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I. SUMMARY

The object of this program was to optimize the chemical compo-
sition of NASA lib for the purpose of developing advanced wrought nickel-
base alloys for use in advanced gas turbine engines. The program was
divided into two tasks. The effects of five key elements (carbon, tungsten,
tantalum, aluminum, and hafnium) on resultant properties were statistically
determined in Task I. Based on this statistical analysis, two new com-
positions were formulated for additional studies in Task II. One of the new
alloys, NASA Ilb-L, was formulated based on optimum mechanical properties at
low operating temperatures [up to 1200°F (6A9°C)]; while the second alloy,
NASA Ilb-H, was designed to attain optimum property capabilities at elevated
temperatures [1400°F (760°C) and above].

Seventeen alloy compositions were formulated for the Task I op-
timization studies. These alloys were hot worked first by extrusion, and
then by rolling to bar stock. The rolling was conducted at low working
temperatures to determine the response of the alloys to thermomechanical
processing* In addition, both full and partial solution heat treatments
were developed for each alloy. Testing was conducted on material in the ex-
truded condition subjected to a full solution heat treatment, and on material
in the extruded plus rolled condition subjected to both full and partial
solution heat treatments. These tests included tensile tests over the range
from room temperature to 1800°F (982°C) and stress rupture tests at a
variety of conditions from 1200°F/175,000 psi (649°C/1207 MN/m2) to 1800CF/
25,000 psi (982°C/172 MN/m2). The alloys were also subjected to a
thermal exposure at 1600°F (871°C) for 1500 hours to determine the
effects of this treatment on mechanical properties and microstructure. The
results of this task evolved two alloys with excellent capabilities. NASA
IIb-7 displayed outstanding properties up to 1200°F (649°C) in the extruded
plus rolled condition with a partial solution heat treatment; in fact, the
strengths achieved over the temperature range reflected improvements at
least 20 percent in excess of the strongest commercially available alloy.
The alloy displayed a room temperature ultimate tensile strength of 298,000
psi (2060 MN/m2) and a strength at 1200°F (649°C) of 258,000 psi (1780 MN/m2)
while maintaining ductility of nearly ten percent. The stress rupture life
of NASA IIb-7 at 1200°F/175,000 psi (649°C/1207 MN/m2) was 250 hours, or
approximately ten times the life of the best alloy commercially available.
NASA IIb-11 exhibited exceptional properties at 1400°F (760°C) and above in
the extruded and rolled condition with a full solution heat treatment. The
ultimate tensile strength at 14008F (760°C) was 185,000 psi (1275 MN/m2) and
at 1800°F (982°C) was 80,000 psi (550 MN/m2), representing about a 25 percent
improvement over current alloys. NASA IIb-11 displayed a stress rupture
life at 1400°F/90,000 psi (760°C/621 MN/m2) of 510 hours - five times longer
than the best commercially available alloy. Its rupture life of 63 hours at
1800°F/25,000 psi (982°C/172 MN/m2) was 40 percent better than any alloy now
in use. Although the alloy did exhibit thermal instability, indications
are that this condition can be remedied by only a slight chemistry mod-
ification.



Based on the Task I statistical analysis, two alloys were formu-
lated for additional study in Task II. The general processing and testing
sequence described for Task I was similar for Task II, although creep
rupture testing was added for Task II. The results of the Task II studies
indicated that the computer predicted properties were not achieved for
alloys NASA Ilb-L and Hb-H. In fact, their overall properties were not as
good as those displayed by the two previously mentioned Task I alloys,
NASA IIb-7 and IIb-11.



II. INTRODUCTION

Although turbine engine technology has grown tremendously during
its nearly thirty year existence, recent advances have been seriously re-
stricted .due to materials limitations. Engine designers have sought to attain
thrust increases by increasing operating temperatures within the hot sections
of engines. However, current materials are unable to exhibit the com-
bination of properties required for extended service at these increased
temperatures. As a result, further significant advancement in aircraft
engine technology is dependent upon: 1) the development of design criteria
resulting in higher thrusts while maintaining current operating temperatures,
2) the development of advanced materials capable of achieving improved
properties at current operating temperatures, or 3) the development of ad-
vanced materials capable of maintaining the current combination of properties
at higher operating temperatures.

The ability of an alloy to exhibit a wide variety of excellent
properties (depending on the method of processing and heat treatment) is of
extreme importance in today's aerospace industry. The numerous companies
involved in engine design each have achieved increased thrust capabilities
by employing a variety of design concepts. For example, one major engine
producer has designed its engines to operate at rather low temperatures -
only up to 1200°F (649°C) in the hot section. Accordingly, this manufacturer
is striving for wheel and disc alloys which exhibit very high 1200°F (649°C)
strength properties. On the other hand, other major producers have designed
their engines to achieve increased thrusts by increasing operating tem-
peratures to the area of 1400°F (760°C) in the hot section. Still others
would like to further increase these temperatures to the 1500° to 1600°F
(816° to 871°C) range. Also, as operating temperatures are increased, blade
and vane temperatures will be increased beyond their current 1800°? (982°C)
limit. This wide variety of design concepts and property requirements il-
lustrates the demand for versatile alloys.

' In exploring the capabilities of current alloys, it is apparent
that a variety of heat treatments and processing methods have been developed
to optimize the properties of an alloy for a given application. For example,
processing at low working temperatures (i.e., thermomechanical processing) is
employed in conjunction with a partial solution heat treatment (below the
recrystallization temperature) to obtain good properties in the range from
room temperature to 1200°F (649°C). Tensile properties are maintained beyond
1200°F (649°C) for most alloys; however, stress rupture properties suffer as
a result of the so called "superplastlc" characteristics effected by the
heat treatment. On the other hand, a full solution heat treatment is em-
ployed when the emphasis is on higher temperature applications such as 1400°F
(760°C) and above* Although tensile properties are somewhat lower as com-
pared with partial solution heat treated material, this treatment results in
improved stress rupture properties at elevated temperatures. The response
of an alloy to both of these processing methods determines its versatility.



One of the most promising and versatile alloy compositions in-
vestigated to date is NASA lib. The original base composition of NASA lib
is shown below:

Chemical Composition (weight percent) for:
Ni

Balance

The alloy was originated during NASA Contract NAS3-7267 completed by TRW in
1967.(!) A subsequent contract, NAS3-11155, conducted by Universal-Cyclops
Specialty Steel Division in 1970 resulted in the selection of NASA lib as
offering the most potential of six experimental superalloys evaluated.(2)
The alloy exhibited ultimate tensile strengths in excess of 210,000 and
180,000 psi (1449 and 1241 MN/m2) at 1200° and 1400°F (649° and 760°C), re-
apectively.—The stress rupture characteristics of NASA lib were also
promising with the alloy displaying a rupture life in excess of 200 hours
at 1400°F and 90,000 psi (760°C and 621 MN/m2). However, the alloy in its
original form was found to be thermally unstable after long time exposure at
elevated temperatures.

This program was initiated to optimize the chemical composition of
NASA lib for the purpose of developing wrought nickel-base superalloys for
use in advanced gas turbine engines. Specifically, the program was designed
to further enhance the mechanical properties of NASA lib and to investigate
the versatility of experimental compositions formulated based on the NASA lib
alloy system. Another primary objective of the program was to eliminate the
tendency of the parent alloy towards thermal instability after long time
exposures.

In order to provide information concerning the effects of certain
elements within the NASA lib alloy system on mechanical properties, a
statistical design was chosen as a basis for the formulation of experimental
compositions. The selected design permitted an investigation of the effects
of five elements (at two chemistry levels per element) on resultant properties.
The elements chosen included carbon, tungsten, tantalum, aluminum, and
hafnium; these specific elements and their individual chemistry levels were
chosen to maintain a balance between further increasing strength and im-
proving the thermal stability characteristics of the base alloy system.

The results of the statistical analysis were then used to formulate
two compositions, each designed to achieve optimum properties according to
its own specific heat treatment. One composition was directed towards
optimum proparties up to 1200°F (649°C) using a partial solution heat treat-
ment; while the other was formulated to develop optimum properties at 1400°F
(760°C) and above using a full solution heat treatment.



III. ALLOY SELECTION

Based upon the results of previous developmental work conducted
under NASA Contract NAS3-11155, It was concluded that the NASA lib compo-
sition offered the best strength potential of any wrought nickel-base alloy
developed to date. Therefore, the alloy was chosen as the base composition
for this program. In order to further optimize the alloy for strength cap-
abilities, it was decided that a program directed towards a statistical
analysis of the effects of several key elements on strength properties
offered the greatest probability for success. A review of the elements con-
tained in the NASA lib alloy system in conjunction with the results of
contract NAS3-11155 evolved three elements considered directly related to
strength characteristics. These elements included tungsten, tantalum, and
hafnium.

Of the six alloys evaluated under Contract NAS3-11155, NASA lib was
the strongest and exhibited the highest refractory metal content. Conversely,
15 was the weakest and displayed the lowest refractory metal content of the
six alloys. The choice of the three previously mentioned elements was
therefore based on the approach to further strengthen the alloy system by
introducing larger concentrations of the most effective solid solution
strengthening elements. These elements, with their large atomic diameters,
offered the best potential for increasing the solid solution strengthening
mechanism of the base composition.

One significant shortcoming of the NASA lib base composition, as
determined from previous work, was that of thermal instability.^2^ The
electron vacancy number (Nv) of the base composition was calculated at 2.47,
which is slightly below the 2.50 value generally acknowledged as the limit
beyond which thermal instability will result. [These Nv calculations were
based on the method discussed by Woodyatt, Sims, and Seattle. ̂ ] However,
this composition was found to be unstable due to the formation of a tungsten-
rich mu phase during 1500 hours exposure at 1600°F (871°C). Although the
specific thermal stability limits for the system were unknown, it was
decided to design the majority of the experimental compositions to have NV
numbers below 2.47. This approach presented a problem as increases in the
refractory metal content effected by increases in the three key elements
resulted in even higher NV numbers. Two methods were then adopted to further
reduce Nv numbers while permitting additional percentage increases of the
three strengthening elements.

The first method involved slight reductions in the base levels of
four elements in the standard composition. The original base composition is
listed in Table 1, in addition to the four modifications. The elements re-
duced included chromium and cobalt which were decreased from 10.0 to 9.0
percent, titanium from 1.0 to 0.75 percent, and vanadium from 1.0 to 0.5
percent. These reductions resulted in an overall decrease in the Nv number
from 2.47 to 2.18, thereby permitting additional increases in refractory
element content.



The second method for maintaining lower Nv numbers involved the
selection of carbon and aluminum as two additional variable elements. While
tungstent tantalum, and hafnium were evaluated at increasing levels causing
increased Nv numbers, the evaluation levels for carbon and aluminum were
chosen to effect decreased Nv numbers* The two evaluation levels for carbon
included the base level of 0.13 percent and an upper level of 0.25 percent;
the levels for aluminum included the base level of 4.5 percent and a lower
level of 3.5 percent. This approach towards higher carbon and lower
aluminum was chosen to offset the poor workability characteristics Imparted
by the increased refractory metal content (tungsten, tantalum, and hafnium).

With respect to the evaluation limits for the solid solution
strengthening elements, tungsten levels were selected at 4.5 and 7.5 percent,
tantalum at 7.0 and 10.0 percent and hafnium at 1.0 and 2.5 percent. These
levels were derived on the basis of balancing the compositions so Nv numbers
for the majority of compositions were below the 2.47 value previously found
to display instability.

The statistical design used for formulating the seventeen alloy
compositions is outlined in Appendix A of this report.—Basically,
the,design is a one-half replicate of a five variable factorial set, with
each, of the five variables Investigated at an upper and a lower level. Six-
teen heats were required for the design; however, the addition of a seventeenth
design center heat permitted a third evaluation level for each variable
element at the center point of the upper and lower levels. The aim chemical
analyses for the seventeen heats are listed in Table 2.



IV. PROCEDURE

A, Task I - Alloy Screening

1. Materials

Virgin raw materials were used for all heats melted to minimize
the level of impurity elements and to reduce their effects on resultant
properties, A minimum purity level of 99.9 percent was specified for
all alloying elements.

2. Melting

Each of the seventeen alloy compositions was double vacuum melted
in 50 pound (22.7 kg) quantities. The initial melting operations were
conducted in vacuum Induction furnaces, and the electrodes were then
vacuum consumable-arc remelted to obtain the final cast product.

The first step for vacuum induction melting Included melting of the
main charge which consisted of nickel, chromium, tantalum, molybdenum,
tungsten, and one-half of the total carbon addition. After the initial
melt-down, cobalt and the remainder of the carbon were added. The bath
was then allowed to cool and form a thin "skin" on the surface prior to
the addition of the reactive elements, titanium and aluminum. After the
titanium and aluminum were added, power was slowly increased allowing
these elements to melt in slowly with a minimum of reaction. Zirconium
and nickel-boron were then added along with hafnium and vanadium* Each
heat was deoxidized by plunging magnesium into the bath after the
temperature had stabilized at 2850°F (1566°C). The bath was then
cooled to approximately 2750°F (1510°C), and the product was cast into
2-1/2 inch (0.063m) diameter electrodes.

With respect to remelting, the 2-1/2 inch (0.063 m) diameter
round electrodes were vacuum consumable-arc remelted into two 3-1/8
inch (0.079 m) diameter ingots weighing approximately 25 pounds (11.4 kg)
each.

3. Chemical Analyses

A one-half inch (0.013 m) slice was sectioned from each vacuum
induction melted electrode for X-ray spectrographlc analysis. The
slices were also lathe turned to provide chips for wet chemical analysis.
Carbon, boron, hafnium, and zirconium were analyzed by wet chemistry
techniquesf and, X-ray spectrographic techniques were employed to
analyze the remainder of the elements.



4. As-Cast Hot Workability Studies

As-cast Gleeble hot workability studies were conducted on material
from one 25-pound (11.4 kg) double vacuum melted ingot from each compo-
sition. A 2-1/2 inch (0.063 m) thick slice was sectioned from the top
half of an ingot of each of the seventeen experimental compositions.
Eight longitudinal Gleeble hot ductility specimens were sectioned and
machined to the required dimensions of one-quarter inch (0.006 m) diameter
and two Inches (0.050 m) long. The test specimen configuration is
illustrated in Figure 1. The eight specimens from each ingot were used
to develop inherent ductility profiles for each alloy over the temperature
range of 1850° to 2100°F (1010° to 1149°C). For these tests, the
specimens were heated at a rate of 85°F (45°C) per second to the specified
temperature in the hot working range, held for five minutes, and pulled
in tension at a nominal strain rate of five seconds"*. This strain rate
approximates the rate of extrusion.—Ultimate tensile strength and—
reduction of area were measured and recorded for each specimen. The
ductility data were plotted versus temperature to provide an inherent
ductility profile for each alloy In the cast condition.

5. Processing

a. Extrusion

The remaining piece from one 25-pound (11.4 kg) ingot and
the two additional pieces from the second 25-pound (11.4 kg) ingot
were used for the extrusions. The three pieces from each composition
were turned to 2-1/2 inches (0.063 m) in diameter and canned in 1/2
inch (0.013 m) thick mild steel in preparation for extrusion at the
Air Force Materials Laboratory (AFML), Wright-Patterson Air Force Base.
A schematic representation of the type of container used is shown in
Figure 2. The three canned pieces of each alloy composition were coated
with a glass slurry, heated to the desired extrusion temperature,
soaked for a minimum of one hour, and extruded to a canned diameter
of 1-1/8 inches (0.028 m).

b. Rolling

Two of the three extruded bars from each composition were
processed further by rolling. The bars were sectioned into approx-
imately six Inch (0.15 m) long pieces in preparation for rolling.
No additional canning was required, as the cans applied prior to extrusion
were still intact. The bars were rolled from a subcritical rolling tem-
perature of 2025°F (1107°C) after soaking at temperature for about one-half
hour. Rolling was conducted from the 1-1/8 inch (0.028 m) diameter starting
size to one-half inch (0.013 m) diameter bars. The bars were rolled using
10 to 20 percent reductions per reheat with intermediate reheating at
2025°F
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6. Heat Treatment Evaluation

a* Determination of Optimum Treatments

(1) Full Solution Heat Treatment-Extruded Plus Rolled Material

Evaluations were conducted to determine full solution
heat treatments for the one-half inch (0.013 m) diameter as-extruded
plus rolled material from each composition. Three optimum temperature
cycles were determined to make-up each treatment. The optimum cycles
included a full solution treatment, an intermediate aging treatment, and
a final aging treatment.

Full solution treatments were determined by treating
one-quarter inch (0.006 m) square specimens from each composition for
two hours at both 2150°F (1177°C) and 2225°F (1219eC), and for two and
four hours at 2250°F (1232°C). The specimens were then prepared for
examination by optical microscope. Using these samples, an optimum
full solution treatment was determined for each composition. The treat-
ments were chosen based on the degree of carbide and gamma prime solu-
tioning, and especially on grain size. Grain growth occurs as primary
gamma prime and carbides are solutioned; and, a uniform grain size of
approximately ASTH 5 to 6 was the desired aim in order to maintain a
constant grain size in all compositions, thereby eliminating a variable
in evaluating subsequent test results.

Optimum intermediate aging treatments were .determined
for each alloy in a similar manner. Small cubes sectioned from the
extruded plus rolled bars were first solution treated according to the
treatment derived from the above studies. Material representing each
composition was subjected to intermediate aging treatments at 1900° and
1950°F (1038° and 1066°C) for two hours and at 1600°, 1650°, 1900°, and
1950°F (871°, 899°f 1038°, and 1066°C) for sixteen hours. These
treatments were evaluated for each alloy by optical microscopy. The
optimum treatments were determined based on the degree of gamma prime
nucleation and on carbide precipitation.

Optimum final aging treatments were determined by
subjecting small cubes to the optimum full solution and intermediate
aging treatments determined above for each composition. The cubes were
then subjected to final aging treatments at 1300° and 1400°F (704° and
760°C) for sixteen hours. Optimum final aging treatments were chosen
for each alloy based on electron microscopy examination to establish
gamma prime and carbide morphology.



(2) Full Solution Heat Treatment-Extruded Material

Full solution heat treatment studies were also conducted on
1-1/8 inch (0.028 m) diameter as-extruded material. The same three-cycle
treatments were determined for each alloy as described above; however, due
to the decreased amount of work as compared to the extruded plus rolled
material, slightly lower solution treatment temperatures were required to
achieve the desired grain size. The solution treatments evaluated included
two hour treatments at 2150°, 2200", 2225°, and 2250°F (1177°, 1204°, 1219°,
and 1232°C). Intermediate and final aging treatments chosen for extruded
material were the same as those selected above for extruded plus rolled
material.

