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PREFACE

NASA has an interest in turbines related primarily to aeronautics

and space applications. Airbreathing turbine engines provide jet and

turboshaft propulsion, as well as auxiliary power for aircraft. Propel-

lant-driven turbines provide rocket propulsion and auxiliary power for

spacecraft. Closed-cycle turbine engines using inert gases, organic

fluids, and metal fluids are being studied for providing long-duration

electric power for spacecraft.
In view of the turbine-system interest and efforts at Lewis Re-

search Center, a course entitled "Turbine Design and Application"

was presented during 1968-69 as part of the In-House Graduate Study

Program. The course was prepared and presented primarily by mem-

bers of the Turbodrive Br_ch, Fluid System Components Division,

and consisted of 25 lectures covering all aspects of turbine technology.

In particular, the course material covered thermodynamic and fluid-
dynamic concepts, fundamental turbine concepts, velocity diagrams,

losses, blade aerodynamic design, mechanical design, operation,

performance, and requirements and-problems associated with various

applications. Much of the material referred primarily to axial-flow

turbines, with radial-inflow turbines covered as a specific topic.

The notes written and used for the course are being revised and

edited for publication. Such a publication can serve as a foundation for

an introductory turbine course, a means for self-study, or a reference

for selected topics. This volume presents the material covered in the

first six lectures of the course. The three chapters of this volume

cover thermodynamic and fluid-dynamic concepts, fundamental

turbine concepts, and velocity diagram design.
ARTHUR J. GLASSMAN

.°.
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CHAPTER1

ThermodynamicandFluid-Dynamic
Concepts

By ArthurJ. Glassman

This chapter is intended to review some of the fundamental con-

cepts of thermodynamics and compressible fluid mechanics. These
are the concepts needed to analyze and understand the flow and

energy-transfer processes occurring in a turbine. A more complete

treatment of these subjects can be found in reference 1 and in many
textbooks. Flow is assumed to be steady and one-dimensional for

the purposes of this chapter.
Any consistent set of units will satisfy the equations presented.

Two commonly used consistent sets of units and constant values are

.given after the symbol definitions. These are the SI units and the

U.S. customary units. A single set of equations covers both sets of

units by including all constants required for the U.S. customary

units and defining as unity those not required for the SI units.

BASIC CONCEPTS AND RELATIONS

Equation of State

Before we can get very far with any kind of calculation involving

gases, we must know how pressure, volume, and temperature are
interrelated. The study of gases has resulted in certain laws and

generalizations concerning their behavior. In discussing these laws,

of behavior, gases are referred to as being either ideal or real. The
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ideal gas is only hypothetical and obeys various simplified laws that

the real gas can only approach under certain conditions.

The ideal gas equation of state is

R •

p_--_-_ T (1-1)

where

p absolute pressure, N/mS; lb/ft _

v specific volume, m3/kg; ft3/lb
R* universal gas constant, 8314 J/(kg mole)(K); 1545 (ft)(lb)/

(lb mole) (°R)

M_ molecular weight, kg/(kg mole); lb/(lb mole)

T absolute temperature, K; °R

The quantity R*/M_ is often used as a single quantity such that

R*
R=_/-_ (1-2)

where R is the gas constant, in J/(kg)(K) or (ft)(lb)/(lb)(°R).

Density is often used instead of specific volume in the ideal gas

law. Thus,

1 RT_pRT (1-3)
p_--

V

where p is density, in kg/m 3 or lb/ft 3.

In general, a real gas will approximate ideal behavior at low pres-

sures or high temperatures, conditions under which the free space

within the gas is large and the attractive forces between molecules are

small. For gases which are above their critical temperatures, the

ideal gas law may be accurate to within 5 percent up to pressures as

high as 50 atmospheres, while for gases below their critical tempera-

tures, deviations of 2 to 3 percent may appear at 1 atmosphere pressure.
Deviations of real gases from ideal behaviGr have resulted in the

proposal of several hundred equations of state to.express the p-v-T
relation. None of these have been found universally satisfactory, and

most are applicable only to a single gas over a limited range of tem-
perature and pressure. Even the most useful of these equations are

cumbersome to use and cannot be justified unless a high degree of

accuracy is required.
The similarity Jn behavior of substances at equal values of reduced

temperature (ratio of temperature, T, to critical temperature, To)

and reduced pressure (ratio of pressure, p, to critical pressure, p_)

forms the basis of a relatively simple method for e_timating real gas

behavior. The method of general _rrelation is to incorporate a
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correction term, called the compressibility factor, into the ideal gas
law:

p= zpRT (1-4)

where z is the compressibility factor.

The compressibility factor is a function of reduced temperature
and reduced pressure, and is assumed to be independent of the nature

of the gas. Values of compressibility factor as a function of reduced

temperature and reduced pressure are presented in many texts and
other sources. One of the charts from reference 2 is reproduced here

as figure 1-1. This type of correlation is derived from an average
of data for a large number of gases and is not in rigorous agreement

with all the data for any one gas. The compressibility-factor correla-

tion may be extended to gas mixtures if pseudocritical temperatures

and pressures are used to calculate reduced temperatures and pres-

sures. The pseudocritical properties are approximated by using the

molal averages of the critical properties of the components.
Examination of figure 1-1 shows that there is a large region of

state conditions where use of the ideal gas law would result in a large

error. Fortunately, the conditions that we are concerned with in our

calculations do not usually fall within this region. However, we

should never take for granted that the ideal gas law is always valid.

A quick determination of the compressibility factor can show the

approximate error associated with use of the ideal gas law.

Reduced

temperature,

1.20 TITc

11".O0_J10_ 2.(_2.503"50
N

_._

_ .70

.4ot- I\ -1.1o_

] ] I I I t 1.200 J1.0 2.0 3.0 4.0 5.0 5.0 7.0 8.0 g.0 10,0

Re(tuceclpressure. P/Pc

FIGURE 1-1.--Effect of reduced pressure and reduced temperature on com-

pressibility factor. (Curves from ref. 2.)
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Relation of Energy Change to State Conditions

In a flow process, the energy term associated xxith work and heat

is the enthalpy h. For a one-phase system of constant chemical com-

position, enthalpy can be expressed as a function of temperature
and pressure:

h=fen(T, p) (1-5)

where h is specific enthalpy, in J/kg or Btu/lb. A differential change in
enthalpy can be expressed as

Oh

\ p/r
(1-6)

The partial derivatives can be expressed in terms of determinable

properties as follows. By definition,

Cp----(00----_)p (1-7)

where c_ is heat capacity at constant pressure, in J/(kg)(K) or Btu/

(lb) (°R). One of the basic differential equations of thermodynamics is

dh = Tds + j vdp (1-8)

where s is specific entropy, in J/(kg)(K) or Btu/(lb)(°R), and J is a

conversion constant, 1 or 778 (ft)(lb)/Btu. Therefore, the partial

derivative with respect to pressure at constant temprature is, as
determined from equation (1-8),

Oh'_ --T los\ 1
opj,- v (1-9)

One Of the Maxwell relations states that

(1-10)

Substituting equations (1-7), (1-9), and (1-10) into equation (1-6)
yields

dh=c.dT+ j [v-- T (_--_)_,] dp (1-11)

Equation (1-11) is the rigorous equation for a differential enthalpy

change in terms of the state conditions, and the enthalpy ch_(nge
between two states is calculated rigorously as
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r, 1
_h---- fT ' c,dT+_ f'['v-T( ]J,, L \aT)p_] dp

(1-12)

If we now assume that the gas behaves according to the ideal gas

law, we can set
RT

v------ (1-13)
P

and

'_ R
_-_) ----_ (1-14)

By using these last two equations in equation (1-12), the effect of

pressure on enthalpy change is reduced to zero, and there remains

hh---- _r: c_,d T (1-15)

Empirical equations for c_ as a function of T are available in hand-
books and textbooks for most gases of interest. If, for example,

%=a+bT+cT 2 (1-16)

then integration of equation (1-15) yields

5h----a( T2-- T_) +_ ( T_2-- T_) + 3 ( T],-- T_) (1-17)

Although one might not want to use this type of expression for hand

calculations, there is no reason to avoid it for computer calculations.
If it can be assumed that c_ is constant between temperatures T_

and T2, then equation (1-15) becomes

ah=c,(T,--T,) (1-18)

This assumption is an excellent one for monatomic gases; for other

gases, there is a significant variation in cp with T. However, the use

of some average value for c_ will give an approximation that should

be within a few perceat of the true value.

Relation of State Conditions for Constant Entropy Process

In a turbine, the heat loss is normally small, and the flow process

usually can be assumed to be adiabatic. For adiabatic flow with no

loss, there is no change in entropy. Therefore, the constant-entropy

(isentropic) process is the ideal process for flow in the various parts
"of the turbine (inlet manifold, stator, rotor, and e.xit diffuser) as well
as for the overall turbine. Actual conditions within and across the
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turbine are usually determined from isentropic process calculations

in conjunction with some efficiency or loss term. It is, therefore,

necessary to be able to relate state conditions for an isentropic process.

For a one-phase system of constant chemical composition, entropy
can be expressed as a function of temperature and pressure

s=fcn (T, p) (1-19)

and a differential change in entropy can be expressed as

d.s=(0aT) ' dT-{-(0_) r dp (1-20)

From equations (1-8) and (1-7), we get

OT/,=_F \OT/,--T ( 1-21 )

Substituting equations (1-21) and (1-10) into equation (1-20) yields

10v
ds=_ dT--_ (oT) dP (1-22)

For a constant-entropy process, ds----0 and

fT, T (1-23)

Equation (1-23) is the rigorous , but not particularly useful, expression

relating temperature and pressure conditions for an isentropic process.

If we assume ideal-gas-law behavior and substitute equation (1-14

into equation (1-23) and perform the integration, we get

r' C" dT__j R ln P_pL (1-24

By using a relation such as equation (1-16), integration yields

T_ c
_1R in _----a In _+b(T2-T_)+-_ (T_-T2,) (1-25_- J pl

Like equation (1-17), equation (1-25) also is more suitable for use in
a computer calculation than in a hand calculation.

With the additional assumption that cp is constant between tem-

peratures T_ -n(t T2, equation (1-24) becomes

6



THERMODYNAMIC AND FLUID-DYNAMIC CONCEPTS

and

But

Jc_ In T--_2--R In p_ (1-26)
T,-- pl

pi (Tl'_ J<'i"
p-,=\-T,]

Jc,, _, (1-28)
-R------r-- 1

where -y is the ratio of heat capacity at constant pressure to heat

capacity at constant volume. Substitution of equation (1-28) into

equation (1-27) yields the more familiar form

p: (T;V("-'>
_-_----\_] (1-29)

Where specific heat ratio -_ is not constant, the use of an average va]ue

should give a reasonable approximation.

Conservation of Mass

The rate of mass flow through an area A can be expressed as

w----pAV (1-30)
where

w rate of mass flow, kg/sec; lb/sec

A flow area, mS; ft _

V fluid velocity, m/sec; ft/sec

For a steady flow (and nonnuclear) process, the rate of mass flow

across any section of the flow path must equal the rate of mass flow

across any other section. That is,

plAI VI-=p2A2V2 (1-31)

This expresses the principle of conservation of mass, and equation

(1-31) is referred to as the continuity equation.

Newton's Second Law of Motion

All conse.rvation equations, theorems, etc., dealing _ith momentum

are consequences of Newton's Second Law of Motion, which states

that an unbalanced force that acts on a body will cause it to accelerate
in the direction of the unbalanced force in such a manner that the

force is l)roportional to the l)ro(luct of the mass and acceleration of

the body.

7
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Thus,

F= m a (1-32)
g

where

F unbalanced force, N; lbf

rn mass, kg; lbm
a acceleration, m/sec2; ft/sec 2

g conversion constant, 1 ; 32.17 (lbm)(ft)/(lbf)(sec _)

But
dV

a---_- (1-33)

where t is time, in seconds. Substituting equation (1-33) into equation

(1-32) yields

F_.m dV (1-34a)
g dt

Since the mass is constant, equation (1-34a) can also be written as

F 1 d(mV) (1-34b)
g dt

Equation (1-34b) specifies that the unbalanced force acting on the

fluid is equal to the rate of change of momentum (mV) with time.

Since mass per increment of time' is the mass flow rate, equation

(1-34a) can also be written as

F---w dV (1-35)
g

A useful relation., sometimes called the equation of motion, can
be derived from second-law considerations. Consider an element of

fluid as indicated in figure 1-2. Gravitational forces are assumed neg-

llgible. A fiictionalresistance (force) is indicated as R t. The element

of fluid is subjected to fluid-pressure and boundary-surface-pressure

forces acting in the downstream direction and fluid-pressure and

friction forces ac4ing in the upstream direction. Therefore, the net
force in the downstream direction is

F=pA+(p+?)dA--(p+dp) (A+dA)--dRt (1-36)

Expanding, simplifying, and dropping second-order

yields
F= -- Adp-- dR I

differentials

(1-37)
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The mass of the element is

m=oAdx (1-38)

Substituting equation (1-38) into equation (1-34) yields

F=eAdx dV (1-39)
g dt

-Since dx (1--40)
V=-_

equation (1-39) can be written in the form

F=pAV dv (1-41)
g

Equating (1-37) with (1-41) now yields

F=--Adp--dRt=P-_ VdV (1-42)

and
dp + VdV + dRr 0 (1-43)-;

A_

Flow _ P

V .._=!_.

2

.,,,-- dx --P

dRf

A+dA
f

.#,

p+dp

V+dV

FIGURE 1-2.--Forces on an element of fluid.
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If we now let

dRI
Jd qs= _ (1-44)

where ql is heat produced by friction, in J/kg or Btu/lb, we have

? +-V_- +Jdq1=0 (1-45)

For isentropic flow, dq+=0.

Conservation of Energy

For a steady-flow (and n_nnuelear) process, the energy entering
a system or part of a system must equal the energy leaving that

system or part of that system. If we can neglect chemical energy,

electrical energy, etc., we still have to consider internal energy _,, flow

energy pv, kinetic energy V2/2g, potential energy Z, heat q, and

mechanical work W,. Thus,

2 , 2

_,T --j "- 2a--aJ'--J ,- u-- _27- -j- T_--jT _ 7- ,,, (1-46)g g
where

u specific internal energy, J/kg; Btu/lb

Z specific potential energy, J/kg; (ft) (lbf)/lbm

q heat added to system, J/kg; Btu/lb

IV, mechanical work done by system, J/kg; Btu/lb

For a gas system, the potential energy can be neglected. In addition,

by definition

h= u + _ ('1-47)
,3

Thus, equation (1-46) reduces to

h_+2_+q=h2+ V22-gj+W, (1-48)

Equation (1-48) is the basic form of the steady-flow energy balance

as we will be using it.

Total Conditions

The'sum of the enthalpy and the kinetic energy is always appearing

in flow problems, and it is convenient to use it as a single quantity.
Thus,

V 2

h'_h+ 2gd (1-49)

10
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where h' is total enthalpy, in J/kg or Btu/lb.

The concept of total enthalpy leads us to the concept of total

temperature. Total temperature can be defined as the temperature

that corresponds to the total enthalpy. The total-temperature con-
cept is most useful when ideal-gas-law behavior and constant heat

capacity can be assumed. In that case, according to equation (1-15),

h' --h=c_,( T' -- T) (1-50)

where T' is total temperature, in K or °R. Combining equation (1-50)

with equation (1-49) yields

V2 (1-51)
T' ----T-F 2gjc _

The total temperature T' can be thought cf as the temperature

attained when a gas at st'atic temperature T and velocity V is brought

to rest adiabatically. Thus, total temperature is also called stagnation

temperature, and these two terms are used interchangeably.
The total, or stagnation, pressure can be regarded as the pressure

ofa fluid brought to rest isentropically from a velocity V and static

pressure p. Since the relation between p' and p is isentropic, we can

use equation (1-29) to write

p, /T"_L(,-')
_.=\__/ (1-52)

where p' is total pressure, in N/m 2 or lb/ft 2.
With regard to the above-defined total conditions, certain points

should be emphasized. The concept of total enthalpy is general, and
its use involves no assumptions other than those associated with the

energy balance as we have considered it. Total temperature, as will

be seen, is a very useful convenience for easing the burden of calcula-

tion, but it is rigorous only for ideal-gas-law behavior and constant

heat capacity.. For systems involving chemical reaction or a phase

change, the use of total temperature is not recommended. Total

pressure, in addition to the assumptions associated with total tempera-
ture, involves an _sentropic path between the static and total

conditions.

Flow Process With No Heat and No Work

Let us now, in terms of total conditions, examine a process that
occurs with neither heat transfer (adiabatic process) nor mechanical

work. Thi_ process iv the one that occurs (neglecting heat losses) in

each part of the turbine (includi _g the rotor, at constant ratliu_, when

11
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the velocities are expressed relative to the moving blade).

Substitution of equation (1-49) into equation (1-48)
rangement yields

ha'--h/ =q--W,

and rear-

(i-53)

The energy balance now looks something like the First Law of Thermo-

dynamics for a flow process, as we were first exposed to it in college.
If we set q and W, equal to zero, we get

ha' =h,' (1-54)

Therefore, for adiabatic flow with no work, total enthalpy remains
constant. Further, from equations (1-18) and (1-50), it can be shown

that total temperature also remains constant.

T?--T2- , (1-55)

Note that the process does not have to be isentropic in order for total

enthalpy and total temperature to remain constant.

