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ABSTRACT

Neutron-activation data on Zn, Gap Ge, Cd, In and I r are

reported for six rocks and two soils from the Apollo-12 mis-

sion. A comparison of these data and similar  data for Apollo-11

samples indicates extralunar components in the 12070 and 100$4 r
soils of about 1.0 and 1.16 expressed In terms of an assumed
composition which is the same as the water-free portion of Cl

chondrites• A relationship between the 'Integrated flux of

extralunar material and the increase in concentration of such

material in the fines portion of the lunar regolith is derived*

According to this relationship, the integrated flux at the Apollo-11

site is 25% higher than that at the Apollo-12 site, which in-

dicates that the influx of extralunar material has been decreasing 	 ' f

with time. A reanalysis of the data on the Apollo-11 fines 	 ,t

shows them to be consistent with a minor depletion in ilmenite

and inclusion of a 20% component resembling Wood's anorthositic

gabbro. Terrestrial basaits shcrw relatively small variations

in their contents of Zn, Ga, Ge, In and possibly Cd, Indepen-
}r

dent of their geographical origin • Apollo-12 rocks have con-
centrations of Zn, Ge, Cd, In and possibly Ir which are lower

by factor y of 60 or more relative to terrestrial basal is• A
t

mechanism is proposed for the late accretion of volatile-rich 	 'tM

t	 f

materials, including comets, in which a primitive terrestrial

atmosphere is invoked to explain the si-gnificantly higher con-

centrations of such substances on the earth.
e.
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INTRODUCTION

Our previous work on Apollo-11 samples involved the deter-

mination of Ga, Ge, In, Ir and Au (Wasson and gaedecker, 1970)•

In the present study we have added Zn and Cd, wthich proved to

have unexpectedly high concentrations In Apollo-11 fines and

brecc i as , and we have dropped Au, which added little  information

In addition to that from our Ge and Ir determinations, and which

was also measured by several other investigative teams,

Our six elements were chosen in order to provide a maxl-

mum of information about two different questions: (1) the

nature of the extralunar component, and its usefulrjess in evalua-

ting the formation of the lunar regol ith; and (2) the distri-
bution of elements of similar ionic properties In lunar crystal-

line rocks, and the interpretation of this data In terms of

plausible geochemical and cosmochemical processes. Although

our elements are not ideally suited for such questions, we have
also attempted to assess (3) the nature of the extraneous lunar

`	 component in the soil
s :_

Through the aid of the Manned Spacecraft Center curator

{	 and the Lunar Sample Analysis Planning Team, we have obtained
_x

t
a set of six rocks from the Apollo-12 mission which range from

the Mg-rich, Ai-poor to the Mg-poor, Al-rich extremes described

I	 in the LaPET (1970) report. In addition, we have investigated

samples of two soils, the typical local (12070) and unusual

light-gray (12033) fines•

9
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Since a number of our geochemical interpretations depend

on a comparison of data on Lunar, terrestrial and meteoritic

sampl es, we have followed the practice of Wasson and Baedecker

0 970) and included the latter two types of samples In the same

neutron activation runs as our lunar samples. In such a fashion

we greatly reduce the magnitude of errors introduced in such

comparisons. In this paper we have added an additional 14 ter-

restrial samples to the nine studied by Wasson and Baedecker

(1970)•

We have analyzed all samples in duplicate, in the belief

that the resulting greater precision would reveal effects which

would otherwise have been missed.

EX PER I MENTAL

Samples and Sample Preparation
I

Approximately one gram each of rock samples 12.009, 12014

and 12038, and soil samples 12033 and 12070 were provided for

analysis. Two 500-mg aliquots of a powder prepared by grinding

a 10 g piece of rock 12063 were analyzed in this work,.the re-

mainder of the rock being used for Rb-Sr dating and head iso-

tope studies by Cliff et a1^. (1971). The procedures followed

In preparing these samples for analysis were identical to those

described in Wasson and Baedecker (1970).

i
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In our studies on the Apollb-11 series of rock samples,

large variations in the observed In content of the material

which we analyzed indicated that the samples had been contami-

nated prior to their receipt in our laboratory, most probably

by In-Ag seals on the. rock boxes. Larger samples of rocks 12002

and 12022 weighing 3 . 5 and 3.2 g, respectively, were provided

for our studies, in order that the surfaces of the rock chips
could be removed prior to analysis, and thus minimize the pos-
sibility of surface contamination. An S.S. White alrbrasive

apparatus using 50*u SIC as the abrasive powder was used for

removing surface material. 	 An analysis of the abrasive pow-
ti

der for the trace: elements of interest showed concentrations
r

of 0.48, 0.14, 0..00016, 0.00033, 	 1.89 and 0.027 ppm for Ga.

Ge t	In. 	 I r , Zn , and Cd respectively •	 Ge and Cd were present
in higher concentrations in the SIC powder than was expected .1

in the lunar material 	 Zn and Ir at approximately the same level #.

of concentration, and Ga and In were significantly lower. 	 If z#

the lunar samples were contaminated by an 00% addition of SIC,
f

this could cause as much as a 1% error in the results for Ge

and Cd.	 We believe that the actual	 contamination is smaller.

Approximately 280 mg of rock 12022 was abraded from the 3.2 g
t

chip, and the sample washed in reagent-grade acetone using a P'j.

sonic cleaner prior to crushing and splitting,	 Rock sample

12002 was split into one large fragment weighing 1.83 g and ?

several smaller fragments.	 Two powdered samples of 500 mg each

were prepared by crashing some of the uncleaned smaller frag-

ments •	 The 1 •83 g chip was treated with the ;same sandblasting
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procedure as rock 12022, 480 mg being removed in the process.

The remainder of the sample was crushedip and chips totaling

550 mg in weight were powdered and analyzed- As will be dis-

cussed in more detail later, our attempts to remove In contam i -

nation were moderately successful.

Our sample of the l ight-gray fines, 12033, was packaged

at the Lunar Receiving Laboratory in a stainless steel bolt-

top contai ner . Upon opening the container, the sample was found

to be comtaminated with metal turnings from the threads of the

bolt-top. The fines were sleved through 176 u screen to remove

the turnings and only the -w 176 u fraction was analyzed. The

sieved fines were examined under a microscope; no metal turnings

could be detected.

Sample packaging, flux monitor preparation and irradiation

procedures were identical to those described in Wasson and Baedecker

(1970)	 During one of our irradiations an experiment was per-

formed to show whether systematic errors might arise from pos-

sible volatilization of the deposited salts from the flux-monitor

foils as a result of heating during the irradiation. Each flux-
monitor foi l was wrapped with a second piece of h igh-purity

aluminum foil; following irradiation the outer fo il s were pro-
cessed in the same manner as the flux monitors. An irradiated

blank sample of high-puri ty Al was also processed. The same

level of activity for-a1 1- six radionuclides was observed in

the cover foils as was found in the ,blank. This indicates that 	 i1
r

any loss of act ivity from the flux monitor foils due to volatili-

zation is negligible. Although one might argue that volatilized
r

1l.	 , z
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monitor compounds would not necessarily recondense on the second

foil during the irradiation, we believe that thi s i s where the

largest fraction should be found when any vapor condenses upon

cooling at the end of the irradiat ion .

Analytical and Radiometric Procedures

The s ix elc3ents Zn, Ga, Ge, Cd, In and Ir were determined

simultaneously in each rock sample. Since description of the

procedures used in the determinati-on of Ga, Ge, in and Ir was

provided in Wasson and Baedecker (1970), only our proceduresr
{

for Zn and Cd will	 be discussed here.

Aliquots of carrier solutions of Zn and Cd (as well 	 as
the other four elements determined) were placed in zirconium

crucibles, made basic with NH 40H and evaporated to dryness.

Following sample dissolution  and chemical 	 processing to extract

In, Ga and Ge, the major am4: punts of Zn, Cd and Ir were recovered ;{ x

by pass ing an aqueous solution through a Cowex-1 anion-exchange s

column which completely removed the Ir. 	 Zn and Cd were par-

tial ly retained by the column and eluted with 6 N HNOs prior`
to the usual batch eluti on of Ir.	 The Zn- and Cd-containing

eluate wa s mixed with the aqueous supernatant (processed for

Au in our earlier procedure) from the first 'hydroxide precl-

pitation (the supernatant contained minor amounts of Zn and ;,F

Cd).	 This solution was evaporated to dryness, the resulting

salt cake dissolved in H0, Cr and Sc carriers added, and Cr

and Sc precipitated as hydroxides from a strongly ammoniacal

1P

i
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solution. The supernatant was boiled to remove excess NHa ,

the solution made slightly acidic with HCI, saturated with H2S

and the Zn and Cd sulfides precipitated by bringing the pH to

about 8 with NaOH. The resulting precipitate was collected
1y centrifugation, dissolved in concentrated HCI, and the re-

sulting solution evaporated to dryness. The residue was dis-

solved in an 0.12 M HCI solution which was 1 . 7 M In NaCI, and

the solution passed through a Dowex- l anion-exchange column.

Following a procedure outlined by Kallmann a 	 (1956) but

modified slightly for our purposes, Zn was selectively removed

from the column by eluting first with a solution 2 M in NaOH

and 0.34 M in NaCl, and later with H20. The Pluate was treated

with H2 S to precipitate Zn as the sulfide. This precipitate

was collected by centrifugation and dissolved in HCI. The re-

suiting solution was counted and the chemical yield determined

by atomic: absorption.

The Cd was eluted from the ion-exchange column with 1 M

HNO3 , the eluate boiled to dryness, and the residue dissolved

in 3 N HCI. Copper and Cr carriers were added, Cu precipitated

as the sulfide with H2 S, and the precipitate removed by centri-

fugation and filtration. The clear solution was again satu-

rated with H2 S, and CdS precipitated by lowering  the acid con-

centration to 0.5 M by addition of NaOH. The precipitate was

collected by centrifugation, dissolved  i n 3 N HO, and the pre-

cipitation cycle repeated. The final US precipitate was washed
t

twice with HO O, dissolved in HCI, and the resulting solution
counted. The Chemical yield was measured by ' atomic absorption.

ra

t
t
	 \
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Gamma counting, using a 3x 3 in Nai well detector was used

to measure the Zn and Cd act ivities (tire 0.335--MeV photopeak

or the 116 1n  daughter of i ', Cd and the 1 •1 4—MeV photopeak of
1s Zn)

Precision and Accuracy

In order to test the precision of our procedures we have

analyzed several replicates of standard rocks RR and W-1. Based

on the replicate analyses reported for W-1 in Table 2 and by

Wasson and Baedecker (1970) we calculated rel at ive standard

deviations of ±3.5, 3.4, 20 9 $, 7 and 2 5 respectively for the

el ements 2n, Ga, Ge, Cd, In and Ir.	 The precision for Zn and

li was poorer by a factor `of 2 in our analyses of RR, based	 ,

can fewer determinations. The precision of our results for Ge

appear to be poorer for these standard rocks than in most other

terrestrial and lunar basal ts we have investigated. We have

analyzed 21	 replicates of the Walanae, Hawaii	 basalt- If	 A

we assume that these all	 have the same Ge content, we can cal-

culate a relative standard deviation of 7%, which should be

an upper limit on the true value for our procedure. Ninety-
z._

five percent onfidence limits on the means of duplicate deter-

minations should be about 1.6 times greater than the above stan-

dard ` de' vi at ions •

The accuracy f our resul ts can best be assessed b cowo- ly	 y 
pa ring them with the data obtained by Ot he r workers on the same

rocks. A compar i soya of our data on the USGS series of standard

i
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rocks has indicated no systematic differences for Ga, Ge, In

and it which would point to systematic errors in our results

Our mean Zn value is about 10% higher than the average of some

20 analyses of W-1, which may indicate a systematic error in

our Zn results. A check of our Zn flux monitor solution failed

to explain this error: * To date no reliable mean Cd value for

W-1 Is available for comparisons

RESULTS

The results of our analyses on the Apollo-12 returned lunar

samples are presented in Table 1• Previously unpublished re-

sults for 1 r in Apollo-11 rocks are included in are aijpend i x to
this paper.