(3) Partial Solution Heat Treatment-Extruded Plus Rolled Material

Three-cycle partial solution heat treatments were developed
for each of the alloys in the as-extruded plus rolled condition. The
general treatment consisted of an intermediate conditioning treatment,
followed by increasing the temperature to the partial solution treatment
temperature, oil quenching, then final aging. The conditioning and final
aging treatments chosen for each alloy were the same as those developed for
the full solution heat treatment studies described above. Small cubes
sectioned from the one-half inch (0.013 m) diameter as-extruded plus rolled
material were subjected to partial solution treatments for one hour at 2000°,
2100°, and 2150°F (1093°, 1149°, and 1177°C) followed by oil quenching.
These samples were examined metallographically and an optimum partial
solution treatment was determined for each alloy based on the choice of a
temperature approximately 50°F (28°C) below the recrystallization temperature
for the given alloy.

b. Structural Examinations

Structural examinations were conducted to varying degrees on
samples of each alloy in various heat treatment conditions. The examina-
tions included optical metallography, electron microscopy, and X-ray phase
analysis.

Two methods of sample preparation were employed in preparing
samples for optical metallography. In preparing samples for screening
studies to determine an optimum temperature from several trial treatments,
all samples were first prepared by electropolishing and then etching in the
following s o lu t io n s, depending on the response of the material and the
desired effect!

(1) 60 percent water
15 percent sulfuric acid
15 percent hydrofluoric acid
9 percent nitric acid
1 percent hydrogen peroxide
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(2) 85 percent water
14 percent hydrochloric acid
1 percent hydrogen peroxide • , . ..

These roughly prepared samples were examined and upon choosing the optimum
treatments, quality samples were prepared. These quality samples were pre-
pared by mechanical polishing through various grit abrasive papers and
diamond polishing wheels. The general procedure for etching was the same as
described above. Photomicrographs were taken representing each individual
step of the full and partial solution heat treatments developed above.

Electron microscopy examinations were conducted on all samples
subjected to final aging treatments in the full solution heat treated con-
dition. The procedures involved mechanical polishing through a 600 grit
silicon carbide abrasive followed by electrolytic polishing in a solution of
perchloric acid in alcohol. Samples were etched in a variety of solutions,
namely perchloric, hydrochloric, and sulfuric acids, to emphasize the de-
sired structural characteristics. The polished and etched specimens were
then single stage replicated using a one percent solution of parlodion in
isoamylacetate. Shadowing was performed with chromium at an angle of
approximately 15 degrees. All electron micrographs were taken at a mag-
nification of 2500X and were photographically enlarged to 5000X.

X-Ray phase analyses were conducted on as-extruded material
representing each composition in the full solution heat treated condition.
The samples were prepared for electrolytic extraction by machining to a
standard size, then sand blasting at low pressure. They were then cleaned
electrolytically in a ten percent solution of hydrochloric acid in methanol
for ten minutes. The samples were rinsed and extractions were conducted in
a new solution of the same mixture. The extractions were conducted for
one-half hour using a current density of approximately 0.25 amps per square
inch (400 amps per square meter). The residues were cleaned in methanol,
dried, mounted on glass slides and subjected to X-ray diffraction analyses
to identify the phases present*

7. Mechanical Testing

All specimens for mechanical property testing were sectioned from
either extruded or extruded plus rolled bar material, rough machined, radio-
graphically inspected, heat treated by the optimum method, and finish ma-
chined and polished to the prescribed dimensions. The test specimen con-
figurations and dimensions are illustrated in Figure 1. Tensile and stress
rupture tests were included in the evaluation. Extruded material was tested
in the full solution heat treated condition only, while extruded plus rolled
material was evaluated in both the full and partial solution heat treated
conditions.

a. Tensile Testing

Duplicate tensile tests were conducted on full solution heat
treated extruded and extruded plus rolled material at room temperature,
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1400° , and 1800°F (760° and 982°C). For partial solution treated extruded
plus rolled material, only single tensile tests were conducted at 1800°F
(982°C), and the remaining single test was conducted at 1200°F (649°C).

All tensile tests were conducted on a 50,000 pound (2270 kg)
capacity Baldwin-Emery tensile testing machine. The specimens were pulled
at a nominal strain rate of 0*005 minute"1 up to the 0.2 percent yield
point, where the strain rate was increased to 0.05 minute'̂ -. The yield
point was measured by use of a deflactometer. Special furnaces were em-
ployed for elevated temperature tests, and the specimens were held at tem-
perature for a minimum of 20 minutes prior to testing.

b. Stress Rupture Testing

Duplicate stress rupture tests were conducted at 1400°F/90,000
psi and 1800°F/25,000 psi (760°C/620 MN/m2 and 982°C/173 MN/m2) for full
solution heat treated extruded and extruded plus rolled material. For
partial solution created extruded plus rolled material,testa at1200°F/
175,000 psi (649°C/1207 MN/m2) were conducted in addition to the 1400°F/
90,000 psi (760°C/620 MN/m2) tests.

All stress rupture testing was conducted on lever arm testing
machines. The samples were loaded into the furnaces, heated to the desired
temperature, and held for 15 minutes prior to applying the load. Rupture
life was measured from the time the load was applied. Sample temperature
was controlled to + 5°F (3°C).

8. Thermal Stability Studies

a. Thermal Exposure

Specimens of extruded bars from each composition were subjected
to their optimum full solution heat treatments and were then exposed for
1500 hours at 1600°F (8718C). The material exposed for each composition
included two tensile specimens, one X-ray specimen and one micro specimen.
The samples were enclosed in a protective package during the thermal ex-
posure to prevent excessive oxidation or any type of outside contamination.

b. Tensile Testing

The tensile specimens representing each composition were removed
from the furnace after the 1500 hour exposure, and were finish machined and
polished to size. Duplicate room temperature tensile tests were conducted
on the as-heat treated plus exposed material and the results were compared
with those obtained previously on as-heat treated material with no thermal
exposure.

c. Structural Examinations

The effect of the thermal exposure on microstructure was deter-
mined through optical and electron microscopy. Specimens were prepared as
previously described.
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Exposed material from each composition was also evaluated by
X-ray analyses of extracted residues* These procedures were also detailed
in a previous section.

The microstructural examinations and phase studies conducted on
exposed material were compared to the results obtained previously for un-
exposed material to determine the effects of the exposure on structural
characteristics.

9. Data Analysis

The results of the Task I mechanical property tests were subjected
to multiple regression analyses for the purpose of selecting two alloys for
Task II study. A description of the computer analysis and the results
obtained is included in Appendix A of this report. Briefly, the
properties obtained on extruded plus rolled material were used to formulate
the two Task II alloys. The first alloy, Ilb-H, was formulated based on
optimum 1400°F/90,000 psi (760°C/621 MN/m2) stress rupture life in the full
solution heat treated condition. The second alloy, Ilb-L, was derived based
on optimum 1200°F (649°C) yield strength in the partial solution heat treated
condition.

B. Task II .-_ Alloy Improvement

1. Alloy Preparation

The two alloys selected for Task II study were double vacuum melted
using the same methods described for the Task I alloys. Again, complete
chemical analyses were obtained on both vacuum induction melted heats.

The two 25-pound (11.4 kg) ingots representing each composition
were each sectioned in half. The resulting four pieces were canned to 2.92
inches (0.074 m) in diameter (Figure 2) and were extruded to 1-1/8 inch
(0.028 m) diameter bars at the AFML. The temperatures and general extrusion
procedures were the same as those conducted under Task I.

All of the extruded bar material obtained from each composition was
sectioned and rolled to one-half inch (0.013 m) diameter bar stock using
the Task I rolling procedures, incorporating thermomechanical processing
through the use of a low rolling temperature.

2. Heat Treatment Evaluation

Heat treatment studies were conducted on the two Task II alloys in
the extruded plus rolled condition only. A full solution heat treatment was
determined for Ilb-H, the Task II alloy chosen for high temperature ap-
plications; and a partial solution heat treatment was determined for Ilb-L,
the alloy chosen for low temperature applications. The procedures for
deriving the optimum full and partial solution heat treatments were the same
as those outlined in Task I.
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In addition, structural evaluations were conducted on each alloy in
the heat treated condition. These evaluations included optical and electron
microscopy and X-ray diffraction studies.

3. Mechanical Testing

Mechanical test specimens were prepared as previously discussed.
The samples were heat treated according to the optimum methods developed for
each alloy. Tensile tests (both smooth and notched), stress rupture tests,
and creep rupture tests were included in this evaluation.

a. Tensile Testing

Smooth tensile tests were conducted in duplicate at room tem-
perature, 1200°, 1400°, 1600°, and 1800°F (649°, 760°, 871°, 982°C) for Ilb-H,
the full solution heat treated Task II alloy. Also, duplicate notched tests
were conducted at room temperature, 1400° and 1800°F (760° and 982°C).

For the partial solution treated Task II alloy, Ilb-L, smooth
tests were conducted at room temperature, 1200°, 1300°, and 1400°F (649°,
704°, and 760°C); and notched tests were conducted at room temperature and
1200°F (649°C).

The procedures for tensile testing were previously discussed.

b. Stress Rupture Testing

Duplicate stress rupture tests were conducted on full solution
heat treated Ilb-H at 1400°F/90,000 psi (760°C/621 MN/ra2), 1500°F/70,000 psi
(815°C/483 MN/m2), 1600°F/55,000 psi (870°C/379 MN/ra2), and 1800°F/25,000 psi
(982°C/173 MN/m2).

For partial solution heat treated IIb-L, tests were conducted at
1200°F/175,000 psi (649°C/1207 MN/m2), 1300°F/125,000 psi (704°C/862 MN/m2),
and 1400°F/90,000 psi (760°C/621 MN/m2).

The stress rupture test procedure was also discussed in a previous
section.

c. Creep Rupture Testing

Samples for creep rupture testing were machined and polished to
size as illustrated in Figure 1. The samples were tested on lever arm
testing machines. The procedure involved loading the specimens into the
furnace, heating to the desired temperature, holding 15 minutes and applying
the load. Creep measurements were obtained with extensometers. Time to 0.2
percent creep was monitored for each sample beginning when the load was
applied. The unit was also attached to a recorder, and the creep rate versus
time was recorded for each sample.
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Creep tests were conducted at 1400°F/90,000 psl (760°C/621 MN/m2)
for full solution heat treated Ilb-H, while testing was conducted at 1000°F/
160,000 psi (538°C/1103 MN/m2) for partial solution heat treated Ilb-L.

4. Thermal Stability Studies

Samples of Ilb-H were subjected to 1500 hours exposure at 1600°F
(871°C) and samples of Ilb-L were subjected to 1500 hours exposure at 1300°F
(704°C) In the same manner as described under the Task I procedure. After
exposure, both alloys were evaluated using room temperature tensile tests,
optical and electron microscopy and X-ray diffraction analyses to determine
the effect of the exposure on mechanical and structural properties.
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V. RESULTS ANT) DISCUSSION

A. Task I - Alloy Screening

1. Melting

Vacuum induction raelting, casting and consumable-arc remelting
of the seventeen compositions proceeded well. None of the compositions
required deviations from the standard melting procedures previously
established for alloys of this type.

2. Chemical Analyses

The alloy designations, heat numbers, and aim and actual chemical
compositions tor the seventten Task I haacs are listed in Table 3.—The
very high alloy content of the compositions suggested probable deviations
from standard element recovery values; however, these standard values
proved to be quite accurate and all heats were within the range of
normal weight percent deviation.

3. As-Cast Hot Workability Studies

The results of the Gleeble hot workability tests conducted on
the seventeen alloys in the as-cast condition are summarized in Table 4.
The inherent ductility profile for each alloy was determined from these
data by plotting reduction of area versus test temperature. The re-
sultant curve gives the optimum hot working temperature and the widest
possible hot working range for the given alloy. An example of such a
curve is illustrated in Figure 3 for IIb-3. This curve indicates a
very narrow hot working range snd suggests an optimum working tempera-
ture in the area of 1900°F (1038°C). This curve is quite representative
as similar curves were obtained by plotting the data for the other
alloys.

The narrow hot working ranges and the exceptionally low optimum hot
working temperatures suggested for these alloys are similar to the results
obtained in previous work.(2) During the course of this previous work, ex-
trusions were attempted at the low working temperatures suggested from the
Gleeble data and the extrusions were not successful. However, extrusions
conducted at higher temperatures [i.e., 2100°F (11A9°C)] did prove
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successful although in direct conflict with the Gleeble inherent ductility
data. As a result, the temperatures chosen for extrusion of the seventeen
task I alloys were based on past experience, in addition to the Gleeble-
determined nil ductility point. Past work indicated a correlation between
the zero or nil ductility point and the optimum working temperature for as-
cast material.

4. Processing

a. Extrusion

The extrusion of the canned ingots from 2.92 inches (0.135 m) in
diameter at the Air Force Materials Laboratory proceeded well. Slight nose
and tail tearing was experienced for IIb-14, IIb-15, and IIb-16; while the
extruded bars representing the remaining compositions were not damaged. It
is noted that a portion of the mild steel can approximately 1/16 inch
(0.002 m) thick still surrounded each billet after the extrusion.

It should also be noted that the good experience during extru-
sion from a 2100°F (1149°C) temperature was in direct conflict with the
Gleeble data. Similar experience on the original as-cast lib composition
was noted previously. As shown in Figure 3, the 2100°F (1149°C) working
temperature appears to offer little likelihood for success. However, as was
the case in the previous work, a combination of the nil ductility point and
the optimum working temperature established from previous experience resulted
in a reliable temperature choice.

b. Rolling

The desired amount of material from each composition was suc-
cessfully rolled from the as-extruded size [approximately 1-1/8 inches
(0.028 m)] to one-half inch (0.013 m) bar stock with little difficulty. The
only compositions to exhibit difficulty were IIb-13, IIb-14, IIb-15, and
IIb-16. The soaking times during reheating were minimized to eliminate ex-
cessive oxidation and decomposition of the can. It was noted that surface
cracks were initiated on bars with cans which were permitted to deteriorate.
However, with the exception of the compositions noted above, the workability
of the alloys at the lower hot working temperature of 2025°F (1107°C) was
rated good.

5. Heat Treatment Evaluation

a. Determination of Optimum Temperatures

(1) Full Solution Heat Treatment-Extruded Plus Rolled Material

Three cycle full solution heat treatments consisting of a
full solution treatment, an intermediate aging treatment and a final aging
treatment were determined for one-half inch (0.013 m) diameter extruded plus
rolled material from each composition. The optimum treatments developed
for each alloy are summarized in Table 5.
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Full solution treatments in the area of 2225° to 2250°F
(1219° to 1232°CX for two or four hours were required to achieve the desired
degree of carbide and gamma prime solutioning and grain size. The target
grain size of ASTM 5 to 6 was achieved for each of the alloys. An example
of the effect of various full solution treatments on ASTM grain size is
shown in Figure 4 for IIb-17. In this case, changing the solution treat-
ment conditions from a two hour treatment at 2150°F (1177°C) to a four hour
treatment at 2250°F (1232°C) resulted in an increase in the grain size from
recrystallizatibn to ASTM 4 to 5. For IIb-17, the optimum full solution
treatment chosen was a two hour treatment at 2250°F (1232°C).

An optimum intermediate aging treatment of 16000"1 (871°C)
for 16 hours was chosen for each of the alloys based on the degree of grain
boundary carbide precipitation and on gamma prime nucleation. In general,
the 1650°F (899°C) treatment for 16 hours resulted in excessive grain
boundary carbide precipitation; and the treatments at 1900° and 1950°F
C1Q3B 9nd 1Q66°C) for oither two or four hours resulted in overacins snd
agglomeration of the gamma prime particles. An example of gamma prime over-
aging is shown in Figure 5 for IIb-8, as compared with the optimum treat-
ment. As a result, the treatments causing excessive carbide precipitation
or gamma prime overaging were avoided due to their undesirable structural
effects.

(2) Full Solution Heat Treatment-Extruded Material

Three cycle full solution heat treatments were also se-
lected for 1-1/8 inch (0.028 m) diameter extruded material from each com-
position. The first cycle of the treatment, the full solution treatment,
was chosen individually for each alloy; however, the intermediate and final
aging treatments selected were the same as those derived for the extruded
plus rolled material. The full solution heat treatment formulated for each
composition in the extruded condition is listed in Table 6. The full
solution treatment temperatures required to achieve the ASTM 5 to 6 grain size
were slightly lower than those required for solutioning the extruded plus
rolled material. This indicates that the low temperature rolling imparted
characteristics to the material which require higher temperatures to effect
the same degree of solutioning and grain growth. The full solution tem-
peratures ranged from two hour treatments at 2225° to 2250°F (1219° to 1232°C).

(3) Partial Solution Heat Treatment-Extruded Plus Rolled Material

For the partial solution heat treatment cycles, a partial
solution treatment was determined for each of the alloys and the conditioning
and final aging treatments chosen were the same as those selected during the
full solution heat treatment studies. The complete partial solution heat
treatments selected for each of the alloys is summarized in Table 7. A
partial solution treatment at 2000°F (1093°C) for one hour was chosen for
each of the alloys with the exception of IIb-4 which required a treatment at
1950°F (1066°C) for one hour to achieve the desired results. Examples of
the effects of increasing partial solution treatment temperatures on
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microstructure are shown in Figure 7 for IIb-7. As the temperature is in-
creased from 2000°F (1093°C) to 2100°F (1149°C), considerable gamma prime
and carbide solutioning is evident. The optimum treatment chosen for IIb-7
was the 2000°F (1093°C) treatment, and the resulting microstructure after
incorporating both the intermediate and final aging treatments into the
cycle is illustrated in Figure 8.

b. Structural Examinations

Optical micrographs were taken for each alloy in a variety of
heat treatment conditions. Some of these photomicrographs were presented in
the previous sections. In addition, electron microscopy studies were also
conducted for each alloy in the full solution heat treated condition for
extruded and extruded plus rolled material, and in the partial solution heat
treated condition for extruded plus rolled material. The results of these
studies are summarized in Figures 9 and 10 for full solution treated IIb-7
and IIb-11, and in Figure 11 for partial solution treated IIb-7.

A very interesting feature of the full solution treated micro-
structures (Figures 9 and 10) was the gamma prime particle morphology. The
particles dispersed throughout the matrix were extremely fine; in fact, they
were much finer than those exhibited in other alloys of this type. The
carbide morphology, on the other hand, was characteristic of alloys of this
type. Massive MC-types were found randomly throughout the matrix in addition
to finer matrix and grain boundary carbides.

As expected, due to the limited extent of solutioning achieved
during a partial solution heat treatment, Figure 11 for partial solution
heat treated IIb-7 typefies a very coarse microstructure. Large particles
of coarse, undissolved gamma prime in addition to small and massive MC-type
carbide particles and smaller M&C type carbides dominate the microstructure.
In addition, as shown in the micrograph taken at 10,OOOX, a fine precipitate
of "second generation" gamma prime is evenly dispersed throughout the matrix
between the coarse gamma prime and carbides. Slight evidence of re-
crystallized grain boundaries are also evident at the high magnification.