Total pressure is another matter. From equations (1-22), (1-52),

and (1-55) and the ideal-gas-law and constant-heat-capacity assump-
tions, it can be shown that for adiabatic flow with no work,

_Jd#IR_ PlZ
p/ (1--56)

Only for isentropic flow (ds=0), therefore, does total pressure remain
constant. For flow with loss (ds>0), there is a decrease in total

pressure.

Speed of Sound and Velocity Ratios

An important characteristic of gases is the speed of pressure-

wave propagation or, as otherwise called, the speed of sound. From
small-pressure-disturbance theory

where a is speed of sound, in m/sec or ft/sec.

From the ideal gas law and isentropic process relations, this reduces
to .-

a-----v_gRT (1-58)

The ratio of fluid velocity V to sound velocity a is an important.
factor in determining the flow characteristics of a gas. This ratio is
called the Mach number M:

12
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M_-Z (I-29)
a

Mach number is a useful parameter not only for identifying flow-

behavior regimes, but also for simplifying and generalizing certain

expressions. Consider the relation of total temperature to static

temperature, given in equation (1-51). Combining equations (1-58),

(1-59), and (1-28) with equation (1-51) yields

--_= 1+_-_M _ (1-60)

Another velocity ratio often used is the ratio of fluid velocity to

critical velocity
V V

-V--c_=a-c_ (1-61)

where Vc, is critical velocity, in m/sec or ft/sec, and ac, is speed of
sound at critical condition, in m/sec or ft/sec. The critical velocity

is equal to the velocity of sound at the critical condition. The critical
condition is that condition where M= 1. Consequently, from equation

(1-60), at the critical condition

2 #

T,,=-_-_--_ T (1-62)

and substitution of equation (1-62) into eqimtion (1-58) yields

ac,= gRT" (1-63)

Thus, in any flow process with constant total temperature (no heat and

no work), the value of the critical velocity (V,r=a,r) remains constant

for the entire process, while the value of the speed of sound (a) changes
as the static temperature changes.

The ratio of fluid velocity to critical velocity is sometimes called

the critical velocity ratio. Its use is often preferred over Mach number

because the critical velocity ratio is directly proportional to velocity,
while Mach number is not (since there is a square root of static tem-

perature in the denominator).
The relation between static and total temperature in terms of the

critical velocity ratio results from combining equations (1-61), (1-63),

(1-28), and (1-51).

T ,y--l( V)'T _ 1--_-_-i _ (1-64)

13
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APPLICATION TO FLOW WITH VARYING AREA

The equations already pre_ented are ._ufficient to analyze completely
the flow through turbine pa_ages, provided that there are no losses

(flow is isentropic). Although there are losses in a turbine, we can use

the loss-free process to learn somethin_ about the behavior of the flow

in the varying-area passages (starer, rotor, and exit diffuser) of the
turbine.

Effect of Flow Regime

We are going to examine the relations amon_ pressure, velocity

area chan_e, and Math number. Proper manipulation of the previ-

ously presented equations yields the following equation for isentropic
flOW:

dV l--M_ dp dA
--(1--3_) _/= .r._12 P A (1-65)

Equation (1-65) shows that (1) for all Math numbers the change in

velocity is opposite to the change in pressure and (2) the directions of

the changes in velocity anti pressure with changes in area depend on

whether the Mach number is less than 1 (subsonic flow), equal to 1

(sonic flow), or greater than 1 (supersonic flow). By way of definition,

let us specify that a nozzle is a varying-area passage in which static

pressure decreases and a diffuser is a varying-area passage in which
static pressure increases.

Let us examine the various cases from equation (1-65):

A. Subsonic flow (M(1):

1. Increasing pressure (dp)0):

Velocity decreases (dV(0) and area increases (d.A)0).

This is the subsonic diffuser..

2. Decreasing pressure (dp(0):

Velocity increases (dV)0) and area decreases (dA(0).
This is the subsonic nozzle.

B. Supersonic flow (M) 1) :

1. Increasing pressure (dp)0):
Velocity decreases (dV(0) and area decreases (dA(0).

This is the supersonic diffuser.

2. Decreasing pressure (dp(0):

Velocity increases (dV)0) and area increases (dA)0).

This is the supersonic nozzle.
C. Sonic flow (M= 1) :

Both increasing (dp)0) and decreasing (dp(0) pressure.

Area change must equal zero (dA==0). Thus, the sonic, or

critical, condition can occur only at the inlet, exit, or mini-

mum-area section of a varying-area passage.

14
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You may alsd want to note that in order to cross the critical con-

dition (._I----1) going either up or down in velocity, the flow passage

m_lst have a decreasing-area portion followed by an increasing-area

portion.
Flow in Nozzles

Since we are concerned primarily with nozzle flow rather than

diffuser flow in turbines, we will narrow the discussion to flow in

nozzles. We will further limit the discussion to the case where the flow

entering the nozzle is subsonic, since this is the case of most interest.
Conrergent nozzle.--Let us first consider the simple convergent

nozzle. This corresponds to the case A2 mentioned previously. Assume

the nozzle is supplied with gas from a reservoir (zero velocity) where

the gas is maintained at a static (and total) pressure p' and a static

(and total) temperature T'. The exhaust, or outside, static pressure is

designated as p, and the static pressure right at the nozzle exit (in the
throat) is designated as Pt. When p, is a little less than p', flow com-
mences and the throat pressure p_ is equal to p,. As p_ is progressively

lowered, flow rate and velocity both increase, with pt still equal to p_.

At some value of p,, the velocity at the throat becomes equal to sonic

velocity, and M----1 at the throat.
What happens if p, is now lowered further? We have seen that a

Mach number greater than 1 cannot be attained in a convergent
nozzle. Therefore, the flow at the throat remains in the critical condi-

tion (M= 1) no matter how much p, is lowered. The static pressure in
the throat remains at the critical pressure, which according to equa-

tions (1-62) and (1-29) is

/3L_Y'"-"
Pt----P_'=P' \'y+ l.]

Once p, is reduced below p_,, the exhaust pressure has no effect on
the flow within the nozzle. The gas expands from p' to p_----p_, within

the nozzle and then expands further from Pt to p, outside the nozzle.

The expansion process from Pt to p, occurs with shocks (which occur
with an increase in entropy and will be discussed a little later), and

the isentropic equations are not valid for this part of the process.
The fact that the throat condition remains constant for nozzle

pressure ratios (p'/p,) greater than or equal to the critical pressure
ratio (p'/pl;) means that the nozzle mass flow rate also remains

constant under these conditions. Thus, for a fixed upstream state,
the mass flow rate reaches a maximum value when M becomes 1 at

the throat and thereafter remains constant no matter to what value

the exhaust pressure is reduced. The fact that this condition corre-

sponds to maximum flow can be prcven mathematically. A nozzle in
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this condition is said to be choked.

Convergent-divergent nozzle.--Let us now consider the somewhat

more involved case of the convergent-divergent nozzle. Again, assume
the nozzle to be supplied _ith gas from the same reservoir maintained

at pressure p' and temperature T'. Figure 1-3, showing plots of pres-

sure ratio against nozzle length, will supplement this discussion. If

the exhaust pressure p, is a little less than p' (curve AB in fig. 1-3),

flow commences _ith the lowest pressure occurring at the throat

(Pz_P_). In this case, the divergent section of the passage is acting

•as a subsonic diffuser. As p, is progressively lowered (curve AC in fig.
1-3), the pressure p, at the throat decreases and the velocity increases.

Eventually, at some particular value of p,, the throat veloJty becomes

equal to the sonic velocity, or M,=I (curve AD in figl 1-3). Note

that p, is still higher than Pt, and the gas still diffuses subsonically

_Pe
l/ /

I
Throat

I
I
I
I

- _!

E
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in the divergent section. Since the throat condition is now critical

(with pr=pc,_pe), we see that the nozzle pressure ratio (p'/Pe)

required to achieve the critical condition in a convergent-divergent
nozzle is less than the nozzle pressure ratio (p'/pe=P'/Pcr) required to

achieve the critical condition in a simple convergent nozzle.

If pe is a_ain lowered, the throat must remain at the critical
condition because equation (1-65) showed us that the throat is the

only place where the critical condition can exist. Thus, as with the

convergent nozzle, the throat state remains constant, and the mass
flow must remain constant at its maximum value. As long as the

critical condition is maintained at the throat, the nozzle is choked

and the convergent part of the nozzle continues to behave inde-

pendently of the conditions beyond the throat.
If the flow is to be supersonic and isentropic throughout the

divergent part of the nozzle, then for any given ratio of throat area

to discharge area, only one exhaust pressure Pe _411 satisfy the con-
servation of mass and energy, as well as the isentropic process,

relations. This case is represented in figure 1-3 by curve AE, which

shows pressure falling continuousl):. It is unreasonable to assume

that flow is impossible between the values of p, that allow either

isentropic subsonic diffusion to some p,_pt (curve AD, fig. 1-3) or

isentropic supersonic expansion to some p,_pt (curve AE, fig. 1-3)..
The flow that does take place, therefore, cannot be isentropic.

Observing the gas flow under these nonisentropic conditions by

optical means reveals that surfaces of abrupt density changes occur
in the flow. These apparent discontinuities in the flow are shock

waves. Shock waves are of very small thickness, and the fluid state

changes may be considered as occurring instantaneously. Total

temperature'across a shock remains constant but, even though there

is a rise in static pressure, there is a loss in total pressure because the

process occurs with an increase in entropy. Shocks may be strong or
weak. Strong shocks occur normal to the flow (and are thus called

normal shocks) and result in subsonic velocities downstream of the
shock. Weak shocks occur at some small angle with respect to the

flow direction (and are thus called oblique shocks), and the velocity

downstream of the shock remains supersonic, but the Mach number

is 4ess than that upstream of the shock.

Let us now complete the discussion of convergent-divergent nozzles

for the region of pressure ratios between points D and E in figure 1-3.

If the exhaust pressure p, is reduced a little below the value at point

D, a normal shock occurs at some point in the divergent part of the

nozzle, and the pressure rises instantaneously to a value such ttiat

isentropic subsonic diffusion occurs from the shock plane to the nozzle

17
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exit. The flow process in this case is illustrated by the path AKLF,

with AK being an isentropic expansion, KL being the normal shock,

and LF being the isentropic diffusion. As p_ is reduced further, the

normal shock moves toward the nozzle exit, and the flow process is

represented by a path such as A_ING. At some value of p_ correspond-

ing to point H, the normal shock will be right at the nozzle exit, and
the flow path in the nozzle is AEH.

For values of p_ betwedn points H and E, a normal shock cannot

occur because it is too strong and would result in a static pressure

higher than p_. In this case, the weaker oblique shock occurs at the

nozzle exit, with the shock becoming weaker as pc approaches point E.

When p, corresponds to point E, as mentioned previously, the nozzle

flow is again completely isentropic. For lower values of p_, the final

expansion from the nozzle-exit static pressure to p_ occurs outside
the nozzle in a nonisentropic manner.

It should be pointed out that the previous discussion and the proc-

esses shown in figure 1-3 are idealized. In actuality, the shock effects

do not occur exactly instantaneously and the pressure rise, although
abrupt, takes place over a finite distance. Also, real-fluid considera-

tions may produce effects that make the subsonic flow do_"nstream of

a shock different from isentropic. The general processes, however, are

qualitatively similar to those shown in figure 1-3.

Thermodynamlc.Property and Flow-Function Tables and Charts

In order to facilitate thermodynamic and flow calculations, many

sets of tables and charts have been constructed and published in

books and reports. Some of these are listed as references 3 to 7.

Thermodynamic properties of air and its combustion products as

functions of temperature are presented in references 3 and 4. These

charts and tables include the variation in heat capacity with tempera-

ture. The thermodynamic properties of air and also the individual

components of air and its combustion products (nitrogen, oxygen,

Carbon dioxide, water vapor, and argon) are presented in references 4

and 5. Compressibility factors are also presented in reference 5. The

properties presented in reference 5 include the effect of pressure, as

well as temperature.

Isentropic compressible-flow functions (TIT', pip', p/p',A/Acr, and

others) as'_unctions of Mach number are presented in references 4, 6, and 7

for various values of heat-capacity ratio. Also included are tables and

charts for normal and oblique shock calculations. Reference 6 pre-

sents a listing of compressible flow function and shock function equa-

tions in terms of both Mach number and critical velocity ratio.

18
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SYMBOLS

flow area, m2; ft 2

acceleration, m/see2; ft/sec 2
speed of sound, m/sec; ft/sec
general constants for polynomial, eq. (1-16)
heat capacity at constant pressure, J/(kg)(K); Btu/(lb)(°R)
unbalanced force, N; lb
conversion constant, 1; 32.17 (lbm)(ft)/(lbf)(sec 2)

specific enthalpy, J/kg; Btu/lb
conversion constant, 1; 778 (ft) (lb)/Btu
Mach number, defined by eq. (1-59)
molecular weight, kg/(kg mole); lb/(lb mole)
mass, kg; lb

absolute pressure, N/m2; lb/ft 2
heat added to system, J/kg; Btu/lb

heat produced by friction, J/kg; Btu/lb

gas constant, J/(kg)(K); (ft)(lbf)/(lbm) (°R)
frictional resistance force, N; lb

universal gas constant, 8314 J/(kg mole)(K); 1545 (ft)(lbf)/

(lb mole) (°R)

s specific entropy, J/(kg)(K); Btu/(lb)(°R)

T absolute temperature, K; °R

t time, sec

u specific internal energy,. J/kg; Btu/lb

V fluid absolute velocity, m/sec; ft/sec

v specific volume, mS/kg; ft3/lb

W, mechanical work done by system, J/kg; Btu/lb

w mass flow rate, kg/sec; lb/sec

x length, m; ft

Z specific potential energy, J/kg; (ft)(lbf)/lbm

z compressibility factor, defined by eq. (1-4)

_, ratio of heat capacity at constant pressure to heat capacity
at constant volume

p density,_kg/m 3; lb/ft 3

Subscripts:
c critical state condition

cr critical flow condition (M= 1)

e exhaust

t throat

Superscript:
' absolute total state
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CHAPTER2

BasicTurbineConcepts

By ArthurJ. Glassman

This chapter introduces turbine geometric, flow, energy-transfer,

efficiency, and performance characteristics primarily by means of defi-

nitions, diagrams, and dimensionless parameters. Terms referring to
the blades and blading geometry are defined in the GLOSSARY, at

the end of this chapter.

TURBINE FLOW AND ENERGY TRANSFER

Analysis Coordinate System

An analysis of the flow and energy-transfer processes within a tur-

bine requires some convenient coordinate system. For fluid flowing

through a turning wheel, a logical system consists of one coordinate

directed parallel to the axis of rotation, one coordinate directed radi-

ally through the axis of rotation, and one coordinate directed tan-
gentially to the rotating wheel. These are the axial, radial, and

tangential directions indicated in figure 2-1.
These three coordinates form three planes. Analysis of flow in the

radial-axial plane depicts the circumferentially-averaged (or blade-to-

blade average) radial and axial variation of the desired flow param-

eters. For many types of calcolations, we can ignore the circumferential

(or blade-re-blade) variation of parameter values and just use average
values. Such a calculation is called an axisymmetric analysis.

Calculations made in the axial-tangential or radial- tangential planes

are usually at some constant value (rather than for average conditions)
of the third coordinate. Velocity diagram, as well as blade-to-blade

velocity-variation, calculations are usually mad '_ in these planes. When
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FIGURE 2-1.--Velocity components for a generalized rotor.

flow is predominantly radial, such as at the inlet to a radial-flow

turbine, the radial-tangential plane is used. When flow is predomi-

nantly axial, such as in an axial-flow turbine, the axial-tangential
plane is used.

Velocity Vectors and Diagrams

One of the most, if not the most, important variables that we will

be concerned with in the analysis of turbine flow and energy transfer
is the fluid velocity and its variation in the different coordinate direc-

tions. To assist us in making these analyses and in depicting blading

shapes and types, we use velocity-vector diagrams.
For flow in and across the stators, the absolute velocities are of

interest. "For flow in and across the rotors, velocities must be consid-

ered relative to the rotating blade. In terms of relative velocities and

other relative parameters to be discussed later in this chapter, flow in

a rotating blade row can be analyzed in a manner similar to the anah-sis

of flow in a stationary passage..
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Velocity-diagram calculations are made at locations upstream and
downstream of the various blade rows or at iust infinitesimal distances

inside the blade rows. In making the velocity diagrams, the circum-

ferential variations in flow are not considered. The velocity vectors

represent the circumferential average of the flow.
The velocity diagram shows both the absolute and the relative

velocities. In making the velocity diagram, note that

Relative velocity=Absolute velocity--Blade velocity (2-1)

or

W=V--U (2-2)

where

W relative velocity vector •
---4

V absolute velocity vector
---4

U blade velocity vector

Since blade velocity is always in the tangential direction, we need onl_

consider the magnitude, that is, the blade speed. So, we can write

W=V--U (2-3)

The velocity diagram in figure 2-2 represents equation (2-3) and _lso
shows the components of the absolute and relative velocities. Assuming

this velocity diagram to be drawn in an axial-tangential plane, the
absolute and relative velocities can be expressed in terms of their

Relative

angle
of flOW,

Vx • Wx

Absolute

angle

of flow,

J

r

._r V

V u

FIGURE 2-2.--Typical velocity-vector diagram having tangential components

of absolute and relative velocities in the same direction.
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components .in the axial and tangential directions as

V_=V2 +V= 2 (2-4)

and
W 2----W=2+ W= 2 (2-5)

where

V magnitude of V, m/sec; ft/sec
Vx axial component of absolute velocity, m/sec; ft/sec

V= tangential component of absolute velocity, m/sec; ft/sec

W magnitude of W, m/see; ft/sec
Wx axial component of relative velocity, m/sec; ft/sec

W= tangential component of relative velocity, m/sec; ft/sec

If this diagram (fig. 2-2) were dra_-n in the radial-tangential plane,
the values marked as axial components would be radial components.