In general'the problem with In contamination encountered
in the Apollo-11 samples appears to be less pervasive on the
Apollo-12 samples. The In concentrations observed on the samples
of 12022 and 12002 which were treated by the sandblasting pro-
cedure described above, and the untreated specimens of 12009,
12038 and 12063 appear to indicate an In concentration of 0.5- 2 ppb
in lunar crystalline rocks, slightly lower than the lower 1 1mit
of 3 ppb obtained from the Apollo-11 data. However, rock 12014,
the untreated specimen of 12002, ,and the soil samples 12033
and 12070 hava very high In contents, which we believe indi-
cates In contamination.

The amounts of Ge, Cd, and In detected i n' ' lunar crystal-

line rocks are near the limits of detection for our method.
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Our Ge resin is for the lunar crystalline rocks are reported

as upper limits. We are at present unable to account for the

poor reproducibili ty of our Cd results- Th e high results re-

ported in samples 12009, 1206?/, 12002, 12022 and 12070 are b e-

lieved to be erroneous 	 The precision of out results for

terrestrial rocks is considerably bettera Because of the high

U and low Cd abundances in lunar rocks, corrections for fission-

Produced 116 Cd have been applied to our data using the U values

of Brunfel t et a l . (1970P Cliff et a 1 ; (1971) , Morr i sor t

al . (1971), O'Kelley et al. (1971), aancitel l i eta1- (1971),
Roshol t	 and	 Tatsumoto (1971) , S il ver	 (1971) and Taylor et,	al	 (1971)

w
For rock 12014 no U data are as yet avai lable, therefore no

i
i

cor rections have been carried out •

Our previous Ca results reported in Wasson and Baedecker

(1970) should be increased by a factor of 1 .05 to provide agree- j	 4

ment with our latest Ga results, due to a recal ibration of our

monitor solution.	 Our most recent Ga results appear to be too
i

,t

high by 5 - 10 % when compared with these corrected results.

We have applied a uniform correction factor of 0.95 to these
r.
Y

values, and are searching for a discrepancy.
{	 e

There appear	 to be some systemat ic differences between ;mt:

the Apollo-12 crystalline rocks and those recovered from 3;

Mare Tr• anqui I I i tatis •	 A comparison of our data and that

of Ganapathy et al, . (1970b) with that of Ganapathy et^a1 .,

(1970,a)	 for the Apoll o-11 	 rocks 	indicates that both Zn

and Cd appear to be less abundant in the Apoll o-12 samples •

Whereas Ca was observed to be nearly constant 'in  abundance in

the Apo] l o-11 basa 1 is	 (Wasson and Baedecker , , 1970) , :a much

wider range of Ga cono4ntret i ons was found in the Apo) l o-1
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rocks • This Is consistent with the wider range In major el ef*

meat composition observed by LSPET (19711)0

Data on a number of terrestrial rock samples which were

analyzed simultaneously with the lunar rocks is presented in

Table 2. We have extended the work reported by Wasson and Baedecker

(1970) on the Waianae volcano to include three additional speci-

mens from the lower member of this volcano, and have reanalyzed

the three specimens from the lower memLer which were included

In our previous study.

In addition to our work on t he . Wa i anae volcano, we have

also analyzed 12 rock samples from the Skaergaard, Greenland

intrusion. The results of our analyses on the chilled margin

gabbro (which is believed to represent the parent liquid) are

presented In Table 2• A detailed discussion and presentation 	 J

of our data on the Skaergaard will be published elsewhere.

Two samples of peridotite were analyzedpPCC • 1 and a rock

from Salt Lake, Hawaii. Both rock samples were poorer in Zn,

Ga. Ge t Cd and in than all basalt samples analyzed, and Ir was

found to be markedly enriched in both rocks • Ga , Cd and In

were found to be higher by a factor of 2 in the Salt Lake sample

as compared to PCC- 1 -
x

k	The Brown Point pyroxene gabbro is a Ti-rich facies be-
longing to a mass of coarse gabbroic anorthosite from the Adirondack

Mountains	 The abundances of all elements are similar to thoser

in other terrestrial igneous rocks, with the exception of fa,

j	 which is lower.`
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THE EXTRALUNAR COMPONENT

The moon's cratered surface shows ample evidence of ac-

cretion of extralunar materials, and it is to be expected that

evidence of this extralunar component should be found in the

finely comminuted portion of the lunar regolith. Evidence for

such a component in Apollo-11 soils and breccias was reported

by the LSPET (1969) team, and later by several other invests-

ga tors • The most compreIrns i ve and conclusive study of Apollo-11

samples is that of Ganapathy et ale. 11970x) who report that
12 elements are clearly enriched in the fines and breccias rela-

tive to the local rocks. They argued that the extra amounts

of these siderophile and volatile elements were consistent with

a	 1.9% addition of material resembling Cl chondrites to a matrix

composed of a roughly equal mixture of the two local rock types

k

.. Mbr

,a(
t

site. Sample 12033 is light-gray soil, and'contains substan-

tial ly smaller amounts of siderophilic and volatile elements 	 Y

than does 12070. The 12070 sni 1 is similar in composition
(Ganapathy eta t • , 1970b) and color (LSPET , 1970) to most of t
the fine material in the 12028 core, and is probably the more

typical and older soil at the Apollo-12 landing site 	 We have	 ^g
xx

attempted to define the magnitude of'the extralunar component

In 12070 and in the more typica l portions of 12028 by e method .xk

similar  to that used by Ganapathy et al. (1970a) but differing	 .
in important details • Like these authors , we have , estimated

A i	 _

at the landing site.
We have studied two soils (but no breccias) from the Apollo-12
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the concentrations of the elements of interest in the "lunar"
matrix of the fines by taking an average of the available data
on local rocks, and have subtracted these values from the average
concentrations found in the 12070 and 12028 fines. Such data
for 11 elements are summarized in Table 3. We have followed

the practice of Wasson and Baedecker (1970) and normalized the

results by dividing by Cl chondrito concentrations on a water-
free basis. This has the important dividend that the resulting
values are better estimates of the fraction of C1-like material
actually present in the fines. In contrast to Ganapathy et
al „ . (1970a) we list estimated errors in the resulting values
(which mainly depend on the scatter In the data on the fines,

f	 since in most cases the additional contribution from the matrix
is negligible), and have shown these errors as bars in Fig. la
This facilitates the assessment of the correctness of the acci,mp•-

4	 tion that the extralunar material'closely resembles the com-

position of C1 chondrites•

j

	

	 We have also reevaluated the Apollo-11 data on fines and
breccias in the manner described aboveo These are summarized'

j	 in Table 3 and Figs. lb and 1c-
,..E

As can ue seen from the last three lines of Table 3,, Ce
and Ir are the first and second most preciselydetermined of
the 11 elements listed. Interestingly enough, the magnitudes	

1

of the extralunar component estimated on the basis of Ir are
i	

II

1 about 1.6 times areater than these est imaterj -ron ,the bar 1 q of	 ,
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If we take the midpoints of these bands to be the best esti-

mates of the magnitudes of the extralunar component, aad the

widths of the bands as estimates of the errors, we arrive at

values of 1.04+  0.24, 1.14 +0.25 and 1 -07± 0.25% for the Apollo-12

and 11 fines and the Apollo-11 breccias, respectively. The

latter must be taken cum grano sails, ,  	since the brecc i as have

not all originated in the same localized area of time and space.
The error bars of the other nine elements touch the de-

fined bands, with the following exceptions: Cd in 120; 2n and

Cd in 11D and 11C. The significance of these exceptions will

be discussed later. The remainder of the data support the con-
clusion of Ganapathy et a]. (1970a) that the extralunar com-
ponent has a mean composition similar to that of C1,  C,2 or E3-4

c hondr i tes , and distinctly different from that expected from

any other known class of meteorites. The agreement is not sur-

prising, since C1 chondrites are believed -to most nearly re-

semble the non-volatile portion of rr,►ean solar-system material

(see Andes, 1971) , and are probably the most abundant form

of meteoritic material falling on the earth (Shoemaker and Lowery,
1967 or the moon. The composition of interplanetary)	 dust isp	 p	 ,

not known, but it is reasonable to ass,iume that that portion
1

which is produced by cometary attrition is similar in compo-
sition to the Cl chondrites

That the observed Ir/Ge ratio in the extralunar component

is 1.6 times greater than that found in C1 chondr i tes is an

interesting and possibly important point. The errors we give
x rn the last three lines of Table 3 are meant to be one standard 	 -I

-I

4wr .

i
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deviation, and do not include an estimate of the error In the

C1 chondrite concentrations. Using the errors as given, and

assuming errors of about 10% and 5% in the C1 chondrite concentrations

of Ir and Ge respectively, e estimate ay,	 probabili ty of less

than 0.1 that the apparent difference in the Ir/Ge ratios be-

tween the extralunar component of the fines and the Cl chon-

drites reflects experimental error*. Thus it is fairly likely

'The concentration of Ir in C1 chondrites is an arithmetic aver-

age of one analysis of Ivuna and two analyses of ®rgeull re-

ported by Ehmann et al. (1970). Atomic abundances (relative

^r
,vF 	i

} r ,

l ..e

?F'L

highly reducing character of the Cl chondrites 	 Their data

on the-enstatite chondrites also appear to be too low, perhaps 	 V_.

for similar reasons s

4	 ^
p

that the I r/ Ge ra tio of the extraluna -r material is really higher°
than that of C1 chondri tes. German i ur^t is one of the most vola-
tile of the siderophile elements and the it/Ge ratio in the 	 ;*

ordinary chondrites is aboat ;, 4 times ,higher than the same ratio

t

.n6S.. ^	 _.	 .   	 ^n9N	 ... 	 a.:w' 	 K4n.ro^d..^...t _	 .	 .a	 .,u _ '..dbx.4Wn•^YBYtf`e3'.'O3

to S i) based on these data are very similar to those found by
t

the same group for C2 and H-chondrites. The data are based

on neutron activation analysis • The data of Crocket et a l .
(1967) which asp- hanAd nn rad inrhpmicat nPUtrnn a jt ivat nn-

show it abundances in Cl chondrites which are only about 60

as large as those in CZ chondriteS• i t appears that the latter

workers may have ach ieves incomp l ete exchange between car r ier

and the activated radionuclides, perhaps as a result of the
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for Cl chondrites• Also, this ratio varies by over five orders

of magnitude in iron meteorites, and small additions of cer-

tain types of iron meteorite material to the soil could have

a profound effect on the Ir/Ge ratio.