The results of the X-ray diffraction studies of residues extracted
from full solution heat treated as-extruded material are summarized In Table 8.
For all of the compositions, the major phase present was an MC-type carbide.
In fact, two distinct MC-type carbides were detected in most alloys; and
IIb-7 contained three distinct varieties. Several alloys also contained
weak amounts of MgC or ̂ 23̂ 6 tvPe carbides, and IIb-15 displayed some
evidence of a mu phase formed during heat treatment.

6. Mechanical Testing

a. Tensile Testing

(1) Extruded Material-Full Solution Heat Treated

The tensile test results for each experimental composition
in the extruded and full solution heat treated condition are summarized in
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Tables 9, 10, and 11 for room temperature, 1400° and 1800°F (760° and 982°C)
test temperatures, respectively.

With respect to room temperature tensile properties, the
data for the five best Task I alloys are illustrated in Figure 12. The best
average ultimate tensile strength was exhibited by IIb-8 at 222,000 psi
(1530 MN/m2){ IIb-12 displayed the best yield strength at 179,000 psi
(1230 MN/m2); while alloys IIb-8, IIb-11, and IIb-12 all exhibited good
tensile ductility at about 11 percent. From Table 9, we can note that other
alloys such as IIb-16 displayed good yield strength values; however, tensile
ductility for these alloys was very low at approximately one percent. In
general, ductility values for the highly-alloyed compositions IIb-13, IIb-14,
IIb-15, and IIb-16 were consistently low. '

Tensile data at 1400°F (760°C) for the five best Task I
alloys are summarized in Figure 13. Strength levels were very close for
each of the alloys. Ultimate tensile strength values ranged from 178,000
psi (1230 MN/m2) for IIb-7 and IIb-12 to 186,000 psi (1280 MN/ra2) for IIb-8;
and, yield strengths ranged from 152,000 psi (1050 MN/ra2) for IIb-17 to
158,000 psi (1090 MN/m2) for IIb-12. Ductility values were also comparable
in the'seven to ten percent range, although they were slightly lower than
the room temperature values.

Figure 14 depicts tensile data for the five alloys at 1800°F
(982°C). Alloy IIb-11 displayed the best ultimate and yield strengths of
the five alloys at 86,000 and 72,000 psi (593 and 496 MN/m2), respectively.
Ductility values for the alloys continued to decrease with increasing test
temperature. Values ranged from about one to five percent at 1800°F (982°C)
as opposed to greater than ten percent at room temperature.

(2) Extruded Plus Rolled Material-Full Solution Heat Treated

The results of tensile tests conducted on Task I extruded
plus rolled material subjected to a full solution heat treatment are listed
in Tables 12, 13, and 14 for room temperature, 1400° and 1800°F (760° and
982eC) properties, respectively. In addition, the data for the five best
Task I alloys are summarized in Figures 15, 16, and 17 for comparison.

In general, the strength levels for the extruded plus
.rolled materials were slightly higher than those displayed by the extruded
materials for most of the alloys. The most significant effect of the rolling
was in improving tensile ductility. With the exception of IIb-11 at 1800°F
(982°C), each of the five alloys experienced ductility Increases at all
three test temperatures as a result of the rolling. These increases
generally represented 30 to 40 percent improvements over ductility of the
extruded material.

(3) Extruded Plus Rolled Material-Partial Solution Heat Treated

Tensile test results for the extruded plus rolled Task I
alloys heat treated using the partial solution heat treatment are listed in
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Tables 15, 16, 17, and 18. These tables represent data collected at room
temperature, 1200°, 1400°, and 1800°F (649°,760°, and 982°C), respectively.
In addition, the data for the five best Task I alloys are depicted in
Figures 18, 19, 20, and 21.

As expected, strength levels at room temperature, 1200°
and 1400°F (649° and 760°C) were increased considerably as a result of the
thermomechanical processing and partial solution heat treatment. For
example, the room temperature ultimate tensile strength of IIb-7 was in-
creased from 213,000 psi (1470 MN/m2) using the full solution heat treat-
ment to 298,000 psi (2060 MN/m2) using the partial solution heat treatment—
an increase of about 40 percent. In addition to the ultra-high room tem-
perature strength exhibited by IIb-7, the alloy also displayed extremely
high ultimate strength values at 1200° and 1400°F (649° and 760°C) of about
258,000 and 212,000 psi (1780 and 1460 MN/m2), respectively. Corresponding
yield strength values at room temperature, 1200° and 1400°F (649° and 760°C)
were 250,000, 226,000, and 187,000 psi (1720, 1560, and 1290 MN/m2). It
should also be noted that these ultra-high strength levels were achieved with
corresponding elongations ranging from eight to thirteen percent.

Although IIb-7 was the strongest of the Task I alloys, the
other four promising Task I alloys also displayed excellent strength cap-
abilities in the room temperature to 1400°F (760DC) range. However, as
depicted in Figure 21, the strength capabilities of all the alloys were
drastically reduced at 1800°F (982°C) where the alloys became "superplastic".
As no tests were conducted between the 1400° and 1800°F (760° and 982°C)
test temperatures, the exact temperature range where the significant loss in
strength is experienced is unknown.

b. Stress Rupture Testing

(1) Extruded Material-Full Solution Heat Treated

The results of stress rupture tests conducted on each alloy
in the extruded and full solution heat treated condition are listed in Tables
19 and 20. The tables represent the results for tests conducted at 1400°F/
90,000 psi and 1800°F/25,000 psi (760°C/621 MN/m2 and 982°C/172 MN/M2),
respectively. Also, stress rupture data for the five best Task I alloys are
summarized in Figures 22 and 23.

With respect to the tests conducted at 1400°F (760°C), the
alloys displaying the best rupture life included IIb-8 and IIb-11. Rupture
life values for the two alloys were 433 and 361 hours, respectively. Alloys
IIb-7 and IIb-17 displayed good rupture life values of 213 and 240 hours,
respectively; while the rupture life exhibited by IIb-12 was the lowest of
the five best alloys at 84 hours, Rapture ductility values were low for
all five alloys and ranged from 0.4 to 2.7 oercent.

Alloys IIb-11 and IIb-17 displayed the highest 1800°F
(982°C) rupture life values of 63 and 73 hours, while values for IIb-7 and
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IIb-12 were slightly lower at 49 and 43 hours. The lowest rupture life of
the five best alloys at 1800°F (982°C) was exhibited by IIb-8 at 29 hours.
In contrast to tensile ductility, stress rupture ductility values were
generally higher at 1800°F (982°C) than at 1400°F (760°C).

(2) Extruded Plus Rolled Material-Full Solution Heat Treated

Stress rupture test results for extruded plus rolled ma-
terial subjected to full solution heat treatment are listed in Tables 21 and
22. Test conditions were the same as those described above for extruded
material. The effect of the rolling on stress rupture properties was
similar to its effect on tensile properties. General increases in rupture
life at 1400°F (760°C) were effected by the rolling, especially for IIb-12
where rupture life increased from 84 to 587 hours. Of the five more
promising Task I alloys, only IIb-8 failed to experience an increase in
rupture life at 1400°F (760°C) as a result of the rolling. However, the noted
improvements in rupture life at 1400°F (760°C) were not experienced at 1800°F
(982°C); in fact, three of the five alloys experienced decreased rupture life
as a result of the rolling. In addition, rolling improved the stress rupture
ductility of four of the five alloys at 1400°F (760°C)t and three of the
five at 1800°F (982°C).

(3) Extruded Plus Rolled Haterial-Partiar~Solution~Heat~Treated—

The results of stress rupture tests conducted at 1200°F/
175,000 psi and 1400°F/90,000 psi (649°C/1207 MN/m2 and 760°C/621 MN/m2) on
extruded plus rolled material heat treated using the partial solution heat
treatment are summarized in Tables 23 and 24. These data are also depicted
in Figures 26 and 27 for the five best Task I alloys.

With respect to the 1200°F (649°C) tests, IIb-7 displayed
the best rupture life of the five more promising alloys at 225 hours in
combination with a rupture ductility of about seven percent. Considering
the extremely high stress level of 175,000 psi (1207 MN/m2) used for the
1200°F (649°C) tests, the remaining four alloys also displayed good rupture
strength. Rupture life values were 146 hours for IIb-11, 95 hours for
IIb-12, and 59 hours each for IIb-8 and IIb-17.

Although previously described 1400°F (760°C) tensile
properties for partial solution heat treated material were very good, we
note from Table 24 and Figure 27 that rupture life at 1400°F (760°C) ex-
perienced a severe decrease as compared to full solution heat treated ma-
terial. Rupture life at 1400°F (760°C) ranged from 13 to 31 hours for the
five partial solution heat treated alloys, while the values ranged from 271
to 587 hours when the alloys were heat treated using the full solution heat
treatment. Thus, while tensile properties for partial solution heat treated
alloys were maintained at least to 1400°F (760°C), stress rupture capabilities
are severely reduced at 1400°F (760°C).
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7. Thermal Stability Studies

a. Tensile Testing

The results of room temperature tensile tests conducted on
Task I extruded and full solution heat treated material after 1500 hours
exposure at 1600°F (871°C) are summarized in Table 25. The data for
ultimate tensile strength was compared with data obtained for unexposed
material to determine the effect of the exposure. As all of the com-
positions experienced a loss in strength after exposure, the percent loss
of ultimate tensile strength was plotted versus Nv number to establish
thermal stability limits for the lib alloy system. The resultant chart is
illustrated in Figure 28. Using a ten percent loss in ultimate tensile
strength as the maximum allowable loss, compositions exhibiting an electron
vacancy number of 2.22 or greater would be considered unstable. In addition,
compositions displaying electron vacancy numbers between 2.18 and 2.22 may
or may not exhibit instability; data scatter renders this range uncertain.
It should be noted that although highly-alloyed IIb-15 did not experience
a decrease in ultimate tensile strength greater than tax percent, the cause
for this was related to the very low room temperature strength in the as-
heat treated condition of about 70,000 psi (482 MN/m2). Strength values for
the other compositions were in the 180,000 to 220,000 psi (1240 to 1520 MN/m2)
range.

With respect to the effects of the exposure on the strength of
the five best Task I alloys, IIb-7, IIb-8 and IIb-17 all experienced de-
creases in strength, although the decreases were within theten percent
allowable limit. However, both IIb-11 and IIb-12 experienced significant
decreases in strength over the allowable ten percent.

While IIb-12 experienced a severe strength decrease, the decrease
for IIb-11 was less drastic. It is noted that the Nv number for IIb-11 at
2.22 is directly on the borderline for thermal stability; and a slight modi-
fication of the original chemistry from 4.5 percent aluminum to 4.3 percent
aluminum would lower the Nv number to 2.16, which should be within the
thermal stability limits.

Although the general effect of the exposure on ductility was
detrimental, alloys IIb-7, IIb-8, and IIb-17 all experienced increased
ductility as a result of the exposure. Alloys IIb-11 and IIb-12 both ex-
perienced severe ductility decreases.

b. Structural Examinations

Optical and electron microscopy and electrolytic extraction and
X-ray phase identification were employed to determine the structural effects
of the 1500 hour exposure on each of the as-extruded alloys. These results
were compared with the results presented previously under "tleat Treatment
Evaluation - Structural Examinations".
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Figures 29 and 30 exemplify the microstructures resulting from
thermally stable IIb-7 and thermally unstable IIb-11, respectively. As
heat treated microstructures for these two alloys were previously illustrated
in Figures 9 and 10. A comparison of the structures characteristic of as-
heat treated material and as-heat treated plus exposed material reveals
several significant structural changes « As a result of the exposure, both
alloys have experienced a coarsening of the gamma prime particles. Also,
considerable gamma prime agglomeration occurred for both materials. The
agglomeration was more severe for IIb-11, as illustrated in Figure 31. A
comparison of the structure before and after the exposure indicates the
gamma prime particles have agglomerated into "pools" as a result of the ex-
posure; the "pools" appear to have formed along grain boundaries, especially
at boundary triple points. In addition, while grain boundary carbide pre-
cipitation is evident in both exposed samples, IIb-11 has formed a needle-
like phase, which is illustrated in Figures 30 and 31.

The results of the X-ray diffraction studies conducted on
residues extracted from full solution treated plus exposed Task I extruded
materials are summarized in Table 26. A comparison of these results with
the results obtained on as-heat treated materials (summarized in Table 8)
reveals the effects of the exposure on minor phases. For most of the
alloys, the MC-type carbide appears to be decomposing during exposure, re-
sulting in the formation of increased amounts
carbides. Also, in some cases, varying amounts of a tnu phase were formed.
This phase was formed in IIb-11, IIb-12 , IIb-15, and IIb-16.

8. Data Analysis

The data derived under Task I was prepared for computer analysis and
evaluated according to the procedures outlined in Appendix A of this report.
Briefly, the properties obtained on extruded plus rolled material plus the
thermal stability guide shown in Figure 28 were used to formulate the two
Task II alloys. The first alloy, Ilb-H, was formulated based on optimum
1400°F/90,000 psi (760°C/621 MN/m2) stress rupture life in the full solution
heat treated condition. The second alloy, Ilb-L, was derived based on op-
timum 1200°F (649°C) yield strength in the partial solution heat treated
condition.

B. Task II - Alloy Improvement

1. Alloy Preparation

The melting and processing of the two Task II alloys proceeded
normally. The alloy designations, heat numbers, and aim and actual chemical
analyses for the two alloys are listed in Table 27. The double vacuum
melted ingots were first extruded at the Air Force Materials Laboratory and
then processed to one-half inch (0.013 m) diameter bar stock in the same
manner as the Task I alloys. Both alloys were successfully processed; how-
ever, the workability of Ilb-L during rolling was rated below average, as
several bars experienced slight cracking.
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2 , Heat Treatment Evaluation . . . - • .

a. Determination of Optimum Temperatures

The results of the heat treatment studies conducted on Ilb-H and
Ilb-L are summarized in Table 28. The full solution heat treatment developed
for Ilb-H consisted of a solution treatment at 2225°F ,(1219°C) for two hours
followed by an intermediate aging treatment at 1650°F (899°C) for 16 hours
and a final aging treatment at 1400°F (760°C) for 16 hours. As described
for the Task I alloys, the treatment was chosen to yield a grain size of
ASTM 5 to 6 with the desired degree of carbide and gamma prime precipitation.

The partial solution heat treatment developed for Ilb-L was the
same treatment used for the majority of the Task 1 alloys. The treatment
consisted of a conditioning age at 1600°? (871°C) for 16 hours followed by
increasing the temperature to 2000°F (1093°C) for one hour, then oil quenching.
A final age at 1400°F for 16 hours was also employed.

b. Structural Examinations

Studies were conducted on full solution heat treated Ilb-H and
partial solution heat treated Ilb-L in a similar manner as described for the
Task 1 alloys. The results of the electron microscopy studies conducted on
the Task II alloys are illustrated in Figures 32 and 33. The photographs
show the microstructures to be quite similar to those developed in Task I
for full and partial solution heat treated material. The full solution heat
treated Ilb-H illustrated in Figure 32 exhibits the very fine gamma prime
matrix precipitate with an absence of any agglomeration or gamma prime pools.
Carbides evident include both matrix MC-type in addition to rather heavy
concentrations of the MgC-type in the grain boundaries. The partial
solution heat treated structure for Ilb-L resembles the structure achieved
for the Task I alloys (see Figure 11). However, one variation appears to be
the grain configuration. While the grains of IIb-7 were extremely fine and
almost unresolvable at 5000X, the grains for Ilb-L are easily resolvable at
5000X.

The results of the X-ray diffraction studies of extracted residues
for as-heat treated Ilb-H and Ilb-L are summarized in Table 29. The MC-type
carbide was the major phase for Ilb-H, as was the case for the Task I alloys.
In addition! a moderate amount of MgC-type carbide was detected, accounting
for the heavy grain boundary carbide viewed in the electron micrographs of
Figure 32. Ilb-L also contianed the MC-type carbide, but only in a moderate
amount. The major phase present in Ilb-L was an MgC-type carbide.

3. Mechanical Testing

a. Tensile Testing

The notched and smooth tensile test results for Ilb-H and Ilb-L
are summarized in Tables 30 and 31. Although Ilb-H displayed good strength
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capabilities in conjunction with adequate ductility, strength values were
not as high as those predicted in the computer analysis. In addition, while
the strength values for Ilb-H were better than those achieved by IIb-11 (the
best full solution heat treated Task I alloy) at room temperature and 1400°F
(760°C), the strength properties of IIb-11 were superior at 1800°F (982°C).

The strength levels displayed by Ilb-L were also lower than the
computer-predicted levels. However, while ultimate tensile strength and
ductility at room temperature and 1200°F (649°C) were generally higher for
IIb-7 (the best partial solution heat treated Task I alloy), yield strength
values for Ilb-L were slightly improved over those displayed by IIb-7. At
1400°F (760°C), ultimate and yield strength values for Ilb-L were slightly
improved over those exhibited by IIb-7.

With respect to the notch tensile tests, only Ilb-L tested at
1200°F (649°C) appears to be notch sensitive (i.e., the notch strength was
lower than the smooth tensile strength at that temperature). This tendency
towards notch sensitivity is not displayed by Ilb-L at either room temperature
or 1400°F (760°C); and is not displayed by Ilb-H at room temperature, 1400°,
or 1800°F (760° or 982°C).

b. Stress Rupture Testing

The results of the stress rupture tests conducted on Ilb-H and
Ilb-L are summarized in Tables 32 and 33, respectively. Rupture life values
for both Ilb-H and Ilb-L fell well short of the computer-predicted values.
In addition, these values were considerably less than those obtained for
IIb-7 and IIb-11, the two best Task I alloys.

c. Creep Rupture Testing

The results of the creep rupture tests conducted on Ilb-H and
Ilb-L are also listed in Tables 32 and 33. The time to 0.2% creep for Ilb-H
at 1400°F/90,000 psi (760°C/760 MN/m2) was 34.5 hours. The results of the
tests run at 1000°F/160,000 psi (538°C/1103 MN/m2) for Ilb-L were dis-
continued after 1000 hours as no measurable creep had occurred to that time.

4. Thermal Stability Studies

a. Tensile Testing

The results of the room temperature tensile tests conducted for
Ilb-H and Ilb-L after 1500 hours exposure at 1600° and 1300°F (871°C and
704°C), respectively, are summarized in Table 34. The effects of the
exposure on room temperature tensile properties varied considerably for each
alloy. For example, while Ilb-H experienced significant losses in ultimate
and yield strengths up to about 20 percent, Ilb-L experienced slight in-
creases in both ultimate and yield strengths. Ductility values for both
Ilb-H and Ilb-L were decreased as a result of the exposure.
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b. Structural Examinations

Electron micrographs in Figures 34 and 35 typify the structures
characteristic of exposed Ilb-H and Hb-L, respectively* A comparison of
these micrographs with those of Figures 32 and 33 Indicate changes similar
to those observed for the Task I alloys as a result of the exposure. The
gamma prime particles in the Ilb-H mlcrostructure were coarsened considerably
as a result of the exposure. In addition, Ilb-H experienced heavy grain
boundary carbide precipitation during the exposure. No significant micro-
structural changes were evident for Ilb-L as a result of the exposure.

