .
) ] - ———
+ I8l 7 (A_: Sino-i 7 cosffA-L cos0) (Sin0+i cosOcos ¥)
RS 2 :
tey1 © AX . ~_ . AZ A _ .
+ IS % (7’*: $in0-i g cos( A—y; cos0) (-cos0Sin¥)
1l Ax .. ., Az : Ay . .
t ] plindel ~e -
+ I's} 7 (AJ_ SinO+i & cosl A cos0) (Sin0-i cosOcosP)
v, e Ay Az Ry L |
+ I!s! 7 (22 Sino+i == cos¥ cos0) (SinO+i cosOcosP)
=T A, K A
-iy
rer € AX o . Az Ay _ .
+ I'S) 5 (A__n_ Sin0+i F— cos®@ R, cos0) (~cos0SinP)
iy

er €0 L Aug oAy o |
+ IzS+ 5 ( % SlnfgﬂA_L cos0) (Sinb-i cosBcosP)
g0 & - Biginely i i
1,8! 5 (- g~ Sin@z* cosd) (Sind+i cosOcos ¥)

B i @AY . :
1,8, (¢ Sln‘fALcosO) (cos0Sin@)

L.
o

+
. iy
1t ~1l€ Ay«
+ IS —— > SinfYcos®
l A.l . 2 .
tot = £
+ I's; 7 g~ sin*¥
-i2y
+ 118! 55 Risin?Q
. iy | :
1gr L& B.gj
+ I!S) = R Sl.lncfcos(P
iy
,I'gr Tie AZ o
+:I)S 5> g SinYcos¥
b I'S ie™ Y az Sj ' vey AZ 2
Ss! inYcosP+ 128! == cos’Y

N
e
il
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The chanae of energy level, E due to the hyperfine term

HF'/
is obtained by the perturbation calculation to the second order:

Eyp = D!

/ ‘<M'm_“_]:_"é"§'|Mm>|2 .

MTEM _ ,
Esm = Egme

+

' n : ) -
Efr + Eip _ A (A-18)

Substituting @, @,:,»and @ into (A-18) we obtain:

mm|ax @) +ay (5) + Az @!Mm

a2 :
A A g
(K& Sin? psin 20+ I—<—¥ Sin? §0cos o+ —cos (P)<Mm|IéSé|Mm>

2

, ,
Sln2®— (A Sin%o+ Ay cos O)+§ g-%- cos2®]

Ai. i Az g2 . _
= Mm (g2 %7 sin? (@) + 2% %? cos?(@)) = MmMK (A-19)

/
Vlamtax @) +ay G + 2z (6) |Mm>]?

E-Il

HF
MM Ezm = Bz
— Dzl <M || ' vl |2
= - EZM'l M'm'[I}S/|Mm>
ol |
+ g _2E |<M'm'|1;_sl|Mm>|2
ZM ZM'
o('.
s R L L
Xy
+- | <M'm!'|1'S! |Mm>|2
E . - E, -4
zM = “ZM
e E LM L b
Z 1
g C¥6E |<M'm'|T'S] Mm>]?2

M zM!




A7 '
= |<M'm'|1!S!|Mm>]?
| E E mt 2"+
3 _O!g |<M'm*'[I)S! [Mm> |2
ZM!
” dl
Epp = T [s(s+1)-M(M+1) ] [T (I+1)-m(m+1)]
+ +;’é§ [s(s+1)-M(M-1}]) [I(I+1)-m(m+1)]
Aa '
* =gpH (s (s+1)-M(M+1)] [I(I+1)-m(m-1})]
A |
+ To Bl {s(s+1)-M(M-1)] [I(I+1)-m(m-1)]
oly
2
+ —13¢ m? [s(s+1)-M(M+1)]
+ Iz;%%‘ m? s (s+1)-M(M-1)]
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where we have taken

and

(!2 =¢“

oC = o
3 6

o =
7 8
Putting

Esm

U

] b
(o)}

Y

o

"

- E

;ll—-‘

ZMi‘ll

[ (AZA +

2, 2 2,
Axgzoz + Az (Ax-Ay)

K =~ AL KZAZ

2 2
Az (Ax-Ay) 2

[(AzA4_+ Ax41)2

(A-20)

(A-21)

2 2 2

a&gxq¥ cos? (B) sin®$cos?s

q QXgV 2 s 2 2
~éi€;—-cos (:) Sin25cos?®5]