Where is also an apparent tendency for volatile elements

(other than B1, to which we tend to assign less weight •• see

the following paragraph) to be slightly higher in Figs• labc

than would be predicted on the basis of the siderophilic-element

contents of the soils send breccias. Concentrations of these

elements are lower in "recrystallized" chondrites, and apparently

In the bulk earth and bulk moon. If these "lost" volatiles

condensed out In some colder portion. of the solar system, it
Is possible that such a material enriched in these elements

accounts for a measurable fraction of the extralunar component.

Al though it may be ultimately possible to define a mean

composition for the extralunar component which differs in some

details from that of C1 chondr i tes , a number of other elements
must be determined with precision comparable to those available

for Ge and Ir, however, before detailed testing of hypothet ical

mixtures of different types of meteorites and/or other cosmic

matter can be undertaken •
Anders et a]. (1 1971) have made the novel suaaestion that

local variations (or.a scale of tens or hundreds of meters)
in the extralunar component can be found at the Apollo 11 and

12 s ites	 Such evidence, if correct, would be extremely i mpor-

tant  for evaluating the source of the extralunar component,

since  i t would rule out a ma jor contribution of interpl-anetary
f
C	 ^;
i

f

f	
_	 F
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dust to the extralunar component. Interplanetary dust, if pre-
sent, should fall at comparable rates and have comparable com-
positions at all geographical locations on the moon. However,
we can find no evidence in the tabulated data of Anders e
(1971) to support their proposal, with the exception of their
Bi concentrations. Their Bi values show large fluctuations

both in soils and crystalline rocks, however, and we question

whether an appreciable fraction of these variations may not
result from experimental error •

As noted above, Cd is enriched-in all soils and breccias
by a factor of 3- 5 relative to that expected on the basis of

the estimated amounts of C1-like material; Zn is enriched by
comparable factors In the Apo`1 16-1 1 samples, but Is not pre-
sent in amounts in excess of that predicted in Apollo -12 samples.

Ganapathy et , a]. ( 1970a) attribute the excess amounts of these

elements in Apollo-11 samples to a hypothetical Cd- and Zn-rich

	

lunar rock which was not included-in the limited suite of rocks
	 l F

	returned by the astronauts. Alternatively, one could attribute	 11

at least a portion of this material to the hypothetical volatile'

rich extralunar material mentioned above. The great difference

In the Cd/Zn ratios between the Tranqui l l i totis and Procellarum

sites appears to lend support to the "unusual lunar rock"

explanation.

	

The concentration of the extralunar component in the fines	 1#

portion of the lunar regolith can-be considered to be a func-
P

tion of the time elapsed since the regolith started to form.
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In the discussion to follow # we will assume that the particle-
size distribution of the extralunar material has remained con-
stant during this period. This assumption is supported by the:

fact that the same cometary source is probably responsible for

(1) the fine interplanetary dust, which Opik (1969) believes

provides most of the mass influx to the moon; and (2) the Apollo

asteroid and live comet influx, which Opik estimates causes

most of the primary crater ing• We shall also assume that the

regolith turns over as a result of a bombardment which is a

small fraction of that suffered by,the surface since its for-

mation.	 The lowest curve in Fig. 2 of Shoemaker ê  ta,1. (1970)
indicates that the bombardment of the surface at the Mare Tran-

3 	 e

i

yuillitatis site has been sufficient to turn the surface over

six times.	 The regoli th' thickness	 increases with increas ing
K

integrated flux of extralunar mater ial .	 However, as the thick- 5

ness	 increases, the lower limit of the projectile mass which
t	 ^ I

i

can penetrate the regolith also increases, and the rate of rego-

lith growth decreases. 	 The relationship between the regolith

th i ckness and integrated flux can be eva luated on the basi s x<<

of data given by Oberbeck and ' Qua i de (1968) .	 They have esti -

mated thicknesses of the lunar regolith at four different lo-

cations on the basis of Lunar Orbiter photographs.	 We have

evaluated the extralunar flux from data given in their Fig . 7a ^Y

(note that the points labelled 50 and 500 m on the abscissa t

of that figure should  be 31.6 and 316 m respectively). 	 Shoemaker t

et a1. 1970)	 gi ve a	 _(	 power law of the form i=	 '^c^', where F :j

is the cumulative number of craters /km2 ..with ,diameters greater
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than c (in meters), X Is "2.93 and X Is a measure of the cumu-

lative flux of extralunar material• in order to avoid the effects

of crater obliteration by repetitive bombardment, we have fitted

this equation to the large-crater-diameter portion of the Oberbeck

and Quaide curves, where crater erosion processes have been

relatively unimportant. In Table 4 are listed regolith thick-

nesses and relative cumulative fluxes for the four locations*

The use of a value of - 2 .93 fore X in the power function Is rather
arbitrary in our treatment of the data of Oberbeck and Qua i de .
The actual slope of the lower portion cf their curves appears

to be somewhat higher. However, the actual value of h Is not
of great importance providing that the actual projectile (and

crater) si ze distributions at the four different locations were

the same.

The relationship between these two variables is made clearer

when their' l ogar i thms are plotted, as in Fig. 2	 They appear
to be related in exponential fashion, and a line  i s drawn in
r 	 2 which comes onds to the relationshi

f77

L

L'

it

F
V4,

log DR 	 0.585 log X + 0.466	 1)
i

Where DR	 is the regolith depth. According to th is relation-

ship, a factor of 10 increase in the integrated meteorite flux

brings about an increase in the regolith depth by a factor of

about 3.8

>

Of more direct interest for us is° the relationship between

K

a
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the infali of extralunar material and the concentration of such

material in the fines portion of the regolith• The concentra-

tion in the fines of a parti cul ar element resulting from the

extralunar component will be proportional to the relative in-

flux, and inversely proportional to the regolith depths i•e•,

1 X I =X /DR  , where [XI  i s the net concentration of a "extralunar

tracer" element such as I r • Here we assume that the trace el e-

ment is homogeneousl y distributed within the regolith. It then
follows that

log [XI	 log X~ log DR +k 1 	(2 } •R
{

a

where k' is a unitless constant. Combining equations (1) and
a	 Y^

( 2 ) we obtain r

log CX1	 0 . 415 log x+k	 (3)

1

where k is a constant which can be calculated for each element 	 ^=

of interest at each lunar l anding  site . For purposes of com-

paring the concentrations of a given {, element at two differen t
landing sites (designated by subscripts I and 2) we can elimi-

nate this constant, and write the equation

2.41 log [XIS	 log	 (4)i	 Xx	 i

We have calculated that the extralunar component at thea
Apollo-11 site corresponds to about an addition of 1.14% C1	 rR

_	 F
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chondrite-like material, and that that at the Apollo-12 site

Is about 1.04%	 The ratio of these two values is about 1.1 0•

The error in this rat io is relatively small (1 a of about 4%)
g

since it involves only the experimental precision of our com-

bined Ir and Ce measurements, and does not have to allow for

systematic errors or the correctness of the assumption that

the extra l unar component has a composition resembling Cl chon-

drites. Using equation (4), we calculate that the extralunar
Influx at the Aare Tranquillitatis site was about 1 . 25 times

greater than that at the Oceanus Procellarum site. ('This factor
would decrease to 1 . 17 if the value for X Used in the power
function to fit the Oberbeck a nd Qua ide cur ves -is set equa l

to 4.3•

Rubidium-strontium ages at these sites are 3.65 Gyr

(Papanastassiou et a^l., 1970) and 3.31 Gyr (Papanastassiou and

Wasserburg, 1970), respectively. That the ratio of these two

ages (1.10) is substantially smaller than the ratio of inte-

grated extralunar fluxas at the two sites indicates that the

flux of extralunar objects h as been decreas ing with the passage

of time. A similar conclusion has recently been reached by

Shoemaker and Soderblom (private communication) on the basis

of crater counts and crater morphology.

Ganapathy et a]. (1970a) have estimated an infal l rate
of 3 . 8 x 10" 9 g cm" yr-1 of C1 chondrite- l ike mate r ial (including

H 20) at the Apollo- 11 site. Assuming the same regolith thick-

ness at that site (4 . 5 m) and a thickness 1.14 times less at	 §`
the Apollo-12 site (an estimate from equation (1)), the same

u

" MAN+t ems'	 ^_ ,.-,,
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packed density ( 1 ,8 glcm3,) , fraction of large rocks ( 10%) and

solar wind fraction (2%) , we estimate Influxes  of 298 x 10" 9 g CM-.2 yr- 3.

and 2.5x 10' 9 g cm" 2 yr" of material with C1 - 1 Ike composition

(including H 90). Because of the evidence for a flux decreasing

with time, 2.5 x10- 9 g cm"' yr-1 gust be regarded as an upper

limit on the recent flux of such material on to the lunar surface.

Although we have estimated an average extralunar compo-
nent of the Apollo-11 breccias, they	 should each be considered

I nd i vidual l y, since neither their time nor locus of format, l on#
N_

Is known.	 Our earlier data (Masson and Baedecker,	 1970)	 Indi-

cate that the extralunar components of breccia samples 10021,

10046 and 10048 are very similar to those of the 10084 fines,

and are consistent with formation at a local	 site relatively

late in the history of the regoli th. 	Breccia 10060 has an extra-

lunar component about 0.65 that of the other samples, and brecc is # fayF

10056 contains less than 0.05 times the C1-like component of

the more typical samples.	 In fact, Wasson and Baedecker (1970) f

pointed out that composition-wise, 10056 was a type-B crystal-

line rock. .

McKay et a]. (1970) have proposed that the lunar breccias

are formed by sintering of material heated and transported

during the base-surge phase of crater formation, and not by „.

shock-lithification•	 They state that compositional evidence t

provides support for such an origin.	 We do not agree wi tit the `±n^

l atter conclusion;	 rather, the compos i tiona l evidence defines

conditions that must be met oy any mechanism for breccia for- 4f

mation.	 The amount of extralunar component in 10021, 10046 j
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and 10048 is too close to that of the local soil for this to

be fortuitous; it is very likely that these consist of lithi-

fled (or sintered) preexisting regolith. Breccia 10060 is most

likely a mixture of 65;, regolith and 35% comminuted, deeper-

lying bedrock.	 Breccia 10056 was	 investigated by McKay et al„.