From figure 2-2, we see that we can write

W,,----V=-- U (2-6)

A sign convention must be established for the angles and the

tangential components of velocity, since not all velocity diagrams
axe of the exact same geometrical shape as the example diagram

shown in figure 2-2. We could have, for example, the velocity dia-

gram shown in figure 2-3. In this instance, the tangential components
and flow angles of the absolute and relative velocities axe directed

in opposite directions, and it is not obvious that equation (2-6) is
valid. Therefore, we will adopt and stick with the convention that

Relative

angleof

flow,

W '

Wx • Vx

-Absolute

angle

of flow,
¢1

I

I V •

-II u

FIGURE 2-3.--Typical velocity-vector diagram having tangential components of

absolute ap.d relative velocities in opposite directions.
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all angles and tangential components of velocity are positive if they
are in the direction of the blade velocity and are negative if they are

in the direction opposite to the blade velocity. With this convention,

we can now see that equation (2-6) remains valid for the velocity

diagram sho_-n in figure 2-3, where a small positive value of V_
minus a larger positive value of U yields a negative value for W_.

Not all turbine analysts use the above convention for all cases.

Some use the above convention at a location immediately upstream

of a rotor and then switch positive and negative directions at locations

immediately dm_-astream of a rotor. In many cases this avoids working

_ith negative values. Also, many analysts work with angles defined

with respect to the tangential direction rather than the axial direction
as we are using. Therefore, if you should have occasion to use velocity-

_iagram information generated by someone else, make sure that

you are aware of the convention used in generating this information.

Energy Transfer

The basic energy-transfer relation for all turbomachines is rela

tively simple and is only a form of Newton's Second Law of Motion

as applied to a fluid traversing a rotor. Figure 2-1 represents a rotor

of a generalized turbomachine, with 0-0 the axis of rotation and
the angular velocity. Fluid enters the rotor at point 1, passes through

the rotor by any path, and is discharged at point 2. The directions

of the fluid at points 1 and 2 are at any arbitrary angle, and points

1 and 2 are at any radii rl and rv A condition of steady state is as-

"sumed. Further, the velocity vectors at the inlet and the outlet are

regarded as representing the average values for the mass of flow

being considered.
The inlet and outlet velocity vectors can be resolved into the three

mutually perpendicular components discussed previously. The change

in magnitude of the axial velocity components through the rotor gives
rise to an axial force, which must be taken by a thrust bearing. The

change in magnitude of the radial velocity components gives rise to

a radial bearing load. Neither the axial nor the radial velocity compo-

nents have any effect on the angular motion of the rotor (except for

the effect of bearing friction). It is the change in magnitude and radius

of the tangential components of velocity that corresponds to a change

in angular, momentum of the fluid and results in the desired energy

transfer"

Net rotor torque is equal to the difference between the inlet and

outlet products of tangential force times radius, or

r = (F_r)_-- (F.r) 2 (2-7)
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where

r net torque, N-m; lb-ft

F, tangential force, N; lb

r radius, m; ft

Applying equation (1-34) in the tangential direction, integrating from
V=0 at t-=-0 to V----V at t=t, and setting w=m/t yields

F w
_=_y_

where

w rate of mass flow, kg/sec; lb/sec

g conversion constant, 1 ; 32.17 (lbm) (ft)/(lbf) (sec 2)

Substituting equation (2-8) into (2-7) then yields

(2-s)

I"-_-- Vu, lrl--g _ Vu.2r_=_ (V_.lrl--V_.qr2) (2-9)

Power (rate of energy transfer) is equal to the product of torque and

angular velocity:

p_rco_w _o(r, V, ,--rqV,.2) (2-10)
-- j --gJ ,

4

where

P net power, W; Btu/see

angular velocity, rad/see
J conversion constant, 1 ; 778 (ft) (lb)/Btu

Since
r_U

we can write

But

p_W__
--gj (U,V..,--UqV..,)

p_w_ p

(2-11)

(2-12)

(2-13)

where h' is total enthalpy, in J/kg or Btu/lb. Substituting equation

(2-13) into equation (2-12) yields

_; =_j (U_ V_. _--UqV_,_) (2-14)

I I

where hh' is here defined as h_--hq.

Equation (2-14) is the basic work equation for all forms of turbo-
machines and is called the Euler. equation. All the energy transfer

between the fluid and the rotor must be accounted for by the difference

between the two UV_ terms. The way equation (2-14) is stated, it
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can be seen that 5h' must be positive for a turbine. This is consistent

_-ith the energy balance, equation (1-46), where work done by the

fluid is defined as positive.
It is useful to transform the Euler equation into another form. This

_ill be done with the aid of figure 2-4, which shows an axial-flow

turbine blade section along with the velocity diagrams for the inlet

and outlet. The velocity diagrams are in axial-tangential planes.

There is assumed to be no radial component of velocity at either the

inlet "or the outlet locations, although these locations are not neces-

sarily at the same radius. Actually, the following derivation also can
be made for a general three-dimensional case.

From equations (2-4) and (2-5), we get

Vz2= V2_ V=2 (2-15)

and
W2=W2--Wu 2 (2-16)

Substituting equation (2-6) into (2-16) gives

./

Vx, 1" Wx, 1

p

/ Direction

of rotation

v2/
/_/-Vx, 2" Wx, 2

u2 \
LVu, 2

FIGURE 2-4.--Rotor section with inlet- and exit-velocity-vector diagrams.
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W=2=W 2- (Vu-- U) 2 (2-17)

Since Vz = W=, combining equations (2-15) and (2-17) yields

V2 _ V,,=W2_ V,,2+ 2UV, -- U 2 (2-18)

Therefore,

UV,,= 1 (V2+ U2_W 2) (2-19)

Now, adding subscripts for inlet and outlet yields

V 1 (Vl2.jrUL2_WlS)
U, .,,=_

(2-20)

V 1 (V22..I_U2_W22) (2-21)
Us ..2---_

Inserting these values into the Euler equation (eq. (2-14)) finally

yields

_, l_ (V2_Vs+UIs_U22+W S_W_) (2-22)
--2gJ

Equation (2-22) is an alternative form of the basic energy-transfer

relation.

By definition, A_.'--_' _'--h ±V12 _ V2S (2-23)
_.

Therefore, comparison of equation (2-22) with equation (2-23)

shows that

_h=h,_h_;2___j (Us_U22+W/_W,S) (2-24)

Thus, the U s and W 2 terms of equation (2-22) represent the change

in static enthalpy across the rotor, while the V s terms represent the

change in absolute kinetic energy across the rotor. These three pairs
of terms are sometimes referred to as the components of energy

transfer.

Blade Loading

As mentioned previously, it is the change in the tangential momen-
tum of the fluid that results in the transfer of energy from the fluid to

the rotor. The following discussion and figure 2-5 concern the cause

of this change in tangential momentum and the way in which the

energy is actually transferred to the wheel.
As the fluid flows through the curved passage between each pair of

blades, a centrifugal force acts on it in the direction of the pressure
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k

Stations

J
Flow

1

/- Suction
/ surface I

Axial chord

\
Flow

Q.

p,°

[/_._ /- Pressure surface

--P2

Suction sur ace_

Axial distance

FIGURE 2-5.--Blade row with surface static-pressure distribution.
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(concave) surface. Since the fluid is constrained and, therefore, not

free to move in the direction of the centrifugal force, a pressure force

must be established to balance the centrifugal force and turn the fluid

through its curved path. The pressure force is directed normal to

the flow and toward the suction (convex) surface. Thus, the pressure

in the passage is highest at the pressure surface and lowest at the
suction surface.

The resulting distribution of static pressure on the blade surfaces

is illustrated in figure 2-5, where pressure is plotted against axial

distance. At or near the blade leading edge there is a stagnation point

where the velocity becomes zero and the pressure reaches its stagna-

tion value. The stagnation point is the dividing point for the fluid

flowing around to the two sides of the blade. From the stagnation

point, the pressure along the blade surfaces decreases toward the blade

trailing edge. On the suction surface, the static pressure will often de-

crease below the exit pressure and then increase back up to the exit

pressure.
The pressure-distribution curve illustrated in figure 2-5 is called

the blade-loading diagram. The area between the curves represents

the blade force acting in the tangential direction.

Relative Conditions

Flow in a rotating passage can be analyzed in a manner similar to
flow in a stationary passage by considering conditions relative to the

moving passage. Let us first define relative total enthalpy in a manner
similar to the definition of absolute total enthalpy.

h' '_:h+2_-- J (2-25)

where h" is relative total enthalpy, in J/kg or Btu/lb. Now let us

examine what happens to relative total enthalpy as the fluid flows

through the rotor. If in equation (2-24) we substitute for W 2 according

to equation (2-25), we get

h_'--h'l' U2_--U_2 (2-26)
-_ 2gJ

Therefore, we see that the relative total enthalpy of the fluid flowing

through the rotor changes only if there is a change in the blade speed.

For purely axial flow, where there is no change in radius and, conse-

quently, no change in blade speed, the relative total enthalpy remairis
constant for the rotor flow process.

We can also define a temperature that corresponds to relative total

enthalpy. This :,_, called the relative total temperature, T". _hen
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ideal-gas-law behavior and constant heat capacity can be assumed,

we can write
h"--h=cv(T" --I") (2-27)

where

cp heat capacity at constant pressure, J/(kg) (K) ; Btu/(lb) (°R)
T absolute temperature, K; °R

Combining equation (2-27) with equation (2-25) then yields

t r -- W2

T --T+2gjc p (2-28)

From equation (1-51) and equation (2-28), we see that the absolute
and relative total temperatures are related as follows:

V_--W2 (2-29)
T' -- T" -- 2gJc_

For the rotor flow process, we can write

" h'2'--h_'-_c_(T_.'--T_') (2-30)

Combining this with equation (2-26) shows that

TT2 V 2
,r,, q"' ,_2-- I (2-31)
-2 ---_ ------2gJcp

Therefore, relative total temperature, like relative total enthalpy,

depends only on blade speed and remains constant for purely axial

flow through a rotor.
Relative total pressure can be defined as the pressure of a fluid

brought to rest isentropically from a relative velocity W and a static

pressure p. Therefore,
P" /'T'"_ "'<'-') (2-32)

where

p" relative total pressure, N'/m2; lb/ft 2
ratio of heat capacity at constant pressure to heat capacity at

constant volume

From this equation and equation (1-52), we also see that

•. " T" _/(_-1)
_-T-_ (-_-7-) (2-33)

For the rotor flow process, relative total pressure can increase, de-

crease, or remain constant, depending on the change in relative total

temperature and on the losses. For purely axial flow, relative total
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pressure x_ill remain constant only if the flow is isentropic; other_ise,
it must decrease.

We can define a relative _Iach number Mrez as

M, ez_--W (2-34)
a

and a relative critical velocity as

I¥¢,=a_..._=_/-_ 1 gRT" (2-35)

where

_7"cr

acT, re$

R

Then, in a manner similar to the way we derived'equations

and (1-64), we can get

and

critical velocity, m/sec; ft/sec

speed of sound at relative critical condition, m/sec; ft/sec

gas constant, J/(kg) (K) ; (ft) (lb) / (lb) (°R)

1-60)

(2-36)

T--1 _,--1 2-37)

l_ca£tlon

The fraction of total energy 'transfer (change in absolute total

enthalpy) that is obtained by a change in static enthalpy is one im-

portant way of classif)_ing a turbine stage. The change in kinetic

energy as a fraction of the exit kinetic energy is one important way of

classifying a blade row. The parameter used in both cases is the degree
of reaction, or more simply, the reaction. Reaction is used for classifying

types of velocity diagrams, and it is also an important parameter for

correlating losses.
Stage reaction.-_--Stage reaction is defined as the change in static

enthalpy across the rotor as a fraction of the change in absolute total

enthalpy across the stage. Note that the change in absolute total

enthalpy across the stage is the same as the change in absolute total

enthalpy across the rotor, since total enthalpy remains constant

through the stator. According to the above definition of stage reaction,

we can write

h_--h2 (2-38)
R'"-- h/--h2'

where R,. is stage reaction, and the subscripts 1 and 2 refer to con-

ditions upstream and downstream of the rotor, respectively.
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The preceding equatio_ for reaction can be expressed in terms of
velocities. Substituting equations (2-22) and (2-24) into equation
(2-38) yields

R,,z-- (Ut2-- U22)+ (W22-W'2) (2-39)
(V, 2- V?) + (U, 2- U?) + (W?-W, 2)

Reaction can be positive, negative, or zero, depending on the values of
(U12--U22) and (W22--Wl2).

Zero reaction is one important value that characterizes a particular
stage design. If R,tg=O, there is no change in static eathalpy in the
rotor, and all the work done by the stage is a result of the change in
absolute kinetic energy across the stage. This stage is called an impulse
stage. In the general case where the fluid enters and leaves the rotor
at different radii, an impulse stage may result from having a change
of static enthalpy in one direction contributed by the centrifugal (U 2)
effect and an equal change in the other direction contributed by the
relative-velocity effect. For purely axial flow, any change in static
enthalpy must be caused by a change of relative velocity only. Thus,
an axial-flow impulse stage must have W,= W2.

Some people define impulse on the basis of no change in static
pressure in the rotor rather than no change in static enthalpy. This
definition in terms of static pressure is approximately the same as that
used herein. The difference is due to losses. For isentropic flow, the
definitions exactly coincide.

Simple examples of impulse turbines are the child's pinwheel, the
windmill, or the paddle wheel operated by the impingement of a fluid

from a stationary nozzle. A simple example of a reaction turbine is
the lawn sprinkler that ejects the water from nozzles, thus causing
rotation.

Blade-row reaetion.--Blade-row reaction is defined as the kinetic

energy developed within the blade row as a fraction of the kinetic
energy at the blade-row exit. These are the kinetic energies relative
to that blade row. For a stator or axial-flow rotor, the change in
kinetic energy corresponds to the change in static enthalpy. Therefore,
blade-row reaction ret_resents an effect similar to that represented by

stage reaction.

For a stator blade row, reaction is defined as

R V,2--Vo 2 1 Vo2
,,=--V2--=,--W2

(2-40)

where R,, is stator reaction. For a rotor blade row, reaction is defined
as
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R -W22--Wt2=l Wl2 (2-41)
,o-- W22 " W22

where R,o is rotor reaction. The subscripts 0, 1, and 2 refer to condi-

tions upstream of the stator, downstream of the stator, and down-

stream of the rotor, respectively.
In some literature, the blade-row reaction is defined in terms of

velocities instead of kinetic energies. This definition is similar to

equations (2-40) and (2-41) except that the velocities appear to the
first power rather than squared (i.e., V rather than V2).

Turbine Expansion Process

For all adiabatic expansion processes, the maximum energy trans-

formation (development of kinetic energy) or energy transfer (de-

velopment of mechanical work) for a given pressure ratio is obtained

when the process is isentropic. This can be proven from the previously

presented equations (but we will not do it here), and we will illustrate
this fact graphically a little later in this discussion. With the ideal-

gas-law and constant-heat-capacity assumptions, we have previously
shown that energies and energy changes can be represented by tem-

peratures and temperature changes. Therefore, with temperature,

pressure, and entropy all being variables of interest, we can con-
veniently represent the ideal (isentropic) and actual expansion

processes in a turbine by means of a temperature-entropy diagram.
The temperature-entropy diagram is a plot of temperature against

entropy for lines of constant pressure. Since entropy increases with

increasing temperature and decreasing pressure, as can be seen from
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the discussion of the constant-entropy-process thermodynamics in

chapter 1, a temperature-entropy, or T-s, diagram looks like the

example shown in figure 2-6. A constant-entropy process is repre-

sented by a vertical line. At increasing values of temperature and

entropy, the pressure curves diverge; therefore, at increasing values
of constant entropy, the temperature difference between any two

given pressure curves is also increasing.
For the purposes of clarity, the turbine expansion process will be

divided into four steps, with each shown in a separate T-s diagram.

These four diagrams will then be combined into a single diagram.

The four diagrams represent the stator expansion process (fig. 2-7(a)),
the relation between absolute and relative conditions at the stator

T5•T_

"I

T_

Ty.T_

T]

T2

T2,,id

L(a)

_',_.id

.Po

29JCp

p_

ZZZ Z
(c) 1 2

(a) Expansion process across stator.

(c) Expansion process across rotor.
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T1

f lWt ]

x

_cn I _ Pz

1
Ib)

X_

T!

T2

(rl)
i

Entropy,s

J II

2

(b) Relation between absolute and

relative conditions at stator exit.

(d) Relation between relative and

absolute conditions at rotor exit.

FIGURE 2-7.--Temperature--entropy diagrams for flow-process steps of an axial-

flow turbine.
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exit (fig. 2-7(b)), the rotor expansion process relative to the moving

blades (fig. 2-7(c)), and the relation between relative and absolute

conditions at the rotor exit (fig. 2-7(d)).