The results of the X-ray diffraction studies conducted on
residues extracted from exposed Ilb-H and Ilb-L are summarized in Table 29.
The effect of the exposure on Ilb-H was a decomposition of the MC-type
carbide and resultant excessive MgC-type carbide precipitation. The degree
of MgC-type carbide precipitation was considerably greater for Ilb-H than
for any of the Task 1 alloys. The concentration of the MC-type carbide
remained the same after exposure for Ilb-L; however, the M6Otype carbides
were decomposed and resulted in the formation of moderate amounts of ̂ 23C6~
type carbides and the same mu phase detected for some of the Task I alloys.
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VI.. SUMMARY OF RESULTS

The objective of this program was to optimize the chemical
composition of NASA lib for the purpose of developing advanced wrought
nickel-base alloys for use in advanced gas turbine engines. The program
was divided into two tasks. Task I consisted of a statistical analysis
to determine the effects of five key elements (carbon, tungsten,
tantalum, aluminum and hafnium) on resultant properties. Two compositions
were formulated for Task II study based on the results of the Task I
statistical analysis. The results of the program can be summarized
as follows I

1. All Task I and II alloys were fabricable by extrusion and
subsequent rolling.

2. Materials subjected to a full solution heat treatment
displayed good overall properties, with outstanding 1400°
to 1800°P (760° to 982°C) rupture strength. In contrast,
materials subjected to a partial solution heat treatment
displayed much higher tensile strengths up to 1400°F (760°C)
and rupture strengths up to 1200°F (649°C), although
tensirê an~d̂ rupturê strength~capabi-lities-at higher
temperatures were poor due to superplasticity.

3. The general effect of a low temperature [i.e., 2025°F
(1107°C)] rolling after extrusion at 2100°F (11498C) was
to effect slight strength increases and significant
ductility increases for full solution heat treated
material. The effect of the rolling on partial solution
heat treated material was not directly determined; however,
it is well known that the increases in strength achieved
are the result of this working/heat treating combination.

4. General thermal stability limits were established for the
lib alloy system. These limits indicate compositions with
an Nv number greater than 2.22 will be unstable. To insure
stability within the system, compositions should have Nv
numbers below 2.18; the range between 2.18 and 2.22 is un-
certain.

5. Of the seventeen Task I alloys, IIb-7 displayed the best
properties in the partial solution heat treated condition.
The alloy achieved ultimate tensile and yield strength values
of 258,000 and 226,000 psi (1780 and 1560 MN/m2) at 1200°F
(649°C). The stress rupture life of IIb-7 at 1200°F and
175,000 psi (6A9°C and 1207 MN/m2) was 250 hours.

6. Of the seventeen Task I alloys, IIb-11 displayed the best
properties in the full solution heat treated condition. At
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1400°F (760°C) the alloy displayed ultimate tensile and
yield strength values of 185,000 and 157,000 psi (1275
and 1080 MN/m2). The stress rupture life of IIb-11 at
1400°P and 90,000 psi (760°C and 621 MN/m2) was 510 hours.
Although the composition was found to be unstable after
1500 hours exposure at 1600°F (871°C), indications are
that the instability can be eliminated with only a minor
chemistry modification*

7* The Task I results were subjected to computer analysis and
two alloys were formulated based on maximum strength with
adequate ductility at 1200° and 1400°F (649° and 760°C).
The computer analysis indicated a tendency towards slightly
lower carbon and low hafnium for compositions designed for
full or partial solution heat treatment applications. In
addition, increased tungsten was predicted to be beneficial
to alloy compositions designed for either high or low tem-
perature properties* The results also indicated that
Increased tantalum would enhance low temperature properties,
while increased aluminum would enhance high temperature
properties. However, the overall properties displayed by
the two Task II alloys formulated based on computer results
were not as good as those obtained for the two Task I alloys,
IIb-7 and IIb-11.
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VII. CONCLUDING REMARKS

The exceptional strength characteristics of NASA IIb-7 at
low operating temperatures in combination with adequate ductility
render this alloy a strong candidate for future use in advanced
turbine engines. As a result, it is recommended that a program be
initiated to melt this alloy in production-sized heats, fabricate to
disc configurations and evaluate the resultant product to determine the
feasibility for producing the alloy on a production scale.

Although NASA IIb-11 displays excellent high temperature
property capabilities, the alloy was found to be unstable. However,
indications are that only slight chemistry modifications should be
required to shift the composition within stability limits. As a result,
additional chemistry studies are recommended using NASA IIb-11 as a
base, to eliminate thermal Instability and to further enhance the
strength capabilities of the alloy.
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TABLE 4

Gleeble Inherent Ductility Profiles For As-Cast Task I Alloys

Alloy
Designation
IIb-1

IIb-2

IIb-3

IIb-4

IIb-5

IIb-6

lib-7

IIb-8

Test
Temp*
(BF)
2000
2050
2100
2150

1950
2000
2050
2100

1850
1900
1950
2000
2050
2100

1900
2000
2050
2100

1900
1950
2000
2100

1850
1900
2000
2050
2100
2150

2000
2050
2100
2150

1900
2000
2050
2100

srature
(°C)
1093
1121
1149
1177

1066
1093
1121
1149

1010
1038
1066
1093
1121
1149

1038
1093
1121
1149

1038
1066
1093
1149

1010
1038
1093
1121
1149
1177

1093
1121
1149
1177

1038
1093
1121
1149

Ultimate
(psi)
44,300
42,800
24,400
19,300

82,500
66,000
23,400
20,900

100,000
100,000
62,500
70,700
34,000
21,000

90,000
38,200
30,900
28,100

113,000
97,500
73,800
29,700

92,800
92,000
72,200
54,700
28,400
18,200

86,000
73,000
65,000
25,000

93,500
73,700 v
60,000
27,900

Strength
(MN/m2y
306
295
168
133

569
455
161
144

690
690
431
488
234
145

620
263
213
194

780
672
508
205

640
634
498
377
196
126

593
503
448
172

645
508
414
192

Reduction Of Area

14.5
5.1
3.6
0

13.0
14.2
2.4
0

12.5
13.6
8.3
8.3
4.8
2.4

12.6
10.6
4.8
3.9

11.6
6.6
2.1
2.0

16.9
10.0
12.2
21.8
2.8
0

15.4
15.0
5.4
2.0

11.7
11.3
4.6
3.1



TABLE 4 (continued)

Gleeble Inherent DuctilityProfiles For Aa-Cast Task I Alloys

Test
Alloy Temperature

Designation (°F) (°C)
IIb-9 1900

1950
2000
2100

IIb-10 1900
2000
2050
2100

IIb-11 1900
2000
2050
2100

Hb-12 1900
1950
2000
2100

IIb-13 1900
1950
2000
2100

IIb-14 1900
2000
2050
2100

IIb-15 1900
2000
2050
2100

IIb-16 1900
2000
2050
2100

IIb-17 1900
2000
2050
2100

1038
1066
1093
1149

1038
1093
1121
1149

1038
1093
1121
1149

1038
1066
1093
1149

1038
1066
1093
1149

1038
1093
1121
1149

1038
1093
1121
1149

1038
1093
1121
1149

1038
1093
1121
1149

Ultimate Strength
(psi)
109,500
83,200
65,500
27,600

88,700
69,000
50,300
54,800

119,500
95,000
80,200
62,500

107,000
89,000
72,000
39,900

119 ,000
98,500
88,800
21.700

113,000
84,000
73,200
41,400

115,500
89,500
70,200
17,500

112,000
82,000
26,700
19,700

108,000
70,300
70,800
26,000

(MN/m'T
755
574
452
190

612
476
347
378

825
655
552
431

738
614
496
275

820
679
612
150

780
579
504
285

792
617
484
121

772
565
184
136

745
485
489
179

Reduction Of Area

10.4
5.1
2.8
3.1

14.6
14.8
2.4
4.3

9.0
11.8
11.0
3.5

9.4
3.5
6.8
3.1

12,5
8.3
4.4
0

6.3
7.8
4.0
2.3

3.1
5.3
2.8
0

4.4
4.6
1.6
0

11.8
10.4
12.5
1.6

Conditions: Heat to indicated test temperature, hold five minutes and test
at a nominal strain rate of 5 seconds-̂ .



TABLE 5

Composition
Number
IIb-1

IIb-2

IIb-3

IIb-4

IIb-5

IIb-6

IIb-7

IIb-8

IIb-9

IIb-10

IIb-11

IIb-12

IIb-13

IIb-14

IIb-15

IIb-16

lib-17

Optimum Full Solution Heat Treatments For
Task I Extruded Plus Rolled Material

Selected, Heat Treatment*
2Z50"F/2 hra/RAC 4- 1600°F/16 hrs/RAC 4- 1400°F/16 hrs/AC
1232°C/2 hrs /RAC 4- 871'C/16 hrs/RAC + 760°C/16 hrs/AC

2250°F/2 hrs /RAG + 1600°F/16 hrs/RAC + 1400°F/16 hrs/AC
1232°C/Z hrs /RAG + 871°C/l6 hrs/RAC -f 760°C/16 hrs/AC

2225°F/2 hrs /RAG 4- 1600°F/16 hrs/RAC 4- 1400°F/16 hrs/AC
1219°C/2 hrs /RAG + 871°C/16 hrs/RAC + 760°C/16 hra/AC

2250°F/4 hrs /RAC + 1600°F/16 hrs/RAC 4- 1400°F/16 hrs/AC
1232°C/4 hrs /RAG 4- 871'C/16 hrs/RAC + 760°C/16 hrs/AC

2250°F/2 hrs /RAG 4- 1600°F/l6 hrs/RAC + 1400°F/16 hrs/AC
1232°C/2 hrs /RAG 4- 871°C/16 hrs/RAC + 760°C/16 hrs/AC

2250°F/4 hrs /RAG + 1600°F/16 hrs/RAC + 1400°F/16 hrs/AC
1232°C/4 hrs /RAG + «71°C/16 hrs/RAC •»• 760°C/16 hrs/AC

2250°F/2 hrs /RAG + 1600°F/16 hrs/RAC -f 1400°F/16 hrs/AC
1232°C/2 hrs /RAG -f 871°G/16 hrs/RAC 4- 760°C/16 hrs/AC

2250°F/4 hrs /RAG + 1600°F/16 hrs/RAC + 1400CF/16 hrs/AC
1232°C/4 hra /RAG 4 871°C'16 hrs/RAC + 760°C/16 hrs/AC

2250°F/4 hrs /RAG + 1600°F/16 hrs/RAC + 1400°F/16 hrs/AC
1232°C/4 hrs /RAG 4 871°C/16 hrs/RAC •»• 760°C/16 hrs/AC

2250°F/4 hrs /RAG
1232°C/4 hrs /RAG

1600°F/16 hrs/RAC •»• 1400°F/16 hrs/AC
871CC/16 hrs/RAC 4- 760°C/16 hrs/AC

2250°F/2 hrs /RAG 4- 1600°F/16 hrs/RAC 4- 1400°F/16 hrs/AC
1232°C/2 hrs /RAC 4- 871°C/16 hrs/RAC 4- 7608C/16 hrs/AC

2250°F/2 hrs /RAC 4- 1600°F/16 hrs/RAC 4- 1400°F/16 hrs/AC
1232°C/2 hrs /RAC 4- 871°C/16 hrs/RAC 4- 760°C/16 hrs/AC

2250°F/4 hrs /RAG 4- 1600°F/16 hrs/RAC 4- 1400°F/16 hrs/AC
1232°C/4 hrs /RAG 4- 871°C/16 hrs/RAC 4- 760°C/16 hrs/AC

2250°F/4 hrs /RAG 4- 1600°F/16 hrs/RAC 4- 1400°F/16 hrs/AC
1232°C/4 hrs /RAG 4- 871°C/16 hrs/RAC 4- 760°C/16 hrs/AC

2250°F/2 hrs /RAG 4- 1600°F/16 hrs/RAC 4- 1400°F/16 hrs/AC
1232°C/2 hrs /RAG 4- 871°C 16 hrs/RAC 4- 760°C/16 hrs/AC

2250°F/4 hrs /RAG 4- 1600°F/16 hrs/RAC 4- 1400°F/16 hrs/AC
1232°F/4 hrs /RAG 4- 871°C/16 hrs/RAC 4- 760°C/16 hrs/AC

2250°F/2 h r s /RAC 4- 1600°F/16 hra/RAC 4- 1400°F/16 hrs/AC
1232°C/2 hrs/ RAC 4- 871°C/16 hra/RAC 4- 760°C/16 hrs/AC

*RAC indicates Rapid Air Cool and AC, Air Cool.



TABLE 6

Optimum Full Solution Heat Treatments For
Task I Extruded Material

Composition
Number Selected Heat Treatment*
IIb-1 2225°F/2 hrs/RAC + 1600°F/16 hrs/RAC + 1400°F/16 hrs/AC

1219°C/2 hrs/RAC + 871°C/16 hrs/RAC + 760°C/16 hrs/AC

IIb-2 2225°F/2 hrs/RAC + 1600°F/16 hrs/RAC + 1400°F/16 hrs/AC
1219°C/2 hra/RAC + 871°C/16 hrs/RAC + 760°C/16 hrs/AC

IIb-3 2225°F/2 hrs/RAC + 1600°F/16 hrs/RAC + 1400°F/16 hrs/AC
1219°C/2 hrs/RAC -f 871°C/16 hrs/RAC + 760°C/16 hrs/AC

IIb-4 2225°F/2 hrs/RAC + 1600°F/16 hrs/RAC + 1400°F/16 hrs/AC
1219°C/2 hrs/RAC + 871°C/16 hrs/RAC + 760°C/16 hrs/AC

IIb-5 2250°F/2 hrs/RAC + 1600°F/16 hrs/RAC + 1400°F/16 hrs/AC
1232°C/2 hrs/RAC + 871°C/16 hrs/RAC + 760°C/16 hrs/AC

IIb-6 2225°F/2 hrs/RAC + 1600°F/16 hrs/RAC + 1400°F/16 hrs/AC
1219°C/2 hrs/RAC + 871°C/16 hrs/RAC + 760°C/16 hrs/AC

IIb-7 2225°F/2 hrs/RAC + 1600°F/16 hrs/RAC + 1400°F/16 hrs/AC
1219°Cf2-hrs/RAC-+—871°C/16-hrs/RAC +—760^e/16-hrs/AC-

IIb-8 2225°F/2 hrs/RAC + 1600°F/16 hrs/RAC + 1400°F/16 hrs/AC
1219°C/2 hrs/RAC + 871°C/16 hrs/RAC + 760°C/16 hrs/AC

IIb-9 2250°F/2 hrs/RAC + 1600°F/16 hrs/RAC + 1400°F/16 hrs/AC
1232°C/2 hrs/RAC + 871°C/16 hrs/RAC + 760°C/16 hrs/AC

IIb-10 2225°F/2 hrs/RAC + 1600°F/16 hrs/RAC + 1400°F/16 hrs/AC
1219°C/2 hrs/RAC + 871°C/16 hrs/RAC + 760°C/16 hrs/AC

IIb-11 2225°F/2 hrs/RAC + 1600°F/16 hrs/RAC -t- 1400°F/16 hrs/AC
1219°C/2 hrs/RAC + 871°C/16 hrs/RAC + 760°C/16 hrs/AC

IIb-12 2225°F/2 hrs/RAC + 1600°F/16 hrs/RAC + 1400°F/16 hrs/AC
1219°C/2 hrs/RAC + 871°C/16 hrs/RAC + 760°C/16 hrs/AC

IIb-13 2250°F/2 hrs/RAC + 1600°F/16 hrs/RAC + 1400°F/16 hrs/AC
1232°C/2 hrs/RAC + 871°C/16 hrs/RAC + 760°C/16 hrs/AC

IIb-14 2250°F/2 hrs/RAC + 1600°F/16 hrs/RAC + 1400°F/16 hrs/AC
1232°C/2 hrs/RAC + 871°C/16 hrs/RAC + 760°C/16 hrs/AC

IIb-15 ^ 2225°F/2 hrs/RAC + 1600°F/16 hrs/RAC -f 1400°F/16 hrs/AC
1219°C/2 hrs/RAC + 871°C/16 hrs/RAC + 760°C/16 hrs/AC

IIb-16 2250°F/2 hrs/RAC -r 1600°F/16 hrs/RAC + 1400°F/16 hrs/AC
1232°C/2 hrs/RAC + 871°C/16 hrs/RAC -»• 760°C/16 hrs/AC

IIb-17 2225°F/2 hrs/RAC + 1600°F/16 hrs/RAC + 1400°F/16 hrs/AC
1219°C/2 hrs/RAC + 871°C/16 hrs/RAC + 760°C/16 hrs/AC

*RAC indicates Rapid Air Cool and AC, Air Cool.