(1970) , who confirmed that It was petrologically a breccia .
Y

Assuming that the 100 6 sample we Investigated was not mislabelledA	 g	 5	 p	 g	 ,

it should consist entirely of comminuted bedrock, and is pro-

bably a monomict breccia•	 Breccias 10056 and 10060 deserve

further study, since they are likely to contain features con-

trasting with those of the more typical 	 brecc i as .
The unusual	 light-gray fines 	 12033.has a meteoritic com-

t

ponent which is about 0.59 times that	 in the 12070 and 1202$.

soils.	 Baedecker et al.`(1971) 	 proposed that this meteoritic
s

component has resulted from either (1) 	 a 59:41 mixture of local

soil	 with an Al-, P- and K-rich, Fe- and Ti-poor exotic com-

ponent from elsewhere on the moon; or, (2)	 a fortuitous con- i`}

tribution. of 0.59 C1 chondrite-like material 	 to an Al-rich, '.

Fe-poor rock type during the cratering event. 	 They feel that  r.

the former possibility is more persuasive, and assuming such

a picture they cal cul ated the composition of an "exotic" com-
ponent from major el ement data on both 12033 and the more typi-

cal	 soil	 12070.	 Their calculated composition	 is similar	 in

K and P content to the KREEP (high K, rare earth element, and

P) component of Hubbard et a ] .. (1971) .	 These workers report X
T

n that the 12033 soil contains 65% KREEP 	 and that 12070 contains
t

._E 259 KREEP.	 'if it assumed that the exotic component defined

.	 .. ._	 _ ..	 _	 .	 _	 ..	 ..	 ..	 .. ..,	 rw•YiiAl9Yiiifw	 _—	 ..u9..... r.Yi3e_	 .w.. , ..	 .._	 ^._.	 .:Y FJf	 I	 IC4	 'r 	 :b4i :.	 C: i._ -ic?	 • 	 _...
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by Baedecker et 1. (1971) is KREEP, and amounts to 25% of the
12070 fines, the 59:41 12070/exotic ratio given by these authors

Indicates a 56% KREEP component in 12033, in relatively good

agreement with the estimate of Hubbard et - al. (1971). As in-
dicated by Baedecker et a]. (1971), the KREEP component is prob-

ably of more recent origin than the Copernican event, and we

favor the Fra Mauro formation as the source of this material.
1i

ANORTHOSITIC AND OTHER LUNAR COMPONENTS IN THE SOIL

Wood et al. (1970a) found that about 5% of the coarse fines
from the Apollo-12 site were of anorthositic composition.

Independently Wood et al ,: (1970b) and Wasson and Baedecker (1970)
rr

estimated from the composition of the "fine" fines and breccias

thz t, these materials contain 20% of material of anorthositic
composition. That this fine material has more of this compo-

nent than the coarser material is not surprising, since the

finer material has higher ejection velocities in cratering events.

Gol es (1970) and Gol es tet a  i a (1970) have argued for a

"cryptic" component; distinct from the anorthosite, chiefly on

!	 the basis of variation diagrams where A1, Si_, Ca and Mg con-

tents of crystalline rocks, soils and breccias are plotted versus

their Ti contents. Although it seems quite certa in that l unar

materials other than anorthositic fragments and local rocks

have contributed to the Apollo 11 soil, we fail to see the evi-

dence for appreciable amounts of these materials in these authors"

variation diagrams. Their choice of T0 2 as the:: independent

t	 1^
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variable was unfortunate, since the relatively dense ilmenite

phase may be depleted in the lunar surface materials be set-

tling (Compston et alp, , 1970) . Thus, thwe Ti values of the soil
and, to a lesser degree, the breccias, should be regarded as
lower limits• When one allows for this by an error bar (+ 1% Ti

in length) and adds appropriate error bars to the other plotted

points, there is no difficulty in finding straight lines which,

intercept the crystalline rocks, brecc i as , soils and anortho-
sitic gabbro on the variation diagrams of Gores (1970)• We
find no reason to believe that.other compositionally distinct

lunar materia l s account for as much as 5% of the mass of the

Apollo-11 fines and breccias• 	 3

Like the Apollo-11 soils, the soil samples recovered from

Oceanus Procellarum are chemically distinct from the crys ta l-

line rocks, being enriched in Al and de p leted in Ti: and the exis-

tence of an exotic component: in the lunar soil was indicated

	

j$	

t

+ 5

x,.

.4.^
same component, which they terra "norite". it is difficult to s
estimate the abundance of most of our elements in the KREEP 	 t

component due to their enrichment in the soil samples from the

extjraiunar component. However, we can est imate the Ga concen-

tration in the KREEP component, since the presence of the.meteo i

ritic component has only a minor effect on the observed Ga conti

centration of the soil	 In Fig. 3 we have plotted Ga versus
1

i

f

by the original LSPET (1970) data. As mentioned in the pre-

vi ous section, Hubbard et a l • (1971) have characterized this

component as being a high-K, -REE, -P rock whi ch they call KREEP,

and independently Wood et al. ('19711 have characterized the
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the Al, Ca and Mg contents of the rocks and soils (the data

on the latter elements are from Annell et al., 1971; Compston et al]

1971 ; Engel and Engel , 1971; LSPET, 1970; Rose et, ;,, 1971;

and Willis gt^a],. 1971). The regression lines are calculated
using York's least squares fitting procedure, with a ±5% error

assigned to all variables. The data point for 12014 was ex-
cluded from the fitting procedure, since the only major ele-

ment data ava ilable on th is sample was that of LSPET (1970) ,

which we considered to be unreliable. The LSPET analyses gene-

rally yi el ded A1, Ca and Mg results which were systematically

higher than the values obtained for the same rock samples by x	 s
7	 "

wet chemica l or x-ray fluorescence techniques.	 The Ga contents

of the crystalline rocks are positively correlated with Al and

Ca and negatively cor re' i'a ted with Mg at confidence l evel s  grea ter t
than 9 5%.

Hubbard et al.	 (1971) estimate	 that soils	 12070 and 12033

contain 25 and 65% KREEP respectivel y, ba sed on their Rb, Sr

and rare earth-element data.	 The microprobe data of Wood et

Al., (1971)	 shows the KREEP component to be enriched in Ai and ?`

Ca wi th respect to the local crystall ine rocks, with a wide t

range of Mg concentrations	 (2.5- 6.3% Mg) •	 Fig .	3 points to R4t

an apparent enrichment of Ga'' in the KREEP component, and sug-

gests a greater enrichment of Ga than Ca. 	 From the available

data on soils 12070 and 12033 and an assumed composition of
r kF

25% and 65% KREEP in 12033 and 12070 respectively, one can ca l -

culate average compositions for the crystalline rocks and KREEP f

components.	 The average crystal l ine rock Ga content calculateds
sz

a

. kg.
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Is 3 . 9 ppms 0 . 1 ppm higher than the mean Ga concentration of

our suite of rocks, and the Ga content estimated for the KREEP

component is 62 ppm•

The presence of the KREEP component in the fines and breccias
is probably of minor import for the calculations used to eval-

uate the extralunar component in the previous section. In the

following section we show that the concentrations of the ele-
ments we have studied show little variation between different
types of mafic and acidic igneous rocks. Thus, a negligible
error should be introduced in subtracting out a lunar contri-
bution which is based only on the observed concentrations in

the local rocks. A second potential problem has to do with
the fact that the extralunar component is probably consider-

ably greater in the highlands regol i th than in the mar is basins

Although the anorthositic and KREEP materials are probably of

highlands origin, the material presently in the maria regolith
has been ejected at high velocities from relatively large cratering}
explosions. The highest velocity ejecta is associated with
the central "'plume'" during crater formation, and probably con

!
	 lists of material from well below the regolith• It should there-

;'ore contain nearly no extralunar material•
ti

r
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COMPOSITIONAL COMPARISON OF LUNAR AND TERRESTRIAL IGNEOUS ROCKS

We have attacked the problem of understanding the geochemical

behavior of our selection of trace elements from two different

standpoints. First, we have initiated studies of suites of

cogenetic terrestrial samples, in order to observe whether frac-

tionation trends are present, and hopefully, to gain some in-

sights into the processes which have produced these fractionations.

Second, it was thought that a comparison of bulk concentrations

in similar materials from the earth and moon might reveal some

trends associated with the separate origins of these two planets

and ass ist in formulating and test ing hypotheses regarding for-

mationa l and planet-wide geochemical processes. t^.

One of the first type of studies, an investigation of a

rock su ite from the-Skaergaard Intrusion, will be published

elsewhere. Data on another suite of related rocks from the

Wa `i anae, Nawa i i , volcano, are given in Table 2 • Wasson and

Baedecker (1970) measured five trace elements in three rocks !t	 i

from the lower member and two rocks from the upper member of x	 ;

the Wa i anae Volcano, as these members are defined by Macdonald
,x

and Ka tsu ra (1964) . 	 Since rocks from the di f ferent members ft

are probably not cogenetic, we have obtained an additional 	 three

specimens of the lower-member rocks originally collected by ^k
S

Macdonald.	 We have selected our samples to show as much chemi-

cal	 variation as possible while still 	 plotting	 in the main trend r

on alkali-iron-magnesium triangular plots andalkali-titanic }`

two-parameter plots •	 Fig. 4 shows Zn, Ga. - Ge and In data plotted ;	 5
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for these rocks versus the crystallization index (CI) of Poidervaart

and Parker (1964). The CI is roughly proportional to the norma-

tive contents of Mg and Ca silicate  minerals . Presumably, a

lower CI indicates a later-forming differentiate. Also plotted

are the In, Ge, and corrected Ga values reported by Wasson and

Baedecker (1970) for the two rocks from the Waianae upper member.,

The data on the six rocks are listed in order of increasing

crystallization index in Table 2• As can be seen there, the

Cd and Ir data tend to scatter, with no trends evident. For

this reason we have not plotted them in Fig. 4• The scatter

in Ir reflects relatively large experimental errors 	 in our data,  Acv

which are near the detection limit for this element. 	 The Cd
7

data are quite consistent between splits of the same powder,
i

}

but vary widely from specimen to specimen.	 We attribute this

var i ation to sampling problems.	 Apparently the Cd is concen-

trated in a minor phase which is very	 inhomogeneously distri-

buted, and which contains only minor amounts of Zn	 Ga, Ge and In. Ej

Fig. 4 shows that Zn and Ge remain remarkably constant
3

N3[

throughout the Waianae suite, although no Zn data are avail-

abl e on the rocks from the upper member •	 The trends of Increasi ng 'Y.

Ga and in with decreasing CI which were observed in the mixed
A

Waianae suite of Wasson and Baedecker (1971:)) . are al so observable

in the suite from the lower member only.	 1"he increase in con-
t

centration of each element 	 is small	 ('10- 15%) within this rela-

tivel y small	 range	 in CI.

Although no trend i n the Ir data is observed for the samples #
A^

'

from the i ower member of the Wa i anae suite, the average Ir contentG
^k

r.
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appears to be higher than that in the rocks from the upper member

(Wasson and Baedeckerp 1970), perhaps reflecting a tendency

for Ir to concentrate in early differentiates. The high Ir

concentrations observed for the peridotite samples analyzed

may reflect a still higher level of abundance of Ir in the mantle

materials from which the basalts were derived.