Figure 2-7(a) shows the expansion process across the stator. The

four constant-pressure curves represent the static and absolute total

pressures before and after the expansion. The kinet'c energy at each

state is represented by the vertical distance between the static state

point and the total state point in accordance with equation (1-51). If

the expansion process were isentropic, the final state would be that

indicated by the subscript 1,id. The actual process proceeds from
state 0 to state 1 with a small increase in entropy, as indicated by

the small arrows. It can be noted that the kinetic energy developed

by the actual process is less than would be developed by the ideal

process.
As mentioned previously, we analyze flow through the rotor in

terms of relative conditions. Figure 2-7(b) shows the relation between
the absolute and relative total states at the stator exit. These states

are related isentropically, and the absolute and relative kinetic en-

gies and total temperatures are indicated in the figure.
The expansion process across the rotor is shown in figure 2-7(c) in

terms of the relative conditions. The four constant-pressure curves

represent the static and relative total pressures before and after the

expansion. For simplicity, axial flow is assumed, so that T;'= T_'.
If the expansion were isentropic, the final state would be that indicated

by the subscript 2,id. The actual process proceeds from state 1 to

state 2, as indicated by the small arrows, with an increase in entropy.

Here again it can be noted that the relative kinetic energy developed

by the actual process is less than would be developed by an ideal

process.
The relation between th.e relative and absolute total states at the

rotor exit is shown in figure 2-7(d). These states are related isen-

tropically, and the relative and absolute kinetic energies at the stage
exit are indicated.

The four diagrams of figure 2-7 are now combined into one diagram

shown as figure 2-8. The static, absolute total, and relative total

state processes for, the turbine expansion are indicated by the arrows

through the appropriate state points. For the time being, ignore the

enthalpy differences indicated on the right of the figure. Note that the

point (p2, T2.,d), which is on the state 1 constant-entropy line in

figure 2-7(c), is not the same point as indicated in figure 2-8, where

it is on the state 0 constant-entropy line. In figure 2-7(c), the sub-

script 2,id refers to the ideal expansion across the rotor alone. In

figure 2-8, the subscript 2,id refers to the ideal e.xpansion across the

entire stage (both stator and rotor). The meaning of t[ _ subscript 2,id
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FmURE 2-8.--Temperature-entropy diagram for a stage of an axial-flow turbine.

is, therefore, ambiguous but is commonly used in both senses. It is
obvious from figure 2-8 that the work obtained from the real turbine

process (as represented by T_--T_) is less than the work that could
be obtained from an ideal turbine process (as represented by

T_-- T;. ,,).

Blade-Row Efficiency

Since turbine blade rows do not operate isentropically, we need a

parameter to express blade-row performance. One common parameter
used for this purpose is blade-row efficiency, which is defined as the
actual exit kinetic energy divided by the ideal exit kinetic energy of the
blade row. For the stator,

V_ (2-42)
'7-='V_. ,,,

Vl.,d iswhere ,,, is stator efficiency. The relation between V_ and 2
indicated in figure 2-7 (a). By applying equations (1-51), (1-52), and

(1-55), we get
/2 , r /p1\¢ _-z)l_-I I (2-43)

For the rbtor

W]2 (2-44)
_to _w_, tcZ

r2
where n,o is rotor efficiency. The relation between W_ and

is indicated in figure 2-7(c). For purely axial flow,
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W_. "_d=2gJcpT_'E1 --\_-_/(p_ ")(_-l)l_l_l (2-45)

Thus, with inlet conditions and efficiency known for a given blade row,
it is possible to calculate exit velocity for a specified exit static pressure.
Blade-row performance in terms of kinetic energy is sometimes

expressed as a loss rather than as an efficiency, as

e= 1 -- ,7 (2-46)

where e is the kinetic-energy loss coefficient.
Blade-row performance also can be expressed in terms of a loss in

total pressure. Several coefficients of this type have been used, each
differing by the normalizing parameter used to make the coefficient
dimensionless. Inlet total pressure, exit ideal dynamic head, and exit

actual dynamic head have all been used for this purpose as follows:

(2-47a)

(2-47b)

(2-47c)

where Y, Y', and Y" are total-pressure loss coefficients. Relations
between the kinetic-energy loss coefficient and the various total-

pressure loss coefficients can be derived. These relations are not simply
stated, and they involve a Mach number dependency.

Turbine and Stage Efficiencies

Turbine or stage energy transfer is maximum when the expansion

process is isentropic. Since the process is never isentropic, we need a
parameter for expressing turbine or stage performance. The parameter
that we use is the turbine or stage efficiency, which is defined as the

ratio of actual en,rgy transfer to ideal (isentropic) energy transfer.
This efficiency is known as the isentropic or adiabatic efficiency. The
several different ways that we carl apply the above definition are
discussed in the sections to follow.

Overall e_iency.--Overall efficiency refers to the overall turbine or
stage process. It is the ratio of actual energy transferred in the turbine
or stage to the ideal energy transfer based on isentropie flow from
the turbine or stage inlet condition to the exit pressure. Note that

we are discussing aerodynamic efficiency and are not, at present,
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considering me.chanical inefficiencies due to items such as bearing and

seal friction.
We will define actual energy transfer as the shaft work done by the

turbine. This definition is the one used by most people; occasionally,

however, actual energy transfer is defined as shaft work plus exit kinetic

energy. Actual energy transfer as defined herein is the decrease in
absolute total enthalpy across the turbine or stage, and this is indicated

in figure 2-8.
Now we must consider whether to define the ideal energy available

to do work on the basis of static or total conditions. At the inlet, the

total state is ahvays used because the inlet kinetic energy is available

for conversion to shaft work. At the turbine or stage exit, static

conditions are sometimes used and total conditions are sometimes

used. If the turbine exhaust-flow kinetic energy is dissipated, as in a

plenum, then the exit kinetic energy is just wasted. This wasted kinetic

energy could have been put to use if it could have been converted to
shaft work in the turbine. In such a case, we use the exit static state

for the computation of ideal work because it would be desirable to

expand down to the exit static state with zero exit kinetic energy. In
this desirable ideal case, the exit total state would equal the exit

static state.
If we were considering a multistage turbine in the above situation,

the kinetic energy from only the last stage would be considered as a
loss. The kinetic energies leaving the other stages are not wasted, but

are carried over to the next stage, where they may be converted to

shaft work. Thus, the last stage is rated on the basis of its exit static

condition, while the other stages are rated on the basis of their exit

total conditions.
In cases where the turbine-exit kinetic energy serves a useful pur-

pose, the entire turbine is rated on the basis of ideal work computed
from the exit total state conditions. The most obvious example of this

case is the jet-engine turbine. Here the gas must be expanded to a

high velocity before leaving the engine, and, therefore, a high velocity

leaving the turbine is not a waste.
The efficiency based on the ideal work available between the inlet

total and exit static conditions is called the static efficiency. The

efficiency based on the ideal work available between the inlet total and
exit total conditions is called the total efficiency. The conditions

represented.by the ideal enthalpy decrease for each of these cases are
indicated in figure 2-8. It can be seen that the ideal work based on
the exit total condition must be less (as long as there is some exit

kinetic energy) than that based on the exit static condition. Thus, total

efficiency is always higher than static efficiency, with the difference
between the two increasing with increasing exit kinetic energy.
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Overall turbine efficiency _ and stage efficiency ,7,,, are defined by

similar equations. The subscripts in and ex are used to denote turbine

inlet and exit conditions, instead of the subscripts 0 and 2 used for the

stage. Overall turbine static efficiency can be expressed as

(2--48a)

For the ideal-gas-law and constant-heat-capacity assumptions, this

reduces to

T'_.--T;=

_= T',, [ 1-- ( p,,_(,-1)/,-]__v_ (2-48b)p,.} I

Overall turbine total efficiency is expressed as

_, ?_h' h',,--h',,
'7= _'_-7-,=.,--Tr-- (2-49a)

For the ideal-gas-law and constant-heat-capacity assumptions, this

reduces to

7'= T',.--T:z

' r,-(,i,--u""-I (2 9b)
Tt. I_ XP_. / A

Stage total and static efficiencies are similarly defined but with the

appropriate subscripts.
Relation o] turbine el_ciency to stage e_ciency.--The overall turbine

efficiency is useful as a measure of the overall performance of the

turbine. However, it is not a true indication of the efficiency of the

stages comprising the turbine. There is an inherent thermodynamic

effect hidden in the overall turbine efficiency expression. If equation

(2-48b) or (2-49b) were written for a stage, it could be seen that for

a given stage pressure ratio and stage efficiency, the energy transfer,
which for a stage would be (T_--T_), is proportional to the tempera-

ture of the gas entering the stage. For a turbine, as can be seen from

figure 2-8, the losses of one stage appear in the form of a higher tem-

perature gas entering the following stage (T2>T_.,d). This following
stage is then capable of delivering additional work. Therefore, even

though-all the individual stages mayhave the same stage efficiency,

the overall turbine efficiency still depends on the pressure ratio and

the number of stages.

This effect can be shown by means of a temperature-entropy dia-

gram, such as figure 2-9. The solid vertical line O-2,id represents
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isentropic expansion from inlet pressure po to exit pressure p'2- The

dashed line 0-2 represents the process of overall turbine efficiency _'

taking place in three stages, each having the same stage efficiency _,,o.
The actual work obtained from each stage is _tz Ah'_.,=, where

hh_.,t, is the ideal work for a stage. As mentioned previously, the

difference of temperature between lines of constant pressure increases

_ith increasing values of entropy. Hence, for the second stage (p_ to

p_), the isentropic work represented by the line C-D is greater than
that represented by_A-B. Thus, the isentropic work for this stage is

greater by virtue of the inefficiency of the previous stage and, for

constant stage efficiency, the actual work will be greater. Similarly,

E-F is greater than B-2,id. With lines 0-A, C-D, and E-F represent-

ing the ideal work for the three stages, and ]S Ah'_.,_t representing
the sum of these, it can be seen that • Ah'_.,tt is greater than hh_,

which is the turbine ideal work represented by the sum of 0-A,' A-B,

and B-2,id.
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The total actual turbine work obtained from the expansion from p_

to p_ can be represented by either 7' Ah'_d or _:,g 2; d_hi_,,,_, and

these two values must be equal. Thus,

or

_'ah',_=,;,, z ah;,.., (2-50)

_' =z _;_,,,, (2-51)
! --t

Since Z 5h'f,.,tt >5h'-_, the turbine overall isentropic efficiency is

greater than the stage isentropic efficiencies, or ,7' _ts-
This effect in turbines is called the "reheat" effect. This must not

be confused _ith the process of adding heat from an external source

between stages, which is also called "reheat".

The equation for calculating overall turbine efficiency for several

stages of constant stage pressure ratio p_/po and constant stage

efficiency v:tt is

I-- 1--_,,, LI--\_-_/ .JJ (2-52)

_'= (p;'_.cer-,),-a
i--\_/

where n is the number of stages. The derivation of this equation can
be found in reference 1.

The fact that stage efficiency differs from turbine efficiency, depending
on the pressure ratio, raises an important consideration. A comparison

of turbine efficiencies of two machines, of different pressure ratios is

not a true comparison of their aerodynamic behavior, as the one of

higher pressure ratio is helped by the reheat effect. It would be de-

sirable to be able to express a true aerodTnamic efficiency for a turbine.

In order to eliminate all reheat effect, this would have to be the effi-

ciency of an infinitesimally small stage.
Infinitesimal-stage e2_iency.--Starting from pressure p and

temperature T, suppose a gas is expanded to pressure (p--dp) and

temperature (T--dT), where dT is the increment of temperature for

an infinitesimal stage of isentropic efficiency _p. By using the isen-

tropic-efficiency definition, we write

and

(2-53)

(2-54)
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These equations are not quite rigorously m accord with the isentropic-

efficiency definition. Some authors ignore the fact that the actual work

differential should be proportional to the total-temperature differen-

tial rather than the static-temperature differential. Other authors

make the assumption that there is no change in kinetic energy across

the infinitesimal stage, so that dT'=dT. However, it ahvays seems to

be the static temperature that is used in the infirStesimal-efficiency

expression.
Using the series expansion approximation (1-t-x)"=l+nx for

evaluation of equation (2-54) yields

dT _--1 dp (2-55)
-4- T

Integrating between the turbine inlet and exit yields

Tf_t

In T,_

'P="r--1 In P"
Pez

(2-56)

Equation (2-56) can be written as

T,. (p_,2) _,[(_-_)m (2-57)

The infinitesimal-stage efficiency ,p is supposedly the true aero-

dynamic efficiency, exclusive of the effect of pressure ratio. This

efficiency is also known as the polytropic efficiency. This name arises

from the method of expressing an irreversible process path as pv"=

constant, where n is called the polytropic exponent, and the process is

called a polytropic process. Substituting for v from the ideal gas law,

we get for the polytropic process

T,. (p_,,,')("-*_'"
W. (2-5s)

Equations (2-57)'a_d (2-58) are very similar, and if the turbine

process were to be expressed as a polytropic process, then we could

relate polytropic efficiency and the polytropic exponent as

n--1 -y--1
--=_Tp -- (2-59)

n -y

If we neglect inlet and exit kinetic energies for the overall turbine
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process, we can relate turbine overall efficiency to polytropic effi-

ciency. Actual temperature drop could be expressed as

or

r,,- To,=r,. {I - )

Equating (2-60) x_ith (2-61) then yields

l_(pez'_o((7-1)/'n

_= \pl,i
(p,,'_<'_-,>/,

l--\-pT./

(2-60)

(2-61)

(2-62)

This relation is illustrated in figure 2-10. The two efficiencies ap-

proach each other as pressure ratio and efficiency each approach

unity. However, at higher pressure ratios, especially at lower effi-

ciency levels, the two efficiencies can differ significantly.
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FIGUaE 2-10.--Relation between turbine overall and polytropie efficiencies.

Specific heat ratio _, 1.4.
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DIMENSIONLESS PARAMETERS

Dimensionless parameters serve to classify velocity diagrams,

classify turbine geometry, and correlate turbine performance. A
number of the more commonly used dimensionless parameters are
introduced and discussed in this section. The basis for the use of

dimensionless parameters is dimensional analysis.

Dimensional Analysis

Dimensional analysis is a procedure that allows a group of variables

comprising a physical relation to be arranged so that they throw some
light on the nature of the relation. It is a procedure for grouping the
variables into a smaller number of dimensionless groups, each con-

taining two or more variables. The number of such groups will be
the minimum nechssary to include all the variables at least once and

to represent the physical relation between them. The basis of dimen-
sional analysis as a formal procedure is the _r-Theorem, which states
that a complete physical equation may be expressed in the form of a
number of terms, each term representing a product of powers of
some of the variables and forming a dimensionless group. The formal

procedure for obtaining the dimensionless groups from the pertinent
variables is presented in many texts, including reference 1, which
served as the basis for this discussion.

Application of dimensional analysis to the general problem of fluid
flow yields considerable insight into the nature of the basic physical
relations. The resultant dimensionless terms represent ratios of

dimensions, ratios of forces, and ratios of velocities. The geometrical
term implies that shape (as a ratio of linear dimensions), rather than
the actual magnitude of each linear dimension by itself, is a con trolling
factor. Another term expresses the ratio of the force due to the change

of pressure in the fluid to the inertia force due to the motion of the
fluid. This is a basic flow parameter characteristic of an analysis
based on an ideal fluid. There are other dimensionless groups, based
on various attributes of a real fluid, that modify the ideal relations.
These include the Reynolds number, which expresses the effect of
viscous forces; the Weber number, which expresses surface-tension

effects; an elasticity parameter (which for a gas reduces to the Mach
number), which expresses compressibility effects; and the Froude

number, which expresses gravitational effects. Of these terms ex-

pressing real fluid effects{in general, the Reynolds and Mach numbers
are the significant parameters for gas flow.

The concept of dimensionless groups as ratios of geometric, kine-
matic, and dynamic quantities leads to the idea of similarity or
similitude. If two operating conditions are such that all the dimen-
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sionless terms have the same value, regardless of the individual val.ues

of the separate variables, then exactly similar physical conditions are

obtained. Complete physical similarity implies (1) geometric similar-

ity, which means that the linear dimension ratios are everywhere the

same; (2) kinematic similarity, which means that the velocity ratios

are the same; and (3) dynamic similarity, which means that the ratios

of the different forces are the same. It is doubtful whether complete

physical similarity is ever attained, but for most practical purposes it

can be approached sufficiently closely to be of great utility. One use

of similarity is the operation of models of smaller linear scale so that

relatively inexpensive experiments can be performed _rith the results

applicable to the full-size machine. Another use of similarity involves
the operation of machines _ith the fluid at or near ambient conditions

rather than at some severe design condition.