-

2 . 2 2 .
qJ- sin?(®) [ (a3-2})? %% cos?(B)+ (2-23)°2 gé%i Sin?%cos?s)
_ . L

the relations between the 's into (2-21) we have
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. 2(s(s+1)m+I (I+1)M-Mm (M+m)]

HF -~ “gBH

+ —=— « 2[-s(s+1)m+I (I+1)M+Mm (M-m) ]

ci7

+-2 Mm?
gBH

2 2
- - st @ (32D cos’ @ (-2 L5140 *8c0575)

~s (s+1)m+I (I+1)M+Mm (M-m)
8gBHo

[A (‘“Z - )y + (Ax+A +2§x§¥52—)

2 2 5 2 2
-(Pxohy) 7, gg%% Sin2<:> sin®scos’s]

s(s+1)m+I (I+1)M-Mm (M+m)
8gBHo

2_p242 2 2 ' '
- Agey) L9y sin*(® Sin?5 cos?s]  (a-22)
A : : '

(a2 ( ) + (Al +Ay -2 éx%xéa)

Putting (A-19) and (A-22) into (A-18) we obtain: : .

_ 1
EHF—]\'ImK+-2-Mmf1

+
o]

[-s(s+l)m+I(I+l)M+Mm(M—m)]f2

[s(s+l)m+I(I+l)M—Mm(M+m)]f3 (A-23)

0|

P 1 2 a2 (A 2_np2y2 gé 2 2_p2 2wt 2 2¢7.
£, = gE grot sin® () 1(a;-A]) cos?(@+ (az-A)) E§E¥Sln $cos?5]

1 g g?
_ 1 2 (AZ-K? 2,02 AyAyAg
f2 = gﬁ; [A_L(—z?z—) + (Ax+Ay+2 R )
(AZ-22) %93 2 2 2
—éfo | %%%% Sin (:)sin Scos?$)
_ 1 2 AZ-K? 2,52 _ o AgBAyAg
fa B §§ﬁ; +'TK2 X'y 2 _K_%__)

2_,2 2 2
- iéxﬁgil g§%¥ Sin2<§>sinzécoszé] (A-24)
gTaL



3. OQuadrupole Term
The quadrupole term is

+ + 0 12 (A-25)

2
Qny. ~z7z
l
3

|-
o

.I = 0 12
—_ X X

= Q'[I; - I(I+1)) % Q"(I;—I;) (A-26)

Wé could diagonalize the quadrupoleAterm expressed as (A—ZS) by
the same method used for the diégonalization of the hyperfine
term. However, since it is preferred to use the expression
(A-26) for the guadrupole term, we will adopt a different
treatment in the following way: Writing the nuclearAangular
_momentum operator I as a column vector, and.applying the rota-

tion operator PI' we have

" -
I' =PI
Hence

I=p" 1 (a-27)

Writing (A-27) in component form and substituting for -I' the

relation
i;{ = 2 (1] + 1) \
= T3y - I J (a-28)
1 =1y 0

we obtain:
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iy
A . A A .
(-A-éi cosO+i —&K cos‘fA—KJ— Sin0d)

L}

i

]
+.-
N

-iY

(1)

Bz cos¢ 2% 5in0)
£

+
H
| -
%]
=

(é¥ cosBO-i
N _

. A ginedx g
+ Iz (K Sln(fA-L Sin®)

I, =1} 5 (5 sino-i g% cos¢ AL cose)
+ 1! %—i‘l’ %’i Sin0+i %ﬂ cés@%ki cos0)
+ 1! (- %—‘- Sing %-}i ;os@)
I, =1I} —lgiw %*—Sin(f
+ I l—;-—i\y %* Sin ¢
+ Ié %J' cos ¢ _ : (a-29)

d

Equation (A-29) leads to

' i2y
A . A A . 2
= 1'% & 2¥ cosO+i =%+ =X cos ¥ Sin®d
+ 4 (AL K A, £ )

H
~
l

-i2V¥

R %— (%L cosO-i é%%"i cos P 5in0)?
L

) |
+ IL? %’i sin?¢¥ sin?0

I'ITY + I'1! 2 252
+ - - Ax 2 AzAx 2 .2
'\ (AJ_Z cos“ 0+ K—TA-_{ CcOos (f Sin @)

[ 4 1] 1 1 i\P
+ (I+Iz + IZI+)'e.