In addition to the above samples we have investigated seven

other rocks of basaltic composition. These include two basalts

dredged from the Mid-Atlantic Ridge, the chilled marginal gabbro

of the Skaergaard Intrusion,  and four standard rocks; BCR-1

and W-1 of the USES;	 BR of the CRPG, Nancy; and BM of the ZGI ,'
1	 {K

Berlin.	 All	 elements (except	 Ir, for which the data are of ,:	 t

bower qua'i ity) show remarkably small	 variations despite the

fact that these basaltic rocks are from widely varying locations. 

Indium varies by a factor of 2.3, Zn by a factor of 2, and Ga
A }^

and Ge by factors of 1 .4.	 Cd varies by about a factor of 6; i'
t.	

v

however,	 if we discard the highest and lowest values as reflecting

sampling 'i nhrxnogene i t i es , the spread is reduced to about a fac-
tor of 2 •	 Most :authorities now attribute the formation of basal ts
to partial	 melting and subsequent fractional 	 crystallization

e°

processes occurring in the upper mantle (Ito and Kennedy, 1968;

O'Hara,	 1965) .	 The limited  concentration ranges observed above
g	

,

indicate that	 (1)	 the source material	 for these basalts shows

very little variation in	 its composition (or, specifically,f`

its content of these trace elements)	 independent of its geo-E

graphical 	 location; and (2)	 trace-element differentiation of
f	 `__'

the basaltic ,material during transport from its source,; extrusion t



F	 3

B

f	 t

1

31

and solidification is relatively minor (providing the final

rock still has a "basaltic" major-element content).

Also listed in Table 2 are data on four other igneous rocks,

the USGS standard granite, granodiorite and andesite, and Buddington's

pyroxene gabbro, which has been studied by other lunar 	 Investi-

gators.	 Inclusion of the first three together with the basaltsp

causes the ranges in concentration to increase only in the cases

of In (to 3.1) and Cd (to -9)	 in excess over the elemental {

concentration ranges listed in the previous paragraph. 	 Inclusion i
q

of the pyroxene gabbro increases the Ga and Ge ranges to 1 +7

and 1.5 respectively.	 That basic and acidic igneous rocks are

so similar clearly shows that they have originated 	 in relatively
t

simple processes (as opposed to multiple-plate fractionation

processes, which should cause much larger concentration ranges

to be observed) .

The last three rocks listed in Table 2 are ul tramafics --'

the USGS standard dunite and peridotite, and a Hawaiian peri-`

dotite described by Kushiro and Kuno (1963) • 	 These yield con- t; 	 v

centrations of Zn and Cd which are lower by factors of about

2 than the	 lowest values	 in the maf i c and acidic rocks. .	 Gia l i 'i um ;-

and In are lower	 in the ultramafics by factors of 5 to 30.
It
!zs^^s

German ium is only slightly lower	 in the ultramafics• 	 Ir idium

in the dunite	 is similar to the mafic values, but is about a r

factor of 10 higher	 in the two per i dot i to samples • 	 The dif-
ferences  between the peridotit6s and the mafic rocks probably

reflect the direction and general magnitude of the distribution _	 I

of these eel emeo.ts between the basaltic magmas and the parent
11 ^

,

g
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A

material (i.e., during partial melting of upper mantle materials,

Ir tends to remain in the unmelted solid).

The remarkably small range of Ge in terrestrial igneous

rocks is illustrated in Fi g. 5, a hi stogram showing all of our

data on terrestrial rocks. Apparently Ge is distributed about

equally between all major phases In these rocks, and for those

rock types which have formed by partia l melting about equal l y

between the molten and solid phases. Germanium is clearly not

a good "tracer" element for studying igneous fractionation processes.

As noted above, our Ir data show quite a bit of scatter

on the terrestrial samples studied. In some cases, however,

the data on one type of rock from a single locality are rel y

Lively consistent. For example, the Ir content of th e Wal anae

basalts derived from the lower member is quite well defined

a t about 0 .47 + 0.10 ppb and those of the W-1 d 1 abase at 0. 32 ± 0.05 ppb .

The 'JCR-1 and BR basal is crave values which are about an order	 b^
r€

of magnitude lower than the above values. Because of the large

spread, it is not possible to speak of an average Ir content ^y

of terrestrial basaltic rocks. Other igneous rocks show it	 E . 4.

concentration ranges similar to those encountered in the basalts.
1 _

Only the peridotites show relativel y consistent and high values,

as mentioned above, but our data are too few to establish a

world-wide average for these rocks.
In Table 5 are listed average concentrations in terres-

trial and lunar basalts for the five elements other than Ir.

Gallium is 5 . 2 times lower In the Apol 1 o-12F; rocks than in average	 ^ r

terrestrial basalts .; the factor for Apoli'o-11 basalts Is abou t
(.	 1	 ..

^ s .

1
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4. 5, after correcting the Wasson and Baedecker (1970) data for

the 5% systematic error noted in the experimental section.

The other elements are depleted by factors of 60 or more, and

could, within the scatter of the data, all be depleted by the
same factor (of about 70- 80) 	 The diffePence between Ga and

the other elements is striking. The lunar Ga abundances (rela-

tive to Si) are slightly lower than those in the ordinary chon-

drites (Tandon and Wasson, 1968; Fouche'and Smales, 1967), and
slightly higher than the values for terrestrial peridotites

(Table 2)= In the LL •chondrites and mesosiderites, which have

oxidation states comparable to l urar samples (as estimated by

the Fe/Mg ratios of ferromagnesian silicates coexisting with

metallic iron), Ga is about equally distributad between the

magnetic (metallic) and non-magneti c (silicate) separates (Fouche'
and Smales, 1967; Van Al s tine et al., 1970). Thus, Ga should

not be depleted by more than a factor of about 2 by the sepa-

ration of a metallic phase. The Ga concentration in lunar "mantle"

and separated metal surface rocks is more likely to reflect

that of the bulk moon than Ge and i r, which_ are more strongly
concentrated into Fe-Ni

The depletion of Ge may be ascribed to its extraction by

a metal phase during the formation of the lunar basalts, since

Ge is concentrated in the metal of LL-chondrites and mesosidertes

(Fouche'and Smales 1967 • Van Alstine et ai. iQ70)	 The other
siderophlle elements such as it would also have been lost through

such a process • The, fact that Ge concentrations are higher ^_ x
in terrestrial rocks might be explained if the extraction process

f,

t.
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on earth was not so efficient• The oxygen fugacity may also

have been higher on the earth, such that the silicate/metal

distribution ratio of Ge was higher•

Two different geochemical affinities can be invoked to

explain the depletion of the other three elements in lunar rocks.

Ringwood and Essene (1970) and Ganapathy et al.  (1970a) classify

them as volatile elements, and believe that their low abundances

(together with those of Rb, Pb, etc.) may be characteristic

of the (basaltic) source regions, and already established during

the accretion of the moon. They a nd others (e•g •, Tera e, tt a)..,

1970) quite reasonably reject the possibility that these ele-
.	
c

ments were boi rod off during extrusion, since the Sre7/Sr°,

intercept indicates that the Rb-Sr fractionation took place

about 4.6 Gyr ago, 1 . 3 Gyr before the extrusion of the Oceanus
J

Procellarum basal is .	 Alternatively, Zn , Cd and In may be chat co-
t

phile, and may have been extracted with a settling FeS phase

(or, more likely,  an FeS - Fe eutectic) during a molten stage
in the moon's history.	 Unfortunately, we do not know either..

(1)	 how strong their chalco phile properties are, nor (2) 	 how

effectively they would be scavenged by an	 iron-troilite eutectic.

It appears to be simplest to attribute the low abundance of

the three elements to volatility, since Wasson (1971) has shown ,t
that this	 is the property which best explains the similar lunar/

terrestrial and ordinary chondrite/C1 chondrite abundance pal;t,^irns •
Two models have been proposed to explain the low volat^H e-

element concentrations of lunar rocks relative to terre-triai

basal is .-	 Ringwood and Essene ( 1970) attribute the `I,4*i	 abundance

r'
,
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of volatile elements on the moon to an incomplete recondensation

of materials evaporated from a late, high-temperature stage

during the formation of the earth. Ganapathy et al. (1970a)
invoke a model developed by Anders (1968) and Tureklan and Clark

(1969) in which the accretion of the moon and earth occurred

during a period of falling temperatures, with condensation and

accretion of volatiles as a very late event during the formation r
of these planets. If,  when this occurred, (1) the earth and
moon had nearly their present masses, and (2) the relative

capture velocities were low, it is reasonable that the earth

should have swept up much more of the material than the moon. tt.

Ganapathy et al • (1970a) argue for an enhancement of this effect
resulting from the geocentric orbital velocity of the moon.

1 h	 h	 (1971) h	 d th	 th 1 ^t	 t	 1A t_oug	 Wasson	 as argue	 at	 a	 unar	 ernes 1 V a

concentration ratios are more in keeping :.with a "selective accre-

tion" model of the latter type than with a "partial condensation"

model as proposed by Ringwood and Essene (1970), Singer and

Bandermann ( 1970) have shown that the maximum enrichment attain-y

able by this mechanism is a factor of 22 more mass per unit
k;

area, or a factor of only 3.6 more mass per unit volume, 	 if s

the volatile elements are distributed through masses on the

earth and moon which are proportional to the total masses of

these planets.	 Since four of the terrestrial 	 lunar concentra-

v
t.v

tion ratios listed  l.n Table 5 are z60,	 it appear s that the 0anapa.thy
eta 1 ., (1970a) model must be rejected

Wasson (1971) has proposed an alternative manner in which

a late, volatile-r ch material could m be. selectively accreted 't

r
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by the earth relative to the moon, independent of the sign of

the temperature-time differential. (Because of the inherently

low probability for the capture of the moon had it formed else-

where in the solar system (see, eog•, Wise, 1969), it is assumed
that it and the earth formed at about the same distance from

the sun.) It seems reasonable that the initial accretion of

material to form the earth and the moon chiefly involved volatile-

poor material in roughly circular heliocentric orbits, and that

this process, once started, proceedrkd quite rapidly. At the

end of this stage, the earth and moon had achieved masses very

similar to their present ones. It is fur"cher assumed that the

earth had formed and reta ined an atmosphere of mass cGmparabl a
to or greater than its present one, whereas the moon had no	 3`.

appreciable atmosphere. Accretion continued, but at a much

slower rate. If now, the major source of accreted material
r

were comets which were occasionally perturbed by Jupiter into
ri

orbits which intersected those of the earth and moon, the selec-

tive accretion of volatile-rich material	 to the earth can be

understood.	 According to Singer and 6andermann (1970), material`

with cometary geocentric velocities is captured at a higher

rate (per unit mass) on the moon than on the earth (or at a !

rate slightly less than a factor of 2 in favor of the earth ,.

per unit area.	 However, the re-if expressed in units of mass'
_

tention efficiency for such material would have 'been much greater
1

on the earth than on the moon.	 The earth's atmosphere wouldF

have given the ea rth a retentivity of nearly 1 .0 for such-mater ial ,

whereas collisions of h gh- velocity,
, 
volatile-rich comets wi th

s.
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the moon may very well have resulted in the retention of only

a very small fraction of the original mass. Loss would have

occurred both because of the vaporization of the lost material

to atomic velocities greater than the escape velocity, as well E

as the entrainment of unvaporized particles by the relatively

dense cloud of vapor which would result from an explosively
j

heated dirty-snowball-type comet (Whipple, 1950)• It 'is not

critical whether or not the moon was gravitationally attached

to the earth when this process occurred. if the mixing volumes

involved masses of the earth and moon which were proportional

to their total masses, the retention efficiency would have to

be 300 times lower on the moon than on the earth in order to

explain a terrestrial/lunar concentration of 100 for volatile

elements. More details are given by Wasson (1971).