Turbomachine Operational Parameters

Application of dimensional analysis to the general problem of fluid

flow results in the previously mentioned set of parameters. These

parameters are important for the detailed examination of flow _ithin

the blade rows of turbomachines. In addition, dimensional analysis

has great utility in the analysis of the overall operational character-

istics. For any turbomachine, we are interested in the relation of head

(for compressible flow, this relates to ideal work), flow rate, and power

in conjunction with size, speed, and the properties of the fluid. The

following variables are used to demonstrate some of the more impor-
tant relatibns:

Volume flow rate, Q, m3/sec or ft3/sec

Head, H, J/kg or (ft)(lbf)/lbm

Power, P, W or Btu/sec

Rotative speed, N, rad/sec or rev/min

Characteristic linear dimension, D, m or ft

Fluid density, p, kg/m a or lb/ft 3

Fluid viscosity, _, (N)(sec)/m 2 or lbm/(ft)(sec)

Fluid elasticity, E, N/m _ or lbf/ft 2

From these variables, five dimensionless groups can be formed. If we

drop the dimensi0dPal conversion constants in order to ease the manipu-

lation, the five dimensionless groups can be expressed as

(2-63)

The capacity, or flow rate, is expressed in dimensionless form by

Q/NI_, which is called the capacity coefficient. It can be further
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represented as

NQ---_o: VA VD 2 V V-N-_ o: _ ccND c¢F (2-64)

Thus, the capacity coefficient is equivalent to V/U, and a given value

of Q/ND 3 implies a particular relation of fluid velocity to blade speed

or, in kinematic terms, similar velocity diagrams.

The head is expressed in dimensionless form by H/N2D 2, which is

called the head coefficient. This can be represented as

H H
0¢_ (2-65)

Thus, a given value of H/N_D 2 implies a particular relation of head

to rotor kinetic energy, or aynamic similarity.

The term P/oN3D 6 is a power coefficient. It represents the actual

power and thus is related to the capacity and head coefficients, as

well as to the efficiency.

The term pND_/_ is the Reynolds number, or viscous effect coeffi-

cient. Its effect on overall turbine performance, while still important,

can be regarded as secondary. The Reynolds number effect will be

discussed separately later in this chapter.

The term E/pN_D _ is the compressibility coefficient. Its effect

depends on the level of Mach number. At low Mach number, _'vhere

the gas is relatively incompressible, the effect is negligible or very

secondary. As Mach number increases, the compressibility effect

becomes increasingly significant.

Velocity-Diagram Parameters

We have seen that the ratio of fluid velocity to blade velocity and

the ratio of fluid energy to blade energy axe important factors required

for achieving similarity in turbomachines. Sin.ca completely similar

machines should perform similarly, "these factors become important as

a means for correlating performance. Since the factors V/U and

H/U s are related to the velocity diagrams, factors of this type are

referred to as velocity-diagram parameters.

Several velocity-diagram parameters are commonly used in turbine

work. Most of these are used primarily with respect to axial-flow

turbines. One of these parameters is the speed-work parameter

U 2

X=gj hh , (2-66)

The reciprocal of the si)eed-work parameter is also often use(l, aml it
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is referred to as the loading factor or loading coefficient

1 gJAb p
U (2-67)

For an axial-flow turbine, we can write

5A ' U,_ V,,
(2-6s)

Therefore, equations (2-66) and (2-67) can be expressed as

1 U (2-69)

Another parameter often used is the blade-jet speed ratio

U (2-70)

where V_ is the jet, or spouting, velocity, in m/sec or ft/sec. The jet,

or spouting, velocity is defined as the velocity corresponding to the

ideal expansion from inlet total to exit static conditions across the

stage or turbine. That is,

Vj_=2gJ_u_,_ (2-71)

Substitution of equation (2-71) back into equation (2-70) yields

U (2-72)
v=_2gJ_h,,

A relation between the blade-jet speed ratio and the speed-work

parameter can be obtained by use of equations (2-66) and (2-72) and

the static efficiency definition

5h'
,1=h, d (2-73)

The resultant relation is

v= _/____ " (2-74)

This shows that if efficiency is a function of one of these parameters it

must also be a function of the other. While the speed-work parameter

is directly related only to the actual velocity diagram, the blade-jet

speed ratio is related to the velocity diagram and to the efficiency.

Another frequently used velocity-diagram parameter is the flow
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factor, or flow coefficient
G

v---_ (2-75)

The flow coefficient can be related to the loading coefficient as follows:

v, /u d \avj (2-76)

By using equation (2-69) and the velocity-diagram geometry, we get
2

(2-77)
¢=_ cot at \AV,,]

The term V,,.1/AV, cannot be completely generalized. However, for
specific types of velocity diagrams, such as will be discussed in the
next chapter, this term becomes a function of loading coefficient alone
(a different function for each type of velocity diagram). Therefore, for
each of the different types of velocity diagrams, the flow coefficient

can be expressed in terms of the loading coefficient and the stator exit
angle.

It is thus seen that these four velocity-diagram parameters are
related to each other. In addition, efficiency can be related to these

parameters. This will be shown for an idealized specific case in the
next section and for a somewhat more general real case in the next

chapter. Where a particular type of velocity diagram is specified, only
one of the velocity-diagram parameters is required for correlating

efficiency. We at Lewis generally use the speed-work parameter
or the blade-jet speed ratio. For a more general efficiency correlation,
two of these parameters are required. One parameter must be the
flow coefficient, and the other is usually the loading coefficient.

Relation of Efficiency to Velocity-Diagram Parameters

We will now show for an idealized specific case how static efficiency

can be related mathematically to the blade-jet speed ratio. Assume
that we have a single axial-flow (UI=U_) impulse (W_=W2) stage
with constant axial velocity (V,,t=V_,2). A velocity diagram for a
stage of this type is_hown in figure 2-11. Further assume that flow

.through this turbine stage is isentropic (total efficiency n'=l). The
only loss, therefore, is exit kanetic energy. The static efficiency
definition is

/_--h_ AA' (2-78)
_= h_--h2. ,_ --ah_

Substitution of equation (2-68) into equation (2-78) yiehls
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wul u

Wu, 2

FIGURE 2-11.--Velocity-vector diagram for an axial-flow, impulse stage.

(2-79)

The change in fluid tangential velocity is

AV.=V,.,-V,._ (2-80)

From the assumptions (W_=W_) and

convention we adopted,

W.. 2='--W.. 1

(W,.I=W,.2) and the sign

(2-81)

From equations (2-6), (2-81), and (2-80), we get

and

V,,,2=W..2+ U=-Wu.1+U=-(V.,1-U)+ U=- V.,I+ 2U

(2-82)

AV,,--_V_,_-V..2--V,,.,-(-V..,+2U)--2V.,_-2U (2-83)

From the velocity-diagram geometry

V.._=V_ sin m (2-84)

Since flow is isentropic and the turbine stage is of the impluse type

(h2. ,_=h2=hl),
V_ = x'2gJ Ah,_ (2-85)

Substitution of equations (2-84) and (2-$5) into equation (2-83)
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yields
AVe=2 sin al-_I2gJAh_d--2U (2-86)

Substitution of equation (2-86) back into equation (2-79) yields

4U sin al 4U _

_-_.v'2gJ Ah,_--2gJ Ah _ (2-87)

N. ow using the definition of blade-jet speed ratio from equation (2-72)

finally yields
_=4_ sin al--4v _ (2-88)

Equation (2-88) shows that for this particular case and any constant
stator exit angle, static efficiency is a function of blade-jet speed ratio

only. The variation is parabolic and is illustrated in figure 2-12 for
an example with a stator exit angle of 70 °. A maximum efficiency of

0.88 is reached at a blade-jet speed ratio of 0.47. The optimum blade-

jet speed ratio can be found mathematically by differentiating equa-

tion (2-88) and setting the derivative equal to zero:

sin al (2-89)
P o1_$ -- 2

.4

.Z I

0 .2 .4 .6 .8 1.0

Blade-jet speed ratio, v

FIGURE 2-12.--Effect of blade-jet speed ratio on static efficiency of an isentropic,

axial-flow, impulse stage. Stator exit angle, 70 °.
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Since the stator exit angle is normally in the range of 60 ° to 80 °, where

the sine of the angle does not vary greatly, the optimum blade-jet

speed ratio for most cases of interest _ith a turbine of this type would

be in the range of 0.4 to 0.5.

Equation (2-88) and figure 2-12 are, of course, very idealized and

specific. While the levels and values for a real case will differ from the

ideal case, the basic parabolic trend should remain the same; and,

indeed, it does. We find that for a real case, blade-jet speed ratio is a

very good correlating parameter for both static and total efficiency.

Likewise, so are the other velocity-diagram parameters.

Design Parameters

The operation of dimensional analysis on the variables relating to
turbomachines led to the dimensionless parameters shown in equa-

tion (2-63). This does not, however, exhaust the number of dimension-

less parameters that are possible. A parameter not having the linear
dimension D would be desirable because values of the remaining

variables would apply to a range of geometrically similar turbo-

machines of all sizes. Also, a parameter not having rotative speed N

would be desirable because, in this case, values of the remaining

variables would apply to a turbomachine at all rotative speeds.

Such parameters can be found by combining two of the previous

groups. The parameter that excludes D is known as the specific

speed N, and is found as

/ Q \I_/N2D_\Z/' NQ_/_
--H,,. (2-90)

When used for a turbine, the volume flow rate is taken at the stage

exit or turbine exit. Thus,
N01/2

N _'_ (2-91)

The parameter that excludes N is known as the specific diameter

D, and is found as

// H ,_l/, D/p/,
D,=\-_i-_2 ] (-_)'/'-- Q,/_ (2-92)

With the volume flow rate taken at the stage exit or turbine exit,

DHI/' (2-93)
D ,= -Q I __2

Commonly, but not exclusively, the values for these parameters

are quoted with rotative speed N in revolutions per minute, exit
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volume flow rate Q_ in cubic feet per second, ideal work, or head,

H in foot-pounds per pound, and diameter D in feet. With this set

of units, specific speed and specific diameter are not truly dimension-
less because the units are not consistent. The head H is usually taken

to be the total-to-total value (t_h'_), but sometimes, for convenience,

it is specified as the total-to-static value (Ah_).

Specific speed and specific diameter can be related to the previously

presented velocity diagram parameters. The blade speed is

U=r ND (2-94)
K

where K is the dimensional constant (21r rad/rev or 60 sec/min). The

head is

(n) (2-95)H=J,_,=Jhh,d -_

Combining equations (2-91), (2-93), and (2-72) with equations

(2-94) and (2-95) yields

' . (2-96)

The ratio of total efficiency to static efficiency appears because of the

differing definitions of ideal work used in defining the various param-
eters. Some authors prefer to use the same ideal work definition in

all cases, thus eliminating the efficiency ratio from equation (2-96).

The parameter interrelation can be expressed in terms of the

speed-work parameter by substituting equation (2-74) into equation

(2-96)

N,D ,= _ ,J-g_' X (2-97)
TT'

r

Specific speed and specific diameter can also be related to the flow
coefficient. The exit volume flow rate is

Q,z----A,_V: (2-98)

where A,_ is the exit flow area, in m 2 or ft 2. Combining equations

(2-91), (2-93), (2-94), and (2-75) with equation (2-98) yields

N - 3 KD_ (2-99)

Since specific speed and specific diameter are related to the velocity-

diagram parameters, which can be used to correlate efficiency, then
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specific speed and specific diameter can also be used to correlate
efficiency.

Specific speed and specific diameter contain variables that the

velocity-diagram parameters do not. These are diameter and volume

flow rate, and their use leads to terms, such as D_/A,= appearing in

equation (2-99), that imply shape. Thus, specific speed and specific

diameter are sometimes referred to as shape parameters. They are

also sometimes referred to as design parameters, since the shape will
often dictate the type of design to be selected.

Overall Parameters

The dimensionless parameters that we have been discussing can

be applied to a stage or to the entire turbine. When applied to a stage,
these are the similarity parameters that represent similar conditions

for equal values and thus can be used to correlate efficiency. _rhen

applied to the overall turbine, some of these parameters helpidentify
the type of design that might be most appropriate and serve as a

rapid means for estimating the number of required stages.

The following are the most commonly encountered overall
parameters:

Overall specific speed

Overall specific diameter

;Vf)l/2

N_--t:__ `x
HS/4 (2-100)

.=_Q_ (2-101)

Overall speed-work parameter

_= u__.
gj,_, (2-102)

Overall blade-jet speed ratio

- Ua_

(2gJ_,d),_ (2-103)

The subscript av refers to some average condition, and the super-
script (--) refers to the value for the entire turbine.

Of these overall parameters, specific speed perhaps is most sig-

nificant because its value is almost always determined by application

considerations only, while the values for the other parameters gen-

erally depend on the nature of the evolved geometry. Equation (2-100)
for overall specific speed can be restated to show the considerations

that contribute to the value of overall specific speed. Let

Q_==wt_= (2-104)
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where vez is specific volume at exit, in mZ/sec or ft3/lb. Also, let mass

flow rate be expressed as
JP

w= _ (2-105)
_'H

Then, substitution of equations (2-104) and (2-105) into equation

(2-100) yields

_=1 _ / v,x \1/2/ .--=\L (2-1o6)
Thus, the overall specific speed can be expressed as the product of

three terms. The first term reflects expected performance, which can

be reasonably estimated. The second term depends only on the specified

gas and the thermodynamic cycle conditions. This second tel m is

useful for evaluating the effects that different fluids (in cases where a

choice is available) have on the turbine. The third term is dictated

by the application. Often, both rotative speed and power are specified ;

in other cases, the product N_J-_, rather than the individual values

of N and _, is established by the application.

The manner in which the overal] specific speed influences the tur-

axial flow

:=A A

I I I I I I I I I I I
.2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2

Specific speed, Ns, dimensionless

I I I I I i I I I I I I I I I
20 :50 40 50 60 70 80 90 100 110 120 l_ 140 150 160

Specificspeed,Ns, (ft314)llbm314)/{min)Isecll2Hlbf314}

FIGURE 2-13.--Effect of specific speed on turbine-blade shape.

I
1.3
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bine passage shape is illustrated in figure 2-13 for a radial-flow tur-
bine and for one- and two-stage, axial-flow, example turbines. The

ratio of hub radius to tip radius decreases with increasing specific

speed. For the axial-flow turbines, increasing the number of stages
decreases the radius ratio. Thus, the overall specific speed for any

application indicates the type or types of design that will lze required.
The values of some of the overall parameters give us a rapid ap-

proximation of the number of stages required for a given application.

Dividing equation (2-100) for overall specific speed by equation (2-91)

for stage specific speed yields

_, Q,, ,12

If we neglect the reheat effect, which is small, and" assume equal head

change per stage, we can write

H=nH (2-108)

Further, if the expansion ratio is not too large, we can neglect the

compressibility effect and assume that Q,=-_Q,z.,j. Substitution of
these last two conditions into equation (2-107) and rearrangement

yields
•/N,W 3

Since stage specific speed is a correlating parameter for efficiency,

experience can tell us a reasonable value of stage specific speed to
assume in order to achieve a given level of efficiency. Thus, with stage

specific speed assumed and overall specific speed known from the

application requirement, equation (2-109) gives us an estimate for

number of stages. The effect of compressibility on this estimate is

discussed in reference 2, where a compressibility correction is presented.

A similar type of estimate for number of stages is often obtained

from the overall speed-work parameter and an assumed value for the

stage speed-work parameter. Knowledge of a value for the overall

speed-work paranteter, however, requires a knowledge of the blade

speed. Often, a reasonable value of blade speed can be selected on the

basis of stress considerations. Or, blade speed may be varied para-

metrically if desired. Dividing equation (2-66) for stage speed-work

parameter by equation (2-102) for overall speed-work parameter,

assuming a constant blade speed for the turbine (U s-= U_,), and as-

suming equal work per stage,

_h' =n_h' (2-110)
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yields )' (2-111)

Equations (2-109) and (2-111) are particularly useful for parametric
studies associated with preliminary system analyses.

Performance Specification Parameters

The turbomachinery parameters presented in equation (2-63) are

perfectly correct for compressible flow machines. Another choice of
variables, however, is often preferred for expressing nondimensional

performance. The mass flow rate w is preferred to the volume flow
rate Q because for any significant degree of expansion, Q changes

considerably throughout the turbine, while w remains constant.

Change of pressure expressed as pressure ratio is preferred to H,
which for compressible flow depends on both pressure ratio and initial

temperature. Instead of power P, the preferred term to express
actual work is the specific work or drop in total enthalpy Ah'. Since

ideal work depends on the initial temperature as well as on the pressure

ratio, we include initial temperature as another variable. Since Mach

number depends on temperature, introduction of temperature is

equivalent to introducing elasticity. Rotative speed N and a character-
istic dimension D are still of interest. The fluid properties are in-

cluded as gas constant R, which implies a molecular weight, and

viscosity _. For simplicity here, the specific heat ratio -¢ is assumed

constant.

Now, operating with the variables

w----fcn(_h', p_, p',z, T'_,,, N, D, R, _) (2-112)

dimensional analysis produces the following:

/ A_., ND ,p'_, w)w_'_l__fcn/ _ , (2-113)

If the specific heat ratio had not been assumed constant, there would be

some complicated, but second-order, terms modifying the flow, work,

and speed terms.
Let us operate on some of the above terms to see what significance

we can get o'fit of them. The mass-flow parameter may be transformed

by using the continuity equation, the ideal-gas law, and the propor-

tionality Aod_, so that
p

w----AVp----AV oc D_V oc D_V _-_-,RT,,
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Substitution of this relation into the mass flow parameter of equation

(2-113) yields

p;D_ oC-_T _ _ ¢c-:_ 0¢-- (2-115)

Thus, the mass flow rate is represented nondimensionally by the ratio

of actual mass flow rate to the mass flow rate .when the .velocity equals

the critical, or sonic, velocity.