A . . . A ., AgA .
ax Y H28X
5% Sln?san(A .cosO+i RA cos$Sin0) . _ .

i¥ A

Pt ' = : : AJ{_ -4 AzAx Q3
+ (I'I) + I)I) e 2 Siny San(A_L cosO-i Z£—= coOs Y Sin0)

KA
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i2Y ,
12 = 1'°? e* 2% gsino-i 222y cos Pcos0)?
y T+ % A, KA,
-i2V¥y
+ 1'? % (%X SinO+i é%%l cos @ cos0) ?
A A
A% .. 2
+ I, g¥ Sin ¥ cos“0
I'T' + 1'1! 2 2.2
+ 2 1 b (:x‘ sin?0+ %%%% cos? P cos?0)
. L N U

ty tT i¥ -2 : éx : _ AzA
+ (11} + IzI+)'e 7% Sin@cosO (AL Sin6-i _fif cos Pcos0)

} ' E X -i¥ _éx : é& : . AzA
+ (I'I) + I)I!) e 5% Sin{Pcoso (AJ_San+l ij¥c0399cose)

. a2 2
12¥, ZTA{?'-I: sSin?§ + Iéz %%- cos? @

12 = (Ilzelzw + I'%e
: 2
+ (III| + IIII) AJ.S- 2%)
+5 - -1y} IR? B0
A

- tr [ ] 1e 3 i :A=30

(IjI, + I I}) 57— A A COs Psinyp \A=30)
' . -1V ‘

le .

(I'1! + I'I') Jgr A A, cosPsin®

+

With these preparations, the diagonalization of the guadrupole

term, I-0+I is straight forward: -. ..
£
= ' 2 _ }_ nwir2 _ 2
Eq = <Mm|Q [12 - 5 I(I+1)] + Q"(Ig Iy)|Mm>
!
2
+ |<Mm' Q' (17 - %— I(I+1)] + Q:(I;:’— Ij) | Mm> | 2
mvam — e
E - E_,
m m
- t " ’ A"‘3l
= E) + E _ 7§  )

0 : - . - .-

Substituting (A-30) into the first term of (A-31) we obtain
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= [ 2 _ 1 " 2 . 2
B = <Mm|QU[I’ - 3 I(I+1)] + Q" (I 1) |Mm>_
2 ) 2
= <Mm|Q"' [Ié2 %% cosz'g>+ (I!'1! + 1'1}) %’I’(ﬁf Sinzso— % I(I+1))
u 2 1 o2 20:2n_n2 2
Q"[1,° g, Sin® P (A¢Sin”0 A, cos 0)
. _ . 2
#(I)T) + I'I0) (—)—ﬁ%‘;—f- (aZsin®6-A cos?0)] |vMm>

_ 2 3 Alg? 2 w 3 1 2 2_2 2
—m[Q‘(l—ZK2gz Sin @) + 0 7(—3-2-811'1 @(A cqsé

- A;,g; S$in?%))

I(I+1) 3 si
LI g B s @) - o ) D
(aZg? coszé-A§g; sin%?$)]

= [m? - %- I(I+1)]1f
N

P

where we have made use of Eq. (A-3) to go from the second step

to. the third step; and

= .O! - 3 Az ..2L " 3 Sin 2 2 2 _ 2.2 2 2
f =0'(1 5 - K_Zl sin? @) + 0 —7@1( 5 (A cos )S Aygy Sin?%%) .
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L o
BV o= > | <Mm'|Q' (12 - g I(I+1)] + 0" (1} - I;)|Mm>|2

—~—x ~—T

m'xm -
Em Em

| <m+2| 1,2 |m>]2 |<m-2]11%|m>|2?
+ B2

En = Eme2 Emn 7 En-2

= B

+

|<m+1|I4T3 + IzI4|m>]2 2 J<m=-2]1i13 + 1o11] >]2

En = Enel R |

+ B

[I(I+1) - m(m+1)] [T(I+1)=(m+1) (m+2)]
-2MK - 4 (m+1)f,

= B,

(I(I+1) - m(m-1)][I(I+1) - (m-1) (m-2)]
2MK + 4(m-1) £,

+ B2

(2m+1) 2[I(I+1) - m(m+l)]
-MK - (2m+1) £,

+ B3

(2m-1) 2[I(I+1) - m(m+l)]
MK + (2m—l)fy

+ By (A-33)

where Bi1. . .By are angular dependent coefficients:

B1

B2

' A¢q¢ i Q" Azg?
o' 7332, (:)+ TRigT (1+ R%%% cos (:))(A;g; cos?$

242 Qi 2 w2 AZAG 59%9% 2 2
Aygy sin%®)1? + 0 W-%‘COS®S:LD 5 cos®d

Kfs _ (A-34)