TABLE 7

Optimum Partial Solution Heat Treatments For Task I Extruded Plus Rolled Material

Composition
Number
IIb-1

IIb-2

IIb-3

IIb-4

IIb-5

IIb-6

IIb-7

IIb-8

IIb-9

IIb-10

IIb-11

IIb-12

IIb-13

IIb-14

IIb-15

Hb-16

IIb-17

*RAC indicates

Selected Heat Treatment*
16008F/16 hrs + increase to 2000°F/1 hr/OQ + 1400°F/16 hrs/AC
871°C/16 hrs + increase to 1093°C/1 hr/OQ + 760°C/16 hrs/AC

1600°F/16 hrs + increase to 2000°F/1 hr/OQ + 1400°F/16 hrs/AC
871°C/16 hrs + increase to 1093°C/1 hr/OQ + 760°C/16 hrs/AC

1600°F/16 hrs + increase to 2000°F/1 hr/OQ + 1400°F/16 hrs/AC
871°C/16 hrs + increase to 1093°C/1 hr/OQ + 760°C/16 hrs/AC

1600°F/16 hrs + increase to 1950°F/1 hr/OQ + 1400°F/16 hrs/AC
871°C/16 hrs + increase to 1066°C/1 hr/OQ 4- 760°C/16 hrs/AC

1600°F/16 hrs + increase to 2000CF/1 hr/OQ 4- 1400°F/16 hrs/AC
871°C/16 hrs + increase to 1093°C/1 hr/OQ 4- 760°C/16 hrs/AC

1600 8F/ 16 hrs 4- increase to 2000 °F/1 hr/OQ + 1400 °F/ 16 hrs/AC
871°C/16 hrs + increase to 1093°C/1 hr/OQ + 760°C/16 hrs/AC

1600°F/16 hrs 4- increase to 2000°F/1 hr/OQ 4- 1400°F/16 hrs/AC
871°C/16 hrs 4- increase to 1093°C/1 hr/OQ 4- 760°C/16 hrs/AC

1600°F/16 hrs + increase to 2000°F/1 hr/OQ + 1400°F/16 hrs/AC
871°C/16 hrs + increase to 1093° C/l hr/OQ + 760°C/16 hrs/AC

1600°F/16 hrs + increase to 2000°F/1 hr/OQ + 1400°F/16 hrs/AC
871°C/16 hrs + increase to 1093°C/1 hr/OQ + 760°C/16 hrs/AC

1600°F/16 hrs + increase to 2000°F/1 hr/OQ + 1400°F/16 hrs/AC
871°C/16 hrs + increase to 1093°C/1 hr/OQ + 760°C/16 hrs/AC

1600°F/16 hrs + increase to 2000°F/1 hr/OQ + 1400°F/16 hrs/AC
871°C/16 hrs -f increase to 1093°C/1 hr/OQ + 760°C/16 hrs/AC

1600°F/16 hrs + increase to 2000°F/1 hr/OQ -t- 1400°F/16 hrs/AC
871°C/16 hrs + increase to 1093°C/1 hr/OQ + 760°C/16 hrs/AC

1600°F/16 hrs + increase to 2000°F/1 hr/OQ + 1400°F/16 hra/AC
871°C/16 hrs •«• increase to 1093°C/1 hr/OQ + 760°C/16 hrs/AC

16000F/16 hrs + increase to 2000CF/1 hr/OQ + 1400°F/16 hrs/AC
871°C/16 hrs •»• increase to 1093°C/1 hr/OQ 4- 760°C/16 hrs/AC

1600°F/16 hrs + increase to 2000°F/1 hr/OQ + 1400°F/16 hrs/AC
8714C/16 hrs 4- increase to 1093°C/1 hr/OQ 4- 760°C/16 hrs/AC

1600°F/16 hrs •»• increase to 2000°F/1 hr/OQ + 1400°F/16 hrs/AC
871°C/16 hrs 4- increase to 1093°C/1 hr/OQ + 760°C/16 hrs/AC

1600 °F/ 16 hrs 4- increase to 2000°F/1 hr/OQ 4- 1400°F/16 hrs/AC
871°C/16 hrs 4- increase to 1093°C/1 hr/OQ 4- 760°C/16 hrs/AC

Rapid Air Cool; AC, Air Cool; and OQ, Oil Quench.
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TABLE 9

Room Temperature Tensile
Material Subjected to a

Properties For Task I Extruded
Pull Solution Heat Treatment

Composition
Number
IIb-1

IIb-2

IIb-3

IIb-4

IIb-5

IIb-6

IIb-7

IIb-8

IIb-9

IIb-10

IIb-11

lib- 12

IIb-13

IIb-14

IIb-15

lib- 16

Hb-17

Ultimate Tensile
Strength

(Ksr>
215.7
216.9

211.6
207.3

163.4
184.3

213.6
213.9

85.6**
192.5

212.5
212.9

201.4
196.2

218.6
224.5

153.9
165.9

190.6
204.2

202.9
211.0

126.8**
207.5

177.4
154.2

138.3
81.7**

60.1
78.4

155.1
186.0

153.7**
181.9

(MN/m^)
1487
1496

1459
1429

1127
1271

1473
1475

590
1327

1465
1468

1389
1353

1507
1548

1061
1144

1314
1408

1399
1455

874
1431

1223
1063

954
563

414
541

1069
1282

1060
1254

0.2% Yield ,
Strength

(KSI)
147.7
152.0

163.8
155.4

161.4
158.9

169.1
173.5

154.9

17-1.6
163.1

170.4
173.8

176.3
169.9

152.9
144.6

160.9
161.5

170.8
170.8

126.8
179.3

171.7
154.2

138.3
81.7

60.1
78.4

155.1
182.0

153.7
168.1

(MN/m^)
1018
1048

1129
1071

1113
1096

1166
1196

1068

1183
1125

1175
1198

1216
1171

1054
997

1109
1114

1178
1178

874
1236

1184
1063

954
563

414
541

1069
1255

1060
1159

Elongation

13.3
12.0

10.0
10.3

1.2
3.7

12.2
12.7

4.7

9.0
9.6

5.0
2.6

7.2
9.4

0.7
3.0

7.9
10.7

8.5
10.0

0.4
8.1

1.8
1.4

0.6
0.8

0.9
0.6

0.6
1.0

1.2
3.1

Reduction
Of Area

14.1
15.3

11.9
12.5

7.6
5.9

15.1
17.0

7.6

9.0
10.2

7.1
3.5

10.7
9.8

3.4
4.6

9.8
13.6

10.4
11.2

1.0
10.9

5.2
1.5

3.1
1.0

0.6
0.9

0.0
1.2

1.3
7.5

** Defective Specimen.



TABLE 10

1400°F (760°C) Tensile Properties For Task I Extruded Material
Subjected to A Full Solution Heat Treatment

Composition
Number
IIb-1

IIb-2

IIb-3

IIb-4

IIb-5

IIb-6

IIb-7

IIb-8

IIb-9

lib- 10

IIb-11

IIb-12

IIb-13

IIb-14

IIb-15

IIb-16

IIb-1 7

Ultimate Tensile
Strength

(KSI)
168.6
169.0

163.5
168.0

163.3
175.1

154.4*
157.8

170.3
149.4

172.5
172.1

177.6
178.5

185.0
186.1

137.9
142.2

167.2
165.1

180.5
178.5**

178.3
72.1**

176.6
177.5

73.1**
165.9

43.3
72.8

149.4
118.5

182.5
181.5

(MN/mT
1162
1165

1127
1158

1126
1207

1065
1088

1174
1030

1189
1187

1125
1231

1276
1283

951
980

1153
1138

1245
1231

1229
497

1218
1224

504
1144

299
502

1030
817

1258
1251

0.2% Yield
Strength

(KSI)
135.4
143.6

141.1
142.9

143.6
149.1

144.3
147.8

139.2
136.8

148.1
147.1

152.6
154.6

154.9
152.8

136.4
138.5

145.2
148.0

150.7
155.2

158.1
72.1

148.2
148.9

73.1
146.5

43.3
72.8

149.4
118.5

152.3
151.3

(MN/ET)
934
990

973
985

990
1028

995
1019

960
943

1021
1014

1052
1066

1068
1054

940
955

1001
1020

1039
1070

1090
497

1022
1027

504
1010

299
502

1030
817

1050
1043

Elongation

9.4
8.7

3.4
4.2

1.9
2.8

1.2
2.4

1.3
0.9

4.3
3.8

1.9
1.9

5.6
5.4

0.4
1.3

6.2
6.0

8.6
3.0

5.1
0.6

2.7
2.5

1.0
1.5

0.2
0.6

0.4
0.7

4.9
6.4

Reduction
Of Area

15.4
11.3

7.4
9.8

5.8
6.8

3.9
3.8

0.5
4.5

5.3
3.2

8.4
5.7

9.9
8.3

4.0
1.5

5.4
9.1

13.5
5.4

7.3
1.0

5.9
3.5

3.0
4.5

1.7
0.1

0.5
1.5

3.0
10.5

*Specimen broke in shoulder.
**Defective Specimen.



TABLE 11

1800°F (982°C) Tensile Properties For Task I Extruded Material
Sublected to A Full Solution Heat Treatment

Composition
Number
IIb-1

IIb-2

IIb-3

IIb-4

IIb-5

IIb-6

IIb-7

IIb-8

IIb-9

IIb-10

IIb-11

IIb-12

IIb-13

IIb-14

lib- 15

IIb-16

IIb-17

Ultimate Tensile
Strength

(KSI)
59.8
57.0

60.4
57.4

69.5
67.9

49.9
51.5

56.1
67.9

58.1
61.9

76.6
77.8

73.0
71.1

50.3
54.0

62.0
60.5

74.5*
85.5

20.3
59.3

62.3
39.8

66.1
65.9

52.7
21.7

58.1
49.4

74.9
70.7

(MN/m*)
412
393

416
396

479
468

344
355

387
468

401
427

528
536

503
490

347
372

427
417

514
590

140
409

430
274

456
454

363
150

401
341

516
487

0.2% Yield
Strength

(KSI)
53.7
50.4

56.0
51.0

59.1
56.8

49.1
51.3

53.7
58.5

56.4
56.7

65.6
63.7

64.0
58.7

50.3
52.9

49.1
49.0

72.7
71.2

20.3
59.3

62.3
39.8

64.6
62.5

52.7
21.7

58.1
49.4

58.2
61.5

(MN/mz)
370
348

386
352

407
392

339
354

370
403

389
391

452
439

441
405

347
365

339
338

501
491

140
409

430
274

445
431

363
150

401
341

401
424

Elongation
(%)
3.9
4.1

3.2
3.4

2.5
1.8

2.3
1.6

1.2
1.1

1.8
1.6

1.5
3.5

2.5
3.1

0.2
0.6

2.1
2.9

2.3
3.5

0.5
0.5

1.1
0.8

1.6
1.5

0.7
0.5

0.2
0.7

3.0
1.8

Reduction
Of Area
(%)
6.1
5.9

1.9
5.9

1.9
3.8

4.7
2.2

2.5
0.5

2.0
1.9

4.2
4.3

4.1
1.5

0.5
1.3

1.7
2.4

0.6
4.2

2.5
0.1

2.5
0.8

0.9
2.3

0.5
2.4

0.9
1.1

4.9
5.3

^Specimen broke in shoulder.



TABLE 12

Room Temperature Tensile Properties For Task I Extruded Plus
Rolled Material _Subjected to a Full Solution Heat Treatment

Ultimate Tensile
Composition ,. Strength

Number
IIb-1

IIb-2

IIb-3

IIb-4

IIb-5

IIb-6

IIb-7

IIb-8

IIb-9

IIb-10

IIb-11

IIb-12

IIb-13

Hb-14

IIb-15

IIb-16

IIb-17

(KSI)
218.3
217.9

211.0
212.7

201.1
204.0

222.3
226.3

210.4
201.9

216.4
168.0**

211.5
•> 1 r /,Zli>. 4

216.8
188.1**

181.4
178.3

205.5
207.1

213.5
213.1

219.5
217.3

212.5
208.8

200.7
212.4

92.9*
80.6

199.1
203.9

218.5
218.6

(MN/ra2r
1505
1502

1455
1467

1387
1407

1533
1560

1451
1392

1492
1158

1458
1 /, QCIHO!>

1495
1297

1251
1229

1417
1428

1472
1469

1513
1498

1465
1440

1384
1464

641
556

1373
1406

1507
1507

0.2% Yield
Strength

(KSI)
155.0
158.3

157.2
154.8

162.4
160.3

169.6
166.9

168.5
160.6

168.3
167.5

167.6
1 £ ^ **167 . 2

175.5
171.5

157.1
158.5

160.8
158.5

172.8
173.4

176.4
174.7

172.7
167.5

171.3
169.9

92.9
80.6

177.5
181.7

167.4
165.9

(MM/m*)
1069
1091

1084
1067

1120
1105

1169
1151

1162
1107

1160
1155

1156
*1 1 C 11153

1210
1182

1083
1093

1109
1093

1191
1196

1216
1205

1191
1155

1181
1171

641
556

1224
1253

1154
1144

. Elongation
(%)

13.2
13.2

12.1
12.8

6.5
8.6

13.4
13.5

11.1
6.1

10.4
1.3

7.9
8 c.5

8,0
2.1

5.5
5.0

13.5
14.6

10.1
9.5

10.5
10.7

9.1
8.4

7.4
9.6

0.4
0.9

5.0
5.2

11.3
11.6

Reduction
Of Area

(%)
17.7
16.1

13.9
16.5

9.7
10.0

21.9
21.9

11.7
7.6

12.5
4.8

10.1
8 C•^> — —

10.9
4.2

9.0
7.9

14.1
16.7

14.3
12.8

12.8
13.2

8.8
8.3

6.9
13.7

0.3
0

8.4
7.2

12.8
13.0

*Specimen broke in shoulder.
**Defective Specimen.



TABLE 13

1400°F (760°C) Tensile Properties For Task I Extruded Plus Rolled
Material Subjected to a Full Solution Heat Treatment

Composition
Number
IIb-1

IIb-2

IIb-3

IIb-4

IIb-5

IIb-6

IIb-7

IIb-8

IIb-9

IIb-10

IIb-11

IIb-12

IIb-13

IIb-14

IIb-15

IIb-16

IIb-17

Ultimate Tensile
Strength „

(KSI)
167.1
160.1

166.5
164.7

176.9
173.9

127.0*
152.8

153.1
150.7

176.8
175.1

190.3
183.2

178.6
176.8

155.0
164.2

143.1
151.2

183.3
187.3

183.5
186.3

183.5
181.2

178.6
164.6

102.0
48.7

178.3
187.7

179.3
176.5

(MN/nTF
1152
1159

1148
1136

1220
1199

876
1054

1056
1039

1219
1207

1312
1263

1231
1219

1069
1132

987
1043

1264
1291

1265
1285

1265
1249

1231
1135

703
336

1229
1294

1236
1217

0.2% Yield
Strength

CKSI)
134.8
139.4

143.6
138.2

148.7
142.4

127.0
146.0

139.8
141.0

156.0
161.9

148.6
148.6

149.3
147.6

143.0
141.6

142.1
144.0

157.4
156.9

166.5
161.6

162.9
150.1

153.8
153.0

102.0
48.7

171.9
160.5

146.9
150.1

929
961

990
953

1025
982

876
1007

964
972

1076
1116

1025
1025

1029
1018

986
976

980
993

1085
1082

1148
1114

1123
1035

1060
1055

703
336

1185
1107

1013
1035

Elongation

6.6
6.8

3.6
4.2

4.1
3.4

1.0
1.9

1.6
1.4

2.8
2.0

5.3
4.2

4.7
5.4

1.4
1.9

1.4
1.5

11.7
11.9

9.8
7.4

8.0
11.0

11.0
2.4

0.4
1.0

1.5
4.2

8.7
8.6

Reduction
Of Area

. 12.0
8.2

5.7
5.4

7.6
3.6

2.4
6.5

3.7
1.4

3.8
3.1

9.5
12.6

10.1
7.3

4,7
4.1

0.9
3.6

13.5
12.0

15.8
9.1

11.5
14.8

15.7
5.1

0.1

1.1
10.3

10.6
13.3

^Specimen broke in shoulder.



TABLE 14

1800°F (982°C) Tensile Properties For Task I Extruded Plus Rolled
Material .Subjected to a Full Solution Heat Treatment

Composition

IIb-1

IIb-2

IIb-3

IIb-4

IIb-5

IIb-6

IIb-7

IIb-8

IIb-9

IIb-10

IIb-11

IIb-12

IIb-13

IIb-14

IIb-15

IIb-16

IIb-17

Ultimate Tensile
Strength

{RSI)
61.7
61.0

60.1
60.7

68.9
63.1

55.0
47.7

42.3*
67.5

47.2*
58.1

74.4
76.9

67,1
71.6

50.8
55.3

60.1
54.9

74.4
85.7

70.9
83.1

65.9
60,6

77.8
73.4

32.3
41.1

29.7
48.5

76,6
79.2

(MN/nrO
425
421

414
419

475
435

379
329

292
465

325
401

513
530

463
494

350
381

414
379

513
591

489
573

454
418

536
506

223
283

205
334

528
546

0.2% Yield
Strength

(KSI) (M
50.8
47.0

47.4
49.4

56.9
56.6

49.2
47.0

42.3
52.7

47.2
57.7

65.6
57,3

58.7
64.1

50.8
53.8

46.3
42.8

71.2
70.1

69.4
66.6

62.0
60.4

59.2
61.8

32.3
41.1

29.7
48.5

59,1
54,7

N/tâ )
350
324

327
341

392
390

339
324

292
363

325
398

452
395

405
442

350
371

319
295

491
483

479
459

427
416

408
426

223
283

205
334

407
377

Elongation

3.2
2.3

4.4
4.1

3.0
1,8

2.3
1.0

1.0
3.1

0,8
.1.1

4,1
3,0

3,2
3.3

0,7
1.0

1.6
2.3

1,3
2.9

0.9
2.1

1.3
0.5

2.4
1.8

0.4
0.8

0.3
0.1

4,4
3.4

Reduction
Of Area

3,8
3.7

5.2
3.9

3.1
2.0

3.7
1.5

0.6
6.0

0.7
0.6

3.1
6.1

3.6
5.0

0.6
0.1

2.6
1.0

3.6
2.2

2.0
3.2

2.3
0.9

0.6
1,5

0
0

1.7
0.5

5.3
4,9

*Specinsen broke in shoulder.



TABLE 15

Room Temperature Tensile
Rolled Material Subjected

Properties For Task I Extruded Plus
to a Partial Solution Heat Treatment

Composition
Number
IIb-1

IIb-2

IIb-3

IIb-4

IIb-5

IIb-6

IIb-7

IIb-8

IIb-9

IIb-10

IIb-11

IIb-12

IIb-13

IIb-14

IIb-15

IIb-16

IIb-17

**Defective

Ultimate Tensile
Strength

(KSI)
273.7
269.4

247.7
244.4

271.3
264.6

265.6
261.6

262.0
266.8

261.9
261.9

309.1
286.9

255.7
257.2

255.4
248.4

243.2
235.5

267.6
264.4

244.8
247.1

244.7
226.3

244.2
103.9**

241.3
240.1

238.3
245.2

256.1
264.3

Specimen.