^r

ACKNOWLEDGEMENTS

We are greatly indebted to J. Kaufman, R. Glimp, H. Mahoney z

and W. Simpson for assistance.	 Terrestrial	 samples were kindly

provided by F • Aumento, _H • de )a Roche, F • Flanagan, G. 	 Gol es , 1

I • Kushiro, G.A. Macdona ld, K. Schmidt and E.A. Vincent.	 We I<

also wish to thank L.H. Ahrens, B.W. Chappell, W. Com  stop

F.	 Cuttitta,	 E.	 Engel,	 G.	 Goles,	 J.A.	 Maxwell,	 L.C.	 Peck:, H.

J. hose Jr., R.A.	 Schmitt and J-.H.	 Scoon for kindly providing

us wi th their data prior to the Apollo 12 Lunar Science Con-

ference•	 Neutron irradiations at the UCLA and Ames Laboratory
1

reactors were capabl y handled by J. Brower, A.F. Voight and

their associates.	 This research has been supported by NASA

contract NAS 9;-809`6 and NSF grant GA 15731 •s

»,x .̀.yuYL	 ateaf3niFeyn..:.,,..,waea:a.du_e ,,^rin. 	
x..m.t



f

W

_•

a

1
	 I 	

38

REFERENCES

Anders E. (1968) Chemical processes in the early solar system,

as inferred from meteorites. Acc. Chem. Res 	 1, 289-298•

Anders E. (1971) How well do we know cosmic abundances? Geochim.
Cosmochim. Acta 35, i n press

Anders E., Lau] J.C., Keays R•R., Ganapathy R. and Morgan J.W.

(1971) Elements depleted on lunar surface: Implications

for origin of moon and meteorite influx. Apollo 12 Lunar

Science Conference (unpublished proceedings).

Annell C.S. and Helz A.W. (1970) Emission spectrographic deter-

mination of trace elements in lunar samples from Apollo 11.

Proc. Apollo 11 Lunar Sci . Conf , Geochim. Cosmochim. Acta

Suppl. 1, Vol. 2, PP • 991-994 . Pergamon.
Annell C.S._; Car ron M.K. Christian R.P_ Cuttitta F	 nworn-ik E J ,

r
Helz A.W., Ligon D.T.'Jr and Rose H.J. Jr. (1971) Chemi
cal and spectrographic analyses of lunar samples from Apollo 12

mission • Apollo 12 Lu nar Science Conference (unpublished
proceedings).

6

Baedecker P.A. and Wasson J.T. (1970) Gallium $ germanium,

indium and iridium in lunar samples. Science 1, , 503-505•

Beec	 A	 C	 ^a d ker P.	 uttitta F	 Rose H.J. Jr• _ Sc	 Y	 WassonR. and 	 J.T.
_

(1971) On the--ori , gin of lunar soil 12033. Earth Plan.
r

Sc i . Lett., in press •
r

Brunfelt,A•0., Heier K.S. and Steirines E. (1971) Determination

of 40 elements in Apollo 12 materials by neutron activation
f

analasis. Apollo '12 Lunar Science Conference (unpublished

proceedings).



#	 #

*r	
39

Buddington A.F. (1939) Adirondack igneous rocks and their

metamorphism. Geol__ Soc • Amer * Mem • 7 36

Cliff R.A., Lee-Hu C. and Wetherill G.W. (1971) Rb-Sr and

U-Th-Pb measurements on Apollo 12 materials. Apollo 12

Lunar Science Conference (unpublished proceedings.

Coompston W., Chappell B.W., Arriens P.A. and Vernon M.J. (1970)

The chemistry and age of Apollo 11 lunar material. Proc.

Apollo 11 Lunar Sc i . Conf . , Geoch im. Cosmoch im. Acta Suppl . 1,

Vol. 2, pp. 1007-1027. Pergamon .

Compston W., Berry H., Vernon M.J., Chappell, B.W. and Kaye M.J.

(1971) Rubidium-strontium chronology and chemistry of

lunar material from the Ocean of Storms. Apollo 12 Lunar

Science Conference (unpublished proceedings).

Crocket J.H•, Keays R.R. and Hsieh S. (1967) Precious metal

abundances in some carbonaceous and enstatite chondr_ites.

Geochim Cosmochim. Acta 31 , 1615-1623.

Ehmann W.D•, Baedecker P.A. and McKown D.M. (1970) Gold and

iridlum in meteorites and some selected rocks. Geochim•

Cosmoch im . Acta _ 34, 493-507-

Engel C.G. and Engel A.E.J. (1971) Major element composition
i

of three Apollo 12 rocks and some petrogenic considerations.

,,.;-*,

i



F

'i

R

40

^'	 s

Ganapathy R., Keays R•R•, Lau] J.C. and Anders E. (1970a)

Trace elements in Apollo 11 lunar rocks: Implications

of meteorite Infl ux  and origin of moon. Proc • A, po_ 1 1 o 11

Lunar Scl . Conf.. Geochim. Cosmochim. Acta Suppl • 1, Vol. 2,

PP- 1117 . 1142. Pe r gamon •

Ganapathy R., Keays R.R. and Anders E. (1970b) Apollo 12 lunar

samples: Trace element analysis of a core and the uni-

formity of the regolith. Science 170, 533.5350

Goles G.G. (1970) Comments on the genesis and evolution of

Apollo XI "soil", preprint•

	

Goles G.G., Greenland L.P. and Jerome D.Y. (1967) Abundances
	 tio^

of chlorine, bromine and iodine in meteorites 	 Geochim.
	

t

Cosmoch i m . Acta 11, 1771-1787 •

Goles G.G., Randle K., O +sawa M., Lindstrom D.J., Jerome D.Y.,

Steinborn T.L•, Beyer R•L,., Martin M.R. and McKay S.M.

(1970) Interpretations and s peculations on elemental abun-

dances in lunar samples • Proc Apollo 11 Lunar_ Sc i . Conf • .

Ge ochi .m ;, Cosmochim• Acta Suppl • 1, Vol. 2, pp • 1177-1194.

Per gamon .

Greenland L. (1967) The abundances of selenium, tellurium,
i 1 Dior	 r%=1 1 =A i aom	 Arntiim nnel -P S n&► i n o- hnneir e t i- maton-

s^



p

41

Haskin L.A., Allen R.O., Helmke P.O., Paster T•P•, Anderson M•R•,

Korotev R.L. and Zweifel K.A. (1970) Rare earths and

other trace elements in Apollo 11 lunar samples. Proc_

olio I I Lu-nar ci. Qonf• Geochim• osmochim Acta Su 1 1,.

Vol. 2, ppo 1213-1231• Pergamon.

Hubbard N.J. , Gast P.W. and Meyer C • 	 (1971)	 The origin of

the lunar soil	 based on REE, K, Rb, Ba 	 and Sr i ''/"s Sr,̂	 ^ 1

data.	 Apollo 12 Lunar Science Conference (unpublished`
r

proceed ings•

Ito K. and Kennedy G.C. 	 (1968)	 Me.i t i ng and phase relations
^3 k

In the plane tholeite-lherzol ite - nephe,line basenite to

40 kilobars w;th geological	 implicati ons. 	 Contrib. Mineral. <'

Petrol.	 U,	 177-211•

Kallmann S.,	 Steele C.G• and Chu N.Y.	 (1956)	 DeterminationE

of cadmium and zinc.	 Separation from other elements and '}{

each other by anion exchange. 	 Anal. Chem.	 28, 230-233•

Kushiro I. and Kuno H.	 (1963)	 Origin of primary basalt magmas

and classification of basaltic rocks •	 J. 	 rol •	 4, 75-89• i
Lau]	 J.C•, Keays R•R., Ganapathy R. and Anders E.	 (1970a) x

Abundance of 14 trace elements 	 in lunar rock 12013,10.'
w

Ea__ rth Planet •	 Sc i • Lett •	 9,	 211-215 •

Lau]	 J.C.	 Pert	 I. and L i pschutz M.E.y	 p	 (1970 b)	 Thall ium1 i um con-

tents of chondrites•	 Geochim• Cosmochim• Acta	 2~4 9 909-920.

Lau']	 J•'C • ,	 Case D •R. , 	 Schm i dt-Bl eek F.	 and Lipschutz M.E.	 (1970c) i
Y

B a"-smuth contents of _ chondr i tes • 	 Geoch im. Cosmoch im. Acta

34, 89-103.

1F

t

r
.aoatr	 w..wbt«sJs1'	 _  .



'r

42

:. -

Lieberman K.W. and Ehmann W.D. (1967) Determination of bro-

mine In stony meteorites by neu tron act i vation • J. Gqo h s •

Res. Z,2, 6279-6287-
LSPET (Lunar Sample Preliminary Examination Team) (1969)	 Pre-

liminary examinatlon of lunar samples from Apollo 11.

-ac i ence jfij, 1211-1227-

LSPET (Lunar Sample Preliminary Examination Team (1970) Pre-

liminary examination of lunar samples from Apollo 12•

Science  1, 6j. 1325-1339 •

Macdonald G.A. and Katsura T. (1964) Chemical composition

of Hawaiian l avas . J . Petrol . 5, 82-133-

McKay D.S., Greenwood W.R. and Morrison D.A. (1970) Origin

of smal l lunar particles and breccia from the Apollo 11

site. Proc. Apollo 11 Lunar Sci . . Conf • , Geochim. Cosmochim_.

Acta _Suppl . 1, Vol. 2, pp • 673-694• Peroamon o

Morrison G.H. , Gerard L.T• , Kashuba A .T. , Gangadharam E.V. ,

Rothenberg A.M., Potter N.M. and Miller G.B. (1970) Ele-

mental abundances of lunar soil and rocks. Proc• Apollo 11
f	

Lunar 5,ci Conf	 Geochim. Cosmochim? Acta SueP l : 1 , Vol. 2,

pp • 1383 - 1392 • Pergamon .

Morrison G•H• Gerard J.T., Potter N.M., Gangadharam E.V•,

Rothenberg A.M. and Burdo R.A.  (1971) Elemental  abun

dances of lunar soil and rocks from Apollo 12• Apol_10 12

Lunar Science Confer̂ ence (unpublished proceedings). i

Oberbeck V.R. and Quaide W.L. (1968)_ Genetic implications

6of lunar regol ith thickness variations 	 Icarus 9, 446-45.
}

r

,{	 4

r

•^^	 _ ._ _...sya.ar	 n 1't	
!	