The speed parameter may be transformed as

ND U U
_ oc_ cc-- (2-116)
_/RT'_. .,"RT ,. a_,

Thus, the rotative speed is represented nondimensionally by the ratio

of rotor-blade velocity to critical velocity, which is a kind of rotor

Mach number. Division of the mass-flow parameter by the speed

parameter gives V/U, the kinematic condition of similarity. The

implication of this analysis is that for similarity, not only must the
fluid have a certain Mach number, but the rotor must also have a

certain fixed velocity with respect to the critical velocity. For a given
machine of fixed dimensions, therefore, the rotative speed is not a

singular variable as for incompressible flow, but becomes associated

with the temperature of the fluid. All variables must be expressed in

dimensionless form in order for the effect of varying inlet temperature
to be correlated.

For a given gas, the dimensionless parameters presented as equation

(2-113) can be expressed as

p_--_=icn _-z--, --' --;-'T,. 4T_,. P..
(2-117)

For a given gas in a given turbine, the parameters furtheP reduce to

( )w_=fc n _hh',_, N p_,,__w (2-118)

Depending on the particular case, the parameters presented in equa-

tions (2-113), (2-117), or (2-118) can be used to express turbine

performance.

Equivalent Conditions

It is very useful to report performance under standard conditions

of temperature and pressure and sometimes of fluid molecular weight

and specific heat ratio. This is done in order that results obtained at
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different conditions may be directly and readily compared and also

easily used to determine performance for any condition we desire. The

following are the standard conditions usually used: atmospheric pres-

sure, 101 325 N/m s abs or 14.696 psia; temperature, 288.2 K or

518.7 ° R; molecular weight, 29.0; and specific heat ratio, 1.4. These are

known as NACA standard conditions, or NACA standard air. The

performance variables of flow, work, and speed expressed on the basis

of these standard conditions are known as equivalent conditions.

Let us use the parameters of equation (2-113) but with diameter

constant. With the subscript std denoting standard conditions and the

subscript eq denoting equivalent conditions, the similarity conditions

can then be expressed as

w_RT,,,w,_R,,dT_,,_ , (2-119)
p,, p, td

_r--- -- , (2-120)
RT_. R.,dT'_,d

N N.
_=--, (2-121)
_/_T ,. R_-_..T ,,.

Rearrangement of these equations then yields for the equivalent
conditions

• w,q=w .__ (2-122)
_/R.d ' '

R,d T_td
_"'=_' R T_ (2-123)

g.,=Y r;.,
_R---T_. (2-124)

.As you may recall, we started off the discussion of these parameters

by assuming constant specific heat ratio for all conditions. This is not

always the case, since specific heat ratio can change with temperature
and fluid. Let us now add a specific-heat-ratio effect into the above

parameters. The specific-heat-ratio corrections that are commonly

used do not yield similarity under all conditions, but only at critical
(sonic) velocity. However, the terms that are left out depend on both

specific heat ratio and Mach number, are cumbersome to work with,

and have only a very small effect on equivalent conditions. With the

commonly used specific-heat-ratio terms, the equivalent conditions
are expressed as

452-_49 0 - 72 - 5
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v. y(p;,%
¥\v .... .J ,,p--_-./

(2-125)

,_;,=,_, (v..,,,v,,-G;-. ) (2-126)

where

and, as you recall,

N,,=N../fV-.,,,V
v\--v_** /

(2-127)

/ 2 \",,d(",,,fb
,=v,,¢,_,-;_-_) (2-12s)

2 "V"'-"
_4-i/

2 2_
Vc,=-_--_ gRT' (2-129)

Therefore, for constant specific heat ratio, equat!ons (2-125) to (2-
127) reduce to equations (2-122) to (2-124).

Finally, we define

O--( V_, )' (2-130)
--_Vcr, lid�

and
I

S._P_s
. p;,, (2-131)

The equivalent conditions are then expressed as

7 _ (2-132)

,,------_- (2-133)

N

N,,----_ (2-134)

One point that can be seen from these similarity equations is that

operation at temperatures greater than standard will cause a reduction

of both actual mass flow and equivalent speed. Both of these factors

reduce the output of a powerplant. A well-known example of this

effect is .the reduction in takeoff performance of jet aircraft on hot days.

Reynolds Number Effect

The effect of viscosity in the form of Reynolds number was shown

to be one of the dimensionless parameters affecting turbomachine
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performance. While its effect is secondary, it is still important. The

effect of Reynolds number on turbine efficiency is usually correlated in

the following manner:

Expressing efficiency as

we can write

_, _hh--_h;o,,
= hh'_ 1

I

Ahzo,,

ah',d
(2-135)

(2-136)

If we assume that the only loss is friction loss,

(2-137)

where .f is the friction factor, and L is the characteristic flow-path

length. For turbulent flow,
1

f_R-_. 2 (2-138)

where Re is the Re3molds number. Substituting equations (2-138)

and (2-137) into equaUon (2-136) yields

Adding subscripts for conditions 1 and 2 to equation (2-139) and

dividing the equation for condition 1 by the equation for condition 2

yield

' \hhl.,4] (2-140)

Since for geometric similarity L,/D1--'=L2/D2 and for dynamic similarity

V_/hh'l. _,_=V22/hh_. ,_, equation (2-140) reduces to

1--'7;--f Re"_ °'_ (2-141)
1--,_--\Re,/

This is an ideal correlation. Actually, it has been found that the

exponent f6r this type of correlation is not 0.2, but usually varies in

the range of 0.1 to 0.2, depending on the machine. This occurs because
all the losses are not viscous losses, and the fraction of total loss

attributable to viscous loss varies between machines. In view of this,

another suggested type of correlation is
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' [R_'_ °'2 (2-1_2)
1--_=A+B \ReJ1 --'Ta

where A and B are fractions such that A+B----1. In equation (2-142)

the exponent is maintained at 0.2 to reflect the viscous loss exponent,
and the coefficients A and B serve to represent the fact that not all

loss is viscous loss. Recent turbine tests here at Lewis, as well as the

discussion presented in reference 1, indicate that values of about
0.3 to 0.4 for A and corresponding values of 0.7 to 0.6 for B seem to

be a good compromise for correlating Reynolds number effects.
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SYMBOLS

flow area, m2; ft u
Reynolds number correlation coefficient in eq. (2-142)

speed of sound, m/sec; ft/sec
Reynolds number correlation coefficient in eq. (2-142)
heat capacity at constant pressure, d/(kg)(K); Btu/(lb)(°R)
diameter, m; ft
specific diameter, dimensionless; (see I/2) (lbf It*)/(ftl/*) (lbm _/4)
modulus of elasticity, N/m2; lb/ft 2
kinetic energy loss coefficient, defined by eq. (2-46)
force, N ; lb
friction factor

conversion constant, 1 ; 32.17 (lbm) (ft)/(lbf) (sec 2)

head, J/kg; (ft) (lbf)/lbm
specific enthalpy, J/kg; Btu/lb
conversion constant, 1 ; 778 (ft) (lb)/Btu
conversion constant, 2_r rad/rev; 60 sec/min
characteristic length, m; ft
Mach number

rotative speed, rad/sec; rev/min
specific speed, dimensionless; (ft 3/*)(lbm3/4)/(min) (sec l/_) (lbP/_)

number of stages
polytropic exponent
power, W; Btu/sec
absolute pressure, N/m2; lb/ft _
volume flow rate, m3/sec; ft3/sec

gas constant, J/(kg) (K) ; (ft) (lbf)/(lbm) (°R)
reaction
Reynolds number
radius, m; ft
absolute temperature, K; °R
blade speed, m/sec; ft/sec

" absolute velocity, m/sec; ft/sec
ideal jet speed (defined by eq. (2-71)), m/sec; ft/sec
specific volume, m3/kg; ft3/lb
relative velocity, m/sec; ft/sec
mass flow rate, kg/see; lb/sec

total-pressure loss coefficient, defined by eqs. (2--47)

fluid absolute angle measured from axial or radial direction,
deg

fluid relative angle measured from axial or radial direction,

deg
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perature to critical velocity based on

temperature

X speed-work parameter, defined by eq. (2-66)

viscosity, (N) (sec)/m2; lb/(ft) (sec)

blade-jet speed ratio, defined by eq. (2-72)

p density, kg/m3; lb/ft 3
r" torque, N-m; lb-ft

flow coefficient, defined by eq. (2-75)
_b loading coefficient, defined by eq. (2-67)

angular velocity, rad/sec

Subscripts:

av average

cr critical condition (M= 1)

eq equivalent
ez exit

/d ideal

in inlet

los8 loss

opt optimum

p polytropic

r radial component
rel relative

ro rotor

st stator
std NACA standard condition

stg stage
u tangential component

z axial component
0 at stator inlet

1 at stator exit or rotor inlet
2' at rotor exit

Superscripts:

--_ vector quantity
-- overall turbine

' absolute total state

" relative total state

ratio of heat capacity at constant pressure to heat capacity at
constant volume

ratio of inlet total pressure to NACA standard pressure

function of specific heat ratio, defined by eq. (2-128)
efficiency

squared ratio of critical velocity based on turbine inlet tem-
NACA standard
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GLOSSARY

The terms defined herein are illustrated in figure 2-14.

- Turbine axis

Stagger

Leading edge

Pressure surface--'"

Camber line 7

../-Suction surface

/-Trailing edge

Axis J ..
/
I

I
/

Tangent to camber /

lineatleadingedge_..\ Chord "
\

Blade inlet angle 7 "\

Axis-, /

Flow inlet 2\ _YJ'_.,r_

ang le-/ ' _/"
Flow /

I

Incidence angleJ

. Axial chord

Deviation

or th roat
Spaci ng,

or pitch

L_
\
,)-Tangent to camber

,/" line at trailing edge

cFIow exit angle

-Blade exit

angle

FXOI_RE 2-14.--Blade terminology.
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aspect ratio. The ratio of the blade height to the chord.

axial chord. The length of the projection of the blade, as set in the

turbine, onto a line parallel to the turbine axis. It is the axial length
of the blade.

axial solidity. The ratio of the axial chord to the spacing.
blade exit angle. The angle between the tangent to the camber line

at the trailing edge and the turbine axial direction.

blade height. The radius at the tip minus the radius at the hub.
blade inlet angle. The angle between the tangent to the camber line

at the leading edge and the turbine axial direction.
bucket. Same as rotor blade.

camber angle. The external angle formed by the intersection of the

tangents to the camber line at the leading and trailing edges. It is
equal to the sum of the angles formed by the chord line and the

camber.line tangents.
camber line. The mean line of the blade profile. It extends from the

leading edge to the trailing edge, halfway between the pressure
surface and the suction surface.

chord. The length of the perpendicular projection of the blade profile
onto the chord line. It is approximately equal to the linear distance

between the leading edge and the trailing edge.
chord line. If a two-dimensional blade section were laid convex side

up on a flat surface, the chord line is the line between the points
where the front and the rear of the blade section would touch the

surface.

deflection. The total turning angle of the fluid. It _'s equal to the dif-

ference between the flow inlet angle and the flow exit angle.

deviation angle. The flow exit angle minus the blade exit angle.
flow exit angle. The angle between the fluid flow direction at the blade

exit and the turbine axial direction.

flow inlet angle. The angle between the fluid flow direction at the
blade inlet and the turbine axial direction.

hub. The innermost section of the blade.

hub-tip ratio. Same as hub- to tip-radius ratio.
hub- to tip-radius ratio. The ratio of the hub radius to the tip radius.

incidence angle. The flow inlet angle minus the blade inlet angle.

leading edge. The front, or nose, of the blade.
mean section. The blade section halfway between the hub and the tip.

nozzle blade. Same as stator blade.

pitch. The distance in the direction of rotation between corresponding

points on adjacent blades.

pressure surface. The concave surface of the blade. Along this surface,

pressures are highest.
radius ratio. Same as hub- to tip-radius ratio.
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root. Same as hub.

rotor blade. A rotating blade.

solidity. The ratio of the chord to the spacing.

spacing. Same as pitch.
stagger angle. The angle between the chord line and the turbine axial

direction.

stator blade. A stationary blade.
suction surface. The convex surface of the blade. Along this surface,

pressures are lowest.
tip. The outermost section of the blade.
trailing edge. The rear, or tail, of the blade.

.m
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CHAPTER3

VelocityDiagrams

By WarrenJ. Whitneyand
WarnerL. Stewart

As indicated in chapter 2, one of the most important variables to

be considered in the design or analysis of turbines is the velocity of
the fluid as it passes from one blade row to the next. The absolute and

relative velocities and their relation to the speed of the blade row are

universally described through the use of velocity diagrams. Once the

overall design requirements of flow, work, and rotative speed are

established, the next step is the evolution of the velocity diagrams.

Their relation to the required blading geometry is very important in

that these diagrams specify the flow angles and velocities that the

blading is required to produce. In addition, the velocity diagrams

significantly affect the efficiency level expected from the turbine.

The general methods for constructing velocity diagrams and

relating them to the work and flow capacity of the turbine were dis-
cussed in chapter 2. Various dimensionless parameters associated with

the velocity diagram were also presented in chapter 2, and their

relation to turbine efficiency was illustrated by an idealized case. This

chapter is devoted 'e_tirely to the subject of velocity diagrams. The

first part of this chapter concerns a single diagram that can be con-

sidered representative of the average flow conditions for the stage.
Usually, the conditions at the blade mean radius are used. The

second part of this chapter is devoted to the radial variations in the
diagrams that result from the ba]ance of forces in the radial direction

and from the variation in blade speed with radius. Only axial-flow

turbines are considered in this chapter.
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TURBINE DESIGN AND APPLICATION

MEAN-SECTION DIAGRAMS

In this section, the velocity diagrams occurring at the mean section

(halfway between hub and tip) are assumed to represent the average
conditions encountered by the turbine. The different types of dia-
grams, their relation to stage efficiency, and their selection when
staging is required are discussed.

In review, figure 3-1 shows an illustrative stage velocity diagram
indicating the vector relations described in chapter 2 and the nomen-

clature. Assuming no change in mean radius through the stage,
equation (2-14) can be written as

hh' ----UA V_
gJ

where

h' total enthalpy, J/kg; Btu/lb
U blade speed, m/sec; ft/sec

Vu tangential component of velocity, m/sec; ft/sec

g conversion constant, 1 ; 32.17 (lbm) (ft)/(lbf) (sec s)

J conversion constant, 1 ; 778 (ft) (lb)/Btu

This

The

rate,

(3-_)

equation relates the stage specific work to the velocity diagram.

axial component of the velocity vector is related to the flow

state conditions, and the area by the relation

, V,=p-_ (3-2)"
where

V_ axial component of velocity, m/sec; ft/sec

w mass flow rate, kg/sec; lb/sec

p density, kg/m3; lb/ft 3

A,, annulus area, mS; ft s

Flow angles are key velocity-diagram parameters because they not

only link the axial and swirl velocities (the tangential'component of

the absolute velocity is often referred to as the swirl velocity) but

also affect the expected efficiency and blading geometry. In addition,

dimensionless parameters are used in association with velocity-
diagram studies because the parameter values can be related to the

diagram shape. Such parameters were discussed in chapter 2 and

include, the speed-work parameter, which can be expressed in several
ways, such as

U s U gJAb'
),---- (3-3)

gJAh'--A Vu-- A V_ s

The speed-work parameter is used in this chapter because diagram
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Flow

Station

0

Vx,o

al ""_

Vx 1

vu, Vl, 2

Wu, 2

FIGURE 3--l.--Velocity-vector diagrams and nomenclature.

types are related to the swirl distribution and it is convenient to

normalize the diagram velocities by AV=.

Velocity-Diagram Types

After the overall design requirements are established, the velocity

diagrams can be evolved. Velocity diagrams have different sizes and
shapes depending on the diagram type and the value of the speed-work

parameter. Diagram type refers to some physical constraint imposed

on the diagram. Diagram shape determines the values of performance-

related parameters, such as stage reaction and swirl split between the

stator exit (V=._) and the rotor exit (V=.2). The following three common

types of diagrams and their reaction and swirl characteristics are

discussed in this section:

(1) Zero-exit-swirl diagram (V=.2=0)

(2) Rotor-impulse diagram (W_ = W_)

(3) Symmetrical diagram (VI=W_ and V2=W_)

These three diagrams for several values of speed-work parameter are

shown in figure 3-2.

Zero-ezit-swirl diagram.--In many cases, either the entire exit

velocity head or the swirl component thereof represents a loss in

efficiency. The zero-exit-swirl diagram, where

and

/="' -- 1 (3--4 a)
AV.--
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Speed-
work

parameter

0.25

0.5

1.0

Diagram type

Zero exit swirl impulse Symmetrical

FIGURE 3-2.--Effects of speed-work parameter and diagram type on shape of

stage velocity-vector diagram.

__VL2__0
AV,,-- (3-4b)

can be used to reduce such loss.

For an axial-flowrotor (U,=U_) having constant axial velocity

(V=.,=V_.2),the definitionof stage reaction presented in equation

(2-39) reduces to

W_..,-W_I
R'"=V_, ,--V_ ±Txl, W 2 (3-5)

, ,2Trr u, 2-- v,l

where

R,.r stage reaction

Wu tangential component of relative velocity, m/sec; ft/sec

By using equation (2-6) and equations (3-3) and (3--4), equation

(3-5) can be expressed as

1
•" R.z= 1 --_-_ , (3-6)

This equation is plotted in figure 3-3(a). At X=I, the reaction is

0.5, which indicates a conservative diagram. At X----0.5, the reaction
is zero, which indicates an impulse rotor. Below X=0.5, negative

reaction is encountered. For example, at X=0.33, the reaction is

--0.5, which, as can be sho_m, represents a substantial decrease in

velocity and increase in static pressure across the rotor. Because of
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1.0 m

=-
.o

.=

0

-.5

Symmetrical-,

(a)

Zero ex__

_t_Impulse

I I I I

.5

-._

0

Zero exit swirls, J

.25 ._ .75 1.0

Speed-workparameter, ),

(a) Reaction.
(b) Exit swirl.