(MN/m*)
1887
1858

1708
1685

1871
1824

1831
1804

1806
1840

1806
1806

2131
1978

1763
1773

1761
1713

1677
1624

1845
1823

1688
1704

1687
1560

1684
716

1664
1655

1643
1691

1766
1822

0.2% Yield
Strength

(KSI)
209.4
213.7

201.4
199.7

219.3
218.1

220.1
214.7

215.4
217.1

225.1
225.9

250.4
249.4

225.5
227.1

208.1
205.4

203.4
193.5

225.5
223.9

212.7
211.3

211.4
214.3

211.1
103.9

234.4
231.6

221.0
220.5

220.5
220.7

(MN/m*)
1444
1473

1389
1377

1512
1504 >

1518
1480

1485
1497

1552
1558

1727
1720

1555
1566

1435
1416

1402
1334

1555
1544

1467
1457

1458
1478

1456
716

1616
1597

1524
1520

1520
1522

Elongation
(%)

12.5
10.9

10.3
9.3

10.4
10.5

9.7
10.5

9.5
9.8

8.4
8.6

9.8
8.3

5.8
6.2

10.2
10.4

9.8
9.8

9.3
9.3

7.6
8.9

7.7
4.8

8.1
0.8

2.1
2.4

4.4
5.6

8.9
10.3

Reduction
of Area
(%)
13.3
15.3

14.4
14.3

13.8
13.4

12.6
17.0

13.1
12.7

11.0
11.0

15.9
9.5

7.8
10.1

12.4
13.7

13.9
15.1

11.6
14.7

7.9
10.7

11.9
7.8

9.4
2.7

4.0
6.6

6.7
8.0

11.2
13.6



TABLE 16

1200°F (649°C) Tensile Properties For Task I Extruded Plus Rolled
Material Sublected to a Partial Solution Heat Treatment

Composition
Number
IIb-1

IIb-2

IIb-3

IIb-4

IIb-5

IIb-6

IIb-7

IIb-8

IIb-9

IIb-10

IIb-11

IIb-12

IIb-13

IIb-14

IIb-15

IIb-16

IIb-17

Ultimate Tensile
Strenath ^

(KSI)
229.7

203.6

231.5

241.1*

237.7

229.0

257.9

225.9

223.5

208.4

230.8

221.2

221. A

212.2

231.7

224.4

229.1

(MN/m"-)
1584

1404

1596

1662

1639

1579

1778

1558

1541

1437

1591

1525

1527

1463

1598

1547

1580

0.2% Yield
Strength

(KSI)
19776

181.9

198.9

208.6

204.4

206.6

225.6

201.7

195.7

184.5

209.2

200.5

201.4

199.4

212.5

209.1

203.0

(MN/m")
1362

1254

1371

1438

1409

1425

1556

1391

1349

1272

1442

1382

1389

1375

1465

1442

1400

Elongation
(%)
5.1

4.3

7.5

6.3

7.0

7.7

6.7

4.1

10.0

4.0

7.8

5.8

7.4

2.0

2.5

4.6

9.0

Reduction
of Area
(%)
5.8

9.4

8.4

0.5

8.3

11.0

8.4

9.0

11.4

9.8

10.4

7.2

12.8

10.2

6.8

8.4

11.1

*Specimen broke in shoulder.



TABLE 17

1400°F (760°C) Tensile Properties For Task I Extruded Plus Rolled
Material Subjected to a Partial Solution Heat Treatment

Composition
Number
IIb-1

IIb-2

IIb-3

IIb-4

IIb-5

IIb-6

IIb-7

IIb-8

IIb-9

IIb-10

IIb-11

IIb-12

IIb-13

Ilb-lA

IIb-15

IIb-16

IIb-17

Ultimate Tensile
Strength

(KSI)
mTt
188.1*

189.3
167.7*

159.7**
200.2

160.6*
152.2

198.2
169.8*

168.1*
191.3

190.9*
211.8

201.2
172.5**

193.9
189.8

177.8
183.3

196.7
199.7

193.4
195.7

145.0**
194.3

187.3
174.8

165.7*
192.8

189.9
174.9

198.9
198.9

(MN/m̂ )
1321
1297

1305
1156

1101
1380

1107
1049

1367
1171

1159
1319

1316
1460

1387
1189

1137
1309

1226
1264

1356
1377

1333
1349

1000
1340

1291
1205

1143
1329

1309
1206

1371
1371

0.2% Yield
Strength

(KSI)
166.4
150.9

171.9
164.0

159.7
183.8

160.6
152.2

182.5
166.7

160.6
178.0

186.6
186.8

184.4
172.5

173.6
148.0

166.7
167.8

176.5
180.5

169.4
178.4

143.0
174.6

173.2
164.2

164.2
167.4

175.8
169.9

184.9
182.4

(MN/m-i)
1147
1040

1185
1131

1101
1267

1107
1049

1258
1149

1107
1227

1287
1288

1271
1189

1197
1020

1149
1157

1217
1245

1168
1230

986
1204

1194
1132

1132
1154

1212
1171

1275
1258

Elongation
(%)
3.7
2.3

3.9
1.2

1.3
3.8

0.1
1.0

4.2
1.1

1.7
5.9

2.0
4.0

2.1
1.0

5.7
5.0

7.1
5.2

4.4
4.8

4.5
4.5

1.3
5.1

4.2
1.7

1.3
3.4

3.4
2.2

5.5
6.0

Reduction
of Area
(%)
7.0
0.5

5.2
1.5

6.4
9.9

2.2
0.8

6.5
0.9

1.8
10.8

1.3
9.0

3.4
2.0

7.8
10.8

10.9
11.3

4.9
7.1

5.7
5.6

1.2
7.0

3.5
2.2

0.3
2.5

7.5
1.7

9.0
9.3

*Specimen broke in shoulder.
**Defective Specimen.



TABLE 18

1800°F (982°C) Tensile Properties For Task I Extruded Plus Rolled
Material Subjected to a Partial Solution Heat Treatment

Composition
Number

IIb-2

IIb-3

IIb-4

IIb-5

IIb-6

IIb-7

IIb-8

IIb-9

Ultimate Tensile
Strength

(KSI)
35.3
38.5

32.8
31.4

22.7
24.4

34.3
34.1

19.6**
19.5

33.3
32.4

31.1
33.1

34.6
37.9

21.0

(MN/m̂ )
243
265

226
217

157
168

236
235

135
134

230
223

214
228

239
261

145

0.2% Yield
Strength

3B
24.1

15.9
16.8

7.5
8.4

21.1
21.1

10.5
4.6

17.6
13.3

18.3
18.6

20.7
21.9

7.8

(MN/mZ)
147
166

110
116

52
58

145
145

72
32

121
92

126
128

143
151

54

Elongation

60.8
66.5

62.2
70.8

129.6
139.0

46.6
45.3

8.5
200.6

48.3
50.5

101.4
53.0

49.0
72.3

131.0

Reduction
of Area

98.6
97.6

87.9
91.7

98.7
98.7

76.4
73.2

15.7
98.4

82.7
81.2

98.3
92.1

75.2
79.2

98.1

IIb-10 30.8 212 15.5 107 64.7 88.6

IIb-11 29.0 200 10.9 75 66.3 94.9

IIb-12 22.6 156 8.7 60 101.1 92.5

IIb-13

IIb-14

IIb-15

IIb-16

19.7

16.4

19.1

20.5

136

113

132

141

IIb-17 25.9 179

**Defectlve

5.0

2.9

7.8

8.6

12.0

34

20

54

49

83

202.3

115.2

240.7

124.3

109.1

98.7

93.6

98.4

94.3

98.0



TABLE 19

1400°F/90,000 psi (760°C/621 MN/m2) Stress Rupture Properties for Task I
Extruded Material Subjected to a Full Solution Heat Treatment

Composition
Number
IIb-1

IIb-2

IIb-3

IIb~4

IIb-5

IIb-6

IIb-7

Hb-8

IIb-9

Hb-10

IIb-11

IIb-12

IIb-13

IIb-14

llb-15

IIb-16

IIb-17

Rupture Life
(hours)
126.0
127.7

57.7
49.8

56.0
9.8**

15.8*
26.8

14.2
19.1

39.5*
121.6

212.8
129.5*

507.4
359.1

8.3
15.0

8.4*
20.7*

347.0
374.1

0.1**
83.8

40.6
65.0

0.2
0.1**

0.1
0.0*

2.1
0.1

20&4
280.4

Elongation
(%)
2.0
2.9

2.1
2.2

0.7

0.8

1.3
1.4

2.3
1.4

0.8
0.3

2.9
2.0

1.0
0.8

-

3.3
3.1

0.9
0.9

0.7
0.7

0.9
0.7

0.5

0.9
0.1

2.0
1.4

Reduction Of Area
(%)
2.5
1.1

2.9
1.4

3.3

3.9

3.1
3.0

0.3
1.9

2.7

2.0
1.0

0.4
1.6

-

2.2
1.5

0.4
0.3

2.5
2.0

3.2
0.4

0.1

0.2

3.9
1.3

*Specimen broke in shoulder.
**Defective Specimen.



TABLE 20

1800°F/25,000 psi (982°C/172 MN/in2) Stress Rupture Properties for Task I
Extruded Material Sublected to a Full Solution Jjeat Treatment

Composition
Number
IIb-1

IIb-2

IIb-3

IIb-4

IIb-5

aib-=o

IIb-7

IIb-8

IIb-9

Hb-10

IIb-11

IIb-12

IIb-13

IIb-14

IIb-15

IIb-16

IIb-17

Rupture Life Elongation Reduction Of Area
(hours) (%) (7.)

20.9
21.6

15.2
12.6

24.7
22.8

6.7
5.3

7.1
17.2

14̂ 7-
14.8

50.1
47.4

27.3
30.7

2.8
1.5

8.8
11.0

70.3
56.0

52.3
33.3

35.4
21.1

9.6
19.2

3.2
0.1

39.2
0.6

30.5
115.1

9.3
7.7

9.8
7.6

6.0
5.4

7.6
8.1

1.9
3.3

__6VQ-

6.5

3.8
4.7

18.7
14.6

1.7
2.0

7,6
8.1

6.3
6.1

6.5
2.4

2.4
2.3

1.7
4.0

2.1

6.8
0.3

4.9
5.6

7.5
7.7

8.2
7.2

7.2
2.9

10.4
9.7

0.5
1.5

-4.3 : "

5.9

2.7
4.0

17.6
12.5

0.7
0.9

7.4
7.4

6.1
7 '4

7.7
1.1

4.4
2.1

1.7
5.0

1.8

11.0

6.2
8.1



TABLE 21

1400°F/90,000 psi (760°C/621 MN/m2) Stress Rupture Properties For Task I
Extruded Flue Rolled Material Subjected to a FulT Solution *'«at Treatment

Composition
Number
IIb-1

IIb-2

IIb-3

IIb-4

IIb-5

IIb-6

IIb-7

IIb-8

IIb-9

IIb-10

IIb-11

lib- 12

IIb-13

IIb-14

IIb-15

IIb-16

IIb-17

Rupture Life
(hours)

44.8
112.5

35.8*
42.0

157.5
89.0

9.6*
20.4

60.7
42.1

6.6*
13.7*

198.0
343.2

53.9*
304.8

4.5
2.2

2.6*
12.5*

516.3
506.4

587.9
586.5

425.8
308.6

44.0**
474.1

6.6*
1.4

26.8
23.4*

172.6
444.9

Elongation ;

CO
4.4
2.5

0.6
2.2

2.3
0.5

1.0
0.9

1.8
1.5

_

-

0.7
0.9

•»

2.4

0.7
0.8

0.1
1.2

1.8
2.5

3.9
1.7

1.9
3.1

—

3.3

0.3
1.1

1.0
0.5

3.3
3.0

Reduction Of Area
(%)
2.8
4.0
_

11.0

4.9
3.7

_

4.7

3.6
1.6
_

-

0.8
1.4

_

5.2

1.5
3.3

_

-

6.5
2.0

5.2
3.8

3.8
4.3

_

5.3
_

—
0.2

—
3.9
5.8

*Specimen broke in shoulder.
**Defective Specimen.



TABLE 22

1800*P/25,000 psi (982°C/172 MN/o2) Stress Rupture Properties For Task I
Extruded Plus Rolled Material Subjected to a Full Solution Heat Treatment

Composition
Number
IIb-1

IIb-2

IIb-3

IIb-4

IIb-5

IIb-6 -., = -...,-_-..

IIb-7

IIb-8

IIb-9

IIb-10

lib- 11

IIb-12

IIb-13

IIb-14

Ilb-15

lib- 16

IIb-17

Rupture Life
(hours)
14.6
10.6

9.1
6.6

16.5
0.1**

2.4
3.2

16.7
18.9

--1Q.A
12.5

37.3
38.8

14.6
12.1

7.0
6.7

4.8
4.7

64.2
61.9

47.5
48.9

33.3
33.1

16.3
27.9

7.2
0.1

35.8
40.0

31.6
25.0*

Elongation Reduction Of Area
(%)
6.3
9.1

9.7
7.2

4.6
- .

10.6
6.6

3.7
5.7

8.0
8.6

5.5
6.0

8.1
8.4

1.7
1.0

8.0
6.9

6.1
4.7

9.5
8.5

3.5
7.1

5.3
7.0

2.2
0.9

6.9
10.8

7.0
0.2

(%)
8.7
12.9

11.9
10.5

5.4

—
10.8
12.3

6.5
6.0

7.4 '
7.4

5.1
4.7

10.2
11.3

1.0
1.5

13.9
10.1

7.3
4.4

11.1
12.1

5.7
7.1

4.3
8.8

0.4

—
14.3
20.6

10.4

-*Speclmen broke in shoulder.
**Defective Specimen.



TABLE 23

12000F/175jOOO psi (649°C/1207 MN/m2) Stress Rupture Properties For Task I
Extruded Plus Rolled Material Subjected to a Partial Solution Heat Treatment

Composition
Number

IIb-1

IIb-2

IIb-3

IIb-4

IIb-5

IIb-6

IIb-7

IIb-8

IIb-9

IIb-10

IIb-11

IIb-12

IIb-13

IIb-14

IIb-15

IIb-16

IIb-17

Rupture Life
(hours)

145.5
93.3

7.0
8.0

425.9
125.2

46.8
72.4

396.6
367.3

46.1
68.1

165.2
284.5

40.4*
78.2*

200.7
324.9

28.9
25.3

146.3
53.2**

84.4
104.5

71.4
4.7*

-**
-**

53.4
5.6*

64.3
35.8

52.8
64.9

Elongation

4.0
2.7

0.4
0.7

4.2
1.9

5.0
1.9

2.5
2.5

1.2
3.5

4.5
4.6

1.7

1.9
4.7

4.4
4.1

5.4
1.2

1.5
2.0

2.7

-

3.3

3.5
1.6

2.5
3.3

Reduction of Area

9.0
8.2

8.5
8.5

8.7
5.8

5.2
5.8

12.9
10.6

7.5
11.8

6.0
7.6

„

4.3
10.7

7.2
3.8

12.7
3.4

9.0
6.8

11.8

—

3.0

4.4
3.1

13.1
9.4

*Speclmen broke In shoulder.
**Defectlve Specimen.



TABLE 24

1400°F/90,000 pal (760°C/621 MN/m2) Stress Rupture Properties For Task I
Extruded Plus Rolled Material ̂ Subjected to a Partial Solution Heat Treatment

Composition Rupture Life
Number (hours)

IIb-1

IIb-2

IIb-3

IIb-4

Hb-5

IIb-6

IIb-7

Hb-8

IIb-9

IIb-10

IIb-11

IIb-12

IIb-13

IIb-14

IIb-15

IIb-16

IIb-17

26.2
26.8

14.0
11.4

10.3*
11.0

15.0,
15.7

8.6
9.3

16.2
. _.13.._4

18.6
19.7

23.9
37.9

15.7
13.9

28.9
25.3

12.7
13.0

26.7
8.1

18.7

_ ***
- ***

7.3
6.9

5.9
7.1

11.9
10.3

Elongation
(%)

23.8
28.0

9.1
9.0

13.9
6.4

11.4
7.2

14.4
6.8

15.6
. ... JL!L_-.

15.4
20.1

13.9
14.0

9.1
8.9 .

4.4
4.1

13.0
15.9

23.6
7.0

18.2

M

16.5
18.1

15.3
13.3

14.5
14.5

Reduction of Area
(%)

32.1
38.7

19.5
23.9

0.9
5.5

10.9
7.2

22.4
19.5

18.1
24.3

22.3
20.1

19.1
20.7

20.7
27.0

7.2
3.8

21.2
21.6

28.1
13.8

21.6

— .

-
18.2
25.6

20.5
15.9

18.1
25.3

^Specimen broke in shoulder*
***Specimen broke on loading.



TABLE 25

Boom Temperature Tensile Properties For Task I Extruded Materials
Subjected to a Pull Solution Heat Treatment and Exposed at

1600°F (871°C) For 1500 Hours

Composition
Number
IIb-1

IIb-2

IIb-3

IIb-4

IIb-5

IIb-6

IIb-7

IIb-8

IIb-9

IIb-10

IIb-11

IIb-12

IIb-13

IIb-14

IIb-15

IIb-16

IIb-17

Ultimate Tensile
Strength _

(KSI)
199.8
199.2

190.1
193.4

159.7
161.9

195.0
192.5

181.1
169.7

194.0
204.0

187.8
182.6

213.8
210.0

129.6**
149.3

192.3
190.5

167.2
156.9

93.5
19.5**

158.5
155.3

66.3**
117.6

46.1*
90.6*

125.8*
87.1**

160.7
189.9

(MN/nr)
1378
1373

1311
1333

1101
1116

1345
1327

1249
1170

1138
1407

1295
1259

1474
1448

894
1029

1326
1313

1153
1082

645
134

1093
10.7.1-

457
811

318
625

867
601

1108
1309

0.2% Yield
Strength

(KSI)
122.5
122.6

131.3
134.0

143.4
143.5

120.9
120.1

151.4
156.0

147.5
145.6

151.7
150.9

150.2
148.2

144.4

131.1
128.6

152.9
151.9

93.5

155^0
153.5

117.6

46.1
90.6

125.8

147.9
148.6

(MN/iir)
845
845

905
924

989
989

834
828

1044
1076

1017
1004

1046
1040 ,

1036
1022

996

904
887

1054
1047

645

1069
1058

811

318
625

867

1020
1025

Elongation
(%)

16.8
18.1

9.4
12.4

3.3
3.1

18.3
16.7

1.7
2.8

8.6
10.9

7.0
5.7

11.5
11.3

1.9
2.3

15.5
15.0

3.4
1.5

0.6

1.5
1.3

1.1

-

_

2.9
9.3

Reduction
Of Area
(%)

24.5
23.1

12.6
15.7

6.9
5.9

22.9
22.8

6.3
4.1

10.0
14.7

13.7
7.7

11.5
12.4

4.5
7.9

13.4
12.9

4.0
4.3

1.2

1.2
4.4

1.5

-

-

5.8
1.2.0

*Specimen broke in shoulder.
**Defective Specimen.



TABLE 26

X-Ray Diffraction Studies of Residues Extracted From Task I
Extruded Alloys After Full Solution Heat Treatment and Exposure

Alloy
Designation

IIb-1
IIb-2
IIb-3
IIb-4
IIb-5
Hb-6
IIb-7
IIb-8
IIb-9
lib-10
IIb-11
IIb-12
lib-13
IIb-14
IIb-15
IIb-16
IIb-17

I I

Relative Concentration* of Phases Present
MC UC ! M Mu-Phase

VS**
vs**
VS**
vs
vs
vs
M
VS
vs
vs**
M
s
s
s
vw
M
VS**

w
M

S
w

M
W
w

M

W
w
w
w
M
M

M
S
M
M
S
M

M
M

S
M

VS
VS

*S represents Strong; M, Moderate; W, Weak; and V, Very.
**Indicates two distinct MC-type carbides.