.,	 -.aru.,..... i..	 ,.._..,.:.._	 .. - ...,..	 . _ s.a.._..^..:.,_..:_..	 ... _ ...._,. 	 ^	 .v..a-viar	 -	 '



43

!	 II

ft.lt -

t

^	
n

O'Hara M.J. (1965) Primary magmas and the origin of basalts•

Scot. J. Ge01	 1. 1 . 40 •

O'Kelley G.D., Eldridge J-S., Schonfeld E. and Bell P-R. (1971)
Comparative radionuclide concentrations and ages of Apollo 11

and Apoll o 12 samples from nondestruct ive gamma ray spectro-

metry • Apollo _12 Lunar Science Conference (unpublished

proceedings).

Opik;E•J. (1969) The moon's surface. Ann. Rev. Astron. Astrop hys•

,Z, 473-526.

Papanastassiou D.A., Wasserburg G.J. and Burnett D . S. (1970)

Rb-Sr ages of lunar rocks from the Sea of Tranquilli ty .

Earth Planet Sc i . Lett • 8, i - 19 •

Papanastassiou D.A. and Wasserburg G•J. (1970) Rb-Sr ages

from the Ocean of Storms • Earth Pl anet • Sci . Lett	 8,
269-278.

Poldervaart A• and Parker A.B.	 (1964)	 The crystallization

Index as a parameter of igneous differentiation in binary

variation diagrams. Amer. J. Sci • 262, 281 - 289•

Rancitell i L.A., Perkins R •W•, Felix W.D. and Wogman N.A. (1971)
r

Dosmogenic and primordial radionuclide measurements in

Apollo 12 lunar samples by nondestructive analysis. Apollo 12

Lunar Science Conference (unpublished proceedings).

Reed G.W. Jr. and Allen R.O. Jr . (1966) Halogens in chondrites•

Geoc h i m• Cosmoch, i 	 Acta 30m•	 ,^., 779-800 .	 ^

Reed G.W. and Jovanovic S 	 (1970) Hal-ogens, mercuryt lithium

and osmium in Apollo 11 samples • Proc .Apol, Apolloo_ ,11 Lunar

c i Conf	 Geoch i m. Cosmoch i m. Acta Supp 1. 1, Vol. 2,
ti	 e

PP • 1487-1492. Pergamon
i

j

°"•	 __ _	 _ __	 .	 .=rte ,.	 _	 __r._ 	 ^._	 _ _ 	 ^ -	 _ .}



•

.y
I 44

Reed G•W•, Kigoshi K. and Turkevich A. (1960) Determinations
of concentrations of heavy elements in meteorites by acti-

vati on analysis. Geochim. Cosmochim. Acta 2o 0 122-1 40 •

Ringwood A.E. and Essene E. (1970) Petrogenesis of Apollo it
a

basalts, internal constitution and origin of the moon•

Proc .	 of l 0 11 Luna r - Sc i . Conf • Geoch 1w;. Cosmoch im . Acta

Supp1 I  Vol . 2, PP • 769 . 799 • Pergamon •

Rose H.R. Jr•, Cuttitta F•, Annell C.S., Carron M.K., Christian, R.-P.,

Dwornik E.J., Helz A.W. and	 Ligon	 D.T.	 Jr.	 (1971)	 Semi-

micro analysis   of Apollo   1 2 samples •	 Apollo 12 Lunar Science

Co ference (unpublished proceedings) . }.

Rosholt J.N. and Tatsumoto M.	 ( 1971)	 Isotopic composition
t

x

of Thorium and uranium in Apollo 12 samples.	 Apollo 12

Lunar Science Conference (unpublished proceedings).r`'

Schmitt R•A. , Smith R.H. and Ol ehy D.A.	 (1963)	 Cadmium abun-

dances	 in meteoritic and terrestrial matter. 	 Geochim•

Cos~nochim._ Acta 	 2Z, 1077-1088	 4

Lowery	 (1967)	 A irwaves associatedShoemaker E.M. and Lower	 C.J •

with large fireballs, and the frequency dist r ibution of

ever	 of l ar ge  meteoroids .energy (Abstract)	 Meteoritics 	 3

123-124.

Shoemaker E.M., Hait M.H.,	 Swa nn G.A., Schleicher D.L_., Schaber G.G.

Sutton R.L., Dahlem D .H., Goddard E.N. and Waters A.C.

(1970)	 Origin of the lunar regol i th at Tranqu ill ity Base.

Proc • Apollo 11 Lunar Sc r - Conf.,,_Geochim• Cosmochim. Acta

Sups_ 1 _, Vol . 2 9 pp. 2399-2412 •	 Pergamon •

u
k ` NMlil'i^0	 *.4

J	 i



9 .=

#I	

45

Silver L.T. (1971) U-Th-Pb isotope relations in Apollo 11

and 12 lunar  samp1es. A owl l o 12 Lun ,a,r Science  Conference

(unpublished proceedings).

Singer S .F. and Bandermann L.W. (1970) Where was t he moon

formed? Science1'0 , 438-439.

Tandon S.N. and Wasson J.T. (1968) Gallium, germanium, indium

and iridium variations in a suite of L-group chondrites.

Geochim• Cosmochim• Acta 1210$7-11 09 •

Taylor S•R•, Kaye M., Graham A., Rudowski R. and Muir P. (1971)

Trace element chemistry of lunar samples from the Ocean

of storms. Apollo 12 Lunar Science Conference (unpublished

proceedings)*

Tera F-, Eugster 0., Burnett D.S. and Wasserburg G.J. (1970)

f	 Comparat ive study of L I, Na, K, Rb, Cs, Ca, Sr and Ba abun

j	 dances in achondrites and i n Apollo 11 lunar samples.

E	 Pry Apoi i o 11 Lunar Sc i . Conf . r, Geoch i m-• Cosmoch im . Acta

i
	 Supp l . 1, Vol. 2, 1637 . 1657 • Pergamon

Turekian K.K. and Clark S.P. (1969) Inhomogeneous accumulation
of the earth from the primitive solar nebula. Earth Planet.
Sci. Lett • 6 t 346-348•

Van Alstine D.R., Schaudy R. and Wasson J.T. (1970) Every-

thing you always wanted to know about mesosiderites but

were afraid to ask. (Abstract) Meteoritics	 226.

Wasson J.1's ( 1 97 1 ) Vol at i t cwt-;1 ements on the earth and moon

Earth Planet_ Sc i Lett., sWbmi tted.

Wasson J.T. and Baedecker P.A. (1970) Ga, Ge, I n, T r and Au

in lunar, terrestrial and meteoritic basaltse Proc. Apollo 12

Lunar Sci. Conf., Geochim. Cosmochim. Acts Suppl . p 1 , Vol. 29

pp • 1 741- 1 750. Pergamon .

d

^f



s	 s

t

y^„r

46

Whipple F.L. (1950) A comet model, I	 The accel eration of

Comet Encke . A tro h . J . 111 , 375-394.

Wilk H.P. (1969) On regular discontinuities in the composition
of meteori tes jCMgn • Phys •_ Mathemat . 34, 135-145 

Willis J.P., Ahrens L.H•, Danchin R•V•, Erland A.J4, Gurney J•J.,

Hofineyr P.K., McCarthy T-S. and Orren M.J. (1971) Some

Inter-element relationships between lunar rocks and mines,

and stony meteorites. Apollo 12 Lunar Science go fe enee

(unpublished proceedings).

Wise D.U. (1969) Origin of the moon from the earth: some
new mechanisms and comparisons.	 J,^_Ge^$ . Res * 	74,

6034-60450
j-

Wood J.A.	 Dicke	 J.S.f	 y Jr - 9 Marvin U.B. and Powell	 B.N .^	 (19700) r

9

Lunar anorthos i tes
.. 

,sci ence	 L61, 602-604• Ek
Wood J.A., Dickey J.S. Jr.. Marvin U.B. and Powell 	 B.N.	 (1970b) u

Duna r anorthos i tets and a geophysical model of the moon •

Proc. Apollo„ 11 Lunar Scl . Conf • . Geochim: ,_Cos^moc_him. Act
,5upp 1 .	 1 • ,	 Vol •	 t, pp. 965-998 •	 Pergamon .

.:

Wood J.A., Marvin U.B., Reid J.B., Taylor G•J.,	 Bower J.F.,
Powell	 B.N. and Dickey J.S.	 Jr.	 (1971)	 Relative proportions

of rock types, and nature of the light-colored lithic frag-

ments	 in Apollo 12 soil	 samples • 	 Apollo 12 Lunar Science

Conference (unpublished proceedings) .

n

r

i



t
pE

'4[

E	 t	 F

F

t 	

V

5

a

APPENDIX

Previously unpublished data on the concentrations of Ir in

Apollo 11 samples

it (pph)
Sample	 Petrologic Class replicates mean

10058,30	 Crystalline B	 0009	 0.09

10084,26	 F l nes	 94798.2 	 9.8

For previous replicates See Masson and Baedecker (1970)
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Table 2

ln, Ga. Go. Cd, In and Or concentrations in terrestral basalts and other terrestrial rocks

Sample	 4 In (pp-)	 (W (ppm)	 Ge ( ppm )	 Cd (pph)	 In (p pb)	 Ir (pob)

Location	 Type	 No.	 SO•	 repl.	 mean repl.	 mean ► e p l•	 mean repl.	 mear repl.	 mean reel.	 mean

waianae t	Thol.	 C-7	 GAM	 116,114	 IIS	 18.6,11.1	 19.5	 1.55,1.67	 1.62	 212.270	 250	 82,77	 18	 0.67,0.38	 0.48
Hawaii	 basalt	 18.8	 1.63	 76	 0.41

Walanoe	 Thol.	 C-6	 GAM	 114,120	 117	 18.1,18.6*	18.2	 1•S3.1.61 *	I - "	 108,121	 114	 66,67'	 72	 0.53,0.48	 0.57
Hawaii	 basalt

walanae	 Thol.	 C•11	 GAM	 109,107	 1G8	 21.(,,23.7'	 21.0 1.66,1.67'	 1.65 104,96	 1 C1	 /1,/4	 8(1	 0.43,0.41'	 O.SO
Hawaii	 basalt

walanae	 Thol.	 C-5	 GAM	 120,125	 123	 22.3,22.5	 22•S	 1.71,1.66	 1.68	 165,180	 111	 94,81	 88	 0.46,0.14	 O.le
Hawaii	 basalt	 22,6	 1.69	 89	 0.34

Waianae	 Thol.	 C-40	 GAM	 110,108	 109	 20 . 7,19 . 1	 19.9	 1.63,1.64	 1.63	 151,196	 173	 90,77	 84	 0.7910.44	 O.-b

HtwaiI	 basalt	 1.61	 79	 0.50

waianar	 Thol.	 C-20	 GAM	 III	 111	 21.3,11.4'	 21.8	 1.81,1.80'	!.15	 105,10t)	 105	 77,81 '	89	 -0.04,0.34
Hawaii	 basalt