FmURE 3-3.--Effects of speed-work parameter and velocity-vector diagram type
on reaction and exit swirl.

potentially high losses, such high negative reactions are usually
avoided; therefore, zero-exit-swirl diagrams are seldom used for

;_<0.5. Figure 3-2 presents the zero-exit-swirl diagrams for the

positive-reaction, impulse, and negative-reaction cases.
Impulse d/agram.wFor this case, W,=W_ and the equation for

stage reaction reduces to
R,,l= 0 (3-7)

From equation (2-6), equation (3-3), and the assumption of constant
axial velocity, the rotor inle_ and exit swirl velocities can be expressed
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as

and

-_)`+0.5 (3-8a)

V_2--_)`--0.5 (3-8b)

The exit swirl characteristics are shown in figure 3-3(b). Positive

s_ls are encountered at )` values greater than 0.5, and negative

swirls are obtained at )` values less than 0.5. At ),----0.5, the impulse

and zero-exit-swirl cases coincide. These effects are illustrated in

figure 3-2. Because swirl velocity leaving a turbine is a loss and
because positive swirl decreases stage work, impulse diagrams are

seldom, if ever, used when )` is greater than 0.5.

Symmdrical diagram.--A third type of diagram commonly used is
one in which the stator-exit- and rotor-exit-velocity triangles are

specified to have the same shape. In terms of velocities,

Vl =W2 (3-9a)

' and V2=W1 (3-9b)

Under this condition, the equati, on for stage reaction reduces to

R.z__ 1 (3-10)

From equation (2-6), equation (3-3), and the assumption of constant

axial velocity, the swirl velocity components can be expressed as

and

V..I k+l (3-1 la)
hV_ 2

V_ )`--I (3-11b)
_v.. =

These reaction and swirl characteristics are sh6wn in figure 3-3, _ith

typical diagrams illustrated in figure 3-2. The symmetrical diagram
is the same as the zero-exit-swirl diagram at _-= 1. As the value of )`

decreases, the exit swirl increases, but the reaction remains constant

at 0.5. This good reaction is conducive to high total efficiency, making

this type of diagram attractive for stages where exit swirl is not a loss

(e.g., the front and middle stages of a multistage turbine).

Stage Efficiency

A significant aspect of a turbine design is th _ expected efficiency.
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The efficiency is an important function of, among other things, the

type of velocity diagram used and the pressure distribution on the
blade surface. Therefore, the diagram selection is greatly dependent

on the efficiency requirements of the intended application. Some

basic relations between diagram parameters and efficiency are pre-

sented and used herein to point up some of the more important

effects. References 1 and 2 are used as a basis for this development.

As presented in chapter 2, turbine stage static efficiency can be

_.-ritten as

where

Ah'

Ah_

(3-12)

stage static efficiency

stage work, J/kg; Btu/lb

stage ideal work based on ratio of inlet total pressure to exit

static pressure, J/kg; Btu/lb

Expressing ideal work in terms of actual work plus losses yields

m%'

_--_J_'-p L,,+ L,o+_ (3-13)

where

L,t

Zro

V_/2gJ

stator loss, J/kg; Btu/lb

rotor loss, J/kg; Btu/lb

stage leaving loss, J/kg; Btu/lb

The equation for total efficiency ,7' is the same except for the elimi-
nation of the stage leaving loss, V_/2gJ. Substituting equation (3-3)

into equation (3-13) yields

k

'7----- gj(L.kL,o)_ 1 V2 2 (3-14)
".' Zv_ -_ _v2

In relating the stator and rotor losses to the diagram parameters,
it was assumed that the losses were proportional to the average

kinetic energy across the blade rows. That is,
, "1'

V0'+ V_ 2 (3-15a)
L,,= K,, 2gJ

and

W'2+W_' (3-15b)
L,o= K,o 2gJ

where K is constant of proportionality.
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Equations (3-14) and (3-15) serve as the basis for estimating
efficiency. The exact nature of the assumptions and equations can

be foun(i in references 1 and 2. Briefly, the procedure for estimating

efficiency is as follows:
(1) The velocities are expressed in terms of their tangential and

axial components.
(2) The tangential components are expressed in terms of the speed-

work parameter according to the diagram type being considered

(eq. (2-6) and eq. (3-4), (3-8), or (3-11)).
(3) The axial components are evaluated by means of an application-

related mass-flow assumption or by relating them to the tangential

components by an angle assumption.
(4) The values for the constant of proportionality are selected on

the basis of previous test experience.
(5) Efficiency curves can then be generated over a range of speed-

work parameter for the various diagram types.
The total- and static-efficiency characteristics as obtained from ref-

erence 2 by the above method are presented in figure 3-4. The curves

presented for the symmetrical diagram are actually for the diagram

that analytically yields maximum total efficiency. This diagram, as
determined in reference 2, approximates the symmetrical diagram, and

the associated efficiency characteristics are representative of those for

a symmetrical diagram. The curves for the zero-exit-swirl diagram
were not obtained for X values less than 0.5 because of the undesirable

negative reaction in that region.
The total efficiency characteristics are presented in figure 3-4(a).

For each diagram type, the highest efficiency occurs at a speed-work

parameter, X, value of 1. The symmetrical-diagram efficiency is slightly

higher than the impulse-diagram efficiency for all values of X. The
zero-exit-sx_irl-diagram efficiency is equal to the symmetrical-diagram

efficiency at _,----1, is equal to the impulse-diagram efficiency at

_----0.5, and, although not shown, becomes less than either of the
other two for _, values less than 0.5. Between X----1 and X----0.5,

the efficiency curves are rather flat. As x is reduced below 0.5, efficiency

decreases more rapidly.

High total efficiencies, therefore, are achievable with any of these

diagram types for X values greater than about 0.5. Even where total,
rather than static, efficiency is the criterion of merit, however, the

designer must still consider aspects such as the previously discussed
exit swirls and the three-dimensional effects, to be discussed later in

this chapter, before a diagram type is selected.
The static efficiency characteristics are presented in figure 3-4(b).

The static efficiency is substantially lower than the total efficiency

because the exit velocity head represents a loss. The highest static
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efficiency for k values less than 0.5 is obtained _ith the impulse

diagram, and for k values greater than 0.5, _ith "the zero-exit-swirl

diagram. For the impulse diagram, the efficiency is a maximum at

k=0.5, where there is no exit s_irl. For the symmetrical diagram,

1.0

.8

.2

i'

ta)

Diagram type

Zero exit swirl

Impulse

----- Symmetrical

I I I I I

1,0--

.8

_" .5

s.J

i,j

.4

/

/

_//
I//

ITM l l l I l
0 .2 .4 .6 .8 1.0

Speed-work parameter, ),

(a) Total e_ciency.

(b) Static efficiency.

FmL'aE 3-4.--Effects of speed-work parameter and velocity-vector diagram type

on efficiency. (Curves from ref. 2.)
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• 90

.8C--

• 7O

Total efficiency, _'

I l.6( I I
60 65 70 75

Stator exit angle, a1, deg

FIGURE 3-5.--Effect of stator exit angle on stage efficiency. Speed-work param-

eter ;% 0.5. (Curves from ref. 1.)

the efficiency is a maximum at X= 1, where there is no exit swirl.

The zero-exit-swirl-diagram efficiency is highest at X= 1, but decreases

very little as X is reduced to 0.5.
Efficiency is affected DOt only by the speed-work parameter and

diagram type but also by the velocity through-flow component V=,
which is related to the flow angles. An example of this effect can be

obtained from reference 1. Figure 3-5, which is taken from reference 1,

shows the total and static efficiencies as functions of stator exit angle.

It is evident that the best angle depends upon which efficiency is to be

maximized. If maximum total efficiency is desired, the stator exit

angle should be about 60 °. If maximum static efficiency is desired, a

stator exit angle of about 75 ° is indicated. However, complete freedom
of selecticn of this angle does not always exist since it affects the

through-flow component of velocity and, therefore, the annulus area.
The rotor stress level is also influenced by the annulus area and, hence,

could influence the angle selection.
It has been sho_a that at low values of speed-work parameter,

large exit swirls are encountered, with associated reductions in static
efficiency. One means of increasing the static efficienc:_ is through the
use of downstream stators, which remove the swirl and diffuse the flow

back to axial. The efficiency characteristics of such turbines (ref. 3)

are presented in figure 3-6. In this figure, the turbines with dock-n-
stream staters are referred to as l_-stage turbines. Figure 3-6(a)

shows that the total efficiencies of the l_-stage turbines are lower
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than those of the 1-stage impulse turbines. These lower total efficiencies

are due to the additional friction losses of the downstream stators.

Because of this additional friction loss, the l_-stage turbine achieves

no gain in static efficiency over that of the 1-stage turbine until the
value of _ is below approximately 0.35 (fig. 3-6(b)). For _ values

below about 0.35, substantial gains in static efficiency can be achieved

through use of do_stream stators.

.80

.60
._ - 1-Stage impulse

f_ - l_-Stacje impulse
.40

It! . 1½-St,,e,, metr' a'

• 2_'- " downstream stators)

_! _ 1 I I I I

. 80 --

.6O

.2O

tI

(b)

_ ra-
m

I I I I 1
.1 .2 .3 .4 .5

Speed-work parameter, ),

(a) Total efficiency.

(b) Static efficiency.

FIGuaE 3-6.--Effect of downstream stator on efficiency. (Curves from ref. 3.)
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Multistage Turbine Efficiency

When the turbine requirements are such that the speed-work param-

eter is quite low and high efficiencies are still desired, multistage
turbines are used, and the required work is split amongst the various

stages.

//J./
/ / / T,,rbi°e

/ / // st#cjes

• ,// --==_,_
2

la_ I I I I I
.6(

.90

.8C

0

/ ///i

/ ,/,/"//,/

cb_ I I I I J
.10 .20 .30 .4(] .50

Overallspeed-workparameter,

(a) Total efficiency.

(b) Static efficiency.

FIGURE 3-7.--Comparison of effieiencies of 1-, 1)/_-, and 2-stage turbines. (Curves

from ref. 4.)
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Two-stage turbines.raThe addition of a second stage to a 1-stage
turbine results in about doubling the average stage X value through

the reduction of stage work. As shown previously, an increase in

stage _, is accompanied by an increase in stage efficiency. In addition,
with two stages it becomes possible to adjust the stage work split and

the exit s_irls so as to maximize efficiency.

A study of the efficiency characteristics of 2-stage turbines is pre-
sented in reference 4. The efficiencies of 1-, 1_-, and 2-stage turbines

(from ref. 4) are compared in figure 3-7. At an overall speed-work

parameter, _, of 0.50, the 2-stage turbine has a 2-percentage-point-

higher total efficiency and a 9-percentage-point-higher static efficiency

than the 1-stage turbine. As _ is reduced to 0.15, the difference between
the 2- and 1-stage efficiencies increases to 5 percentage points for total

efficiency and 24 percentage points for static efficiency. The smaller
difference between total and static efficiencies for the 2-stage turbine

than for the 1-stage turbine occurs because the leaving loss for the

2-stage turbine is a much smaller fraction of the total work output.

The 2-stage turbine efficiencies presented in figure 3-7 are the
maximum values obtained by varying stage work split and exit s,_rl

while imposing good diagram criteria of no positive exit swirl and no

negative reaction. At X----0.5, efficiency is maximized with a 50:50

work split and symmetrical zero-exit-swirl diagrams for each stage.
As "_ is reduced, maximum efficiency is achieved with zero exit swirl

maintained in the second stage and an increasing fraction of the work

produced by the first stage. At _----0.125, the optimum work split has
increased to 75:25. The associated diagram features impulse first and

second stages as well as an impulse second-stage stator. This type of

diagram is illustrated in figure 3-8(a) and represents a type of turbine
known as velocity compounded. In general, a velocity-compounded

turbine is a two-stage (or three-stage) turbine in which all expansion

(fluid velocity increase) is achieved in the first stator and all subse-

quent blade rows merely turn the flow with no change in velocity.
As _ is reduced below 0.125, the velocity-compounded condition is

maintained, but with increasing exit swirl and decreasing first-stage

work fraction.

Figure 3-8(b) ill_trates the velocity diagram for another type of

two-stage turbine, the counterrotating turbine without a second-stage

stator. The diagram shown is again for the _-_0.125 case with zero
exit swirl and with both blade speeds equal. A study of the efficiency

characteristics of this type of turbine was made in reference 5. Effi-

ciencies higher than those for conventional two-stage turbines were
obtained because of the elimination of one blade row. Because the

second-stage work depends upon the swirl leaving the first stage, the
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(a) lb)

(a) Velocity-compounded turbine. (b) C0unterrotating turbine.

FIGUllE 3-8.--Velocity-vector diagrams for special types of 2-stage turbines.

Overall speed-work parameter _, 0.125.

second stage, in general, would be a low-work stage (work split is

75:25 for the illustrated diagram). The efficiencies and work splits

are also functions of the blade-speed ratio. Because of their high

efficiency potential at low X levels and their compactness due to the'

lack of a blade row, counterrotating turbines are being utilized in such

advanced applications as direct-lift engines for V/STOL aircraft.
n-stage turbines.--In many applications the combination of work

and speed requirements dictates the use of turbines in which consider-

ably more than two stages are required. Such applications include

fan-drive turbines, vapor turbines used for power production, and

turbopump turbines for nuclear hydrogen rockets.

The efficiency characteristics of multistage turbines composed of

impulse stages (for X_<0.5) cr zero-exit-swirl stages (for X>_0.5) are

examined in reference 6. Equal stage work and constant" stage blade

speed were assumed. Overall and stage speed-work parameters are

related (derived as eq. (2-111)) as

k=_ (3-16)

where n..is the number of stages. Total efficiency for a first stage

(stator-inlet velocity is axial) and total and static efficiencies for a

general stage (intermediate or last stage, where stator inlet velocity

is equal to stage exit velocity) were obtained as functions of X. Overall

efficiencies were then obtained from the stage efficiencies. For overall
s'atic efficiency, neglecting the reheat effect discussed in chapter 2,
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where
r

5hid,,

n,,_'
U (3-17)
_----hh-_..T (n--2)_._ ,+5h,,t.,

first-stage ideal work based on ratio of inlet total pressure to

exit total pressure, J/kg; Btu/lb

general-stage ideal work based on ratio of inlet total pressure

to e:dt total pressure, J/kg; Btu/lb

general-stage ideal work based on ratio of inlet total pressure
to exit static pressure, J/kg; Btu/lb

This equation neglects the reheat effect, which reference 6 shows to be

small. By using the stage-efficiency definition, equation (3-17) becomes

__ n (3-18)
l__r+n_____2+1

Overall total efficiency differs only in that the last stage is evaluated

on the basis of stage total efficiency. Therefore,

n (3-19)

The multistage efficiency characteristics obtained in this manner

are presented in figure 3-9, which was obtained from reference 6.
Figure 3-9(a) shows total efficiency as a function of _. The limiting

efficiency (in this case, 0.88) is reached when all stages are at _----1.

This level of efficiency, as well as all those described herein, is a

function of many other factors (stator angle, Reynolds number, blade

aspect ratio, blade solidity, etc.) in addition to diagram shape and

may vary upward or downward from the indicated value. The vari-

ations in efficiency with varying diagrams are, however, the concern

here. This figure illustrates that at low _ values (0.1 or less), either

large increases in the number of stages are required to achieve high
total efficiencies or, if some restriction on the number of stages is

imposed, lower efficiencies must be expected. The static efficiencies

shown in figure 3-9(b) show similar trends, although at lower levels

because of the leaving loss.
Another commonly used method of presenting turbine performance

in terms .of diagram parameters is to plot efficiency as a function of

overall blade-jet speed ratio. This parameter was described in chapter

2 (eq. (2-72)) as the ratio of the blade speed to a velocity correspond-
ing to the kinetic energy associated with the total-to-static pressure

ratio across the tubine. Blade-jet speed ratio is related to speed-work
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FIGURE 3-9.--Overall efficiency characteristics. (Curves from ref. 6.)

parameter and efficiency according to equation (2-74).
From the discussion_ in this section, it is clear that the selections

of the number of stages and velocity diagram type have an important
effect on the expected efficiency level and are very dependent upon the
specific work (actual or ideal) imposed and blade speed utilized. In an

actual design, the final selection of the turbine diagrams must represent
a compromise among such design goals as performance (dictated by
the cycle requirements), structural integrity (related to component
life), compactness, and weight.

RADIAL VARIATION OF DIAGRAMS

In the first half of this chapter, a single velocity diagram was
assumed to represent average conditions over the entire blade span.
In a turbine ha_ing a relatively high hub- to tii)-ra(lius ratio (about
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0.85 or greater), such an assumption is reasonable. In the case of

lower hub- to tip-radius ratios, however, substantial variations in the

velocity diagrams are encountered, and the mean-section diagrams

may or may not represent the average flow conditions for the entire

blade span. The radial variations in diagrams are due to the radial
variation in blade speed and the balance of forces that must exist in

the flow. The considerations that were described for the mean section

diagrams must also be applied to the end regions, which become very

important in the final diagram selection. This section will consider
the radial variations in flow conditions and their effect on the velocity

diagrams.