TABLE 27

Chemical Analyses of Two Task II Heats

Alloy
Designation

Ilb-H (Aim)
(KB2566)

Ilb-L (Aim)
(KB2567)

Heat
Numbers

KC1766 & 1767

KC1768 & 1769

Chemical Composition (weij
C

0.115
0.110

0.115
0.113

Cr

9.00
9.02

9.00
8.86

Co

9.00
9.15

9.00
8.95

Mo

2.00
1.82

2.00
1.76

W

7.88
7.98

7.88
8.05

Ta

6.63
6.57

10.38
10.48

Al

4.38
4.28

3,38
3.43

»ht percent) for:
Ti

0.75
0.73

0.75
0.74

B

0.020
0.020

0.020
0.021

Zr

0.100
0.095

0.100
0.102

V

0.50
0.48

0.50 :
0.47

Hf

0.81
0.73

0.81
0.83

Ni

Bal
Bal

Bal
Bal



TABLE 28

Optimum Heat Treatments* Developed For Ilb-H and Ilb-L

Full Solution Heat Treatment For Ilb-H

2225°F/2 hours/RAC + 1650°F/16 hours/RAC + 1400°F/16 hours/AC
1219°C/2 hours/RAC + 899°C/16 hours/RAC + 760°C/16 hours/AC

Partial Solution Heat Treatment For Ilb-t

1600°F/16 hours + increase to 2000°F/1 hour/OQ + 1400°F/16 hours
871°C/16 hours + increase to 1093°C/1 hour/OQ + 760°C/16 hours

*RAC indicates Rapid Air Cool; AC, Air Cool; and OQ, Oil Quench.



TABLE 29

X-Ray Diffraction Studies of Residues Extracted From As-Heat Treated
and From .Aa-Heat.. Treated. Plus Exposed Ilb-H and Ilb-L

Relative Concentration* of Phases Present
njLJUjy

Designation

Ilb-H

Ilb-H

Ilb-L

Ilb-L

Thermal Exposure

None

1600°F/1500 hours
(871°C/1500 hours)

None

1300°F/1500 hours

MC

vs**

M.

M

M

MgC

: M

vs

ws

vs

M23C6 Mu-Phase

M M
(704°C/1500 hours)

*S represents StrongJ M, Moderate; W, Weak; and V, Very.

**Indicates two distinct MC-type carbides.



TABLE 30

Tensile Properties For Ilb-H

Test
Temperature
(*F) (°C)
Room Room
Room Room

Room
Room

1200
1200

1400
1400

1400

1600
1600

1800
1800

1800
1800

Room
Room

649
649

760
760

_.76(L-

871
871

982
982

982
982

Ultimate Tensile
Strength ^

(KSI)
228.4
224.5

253.2*
250.1*

215.6
- **

185.0
183.6

201.9* .

138.1
_ **

78.8
37.6**

81.3*
66.4*

(MN/nf)
1575
1548

1746
1724

1487

1276
1266

1392

952

543
359

561
458

0.2% Yield
Strength

(KSI)
173.0
177.6

_

167.0

162.6
161.3

122.2

64.3
37.6

«*

(MN/m^T
1193
1225

-

1151

1121
1112

843

443
259

-

Elongation
(%)

14.6
13.8

-_

10.2

12.0
13.6

6.3

2.8
0.9

-

Reduction
Of Area

(%)
15.6
12.4

.

13.6

12.4
18.9

7.4

3.8
3.8

-

"Notched tensile test.
**Defective specimen.



TABLE 31

Tens!le Properties For Ilb-L

Test
Temperature

Room Room
Room Room

Room
Room

1200
1200

1200
1200

1300
1300

1400
1400

1400
1400

1800
1800

Room
Room

649
649

649
649

704
704

760
760

760
760

982
982

Ultimate Tensile
Strength

(KSI)
281.5
254.3

317.2*
300.9*

257.1
253.9

242.7*
242.7*

219.6
_ **

209.4
214.6

231.5*
215.7*

29.8
28.3

(MN/nr)
1941
1753

2187
2075

1773
1751

1673
1673

1514

1444
1480

1596
1487

305
195

0.2% Yield
Strength

(KSI)
253.0
252.3

-

234.2
230.9

-

216.1

196.0
197.4

-

13.3
16,1

(IlN/Tir)
1744
1740

_

1615
1592

—
1490

1351
1361

—
92
111

Elongation

6.7
2.2

-

5.0
6.1

• -

1.8

4.9
3,0

-

62.6
56.1

Reduction
Of Area

9.9
4.4

-

10.7
10.6

-

2.6

6.5
5.3

-

94.5
96.0

*Notched tensile test.
**Defective specimen.



TABLE 32

Stress and Creep Rupture Properties For Ilb-H

Test
Temperature

1400 760
1400

1400

1500
1500

1600
1600

1800
1800

760

760

816
816

871
871

982
982

Stress
(KSI)
90
90

90

70
70

55
55

25
25

OWmz)
621
621

621

483
483

379
379

172
172

Rupture Time To
Life 0.2% Creep
(hours) (hours)
254.4
214.8

34.5

128.7
108.2

37.7
35.3

23.0
13.5.

Reduction
Elongation Of Area

2.7
3.5

-

2.6
2.9

3.3
4.0

10.9
15.7

3.2
4.6

-

5.4
2.3

6.1
2.9

„ 12.9
16.4



TABLE 33

Stress and Creep Rupture Properties For Ilb-L

Test
Temperature
<°F) j££l
1000 538
1000

1200
1200

1300
1300

1400
1400

538

649
649

704
704

760
760

Stress
(KSI)
160
160

175
175

125
125

90
90

(MN/m̂ )
1103
1103

1207
1207

862
862

621
621

Rupture Time To
Life 0.2% Creep
(hours) (hours)

1000*
1000*

58.7

- **

28.6
41.7

17.8
13.5

Elongation
(%)

-

—
2.6

—
8.0
6.9

27.7
15.5

Reduction
Of Area
(%)

-~

6.7
™

11.9
9.6

34.5
17.8

*TeSt was discontinued after 1000 hours with no creep.
**Defective specimen.



TABLE 34

Room Temperature Tensile Properties For Ilb-H and Ilb-L
Before and After 1500 Hours Exposure

Ultimate Tensile
Alloy

Designation

Ilb-H

Ilb-H

Ilb-L

Ilb-L

Strength

Thermal Exposure

None

1600° F/ 1500 hours
(871°C/1500 hours)

None

1300°F/1500 hours
(704°C/1500 hours)

(KSI)

228.4
224.5

192.0
188.1

281.5
254.3

277.7
273.2

(MN/m2)

1575
1548

1324
1297

1941
1753

1915
1884

0.2% Yield
Strength

(KSI)

173. C

(MN/m2)

1193
177.6 1225

136.4 941
135.6 935

253.0 1744
252.3 1740

257.8 1778
258.4 ,1782

Elongation

14.6
13.8

10.9
9.9

6.7
2.2

4.6
2.9

Reduction
Of Area

15.6
12.4

7*1
ll;6

9.9
4.4

6.3
6.2
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R23899 200X
2l50°F(ll77°C)/2hours

Grain Size : Unrecrystallized

'.** " ~.\ £ «-*"V--^'\

R23924 200X
2250°F(l232°C)/2hours
Grain Size : ASTM 5to6

R2390I 200X
2225°F(l2l9°C)/2hours

Grain Size : ASTM 8 to 9

. . - . . ^ . .- . . . \- . • ^-
.-. -..V •!. • . <. '• •':, ' » v ? A -/VT-*— ̂ >- -, . i *. •• :• ' - :4fi ':< .*• •«.", u\ ••' • / • J- • ' > ' ..

?.:••••: "«' • ^=- '• -.' p;.)'-V.i'. '-•.? ^r.C.'^irrV:.;,'

; '

R23925 200X
2250°F(l232°C)/4hours
Grain Size : ASTM4to5

FIGURE 4 : PHOTOMICROGRAPHS ILLUSTRATING THE EFFECT
OF VARIOUS FULL SOLUTION TREATMENTS ON
GRAIN SIZE FOR EXTRUDED PLUS ROLLED Eb-17.



R23732 OPTIMUM 500X

2250°F/4hours + I600°F/ 16 hours
( I232°C/ " + 87I°C/ " )

R23734 OVERAGED 500X

2250°F/4 hours + I900°F / 16 hours
(I232°C •• i 1038°C " }

FIGURE 5 : PHOTOMICROGRAPHS ILLUSTRATING THE EFFECT
OF TWO INTERMEDIATE AGING TREATMENTS ON
GAMMA PRIME MORPHOLOGY FOR EXTRUDED
PLUS ROLLED Hb-8.



R23930 Eb-17 500X

2250°F/2hours + I600°F/I6 hours -H400°F/16 hours
I232°C/ - t 87I°C/ - t 760°C/ -

FIGURE 6 : PHOTOMICROGRAPH ILLUSTRATING THE
OPTIMUM FINAL AGING TREATMENT
FOR EXTRUDED PLUS ROLLED Eb-17.



R23736 500X

2000°F(l093°C)/lhour/Oil Quench

R23737 500X
2050°F(II2I°C) / I hour/Oil Quench

R23738 500X
2IOO°F(II49°C)/I hour /O i l Quench

FIGURE 7 : PHOTOMICROGRAPHS ILLUSTRATING THE EFFECT
OF THREE PARTIAL SOLUTION TREATMENTS ON
THE DEGREE OF SOLUTION!NG FOR EXTRUDED
PLUS ROLLED lib-7.



R23739 500X

1600°F/1 hour-increase to 2000°F/1 hour /oil quench + l400°F/l6hours/AC
87I°C/ » - « « I093°C/ " / • " + 760°C/ " / «

FIGURES: PHOTOMICROGRAPH ILLUSTRATING THE
OPTIMUM PARTIAL SOLUTION HEAT TREAT-
MENT FOR EXTRUDED PLUS ROLLED Hb-7.



EM 3305 5000X EM3306 5000X

EM 3307 5000X

FIGURE 9: ELECTRON MICROGRAPHS ILLUSTRATING THE
STRUCTURE OF Eb-7 AFTER FULL SOLUTION
HEAT TREATMENT.

22500F/2hrs/RACtl600°F/l6hrs/RAC+l400°F/l6hrs/AC
I232°C/ " / " + 87I°C/ " / " + 760°C/ " / "



EM3266 5000 X EM3272 5000 X

EM3269 5000X

FIGURE 10: ELECTRON MICROGRAPHS ILLUSTRATING THE
STRUCTURE OF Eb-lt AFTER FULL SOLUTION
HEAT TREATMENT

22500F/2hrs/RACtl600°F/l6hrs/RAC-H400°F/l6hrs/AC
I232°C/ " / " t 87I°C/ " / " + 760°C/ " / "



EM3686 5000X EM3684 5000X

EM 3693 IO.OOOX

FIGURE II : ELECTRON MICROGRAPHS ILLUSTRATING THE
STRUCTURE OF Eb-7 AFTER PARTIAL SOLU-
TION HEAT TREATMENT.

!600°F/l6hrs+ increase to 2000°F/lhr/OQ + !400°F/l6hrs/AC
87I°C/ » f " « I093°C/" / " + 760°C/ « / »
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THE EXTRUDED CONDITION AND SUBJECTED TO A FULL SOLUTION
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FIGURE 16: I400°F(760°) TENSILE PROPERTIES FOR FIVE BEST TASK I ALLOYS IN
THE EXTRUDED PLUS ROLLED CONDITION AND SUBJECTED TO A FULL
SOLUTION HEAT TREATMENT.
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FIGURE 22 l4000F/90,OOOpsi (760°C/62I MN/m2) STRESS RUPTURE PROPERTIES
FOR FIVE BEST TASK I ALLOYS IN THE EXTRUDED CONDITION
AND SUBJECTED TO A FULL SOLUTION HEAT TREATMENT.
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l800°F/25,OOOpsi (982°C/I72 MN/m2) STRESS RUPTURE PROPERTIES
FOR FIVE BEST TASK I ALLOYS IN THE EXTRUDED CONDITION
AND SUBJECTED TO FULL SOLUTION HEAT TREATMENT.



600

500

400

o
~ 300
Q)

I" 200

100

587-1

Rupture Life

Reduction of Areo

- 6

- 5 o
w
<

- 4 *s

- 2

- I

0>
or

FIGURE 24: 1400°F/90,000psi (760°C/62I MN/m2) STRESS RUPTURE PROPERTIES
FOR FIVE BEST TASK I ALLOYS IN THE EXTRUDED PLUS ROLLED
CONDITION AND SUBJECTED TO A FULL SOLUTION HEAT TREATMENT.
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!800°F/251OOOpsi (982°C/l72MN/m2) STRESS RUPTURE PROPERTIES
FOR FIVE BEST TASK I ALLOYS IN THE EXTRUDED PLUS ROLLED
CONDITION AND SUBJECTED TO A FULL SOLUTION HEAT TREATMENT.
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FIGURE 29 .-ELECTRON MICROGRAPHS ILLUSTRATING THE
EFFECT OF 1500 HOURS EXPOSURE AT I600°F
(87I°C) ON THE MICROSTRUCTURE OF Ib-7.

2250°F/2hrs/RACtl600°F/l6hrs/RACtl400°F/l6hrs/AC
I232°C/ « / « +87I°C/ . . / . . + 760°C/ - / ••
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FIGURE 30: ELECTRON MICROGRAPHS ILLUSTRATING THE
EFFECT OF 1500 HOURS EXPOSURE AT I600°F
(87I°C) ON THE MICROSTRUCTURE OF Hb-ll.
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FIGURE 31 : PHOTOMICROGRAPHS ILLUSTRATING THE EF-
FECT OF 1500 HOURS EXPOSURE AT I600°F
(87I°C) ON THE MICROSTRUCTURE OFUb-ll
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FIGURE 32 : ELECTRON MICROGRAPHS ILLUSTRATING THE
STRUCTURE OF FULL SOLUTION HEAT
TREATED Hb-H.

2225°F/2hrs/RAC + !650°F/l6hrs/RAC + !400°F/l6hrs/AC
I2I9°C/ " / " t 899°C/ •• / " 4- 760°C/ " / »



EM3586 5000 X EM3587 5000 X

EM 3588 5000X

FIGURE 33: ELECTRON MICROGRAPHS ILLUSTRATING THE
STRUCTURE OF PARTIAL SOLUTION HEAT
TREATED Hb-L

!600°F/l6hrs-increase to 2000°F/lhr/OQ + !400°F/l6hrs/AC
87I°C/ '" - « - I093°C/ » / « f 760°C/ - / «
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FIGURE 34: ELECTRON MICROGRAPHS ILLUSTRATING THE
EFFECT OF 1500 HOURS EXPOSURE AT I600°F
(87I°C) ON THE MICROSTRUCTURE OF Hb-H.

2225°F/2hrs/RAC + l650°F/l6hrs/RAC+ !400°F/l6hrs/AC
I2I9°C/ « / • t 899°C/ •• / •• + 760°C/ •• / "
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FIGURE 35: ELECTRON MICROGRAPHS ILLUSTRATING THE
EFFECT OF 1500 HOURS EXPOSURE AT I300°F
(704°C) ON THE MICROSTRUCTURE OF Hb-L

!600°F/l6hrs - increase to 2000°F/ I hr/OQ + !400°F/l6hrs/AC
87I°C/ » - » » I093°C/ •• / " t 760°C/ » / »



APPENDIX A

Regression Analysis of Property Data

The seventeen alloys for which properties were determined in
the first series of this program, form a statistically designed experiment.
It is a 1/2 replicate of a 5 variable factorial set with each variable
at two levels including a center point (1). This experiment permits
the setting up of regression equations with a property of the alloy as
the dependent variable equal to a constant B(o) plus the summation of
the first order effects of the independent variables carbon, tungsten,
tantalum, aluminum and hafnium, B(c), etc., and .their two factor inter-
actions, B(c'w), etc. The model regression equation is:

Property - B(o) + (B(c) x C) + (B(w) x W) + (B(ta) x Ta) +
(B(al x Al) + (B(hf) x Hf) + (B(c«w) x C x W) 4-
(B(c«al) x C x Al) + (B(c-hf) x C x Hf) + (B(wta) x W x Ta) +
(B(wal) x W x Al) + (B(whf) x W x Hf) + (B(ta-al) x Ta x Al) +
(B(ta-hf) x Ta x Hf) + (B(al'hf) x Al x Hf)

which requires solving for the constant and 16 coefficients.

The solution of this equation was achieved by means of the
computer program developed by S. M. Sidik and B. Henry (2). Coded values
were assigned to the nominal content of the 5 variable elements in each
of the 17 alloys, with the upper level being +1. design unit, the lower
-1. design unit, and the center point 0. (seeTables I and II)
Regression analyses were performed for the following properties.

1. On rolled alloys in the fully solutioned condition.

a. At 70, 1400 and 1800°F (22, 760 and 980°C)j

Ultimate tensile strength
Yield strength
Tensile elongation
Tensile reduction of area

b. At 1400°F and 90,000 psi (760°C and 620 MN/m2) and at
1800°F and 25,000 psi (980°C and 172.5 MN/m2):

Stress rupture life
Elongation at rupture
Reduction of area at rupture

2. On rolled alloys in the partially solutioned condition at
70, 1200 and 1400°F (22, 760 and 980°C)»

Al



Ultimate tensile strength
Yield strength
Tensile elongation
Tensile reduction of area

The computations were a series of Iterations. In each Iteration
the constant, B(o), was re-evaluated and the coefficients with low
probability of significance were eliminated and replaced by zero. The
iterations were continued to the point where each of the coefficients
remaining in the set would have a probability exceeding 90 percent.
However, this set was not always chosen for calculating property
predictions, since statistical significance and lowest estimated
standard error for the estimated property did not always coincide.
The sets selected were generally a compromise of these factors and can
be found in Tables III, IV and V.

After the coefficients had been determined, predictions could
be made for alloys within the general range of the 17 alloys already
evaluated. It-wag-ffllt̂ that;=rel:l.ab.le=p.r.ed-ic±-ion8--.co.uld---.on-l-y==b.ê ob;fea-lned--
within 1.25 design units from the'center point. Eleven levels were fixed
and these were at -1.25, -1.00, -0.75, -0.50, -0.25, 0.00, 0.25, 0.50,
0.75, 1.00 and 1.25 design units. A simple computer program was written
which fitted the design units Into the regression equation for the
coefficients which had been determined.

Since 11 levels of the design units were to be used and these
applied to 5 elements of the composition, properties could be calculated
for a total of Il5 or 161,051 distinct compositions. Criteria were
therefore established by which on the basis of one or two calculated
property predictions, the computer would select for complete calculation
only those compositions having properties of potential interest for
further evaluation. For the alloys selected, a full set of property
predictions would then be calculated from the regression equations.
Critical property limits for compositions of alloys in the fully
solutioned condition were a predicted 1400°F (760°C) stress rupture life
in excess of 600 hours and a predicted room temperature reduction of area
greater than 13.5%. Only 29 calculated compositions met these standards.
For alloys in the partially aolutioned condition, 31 alloys met the
minimum criteria for predictions of 1200°F (650°C) yield strength of
225,000 psi (1550 MN/m2) with 7.5% elongation, and 26 alloys (none of them
included in the previous 31) exceeded a 1200°F (650°C) predicted yield
strength of 230,000 psi (1585 MN/m2).