Bs

il

8!’ . 7, i ) ) ---.V i

2 2
A .2 2 _ATn2.2 win2.2 2¢ _ p2.2@in2¢yq2
Zfrz%g%ay Sin (E)cos (:)[ Q'A‘g® + 0 (Axgxcos S Aygysln &) ]
+ Q"2 —§A¥ ~§g¥ Sin? (:) Sin?2§ cos?d
Kf ' _ (A-35)
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Putting (p~32) to (A-35) into (A-31) we obtain the result of

diagonalization of the guadrupole term as

= (w2 _ 1
+ K{I(I+1l) -~ m(m+1))([I(I41) - (m+l) (m+2)] £s
-2MK - 4 (m+l1l) £,
+ K[{I(I+1) - m(m-1)] [T(I+1) - (m-1) (m-2)] £y
2MK + 4(m"l)fu
K (2m+1)% [T (I+1) - m(m+l))
+ fe
-MK - (2m+l)f,
2
+ K(2m-1)" [I(I+1l) - m{(m-1)] £ _
g (A-36)
MK + {(2m-1) £, . : _
4, Nuclear Zeeman Term
The nuclear interaction term is
- . . = - ' ! t ’ —
Bn-Ii gﬂ L Bn(ganxIx + gnyHny + gnszIz)' (A-37)
Substituting (A-29) into (A-37l‘we get
ei‘y A AzA | )
. L = ' ' s HZAY .
HegiI =105 [lg7, Hx(xf.cose+1 KA cos ¥ Sin@)
Ay .. . AzA |
] ax -
+ gnyHy (AJ_Sl§Q i K%j% cos Y cos0)
TS iAo
gnsz K* Sln%DI
e Y Ay AzAx
L : ] 3 8z28X .
+ Il [ganx(AJ_COS?_l R, co$q>sln@{

v 5 (BX gine+i 22ZBy
+gnyHy(Al_San+1 RA | cosf>cos®)

g B
+ gnsz g Slnﬁo]
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+ 1! [g!' H Ax $in¥ Sin® - g' H Ry SinY¥ cos6
2z nx x X ‘ny'y K |

Rz
+ gnsz z cos ¥1 o (2-38)

The change of energy level, ENZ’ due to the nuclear Zeeman term

is obtained by the perturbation method to the second order:

nz
’ .
. |<Mm'|{-BnH-Sn-I|Mm> |2
™ EAm Eq = Epo |
= Eﬁz + Egz : o (a-39)

With Eq. (A-38),

] — - Y LI
Bhz = <Mm| Bnl dn I|Mm>
)
= <R (q Ay aj : ' A .
= Bn(ganX R SlngDSan gnyHy f¥ Sinlp cosO
A
Bz
+g' H, g% cosyp) <Mm]Iéle>
- _ 1 2 ' 2 ' 2
= -mg_H X5 {Sln <:)(gnxngx cos?S + InyIyPy Sin? %)
' 2 . o
+ 9/,9,B, cos <:) ]
= —mBan7 _ 4 (A-40)
where

f :-AL-V in? (A ¢ ’ s 2 - ' 2 é__b A ' 2
f, = Kg.[Sln <:>(Axgxgnx cos*S + Aygygny Sin?%) + Azgzgnz cos »<:>]

Also,
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o
| <Mm*|-B H+g!*I|Mm>|?

E" —
nz :
] -
m'#m Em E
_ . l<tmed]z)|mm>]? | <Mm-1|1!|Mn>]*
+ Y2 < ~
B~ Emtl : By T Ep-1
- m(m+l +1) <= m(m- -
=y, M) o mmil) o, 10D mnod) (a-41)
where

— _ Bz ' A ' A : 2
Y1 =vy2 = g8 [(g] H X% cosO + gnyHy K% S§in0)

AzBx cos@sing - ot B PZAY cospeoso — of H. AL sine)?
nxtx BA cos¥YSin® - g' H cosPcosd - g! H, gt Ssing)°]

ny'y KA, nz z

Using the relations (A~2) to (A-4), y, becomes
\

1 2 .25 2 ' o 2
7 Sin (:)[Sln cos?® (gnxgyAy _ gnyngx)

+

Kfér-cosz (:)(gsxg g_A A _cos?$ + g' g g A_A Sin?d - gézngi)ZJ'

X72 2 X ny’'y’z zy
2172
= E%E— Kfg

. " — 2m = M 22 _
L EnZ‘ KM Y1 = M BnH f8 (A 42)
where

C = SinZ@ cos2® ' 2 ] . 2
fo = [ R7g? (A A 9.9.9,,COS S+ Aszgzgygny81n b3

KA{g}
_ oa2.2 1 y2 .2 2 _ v 2
Alg’gr.) “+ Sin 5 cos?$ (Aygygnx Axgxgny) ]