Mid-Atl.	 Thol.	 1-3	 IA	 92,95	 88	 16.1,17.3	 17 . 0	 1 . 65,1 . 52	 1.58	 141,157	 149	 68,65	 67	 0.23,0.14	 n-18
Ridge	 basalt

1110-Ati.	 Thol.	 56-2/3	 FA	 77,88	 82	 15.5,16.5	 16.0	 - - ,1 . 54	 1.54	 121,129	 125	 60,58	 S9	 0.67,0.08

Ridge	 basalt

Skaergaard	 Marginal	 EG4507	 EAV	 74,89	 82	 21.6,21,8	 22.2	 1.26,1.26	 1.16 --,42	 42	 39,44	 41	 0.34,0.21	 0.26

gabbro

Bridal Veil	 Basalt	 BCR-1	 USGS	 129	 129	 22 . 4	 21.7	 1.49 `	1-SS 82	 82	 93a	 94	 %0.11,0.07 *	90.12

)reqon

'ente ► ville	 Diabase	 W-1	 USGS	 91,93	 92	 17.4,17.3	 17 . 9	 1.64, 111	 1.74 ---,142	 155	 66,64	 64	 0.34,0.31	 0.32

iirginia	
89,96	 18.1,18.4'	 1.83,1.62'	 157,167	 60,60'	 0.30,0.25

tssey-la-Cote	 Pasalt	 PR	 CRPG	 180,156	 167	 18. 1,',19.6	 19.0	 2.26,1 . 38	 1.67	 125,121	 124	 55,75	 65	 0.04,0.03	 0.04

trance	 165	 18.4	 1.63.1 .39

Mellenbach	 Pasalt	 PM	 1G1	 137,127	 132	 18.7,18.7	 18.7	 1.84,1.95	 1.89	 77,74	 76	 64,56	 61	 0.15,0.51	 0.3b

;ermany

,•esterly	 Granite	 G-2	 USGS 93,93	 93	 23.6,23.8'	 23 . 3	 1.85,1.07	 1.36 26,27	 27	 28,26'	 30	 0.06,0.04'	 0.01
o,l,

^llver Plume	 Grano-	 GSP•1	 USGS	 112	 112	 21 . 7,25 . 0	 24.3	 1 . 99,1 . 91	 1.74 64	 64	 65.54	 55	 9 0 . 25,90.07	 40.16

Colorado	 diorite	
25,2	 1.30	 46

4uonu Volley	 wndesite	 At V-1	 usuS	 Il1U	 IUU	 2U•7,22 . 1	 21.7	 1•b4,1.17	 1.3b	 /S	 75	 48,4b	 45	 0.29,190.10 90.10

Crequn	 21.3,22.6	 1.26	 42

brown Point	 Pyroxene	 114	 GG	 154,144	 149	 13 . 7	 13.7	 2 . 05.1 .92	 1.98	 201,162	 181	 --,87	 87	 2.8 ,0.07	 0.07

gabbro

Twin Sisters	 Dunite	 OTS-I	 USGS	 51	 51	 0.43,0.44	 0.45 0.83,0.84 1	0 . 97	 10	 10	 2.7,2.1	 1 . 5	 0 . 52,0 . 43	 0.5E

..ashington	 0.72

Cozader ,)	 Peri-	 PCC-1	 USGS	 35	 35	 0.65*	 0.66	 1.18,0.30 f	1.07	 17	 17	 3.1,1.81	 3 . 4	 3.7,7 . 7	 5.7

California	 dotite

'alt Lake	 Peri-	 HK571-	 IK	 28,76	 2.25,2.18	 2.27	 1.14,1.25	 1.14	 34,54	 44	 8.0,8.4	 8.2	 3.6,3.0	 3.3

Honolulu	 dotite	 01204d	 101

For previous replicates and means see Wasso: and Baedecker (1970).

For previous re p licates and means see Baedecker and Wasson (1970).

t waianae basalts listed in order of dec • easinq crystallization index.

$ The sources are abhreviated as follows:	 FA -- F. Aumento, Dalhousle Univer!ity; GG -- G. Goles, Univ. of Oregon (described by A.f. el-ddinaton.
1939); IK -- I. Kushiro, Univ. of Tokyo; GAM -- G.A. M;cdona'd, Ihiv• of Mir.aii; EAV -- E.A. Vincent, Oxford Univ.; CRPG, Centre des R.rcherches
Petrographiques et Geochimiques, Nancy, France; USGS -- Untied .tat^ , s Geological Survey; IGI -- lentrales Geoloqisches Institut, Berlin,

East Germany.

Value shows evidence of contamination. Not inclu0ed in the oe. rriina:irt! of the mean.
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Table 4

Relationship between regolith thickness

and crater frequency for four regolith

types studied by Oberbeck and Quaide (1968)

Regolith Measured median
type	 thickness (m)

i	 3.3

t	 4.6

IIi	 7.5

IV	 16.0

x
(km-2)

1 1x106

2.6x 10"

47 x 106

1.8x le
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TABLE 5

A comparison of the trace-element composition

of terrestrial and lunar (Oceanus Procellarum)

rocks •
7n Ga Ge Cd	 In

( ppm ) ( ppm ) ( ppb ) ( ppb)	 (ppb)

Terrestrial 114 19.5 1620 118	 68
basaltic
rocks

Lunar 1.6 3.7 s20 92	 1.2,,asaltic
rocks

• r w r r a r r r r r r r r r r^^ r^ ^r r.^ ^^ ra r r r^ rr - ^r r r r a r- r r r
Ratio 71 '5.2 z$0 ,,--60	 57

terr/ tun

f%

}
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FIGURE CAPT I ONS

Fig. I. Abundance pattern of 11 trace elements in the extra

lunar component obtained by subtracting average abun-

dances for crystalline rocks from those of the soils

and breccias and normalizing to C1 chondrites• The

error bars represent estimates of one standard deviation

based on the replicate analyses of the soil and breccia

samples. a) Apollo-12 soils. The band represents

an extra 1 unar component amounting to a 1.04+  0.24%
addition of a C1-chondrite-like material to soil de-

r ived from local crystalline rocks •	 b) Apollo-11
soils. The band represents an addition of 1 .14 +  0.25%
of a C1-chondrite-like material to soil derived from

local crystalline rocks. c) Apollo-11 breccias•

The band represents an addition of 1 -07 ±  0.25% of a
.SF

C1-chondrite• like material to soil derived from local

crystalline rocks.

Fig. 2 •	 A plot of the logar ithm of the regol i th depth ^f1R)

vs. the logarithm of the cumulative flux constant (X)
f	 ^,o

{

for the four regol i th types studied by Oberbeck and
Quaide (1968) using the data presented in Table 4•

Fig. 3•	 Gallium data for six crystalline rocks and two soil

samples plotted vs" their A1,	 a and Mg contents.

tThe regress ion lines  were bas'04 on the `da'ca; points !
r.

esented by open circlesfor the crystalline rooks repre sented

(the.open triangle is rock 12014, for which the major

c^

3
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Fig, 4

Fig. 50

element data is of low quality. Correlations between

each pair of variables are significant at confidence

levels of >95%.

Plots of our Zn Ga, in and Ge data vs. crystal l i-

nation index for a suite of Waianae, Hawaii rocks

The error bars correspond to 95% confidence limits

on the means of duplicate determinations.

A histogram of Ge data on terrestrial rocks (as pre-

sented in Table Z).

k





1.0

J1 •ddr

10

(Conc)D - (Conc)AB
Apollo IIConc(	 ) C I Chondr i to s

T	 -	 I

a^

LOL'U
U

O
a^

M
a^L
a^U
^C
V

C=̂
3 IO_2.,c:,

Q

Ni Ir Pd Au Ge Ag Zn Cd Br BI TI



-n
c
0
-cU_ I0-1
V

0
CL)

v
a^

..Q ^0-2
s r;	 ur	 93^	 to	

b .
	 f ' W

i
1

.w..! 0

(Condc - (Conc )Ae
Apollo 11	 (Cons CI Chondrites

a^

N I Ir Pd Au Ce Aq Zn Cd Br Bi TI



^V

{	 1
^ M	 ♦ r

tv

!

W ^i

cc i

j;

S

r
c

0 , :E

Q

LO 
Ur

• kN^

A
^
W

N

d

X

j

LO

OD	

•

Q

I'

T

r

t7l

0

C01



^!r

0

Vi

W

/'1

to
Y/

U')

It

d	 I

--

& +	 r

N&

0

Y ^z

1

OD ,	 S

a r

F (o

Q
0

^	 y	 i

4
i

	

_	 ^	 1(wdd) o

	

,.	 c
j



ioo
30
26

CWL

} 22
t	 20

18 F

160
E 140
N 120

Rock suite, Wa ianae, Oahu, Hawaii

1 •
•

110
100CLci 80
80

...., 1.8E 1.6
Q0 1.4



Ad	 Andesite Gd Granodiorite
A ► a Anorthosite H Hawaiite

Basalt P Periclotite

D Dunite
7 G Granite
6 7H

"a 5 — Gd
E X

4—cn -
3 —

0z 2 —

L P p Ad Ar

0.8 1.0	 1.2 1.4	 1.6	 1.8	 2.0

Ge conc. (ppm)

A 'Who


	GeneralDisclaimer.pdf
	0032A02.pdf
	0032A03.pdf
	0032A04.pdf
	0032A05.pdf
	0032A06.pdf
	0032A07.pdf
	0032A08.pdf
	0032A09.pdf
	0032A10.pdf
	0032A11.pdf
	0032A12.pdf
	0032B01.pdf
	0032B02.pdf
	0032B03.pdf
	0032B04.pdf
	0032B05.pdf
	0032B06.pdf
	0032B07.pdf
	0032B08.pdf
	0032B09.pdf
	0032B10.pdf
	0032B11.pdf
	0032B12.pdf
	0032C01.pdf
	0032C02.pdf
	0032C03.pdf
	0032C04.pdf
	0032C05.pdf
	0032C06.pdf
	0032C07.pdf
	0032C08.pdf
	0032C09.pdf
	0032C10.pdf
	0032C11.pdf
	0032C12.pdf
	0032D01.pdf
	0032D02.pdf
	0032D03.pdf
	0032D04.pdf
	0032D05.pdf
	0032D06.pdf
	0032D07.pdf
	0032D08.pdf
	0032D09.pdf
	0032D10.pdf
	0032D11.pdf
	0032D12.pdf
	0032E01.pdf
	0032E02.pdf
	0032E02_.pdf
	0032E03.pdf
	0032E03_.pdf
	0032E04.pdf
	0032E04_.pdf
	0032E05.pdf
	0032E06.pdf
	0032E07.pdf
	0032E08.pdf
	0032E09.pdf
	0032E09_.pdf
	0032E10.pdf
	0032E10_.pdf
	0032E11.pdf
	0032E11_.pdf
	0032E12.pdf
	0033A01.pdf
	0033A02.pdf
	0033A03.pdf
	0033A03_.pdf