The full set of property predictions was then used to select
the two alloys which were to be evaluated in the final part of the
program.

A2
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TABLE IA

Coded Design Unit Values for Nominal Contents of Elements

Element

Carbon

Tungsten

Tantalum

Aluminum

Hafnium

% Alloy
Content

0.13

4.50

7.00

3.50

1.00

Value

-1

-1

-1

-1

-1

% Alloy
Content

0.19

6.00

8.50

4.00

1.75

Value

0

0

0

0

0

% Alloy
Content

0.25

7.50

10.00

4.50

2.50

Valt

+1

+1

+1

+1

+1



TABLE IIA

Series I Alloys with .Elements Coded for Regression Analysis

Alloy No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Carbon

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-I

+1

-1

+1

-1

+1

0

Tungsten

-1

-1

+1

+1

-1

-1

+1

+1

-1

-1

+1

+1

-1

-1

+1

+1

0

Tantalum

-1

-1

-1

-1

+1

+1

+1

+1

-1

-1

-1

-1

+1

+1

+1

+1

0

Aluminum

-1

-1

-1

-1

-1

-1

-1

-1

+1

+1

+1

-HI

+1

+1

+1

+1

0

Hafnium

-1

+1

+1

-1

+1

-1

-1

+1

+1

-1

-1

+1

-1

+1

+1

-1

0



TABLE IIIA

Regression Analysis Results for Tensile Properties of Alloys in 'Rolled and Fully Solutioned Condition

Coefficients Room Temperature 1400°F (760°C) 1800°F (982°C)

B(o)
B(c)
B(w)
B(ta)
B(al)
B(hf)
B(c*w)
B(e*ta)
B(c«al)
B(c«hf)
B(wta)
B(wal)
B(whf)
B(ta-al)
B(ta 'hf)
B(al»hf)

UTS
(psi)

203.140
10.827
-4.925
-7.155

-11.764
-10.944

7.412
4.945
6.948

11.581
-10.231
-5.500
-4.942
-6.895
-4.775
-6.581

YS
(P9i)

162.256
7.269
0.

-1.563
-2.837
-5.822
6.665
5.950
4.938
6.278

-6.916
-4.497
-5.181
-5.819
-4.953
-5.647

ELONG
(%)
9.797
1.944

-0.469
-2.393
-1.857
-1.981
0.731

-1.193
-0.219
0.256

-1.319
-0.831
-0.518
0.306
1.144
0.394

R.A.
(%)

11.560
1.930

-0.647
-2.802
-1.830
-1.765
0.693
0.
0.
0.762

-0.940
-0.381
-0.540
0.
0.890
0.

UTS
(psi)

169.394
8.331
3.644

-5.787
-7.706

-11.106
8.475
5.656
2.175
8.862

-11,019
-7.662
-8.062
-2.294
-7.831
-2.187

YS
(psi)

145.449
7.390

-1.316
-1.777
-0.509
-6.459

4.890
5.879
4.535
5.510

-7.515
-2.746
-4.134
-5.110
-7.622
-4.516

lELONG
I I (%)
14.788

-10.497
0.321

-6.366
p. 859

-0.566
0.116
0.566

-0.009
2.578

-1.166
0.259
0.222

-0.103
-0.128
-0.428

R.A.
(%)
7.346

-0.440
0.577

-0.135
0.627

-0.804
0.629
0.579
0.454
3.460

-1.041
0.441

-0.048
-0.141
-0.610

0.027

UTS
(psiy

61.871
-0.500
1.031

-2.469
-0.587
0.756

-2.200
1.275
2.519
9.462

-4.231
-3.100
-0.394
-4.150
-0.019
-0.450

YS
(psi)

53.815
-0.809

1.647
-1.084
0.503
0.322

-0.309
1.634

-0.278
6.441

-4.522
-2.159

0.122
-3.666
-1.334
-0.072

ELONG
~T%5

Z.144

-0.053
0.059

-0.059
-0.759
0.278

-0.391
-0.022

0.216
0.516
0.141

-0.234
-0.059
0.009
0.219

-0.291

R.A.
(%)
2.524

-0.041
0.231

-0.275
-0.925
-0.012
0.087

-0.281
0.231
0.806
0.206
0.006

-0.194
-0.200
0.110

-0.400

Standard Error
Estimate 6.766 2.868 3.848 1.612 22.079 9.918 2.135 3.560 8.770 4.916 0.928 1.552



TABLE IVA

Regression Analysis Results for Stress Rupture Properties of
Alloys in Rolled and Fully Solutioned Condition

Coefficients

Standard Error
Estimate

1400°F (760°C) and
90.000 psi (620 MN/ro2)

74.758 0.847 1.313

1800°F (982°C) and
25,000 psi (172.5 MN/m2)

B(o)
B(c)
B(w)
B(ta)
B(al)
B(hf)
B(c«w)
B(c«ta)
B(c«al)
B(c.hf)
B(w«ta)
B(wal)
B(whf)
B(ta.al)
B(ta«hf)
B(al-hf)

LIFE

189.092
0.

50.512
0.

66.978
17.615
0.
0.

21.072
147.685
-86.763
-15.805

0.
-35.788

0.
0.

ELONfJ
(%)

2.419
0.716

-0.891
0.698

-0.684
-0.578
-0.478
0.960

-0.534
0.

-1.022
0.784
0.916

-0.578
-0.471

0.772

R.A.

3.940
0.889

-0.621
-0.982
-0.459
0.760

-0.561
-0.447
-0.661
0.908
0.
0.
0.
0.466
0.
0.658

LIFE

21.761
-2.796
6.771
0.
6.110

-4.129
0.
1.815
3.571
8.448

-5.727
3.967

-3.198
-4.092
-3.840
-3.133

ELONG

5.874
1.490

-0.159
0.090

-0.385
-0.528

0.078
0.291
0.741
0.984
0.152
0.728
0.485

-0.259
-0.416
-0.591

R.A.

8.187
2.944
0.387

-0.597
-0.422
-1.426

1.388
0.072
1.259
0.388
0.484
0.759

-0.007
0.618

-0.091
-1.303

3.746 2.076 1.997



TABLE VA

Regression Analysis Results for Tensile Properties of Alloys in Rolled and Partially Solutioned Condition

Coefficients Room Temperature 1200°F (560°r) 1400°F (760°C)

B(o)
B(c)
B(w)
B(ta)
B(al)
B(hf)
B(c»w)
B(c.ta)
B(c.al)
B(c.hf)
B(w.ta)
B(w.al)
B(w.hf)
B(ta«al)
B(ta.hf)
B(al.hf)

UTS
<osi)
257.070
-7.313
3.175
0.
-9.050
-5.019
0.
0.
0.
2.931
0.
-2 . 400
-2.268
-3.619
0.
2.193

YS
(psi)
218.065
-3.806
7.437
6.644
-2.861
-2.231
-2.426
0.
0.
0.807
0.
0.
0.
-2.074
0.
3.088

ELONG
(%)
8.478
0.
-0.859
-1.554
-0.998
-0.304
0.
0.265
0.596
0.
-0.421
-0.352
-0.509
-0.448
0.
0.

R.A.
'(%)

11.604
0.
-0.908
-1.830
-1.274
-0.655
0.
0.
0.
0.
0.
-0.595
-0.701
0.
0.
0.

UTS
(psi)
227.006
-6.150
6.187
3.150
-5.175
-3.462
0.
0.
0.
0.
0.
0.
-2.025
-2.425
0.
3.912

YS
(psi)
202.388
-3.312
5.912
5.237
-0.812
-2.975
0.
0.
0.
0.
-1.275
0.375
-1.887
-1.175
0.
3.462

ELONG
ir *y\)\TO/
5.1988
-OL950
oL
-01550
O1.
-0. 400
0.487
0.
-Ol462
-01400
-01637
o;.
Oi.
-0.837
-0.950
0.

R.A.
(%)
9.200
0.
-0.756
0.
0.543
0.
0.
0.
-0.769
0.
-0.456
-0.669
0.
-0.356
-0.544
-0.481

UTS
(psi)
191.415
-6.533
0.
3.781
0.
2.565
-2.071
0.
0.
4.355
0.
0.
2.583
-4.869
-4.104
-2.685

YS
(psi)
174.056
-2.006
2.040
3.812
-2.894
0.
-2.105
0.
2.119
2.910
0.
0.
0.
-3.363
-2.270
-3.585

ELONG
(%)
4.136
-0.313
-0.624
0.
0.360
0.
0.
0.
0.
0.
0.
0.
0.410
-0.662
-0.443
0

R.A.
(%)
6.615
-0.896
-1.179
0.
0.
-0.762
-0.853
0.
0.629
-0.688
0.
0.
0.820
-1.413
-1.297
0.

Standard Error
Estimate 6.635 2.523 0.842 1.753 4.137 0.520 1.449 1.045 6.605 7.549 0.961 1.928
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OHIO 45433

DR. I. PERLMUTTER
AFML/LLP
HEADQUARTERS
WRIGHT PATTERSON AFB,

OHIO 45433

DR. C.M. PIERCE
AFML/LLP
HEADQUARTERS
WRIGHT PATTERSON AFB, .

OHIO 45433

TECHNICAL LIBRARY
AFML/LAM-1
HEADQUARTERS
WRIGHT PATTERSON AFB,

OHIO 45433

MR. M. SLAWSKY
USAF OFF SCIENTIFIC RES
PROPULSION RESEARCH DIV
WASHINGTON, D. C. 20525

DR. F.R. LARSON AMXMR-RM
ARMY MATERIALS. AND
MECHANICS RESEARCH CTR.
WATERTOWN, MASS. 02172

MR. P. GOODWIN AIR-5203
NAVAL AIR SYSTEMS COMMAND
NAVY DEPARTMENT
WASHINGTON, D.C. 20360

DR. R. ROBERTS
NAVY DEPARTMENT
ONR CODE 439
WASHINGTON, D.C. 20525

TECHNICAL REPORTS LIBRARY
ATOMIC ENERGY COMMISSION
WASHINGTON, D.C. 20545

TECHNICAL REPORTS LIBRARY
OAK RIDGE NATIONAL LAB.
OAK RIDGE, TENN. 37830

DEFENCE DOCUMENTATION CTR
CAMERON STATION
5010 DUKE STREET
ALEXANDRIA, VIRGINIA

22314

REPORTS ACQUISITION
AEROSPACE CORPORATION
P.O. BOX 95085
LOS ANGELES, CALIFORNIA

90045

SUPERVISOR
MATERIALS ENGINEERING
AIRESEARCH COMPANY
402 EAST 36th STREET
PHOENIX, ARIZONA 85034

MR. R.A. LULA
ALLEGHENY LUDLUM

STEEL CORP.
BRACKENRIDGE, PENNA.

15014

DR. T. LYMAN
AM. SOCIETY FOR METALS
METALS PARK
NOVELTY, OHIO 44073



MR. W.H. FREEMAN
LYCOMING DIVISION
AVCO MANUFACTURING CO.
505 SOUTH MAIN STREET
STRATFORD, CONN. 06497

DR. R.I. JAFFEE
BATTELLE MEMORIAL INST.
505 KING AVENUE
COLUMBUS, OHIO 43201

DR. S.J. PAPROCKI
BATTELLE MEMORIAL INST.
505 KING AVENUE
COLUMBUS, OHIO 4'3201

COBALT INFORMATION CENTER
BATTELLE MEMORIAL INST.
505 KING AVENUE
COLUMBUS, OHIO 43201

MCIC
BATTELLE MEMORIAL INST.
505 KING AVENUE
COLUMBUS, OHIO 43201

LIBRARY
BENDIX CORPORATION
RESEARCH LABORATORIES DIV
SOUTHFIELD, MICHIGAN

48075

LIBRARY
CABOT CORPORATION
STELLITE DIVISION
P.O. BOX 746
KOKOMO, INDIANA 46901

DR. D.R. MUZYKA
CARPENTER TECHNOLOGY CORP
RES.*1 + DEV. CENTER
P.O. BOX 662
READING, PA 19603

MR. D. SPONSELLER
CLIMAX MOLYBDENUM COMPANY
1600 HURON PARKWAY
ANN ARBOR, MICHIGAN 48106

PROF. J.B. NEWKIRK
METALLURGY DEPARTMENT
DENVER UNIVERSITY
DENVER, COLORADO 80210

MR. C.P. MUELLER
DYNAMET, INC.
1720 NORTH MAIN STREET
WASHINGTON, PENNA. 15301

MR. J.G. LEBRASSE
RESEARCH + DEVELOPMENT
FEDERAL MOGUL CORP.
ANN ARBOR, MICHIGAN

POWDER METALS RESEARCH
FIRTH STERLING, INC.
P.O. BOX 71
PITTSBURGH, PENNA. 15230

DR. Y.P. TELANG
MATERIALS DEVELOPMENT
FORD MOTOR COMPANY
P.O. BOX 2053
DEARBORN, MICHIGAN 48123

SUPERVISOR MATERIALS ENG.
DEPARTMENT 93393
GARRETT AIRRESEARCH
PHOENIX, ARIZONA 85034

MR. J.F. BARKER MPTL
AETD
GENERAL ELECTRIC COMPANY
CINCINNATI, OHIO 45215



MR. L.P. JAHNKE MPTL
AETD :

GENERAL ELECTRIC COMPANY
CINCINNATI, OHIO 45215

LIBRARY
ADVANCED TECHNOLOGY LAB
GENERAL ELECTRIC COMPANY
SCHENECTADY, N.Y. 12305

MR. C.T. SIMS
MATERIALS + PROCESSES LAB
GENERAL ELECTRIC COMPANY
SCHENECTADY, N.Y. 12305

MR. D. HANINK MANAGER,
MATERIALS LABORATORY
ALLISON DIVISION
GENERAL MOTORS CORP.
INDIANAPOLIS, IND. 46206

MR. E.S. NICHOLS
MATERIALS LABORATORY
ALLISON DIVISION
GENERAL MOTORS CORP.
INDIANAPOLIS, IND. 46206

MRS. V. SCHMIDT '
GOULD LABORATORIES
GOULD INC .
540 EAST 105TH STREET
CLEVELAND, OH 44108

MR. R.J. NYLEN
HOMOGENOUS METALS INC.
WEST CANADA BLVD
HERKIMER, N.Y. 13350

MR. S. WOLOSIN
HOWMET CORPORATION
MISCO DIVISION
ONE MISCO DRIVE
WHITEHALL, MICHIGAN 49461

DR. N.M. PARIKH
IIT RESEARCH.INSTITUTE
10 WEST 35TH STREET
CHICAGO, ILLINOIS 60616

DR. R. WIDMER
INDUSTR. MATLS. TECHNOL.
127 SMITH PLACE
WEST CAMBRIDGE IND. PK.
.CAMBRIDGE, MASS. 02138

MR. J.V. LONG
DIRECTOR OF RESEARCH
SOLAR, INT. HARVESTER
2200 PACIFIC HIGHWAY
SAN DIEGO, CAL. 92112

MR. D. MAXWELL
INTERNATIONAL NICKEL CO.
ONE NEW YORK PLAZA
NEW YORK, NY 10004

DR. F. DECKER
INTERNATIONAL NICKEL CO.
MERICA RESEARCH LAB
STERLING FOREST
SUFFERN, N.Y. 10901

MR. C. BURLEY
GOVERNMENT RELATIONS
LADISH COMPANY
CUDAHY, WISCONSIN 53110

DR. E.E. REYNOLDS
DIRECTOR OF RESEARCH
LATROBE STEEL COMPANY
LATROBE, PENNA. 15650

TECHNICAL INFORMATION CTR.
MATLS. + SCIENCE LAB.
LOCKHEED RESEARCH LABS
3251 HANOVER STREET
PALO ALTO, CAL. 94304



PROF. R.W. GUARD HEAD,
DEPT. METALLURGICAL ENGRG
MICHIGAN TECH. UNIVERSITY
HOUGHTON, MICHIGAN 49931

DR. J. C. WILLIAMS
NORTH AMERICAN ROCKWELL
SCIENCE CENTER
THOUSAND OAKS, CALIFORNIA

91360

DR. J.W." CLEGG
NORTH STAR R.+D. INST.
31000-38TH AVE SOUTH
MINNEAPOLIS, MINN. 55406

PROF. R.A. RAPP
DEPT. OF METALL. ENGRG.
OHIO STATE UNIVERSITY
COLUMBUS, OHIO 43210

MR. R.A. HARLOW
AERONUTRONIC DIVISION
PHILCO-FORD CORPORATION
FORD ROAD
NEWPORT BEACH, CAL 92663

MR. G.J. WILE
POLYMET CORPORATION
10597 CHESTER ROAD
CINCINNATI, OH 42515

PROF. 0. SHERBY
~DEPTr=OF=MATERIALrS=SCT;
STANFORD UNIVERSITY
PALO ALTO, CALIF. 94305

MR. J.A. ALEXANDER
MATERIALS^TECHNOLOGY
TRW EQUIPMENT GROUP
23555 EUCLID AVENUE
CLEVELAND, OHIO 44117

DR. H.E. COLLINS
MATERAILS TECHNOLOGY
TRW EQUIPMENT GROUP
23555 EUCLID AVENUE
CLEVELAND, OHIO 44117

LIBRARY
MATERIALS TECHNOLOGY
TRW EQUIPMENT GROUP
23555 EUCLID AVENUE
CLEVELAND, OHIO 44117

MR. S.S. BLECHERMAN
PRATT + WHITNEY AIRCRAFT
UNITED AIRCRAFT CORP
400 MAIN STREET
EAST HARTFORD CONN 06108

MR. E.F. BRADLEY
PRATT + WHITNEY AIRCRAFT
UNITED AIRCRAFT CORP
400 MAIN STREET
EAST HARTFORD CONN 06108

MR. M.J. DONACHIE
PRATT + WHITNEY AIRCRAFT
UNITED AIRCRAFT CORP
400 MAIN STREET
EAST HARTFORD CONN 06108

MR. K.J. KELLY
PRATT + WHITNEY AIRCRAFT
UNITED AIRCRAFT CORP
400 MAIN STREET
EAST HARTFORD CONN 06108

RESEARCH LIBRARY
PRATT + WHITNEY AIRCRAFT
UNITED AIRCRAFT CORP
400 MAIN STREET
EAST HARTFORD CONN 06108

MR. D. BOONE
ADV. MAT. R+D LABS
PRATT-WHITNEY AIRCRAFT
MIDDLETOWN PLANET
MIDDLETOWN, CONN 06158



LIBRARY
PRATT + WHITNEY AIRCRAFT
UNITED AIRCRAFT CORP
WEST PALM BEACH, FLORIDA

33402

MR. W.H. GOUTS
WYMAN-GORDON COMPANY
NORTH GRAFTON, MASS. 01436

LIBRARY
NUCLEAR METALS DIVISION
WHITTAKER CORPORATION
WEST CONCORD, MASS 01781