Therefore the result of diagonalization of the nuclear Zeeman

term is; combining (A-39) with (A-40) and (A-42):

Hzfe . _ . (A-43)




5. Summary

Summing up Egs. (A-11), (A-23), and (A-43) and putting the
result into (A-1), we obtain the energy le§el formula corresponding
to the spin Hamiltonian Eq. (14). This formula is éiven in Eqg.
(20) with the angular dependent coefficients defined by Eq. (21),

on page 19.

B. Relation ﬁetween tﬁe Principal Coordinétes and the
Crystal Symmetry Coordinates

The formulation of both EPR and ENDOR signals has been
vmade on the principal coordinate system x, y, 2. Nevertheless,
the experiment and data presentation are usually, for the sake
of convenience, performed in the crystal symmetry coordinates
a, b, c. It is the purpose of this appendix to derive the
relation between the spherical coordinates of the a, b, c;

system and the x, y, 2z system.

179




180

Let H be the magnetic field. vector

~direction cosines of H in abc coordinates

(B-1)

(B-2)

(3—3)

daH’ de’ ch =
dxH' dyH' dZH = direction cosines of H in xyz coordinates
a, b, c = unit Qectors of a, b( ¢ coordinates
X, Y, z = unit vectors of x,.Y, z coordinates
Since H = H(é daH + b de + c ch)
= H(x dxH + Y dyH + 5~dzH)
~ then
d_ y = Sin® cosf
\
d, ; = Sino sin¢
ch = cos0

where 0 and ¢ are directly measured from experiment; and

I Sin @ cos o

d Sin @ Sin'é

yH

dzH ='cos (:)

Where (:) and © are the unknowns to be found. - Let the

cosineg of

the unit vector X in abc system be da d

xl

bx" cx’

(B-4)

direction.

the—unit vector Y in abc_system be day' 4 ,4 ;



the unit
Also let
the unit
the unit

the unit

Then, bec

have

ax Xa

d
ay ya

az za

. Note that

dxH = d

dyH =d

dzH =d

By (B"S) ’

xH ~
dyH = d

N ZH__

ya

.daxdaH

dazdaH
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vector z in abc system be

the direction cosines of

vector a in xyz system be

vector b

vector c

ause the

bx xb

by yb

bz zb

xadaH * dxbde + dxcch

+ d _d

+d yc cH

d

aH ybde

a + d

za aH +4d,.4d

zbde zc cH

Eg. (B-6) becomes

d + 4.4

+d bH cx cH

bx

+ 4, d + d_d

aydaH "by "bH cy CH

+ dbzde + dczch

in xyz system be

in xyz system be 4

az'’

xc' d

cX
a
cy

caz

bz

dyb

ycC

cosines of the same angle

i

14

’

14

cz’®

dZC

are identical, we

XC

yc

ZC

 (B-5)

(B-6)

(B-7)
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Let the spherical coordinates of

X in abc system be Ox ’ ¢X ;

p b, i

in abc system be ©O
Y in abe sys y 'y

z in abc system be 6, , 0.

These angles are experimentally measured guantities.

Then

d,, = Sin 0, cos ¢x

4,4 - Sin o, Sin 0,

dcx = Cos Ox | _ (3:8).
day = Sin Oy cos ¢y

dby = Sin oy Sin ¢y

dcy = cos Oy | (B~9)
d,, = Sin 0, cos ¢z

d,, = sin 0, Sih.¢z

d, = cos O, (B-10)

cz

Combining (B-4) with (B-7) and utilizing relations (B-8) to

(B~10) we have

cos (:) = Sin 0, cos ¢z sin®@ cos § + Sin 0, Sin ¢z Sin® Sin ©

I

+ cos 0, cos0 ' B-X
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and

$in0® cos® Sinbcosh + Sind Siﬁ $1inB0Sin@® + cos® cosb
tan § = v ¢y ¢ Yy ¢y ¢ y

Sinoxcos®xsin0cos¢ + sin@xsin¢xsinOSin¢ + cos@, cos0 |
(B-12)
All the angles, 0's and ¢'s, in the RHS of Eq. (B-1l1l) and Eq.

(B-12) are obtained directly from the experiment and referred
to the abc-croordinates. @ and ® are the angles referred to

the xyz-system and are used in Eq. -(21).
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