Radial Equilibrium

Consider an element of fluid in the turbine flow field, as in figure

3-10(a). When there is a tangential component of velocity, the re-

sulting circumferential flow (fig. 3-10(b)) must be maintained by a

pressure force. The pressure force serves to balance the centrifugal

force acting on the fluid and to keep the fluid moving along its curved

path. When the through-flow path (streamline) is curved (fig. 3-10(c)),

the force required to maintain the flow along this curved path
must be accounted for as part of the net pressure force. Any linear

acceleration of the flow must have an associated pressure force, part

of which is in the radial direction if the streamline is inclined from

horizontal. The balance of forces required to account for these factors

is termed radial equilibrium.

The radial equilibrium will now be formulated mathematically.

The pressure forces acting on an element of fluid are indicated in

figure 3-10(b). Fluid weight is neglected. If unit length is assumed
in the x direction, the net pressure force (directed radially inward) is

F,.._,=(p+dp)(r+dr)dO--prdO--2 (p+ dp-) dr

where

F_. _, net inward pressure force, N; lb

p static pressure, N'm2; lb/ft 2

0 angle of rotation, rad
r radius of rotation, m; ft

Neglecting.-higher-order terms (product

setting sin (d8/2)---= d0/2 yields

F_. ,,, = rdpd8

sin
(3-20a)

of three differentials) and

(3-20b)

The mass m of the fluid being acted on by the pressure force is
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(a) Element of fluid in turbine flow field•

(b) Rotation plane (r-e). (c) Meridional plane (r-z).

FzovRz 3-10.--Radial equilibrium factors.

do
m----P[Ir(r +dr) 2-1rr=] _ (3-21a)

which reduces to

m = prdrd8 (3-21 b)

The net pressure force results from the three factors mentioned

previously. To balance the centrifugal force associated _ith circum-
ferential flow, the radial pressure force is

F m V== ordrdO V_ 2 o V=_drdO (3-22)
g r 9 r g
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The radial'component of the pressure force required to balance the

centrifugal force associated with flow along the meridional streamline

Fp.°= m _.. cos a..= prdrd0 F'f. cos a,,,. t3-23)
g r,, g r_.

where

IT., vclocity along meridional streamline, m/sec; ft/sec

r=, radius of curvature of meridional streamiJne, m; ft

a,, angle of inclination of meridional streamline, deg

The positive directions for streamline curvature and inclination angle

are as indicated in figure 3-10(c). The minus sign in equation (3-23)

indicates that the balancing pressure force is directed outward in this

case. The radial component of the pre_ure force required to produce

the linear acceleration along the meridional streamline is

F,.e-- m dV.. ardrda dV,.
g dt sin a,,----- g dt sin a,,, (3-24)

Setting the net radial pressure force (eq. (3-20(b)) equal to the

various components (eqs. (3-22), (3-23), and (3-24)) yields

g_de_ __. F'_,. dV..
p dr-- r r,, cos a_,-- d-'-t- sin a_ (3-25)

Equation (3-25) is the radial equilibrium equation and includes all

contributing factors. It is, however, not convenient to use in its com-

plete form. For axial flow (or near-axial flow), the meridioaal stream-

line curvatures (l/r,,,) and inclination angles (a,) are both quite

small. Therefore, the last _wo terms on the fight side of equation (3-25)

are small as compared to the first (rotational) term and can often be

neglected. Thus, we can write

p dr-- r (3-26)

The approximation represf_nted by equation (3-26) has become known

as "_knple" radial equilibrium.

Radial Variations in Velocity

In order to illustrate the nature of the radial variations in velocity,

those effects the, t are usually second order will'be neglected, and certain

other simplifying assumptions will be ma£!e. If streamline slope is

assumed to be zero, there is no radial component of velocity, and the

total enthalpy definition (eq. (1--49)) can be written as
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h, h_V_ 2_V2
='_--2_--2g-J (3-27)

Differentiating with respect to radius and using equation (1-8) to
substitute for dh (and since p= i/v) yields

dh'_TdS. 1 d_ 1 d(VJ)¢_1 d(V, 2)dr-- d-_+J-pp "+2gJ dr 2gJ dr (3-28)

If the flow entering the turbine is radially, uniform, then the total
enthalpy at the first-stator exit is radially constant. Further, if the
stator loss is radially constant, then the entropy at the first-stator
exit is also radially constant. The rotor, as will be discussed later in
this chapter, may or may not have radially constant work (total
enthalpy) extraction and probably does not have radially constant
loss. At any place in the turbine, therefore, radial gradients in total
enthalpy and entropy depend on the uniformity of the inlet flow, the
gradients imposed by the various blade rows, and the gradient damping
due to radial mkx-ing.

For-simplicity, it is here assumed that the total enthalpy and the
entropy are radially constant. With these assumptions and with equa-
tion (3-26), the "simple" radial equilibrium expression, substituted
into equatior_ (3-28), we get

V. _ . 1 d(V, 2) 1 d(_r2._____)__0-"r-+2 dr _-2 (3-29)

In order to solve this equation, it is necessary to independently
specify a relation between V_ or Vz and r or between V, and Vz. Most
often, a variation of swirl velocity with radius has been specified as

V_-= Kr _ (3-30a)

or, in terms of mean-section conditions,

v. _(±y
V_..,--\r=/

(3-30b)

Substituting eqmttion (3-30b) and its differential form into equation
(3-29) and then integrating between the limits of r_ and r yields

V_ f /N+I\ V/r\ 2a 1"_ 1/2V,.:=_l-tan2a*(_)[.(,_) -lJf (3-31)

where an is the absolute flow angle at the mean radius. Equation
(3-31) is not valid for the special case of N----0 (constant V.). For this
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special case, integration of equation (3-29) yields

r 11/2

A case of interest not covered by equation (3-30b) is that where

the absolute flow angle is radially constant. In this case, V_,----Vx tan a,

and equation (3-29) integrates to

V, (3-33)
V=.,_-Vz.,,-\r,_/

The radial variations in swirl velocity, axial velocity, and flow angle,

as computed from the above equations, are presented in figure 3-11

for a mean radius flow angle of 60 °. The radial variations in axial

velocity and flow angle are largely dependent on the specified swirl

1.5
o"

_ 1.0

Exponent,

_ 1

I [] I"

2.0

i°
_ 1.0

x

-- _ V u - Kr N

" Vu " KVx 2

.......

3O
"" .1 .8 .q 1.0 1.1 1.2 1.3

Ratio of radius to mean radius, rlr m

FIGURE 3-11.--Radial variations of velocity and flow angle. Mean-section

flow angle a,,,, 60 °.
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velocity variation (value of N). As the swirl distribution exponent N
increases or decreases from a value of --1, the changes in axial velocity

and flow angle with changing radius become more pronounced. As
seen, the axial velocities and flow angles associated with certain values
of N cannot be obtained with all blade lengths. The range of N that

can be used for design purposes becomes larger as the blades become
shorter (values of r_/r_ and rL/r_ closer to 1). The effects of the radial
variations illustrated in figure 3-11 on stage velocity diagrams are
discussed in subsequent sections of this chapter.

Free-Vortex Diagrams

When a value of --1 is used for the exponent N in equation (3-30a),

then
rV,=K (3-34)

This is the condition for flow in a free vortex, and a turbine designed
for such a swirl distribution is referred to as a free-vortex design,
or a free-vortex turbine.

The free-vortex design is used in the vast majority of axial-flow
turbines in which radial variation of the diagram is accounted for. If

this condition is specified at both the stator and rotor outlets, then
there is no radial variation in specific work, A(UV,), because the

UV, products both entering and leaving the rotor are radially constant.
Thus, the specific work computed from the mean-section diagram is
valid for the entire flow. Further, if N----1 in equation (3-31), the

axial velocity V, is radially constant. Thus, the radial variation in
mass flow per unit area (pV,) is small, and the mass flow rate obtained
from the mean-section velocity diagram can be used to represent the
entire flow within an accuracy of 0.1 percent in most cases. This

design simplicity is one of the main reasons for the wide use of free-
vortex designs for axial-flow turbines.

An example set of velocity diagrams for a free-vortex design is
shown in figure 3-12 for the hub, mean, and tip sections of a blade
with a radius ratio of 0.{}. The radial variation in the diagram shape
is considerable. The mean-section diagram for this example is a

symmetrical zero-exit-swirl diagram having a speed-work parameter
X, of 1. The associated hub diagram is nearly an impulse diagram

(k_=0.56), while the tip diagram is very conservative, with high
reaction (_,,----1.56). Thus, for a free-vortex swirl distribution, the
hub section is the critical section from an aerodynamic standpoint

(lowest efficiency). Therefore, special care must be taken when
selecting the mean-section diagram, especially for low-radius-ratio
blades, in order to ensure satisfactory diagrams at the hub section. A
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Hub section

Radius ratio,
rhlrt • O.6

Mean section

rm/rt • O.8

Tip section

rt/rt - 1.0

FZOURE 3-12.--Radial variation of velocity-vector diagrams for free-vortex
flow. Stator mean-section exit angle a,, 60°; mean-section speed-work param-

eter Z,,, 1.

very high reaction tip diagram can also be troublesome because it

increases leakage across the blade tip clearance space.

Another potential problem is that of rotor-blade twist. There is a

considerable radial variation in rotor inlet angle. For the case illus-

trated infigure 3-12, the rotor inlet angle varies from 45 ° at the hub

to --38 ° at the tip, a variation of 83 °. This results in a blade having

an overhanging tip section, thus causing some fabrication problems and

bending stresses. The positioning of the hub and tip sections of such a

blade is illustrated in figure 3-13.
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section

FIGURZ 3-13.--Relative positioning of hub and tip sections of free-vortex turbine.

Non-Free-Vortex Diagrams

Free-vortex designs are so commonly used that all other designs

are often classified under the common heading of non-free vortex. The

non-flee-vortex designs are used in an attempt to alleviate some of the

potential disadvantages associated with the flee-vortex design. Illus-

trated in figure 3-14 are the radial variations in diagrams for the cases

having the velocity variations illustrated in figure 3-11. The super-

vortex (N------2) design, the constant-swirl (N-_0) design, the wheel-
flow, or solid-rotation, (N_-I) design, and the constant-flow-angle

design are compared with the free-vortex (N= --1) design. The mean-

section diagrams, which are at a radius ratio r/rm of 1, are the same
for all cases. Also shown are diagrams at radius ratios r/r_ of 0.75,

0.889, 1.111, and 1.25. For a blade with a hub- to tip-radius ratio of

0.6, the r/r,_ values of 0.75 and 1.25 correspond to the hub and tip

sections, respectively. For a blade with a hub- to tip-radius ratio of

0.8, the r/r, values of 0.889 and 1.111 correspond to the hub and tip

sections, respectively. As the blade hub- to tip-radius ratio decreases,

any particular Va_ue of r/r, corresponds to a blade section relatively
closer to the mean section. There are, of course, no diagrams to show

in figure 3-14 for those particular cases for which, as shown in figure
3-11, no real values exist for axial velocity.

At any radius ratio, the rotor exit diagrams are the same for all

the swirl distributions. This is due to the selected mean-section diagram

having zero exit swirl (a2._----0).

The constant-flow-angle diagrams are quite similar to the flee-
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Fiovltz 3-14.--Radial variation of velocity-vector diagrams for various swirl
distributions.

vortex diagrams and, therefore, present the same problems of high

rotor-blade twist and low hub reaction. A possible advantage is that

the constant-flow-angle stator has no twist, while the free-vortex

stator has a small amount of twist (about 12°).

The super-vortex (N---- --2) diagrams appear to have no advantage of

any sort. The blade twist is more severe than for the free-vortex
case. The radial variation of stator-exit axial velocity is large and can-

not be sustained (Vz becomes imaginary) on blades with hub- to tip-

radius ratios much below 0.8.

The constant-swirl (N--0) and wheel-flow (N--I) diagrams do

alleviate the blade-twist and hub-reaction problems of the free-vortex

design. However, here too the radial variation in axial velocity is

large add cannot be sustained on blades with hub- to tip-radius ratios
below about 0.70 fo_ the constant-swirl (N=0) design and below about

0.85 for the wheel-flow (N----1) design. In addition, the hub absolute

and relative velocities at the stator exit are higher for these designs

than for the free-vortex design. For relatively high Mach number

turbines, these higher flow velocities could cause higher losses than

those of a free-vortex design.
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M_M - 0.58

Section at r/r t - 0.68
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(a) Free-vortex turbine.

• (b) Nontwisted turbine.

FIGURE 3-15.--Comparison of velocity-vector diagrams of free-vortex and non-

twisted turbines. (Diagrams from ref. 9.)
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A design procedure for rotor blades of constant inlet and exit angle,
termed a "nontwisted" design, is presented in reference 7. Such a
design completely eliminates twist in the rotor, which, therefore,
should be ee.sy to fabricate. References 8 and 9 contain experimental
results comparing free-vortex designs with nontwisted designs. The
design velocity diagrams used for the study of reference 9 are shown
in figure 3-15. A large radial variation in axial velocity at the stator
exit is also present in this nontwisted design. The stator-exit condi-
tions correspond closely to a swirl-distribution-exponent (N) value of
¼. Although rotor twist is eliminated, stator twist has increased from
10° for the free-vortex design to more than 30 ° for the nontwisted
design. At the rotor exit, the swirl is negative at the hub and positive
at the tip. The relative blade-inlet Mach number at the hub is higher
for the nontwisted design (0.85) than for the free-vortex design (0.72).
However, the reaction at the hub of the nontwisted design is improved
over that of the free-vortex turbine. The two turbines have about the

same efficiency.
The non-free-vortex designs all feature radial variation in specific

work and, because of the radial gradient in axial velocity, radiM varia-
tion in mass flow rate per unit area. Thus, the mean-section condi-
tions may not represent true average conditions, and considerable
error may occur if such a turbine is designed on the basis of the mean-
section flow conditions. A non-free-vortex turbine should be designed

by integrating the flow conditions between hub and tip in order to
compute work and flow rate. The proper design of a non-free-vortex
turbine is, therefore, much more complex than the design of a free-
vortex turbine. With computerized design procedures, however, this
additional complexity is no real disadvantage.

As seen from this discussion, the use of non-free-vortex designs to
alleviate the rotor-twist and hub-reaction problems associated with
free-vortex designs results in other problems such as higher hub
Mach numbers, increased stator twist, and increased design com-
plexity. It has been shown that large deviations from free-vortex
designs cannot be sustained over all blade spans. However, small
deviations from free-vortex designs, as reported in reference 10, have
been used to obtain improved turbine performance.

COMPUTER PROGRAMS FOR VELOCITY-DIAGRAM
STUDIES

This chapter has presented some of the basic aspects of velocity-
diagram selection, including diagram types, their relation to efficiency,
staging, and radial variations. It is evident that the determination of
the best diagrams and number of stages for a given application requires
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many considerations. If it is desired to include non-free-vortex

designs, meridional-streamline curvature effects, and radial variation
in efficiency, then such analyses are out of the realm of hand calcula-

tion. Therefore, computer programs have been evolved to perform

such tasks.

One such computer program is described in references 11 and 12.

The program includes consideration of streamline-curvature effects in

the radial equilibrium equation and radial gradients in enthalpy and

entropy in determining radial variations in flow. In addition, it not

only allows for blade loss as an input but also includes an internal loss
correlation using the information from reference 13 as a basis. This

program uses stator exit swirl distribution and rotor work (which
reflects rotor exit swirl) distribution as inputs. However, for many

values and combinations of these input specifications, either there is

no real solution for meridional velocity (V=,=V=/cos a,,,) or the

computer cannot find the solution because of a large variation in

dependent variable (meridional velocity) with small variations in

independent variable (swirl velocity). The existence of these condi-

tions is indicated by figure 3-11.

This problem has resulted in a program modification, as reported

in reference 14, wherein the radial variation in meridional velocity

instead of swirl velocity is used as input. The modified program has

proven very successful and shows that valid turbine designs can be

generated with any reasonable variation in meridional velocity.
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SYMBOLS

A flow area, m2; ft 2

Fp pressure force, N; lb
g conversion constant, 1 ; 32.17 0bm) (ft)/(lbf) (sec _)

h specific enthalpy, J/kg; Btu/lb
J conversion constant, 1 ; 778 (ft) (lb)/Btu
K proportionality constant
Z loss, J/kg; Btu/lb
m mass, kg; lb
N swirl distribution exponent

n number of stages
p pressure, N/m2; ]b/ft _
R reaction

r radius, m; ft
s specific entropy, J/(kg) (K) ; Btu/(lb) (°R)
T temperature, K; °R
U blade speed, m/sec; ft/sec
V absolute velocity, m/sec; ft/sec
v specific volume, ma/kg; ftS/lb
W relative velocity, m/sec; ft/sec
w mass flow rate, kg/sec; lb/sec
a fluid absolute flow angle, deg
. efficiency
e angle of rotation, deg

speed-work parameter
p density, kg/m a; lb/ft a

Subscripts:

{Z

a_

C

h

1
in

m6

7"

ro

8

8t

_g

first stage
annulus

component due to circumferential flow
hub

general stage
ideal

component due to linear acceleration
mean section

meridional

net

radial component
rotor

component due to streamline curvature
stator

stage
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t
u tangential component

z axial component
0 at stator inlet

1 at stator exit or rotor inlet

2 at rotor exit

Superscripts:

-- overall turbine

' absolute total state
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